AD=AD61 821 NEW MEXICO UNIV ALBUQUERQUE ERIC H WANG6 CIVIL ENGINE==-ETC F/6 13/2 R
AIR FORCE REFUSE=COLLECTION SCHEDULING PROGRAM DESCRIPTION. VOL==ETC(U)

MAY 78 H J IUZZOLINO» E P DUNPHY F29601=76=C=0015

UNCLASSIFIED CERF=-EE-20 CEEDO=TR=-78=23=VOL=2 NL

|

==

<
.

g

¥ AIR FORCE REFUSE—COLLECTION
SCHEDULING PROGRAM DESCRIPTION
VOLUME Il : PROGRAM PHASE 2

ADAO61821

HAROLD J. WZZOLINO

ERIC H. WANG CIVIL ENGINEERING RESEARCH FACILITY
UNIVERSITY OF NEW MEXICO

BOX 25, UNIVERSITY STATION v
ALBUQUERQUE, NEW MEXICO 87131 D D c

Dis g
DEC 4 1978
MAY 1978 ﬁ
©LUU L
D

FINAL REPORT FOR PERIOD JANUARY 1976 — APRIL 1977

DOC FILE. Copy

Approved for public release; distribution unlimited

CIVIL AND ENVIRONMENTAL
Ej]m ENGINEERING DEVELOPMENT OFFICE

(AIR FORCE SYSTEMS COMMAND)
TYNDALL AIR FORCE BASE
FLORIDA 32403

"‘"‘“"""""‘"‘!l;_mj

- L,-»-»
KMAYW
@

IiLl-----u!r-r--—-——~—“’ =~

L__ Volume TI» Program PHASE2..£

P R \ \ }

SECURITY CLASSIFICATION OF THIS PAGE (When Du&lmou&

9 JREPQRT DOCUMENTATION PAGE BEFORE COMPLETING FORM
UMBER / ﬁ 2. GOVT ACCESSION NO.| 3. Recmzuv S CATALOG NUMBER
CEEDOYTR-78-234 3}“—) [£ re o

| Final t',
AIR _FORCE REFUSE-COLLECTION SCHEDULING | inal Reper

$. YYYE OF REPORT c,‘:n 0D COVERED

"PROGRAM DESCRIPTION , - _Janusy SB76 Se Apfh 4077,

Muh‘—.d-—.‘.‘"

7. AUTHOR(a) _

Harold J. quzolino/ "/. TEERPARTR o |
Edward P. fDunphy F29641- 7§~9ﬁ9°‘5}
Qf—l;:;FORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM

ELEMENT. PROJECT, TASK
| AREA & WORK UNIT NUMBERS

Eric H. Wang Civil Engineering Research Facility,
University of New Mexico, Box 25, University

Station, Albuquerque, NM 87131 T.D. 4.03
11. CONTROLLING OFFICE NAME AND ADDRESS 12. RE’ORTNWC

DET 1 (CEEDO) HQ ADTC (/// May 178 |
Air Force Systems Command 13N oF PaGES.
Tyndall Air Force Base, FL 32403 132

14. MONITORING AGENCY NAME r ADDRESS(if ditferent from Controlling Office) 15. SECURITY CLASS. (of this report)

L)/, y 9'Zf' Unclassified

15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Available for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

Available in DDC.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Minimum number of trips
Spatial clustering of streets
Shared near neighbors

go ABSTRACT (Continue on reverse side If necessaary and identify by block number)

This report describes program PHASEZ2, the second of four programs in the Air
Force Refuse-Collection Scheduling Program Program logic, input, output, and
limitations are presented in detail. Some recommendations for changes, a pro-
gram listing, and sample output are included.

\

4

DD , 5%'ys 1473 eoiTion OF 1 NOV 68 1S OBsOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

“ol 97y

s i i - " ——— -

P4

—

PREFACE

This report documents work performed during the period January 1976
through April 1977 by the University of New Mexico under Contract F29601-
76-C-0015 with DET 1 (CEEDO) ADTC, Air Force Systems Command, Tyndall
Air Force Base, Florida 32403. Captain Robert F. Olfenbuttel managed the
program.

This volume, which documents program PHASEZ2, is the second of four
volumes constituting the Air Force refuse-collection-scheduling program
description. The sectioning algorithm for program PHASEZ was developed
and coded by Edward P. Dunphy. The map-plotting algorithm was developed
and coded by Harold J. Iuzzolino.

The report has been reviewed by the Information Officer and is re-
leasable to the National Technical Information Service (NTIS). At NTIS |
it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for
publication.

~f?‘ms.%® V;t\ a.
ROBERT F. OLFELNB , Capt, USAF, BSC PLTER A. CROVLIY, Maj, BSC ¢

Chief, Resources Conservation Branch Director of Invironics

Pas g v
EMIL C. FRETN, Maj, USAF P11 S. PIZZUTO, Col, USAF, 3SC
Chief, Envmtl Engrg & Enerpy Research Cormander

55

|_ASSESSION i

mne White Sectien

e St Sactis [
SWANNOURCED O
JBTIFICATION. oo

" RS LG

BISTRIBATION/AVAILASILITY 60DER nnp
Bel__ AVAIL oo/ SPECIAL U B
DEC 4

1978 g
P’ G gty
D

(The reverse of this page is blank.)

e e e ee—— —— - d

TABLE OF CONTENTS

Section Title Page

I INTRODUCTION 1

II PROGRAM OVERVIEW 3

x IT1 PROGRAM LOGIC 7
1. Program Tasks 7

2. Data Storage 9

[3. Purpose and Performance 10
a. Function KOUNT 1

b. Subroutine SHLSRT 1N

c. Subroutine SIFTUP 12

d. Subroutine SORTK 13

e. Function IFIND 14

f. Subroutine NUMBER 15

9. Subroutine SHAPCOM 16

i h. Subroutine COORD 19 v

| i. Subroutine MAPPLT 20
J. Subroutine BUILD 23

k. Subroutine SECTION 24

1. Program PHASE?2 32

Iv INPUT AND OQUTPUT ' 39

1. Input 39

a. Card Input 39

b. Segment Data 39

c. Node Data 4)

2. Scratch Files 41

3. Output 42

a. Disk and Plot Files 42

b. Printed OQutput 43

v PROGRAM REQUIREMENTS 47

VI PROGRAM LIMITATIONS 49

VIl WARNING MESSAGE AND CORRECTIVE ACTION 51

VIII RECOMMENDED CHANGES 53

TABLE OF CONTENTS (Concl'd.)

Section Title Page
APPENDIX A: LOGIC FLOWCHARTS 55
APPENDIX B: PROGRAM LISTINGS 89
APPENDIX C: DEFINITIONS OF IMPORTANT VARIABLES 121 ,
APPENDIX D: SAMPLE PRINTED QUTPUT 129 . 3
GLOSSARY 133

v

Figure

Table

LIST OF FIGURES
Title

Control Relationships Among Subprograms
Section Assignment Map for Kirtland Air Force Base

LIST OF TABLES

Title
PHASE2 Data Cards

v
(The reverse of this page is blank.)

Page

44

Page
40

v

SECTION I
INTRODUCTION

1. OBJECTIVES

In designing the Air Force Refuse-Collection Scheduling Program (RCSP),
the fundamental objective was to reduce collection costs. The most signifi-
cant cost reduction is effected by a reduction in the number of collection i
trips used to service a given region. If a collection crew can be dropped
from the fleet, the cost of manpower will be cut. In addition, fuel and
maintenance costs will be lessened 1f the total mileage traveled by the col-
lection fleet can be reduced. The first objective, then, is to generate a
collection schedule that calls for the theoretical minimum number of trips.
This objective is accomplished in program PHASE2 of the RCSP.

A secondary'object1ve. good spatial clustering of all streets serviced
by a vehicle during one trip, is also achieved by PHASE2, except possibly
for the last trip. In addition PHASE2 plots maps that show the section (trip)
to which each street segment 1s assigned.

2. SCOPE

This section (Volume II) of the report describes the workings of the
second program, PHASE2. A program overview 1s given, followed by a thorough
description of the logic involved in map processing. A skeleton of the logic
flow is provided. Input and output files are described. Program require-
ments and restrictions, error messages and error handling techniques, defi-
nitions of import variables, and an estimate of running time are also pre-
sented,

1
(The reverse of this page 1s blank.)

‘l“’l o — " Pa——— -~ .

SECTION I1
PROGRAM OVERVIEW

Determining the minimum number of collection vehicles needed to service
a base is fairly simple; the task of assigning collection schedules in such
a way that each vehicle is used to capacity, but not overfilled, while travel
time and distance are kept close to the minimum, is more difficult.

Program PHASE2 serves two purposes: it assigns street segments to sec-
tions (a section is a set of streets to be serviced by one collection vehicle),
and it plots the results of the sectioning. The sectioning groups the street
segments into closely connected, reasonably convex sets. The size of each
section is determined by the capacity of the refuse-collection vehicle that
will service it. Therefore, choosing the streets in a section so that each
section is compact is the main effort in PHASE2.

Two types of data are used as input to PHASE2. Data describing the nodes
and segments are read from files TAPE11 and TAPE9. Card input is used to spe-
cify the problem title, the vehicle capacities and numbers, the time limits,
the base segment for the first section, and the map bounds.

The program consists of a main program, PHASE2, and 11 subroutines.
PHASE2 reads the data cards, the segment data from file TAPE9, and the node
data from file TAPE11. Refuse-quantity information included with the segment
data and vehicle-capacity data from the data cards are used to determine the
number of vehicles required to collect all of the refuse.

PHASE2 calls subroutine BUILD to build a near-neighbor table. The table
indicates, for each street segment, the 60 other segments closest to it. To
build the table, subroutine BUILD computes the distances from each segment to
each other segment. The 60 shortest distances and the corresponding segment
numbers are found using an in-core tree-sort algorithm in subroutines SORTK
and SIFTUP.

‘9

PHASEZ calls subroutine SECTION to assign the segments to sections (cor
responding to collection trips). Segments are selected for addition to a
section on the basis of the number of near neighbors they share with another
segment, called a base segment, already in the section. The first base seu-
ment is specified by the user. Subsequent base segments are selected as the
sections are built. Segments are added to a section as long as the vehicle
capacity is not exceeded.

After each section is filled, subroutine SECTION checks to see whether
all remaining unassigned segments will fit into a single, last section. [f
not, selection continues on the basis of the shared near-neighbor criterion.
As sections are completed, the segment numbers are written to file TAPE4,
and statistics on vehicle time and capacity are accumulated.

After the sectioning has been completed, PHASEZ2 calls subroutine PLOTS

to initialize the plotting package. Subroutine MAPPLT is called to plot maps

indicating the section assignment of each segment. MAPPLT uses subroutine

SHAPCOM to set shape parameters for the segments and subroutine COORD to aqeri-

erate coordinates of points on each segment. Subroutine NUMBER is called to
append section numbers to the segments. Program PHASE2 terminates after a
trip data summary is written to file TAPE].

The flow of control from one subprogram to another is shown in Figure 1.

Within each subprogram, only the first call to each other subprogram is shown.

(Three of the subroutines shown in Figure 1--PLOTS, PLOT, and SYMBOL-- are
subroutines from the basic Calcomp software package and are not included in
the description of program PHASEZ2.)

v

PHASE?2 F;::::‘ BUltﬂgAJ;IZZ::, SORTK SIFTUP
SECTION .‘::::(_ﬁ)ﬂ_
P =1 shswr
PLOT
P.__—T MAPPLT IFIND
SHAPCOM :
——{ smeoL |
PLOT
| S { NUMBER [symBoL

Figure 1. Control Relationships Among Subprograms

9
(The reverse of this page is blank.)

SECTION III
PROGRAM LOGIC

The logic for program PHASEZ is described from three viewpoints. The
first description is task oriented. The second is data-storage oriented and
includes discussions of the preparation of data for use by subsequent programs,
the use of input data, and the data structures used in PHASE2. The third view
describes each subrcutinre in terms of its purpose and the manipulations per-
formed within it.

1. PROGRAM TASKS

Three tasks are accomplished by program PHASE2: (1) the number of trips
is determined on the basis of one of two options available to the user; (2)
street segments are assigned (in accordance with vehicle-capacity restrictions)
to sections, each section corresponding to a collection-vehicle trip, on the
basis of the number of near neighbors each segment shares with some segment
already in the section; (3) finally, one or more maps are plotted showing the
section assignments of the segments.

Program execution begins in the main program, PHASE2. The problem title
is read from the first data card. The number of vehicles and their capacities,
the time limits, and the number of the segment that is to be the first base
segment are read from the next two data cards. The number of vehicles speci-
fied on the data cards determines the method used to generate the number of
trips. If enough vehicles are specified to collect all the refuse in the col-
lection region, then that number of vehicles is used, even if it is not the
minimum. If fewer vehicles are specified than are needed to service the en-
tire region, the program will assign vehicles in the order given on the data
cards until the minimum number needed to collect all the refuse is obtained.

Segment data are read from file TAPE9, and refuse-quantity and node
data are read from file TAPE11. The input data and the number of vehicles
that will be needed are printed. Subroutine BUILD is called to construct

A near-neighbor table. For each segment, BUILD computes the distances to

each other segment. The numbers of the other segments are masked into th
Jow-order 12 bits of the distance. The distances are tree-sorted by sub-
routines SORTK and SIFTUP. The tree sort orders only the specified number of
itens. The 60 shortest distances are obtained from subroutine SORTK, and
the segment numbers are retrieved from these distances. Individual bits
corresponding to the segment numbers are set to 1 in an array called a near- |
weighbor list. The near-neighbor 1ist and information describing the origi-
nal segment are written to disk. This procedure is repeated for each segment
in the map. PHASE2 then calls subroutine SECTION to assign segments to

ections.

Subroutine SECTION chooses segments to be added to a section by detey

mining which segments share the most near neighbors with a base segment in

the section. Segments are added to the section as long as the vehicle's
capacity and time limit are not exceeded. A section is complete when a cer-
cain minimum load has been achieved or when each remaining segment wou ! aausé
the vehicle's capacity or time limit to be exceeded. The minimum-load cri-
tarten -trtes—to-fiake the cumutative load at -the eompletien of a section egqual-

Lo that fraction of the total refuse corresponding to the ratio of vehicle
capacity used to total vehicle capacity available. If one or more sections !
sre closed out because each of the remaining segments would cause the sehicle |
capacity to be exceeded, a situation may cccur wherein the determined minimum
number of vehicles will be inadequate to collect all of the refuse. In this ‘
case additional vehicles are assigned in the order in which the vehicles have
been specified, and a message is printed. As each section is completed, the
remaining refuse quantity is determined; if the remaining segments can be
issigned to one vehicle, the shared near-neighbor testing is discontinued

antt 211 of the remaining segments are assigned to the last section.

After subroutine SECTION has completed the sectioning, PHASE?2 prints a
sumpary of the loads and times required by the vehicles. A list of the
numbers of the segments in each section is also printed.

Subroutine PLOTS is called to initialize the plotting package. Subrou-
tine PLOT is called to place a 3-inch border at the bottom of the plot. :

PHASE2 then reads map bounds from the remaining data cards. If no map-
bounds cards are found, defaults are set up for a 30- by 30-inch map.

Subroutine MAPPLT is called once per output map. MAPPLT examines sequen-
tially the original segment data, skipping segments that are outside the map
bounds and drawing segments that l1ie at least partially within bounds. Before
each segment is drawn, subroutine SHAPCOM is called to set up parameters used
to determine the position on the segment of points at a given distance from
the start of that segment. The actual coordinates of the points on the segment
are returned by subroutine COORD.

Four different computations are used by subroutines SHAPCOM and COORD to
produce the coordinates of points on a segment. The simplest computation is
performed for straight segments and involves a linear interpolation between the
initial and final nodes. Another calculation processes both circular-arc and
S-curve segments; an S-curve is treated as two consecutive circular arcs. In
calculating the coordinates of a point on a rectangular segment, the .lope com- \
ponents of the first side are determined; appropriate multiples of these com-
ponents are then added to the starting or ending node's coordinates. The coor-
dinates of a point on an angle segment are found by linear interpolation be-
tween one end of the angle and the vertex. (A full description of the geometry,
as well as relevant calculations, are given in Section III of Volume I of
this report. The scale ratio SCR is replaced by 1.0 in program PHASE2.)

2. DATA STORAGE

Program PHASE2 obtains data from three sources: card input, file TAPE9,
and file TAPE11. Two files, TAPE1 and TAPE4, are generated by program PHASE2
and are saved on disk for use by program PHASE3. Files TAPE2, TAPE3, TAPE7,
and TAPE10 are used as scratch files.

The card data, the data frem TAPE9, and the data from TAPE11 are read at
the beginning of PHASE2. The segment data read from TAPE9 are stored in arrays
in blank COMMON. The street number and the number of ways of travel on TAPE9
are not retained in core. The node data from TAPE1l are stored in arrays in

78 11 19

labeled COMMON block NODATA. [f the number of vehicles from the second data
card is zero for any vehicle, it is reset to 1 in the loop on statement 25.

"he numbers of vehicles, their capacities, and their time limits are moved to

the TRUCKS arrvay in the loop through statement 50. The amount of total refuse

s also accumulated in this loop. When subroutine BUILD is called to build the
near-nefghbor table, segment numbers in arvay ISTPR and street segment midpoints
Inarrays X, Y, XT, and YT are sent through the argument list. Subroutine BUILD
writes to TAPE7 the segment number, refuse quantity, travel and collection time,

number ot houses, and 26 words of pear-neighbor information tor each segment.

When PHASEZ calls subroutine SECTION, the vehicle data in array TRUCKS,
Mich are grouped by vehicle capacity, are expanded into array TRUCK so that
cach line of array TRUCK corresponds to a single vehicle. As the first base
weguent 15 sought in the Toop through statement 17, seqgments other than the
hase segment are written to TAPET. TAPELD will contain unassigned segments
and their near-neighbor lists. As each sequent is considered tor addition
to a section, its segment and neighbor data are written to TAPE? if it is not
wided to the section. As a segment is assigned to a section, its segment and
neighbor data are written to file TAPE3. When a section is completed, the
segment numbers are read from file TAPEY and written to file TAPEA, The un-
assigned segments on file TAPET are recopied to file TAPE2. When all of the
segiments have been assigned to sections, control returns to proagram PHASE?.

b the end of program PHASED?, the number of segments and the number of sec-
Lrons are written to TAPET, as are pointers to the tfirst and last segment

nunbers on tile 1APEA and the vehicle capacity tor each section.

s PURPOSE AND PERFORMANCE

In this section the simpler subroutines are described first so their
worlings will be clear when they are mentioned again in the descriptions of
the more complicated subroutines and, tinally, of the main program. Logic
flowcharts arve given in Appendix A, Complete program listings are provided
in Appendix B. In Appendix ©, the more important variables mentioned in the
following descriptions are defined in terms of their specitic meaning for

vach subroutine.

10

a. Function KOUNT

The purpose of function KOUNT is to count the 1 bits in a 60-bit word.
The function is written in the COMPASS assembler language for the CDC 6600.

Function KOUNT has one argument. The argument is a bit pattern
with bits set to 1 where two segments share a near neighbor. The value re-
turned is the number of 1 bits in the argument. The sequence of instructions
generated by the compiler where KOUNT is called includes setting register Al
to the address of the argument iist. In KOUNT, the first SA1 instruction
causes the X1 register to receive the address of the first argument. The
second SAl instruction causes the value of the argument to be placed in reg-
ister X1. The CX6 instruction counts the 1 bits in register X1 and places
the result in register X6. Control then returns to the calling program.

b. Subroutine SHLSRT

Subroutine SHLSRT sorts one array into decreasing order and carries

a second array along during the sorting. The algorithm used is Shell's sort-
ing algorithm.

Subroutine SHLSRT has three arguments. The first argument is the
array to be sorted. The second argument is an array that is paired with the
array to be sorted and is rearranged as the first array is sorted. The third
argument is the number of words to be sorted.

The statements up to statement 60 arrange array X in increasing
order. The numbers are sorted by a procedure in which pairs of numbers are
compared and interchanged if necessary to put the smaller number closer to
the beginning of the array. The separation of the numbers compared is approx-
imately one-half the number of entries in the array; this spacing is halved in
subsequent passes through the array. When two numbers are interchanged, the
pointers are moved up so that the smaller number is compared to a number far-
ther up in the array. The spacing (N) is set initially to one-half the number
of words. The number of comparisons (K) to be performed in the loop through
statement 50 is computed as the total number of words less N.

n

The loop through statement 50 uses index | as one of the pointers.

This pointer is sorted in variable J. The other pointer, L, is set equal to
[#N. The values of the array to be sorted and the array to be carried along
are saved as XT and AT. The values ot X at the locations indicated by the
pofnters are compared; if they are in order, control transfers to statement 40.
If not, the larger value is stored closer to the end of the array. The pointers
are both moved up by N; if the smaller valued pointer is a valid subscript, con-

trol transfers to statement 20, where another comparison is pertormed.

At statement 40 the saved values are stored in the appropriate place
in the arrays. When the loop through statement 50 is completed, if the spac-
Ing is equal to 1, the sort is complete and control transfers to statement 60.

Utherwise, the spacing i1s halved and control transfers to statement 10.

The Toop through statement /0 rearranges the arrays so that the X-

array is in decreasing order. Control returns to the calling program.
533 Subroutine SIFTUP

Subroutine SIFTUP orders each subtree in a binary tree from a given
subroot up to the root so that each subroot is smaller than either of its
branches. Subroutine SIFTUP has four arguments. The first is the subscript
of the subroot at which sorting starts. The second is the number of items
in the array to be sorted. The third is the array to be sorted. The fourth
1s the dimension of the array to be sorted.

Variable [is set equal to the subscript of the subroot where sort-
ing will start. Variable I will continue to point to a subroot throughout
the sorting. The value at TREE(I) is saved in variable COPY.

At statement 10, pointer J is set equal to the subscript of the left
branch. If J points to or beyond the last item in the tree, control transfers
to statement 6. Otherwise, the left and right branches are compared. 1f the

right branch is smaller, J will be incremented so that it points to the right

branch.

At statement 4 the smaller branch is compared to the root. If the
root is smaller, control transfers to statement 6. Otherwise, control resumes
at statement 5, and the branch value is stored in the root position. The
branch from which the smaller number came now becomes the root in another iter-
ation. Control transfers back to statement 10.

At statement 6, the value of the root saved in variable COPY is

stored in the appropriate place in array TREE. Control returns to the call-
ing program.

d. Subroutine SORTK

Subroutine SORTK returns the KN smallest numbers in array TREE. A
tree-sort algorithm is used. The array to be sorted is treated as a binary
tree and is partially ordered, in such a manner that each subroot is smaller
than its branches, by calls to subroutine SIFTUP.

Subroutine SORTK has four arguments. The first (N) is the number of
items in the array. The second (KN) gives the number of items to be returned.
The third (TREE) is the array to be sorted. The fourth is the dimension of
the array. i

Subroutine SORTK begins by comparing the first and last numbers in
the array to be sorted. If the last item is smaller than the first, the two
are interchanged to prevent the smaller number from being trapped as the last
entry in the array when the number of entries is even and the last entry is
the smallest. Variable K is set to one-half the number of items in the tree.

The loop through statement 10 calls SIFTUP; the first argument starts
at the middle of the tree and works back to the second element in the array.
When this loop is complete, the branches in the tree are smaller than any sub-
roots except the root of the entire tree.

The loop through statement 1) causes SIFTUP to move the smallest num-
ber to the root of the tree. This number is then exchanged for the last item
in the tree. The loop through statement 11 is used once for each number to be

returned. When this loop is complete, the KN smallest numbers will be at the
end of array TREE, and the smallest number will be last. Control then returns
to the calling program.

e. Function IFIND

Function IFIND uses a binary search to locate a given number in an
array; the subscript corresponding to the location of the number is assigned
as the value of IFIND. If the number is not found, the function sets the
value of IFIND equal to the negative of the subscript at which the number, to
be in numerical order, should be inserted. (The array is assumed to be in in-
creasing order.)

The comment cards at the beginning of function I[FIND list the latest
changes to the function and state the function's purpose.

Argument NUM is the number that is sought in array IARRAY. The

length of array IARRAY is given by argument LEN. Function IFIND begins by check-
ing that LEN >~ 0. If LEN < 0, the function assigns a value of -1 to IFIND. This
value indicates that the number sought is not in the array and would be stored
as the first entry in the array. The binary search uses variables II, IP, and
IF as pointers. II is the subscript of the front of the region being searched,
IP is the subscript of the item being compared to the number sought, and IF is
the subscript of the last item in the region being searched. Variable 11 is
initially set to 1 at statement 5, and variable IF is set to the end of the

array in the next statement. The pointer, IP, is the subscript about midway
between I1 and IF.

The computation of [P occurs at statement 10. The statement follow-
ing statement 10 compares the number being sought, NUM, to the data at
IARRAY (IP). [f NUM < IARRAY(IP), control transfers to statement 20, indica-
ting that the number is in the front one-half of the region being searched; at
statement 20 the final pointer is moved to the subscript preceding the point
Just searched. If NUM > IARRAY(IP), control transfers to statement 30, indi-
cating that the number being sought follows the subscript just inspected. At
statement 30 the initial pointer, II, is set to the present pointer, IP, plus 1.

If the number sought is found at IARRAY(IP), control transfers to statement 50,
where IFIND 1s set equal to the current pointer and control returns to the call-
ing program. Where NUM is unequal to IARRAY(IP), control resumes at statement

| 40 after the initial or final pointers are moved. At statement 40 the final
pointer is compared to the initial pointer; if IF > II, control is transferred
to statement 10.

At statement 10 the search is resumed on the appropriate one-half of
the region examined previously. If the final pointer becomes less than the
initial pointer, the number sought is not in the array. In this case, control
resumes following statement 40, and the value of IFIND is set to the negative
of the current pointer. If the number at the current pointer is less than the
number being sought, IFIND is set to -(IP + 1) so the number can be inserted
in the appropriate place. Control then returns to the calling program.

! f. Subroutine NUMBER

Subroutine NUMBER appends numbers to plotted output. Its purpose is
almost identical to that of the standard Calcomp number routine, the primary
difference being that the last argument in subroutine NUMBER gives an alpha-
numeric format rather than an integer format code.

Subroutine NUMBER has six arguments. The first two give the coor-
dinates, in plotter inches, of the lower left corner of the field. The third
gives the height, in inches, of the digits. The fourth is the number to be
plotted. The fifth is the angle at which the number is to be plotted, measured
in degrees counterclockwise from the horizontal. The last argument is an alpha-
numeric format up to 10 characters long, which describes the appearance of the
plotted number. W

Array TEXT is used to hold the character representation of the number.
Up to 30 characters are allowed. The first executable FORTRAN statement sets
this array to three words of blanks. The second statement moves the format in-
to the second word of array FORM. The first and third words of this array have
been preset to a left and a right parenthesis by a DATA statement. The ENCODE
statement converts the number from binary form in variable NUM to character
form in array TEXT, according to format FORM.

A character count, variable NC, is set to 30. The loop through state-

ment 10 searches for the last non-blank character in array TEXT. FEach time a
blank is found, starting at the end of the TEXT array, the character count (NC)
is decremented by 1. When a non-blank character is encountered, control trans-
fers to statement 20. Statement 20 calls the standard SYMBOL subroutine to
plot the character representation of the number. Control then returns to the
calling program,

B Subroutine SHAPCOM

Subroutine SHAPCOM sets up parameters in COMMON block COPARM that de-
scribe the geometrical properties of a segment. These parameters are used by
subroutine COORD to produce the coordinates of points on a segment.

Subroutine SHAPCOM has two arguments. Argument TOTLEN gives the
total length of the segment, in miles. Argument AVMD gives the number of miles
per map coordinate unit (MCU) on the first map input to program RCINPT. The
values of the arguments are sent to subroutine SHAPCOM, and all output values
from SHAPCOM are placed in COMMON block COPARM.

In COMMON block COPARM, variable SF indicates the shape of the seg-
ment. XNI and XNF are the x-coordinates of the initial and final nodes of the
segment. YNI and YNF are the y-coordinates of these nodes. SX and SY are the
slope, in MCU per mile, in the x and y directions. RPR is the reciprocal of
the radius of curvature for circular segments and the circular portions of S-
curves. CI1 and C12 are the position differences, in MCU, of the starting
point and center of a circular arc or of the first one-half of an S-curve.

XCTR and YCTR are the center coordinates, in MCU, for a circular arc or one-
half of an S-curve. BR1 is the distance in miles from the start of a segment

to some particular point on that segment. It is not used for straight segments.
For circular segments, BR1 is the total perimeter. For an S-curve, BRI is

the perimeter to the midpoint of the S-curve. For a rectangular segment, BR]

is the distance to the first bend in the rectangle. For an angle, BR1 is the
distance to the vertex. BRZ is defined only for rectangular segments and
angles. For a rectangular segment, it is the perimeter in miles from the start
of the segment to the second bend. For an angle, BR2 is the length of the sec-

ond side. SGN is -1 for shapes involving the L (left) prefix, and +1 otherwise.

16

Subroutine SHAPCOM begins execution by assuming that the shape code
indicates a straight line. Break indicators BR1 and BR2 are set to 0. O0X and
DY, the x- and y-components of the vector from the initial to the final node
on the segment, are computed. The x- and y-components of the slope of the vec-
tor, measured in MCU per mile, are computed and stored in SX and SY. The shape
code is tested; if the segment proves to be a straight line or is not to be
plotted, the subroutine returns control to the calling program. For any other
shape code, execution continues. The angle of the vector from the starting to
the stopping node is computed as variable THETA. The distance from the start-
ing to the stopping point, D, is computed in miles. If the shape code indicates
a shape other than circular or S-curve, control transfers to statement 60.

At statement 45 the coordinates of the final node are stored in vari-
ables XE and YE. The first break, BR1, is set to the total length of the seg-
ment. Variable DD is set to the straight-line distance from the starting to
the stopping node. If the shape code indicates a circular segment, control
transfers to statement 50. If not, variables XE and YE are reset to the coor-
dinates of the midpoint of the S-curve. Break indicator BR1 is reset to the
perimeter length from the starting point to the center of the S-curve. Variable
DD is set to one-half the distance from the starting to the stopping point.

At statement 50, SGN is set to 1. If the shape code indicates a
left circle or left S-curve, SGN is reset to -1. Variable V is set equal to
1-D/TOTLEN. VS 1is the square of V. The reciprocal of the radius of curva-
ture of the circle or the circular portion of the S-curve is evaluated using
a polynominal approximation to the solution from a transcendental equation
containing the reciprocal of the radius of curvature. The approximate radius
of curvature, RPR, is improved by a series of linear interpolations if the
value for RPR causes an error greater than 0.00001 in the transcendental
equation

.~ BR1*RPR _ DD*RPR
sin 5 o

When RPR is within the desired accuracy, control resumes at state-
ment 51. The radius of curvature, R, is computed. A temporary variable,
ARG, is evaluated. The height of the center of the circle from the line

17

connecting the starting and stopping points, H, is set to 0. If variable ARG
s greater than 0, H is recomputed. The distance to the first break, BRI, is
tested to determine whether the circular arc is greater than one-half a circle.
It 50, the sign of the height is changed. The x- and y-coordinates of the
center of the circle are computed. The components of the vector from the cen-
ter to the starting point, C11 and C12, are computed. A1l variables needed to
compute points on the S-curve or circle are now available, so control returns
to the calling program.

Processing continues at statement 60 for the remaining shape codes.
At statement 60, the shape code is tested; if neither a right nor a left rec-
tangle is indicated, control transfers to statement 80. Otherwise, for a rec-
tangular segment, the distance from the start to the first bend, BR1, is com-
puted. If this distance is greater than 0.05 of the total length, control
transfers to statement 70. Otherwise, the rectangle is assumed to be so shal-
low that a straight-line approximation is adequate, and the shape code is cet
to 0. Control then returns to the calling program.

At statement 70 the perimeter to the second bend in the rectangle,
BRZ, s computed. SX and SY, the x- and y-components of the slope of the
vector from starting point to stopping point, are computed, and control re-
turns to the calling program.

The only segments that reach statement 80 are the angles. The sign
of the shape code is retrieved in variable SGN, and the distance from the
starting node to the vertex of the angle is retrieved as the magnitude of the
shape code and is stored in variable BR1. The length of the second leg of the
angle is computed and saved in variable BR2. If the angle is incorrectly spe-
citied so that it is actually a straight segment, a round-off error may occur

, in the computation of ARG, the square of the distance from the vertex to the
line connecting the endpoints. If ARG is zero or negative, control transters
to statement 100. Otherwise, the x- and y-coordinates of the vertex are com-
puted, and control returns to the calling program.

At statement 100, the shape code and break indicators are set to
0, indicating a straight segment. Control returns to the calling program.

18

n " - . : WY promosna Ill""—"’" L ——————— .

- AR i T I
L..A

h. Subroutine COORD

Subroutine COORD is given a distance, in miles, from the beginning of
a segment and returns the coordinates in MCU. Parameters describing the segment
to be processed have been sorted in COMMON block COPARM by subroutine SHAPCOM
before COORD 1s called. Argument CUMLEN is the cumulative length along the

string, in miles; arguments XX and YY are the coordinates returned for a point
CUMLEN miles from the start of the segment.

The first statement of COORD sets S equal to the cumulative length.
If the shape code 1s nonzero, control transfers to statement 10. The coordin-
ates of the point on a straight-1ine segment are computed and returned in vari-
ables XX and YY. Control returns to the calling program.

At statement 10 controi transfers to statement 30 1f the shape code
indicates other than a circular or S-curve segment. For circular and S-curve
segments, the reciprocal of the radius of curvature is stored in RIP. The co-
ordinates of the center of the circular portion are stored in XC and YC. The
components of the vector from the center of the circle to the initial node are
stored in C1 and C2. 1If the point on the segment is less than or equal to
0.999 of the first break distance, or if the shape code indicates a circular ﬁ
segment, control transfers to statement 20. The statements following this
test change parameters to generate coordinates for the second circular portion
of an S-curve. The sign of the reciprocal of the radius of curvature is re-
versed. The cumulative distance, S, is set to the distance from the midpoint
of the S-curve. The coordinates of the center of the second circular portion,
XC and YC, are computed. Variables C1 and C2 are recomputed for the new center.

At statement 20 the sine and cosine of the angle subtended by the
perimeter corrasponding to S are computed. The coordinates of the point, XX
and YY, are computed, and control returns to the calling program,

At statement 30, control transfers to statement 60 1f the shape code
indicates that the segment is not a rectangle. Otherwise, variable SGN is set
to 1. If the shape code 1nd1doto| a left rectangle, SGN 1s reset to -1, If S,
the distance along the roctlngho. is greater than 1.06 times the first side's

)
(The reverse of this page is blank.)

length, control transfers to statement 40. If S is greater than 0.95 times
the length of the first leg, S is set to the length of the first leg. The x-
and y-coordinates of the point on the first leg are computed by linear inter-
polation, and control returns to the calling program.

At statement 40, S is tested to see whether it falls on the second
leg of the rectangle. If S is greater than 1.05 times BR2, the length of the
second leg of the rectangle, control transfers to statement 50. If S is
greater than 0.95 times BR2, S is set equal to BR2. The x- and y-coordinates
of the point on the second leg are computed by linear interpolation and con-
trol returns to the calling program.

At statement 50 the x- and y-coordinates of a point on the third
- of the rectangle are computed by linear interpolation. Control returns
@ calling program.

At statement 60 the distance, S, is compared to the length of the
first side of an angle segment. If S is greater than this length, control
transfers to statement 70. If not, the x- and y-coordinates are computed by
interpolation for a point on the first leg. Control returns to the calling
program.

At statement 70 the distance along the angle is decreased by the
length of the first leg of the angle. The coordinates of the point on the
second leg are computed by linear interpolation, and control returns to the
calling program.

i. Subroutine MAPPLT
Subroutine MAPPLT draws a map of the street segments, one line per
segment, with the section number appended to each segment. Up to 10 maps

can be drawn.

Subroutine MAPPLT has two arguments. Argument II indicates the
sequence number of the map. Argument KF is the number of segments.

20

The coordinates of the region bounding the map are contained in
arrays in COMMON block MPDATA. In this COMMON block, arrays XMIN and XMAX
are the minimum and maximum x-coordinates for the map. XLEN is the length,
in inches, of the map in the x-direction. YMIN, YMAX, and YLEN are the corre-
sponding arrays in the y-direction. Array YHCUT contains the height, in plot-
ter inches, at which the map must be sliced into strips. Variable AVMD con-
tains the miles per MCU conversion factor for each map.

MAPPLT begins by retrieving or computing the map bounds, the height
of a strip of the map (PHGT), the maximum length, the number of map strips (MX),
the map scale factors, and the intervals in MCU at which the strips are to be
cut. These parameters are printed according to format 90.

The Toop through statement 200 will test each segment to see whether
it falls within the frame of the map; if it does, the segment will be plotted.
Variables NI and NF are set equal to the numbers of the nodes bounding the
segment. The midpoint coordinates of the segment are saved in variables XMD
and YMD. The lines in the node-number array at which the initial and final
nodes occur are saved in variables NS1 and NS2. The initial and final coor-
dinates of each node are retrieved.

Initially the segment is assumed to be entirely within the bounds,
and indicators INBI, INBM, and INBF are set to 1. If the coordinates of the
initial node lie outside the frame of the map, INBI is set to 0. Similar
tests are made on the coordinates of the midpoint of the segment and the coor-
dinates of the final node of the segment. If all three points are outside the
frame of the map, control transfers to statement 200 and the segment is not
plotted. For segments that are at least partially within the frame of the map,
the section number and total Tength of the segment, in miles, are saved in
variables NUMS and TOTLEN. The number of points to be used in plotting one-
half of the segment (NPMID) is computed. The number will be restricted to
a maximum of 10 points. The total number of points per segment, NPPSEG, is
set to twice (NPMID).

Subroutine SHAPCOM is called to set up the parameters needed to gen-
erate coordinates of points on the segment. The cumulative length along the

21

segment is initially set to 0. A step size, DS, is computed as the total
length divided by the number of points to be plotted on the segment. The coor-
dinates of the initial node are stored in variables XX and YY. The number of
the strip of the map into which the node falls is computed. Both a current
value of the strip number, NMAP, and a value for the previous point, NMAPO,
will be used. The pen position, up or down, is determined by whether the ini-
tial point was in bounds. Variable IPEN will be 3 if the point is out of bounds
and 2 if the point is in bounds. If the point is out of bounds, control trans-
fers to statement 130. If not, the coordinates of the point are converted to
plotter inches and stored in variables XP and YP. If the current node has al-
ready been plotted as the last node on the previous segment, control transfers
to statement 120. If not, a small square marking its position is appended to
the map. At statement 120 the pen is moved to the position of the current
point on the segment.

Statement 130 starts a loop through statement 170 that will advance
the pen through the remaining points on the segment. The cumulative length is
incremented by DS. Subroutine COORD is called to obtain the coordinates of
the point in MCU.

At statement 140 the coordinates are converted to plotter inches.
The point is assumed to be in bounds, and variable INB is set to 1. If the
coordinates of the point are out of bounds, INB is reset to 0. If the pen
has been up and the current point is out of bounds, or if the strip number
is greater than the number of the final strip, control transfers to state-
ment 60. Otherwise, the pen is moved to the position of the current point.

If the pen is up, it is lowered. Variable IPEN is recomputed to reflect
whether the point is in bounds.

At statement 150, if the loop index is not equal to the number of
the midpoint of the segment, control transfers to statement 160. Otherwise,
the section number is appended to the map near the segment midpoint, and the
pen is repositioned at the midpoint.

At statement 160 the number of the current strip is computed. If
the current strip number is equal to the previous strip number, control trans-
fers to statement 170. If not, the old strip number (NMAPO) is set equal to

Le

A s o

e e — ~

the current strip number; IPEN is set to 3, indicating that the pen is up; and
control transfers to statement (40. In this case, the pen is positioned at
the current point on the new strip.

Statement 170 is the end of the loop that causes the segment to be
drawn. If the last point drawn is out of bounds, control transfers to state-
ment 200. Otherwise, a small square marking the node's position is appended
to the map. The pen is repositioned at the last node. The number of the node
is saved in variable LASTNN. Statement 200 is the end of the loop that draws
the various segments. At statement 300 the plotter pen is positioned 2

inches beyond the end of the last strip. Control returns to the calling pro-
gram.

J. Subroutine BUILD

Subroutine BUILD creates a near-neighbor table for the street seg-
ments in the map description. This subroutine has 13 arguments. The first, N,
is the total number of segments in the map description. The second, KN, is the
number of near neighbors that will be found for each segment. KN is set to 60
in the main program. The next two arguments, X and Y, are arrays containing
the x- and y-coordinates of the segment midpoints. The fifth argument, MINFR,
is an array containing refuse quantity, servicing time, and number of houses
for each segment. The sixth argument, TREE, is an array used in the construc-
tion of the near-neighbor table. The seventh argument, ISTPR, is an array of
segment numbers. The eighth and ninth arguments, NNT and NNTEMP, are tempor-
ary storage arrays. The next two arguments, XT and YT, are arrays of the x-
and y-coordinates of the segment midpoints. The twelfth argument, KP, is the
number of words used to store near-neighbor information for each segment. The
last argument, IUNX, gives the number of the unit on which the near-neighbor
table will be written. If IUNX is zero, the near-neighbor table will be
written on file TAPE7.

Subroutine BUILD begins by setting variable IUNIT equal to UNIT(5).
If argument IUNX is positive, IUNIT is reset to IUNX. The loop on statement 5
creates sixty 1-bit masks in array BDATA. The next statement begins a loop
through statement 1111 that will examine each segment. The segment number is

23

‘?

stored in NNT(1). The loop through statement 1000 transfers the segment numbers
to array NNTEMP and the segment midpoint coordinates to arrays XT and YT. The
next nine statements interchange the segment stored in the first location of
arrays XT, YT, and NNTEMP with the segment stored at location II. Variable MM
is set to one less than the number of segments. The loop through statement 20
computes the distances from the segment whose midpoint coordinates are in the
first location of arrays XT and YT to each other segment. The distances are
stored in array TREE with the low-order 12 bits replaced by the segment number.
Subroutine SORTK is called to return the smallest KN distances of the MM dis-
tances in array TREE. The loop through statement 30 retrieves the segment num-
bers from the low-order 12 bits of the KN smallest distances. These segment
numbers are stored in array NNT. The loop on statement 94 sets the COMP array
equal to 0. This array will be used to store in turn each segment's near-
neighbor list. The loop through statement 95 generates the near-neighbor list
for the segment currently in location 1 of array NNTEMP. A unique word pointer,
IWT, and a unique bit pointer, IP1, are generated from the neighboring segment
number in array NNT. The appropriate bit in the appropriate word of array COMP
is set to 1 by means of the appropriate mask in array BDATA. The segment num-
ber is stored in STRING(1). The load, time, and number of houses on the seg-
ment are transferred to array MINFO, which is equivalent to STRING(2). Array
STRING is written to file IUNIT. Note that the COMP array is equivalenced to
the STRING array starting at STRING(5). When all near-neighbor table informa-
tion has been written to file IUNIT, the file is rewound. Cont-ol returns to
the calling program.

‘o

K. Subroutine SECTION

Subroutine SECTION assigns each segment in the map description to a
section (a section corresponds to a collection trip or vehicle load). Sub-
routine SECTION has 15 arguments. The first, NN, is the number of segments.
The second, K, is the number of near neighbors found for each segment. The
next two arguments, MODE and IFLAG, are provided to facilitate modifications
that will allow for user-specified base segmenti. The fifth argument, KCUTOF,
gives the minimum number of segments to be considered for inclusion in the same
section as a given base segment. The sixth and seventh arguments, X and Y, are
the coordinates of the segment midpoints. The eighth, NNTS, is an array of

24

segment numbers. The next four arguments, ISTO, IST1, IST2, and IST4, are tem-
porary storage arrays of 30 words each. The thirteenth, KP, is the number of
words used for near-neighbor table data for euchh segment. The fourteenth, KPB,
is the number of words in use per segment in array STRING. The fifteenth argu-
ment, MA, is the dimension of arrays ISTO, IST1, IST2, and IST4.

Subroutine SECTION begins by initializing parameters. The cumulative
time and load are set to 0. The maximum number of base segments to be saved,
NSTO, is set to 30. A count of the number of passes through near-neighbor
histogram generation (LPASS) and a count of the number of completed sections
(KPASS) are set to 0. The number of segments is stored in variable NP. Vari-
able SMLD, the smallest cumulative load required to complete the current sec-
tion, is set to 0. The number of trucks, NTRUCK, is set to 0. The number of
nodes is saved in variable N. Symbolic names for disk files are assigned
values. Variable OLDUNT is set to 1, IUNIT to 2, 103 to 3, 104 to 4, 105 to
7, and 1010 to 10.

v

The loop on statement 5 clears array TRUCK, while the loop through
statement 6 sets the cumulative time to the unloading time, TDUMP. After
statement 6, the pointer to the first segment in section 1 is set to 1. The
loop through statement 15 selects vehicles of differing capacities, while the
loop thorugh statement 10 generates an entry in the TRUCK array for each vehi-

cle requested. Following statement 15, the total number of vehicles is stored
in variable NTO.

Since MODE is set to O in the calling program, control continues to
the loop through statement 17. (If user-specified base segments were to be
added to the program, SECTION would be called with a nonzero MODE.) The loop
through statement 17 scans the near-neighbor data on unit 7 (symbolically I105)
searching for the first base segment. When the segment is found, the segment
data and the neighbor 1ist for the segment are transferred to array BASE in
the Toop on statement 172. The refuse quantity, servicing time, and number
of houses for the segment are also transferred to variables INF1, INF2, and
INF3. Segments other than the base segment are written to file OLDUNT at
statement 171. After the loop through statement 17 has been completed, files
OLDUNT and IC5 are rewound. Control transfers to statement 1301, bypassing

the coding that selects a base segment on the basis of its distance from the
previous base segment.

At statement 100 the coordinates of the current base segment are
transferred to variables XR and YR. A distance variable, ODIS, is set to
1000000. The loop through statement 1101 scans the segments on file OLDUNT,
computing the distance from each segment to the current base segment. As dis-
tances shorter than ODIS are encountered, the new distance and segment numbers
are saved. The neighbor data are saved in array BASE. When the loop through
statement 1101 is complete, the segment closest to the old base segment will
be saved as the new base segment. Files OLDUNT and IUNIT are rewound.

The loop through statement 1401 scans file IUNIT for the current
base segment. A1l other segments are rewritten to file OLDUNT. When the
loop through statement 1401 is complete, both files are rewound.

Following statement 1301, the smallest cumulative load necessary to
complete the section is computed. The loop on statement 90 transfers base seg-
ment information to array NNTS. Array BASE contains the segment number, refuse
quantity, servicing time, number of houses, and near-neighbor list. This infor-
mation is written to file I03. The count of the number of base segments stored
in the NNTS array (NSTD) is set to 1. The base segment refuse quantity, servic-
ing time, and number of houses are transferred to the TRUCK array. Variable
TRUCK(6, SECTN) is set to 1, indicating that one segment is serviced by the ve-
hicle in this section. A count of segments is also kept in variable PC, which
is also set to 1.

At statement 1021 the count of segments left to be assigned (KL} is
computed. At statement 440, counters JON and ION are set to 0. The loop
through statement 1020 sets array IST2 equal to consecutive integers and
clears arrays ISTO, ISTI, and IST4. The loop on statement 1019 sets to 0 the
60 words in array HISTO.

The segment number of the current base segment is stored in variable
L1. The loop through statement 2929 scans all segments on file OLDUNT. The
segment and its neighbor data are read, and the segment number is stored in

26

variable L2. Word pointer IWl and bit pointer IP1, which indicate the position
of segment L2 in the near-neighbor data for the base segment, are computed. This
bit {s examined in the neighbor table of the segment read from OLDUNT; if it is
nonzero, control transfers to statement 1022, indicating that the base segment
is a near neighbor of the segment from file OLDUNT. Otherwise, control trans-
fers to statement 3030.

At statement 1022, word and bit pointers are computed for the segment
read from file OLDUNT. The near-neighbor table for the base segment is exam-
ined. If the segment from file OLDUNT is a near neighbor of the base segment,

control transfers to statement 1023. Otherwise, control transfers to statement
3030.

At statement 1023, the shared-neighbor count, IC, is set to 0. The
loop on statement 1024 counts the number of neighbors shared by the base seg-
ment and the segment read from file OLDUNT. The count is used as a subscript
on array HISTO, and the appropriate location is incremented by 1. If the
count is negative, which should be impossible, or if variable JON, the number
of segments sharing neighbors with the base segment, is greater than or equal
to 30, control transfers to statement 3030. Otherwise, JON is incremented by
1, and the segment number and shared-neighbor count are saved in arrays ISTO,
IST1, and IST4. The STRING array for this segment is written to file 1010,
and control transfers to the end of the loop.

At statement 3030, the STRING array for segments that are not near
neighbors of the base segment is written to file IUNIT. The number of segments
on file IUNIT is computed and stored in variable NUT. File IUNIT is rewound.

The loop through statement 4040 forms a running count of the entries
in the HISTO array, beginning with the end of the array. When the count
passes KCUTOF, control transfers to statement 4450. KCUTOF is set to 5 in the
main program. At least five segments sharing the greatest number of near
neighbors with the base segment will be examined for inclusion in the current
section. Variable KI is set equal to the smallest number of near neighbors
that any of these five segments shares with the base segment.

27

——— e e —

sioeinmtrne s e

Following statement 4450, file OLDUNT is rewound. If JON, the num-
ber of segments sharing neighbors with the base segment, is 0, control trans-
fers to statement 4990. Otherwise, the shared-neighbor counts in array ISTI
are sorted into decreasing order; the segment line numbers in IST2 are carried
along during the sort. File 1010 is rewound.

A segment counter, variable ION, is set to 1. At statement 1001, if
ICODE is equal to 1, indicating that the section is complete, control transfers
to statement 700. Otherwise, at statement 101 variable IP is set equal to the
Tine number of the unassigned segment sharing the most neighbors with the base
segment. Unit 1010 is rewound. The segment number is stored in variable LNX,
and the count of shared neighbors is stored in LNY. If the segment counter
(ION) is greater than the total number of segments (JON), control transfers to
statement 4991. Otherwise, the loop on statement 102 reads segments from unit
[0T0 until a segment is found with a segment number equal to LNX and a shared-
neighbor count greater than or equal to variable KI. If the segment is found,
control transfers to statement 500. If not, following the loop through state-
ment 102, if the current load plus the load from all previous sections exceeds
the smallest load necessary to complete the current section, control transfers
to statement 600. Otherwise, files 1010 and OLDUNT are rewound.

At statement 4991, counter LPASS is incremented by 1. The loop
through statement 3436 reads the segment and neighbor data from file 1010. If
segments have not been assigned to the current section, they are written to
file OLDUNT. The loop through statement 3437 transfers the remaining segments
from file IUNIT to file OLDUNT. Files IUNIT, OLDU.., and 1010 are rewound.

At statement 4990, if more base segments are needed than have been
saved in array NNTS, control transfers to statement 800. Otherwise, the loop
on statement 475 transfers segment and neighbor data from array NNTS to array
BASE. Variable NEXTN is incremented by 1, and control transfers to statement
1021.

At statement 500 the refuse quantity for the segment is stored in
variable CURL. The servicing time on the segment is stored in variable CURT.
The segment counter, ION, is incremented by 1. If adding the segment to the

28

+ —— . S

| NUR—

current section keeps the section within the vehicle capacity and time limit,
control transfers to statement 550. If ION is greater than the number of seg-
ments sharing neighbors with the base segment (JON), control transfers to state-
ment 600. Otherwise, file 1010 is rewound. Variable IP is set to the line num-
ber of the next segment sharing neighbors with the base segment. The segment

number is stored in variable LNX, and the count of shared neighbors is stored
in variable LNY.

The loop through statement 510 reads the segment and neighbor data
from file 1010 into array STRING. When the segment being sought is found, con-
trol transfers to statement 500. If the segment is not located before the loop
is completed, control transfers to statement 600.

At statement 550 the count of shared neighbors in array IST1 is made
negative, indicating that the segment has been assigned to a section. The next
three statements add the refuse quantity, the servicing time, and the number of
houses on the segment to the corresponding quantities for the section in prog-
ress. If the number of segments saved for use as base segments, NSTD, is
greater than or equal to the maximum number allowable, NSTO, control transfers
to statement 598. Otherwise, NSTD is incremented by 1.

The loop on statement 599 moves the current segment information in
array STRING to the base segment array NSTS. Following statement 598, the
STRING array for the current segment is written to file 103. A segment count,
PC, is incremented by 1. The number of segments in the section is incremented
by 1. Control transfers to statement 1001.

Statement 600 is reached when a section is full or when no other
segments can be added to the section. When the section is complete, vari-
able ICODE is set to 1. File I010 is rewound.

The loop through statement 698 reads the segment and neighbor data
from file 1010 into array STRING. If any segment has not been assigned to
a section, IST1 will be positive for that segment and array STRING will be
written to file OLDUNT. After the loop has been completed, file I010 is re-
wound.

S——

The loop through statement 699 transfers the remaining segments and
neighbor Tists from file IUNIT to file OLDUNT. Both files are rewound when
the loop has been completed.

At statement 700, file 103 is rewound. The count of total unassigned
segment., N, is decremented by PC, the count of segments in the section just
completed. Varfable NP is set to the number of currently unassigned segments.
Variable LC 15 set equal to PC. The loop through statement 705 reads from file
103 the segments assigned to the section just completed and adds the refuse
quantity and servicing time to the cumulative totals. The segment numbers are
written to file 104.

After the loop through statement 705 has been completed, the refuse
quantity, TESTL, and the servicing time, TESTT, for all remaining unassigned
segment, are computed. The number of the next section, IST, is computed. If
IST is greater than the total number of vehicles, NTRUCK, control transfers
to statement 801.

At statement 818, if the unassigned refuse quantity exceeds the ca-
pacity of the next vehicle, control transfers to statement 710. If not, and
if the servicing time for all remaining unassigned segments exceeds the time
Timit for the next vehicle, control transfers to statement 710. Otherwise,
the count of total segments assigned, PK, is incremented by PC. The sequence
number of the next segment to be assigned is stored in the TRUCK array. File
IUNIT is rewound. Variable LN is set to the number of segments yet to be
assigned. The loop through statement 706 reads the remaining unassigned seg-
ments from file OLDUNT and writes the segment numbers on file 104. When the
loop is complete, the section count, SECTN, is incremented. Pointers to the
first and last segment on file I04 in the current section are stored in array
TRUCK. File [04 is rewound, and control returns to the calling program.

Statement 801 is reache when additional trucks must be defined to
complete the sectioning. At statement 801 the number of vehicles, NTRUCK, is
incremented. A message is printed indicating that the vehicle configuration
has been extended. Cyclical counter TPR is reset to 1 if it exceeds the orig-
inal number of vehicles. A new vehicle is defined in the TRUCK array according

30

it Yo e i

v

to the current value of TPR. The loop on statement 811 clears all except ca-
pacity and time-limit items in the TRUCK array on the line for the new vehicle.
TPR is incremented by 1. Variable IST is set equal to the number of the new
vehicle. Control transfers to statement 818.

Statement 710 is reached when a section is completed. At statement
710, files OLDUNT, IUNIT, and 103 are rewound. The count of assigned segments,
PK, is incremented by PC. The section number is incremented by 1. A pointer
to the next segment to be written to file 104 is computed and stored in the

TRUCK array. Various parameters are reset, and control transfers to statement
100.

Statement 800 is reached when base segments can no longer be obtained
from the NNTS array. The coordinates of the last base segment midpoint are
stored in variables XR and YR. A distance variable, ODIS, is initially set to
1000000. The number of remaining unassigned segments is computed and stored
in variable NLK. The count of base segments is reset to 0. f

The loop through statement 2101 searches for a new base segment.
Segments are read from file OLDUNT and are written to file IUNIT. The segment
number is saved in variable NS. The segment midpoint coordinates are stored
in variables XS and YS. The distance between the current segment and the pre-
vious base segment is computed and stored in variable DIS. If DIS is greater
than or equal to ODIS, control transfers to the end of the loop. If the refuse
quantity for the current segment causes the vehicle capacity to be exceeded,
control transfers to statement 2101. If not, and if the servicing time for
the current segment causes the vehicle capacity to be exceeded, control trans-
fers to statement 2101. Otherwise, the current distance is saved in ODIS, and
the current segment number is saved in variable NBASE.

The loop on statement 2101 transfers the STRING array for the seg-
ment to the BASE array. Statement 2101 ends the loop that seeks a new base
segment. Files OLD and IUNIT are rewound. If no base segment was found,
NBASE will be equal to 0, and control will transfer to statement 600.

31

‘Iﬂ"!"""’“""ﬁ —_— ‘ - ———— et w— ‘”““‘““fﬁ?‘"‘llllll-lLu__.-iI‘

The loop through statement 2401 reads segments and their neighbor
lists from file IUNIT into array STRING. If the segment number is not equal
to the base segment number, control transfers to statement 2400. Otherwise,
the segment refuse quantity, servicing time, and number of houses are trans-
ferred to variables INF1, INF2, and INF3. Control transfers to statement 2401.

At statement 2400 the STRING array is written to file OLOUNT. Fol-
Towing the loop, files OLDUNT and IUNIT are rewound. The base segment and its
neighbor data are written to file 103. The count of segments assigned to the
Current section, PC, is incremented by 1. Section data in array TRUCK are up-
dated for the refuse quantity, servicing time, number of segments, and number
of houses. The number of base segments, NSTD, is reset to 1 and variable NEXTN
is set to 2. If the total amount of refuse assigned so far is less than the
smallest load required to complete the current section, control transfers to
statement 1021. Otherwise, control transfers to statement 600.

1. Program PHASE2

Main program PHASE2 drives the sectioning and the plotting of section
assignment maps. It uses 11 files: INPUT, OUTPUT, TAPE1l, TAPEZ2, TAPE3, TAPE4,
TAPE7, TAPE8, TAPE9, TAPE10, and TAPE11. File TAPE5 is equivalenced to INPUT
in order to test for end-of-record cards in the card input data. File TAPE]
is used for section-description information. Files TAPE2 and TAPE3 are used
for temporary storage of segment and near-neighbor information. File TAPE4 is
used for a list of segment numbers in the order they are assigned to sections.
File TAPE7 is used for temporary storage of segment and neighbor data. File
TAPE8 is the Calcomp plot tape. File TAPE9 holds input segment data from pro-
gram RCINPT. File TAPE10 is used for temporary storage of segment and neighbor
data. File TAPE1l holds node data from program RCINPT.

Blank COMMON holds arrays for the problem title and the segment data.
Array ISEG contains the section numbers assigned to segments by subroutine
SECTION. Arrays NN1 and NN2 are the starting and ending node numbers for the
segments. Array FLEN holds the lengths of the segments. Array NH is the num-
ber of houses on the segments. Array FMPH is the speed limits on the segments.
Array RQF gives the refuse quantity adjustment factor for the segments. Arrays

32

X and Y are the midpoint coordinates of the segments. Array SF holds the shape
codes for the segments.

COMMON block MPDATA holds arrays describing the map bounds and sizes
for up to ten maps. Array YHCUT contains the height of a strip of the map, and
variable AVMD is the number of miles per MCU.

COMMON block NDDATA holds the node data. KNODES is the number of
nodes. Array NBS holds the segment numbers of up to six segments bounding
each node. Array NODNUM contains the node numbers. Arrays XNOD and YNOD are
the coordinates of the nodes.

COMMON block DISKIO holds array UNOT, which is used for symbolic
references to disk and tape file numbers.

COMMON block ROUTE holds vehicle and section-description data. Array
TRUCK has seven words of data for each of up to 50 vehicles. Array TRUCKS hold
descriptive information for the vehicle fleet available in the program. Vari-
able NTRUCK is the total number of vehicles or sections. Variable NBASE is the
segment number for the segment to be used as the first base segment.

COMMON block STATS holds additional information about the sections.
Variable FRACT is the ratio of total refuse to total vehicle capacity. Vari-
ables TOTL and TCTT are the total refuse quantity and total servicing time for
all segments in the map description. Variables CUML and CUMT are the cumula-
tive load and servicing time. Variable ISECTN is set to the total number of

sections by subroutine SECTION. Variable TDUMP is the unloading time at the
landfill.

Program PHASE2 begins execution by reading three data cards: the
title card, the vehicle-description card, and the time-limits card. Segment
data are read from file TAPE9. Node data are read from file TAPE1].

The loop on statement 15 retrieves the absolute value of the number
of houses on each segment. A negative number for variable NH indicates that
collection is from the right side of the street only. The number of segments

33

\'M"““"!H!ll_*an-u“

S v

is stored in variable NA. If the number of the first base segemnt, NBASE, was
left blank on the third data card or was improperly specified, it is set to 1.
Variable KN, the number of near neighbors to be found for each segment, is set
to 60. Variables MODE, OPTION, and NSEED, which are provided to facilitate im-

plementation of user-specified base segments, are set to 0. The total time and
load are set to 0.

The loop through statement 20 calculates and saves the total refuse
quantity, servicing time, and number of houses for each segment. On each seg-
ment with houses, the servicing time is recomputed to include travel at 5 miles
per hour and stopping time at the houses. The total time and load in the net-
work is accumulated in variables TOTT and TOTL. Following statement 20, if the
maximum trip time is unspecified or negative, it is reset to 24 hours. The fol-
Towing statement converts the maximum trip time to minutes. For a vehicle with
a nonzero capacity, the loop on statement 25 sets the number of vehicles in the
NT array to 1 if no vehicles were specified. Variable REF is initially set to
0. It will be used to accumulate the total capacity available.

The Toop through statement 50 moves to the TRUCKS array the number
of vehicles, the capacity, and the maximum trip time for each of the four types
of vehicles allowed. The total vehicle capacity available, REF, is also accumu-
lated in this loop. The integer part of the ratio of total refuse to totai ve-
hicle capacity is computed and stored in variable NTEA. If NTEA is 0, which
indicates that enough vehicles were specified in the card input to completely
service the region, control transfers to statement 80. Otherwise, REF is re-
set to 0.

The Toop through statement 60 multiplies the number of vehicles spe-
cified on input cards by NTEA and stores the result in the TRUCKS array. The
vehicle capacity now available is accumulated at statement 60. The loop
through statement 70 adds additional vehicles where necessary to bring the
total fleet capacity above the total amount of refuse to be collected. An in-
crement, NINC, is preset to 0. For each vehicle capacity specified, NINC is
set to the smaller of the number of vehicles specified on the data card or
the number of vehicles required to provide enough capacity to completely ser-
vice the region. The vehicle capacity available, REF, is increased by NINC

34

N —— e gy " -

times the vehicle capacity. The number of vehicles is increased by NINC in

the TRUCKS array. If enough capacity is available to service the region, con-
trol transfers to statement 80.

At statement 80 the ratio of total refuse to total vehicle capacity
is computed and stored in variable FRACT. The input card data are printed,
along with FRACT, the minimum fraction that each vehicle must be filled. The
starting base segment, NBASE, is also printed. Variable IUNX is set to O.

The loop on statement 96 generates an array of segment numbers
(ISTPR). The segments are numbered sequentially starting at 1. Variable MA,
the maximum number of base segments to be saved while building a section, is
set to 30. Variable KP, the number of words needed to store the near-neighbor
data, is computed. Variable KPB, the number of words used in array STRING, is
set to KP plus 4. Subroutine BUILD is called to generate the near-neighbor
table. Variable IFLAG is set to 0. Variable KCUTOF is set to 5, causing at
least five segments sharing the most neighbors with a base segment to be ex- v
amined for addition to a section.

Subroutine SECTION is called to assign the segments to sections. If
IFLAG is set to 1, control transfers to statement 333. Otherwise, a summary is
printed for the various trips. The summary includes trip number, vehicle ca-
pacity, vehicle time limit, vehicle load, servicing time for the section, num-
ber of segments in the section, and number of houses in the section. The loop
through statement 40 prints the data in this tabulation. If OPTION is equal to
1, the number of segments is incremented by the number of user-specified base
segments. (Note that user-specified base segments are not implemented at this
time.) Variable IUNIT is set to UNOT(4), which has value 4. Variable J is set
to 1.

The loop through statement 33 reads the segments from file IUNIT and
groups and prints them according to their section. When the loop index is not
equal to the sequence number of a segment starting a section, control transfers
to statement 88. Otherwise, a heading for the section is printed. The section
number J is incremented by 1. A carriage control, variable CC, is set to a
blank. The number of segments on the current line of printed output, NN, is

35

E‘-"‘"' e m—— m_s "'—“'—‘T"' ——— g ‘

set to 0. At statement 88, NN is incremented by 1. The next statement prints
the segment number preceded by the number of blanks required to put the segment
number in its appropriate position on the line. The carriage control is set to
a plus sign. If fewer than 30 segment numbers have been written, control trans-
fers to statement 33. Otherwise, the carriage control is reset to a blank, and
the count of segment numbers on the line is reset to 0. Statement 33 ends the
loop that prints the segments in each section. File IUNIT is rewound.

The plot package is initialized by a call to PLOTS. Subroutine PLOT
is called twice, moving the pen down and then up 3 inches in order to create
a 3-inch border on the plot.

The loop through statement 1000 controls the reading of segments by
section. Variable IL is set to the sequence number of the last segment in the
[th section. The loop through statement 2000 reads each segment from file
IUNIT and assigns its section number to the appropriate location in array ISEG.
The number of maps, MAPS, is initially set to 0. The loop through statement
1030 controls the reading of up to 10 output-map-bounds cards. The minimum and
maximum coordinates and lengths in the x and y direction are read from a card.
Also read is the height at which the map should be cut into strips. If an end-
of-file card is encountered during the read, control transfers to statement
1040. Otherwise, execution continues at statement 1020. At statement 1020,
if the map-strip height is less than or equal to zero, or is unspecified on the
card, the strip height will be set to 30 inches. At statement 1030 the number
of maps is set equal to the loop index, I. At statement 1040, if the number of
maps is greater than zero--that is, if any map-bounds cards have been found--
control transfers to 1070. Otherwise, default values are set.

The default values are set in the following manner. MAPS is set to
1, and the lengths in the x and y directions are set to 30 inches. The height
of a map strip is set to 30 inches. Bounds on the coordinates are set ini-
tially so that the minimums are large positive numbers and the maximums are
large negative numbers. The loop through statement 1050 scans the midpoint
coordinates of the segments and resets the minimum and maximum coordinates
appropriately. The loop through statement 1060 scans the node coordinates
and resets the minimum and maximum coordinates appropriately.

36

The loop on statement 1080 calls subroutine MAPPLT to plot each out-
put map. Subroutine PLOT is called to terminate the plot file. Following
statement 333, file TAPE1 is rewound. The number of segments and the number
of sections are written to TAPE1, followed by the sequence numbers of the first
and last segments in each section and the vehicle capacity. Files TAPE1 and
TAPE4 are end-filed, and program execution stops.

37
(The reverse of this page is blank.)

——— ————

SECTION IV
INPUT AND OQUTPUT

1. INPUT

Input to program PHASEZ2 consists of card input, segment data from file
TAPE9, and node data from file TAPEIT.

a. Card Input

Table 1 presents the form and contents of the four types of data
cards. The first card contains a title, which is printed on the first line of
the output. The second card contains the number and capacity of up to four
kinds of vehicles. The third card contains time restrictions and the number of
the segment to be used as a base segment for the first section. The fourth card
specifies coordinate bounds and sizes for the output map. If the output map is
to be plotted in strips less than 30 inches high, the height of the strip must
be indicated on the fourth card. The fourth card may be omitted, or it may be
repeated up to 10 times. If it is omitted, one 30- by 30-inch map of the en-

tire collection region will be plotted. If it is repeated, any map-bounds cards
after the tenth card will be ignored.

b. Segment Data

Disk file TAPE9 contains segment data and the map distance conversion
factor (miles per MCU) for the overall map. A1l of the data are read by one
binary READ statement. The first word is the count of the segments. The seg-
ment data follow, 11 words per segment for each segment. After the segment
data comes the overall distance conversion factor.

The 1ist used in the READ statement is NSEG, (DUMMY,NN1(I),NN2(I1),
FLEN(I),NH(I),FMPH(I),DUMMY,RQF(I),X(I),Y(1),SF(I),I=1,NSEG),AVMD. In the
list, variable NSEG is the count of segments. Since the street numbers of the
segments are not needed, they are read into variable DUMMY. Arrays NN1 and NN2
hold the starting and ending node numbers for the segments. Array FLEN holds

39

TABLE

1. PHASEZ DATA CARDS

Card | Columns | Format Contents

1 1-80 8A10 Title

2 1-10 10 Number of vehicles of the first kind
11-20 F10.0 Capacity of vehicles of the first kind
21-30 110 Number of vehicles of the second kind
31-40 F10.0 Capacity of vehicles of the second kind
41-50 110 Number of vehicles of the third kind
51-60 F10.0 Capacity of vehicles of the third kind
61-70 [10 Number of vehicles of the fourth kind
71-80 F10.0 Capacity of vehicles of the fourth kind

3 1-10 F10.0 Stop time per household, in minutes
11-20 F10.0 Stop time per unit refuse, in minutes
21-30° F10.0 Unloading time, in minutes
31-40 F10.0 Maximum trip time, in hours
41-50 1o First section starting segment number

The following card is optional and may be repeated up
to 10 times.

4 1-10 F10.0 Minimum x-coordinate of map
11-20 F10.0 Maximum x-coordinate of map
21-30 F10.0 Length of map in x (horizontal) direc-

tion, in inches
31-40 F10.0 Minimum y-coordinate of map
41-50 F10.0 Maximum y-coordinate of map
51-60 F10.0 Length of map in y (vertical) direc-
tion, in inches

61-70 F10.0 Height of map strips, in inches

40

the length of the segment, in miles. Array NH holds the number of houses.
Array FMPH holds the speed limits for the segments. The one-way-street
indicators are not needed and are read into variable DUMMY. The refuse quan-
tity adjustment factors are read into array RQF. The midpoint coordinates of
the segments are read into arrays X and Y. The shape codes for the segments
are read into array SF. Variable AVMD is the map-distance conversion factor.

c. Node data

Disk file TAPE11 contains refuse-quantity information and node data.
A1l of the data are read by one binary READ statement. The 1ist used in the
READ statement is NHTOT,TOTREF,KNODES,(NODNUM(I),NBS(I),XNOD(I),YNOD(I),I=1,
KNODES). The first three words, NHTOT, TOTREF, and KNODES, are the total num-
ber of houses, the total refuse quantity, and a count of the nodes. Array
NODNUM holds the node numbers. Array NBS holds up to six segment numbers of

segments bounding the node. Arrays XNOD and YNOD are the coordinates of the
nodes.

2. SCRATCH FILES

Disk files TAPE1, TAPE2, TAPE3, TAPE7, and TAPE10 are used by subroutine
SECTION as scratch files, and all contain the same type of data. The data con-
sist of 40 words of segment and near-neighbor information for each segment. The
first word is the segment number. The second word is the refuse quantity. The
third word is the servicing time for the segment. The fourth word is the number
of houses on the segment. The next 25 words are the near-neighbor list for the
segment. The last 11 words are not used at present. The first word of the
near-neighbor 1ist indicates which of the first 60 segments are near neighbors
to the segment. The low-order bit corresponds to segment number 1. The bits
are set to 1 if the corresponding segment is one of the 60 nearest segments;
otherwise, they remain 0. The second word of the nefghbor 1ist contains the
bits corresponding to segments 61 through 120, and so forth.

The segment data and the neighbor list are written initially to TAPE7 by
subroutine BUILD. TAPE7 is read in subroutine SECTION, and all segment data

4]

except those for the first base segment are rewritten to file TAPEl, symbol-
ically referred to as OLDUNT. The first base segment is written to file TAPE3.
TAPE7 is not used again. The data on OLDUNT are read, and segments sharing
near neighbors with the base segment are written to file TAPE10, symbolically
1010. Those segments not sharing neighbors with the base segment are written
to file TAPE2, symbolically IUNIT. The data on TAPE10 are examined, and those
which can be added to the current section are written on TAPE3. Those which
cannot be added are written to OLDUNT. The segments on IUNIT are copied to
OLDUNT, and the process repeats until a section is completed. When a section
is completed, the segment numbers are transferred from TAPE3 to TAPE4. When
only one section remains to be completed, all segment numbers from OLDUNT are
copied directly to TAPEA4.

In summary, TAPE1 holds the segment and neighbor data for segments not yet
assigned to a section. TAPE2 holds segment and neighbor data for all segments
not sharing enough neighbors with the base segment. TAPE3 holds segment and
neighbor data for segments added to the current section. TAPE7 holds segment
and neighbor data for all of the segments. TAPE10 holds segment and neighbor
data for those segments sharing enough neighbors with the base segment to be
considered for addition to the section.

3. OUTPUT
a. Disk and Plot Files

File TAPE1 is reused for output in main program PHASE2 after the map
plotting is completed. The list used in the binary WRITE statement is NA,
ISECTN, (TRUCK(5,1),TRUCK(6,1)+TRUCK(5,1)-1., TRUCK(1,I),I=1,ISECTN). Variable
NA is the number of segments; ISECTN is the number of sections. The next three
jtems written for each section are the sequence number on TAPE4 of the first
segment in the section, the sequence number of the last segment in the section,
and the vehicle capacity. The file should be cataloged for later use by pro-
gram PHASE3.

Disk file TAPE4 is used to hold the segment numbers in the order in
which they are assigned to sections. The segment numbers are written with a
formatted WRITE statement, one segment number at a time. The format used is
1X,15. The file should be cataloged for later use by program PHASE3.

File TAPE8, the plot file, will be disk or tape depending on the pro-
cedure used by the local installation to produce plots. Each output map re-
quested occupies one file. PHASE2 generates an empty file before terminating
TAPE8. The structure of the file depends on the local installation. Figure 2
shows a section map for Kirtland Air Force Base.

b. Printed Qutput

There are four parts to the printed output: a list of the input card
data, a table of trip information, a 1ist of segments in each section, and a
1ist of the parameters used in each output map.

Appendix D contains sample printed output. The first page summarizes
the vehicle input data. The title is printed following the heading INPUT
VEHICLE DATA. The capacity and number of vehicles available for four kinds of
vehicles are listed. Zeros are printed where no vehicle was specified. If
the number of vehicles on the input data was inadequate to service the region,
the number of trips required will be listed in the column headed TRIPS. The
ratio of total refuse to total vehicle capacity is printed as MINIMUM FILL
FRACTION. The sectioning algorithm endeavors to fill each vehicle to the in-
dicated fraction before completing a section. The next four lines give the
times specified on the third data card. The segment to be used as the first
base segment {s also printed. If this item has been left blank on the third
data card, ‘the printed message indicates that sectioning starts with segment 1.

The second page of printed output starts with a table of information
about each section. The capacity, time limit, and load for the vehicle is
given, followed by the collection-time estimate, the number of segments, and
the number of houses in the section. At this stage, the collection time is
approximate because some streets not requiring collection may be dropped from

43

—— o _- ——— — - @

44

e #aﬁ T R

Section Assignment Map for Kirtland Air Force Base

» ~ —— - -/
Y. , “ ‘ | = — — _ 4
£ . | .0 ,.‘_ - =
* & Q‘o...:,mlm:%%%%lo‘ > ¢ I |
& | E— o or—gq vr
“ e
| S EFe s gac o/ g -
P B oo/ & £ 5 ‘ | aEm

- e e o ‘hvk ,’ — Gl e —] W ” 1 el
&£ . , L. 0_. J - QI\I “Se_ \ K
%0 LA L. EE 3 o
trtriluﬁﬁrom _, Y\t
J i o « ~ o] \R

Figure 2.

_ ~8-__) el lw

_,'vl:F\‘ L. Ik.f . \\

the section and others may be added. Break times and lunch time are not
included in the collection-time estimate.

The printed output continues with a list of the segments in each
section. The segment numbers are listed in the order in which they were se-
lected for inclusion in the section and will not usually be in numerical
order. UP to 30 segment numbers are printed on each line.

Fourteen parameters are printed for each output map, following the
heading "MAPPLT PARAMETERS FOR MAP n," where n is the sequence number of the
map. AVMD is the map distance conversion factor in miles per MCU. Each of

the next two lines gives the minimum and maximum x- and y-coordinates in MCU.

On the final line, XSC and YSC identify the x and y map scales in inches per
MCU. The plot strip height, PHGT, and the overall plot length, PLEN, are
printed in inches. YCUT is the height of a map strip in MCU.

45
(The reverse of this page is blank.)

= : e ———

v

SECTION V
PROGRAM REQUIREMENTS

1. SYSTEM

Except for function KOUNT, program PHASE2 is written entirely in FORTRAN
IV. Function KOUNT is written in the COMPASS assembler language. The program
runs on a CDC 6600 using a SCOPE 3.4.4 operating system.

Eleven obvious types of computer-dependent coding are used in program
PHASE2 and its subroutines. A 60-bit word is assumed in the main program and
in subroutines BUILD, SECTION, and NUMBER. System function SHIFT is used in
subroutine BUILD. An R format is used in subroutines SHAPCOM and COQRD. Six-
bit characters are assumed in subroutine NUMBER. An ENCODE statement is used
in subroutine NUMBER. In-line function MINO is used in PHASE2. Asterisk-
bounded character strings are used in formats in PHASE2 and in subroutine
SECTION. A computation is used as an item in an output list in PHASE2. The
AND operation is used for masking in subroutine SECTION. Function KOUNT is
written in COMPASS. A dollar sign is used between FORTRAN statements in pro-
gram PHASE2 and subroutines SORTK, SECTION, MAPPLT, SHAPCOM, and COORD. More
subtle types of machine dependencies may exist, according to the machine used.

2. STORAGE

The core requirement is slightly less than 114,000, words, but may vary
slightly depending on the plotting system used by the local installation. The
peripheral storage for output disk files should not exceed 28,000 words for
TAPE1, TAPEZ2, TAPE3, TAPE7, and TAPE10. When file TAPE1 is cataloged, it should
not contain more than 152 words. Disk file TAPE4 should not exceed 700 words.
The plot file, TAPE8, should not exceed 1.5 million words, although more typ-
ically the file will contain roughly 20,000 words per output map.

47

3. TIME

The execution CP time for program PHASE2 is approximately 0.005 S;OT +
0.004 mﬁps Si seconds, where STOT is the total number of segments and Si is the
number of segments on the 1th output map. The maximum possible CP time using
10 full maps of a 700-segment network would be 273 seconds. Rough estimates of

the I0 and PP times are 0.2 STOT seconds for I0 time and 0.5 STOT seconds for
PP time.

*’

48

SECTION VI
PROGRAM LIMITATIONS

1. PLOTTER

The plotter used by PHASE2 can be a drum plotter with at least a 10-inch
drum or a flatbed plotter with a 30-inch-square or larger bed. If the user
does not indicate a plot-strip height on the fourth data card, the program as-
sumes that a 30-inch height is available. Maps may not be drawn in strips on
a flatbed plotter; therefore, the height and width of the output map must not
be specified larger than the plot-strip height. Some systems limit plot
lengths; for example, Calcomp plots may not exceed 120 inches in length at the
Air Force Weapons Laboratory at Kirtland Air Force Base. Each strip of an out-
put map has a 1-inch space after it, with an additional inch after the last
strip. Thus a 30- by 30-inch map plotted as three 30- by 10-inch strips gen-
erates a plot 94 inches long. Any limitations on plot lengths imposed by the
local system must be considered when the output-map description cards are
punched.

2. NODE AND SEGMENT

Array dimensions in program PHASE2 limit the number of nodes to 500 and
the number of segments to 700. Since these data are passed to PHASE2 by pro-
gram RCINPT as disk files TAPE9 and TAPE11l, the limits should not be exceeded.

3. VEHICLE FLEET

The vehicle fleet is limited to vehicles of at most four different capa-
cities. The total number of trips is limited to 50. If more than 50 trips
are required, data will be overwritten and improper and unpredictable function-
ing will result, but no error message is given.

49

i b i

4. OUTPUT MAP

From 0 through 10 output maps may be specified on map-bounds cards. If
no map-bounds cards are present, one 30- by 30-inch map of the entire region
is plotted. If more than 10 map-bounds cards are included in the data deck,
the cards after the tenth card will be ignored. No message is printed, and
the program functioning is not otherwise affected.

50

SECTION VII
WARNING MESSAGE AND CORRECTIVE ACTION

One warning message is printed by subroutine SECTION. The message TRUCK
CONFIGURATION HAS BEEN EXTENDED is printed as the last line of the first page
of printed output when more trips are needed than either the minimum number
computed by PHASE2 or the number specified by the user. The problem has two
possible causes. First, the time limit on a trip may have caused a section
to be completed before the vehicle was filled. In this case, the user must
decide whether the time Timit is important enough to necessitate amn extension
of the number of trips. Second, the number of vehicles needed may have been
extended because all segments considered for addition to a section contained
enough refuse to cause the vehicle capacity to be exceeded.

The problem can be solved in one of two ways. The simplest requires re-
running PHASE2 with a different choice of starting base segment. It may be
necessary to do this several times before the program runs without extending
the number of trips. An alternative approach is to cause the segments that
could not be added to the section to be collected one side at a time. The
section involved can be found by looking at the summary of vehicle loads; the
section (other than the last) which has a vehicle load considerably below the
vehicle capacity will be the section in which the problem has occurred. Seg-
ments near the last segment added to this section are those which should be
modified. The modification will cause one or more of the segments to be ser-
viced by two collection vehicles, one on each side of the street.

Note: proyram malfunction was observed on one run. Three segments
were assigned twice, and three segments were not assigned to any section. The
cause of this problem is still unknown, but the problem can be bypassed by
choosing a different starting base segment.

51
(The reverse of this page is blank.)

R - e R | i
. B —— N

SECTION VIII
RECOMMENDED CHANGES

Three changes in program PHASE2 are recommended. The problem title could
be appended to the section maps. If the house count in array NH is made
floating-point instead of integer in program RCINPT, the array should be de-
clared type REAL in the main program. It will be necessary to change the ab-
solute value function name from IABS to ABS in statement 15 of the main program;'

An error message should be added to warn the user if more than 50 trips will be
required.

53
(The reverse of this page is blank.)

S ——

APPENDIX A

LOGIC FLOWCHARTS

Symbols

Function KOUNT
Subroutine SHLSRT
Subroutine SIFTUP
Subroutine SORTK
Function IFIND
Subroutine NUMBER
Subroutine SHAPCOM
Subroutine COORD
Subroutine MAPPLT
Subroutine BUILD
Subroutine SECTION
Program PHASE2

Page
56
57
58
60
62
63
64
65
67
68
69
N
86

Operation Box

Card Input

Disk or Tape
Input or Output

Printed Output

Subprogram Execution

Program Statement Number

[:::] Page Connector

(Termination)

FLOWCHAPT SYMBOL S

Count 1 bits in word.

1
£ RETURN)
5 END %

Function KOUNT

57

v

Compute pointer separation.

Compute pointer end value.

1

Set initial and final pointers.

1

Save values at inspection point.

Is
final location value
greater than or equal to
initial location
value?

NO

Move initial values to final location.

1

Set final pointer equal to
initial pointer.

1

Move initial pointer up
by spacing value.

Subroutine SHLSRT

Has
initial pointer run
off front of array?

Store saved values at location
designated by final pointer.

Has
initial pointer
reached end

value yet?

Has
pointer spacing been
reduced to 1 yet?

Halve pointer spacing.
‘ 0

Reverse order of array.

]

RETURN

D,
END Vj)

~

Subroutine SHLSRT

59

Save tree sub-root designated |
by argument L.

Set pointer J to left branch.

Does
sub-root have two
branches?

Is
right branch element
smaller than left branch
element?

Set pointer J to right branch.

BT I E S —

Subroutine SITFTUP

60 ’

[s
branch element smaller
than subroot?

NO

Replace subroot element
by branch element.

Set subroot pointer I
equal to branch pointer J.

Store subroot value at
Tocation indicated by
pointer I.

T
(. RETURN)
g END)

Subroutine SIFTUP

61

f
|
|

Set counter to half the
number of elements.

|

Call SIFTUP repeatedly, starting at midpoint
of tree and working back to second element,
to put root in order with respect to branches.

Call SIFTUP to move the
smallest item to the @
root of the tree.

]

Remove smallest item from tree.

|

Decrease size of tree.

Are
more items
needed?

(RETURN)

(i» END ﬁj)

Subroutine SORTK

67

[s
array length
greater than

zero?

’ ' Set IFIND = -1.

|

(RETURN)

@#

Binary search array
for number.

Was
number
found?

YES

Set IFIND to negative of pointer.

|
(RETURN)

Set IFIND to pointer.

W &

(:7 RETURN 4:)
(:7 END 4:)

Function IFIND : |

63

Build format array.

|

Convert number from binary
form to character form.

Count the characters.

1

Call SYMBOL to plot the 1
character representation
of the number.

| :
RETURN :)

END)

P ————

Subroutine NUMBER

64

Set straight segment parameters.

Is
segment
straight?

Compute slope and distance
between segment endpoints.

Is
segment a circular arc
or an S-turve?

Compute parameters.

|
C RETURN)

Is
segment

NO

rectangular?

Subroutine SHAPCOM

65

Compute parameters.

1

(:j RETURN ﬁj)

Set some parameters.

Is a
roundoff error
problem present?

Compute remaining parameters.

|
(RETURN j

Set shape code to indicate
a straight segment.

|
L RETURN B
K END b

Subroutine SHAPCOM

66

v

START

Is
segment
straight?

Compute coordinates.

€

RETURN

=)

Is
segment a

circular arc or
an S-curve?

Compute coordinates.

1

L

RETURN

Is
segment
rectangular?

Compute coordinates.

C

RETURN

»

Compute coordinates on an angle segment.

.

RETURN

=

C

END

o,

Subroutine COORD

67

Set parameters.

8

Print parameters.

Is
the segment
in bounds?

Call SHAPCOM to set
shape parameters.

|

Call COORD and PLOT to
draw the segment.

sk

Call NUMBER to append the
section number.

AN

Are
there any more segments
to be plotted?

(:7 RETURN 4::)
<:f7 END <:>

Subroutine MAPPLT

68

YES

v

| @

Create sixty 1-bit masks.

| |

Compute the distances from a segment midpoint to the 1
midpoints of each other segment. Save the segment number
in the low-order 12 bits of each distance. ;

1

< Call SORTK to sort distances. >

|

Retrieve segment numbers
from sorted distances.

1

Set bits corresponding
to segment numbers.

v

Write
near-
neighbor
data to
TAPE7.

Subroutine BUILD

69

Move loop index to next segment.

Any
more segments
left?

Rewind TAPE7.

e

RETURN

(:7 END

SR

Subroutine BUILD

70

Initialize parameters.

1

Set up storage for each vehicle.

—

Read
file TAPE7 for
near-neighbor
data for
segment.

Is
this segment the
first base segment?

Move neighbor data to
base segment array.

Write
near-neighbor
data to file

TAPE1,

Subroutine SECTION

71

00]
on
17

Are
any more segments on
TAPE7?

Rewind files TAPE]1 and TAPE7.

L

Save base segment midpoint coordinates.

i

Find the segment on the input scratch file closest to the
last base segment, and save segment as a new base segment.

r

Rewind input and output scratch files.

Compute smallest cumulative load necessary
to balance load on remaining vehicles.

T

Save segment data in
base segment array.

Subrout.ine SFCTION

\W

Write
base segment
number to

file TAPE3.

Add segment data to
vehicle load data.

Clear histogram array.

1

Set word and bit pointers corresponding
to base segment in near-neighbor list.

oop
on
2929

Read
next segment
and its neighbor
data from

file OLDUNT.

Is
base segment a near

neighbor of the segment read
from OLDUNT?

Subroutine SECTION

73

Set near-neighbor list word and
bit pointers corresponding to segment.

Is
the segment a
near neighbor of the base
segment?

Set shared-neighbor count to zero.

]

Use function KOUNT to count
shared near neighbors.
|

Increment appropriate histogram cell.

Are
there no shared

neighbors or more than
29 segments saved?

Save segment number and shared-
neighbor count.

Subroutine SECTION

74

Write
segment and
its neighbor
list to
TAPE10.

Write
segment and
its neighbor
list to file
TUNIT.

Any
more segments on file
OLDUNT?

Rewind file IUNIT.

|

Count back from end of histogram until
KCUTOF shared neighbors are counted.

|

Rewind file OLDUNT.

)

Subroutine SECTION

75

I Sm————— . . -
M_

S s Sl vt s

e i,

Were
any segments saved
on file TAPE10?

Call SHLSRT to sort segments
by shared near-neighbor count.

Rewind TAPE10.

Is
section already
complete?

Rewind TAPE10.

Have
all segments on TAPE1(
been processed?

Read
TAPET0 to
get next
segment.

Subroutine SICTION

76

k’

Is
number of shared
near neighbors large
enough?

Does
vehicle load exceed
minimum required?

Rewind files TAPE10 and OLDUNT.

&)

Increment pass count.

Read
a segment
and its near-
neighbor list
from TAPE1OQ.

Has
segment been added
to section?

Write
segment
and its near-
neighbor 1list
to OLDUNT.

Pema

Subroutine SECTION ! 1

77

Are
any segments left
on TAPE10?

Read -
segment and
near-neighbor
list from
file IUNIT.

B N

Write
segment and
near-neighbor
Tist to file
OLDUNT.

P L

R

Are
any segments left on
file IUNIT?

Have at
least 30 base segments
been used?

Subroutine SECTION

78

k'

Get next base segment.

Increment base counter.

o

Save load and traversal-time
data for segment.

Does
the segment fit in the
current section?

YES
v

Rewind TAPE10.

-

Search TAPE10 for the segment with the next
largest number of shared near neighbors.

Was
a valid segment
found?

YES

Make the shared-neighbor count negative to indicate 1
that the segment will be added to the section.

G

Subroutine SECTION

79

N

Add time, load, and number of
houses for segment to section.

Have
30 base segments been
saved?

Save current segment as a

future base segment.

Write
segment and

near-neighbor
list to file
TAPE3.

Increment count of
assigned segments.

T

Set section complete indicator.

from TAPE10
to file OLDUNT.

Subroutine SECTION

30

= gpen—

~ane

Rewind TAPE10.

Copy
the remaining

segments from
file IUNIT to
file OLDUNT.

Rewind TAPE3.

]

Decrement the count of
unassigned segments.

Read
segment and
near-neighbor

list from
TAPE3.

Add segment data to cumulative
time and cumulative load.

Write
segment
number to

TAPE4.

Subroutine SECTION

LLoop
705

Are
any more segments on
TAPE3?

Compute total unassigned
time and load.

4

Increment section count.

Have
all vehicles been
filled?

Will
the remaining refuse
fit in the next
vehicle?

Is
the remaining
traversal time within the
vehicle's time
limit?

Subrout ine STCTTON

82

v

Y

Assign all remaining segments
to the next section.

|
(- RETURN)
Print a message indicating

vehicle extension.

Initialize parameters for
one more vehicle.

-

818

& f

Rewind files OLDUNT, IUNIT,
and TAPE3.
|

Increment section count.

1

Set pointer to first segment :
number for next section. i

l j

Reset parameters.

-

Subroutine SECTION

83

Search for the segment closest to the last base segment
which has load and time small enough not to exceed the
current vehicle limits.

Save the segment and near-
neighbor list as the next
base segment.

| 1

i Rewind files OLDUNT and IUNIT.

Was
a new base segment
found?

V

Remove new base segment from OLDUNT.

B 1

Rewind files OLDUNT and IUNIT.

¢ |
i Add new base segment time,

\ load, and number of houses
to current vehicle data.

|

Reset base segment pointer.

Subroutine SECTION

84

———— et Sk . . S —
" v ’ » J

Is
the present
vehicle load smaller than
the minimum necessary for

this section?
YES

Subroutine SECTION

85

Read title card, vehicle capacities, time
limits, and starting segment number.

Read
segment
data from
TAPE9.

Read
refuse total
and node
data from
TAPETT.

Make all house counts non-negative.

1

Validity check starting segment
number.

Initialize variables.

|

Convert all times to minutes.

Program PHASE?

86

| N—

SPESE

N

Print vehicle and time
information.

Call BUILD fo construct a
near-neighbor table.

Call SECTION to allocate
segments to vehicles.

1

Print load and time results.

o
-
e

,/-I/

Print segments assigned to
each section.

‘--______________.__————”I”"———'

Call PLOTS to initialize
plotting package.

]

Read map-bounds cards.

A

Program PHASE2

87

Were
any map-bounds cards
found?

YES

Set bounds for one 30- by 30-inch map.

&

Call MAPPLT to plot maps.

]

=
=

Call PLOT to terminate
plotting.

V'V

Write
vehicle data
for each
trip to
TAPE1.

Endfile
files TAPE1
and TAPE4.

C STOP D
C END J

Program PHASE2

88

s i

Function KOUNT
Subroutine SHLSRT
Subroutine SIFTUP
Subroutine SORTK
Function IFIND
Subroutine NUMBER
Subroutine SHAPCOM
Subroutine COORD
Subroutine MAPPLT
Subroutine BUILD
Subroutine SECTION
Program PHASE2

APPENDIX B

PROGRAM LISTINGS

89

Page
90
91
92
93
94
95
96
98

100

103

105

115

v

0601 NNOX
080LNNON
GZ0LNNOX
0901 NNOX
0S01NNOX
0%01NNOX
GEOLNNO X
0201 NNOX
0T0LNNOX

‘0

INNOX

X

kX

13]

0

T/78T ¢INNONTI0/2Y
ANNOX

INNOX

aN3
03
9XxJ
tvs
1vs
viva
0 3A
A¥ AN3
IN301

OHE3STIHS
0EELASTHS
02E3STHS
0 TE3STINHS
00£3STHS
062¥STHS
0 82ASTHS
0£2¥STHS
09238STHS
062¥STHS
0%28STHS
0ECASTHS
02238STHS
0 T2¥STHS
0 024SHS
0B6T¥STHS
08T 3STHS
02T3STHS
09T3STHS
0ST3STIHS
0%T3STHS
0ETASTIHS
02TASTHS
0FTASTINS
00T3STHS
060¥STHS
0803STHS
0203STHS
0903STHS
0S03STHS
0903STHS
0E0¥STIHS
020¥STHS
0TO0¥STHS

ON3

N3N L3
3NNIAINOD
DI=(T+1-MN)X
(F+I-MN)X=(I) X
1I=(3+1-MN)V
(T+I-MN)V=(])V
(tHv=11

(I)x=01
Z2MN®*I=]1 02 OO

V30A0 ONION3IDIC NI SAVISIY 3IINY ISV I
2/ MN=2MN
01 01 09
2/7(T+N)=N
0¢ 05 09 (T°31°N)J]
INNIINOD

1¥=(Ny

1X=(NX

02 04 09 (0°19°M)31
N=rf=r
r=1

ryv=(nv
(CHX=(NX

0% 0L 09 ((F)X°39°1X)41
(Tv=1v

(MIX=4X

Ne¢I=T
1=

A*1=1 0% 0OQ

N=MN=X

C/MN=N
(TIX*(T)V NOISN3IWIO
X°*y ¥393INI1
(MN*V°*X) I¥STHS 3NILNO¥ENS

02

o'.

02

01

91

091dNi4S
061dN14S
0%1d4N14S
0€TdNL4S
02tTdNi4S
0T¥dNi4S
00¥dN1L3S
0604N14S
080dN14S
040dN43S
090dN14S
0s0dN14S
84%04dn13S
0£0dN14S
0204N13S
030dN13S

‘0

ON3

N3N i3y

AdOJ=(1)3331

6T U1 09

r=1I

(r)3331=(1)3341
g*Gg*5(Ad0I-()3341) 31
Ter=r

nege e ((MF)3I¥L-(T+M) I AL LI
9°*g*2(N-T) 41

I*TCT(N-M) 3]

Is«2=rC

(1)3381=Ad0J

1=1

(WN) 3331 NOISNIWIO
(WN*3IIVL*N*TIINLHIS INILNOYBNS

N T

01

92

08 TXJ¥0¢
02TX130S
09 TX1¥0S
0s TX130S
0% TX130S
0L TX 1¥0S
021TX130S
0TTIXI¥30S
00T 130S
060X 130S
080X 130S
020X 1330S
090X 130S
05 0% 130¢<
0%0X1¥0S
0g£ 0> 1340S
020X%1¥0S
0T0X130€

1=(N)3331

g

v

ON3

N3N 133

3NNILINOD

1=(1)33¥1

(1)3381=0in)3341

On)3331=1

(WN°*333L*MN*T)I4ANLIIS T1VI
F=24N=0)

TdNX*2=r TT 003

TANI=TdNX

(WN®*33%1*N°NN)JNLIIS VD
rfr=2¢+(2/N) =NN

A*2=r 0T OO0

S/N=N

(N)3331=(T)3341 g (¥)3331=1
G 01 09 ((N)33¥1 °*37° (TI)3331) 41
(WN)3341 NOISN3WID
(WN®3IFLNACN)INLIB0S 3INILINCABNS

19

07

93

OTECNISI
CO0ECONIJI
0620NId1
082CNIdI
0220N1341Y
092CNIdI
0S20NIJ1
0h2CNIdT
0£ 2CNI41
022CNIJI
0T2CNIJI
002CNIdI
06 TONIJI
08TONIJT
0L TONTJ1
09 ICNIJ1
0S TCNIJI
0% TCNIJ]
0£ TONIJI
0Z2TCNISI
OTTONIIT
00TONIST
060CNIJI

0S0ONTIJIHWAN H0d (N3IT)AVIIVI HINOYHIL

0ZO0CNIJI
090CNIJI
0S0CNIJI
0%0CNI14I
0S0CNIJT
020CNTJIT
0TOCNIAT

aN3

N3N 13y

dI=0ONIdI

N¥N13Y

dI=T=-=0NI3I (WON °17° (dI)AVIANVI) 41
d1-=0NI3J1

01 012 09 (II °39° 41) 4JI
1+dI=11

0% 01 09

T-d1=41

0F*06°02 ((dI)AVASVI-WNN) I
2/ (31+411)=d1

N31=41

1=11

N3N 13

T-=0NId1

6 01 09 (0 °19° N3 J1

(T)AvENVI NOISNIWIO

*I=0ONI41 HIIM SN3N13¥ NOILINNG 3HL *(I)AY¥ VI=NNN 31
*03143SNI 38 0TINOHS WNN 3¥3IHM 14I¥ISENS 3Wl 40 3ATLAVI3IN 3HL1 OI
IYND3 ONIJI HIIM SN3NL3Y NOIJINNS 3HL *ONNOJ ION SI WNN J1

((T)AVHNV]I S3IHINWV3IS ONIJI NOILONNS

*NOIS¥3A IUNIOINO °*IfN °S.6F *ZT NwPl
*AVd¥EYI NI ION SI WNN N3HM 38 OTNOHS WNN 3IN3IHM
1dI40S8NS 40 3AT IVO3IN N3NI3¥ Cl O3I4I00W °*IrH °*G9261 *2 ¥dv

== S39NVHI 1S31VT

(N3T*AUXIVI*WNN)IONTISJI NOILONNS

0s

0"
0f

0e

01

2

VLUV CLLVLLVLLID

94

(Te]

N
06 THEWNN aN3
0O TAANNN N¥N13Y
02 T¥ENNN (ONSONV*IX31*19H *A*X) 108RAS 11VI 02
09T28WNN T-ON=ON 07
05 TYEWNN 02 01 0€ (AGG *3IN® (€22 °*V°® (F-9%(I1-%) IX31)13IHS)) II ,
0% THBWNN 9+09°9=r 0% 00 |
0F T2E8WNN £°1=1 0T 00
02TABWNN 0S=IN
0TTHEWNN WAN (I1X31°*W304°0F) 370IN3
00T 2BWNN 1WI=(2)WA04
060%ENNN HI=(S)IX31=(2)1X31=(T) 1x3}
08028WNN
02 03AWNN ZJIHT*D*)HT/WAD 3 Y1VO _
090 28WNN (£)1%31° (£)W304 NOISN3WIO
06 0 ¥EWNN t
0% 0 28WNN NOISHN3IA TYUNIOINO °*IfH °Sl6T °*%2 100] V
0S028WNN == S3I9NVHI 1S31V)) ‘
020468KWNN

0TO028WNN (AW ONVEHNNC 19H A X)Y3BHNN 3NILNOH3NS

&1

06£2 3dHS 3dd 40 NOILiVWIXOdddV 3ADddWI a

0852 J3dHS T38/7(98YV) LH0S aI40M LaN9S=8d ¥

02£2J3dHS 00T 04 09 (°0 °*37° 9d4v) 41

09¢2 IdHS (((SAaM8EBBBLT 48166292 =) aSA+TBOL0EN°)aSA®L902559°) aA=9dY

05f£23dHS AaA=SA $ N37101/70-°"T=A

0hE23dHS °*T-=N9S (ST132°0D3°4SI °*30° J1¥e2°D3°4SI) 41 $ *I=N9S 06

0££2IdHS 0Q«5°0=09 'S TA8«5 *0=130

02£2 J3dHS (ANA+INA) 2G°0=3A $ (INX+INX)a G°0=3X

0TE2 3dHS 06 0L 09 (D732 °D3°* 4SI °*¥0° J¥ye °b3° 4SI) 1

00g£2 JdHS 0=03 $ N3T7101=T38

0622 J3dHS INA=3IA $ INX=3X G* 1
0822 3dHS *3IANAND S ¥O JaV JVININID ¥04 ¥013vd 34VHS SS330dd J

02223dHS

0822 3dHS 09 01 09 1

06220dHS (ST¥2°3N°3ST °V°® SA¥2°IN°3SI °V°® DJT32°3N°ISI °V°® J¥A2°3IN°ISI) 41

0922 JdHS AV (CaaA0+2+2X0) 1N¥0S=0

0£22 3dHS (XO0*AQ)ZCNVYIV=913HI}

0222 3dHS

3T223dHS N3NiL3y (624 °*03° 4SI *¥0°* 0 °*03° 3SI) 31 o

0022 JdHS N3TL0L7AC=AS by N371012/7X3=XS g
0612JdHS INA-3INA=AQ $ INX=-3NX=X0

08T 23JdHS *0=248=1488 02

0412 JdHS !
0912 3dHS /780£98T7£82°9/1d0M1 VLIVO

0612 3dHS NOS*2¥8°*TN9 I

0%120d+4S CSHLIDACHLIIX2TOCTTID AU AS XS INACINACINXINX*IS /RAVAOI/ NOWWOD

0£T1203dHS (4S°*3S1I) 3IN3TVAINOD3I

0212 3dHS %

0T123dHT *S3A3N0 S J

0012 JdHS ONV S310%10 ¥03 NOILVINDIVD d3dy J3IA0FIWI °IfN °S¢6T *2T 1d3S 3

06023dKHS ONIGOCD 3A3¥N3 S WO¥4 9NB Q3AOKW3Y Ir °6l61 *12 130 3

0802 IdHS *I1VYWILSI dd¥ INIACHAWI A8 NOILVINITIVI H O03A048d4WI ONV ")

0202 JdHS INIGID 3ANND S NI S9Ng 3d0W 2 OQ3A0W3d °IfH °6/b6T *g2 130 < |

0902 IdHKS *S30IS J A
0502 3JdKS JIONV 40 SHI9N3T 304 1S3L ALIOIWA 0300V °IfrH °9Z6T7 °*4 AVW 2 !
0502 IdHS *WUNOD¥4 ONINOILD3S NI 3SN 303 231dVIV °IfKH °3261 °*ET AWK 2

0£020dHS == S3IINVHI 1S31V1 J {
0202 3dHS J i

0102 3dHS (OWAV*N31101)WOIdVHS 3NILINOYBNS |

AD=AO6E1 821 NEW MEXICO UNIV ALBUQUERQUE ERIC H WANG CIVIL ENGINE==ETC F/6 13/2 H_
AIR FORCE REFUSE=COLLECTION SCHEDULING PROGRAM DESCRIPTION. VOL==ETC(U)
MAY 78 H J IUZZOLINO» E P DUNPHY F29601-76-C=0015

UNCLASSIFIED CERF=EE=20 CEEDO=TR=-78-23~VOL=2 NL
2o
Weis2

......... 5

DATE
FILMED

2-79

10¢

0522 JdHS
0£223dHS
0222 3JdKHS
0 T223dHS
00223dHS
0692 3dHS
0892 JdHS
02923dHS
0992 3dHS
05992 3dHS
0992 JdHS
0£923dHS
0292 J3dHS
0392 3dHS
0092 3dHS
0652 3dHS
0952 3dHS
02523JdHS
09620dHS
0952 3JdHS
0952 3dHS
0£52JdHS
0252 3dHS
0152 2dKHS
00523dHS
06%23dHS
0892 IdHS
02%23JdHS
09%2 JdHS
CS%2JdHS
0952 JdHS
0£M23dHS
02%2 3dHS
0 T2 3dHS
00%23JdHS

GN3

NaNni3y $ *0=248=146=4S
N3N 133
ONAV/(0a3e (VIIHLINIS#+H2 (VIIHL)SOD) +INA=NLIA

OWAVY/ (Ha (VLI3HLINIS-0a 42 (VI3IH1)SOT) +INX=¥1IX

(938Y) 130SaN9S-=H

00T 01 09 (°C °371° 9yVv) 4J1I g Caal0ad)=2anaT d€=9YV
(2220/(222188-222288)-"1) +5°0=4

T¥8-N31101=249

(4S)Sev=Ty8 $ (3S*°*TINIIS=NIS

N3N 13y

OWAV/ (V13H1) NIS=XS
(4N 3T101) 5 °0=230
N3Nn13y S 0=4S1

02 01 09 (N31101250°0 °19° 139) dI
(0=N37101) #5 °0=T38

08 01 09 (34742 °*3IN°® 3ISI °ANV® d¥32 °3N°® JSI) dI

OWAY/ (V1I3H1)S0D=AS g

NaN13d

¥1J3A=-INA=2TD 3 d13X=INX=TTD
SINIIOIS4300 NIILVL0d dN 13S

Ha (V13HL)S0D aN9S+(3A+INA) »5° 0=310A
Ha (VI3HIINIS aNIS-(IX+INX) «5° 0=310X
H==H ((¥)SB8Vs+b491%T1°¢ °19° T38) 4I

OWAYZ (98V) L30S=H (°0 °* 19° 9dv) 41 S *0=H
0020092°0~dad=93V $ Add/7° 1=y
3NNI INOD

(1Sd3-2Sd3) /8d80«TSdI-ddY=4dY

(BdY0+¥dY) 400sS* = ((HANO+AdN) T UI «S°INI S=2Sd3
(1Sd3°2000°)NI1S=38d¥]

IS 04 09 (S-3°T °*11° (T5d43) s8v) 3II

Ve 00+S°~(HdH+ THHLS*INIS=TSd3

ooV

08

1 V]

09

15

97

06£0¥C03 02 01 09 (1¥8 *19° S) 31
08€£C¥002 NN 13
0L£0¥00° (S=-2494T468) 2ASaNIS=-4INA=AA t (S-2H4FP+T AP)« XSeNIS+INX=XX
09€£C¥00°T N3N133
0SS0¥00D(TYF=S) « XS+ THGaASeNIS=INA=AA g (THB=S) « AS+ TUR 2 XS+NIS+ INX=XX
0%£C¥00D 288=S (288+56°0 °19° S) 41
0£€ C¥003 0S 01 09 (2¥8+50°T °19° S) JI
02£0¥C0D NaN13N
01£0¥000 S#ASaN9S~INA=AA $ SeXS#NIS+INX=XX
00£C¥COT T¥8=S (T¥8+56°0 °19° S) 31
06208009 0% 01 09 (T¥8«50°T °19° S) 41
08203000 *T-=N9S (¥T¥2 °03° 4S) J1 g *I=19S
U22C¥002 09 01 09 (A2 °3N° 4S °ON7°® ¥¥¥2 °3N°® 4S) 41
08203003 NaN13y
0523¥0093 DA#NS+TI4ND20=AA $ IX4 NS22J3=NJ 21 =XX
042030093 (d I¥+S)S0I=ND 3 (dI8+SINIS=NS
0£20¥009 JA=(4NA+INA)2S°0=2D g OX=(INX+INX)25°0=10
02203009 YLDA=INA+INA=DA g ¥1IX=-INX+INX=OX
01202003 JuR=-S=S 3 d3dd-=d1A
0020%0090 02 OL1 09 (2732 °*D3° 434S °¥YO° I¥¥2 °D3I° IS °*¥0° T¥Beb66° °37° S) JI
06703009 213=23 $ 310=10
88123009 ¥13A=0A § ¥ 1IX=JX
02 TC¥00°C dda=d14
09 TO¥009 0g 01 09 1
0S TC¥002 (STH2°3IN*4S °*V° SHY2*3IN*IS °*V*® DJN42°3N°4S °*Vv°® J¥AZ°IN°IS) 41
0%31C2000 N3N 13¥
0g£T0¥009 SeAS+INA=AA) Se XS+ INX=XX
02704003 0T 014 09 (0 °3N° 4S) JI
0Y1C¥009 N3TWNI=S
00T0¥009

060C¥003 34S ¥3931INI
090C¥003 N9S*2¥B8°*T¥9 1
£20C¥003 CULIACHLIXN2TICTT I UAY AS XS INAC INACINX INX® 4S /WAVA0D/ NOWWOI
090C¥009

050C¥009 *NOISYZA TUNIOIN0 °IfH °Sl6T °*6 ¥dY

0% 0C¥CCI *NOILVINDIVD 3A¥ND-S WO¥4 O3A0W3IN 9INE °IMfKH °GSL6T *91 ddv
0£0C¥003 == S39NVHI 1S31iv]
02024003

0¥0C2003

(NITINNI*AASXX)0300D 3IN1LINOANNS

09

0e

{1]

0%

0e

ot

QLo

98

09403009
054%C¥003
04%%C3009
0£%0¥009
02%02009
0T%C3003
00902009

2HA/Se (HLTJA=4INA)+ANLITA=AA

t

ON3

N¥NL3¥
2HA/Sa(¥1DX=INX)+¥L1IXN=XX
T¥8-S=S

N3N L3y

188 /Se (INA=N1JA) ¢+INA=AA
138/Ss (INX=419X) + INX=XX

0l

99

0682 1ddW
0882 1ddk
0282 dd%
Cog 2 TddwW
0SE2 1ddN
0%f2 1ddk
0£E21ddN

0282 TddWS DTS %a=8X

0TI£2 1ddNK
00f 2 1d4d~
0622 1ddk
0822 1ddw
0422 1ddW
0922 1ddn
0622 VddW
C%22 1ddW
0£22 YadW
0222 1ddk
0322 1ddW
0022 1ddw
0612 1ddW
0812 1ddwW
0212 ddK
0312 1ddW
0612 1d4dW
0%12 1ddW
CE£ET2 1ddN
0212 1ddN
DT12 Vddw
0012 1ddN
0602 1ddN
0802 1ddN
0202 Vad¥
0902 1ddw
0602 1ddN
0" 02 1ddW
0802 Vddw
£202 1ddw
8102 1ddN

C(OT)XVAAC(OTINIWAC(OT)INITIX

v

(S30ONX*WNNOON®*IN)UNTI31I=2SN $

(M) A=DWA
(%) ZNN=3N

(S3AONA*WNNOONCIN)ONI S3I=TSN

$
$

(%) 4S=4S1
(A)X=JWX
() INN=IN

X*T=4 002 00

«* X0T°*S°0Td°%e=0A

o /7S°0T 3%e=XVAA+*X0T*3°0T3%e=N]InAS

U=NN1SYT

(NHA-(II)XVKWA) /(II)N3TA=0SA $
XHeXWX=N31d

ST+ (ITINITIX=XMX

(I1)XVYHA=1A

(ITINIWA=NHA=8A

INJA®N3ITd*1IHd *IS A

$

NN ¥

COSXCLACAACAX IXC(IT)IXUMWACNKA® (1I) XVHX *NWY*04dAV *I1

‘0t INI¥d

JISA/19Hd=1NIA
(NWX- (ITI)XVRX)/{IIIN3ITI¥=0SX

6E°+19HA/(TTIN3ITA=XH

(II)LINIHA=19IHD
(11)XVWX=8X
C(IIINIRX=NKHX=TX
/780°/7321S vivao
N9S*2¥tb * 188

SHIDACHLIIXNCZTDCTTID YN AS XS INACINAC INX INX*4SI/ HYVI0T/ NOWKOD

ORAVC (OT)LINIHAC(JIT)INITA

*NOISY¥3IA TYNIOINO °IfH

*SNI1IVIN3IVI LA*BA*HX*TIX 031034300 *IrH
®3W73¥3 341 1S¥Yd S3HINI s°
0S IN3W93S ¥3d SINIOJ 30 d38WNN 0O3LSArgv °IrkH
*3Ny¥4 NIHLIM ONILL0Td d33% Cu XW C330V °IfH

C(OT) XVWX*(OT)NIKX /7ViIVOdW/ NOWWOID

(00S)00ONA* (00S)COONX* (00SIWNNAOON®(00G) SBN* S3ACNY /VIVUOON/ NOWHOD
(002)3S*“(002)A*(002)X*(002) 308* (002) HdW 4

C(O0ZIHNC(COZINITIC(00Z)2NN(BOZ) INN®(00Z)93ST*(E)3T11I1 NOWWOD

NVHi 330W ON31X3 NVD 3NIT ON 1VHL

*SH3IBWNN 13381S 40 OV3ILISNI

S¥38KWIN INIW93IS 101d 04 17TddVK O3IONVHI °IrH
*WYN903d 9NINJI133S NI 3SNn 304 231dVNV °IrH

4S ¥3393iN1
*QL6T *f£T 9nv
*6l6T *9 130
°gl61 *62 130
°GLbT *6T AON
9¢b6T °% dVNW
°3261 *F1 AVNW

== S3I9NVYHI 1S31Vv1

(3>°*11) L7ddVW 3INILNONANS

(/75°CT3%=1NJAa*X0T S 0T 3°2=N3Vde*X0T*>°0T3%2=19Hd+*XDT*S5°0T 4%
$2=JSA «*X0T*S°0T4°e=0SX » /6°0T3%2=1A
«*X0T*C°0T 3¢ a=X
EXIT*S° 0T 3% a=XUNXa*XDT*G°H64%e=NINX »

/78°0T34%°«=0WAY « /21°%«dVW 304 S¥3L13IRVIYI L 1dd7W0») IVHAE03 (b

a*X0T°¢g
2

1

T

T

¢

¢

QCLULLLCLOLLO

0842 1ddH
0222 1ddH
0922 1ddH
0622 1ddK
0922 1ddW
0822 1ddR
0242 1ddW
0T221d4H
0042 VddHW
0632 1ddW
0892 1ddNW
0292 1ddW
0932 1ddH
0592 1ddH
0992 1ddH
0£92 1ddK
0292 1ddK
0132 1ddH
0092 VddW
0652 1ddH
0852 1ddH
0252 1ddH
0962 1ddH
0552 1dd¥
04952 1ddW
0 £52 1ddH
0252 1ddH
0152 1ddH
0052 1ddwW
06%2 1ddH
08%2 1ddH
04%2ddH
09%2 1ddW
0S%2 1ddW
0%%2 VddW
0£%2 1ddH
02%2 1ddw
0192 1ddW
00%2 1ddwW

09t

0=

[} 14
L] bo.
[FQ.

L] bo.

INDA/Z(T000°=NAA=AA) =dVHN

(£°dA*dX) 1074 1IVI

(SIHZ**0°*SHWNN*3ZIS* SO +dA* T °~dX) 43IBHNN 1TV)
INIOdOIW IN3W93S 0L SH3BWNN NOIL133S ON3ddV

097 01 09 (CIWGEN °3N° 1) 41

GNI-g£=N3d1

(2°dA*dX)107d T1IVvD (£ °*03° N3dI) 41

(N3IdI*dA*dX) 107d T1¥]

0f 09 (XW °39° dVAN °*30° (0 °923° VI °*ONV°® £ °03° N3cI)) 41
NI (1A°19°AA °H0° BA®LI°AA °¥0° dX°19°XX °*¥0° TWx°171°x¥X) 41
T=9N1

DSAs (LNJAsdVHN=NW A=AA) =dA

YRX adTHN+DSX e (NHX=-XX) =dX

(NITHND*AA®XX)Qa&00D VD

CI#NI MWNI=NITND

933ddN*T=1 0Z% 0CG

(£°dA®dX) 104 1IVI

(T=-°°0°0G°*3Z2IS*dA*dX)I03AWAS T1TVI

02T 01 09 (IN °*03° NNLSVT) 41

ISA (LNIAdVHN=NHA=AA) =dA 3 Xd X o dURWN®ISX o (NIX=XX)=dX
0T 0L 09 (£ °03° N3IdI) 31

I8NI-§=N3dl

INJAZ (Y505 *=NHA=AA) =OdVKHN=dV KN

INA=AA 4 INX=XX

93SddN/N3T101=S0 1 *G=NIMWNID
(DAAV*NITL0L)HOIMVHS 1TV

O0IWdN22=93SddN

(DHAVZISASNI VL0 4T CWAY/IOSXeN3T1D1+°T*°0T) IXVHV=UIWdN
(¥)NIT4=N37401L 9 (#A)93SI=SHNN

01 39 (0 *D3° 49NI °*ONV® 0 °*923° WENI °CNV°® 3§ °*03° IeNI) J1
0=48N1 (1A T

4NA °¥0° HA °17° JNA °¥0° HX °*19° INX °*¥0° X °*171° 4NX) JI
O=HENI (JA 13

OWA *80° 8A *17° OKWA °3D0° ¥X °19° 04X °*HC° IX °*17° JwWX) JI
0=I8BNI (A 1}

INA °H0° 8A °*17° INA °*H0O® &X °19° INX *80° WX *371°* INX) 41
T=34E6NI=KWBN I=I9NI

(2SN) PON A= 4NA $ (2SN)OOUNX= INX

(TSN)UCNA=INA 3 (TSN)IQONX=INYX

J91

st

091

R
22t

101

0682 1ddw
0882 VddW
0492 V1ddW
0982 1ddW
0€821ddNW
C»82 T1ddH
0£82 VddHW
0282 1ddW
0782 VddW
0082 7ddwW
0622 1ddNW

0%1 01 09

3

‘9

ON3
N3N 13

(E=-*"0*"24N37d) 107d T1IVI 0OF

£=N3d1 $
0% 01 09

(OdVHN

3NNILINOD

4N=NNLSYT
(£°dA*dX) 1014 TTIVI
(T-%°0°%0°3ZIS*dA*dX)108KWAS T1TVI

002 04 09 (O

‘Qw L]

dv
.cw.

BNI) 31
3NNILINOD
WN =0d VNN
dVHN) 31

002

027

102

o6£01INA
08£07IN9
04£071IN8
09£071IN8
6s£011ny
0%£071N8
0££0ING
02gQ1Ing
0I£07ING
o0g0INe
062011Ing
082011n¢
04207108
092071n8
0s2aing
0%2071IN86
0g£201IN8
02207InE
03¥2011INn8
002011INne
061071IN8
0e1011INnA
043071IN8
091371INn8
0s131IN8
0591071Nn8
0£1071N8
021071INn8G
011071Nn8
6010 INS8
060UTINSG
08001InNne
02007INn8
090071IN8
gceaing
0%0271Ine
0£007INSG
020371IN8
0I007INe

‘0

8NSI=(T) dWIINN

(T) Ax=(I1)1X

(T) LA=(11)1A
(T)dRWIAINN=(I1) dW3 INN
(I1)1A=AA
(II1)1X=XX
(II)dW3LINN=8BNSI
INNILINOD
(I)A=(I)1A
(I)X=(I)4x
(1)3diSI=(1)dHIINN
N*T=1 000% 00
(I1)3diSI=(T)INN
N*T=II 11T OQC

(T-1°T)L4IHS=(I)Viv(E
09*31=3 S 00

T+NA=TdX

SASVH 4N13S

(0°19°XNNI) JI
(S)1UONN=1INN]

XNNI=1INNI

(CT)OINIW® (2)ONT¥LS) 3INITVAINOI

((T)IW0D* (S)IINIYLS) IINITVAINL3
VIVAB*ONIY1IS*dHOI*LONY ¥ IIIINI

(92)dNHOI* (E£)DINIHW NOIN3KWIO
(N)LAC(N)LX®(N) OWIANN® (N) INN®(N)¥JLIST NOISN3IWIO
(N)IAWLC (N*EIUSNIWC(NIA®(N)X NOISNIWIO

(9) 10NN /0INSIU/ NOWWOD

(09)viv0e /¥1SL1I68/ NOWWOD

(0%)ONINLS /SONIELS/ NOKRWOD

ONI¥1S iIvy 37€vi ¥0BHII3IN 1S33VIN V 3J1vINIIVI
NNY NOIAV3ND V

9NIdNU 378V1 HOBHYTIIN 1S3NVIN 3IHL SOTING 3INILNJHENS SIHL
(XNNI

CANCLACLXCAWIINNCINNCHDIST *IINLHINIW AN CNX*N)IOTING INI LNOHANS

0001

noo

*aeed

CoLooo

e ————

103

0£2071NH
o22u1Ing
0tT4Q11InE
002071Nn8
063071NH
0890 1I1F¢
029371n8
099071118
0s90a1Ind
g%30a71ne
0£9071IN8
0290711INn8
c13071N8
603a11INne
06s011IN8
09s071n8
0450711Nn8
69sa1Ine
0s65071N8
0%s071IN8
0g£s011Nny
02901118
03150711Nn8
00s01IN86
06%071NnY
08%011NnH
04%071nNn8
0e*011INA
6s%011NnA8
0%%011Ine
0f%07INE
02%0711INn8
oi%0INne
00%271Nne

=

ON3

N3N 13

LINNI ONIM3¥

INNILINOCD

INISLS (LINNT)3LIHM
(II*E€)AININ=(E)OININH
(I1°2)d3NIN=(2)0OSNINW
(IT*T)YINIW=(T)IOININ
(1) INN=(T) IN131S
3NNILINOD
(TdI)VLIVOB° ¥D *(TMI)dHOI=(THI)IJWOD
T4 (09°T=(1 1) INN)DOK=TdI
09/(65+(17) AINN)=TMI
IdX*2=11 96 00
0=(11)dk0D

dA*T=11 %6 00

(ACT=XC (TICHIHINIM) C(MXNCT=X*(X)INN) (2T°9)3114NM
Q2222°V° (F)3344= (1) INN

24+ T=HH=r

WX*2=17 0f 00

TENN=N

(N* 3341 °NX*HW)IXLIB0S TTVD

3NNILINOD
(Pr)JHIINNTO° (8 2222°1I0N°°V°0)=(H)3I¥]
S1Ie 2T ¥3040 MO 3IHL LINO NSVW
(TA:TA+TIXeIX) LN¥IS=C

(PP LA=(T) LIA=TA

(FLIIX=-(TDLIX=TX

T-rr=u

N*2=rr 02 00

T=N=HH

AA=(T) LA

XX=(1)1X

1924

Sb

hd

e e

02

104

P

06£0 133S
08£0193S
04£0 133S
09£01023S
05£0133S
0%£0133S
0£€£0123S
02£0133S
0T£0193S
00£0133S
0620133
0820103S
0220193S
09201933S
0620193S
0%20133S
0£20133S
0220103S
037201933
0020133S
0610133S
0810133S
04101903S
0910133S
0570133S
0%10193S
0£10133S
021014923S
073101923S
00190103S
0600 193€
08001433S
0£001933S
0900193S
0500 1923S
0%00193S
0£001I3S
0209103s

b=

2=HJL1IMS

(T)IONN=LINNCTD
T=8d1=INNOTO0=LX3IN=NLIIS=3INI 1=SSVd
9=3003I=%d=3d=1WNJ=TWND
NN=N

0=9v13JI

2=N1X3N

0=XONAIN

°0=01S

0=dIxS

NN=dN

0=SSvdX=SSvd

0£=041SN

0=0fN

0=TWN3I=LWNI

S¥313WV3Yd 3000 3IZITVILIINI

ANNOXM TYN¥3IiX3
((T)dWO0D* (S)INTHLS) 3JINITVAIND3I
((T)OINIW® (Z2)ININLS) 3IINITVAINDI

((T)3INTWB® (2)3SVB) 3JIONITVAINDI
((T)dW0DB* (9)3SVB) JINITVAIND3
IINIWCEINT *CINICTINT TVIY
01SIH*INTIHB*dW0IB*dWOD ¥3I93INI
ONIYLS*Id*dINS®LONN A 3I934NI
3d1*INNCI0*VLIVOB®* SSVd*NLD3S*HILIMS*3ISYA ¥3931NI
(E£)OININ*(D%) 3SVB NOISN3IWIO
(£)ININB® (S2)dN0D* (S2)dW0IB* (09)0LSIH NOISNIWIO
(VRIS LST® (VW) 2LSTI*(VH)ITLASI*(VH)IODLISI NOISNIWIC
(VR*BdX) SINN® (NN) A® (NN)X NOISN3IWIO
dWNOL *N133S *IWNJ*TWNI*1101°7101°19VY3d /SLIVIS/ NOWWOD
JSYBNHINYLN (R *E)SHINYL® (0S* 2)NTINYL /73LN0A/ NOWWOD
(9) IONN /0IASIG/ NOWWOD
(C9)VIVCH /¥1S1IH/ NORHOD
(0%)9ONIYIS /SIONIALS/ NOWWOD

(VH*BdA*dN *%1S]

0T00103S*24SI TISICOLSI*SINNCAX I0LNIN* OV TSI *300K *5 *NNINOIL1D3S 3INILNO¥ENS

*

105

-

’,

0820123<
0420133S
0920193S
3620 103S
0%20133S
0£20103S
022019238
0120 403S
0020133S
0690 123S
0890103S
0490 123S
0930133S
0690 1923S
0%90193S
0§90 123S
029C133S
0190 123S
00901423S
0650133
0¥50133S
02460 103S
0950 1933S
0650 133S
0%50133¢<
0£50103S
02s0133S
0150493S
0050 133S
06%01923S
09%0 123S
04%0133S
00%p0 433S
06%0433S
0%%0133S
0§%0103S
02%0133S
31%0123S
00%0 123S

(3SYBN)A=HA
(3SVEN) X=X

T0£1 0Ll 09

S01 ONIM3H

INNG0 ONIM3IN

3NNILNOD

INI¥LS (LNNJT0)3L11¥M

Z1 01 09

(£)03INIKW=F IN1

(2)0 INIKW=C NI
(F)OINIW=TINI
(FI)INIM4LIS=(rI)3sye
3dX*T=rI 2.1 00

1241 OL 09 (3SVBN°3N®(T)ININLIS)II
INI¥LS (S3I)0V 3y
NN*T=21 .1 OC

INNCTI0 3ZITVILINI

00T 01 09 (D°3N°300W)3I

AJNS IN=0 LN

INNIINDD
(1°E)SHINN L= (NINAIN*Z)ININAY
(I1*2)SHINHL=(IINALIN*T)ININN] s TH4XINY IN=NINYLN

¥11*1=r 01 OC
(1*T)SHINAL=411
w¢1=1 51 00
T=(1%S)X0NAL
dHNAL=(I*H) XONAIL
3=(1°*r)»onyl
Z*1=r s 00
s*t=1 9 00
34N10N31S viv0 »#JNnal UONVdX3
01=0101
(5)10NN=601
(%) 10ONN=%01
(£)10NN=£01
(2) LONN=1INNI
S37I4 ¥SI0C 3iVvI011V

€T 01 09 (0 °*D3° AH11) 41 $

001
J

L1
121

2ét

106

il

3211133S
0971133S
0s¥1103S
0%11103F
0£TT4133S
0211103S
RIS FHEN
00F1 1038
0601 133S
0801133S
0201103S
0907 133S
0501133S
0501 133S
0£01133S
02011923S
0¥0%¥193S
0001133S
0660193S
0860123S
0460 133S
0960103S
06601903S
0%60 123S
0£60123S
02601923S
0760123S
0060103
0680133S
0860 103S
0280193S
0980 1923S
0580123S
0%80123S
0£901J3S
€290 1923S
0I80133S
0080 123S
0620 193S

1=01SN
3Svd (£0I)311ym
NOI103S IN333N0 304 X3N¥)L 01 3Sv8 0OJv

(I)3SvH=(T*I)SLNN

8dx*1=1 06 00

(N133S *T)XINAL+1IVII+QTHS=0TNS
3NNIINOD

LINNI CONImM3¥

INNG0 ONIM3IY

3NNILNOD

IONIYLS (ANNGTI0) 3118M

T0%T 01 09

(E)OINIKW=EINI

(2)OINIW=2iNI

(T)OINIW=TINI

00%T OL 09 ((T)3SVA °3N° (T)INIA&LS)II
SNI¥LS (LINNI)OV3Y

N*T=X1 TJ7T 0OOQ

INNQT0 WOY¥4 INIOd 3SvB 3A0WIY
L1INNI JNImM3¥

INNOT0 ONIM3Y

INNILINOD

(TI)INISLS=(r1)3svs

B8dX*1=r1I 1027 0O

SN=3SVEN

S10=S100

1071 04 09 (SIQVU°39°SI0)J1
(OSA=0SA+0SX«0SX) LH0S=SIO

dA- SA=0SA

AX-SX=])SX

(SN)A=SA

(SN) X=SXx

(T)INIHLIS=SN

IONIALS (LINNI)ILIAM

ONId1S (LNNCT0)0V3IN

N¢T=1 T0%1 OO

3SVe ISV 341 01 1S3SO07D IN3WI3S 3HL ONIJ
J000001=S1700

T OO

1081

1091
jgo~1

1081
102t

0951103S
0¢51103S
0%5T123S
0£491103S
0251193S
0151103S
0051103S
06911038
08%1123S
02%1103S
09%1103S
0s%1133S
0% 1103S
0gn1133S
02%1123S
0TI%T 103S
00%1123S
06£1123S
0eE1103S
02£7123S
09£71103S
0S£T103S
0%£1103S
0EET 103S
02£1103S
0T£1103S
00£7133S
06271 133S
0821103S
022%123S
0921103S
0621103S
0%21123S
0£21103S
0221 123S
031211238
0021123S
0611103S
AR P WE N

ONTYLS(LINNT)ILTINM

6262 01 09

aNIdLS (0T01)341I3M

JI=(NOFf)*%4SI

JI=(NOTr) T LSI

21=(NOT)01S1

T+NOr=NOIr

0£08 01 09 (CE°39°NOr°¥0°0°31°J1)41
T+(JI)O0LSIH=(II)0LSIH
(€1)dWOOIB*ONV° (T1)dKHOD)ANNO® 431 =01
dX*T=1 %2017 00

0=91

0£0f 01 09

£20T 01 09 (0°3IN°((TMI)AHDIB °ONV°(1d]I)VivaB)) 4l
T4(09°*T-2 M 00W=TdI]

09/7(65+42 1)=THI

ggogs 01 09

2201 01 09 (O0°3IN°((TMI)AWOI°OUNV°(TdI)VIiV0OB))4I
T+4(09°T-T 1)I0KWH=1dI

09/7(6S9+1 1)=IMI

(T)INI¥1S=21

ONI¥LIS (INNCT0)0V3IN

IN®T=2% b262 00

(1)3Sve=11

NOILIONN4 ALISN30C 3AI133NNDD 071N8
0=(I)01S1IH

¥*i=1I 6310% 0Q

JNNIINDD
0=(1)%1SI=(I)TLSI=(1)01S1
I=(1)21S1

gg*t=1 0207 0OQ

0=NOI

0=NOr

Jd=dN=TX

1=3d

FANI=(N1D3S*2)XIN4L
T=(N123S*9)»0NA1L
2ANI=(N1J3S*%)INA1
TANI=(NLO3S e ININAL

008

%201

$£201

2201

108

bT01

0201

(T
1201

06611033S
0%61103S
0£61103S
0261 133S
0T61103S
0061133S
0681103S
08871 103S
02811338
0981 133S
06811038
0981 133S
0£8T123S
0281123S
0781133
6081133S
0627123S
082T103S
02211238
09411338
0627133
0%21123S
0£21123S
022V1933S
07271338
0027123S
0691123S
0897 133S
0491133S
0991103S
06311038
04991 133S
0£9T123S
02911338
07911238
00971 133S
065T133S
09511038
02511038

ONINHLS (INNJTI0)3LTAM
INI¥LS (LINNI)OVIE
INN*T=1 Lg%¢ 0O
3NNILINDD
3NN IINOD
INI¥LIS (LINNQTO0) 31T3M (0°19°(1)TLSI)I]
IONI¥LS (0T0I)0OVIY
NOr*T=1 9¢€5f 00
T+SSVd1=SSvd1
INNGTI0 ONIMIY
0T0I ONIM3Y
609 01 09 (OTHS °19° TWNI+(NLI3S*LINTINAL) 4HI
3NNILINOD
00S 0L 09 (IN®IS*ANTIONV XNTI*O3I°(TIIONIALSIII
ONINLIS (0T0I)OV3d
NOf*T=r 20% 00
Teb® 0L 09 (NOF°19°NOINJI
(dID)91SI=ANT
(dI)OBLSI=XNT
0F0I ONIM3Y
(NOI)2 1S1=d1
0C2 02 09 (¥°D3°30001)31
T=NO1I

0TI ONIM3Y

(NOF *21SI*TLISI)IASTHS TIVI
066% 01 09 (D°D3°NOr)3I
INNUT0 ONIMIN

JINNILINOID

3NNIANOD

0S%" 0L 09 (J0LNIN°LI°WNSH) ST
NMOOX=IX
(NMOOX) O LSTH*RNSA=NNSH
T+EX=N=NMOOX

AN*T=g£X 0%0% 00

0=WNSHX

LINNT ONIMIN

NOf = "DI=1NN

INNIINODD

R4
95 nf

166"

20t

0%
¥00}1

(T
o%0*>

6262

109

a—

0%£2103S
0££2103S
0282103
01£2103S
60£2133S
06221338
0822103%
02221338
0922133S
05221338
0%22 133
0£22133S
02221338
01221238
0022133S
0612 133S
0812103S
0212133S
£912133S
056121338
0%12103F
0£12103S
0212133S
01312133S
0012 L33S
0602123S
0802103S
0402 1433S
0302193F%
0502133S
0%021903S
0£02133S
3202 1923S
91021038
0002193S
8661 133S
0861133S
04671 4J3S
09€1103S

T+01L SN=041SN
865 04 09 (0LSN*39°CLISN)II

(£)0OINIA44 (NLDIS*2)NINYL=(NLDIS*L)NINAL
1¥NJ4 (NLI3S*#)AINNL=(NLI33*7)NINYL
T3ND+ (NL1D3S€ININYL=(NLI3IS*E)ININYL

NOI103S IN33¥N3 01 IN3W93S Jdv SIHL 00V

(d1)31SI-=(dI)14S1

009 01 09
3NNIINDD
00S 01 299 (IX °39° AN °ONV® XN °D3° (T)ONI¥L1S) 41
INI¥LS (8T701) Cv3d
NOfC*T=F 0TS 0O
(NOI)21SI=dI
0T0I ONIM3Y
009 01 09 (NOF °19° NOI) 41

XINdl INC 1113 01 INIOd 3Sve IN3¥3NI ONDA3B 09 10N OC

0G5S 01 09 ((N133S*2)H)X3N31 °*37° 1313+ (NLT3S*7)»INAL

CONV® (NJLJ3S*T1)XONM¥1 °37° 1aNJ+(NLJ3S*L)AINAL) I1
T+NOI=NOI
INNI0OA ONV 3411 SYH »3ndl 31 %I3IHID
(2)O3INIW=13ND
(TIDINIKH=T18ND
G3SSVd SI 1S31 NOI1J3S¥3INI

(dI)%LST=ANT $ (dI)0LSI=XNT $

1207 01 09
T+NLXIN=NI1X3IN

(NIX3N*I)SINN=(]1)3Sva
8dA*1=1 9% 00

00° 21 09 (OLSN®L19°NLIX3IN)II
0T0I ONIM3Y

INNOT0 ONIM3Y

1INNI ONIM3

3NNIINOD

0ss

013

(&)

coonr

<z»
66"

Oeb*

L8%F

110

0£221903S
62221938
€122133S
00221238
0692 133S
09921238
029219038
0992133S
84321933S
0%921933S
££321323S
02921238
0392 133S
806921933S
0€52123S
0852133S
826219238
£9621433S
065219038
0452133S
0£62123S
£252133S
03152133
€062133S
g6n2 133S
0e"2123S
02%2193S
69%2123S
0S9%2193S
G%%2133S
0£%21933S
62nc 133S
0I%2123S
00%2103S
06£2133S
09£2193S
0££2433S
69£2193S
06s£2 1235

v

1WN2-1101=14S31
TWN3-7102=71S31
INNIINGD
(T)ONINLS (T5°*w0I)3LIum
(2)2INIW+ 1AND=1WND
(1)0ANIN+INNI=TWND
INI&LS (£21)CV3I
27%¥=1 S0 00

3714 1NJIN0 01 HILVAIS 434SNVal
24=27
N=dN
0=0rN
Jd-N=N
£0I ONIM3¥
031314W02 NOI123S

INNOTO ONIM3N

1INNI ONIM3S

INT¥IS (INNQI0)I1THM

gNI¥LS (LINNIICV 3

LNN*T=1 669 OC

0101 ONImW3d

INNIINDD

gNI21S (INNOT0) 3iam (0°19°(1)TLSINSI
IONI¥LS (0101I)0V3Y

NOr*T=1 969 09

0191 ONIM3y

INNCY0 01 L1INNI ONV CT0Y WOB4 (S3¥ 3H1 AdDD
1=30031

¥903 01 09

T4 (NL1D3S°9)XIN¥E=(N1I3S*2)XINAL
T43d=3d

ONJ & 1S (£0I)311dm

3NNILINOD

3714 %SIC #31vadS 01 1NdiNO

(FISNIBLS=(0LSN T)SINN
8dA* 1= 6b< 00

663

#5629

m

021¢g133¢ LINNI ONIM3¥

0T1g L03S INNJI0 ONIM3d R 94
001§ 133S NOIfv¥31I M3N 304 3AVd3¥d INV dN HSINI A 3
060£133S J
080€123S 81e¢ 01 09
020£133S AINY IN=1S]

09Cf£ 123S T+ddi=ddl
050£123S 0= (X NALIN*r)ININAL 194’
0%0f 103S 9¢g=r 118 00
0£0¢£123S (3d1%2)»INAL=(AXINSLN® 2) AINAL
020£103S (8d1°T)XINAL=(NINALNT IXINAL
010€£103S T=3dl (OIN®19°3d1) 4]

000£ 1038 £0QINI¥d
0662133S THAINAIN=XINH AN Tee
0862133S33N1I0N¥1IS VIVO XIN¥1 IX3 30 ONNONY dVd HONONHILI SHINAL 330 3INII3I0 3
0462133S 3
6962 123S N3N 13y
0562123S %01 ONIM3Y

6962 133S N=(1ST*9)XINd1} o
0£62103S THN=-NN=(1SI*S)XINAL =
0262 4338 T4NLIIS=NLI3S
0162123S 3INNIINOD 902
0062133S (TIINTALS (T5°%01)311a3M
0682103S (E)IINIW® (UISTC2)NIN3L=(LSTI*2)ININAL
0982123S (C)OININ+ (LST*H)INTNAL=(LSI *»)NINVL
0282133S (T)OINIWNS(LSI*E)NINAL=(LSI*E)ININAL

0982 1923S INI¥LIS (INNCT0)0V3Y
0682133S N1*T=r 902 00 102
0982123S NOIL1J3S M3N 30 ¥3IONIVWIN AdLOD J
0£82133S J
0282133S N=NT
0182103S 1INNT ONIM3Y

0082 1033S TaNd=(1+N133S*S)ININAL
06£42123S Jd #+3d=)%d

08,2 123S 0TZ 01 09 ((1SI*2)X0N¥L1°19°11S31)31
0242193 0FTZ 01 09 ((LSI*T)XINyL®19°11S31)4d] CAL
0922 133S SOdV 40 ¥3ONIVW3IA NO S1S31 3INVH J
06221338 T08 01 09 (XJN¥IN®19°L1SI)SI

04%22193S T+N1338=1S1

0T5£403S
005£133S
06%¢ 123S
0e%£103S
04%9£133S
09%¢£ 123S
06%£103S
0%%£193S
0gnf 1038
02%¢ 133S
0T%£103S
00%£123S
06£€£103S
08£€£123S
02££103S
09££123S
0SE£fF 123S
0%£f 4038
0gLE 133S
02££103S
01££1403S
00££123S
062f 123S
082£103S
042f£123S
092£133S
0s62¢ 133S
0%2£133S
0£2¢f133S
022¢£133S
0¥2£133S
002£103S
061£123S
0e1£ 1238
021f£133S
09T£123S
0STf 103S
0%1€£103S
CEIL 123S

¥INCT=M]I T0%2 OO0

INNQOT0 WOX3 INIOd 3SV8 3A0W3IY
603 01 09(0°D3°3SvEN)II

LINNI ONIMI¥

ANNGT0 ONIM3IN

3NNILINOD

(FI)9NId1S=(ri1y)3sve

B8dX*T=r1 1022 00

SN=3SVE8N

S10=S100

T0T2 04 O9C(NL1J3IS*2IMINAL°19° (2)IINIW+(NLIIS*)ININNL) I
T0T2 01 09(C(NL123SeTHNINAL L9 ° (TIOININS (NLIIS*E)ININAIL) I
1072 0L 09 (SIQ0°39°SIT)31
(0OSA«0SA+0SX«0SX) L40S=S10
dA=-SA=0SA

AX~-SX=0SX

(SN)A=SA

(SN) X=SX

(T)INI31S=SN

IONISLS (LINNI)3LISM

ININL1S (INNOT0)0V3IN

XIN*T=1 T0%2 00

D =3SVBN

3d =N=X11IN

3ISVe LISV 3HL1 01 1S3S0T1D IN3W93S 3IHL ONIJ
000000 T=S100

(ISVEN)A=NA

(ISVEN)IX=3X

00TF 01 09

T+SSVYdN=SSvdd

2 =NiX3N

0=3d

0=30031

¥=3N1T

0=dIxS

TeXud=(NL133S*S)ININAL
T+N1J3S=N1D3S

Jd+id=)Nd

£O0I ONIM3¥

10%2
1922

113

082€123S
022£133S
09.f 133
062£133S
0%2% 123S
0£2¢ 133S
02.f£ 133€S
0T2£103S
004f£123S
069£133S
099¢£ 133S
029¢£ 133S
099f 133S
063¢ 133S
0499f£103S
0g9¢€ 133<
029¢£133S
079f 133S
009¢£ 133S
065£123S
085f 133S
045£133S
096£133S
065€133S
0%6f 103S
0£5f133S
025¢103S

v

GN3

(#030N31X3 N338 SVH NOILVINOTIINDD MNIN¥L1a*XS) LVHNOS
(ST1*XT) IVYNAN04

009°T26GT (OWWS °17° TIWNI+(NLIIIS*) AINEL) 31
2=N1X3IN $ T=01SN

€3NI+ (NLD3S* 2)XINYL=(N1I3S*L)ININAL

T4 (N1D3S*9)XINYL=(NLIIS*9)NINHL

C3NI+ (NLD3S*%)XNINNL=(NL1D3S*H)NONAIL

TANI# (NLDIS*EININYL=(NLDIS*E)ININAL

T+43d=2d

3Sve (£01)3114m

NOI1933S IN3¥3ND ¥04 2781 01 3Svy GOV

LINNI ONIM3N

INNC 0 ONIM3IY

3INNIINOD

INI¥ LS CINNUT)) 3IL1HM

10%2 01 09

(E)OINIKW=FINI

(2)04NINW=23NI

(T)OINIMW=TINI

00%2 Ol 09 ((T)3ISVH °*3IN® (TI)IONIALIS)SI
9NI¥LS (LINNIIOV3Y

£0@
15

QO o

1092
go%e

114

06£92SHd
88f£ 02 SHd
0.£02SHd
09£02SHd
0S£02SHd
0%€02SHd
0££02SHJ
02£02SHd
0TE02SHJ
00£02SHJ
06202SHd
08202SHd
0£202SHd
092 02SHd
05202SHd
0%202SHd
0£202SHd
02202SHd
0T202SHd
6020 2SHd
06T 02SHd
0910 2SHd
02102SHd
09T 02SHd
0ST02SHd
05T 02SHdD
0£3102SHd
G2V102SHd
0T102SHd
001 02SHJ
06002SHd
08002SHd
0Z002SHJ
03002SHJ
05002SHd
0%C02SHd
0£002SHd
020062SHd
03002SHd

(M) DN (CIHEN=(T*TINININW
93SN*T=r 02 00
U=T7101=1101
0=033SNWN
0=NOI.dO
0=300nW
09=NX
3SvVEeN) 41
93ISN=UN
((I)HN)SBVI=(I)HN
93SN*T=1 S 00
(S300N> *TI=1
* (IDOONAC (I)DONX* (I)SENC (I)WNNNON) *SIOONY* 433101 °104HN (TT)CVIN
OWAVY® (93SN*T=T* (1) 3S*(I)A*(I)X*(I)40d
CAWAND® (I)HAWIC(IDIHNC (TINITI* (1)ZNNC(I)INN® ARWND) *93SN (6) CY3Id
(OTI*0°0T3%/(0°0T13°0TI)%) 1VYNNO04

(FIHAWIZ(FTINI V4 *09= (M *2)HINTNW 3

T=3SVEN (93SN °19° 3SveN °d0°* T °17°

ISYENCHIXWL INNOL*YA0LSL*HAOLSL (1*T=T*(I)J1*(1)LiN) °*0Ff OV3¥
(JTVE) LVHA0d
37111 ¢07 0Ov3d

/794249 €°2°T/710NN VIVO

d3NINW V3N

JONT ¥393iINI

(9)J1° (%) IN NOISN3IWIO

(0S)%ISI*(0F)21STI*(OEITLSI*(OE)IO0LSI NOISNIWIO

(CO02°E)UININ® (00L)DWIINN® (00L)3dIST NOISNIWIC

(DDZ)INN®(D02)3381°(06Z2)1A*(002)1X NOISN3WIO

dHNOL*NLID3SI*LIHND*TIMND* 110144710410V ¥S /SLVLS/ NOWWOD

ASVENHINALNG (NS)ISHINYLS (NS 2)ININAL /3LN0Y/ NOWWOD

(9) IONN /0INS1I0/ NOWHOD

(00S)OONA® (00S)QONX* (00S)WNNOON *(00S)SEBN*SIOONN /VIVUON/ NOWKWOD
CHAV * (0T)LNIHAC (OT)INITA

S(OT)XVWA® (OTINIWA® (OTINIIXC(OT)XVWX* (0T INIWNX /VIVOdW/ NOWWOD
(002)3S*(00Z)A*(004) x*(002)308°*(002) HdW

C(D0L)IHN (002INIVI*(002)2NN* (00Z2) ITNN® (0C2)93ST*(8) 37111 NOWWOI

NOILVINWIS NOILD3S 304 d3A1d0
(1134V1°033dV1°63dV1°*834V1i®23dV1*93dVLI®r3dVi

$23dv1°13dV1*INdIN0=934V 1 *INANI=63dV1°*1NdIND *ININI) 3SVHd W V390dd

3

T

L

3

¢

sl

0g

A

3

115

R —

08202SHd
0220 2SHd
09402SHd

3ISvalN *T6 INI¥d
(/7«S3INNIH «*2°0T4°a="
IWIL FIHL ANAIXUKN 2/eSIUINNIW 2°2°0T3°%a=2*XTT *e3WIL 9NIOVOIE

DG202SHAINN 2 /#SIANNIH #°2°013%°s=3SN43Y LINN ¥3d IWIL dOLS «/+SILNNIH +*2°02
0%202SHdT4%e= OTOH3ISNOH ¥3d 3WIL dOLISO0#/f8°93°e=NII2OVHS 1714 WIWINIW «/ (/1
0£202SHAD*642)%/aSdINL ALIOVIVO0+/0TVEX0T *evVivVD 3T70IH3IA INdNITe) LVWHOS 11

02202SHd
0TL02SHd
0027 2SHd
0690 2SHd
08902SHd
0£902SHd
09902SHd
059 02SHd
0%302SHd
0£902SHd
02902SHd
0T902SHd
800902SHd
06502SHd
08502SHd
02502SHd
09502SHd
05502SHd
C%502SHd
0£502SHd
02S502SHd
0 ¥T502SHd
00502SHd
06%02SHd
08%02SHd
02%02SHd
09%02SHd
0S*02SHd
0%%02SHd
0§%02SHJ
02%02SHd
01%02SHd
00%02SHd

diXHl *dWnN0l 1
*3d01SL*HAOLSL*LOVEIS (AT =1 (I T)SHINN.* (I)D1)*37111°06 ININd
43477101 =10Vd4 0¥
3NNILINOD 22
08 0109 (1101 °19° 43¥) 41
ONINH(I*T)SHONAL=(I*TF) SHONAIL
(I)J1«ININ+33N8=43¥
((665°4(1)01/7(334-1101))INI* (I)EN)ONIA=ININ (°0 °19° (I)31) 31
0=JININ
»*¥=1 062 GO
(1°%2)SHINVYL«(I°T)SHINYL+434=43¥ 09
(I)IN«V3IIN=(I*T) SHINAL
#¢1=1 U9 00
‘=334
0% 01 09 (06 °D3° V3IIN) 41
3434/71101=V3IIN
(I)31+(I)IN+334=434 06
ALXWLI=(I*E) SHINAL
(I)34=(1°2)SXINAHI
(I) AIN=(I*T) SXINAL
2*1=1 0s 0O
°C=43¥
T=(I)IN (°0C °19° (I)31 °ONV® 0 °D3° (I)IN) 41 S2
n*1=1 <2 00

S3IINNIW NI 3¥V S3WILI TV MON 9

1XWie®09=¥1Xdl
*92=¥IXWL (°0 °*37° dixXwWi) JI1
3NNILINOD 02
(F)408e (F)HN+T101=T101
(F*2)¥3INIW+1101=1101
Hd0LSLT

e (FIHNSNADLSLa (P T)HININ® (FINITI°2T=(F*2)HINIW(D°INT (T IHN) ST
(FIHN=(F L)IHININ

116

VN*I=1 f§f 00

0211 2SHJ

09T 12SHd i=r
0STT12SHJ (9)1IONN=1LINN]
0% T T2SHd 033SN4VYN=VN (T°D3°NOI L1d0) 4]
0fT112SHd INNILNID
021 T12SHd (C*0T34£°2°013£°91) LYNE0S
0TT12SHd (2°9=C(I°M)ININEL) (O *T=CUI*r)ININAL) *T(EN*9)3ILI NN
00T 12SHd N1J23SI*T=I 0% OQ
060T2SHJ (/+HN V101
090T2SHdSININGIS IdI1e®X9%e0Y0 Ve X+ 1IWIT 3WIl ALIOJVAVI dId1l Ts) IVHA0I
0 20T 2SHd 66 INIdd
0901 2SHJ £€E€ 04 09(T°03°9V41) 41
0S0T2SHJ (VH*BdX*d
D90T2SHD *%1SI*21SI*TISIC0LISICINNCACX S0LININ*IVIIT*IQOH NN YNINOILI3S 1TVI
0£0T2SHJ

0201 2SHd (SO¥0OM BdX¥) 3F9VHDLS A¥VIOdWIl-==-========-==-30y@
0TOT2SHd (SCH0M VKH+B8dd) 39V301S A¥VYIdWHIl--=-=====ce==== NN
00032SHd (SQY0M VH) 39VH01S A¥VEDdWIL=-=-=-21ST*TISI*01SI
0650 2SHd

08960 2SHd S=401NJXH
0.602SHd 0=9v141
09602SHd (XNNI®AX*IACIX HIINNC INNCHALIST *I3HLUINI W ACX NXCVN)OTING 1TV
CSb02SHJ hedx = BdX
0%602SHd 09/7(bS+VYN) = dX
0£E02SHd 0f = VW
02602SHd

80T602SHd (SOYOM 8dX¥) 39VHDIS A¥VHDdHWIl-==-===cce==-==dK0D
00602SHJ (SO¥0M VN) IN3W93S 13331C 40 SILVYNIOI00] A-===c==c======]A%A
0680Z2SHd (SO¥IM YN) (INIWI3S 133¥4S 40 SIIUNIQN00D X-===-===-======lX*X
08802SHd (SU¥0M YN) 39V N0LS AMVHOdWIL-=-=-3341°dHILNN®LNN
0.902SHd (SOY0M £) 39V¥0LS AYVHOdWIL-=~-=====-===H3INIK
09802SHd (SO¥0M 8dX) 3THVL HOHHII3IN LSI¥Y3IN INO 40 AVNYV----=~=-====9IN1dlS
05802SHd 031Nd4J33J 38 01 SYOBH9II3N [S3¥V3IN 30 UIHHNN--e-ec~eccocon=ca=NX
0%902SHd SINIW9IC 133¥1S 40 ¥IBUNN-=-~-c=====ce-e=-¥N
C£802SHd

02802SHd EXI=(un1)d3d1S1
0T902SHd 93SN*T=dx1 9 00
00002SHJ 0=xNN1

0bL02SHd

(/76T1% o IN3HO2S HLIM [HVLS T7IM NOILD3S L1SHIJ 3HL ») IVWHDS 16

 $

4

c'
15

bb

LCLruoo

TLOLOLOLLVOLCLLOV

O

117

09512SHd
0S5T2SHd
C%5T2SHd
0£ST2SHd
C2512SHd
CTST2SHd
00512SHd
065 T2SHd
0891 2SHd
04%12SHd
09%12SHd

*SINNOB 3LVYNINH00D 404 SINIOHCIA INJIWI3S INV S3T0N NYIS

023°T=-=(T)YUYHA=(T)XVUHX § 023°T=(TINIWA=(TININHX
*0E=(T)LNTJHA $ *0E=(TINITA=(TINIIX
I=SdVH

*dVK HONI 0£X0E 3NO =-- S17NVv3430 dn 13S

0201 01 09 () °19° SdWW) 41

1=SdVHW

*CE=(INAINIHA (°0 °371° (I)INJHA) 41
02070907 ((9)403) 4I
(0°0T 42) 1VRH0S

BSHT2SHA(I) LNIHAC (IINITAC(IIXUWAC (IINTRAC (IINIIX® (I) XYWX* (J)NIWX*OTOT OV3IN

0%%12SHd
0E"T2SHJ
02%12SHd
01%12SHd
00%12SHd
06£T2SHd
08£12SHd
04f 12SHd
CSf 12SHd
06§ 1 2SHJ

0%FT2SHA(E*°0¢°0) 1074 T1TVD

0fE T 2SHd
02E12SHd
0IF12SHd
CO0fT2SHJ
062 12SHJ
08212SHd
022¥2SHd
J09212SHd
05212SKHd
C%212SHd
0£212SHd
022 12SHd
CT212SHd
00212SHd
C6112SHdM
09112SHd

0T¢T=1 00T 0O
0=SdvW

3INNIINOD

3NNIINDD

I=(1d1)93S1

1dl (®Z°*LINNT)TVIN

11*1=r 06002 0C

(I*9)IoNAL=11

N133SI*T=1 0001 0N

§ (£¢°€-¢°0)101d 1IV3 $§ (€°0°0)S107d VD
1INNTI ONIM3¥

(%) 1ONN=1INNI

WHLI¥097v 9NINDILOJ3S 340 S1NS3¥ 1014

3NNIINCD

C=NN§ H¥=2D
£¢ 01 09(2E°11°WN)JII
+H1=2D

(0°%ITE*TV) LYWSO0S
AN (NN*T=X°0)°J00°9% ININ¥d

T4NN=NN

0=NNS$ H1=008% 1er=r

(/7eSINIWD3IS SNIVINOD o *§£1° o NOI1D3S5S0e) 1VHY0S
rese INI¥d

8% 0L 09((r*s)XIN¥L°3IN"IISI
(GI*XT) 1"HN04
I (9242 INY1)0V3N

o~01
0t 01
gZcet

o101

ocot
voo02

98
ve

Vi

%!

0¥812SHd
U08T2SHd
064 T2SHd
0821 2SHd
04L412SHd
09, 12SHd
062 12SHd
092 12SHd
0£L12SHd
02212SHd
0 F212SHd
00ZT2SHd
0691 2SHd
083 T2SHJ
0.912SHd
0931 2SHd
0591 2SHd
0%3T2SHd
0£9T2SHd
02912SHd
01912SHd
00912SHd
06512SHd
0851 2SHJ
02512SHd

e

ON3

duis

% 37I40N3

T 37I34UN3

(NLO3SI*I=I%(I*T)20n¥31 1}

SeT=(I*9INONYLS (T49)NINHL*(T*S)NIMIL)CNLD3STIUN (1) 3ILIIdM
¥ ONIM3Y

3NNILINOD

(666°°0°*°0) 1074 1TIVI
(£-*°0°**0)107d 1VI

(93S¥*1)17ddVH 1VI

SdvW*T=I 080F 0O

(IDOONA=(T)XVHA ((T)XYWA °19° (I)OONA) 41
(ID)OONA=(TI)NIKA ((IINIWA °L7° (IDOONA) dI
(IDOONX=(TIXVWX ((1)XVWX °19° (I)OONX) 41
(I)OONX=(TINIKX ((TINIWX °17° (IDOONX) 41
S300NX*T=I 0907 07

(I)A=(TIXUHWA ((TIXVRA °19° (I)A) 41
(IDA=C(TINIAA ((TINIWA °*17° (IDA) 4J1
(I)X=(IIXVMWX ((T)XUWX °19° (1)X) 3I
(I)X=(TINIAX CCTINTIWX *17° (I)X) 41
93SN*T=1 0507 0Q

£f

080t

g0t
090t

0507

£
J

119

(The reverse of this page is blank.)

APPENDIX C

DEFINITIONS OF IMPORTANT VARIABLES

Subroutine SHLSRT
Subroutine SIFTUP
Subroutine SORTK
Function IFIND
Subroutine NUMBER
Subroutine SHAPCOM
Subroutine COORD
Subroutine MAPPLT
Subroutine BUILD
Subroutine SECTION
Program PHASE?2

121

Page
122
122
122
122
122
123
123
123
124
125
127

Note: A single variable symbol may have different meanings in relation to
the various subroutines. For this reason, variables are defined below
for each subroutine and for program PHASEZ2.

SUBROUTINE SHLSRT

A Array reordered as array X is sorted
NW Number of words to be sorted
X Array sorted into decreasing order

SUBROUTINE SIFTUP

L Number of words in tree

N Pointer to root at which ordering of root with respect to branches
begins

TREE Array of distances to be sorted

SUBROUTINE SORTK

KN Number of sorted items to be returned

N Number of words in array TREE

NN Pointer to root at which subroutine SIFTUP begins ordering root
with respect to branches

TREE Array containing packed distances between segments and segment
numbers

FUNCTION IFIND
TARRAY Array being searched

LEN Length of IARRAY
NUM Number being sought
SUBROUTINE NUMBER
FORM Qutput format for number
NUM Number to be plotted
TEXT Character representation of number

122

AVMD
BR1
BR2
ISF

R

RPR
SF
THETA
TOTLEN
XNF
XNI
YNF
YNI

BR1
BR2
CUMLEN
RPR

S

SF

XNF
XN
YNF
YNI

AVMD
CUMLEN
FLEN
INB
ISEG

SUBROUTINE SHAPCOM

Map distance conversion factor, in miles per map coordinate unit
Distance to first break in segment shape, in miles
Distance to second break in segment shape, in miles
Shape code when in character form

Radius of curvature of circular segments, in miles
Reciprocal of radius of curvature

Shape code when in binary form

Slope of line from starting to ending node, in radians
Total length of segment, in miles

X-coordinate of ending node

X-coordinate of starting node

Y-coordinate of ending node

Y-coordinate of starting node

a3

SUBROUTINE COORD

Distance to first break in segment shape, in miles
Distance to second break in segment shape, in miles
Cumulative length along segment, in miles

Reciprocal of radius of curvature of a circular segment
Distance along segment since previous break

Shape code

X-coordinate of ending node

X-coordinate of starting node

Y-coordinate of ending node

Y-coordinate of starting node

SUBROUTINE MAPPLT

Map-distance conversion, in miles per map coordinate unit
Cumulative street length, in miles

Array of segment lengths, in miles

Point within map-bounds indicator

Array of section assignments

123

e ————— ‘NWJ«J

SUBROUTINE MAPPLT (Concl'd.)

ISF Shape code when in character form
KNODES Count of nodes
NMAP Map strip number of current point
NMAPOQ Map strip number of previous point
Hf NN1 Array of starting node numbers
: NN2 Array of ending node numbers

NODNUM Array of node numbers
NPPSEG Number of points plotted per segment

PHGT Height of map strip, in inches

PLEN Total length of all plot strips, in inches

SF Shape code when in binary form

SVAV Array of map distance conversion factors

TOTLEN Total segment length, in miles

X Array of node x-coordinates

Y Array of node y-coordinates

YCUT Height of map output strips, in map coordinate units v

SUBROUTINE BUILD
BDATA Array of single 1-bit masks

comp Array of near-neighbor data

D Distance in miles between street midpoints

ISTPR Array of segment numbers

KN Number of near neighbors to be found for each segment

KP Number of words required to save near-neighbor indicators for each
segment

MINFR Array of refuse quantity, total traversal time, and number of houses
on segments

N Number of segments

NNT Array of near-neighbor segment numbers

NNTEMP Array of segment numbers
STRING Array of segment number, refuse quantity, total traversal time, num-

ber of houses, and near-neighbor indicators for a segment
TREE Array of packed distances between segments and segment numbers
UNOT Array of unit (file) numbers
124

e — S — . R
i, i s i i . . L e

XT

YT

BASE

BCOMP
BDATA
BMINF

ComMP
CUML
CUMT
CURL
CURT
FRACT
HISTO

ICODE

ION

ISTO
IST1
IST2
IST4
ITR
JON

K
KCUTOF

KL
KP

SUBROUTINE BUILD (Concl'd.)

Array of segment midpoint x-coordinates
Array of segment midpoint x-coordinates
Array of segment midpoint y-coordinates
Array of segment midpoint y-coordinates

SUBROUTINE SECTION
Array of segment number, refuse quantity, traversal time, number of
of houses, and near-neighbor indicators for the current base segment
Array of base segment near-neighbor indicators
Array of single 1-bit masks

Array of base segment refuse quantity, traversal time, and number of
houses

Array of segment near-neighbor indicators

Refuse quantity of all unassigned segments

Traversal time of all unassigned segments

Refuse quantity on current segment

Traversal time of current segment

Ratio of total refuse quantity to total vehicle capacity

Array of number of occurrences of number of shared near neighbors
equal to HISTO subscript

New section indicater: ICODE = 0 if a section is incomplete or
ICODE = 1 if a section is complete

Pointer to unassigned segment sharing most near neighbors with base
segment

Array of segment numbers

Array of counts of shared near neighbors

Array of pointers to segment number

Array of counts of shared near neighbors

Number of vehicles of a particular capacity

Count of segments which share near neighbors with the base segment
Maximum number of near neighbors found for any segment

Limit on number of segments sharing the most near neighbors with a
base segment to be examined for inclusion in a section with the base
segment

Number of unassigned segments
Number of words required for near-neighbor indicators

125

v

KPB

MINFO

N
NBASE
NEXTN
NN
NNTS
NP
NSTD
NSTO
NTO
NTRUCK
NUT
PC

PK
SECTN
SMLD

STRING
TDUMP
TOTL
TOTT
TRUCK

TRUCKS

UNOT
X
\ |

SUBROUTINE SECTION (Concl'd.)

Count of words in use in array STRING

Maximum number of segments in first section to be saved for use as
base segments

Array of refuse quantity, traversal time, and number of houses on a
segment

Count of segments

Segment number of first base segment for first section
Pointer to next base segment from NNTS array

Count of unassigned segments

Array of data for base segments

Count of unassigned segments

Count of base segments currently saved in NNTS array
Maximum number of base segments which can be saved in the NNTS array
Original number of sections required

Original number of vehicles required

Count of unassigned segments on file IUNIT

Count of segments assigned to current section

Count of segments assigned to all completed sections
Number of current section

Minimum total refuse which must be assigned before current section
is completed

Array of segment number followed by MINFO and COMP arrays
Unloading time at the landfill, in minutes

Total refuse quantity for all segments

Total traversal time for all segments

Array of vehicle capacity, maximum trip time, load, actual trip time,
pointer to first segment in section, count of segments section, and
count of houses in section, for each section

Array of quantity, capacity, and maximum trip time for vehicles of
each capacity

Array of unit (file) numbers
Array of segment midpoint x-coordinates
Array of segment midpoint y-coordinates

126

v

FLEN
FMPH
ISECTN
KCUTOF

KN
KNODES
KP
MA

MAPS
MINFR

NA
NBASE
NH
NSEG
NT
REF
RQF
TC
TMXTR
TOTL
TRUCK

TRUCKS

UNOT
X
XNOD
Y
YNOD

PROGRAM PHASE?

Array of street segment lengths, in miles
Array of speed limits, in mph
Count of sections

Limit on number of segments sharing the most near neighbors with a
base segment to be examined for inclusion in a section with the base
segment

Count of near neighbors to be found for each segment
Count of nodes
Count of words required to save rear-neighbor indicators

Maximum number of segments in first section to be saved for use as
base segments

Count of section maps to be plotted

Array of refuse quantities, total traversal times, and number of
houses on segments

Count of segments

Segment number of first base segment for first section
Array of count of houses on a segment

Count of segments

Array of count of vehicles of each capacity

Refuse quantity

Refuse quantity adjustment factor

Array of vehicle capacities

Maximum trip time

Total refuse quantity

Array of vehicle capacity, maximum trip time, load, actual trip time,
pointer to first segment in section, count of segments in section,
and count of houses in section, for each section

Array of quantity, capacity, and maximum trip time for vehicles of
each capacity

Array of unit (file) numbers

Array of x-coordinates of segment midpoints
Array of node x-coordinates

Array of y-coordinates of segment midpoints
Array of node y-coordinates

127
(The reverse of this page is blank.)

v

APPENDIX D

SAMPLE PRINTED OUTPUT

S iR e) L

INPUT ¢rdluie DATA KIRTLANG AFH (cAST) Nm

LA ALYy txips
220, LR

u. v,

n. 0.

0. u.

MINIMUM P LLL P xACTLONS L9481

SLUP TIME PER RUUSEROLD = «50 MINUTES
SIuv Tim: ver UNIT weFuSk D.0D MINMUTES
UNLGAUOTING T INe z 15.00 WINUTES
MANIMUN TRV DM : 260,00 MINUTES

It FIRST SFCTION wILL START WITH SEGMENT

1

iy AN

IwiP CAPACITY TIMe LINLY L0AU TIME SEGMENTS TOTAL AW
1 220.00 260,00 208.00 129, 19. 208.
2 220.00 2e0.00 205.00 12« 19, 205
3 220.00 2e0.00 207.00 125. 19. 207,
- 22000 Se0.00 211.00 168, 53, 2ite
s 22u.00 260.00 213.00 135, S 213,
[220430 260,00 211.00 166, A7, 211,
r 220400 2e0.00 192.00 116, 20. 192.
4 220.00 240,00 191.00 161, 29, 191,
>t LI TON 1 CONTAING SEULMENTS
1 ? 3 ten 1A b1 A7 « 150 68 noh o0 5 bw %Y
> CTION 2 GONTAINS SEGWENTS
te A7 o5 T3 27 28 25 15 W7 <A 33 32 26 S50 28
seLTION § CUNTAINS SEGMENTS
9?7 Ia 22 52 S0 s 21 2« 39 9 28 58 s s 2o
S.CTIaN o GONTAINS SEGMENTS
1t 7o a2 A el D W} 7T L2 33 ke S5 W5 0¢ 6
lTee 4% 120 118 15 152 160 153 156 155 107 79 119 117 121
SeCTToN % CONTAINS SEGMENTS
1?7 123 102 100 99 12« 101 140 141 139 12> 103 137 90 127
138 Len 1nl 10+ 126 130 88 105 132 A7 131 80 130 129 109
> ~T1ON n CONTAINS SEGMENT S
Q0% 20r 20« 232 208 Q07 202 23« 170 208 204 235 23y 201 200
210 25 172 4TS 1945 176 237
seLT Ton 7 CUNIATINS SEGME TS
183 1hn 186 247 1hS 1AS 166 175 268 163 176 162 1806 187 177
SeLTIUN 4 CONTAINS SEGMENTS
IA1 TAZ 190 191 212 288 192 213 216 215 225 216 115 151 198
MAPPLT PAQAMELERS FOR MAP |
Avmo= A8
AMiN= 0.00000 XMAX= 10.00000 YHIN= 0.00000
= e.00000 xRs 10.00000 o= g.ugg0a
As= 1.0000 ¥$C= 1.%0000 PHyT= 30.00000

(The reverse of this page is blank.)

131

55 3« 36 69
“y 5% 31 te
13 50 19 10
Te 7t 168 75
1e6 11« 1106 110
91 92 89 9
108 100 128 157
280 2%% 199 260

1899 178 180 188

19

YrAX=
=
PLEN:

196 210 171 226 230

217 218 219 220 22« 227 262 243 264 250

GLOSSARY

Air Force Refuse-Collection Scheduling Program: a set of four computer programs
that perform residential refuse-collection scheduling and produce
printed schedules and maps of the routes.

base segment: a segment used to Timit the addition of other segments to its
section on the basis of the number of neighboring segments common

to both.

binary search: a procedure for finding one item in an ordered group by re-
peatedly halving the portion of the group that contains the item.

map coordinate unit (MCU): the length, in inches, between integral divisions
on the coordinate system appended to a map.

node: a numbered point on a street at which some characteristic of the
street changes.

pointer: a variable that gives the location of some other variable.
segment: a portion of a street between two nodes.

shape code: characters--either two letters or a letter followed by a number--
that indicate the shape of a street segment.

spatial clustering of streets: selection of streets traversed by a vehicle on
one trip so that the streets are connected by other streets that
must be traversed.

133
(The reverse of this page is blank.)

ADTC/CS
DDC/DDA

HQ AFSC/DL
HQ USAF/RDPS
AFIT/Library
AFIT/DE
AFIT/LSGM

National Science Foundation

EPA/ORD
USA-CERL/EH

USA Chief, R&D/EQ
USN Chief, R&D/EQ
AFETO/DEV

Hq AUL/LSE 71-249
Det 1 ADTC/TST
Det 1 ADTC/ECW
Det 1 ADTC/EC
USA-CERL/Library
USA-CERL

UNM-CERF

INITIAL DISTRIBUTION

W Wk e b = NN

135
(The reverse of this page is blank)

