
—

AD AObI 812 TRACOR INC AUSTIN TEX F~6 9/2
N

DCVELOPMENT AID FOR AN EMULATING MICROPROCESSOR. (U) N

JJN 78 R FOSDICK F33615—77 C—1115
UNCLASSIFIED AFA L TR 78 77 ML.

I~~ I
28€ e I

g

-

_ U ~:7~

AFAL-TR-78-77

DEVELOPMENT AID FOR
AN EMULATING MICROPROCESSOR

R. FOSDICK r
~ D C~TRACOR, INC. r i n1 ni~ ITh

w A USTIN , TEXAS 78 721 ~~~~~~~~~~~ \‘ ~
JUNE 1978

TECHNICAL REPORT AFAL-TR-78-77
Final Report 14 February 1977 — 28 February 1978

;L
Apptoved for public release; distribution unlimited.

I
AIR FORCE AVIONICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

S

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



I.. )
xorrc~

When Government drawings, ap cif ications, or other data are used f or  any p ur-
pose other than in connection with a def ini tely related Government procurement
operation, the Uni ted States Government thereby incurs no responsibility nor any
obligation whatsoever~ and the f act that the government may have f ormulated,
furnished , or in any way supplied the said drawings, specifications , or other
data, is not to be regarded by implication or otherwise as in any manner licen- 4’

sing the holder or any other person or corporation, or conveying any rights or
permission to manufacture, use, or sell any patented invention tha t may in any
way be related thereto.

This technical report has been reviewed and is approved for publication.
This report has been reviewed by the Information Office (01) and

is releasable to the National Technical Information Service (NTIS) .
At NTIS , it will be available to the general public , including f orei gn
nations.

GARY D. GAUGLER , STANLEY E. WAGN , Chief
Project Engineer Microelectronics Branch
Prototyping & Standardization Group Electronic Technology Division
Microelectronics Branch
Electronic Technology Division

FOR THE COMMANDER:

~~~~~~~~~~~~~L)
WILLIAM EDWARDS , Chief
Electronic Technology Division

“If your address has changed , if you wish to be rerroved from our mailing list,
or if the addressee is no longer employed by your organization please notify
AEALJ DH E— 3 lw—p APE , OH 45433 to help us maintain a current mailing list”.

Copies of this report should not be re turned unl ess return is required by se-
curity considerations, contractual obligations, or notice on a speci f ic document.
AIR FORCE/56780/B t4ovamb lr 19Th — 125

UNCLASSIFIED
SECUR ASS IFICAT IO N OF THIS PAGE (W~.n Deja Entered)

~ E~ ”~~’ ~~~~ ~ E~’~
A rlfti.t b A ‘~E READ INSTRUCTIONS

rs U 1JI~ I Il~JI,.Vfl% I~ I ~~ I IUI~ ~~~~~ BEFORE COMPLETING FORM
UUUt9II~~ 2. GOVT ACCESSION NO. 3. REC IPIEMT S CATAI.OG NUMBER

AFAL R-78-~~J
/

4. TET ~~ F (~~‘~~ ~t:U.J / J 6~~~TVD~~.4~~~~~~~~~M~~

“~ DEVELOPMENT .AID FOR AN I
~

I ~ Final ~eptht.
EMULATING MICROPROCESSOR 5 / / ~~~~

14 çFEB ~ 77 - 28!EB 147~,
____________ _—— ._ I L ~~~~ aGauM~~~~W .—~e.e*~ seuvwew~

7. AUT HOR(a) -. B. CONTRACT OR GRANT NUMBER(.)

~~~ R (Fosdick (~~~~F336l5 . .77C i l i5

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGR.~~i ELEMENT . PROJECT , TASK
AR ORI( UN I T N U MBERS

I flC . 

~“ c 
_________________________

II. CONTROLLING OFFICE N A M E  AND ADDRESS .- ~~~~~~~~~~~~~~~~~

A i r For ce Av ion i cs La bora tory (DHE ) ( II) ~~~~~~ 
/

Wright-Patterson AFB , Ohio 45433 ‘—~~~~~ II. N U M B E R O F PAGES

14. MON ITORING AGENCY N A M E  A ADDRESS (1! d if f e r e n t  from Conlrolt in4 Off,ce) IS. SECURITY CLASS. (of thia report)

7 ~~~~~~~~ ~ j .  
/ Unclassified

IS.. DE CLA SS IFICATION /OOWN GRA DING
I - SCHEDULE N/A

16. DISTRIBUTION STATEMENT (of fbi, Report)

Approved fo r public release; distribution unlim ited .

17. D ISTRIBUTION STATEMENT (of the ab.IracI entered in Stock 20. If different f rom Report)

lB . SUPPLEMENTARY NOTES

lB . KEY WORDS (Continu, on rever e, aide if nec.aa.ry end idenIify by block nw.ber)

General Pro cessor Un it (GPU)

20. A B STRACT (Continue on revere , aide if nece.ae,y end identify by block number)
‘> This is the final report of a program initiated to implement a coinpiete emulator

utilizing the GPU circuit. When it was discovered that the GPU was going
to requ i re some mask changes the effort was redirected to start the definition
of the LSI Micro Controller Circu it and to start developing an LSI Simulator
for systems interface verification. This report covers work performed to
establish the initial requirements and characteristics of a high performance
microprogram controller IC. Some key elements of the study were: op-code
decomposition techniques of target machines , defini tion of the controller -...~

~~~~ DD 1 JAN 13 1473 EDITION OF 1 NOV 66 IS OSSOLE T E UNCLASSIFIED
SECURITY CLASS IFICATION OF TH IS PAGE (*b.n Del. Entered)

~~~~~~~~~~~~ ~~~~~( )



SECURITY CLASSIFIC A TION OF T H I S  PAGE(W3ien Date Entei.d)

-- 
~‘ function , and arc hitec ture of tar get mac hi nes w i th regards to requirements

for the controller IC. The information developed under this contract will
be of direct use in a fol low-on contract to design and develop the controller
IC.

,1

I 

~

(I

SECURITY CLASSIFICA TION OF ~ H I S P A G E ( W t , c , ~ fl.t, EnI.red)

-.-

~

—

~

---— . - -- ______



- -

PREFACE

This report covers work in preparation to a follow-on contract for the design
and development of a micro program controller IC in support of the General
Processor Un it (GPU).

The work performed includes the detailed examination of the architectures of
target machines , op-code decomposition , constraints placed upon the controller
function , and the characteristics and requirements of an advanced micro program
controller. The purpose of the preliminary investigation was to characterize
the target machines and to correlate the architectural and op-code requirements
placed upon a controll er IC.

This report was prepared by Tracor Inc., Applied Technology Systems Division ,
Austin , Texas, under Air Force contract F33615—77—C— 1115. The contract is
titled °Development Aid for an Emulating Microprocessor”. Amendment P00002
modified the contract to initiate the analysis to define a micro-controller
circuit compatible with the GPU circuit family. The report describes work
performed during the period of February 1977 through December 1977. The
effort was sponsored by the Air Force Avionics Laboratory , Wright-Patterson
MB, OH. Captain Thomas Margraff (AFAL/DHE) was contract monitor .

The report was submitted January 1978.

“Publication of this report does not constitute
A ir Force approval of the report ’s findings or
conclusions. It is published only for the
exchange and stimulation of ideas.”

Revi ewed and Approved :

Approved : __________________________

ROBERT FOSDICK
°rogram Di rector , Computer Devices
Teletypewriters and Digi tal Systems

.fll

——~~~~~~~~~~~~~~~ -—~~~~~~~~—--~~~~~~~~~~~~~~
-

~~~~~~~~~
-.—.

TABLE OF CONTENTS

SECTION PAGE

CONTROLLER REQU IREMENTS STUDY 1

1. INTRODUCTION 1

2. PROCESSOR CHARACTERISTICS SURVEY 1

a. POP-l i Characteristics 1

(1) PDP-ll Ins truction Description 2

b. UYK—20, AYK—l4 Characteristics 2

(1) UYK—20 Instruction Description 2

(2) IJYK-20 Register Format Field 2

c. AYK- 15 (DAIS Processor) Characteristics 6

(1) AYK— 15 Instruction Description 6

3. INDENTIFICATION OF CONTROL REQU IREMENTS 8

a. POP-il Instruction Decomposition 8

b. Controller Features Desirable for the 12
POP— il Instruction Set

~1) F iel d Mas ked Branc hi ng 12

(2) Field Branching 12

c. UYK- 20 Emulation Approach 14

4. SYNOPSIS OF CONTROL FUNCTIONS 16

a. Machine Instruction Interpretation 16

b. Micro-Command Sequencing 16

c. Memory Reques t 17

d. Direct Memory Access (DMA) 17

r •
~~~ 

- 
- - - -

V PE~G~ DZNG Pi~~ kLA!I1~ 
-
--..



TABLE OF CONTENTS (CONTINUED)

SECTION PAGE

e. Register Designation 17

f. Interrupts 17

g. User Interface 17

h. Conditional Status Inputs/Storage 17

I. Input/Output 17

5. RECOMMENDATIONS 17

II GENERAL PROCESSOR UNIT (GPU) SUPPORT 19

vi

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ -,— - — —~~~~~~~ . — -.~~~~ .- .- , —— — .  ~~~~~~~~~~~~~~~~~~~~~~~~~


SECTION I

CONTROLLER REQU IREMENTS STUDY

1 . INTRODUCTION

The family of circuits the controller is to be a part of are fabricated
with the CMOS/SOS process. These circuits have certain inherent features
desirable to the military for the implementation of computerswhich include:

1) Low power
2) High performance
3) Good radi ati on tolerance
4) High tolerance to voltage variation
5) High noise imunity
6) Single voltage requirement
7) Good packing densities

As with any new circuit technology development there is not a large base
of existing circuits available to supplement the new designs and it is
undes i rable to mix technologies as the advantages peculiar to each technology
would be lost. Therefore, it is desirable to make each device in the circuit
family as complete as possible , thus minimizing the need for additional
special purpose circuits . The object of this study is to survey the control
functions in military avionics processors and define the requirements for the
controller. It is desirable that the device be capable of implementing
various control type functions in different areas of a computer with the goal
of minimizing the requirements for additio nal unique circuit developients .

2. PROCESSO R CHARACTERISTICS SURVEY

a. POP-li Characteristics . The POP-li family of processors start with a
basic instruction set and a range of hardware performances most suited for
this appli cation. The POP-li is a 16-bit architecture with all instructions
also being 16-bits . Following are a list of features in the POP-il famil y
that relate directl y to the control functions:

1) 16-bit word
2) Direct addressing of 32K 16-bit words
3) Word or byte processing
4) Stack processing
5) Di rec t Memory Access (DMA)
6) 8 internal , general - purpose registers
7) Vec tored , priority interrupts
8) S ingle and double operand ins truc ti ons
9) Multiply/divide and floating point options

10) Status register (1)

L ..~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(1) POP-l i Instruction Description. The POP-il instruction employs
the use of many instruction formats with multiple field definitions to
provide the memory addressing fl exibility that other machines provide by using
a 32-bit instruction . The basic instruction formats are shown in Figure 1.
The operand derivations provided for both the source and destination fields
represent a good set that contribute much to acceptance of this family. The
operand derivation list is shown in Figure 2.

b. UYK-2O , AY K-14 Characteristics. The AYK-14 is the Navy ’s ai rborne
computer also referred to as the ISADC (Interim Standard A irborne Digital
Computer). The AYK-14 emulates the UYK-20 instruction set and includes
several additional instructions unique to the AYK-l4. The UYK-20 ha~ been theNavy ’s standard shipboard computer for the past severa l years and represents
the nearest to a standard computer architecture for the Navy .

The UYK-20 and AYK-l4 computers are 1 6—b it general purpose machines
incorporating an extens i ve instruction set that has evolved from previous Navy
computers . Following are a list of the functional features relating to the
control requirements :

1) 8—bit , 16—bit , 32—bit operands
2) 16 general purpose registers
3) 2 program status registers
4) 16—bit and 32—bit instructions
5) Direct addressing by page
6) Relative addressing by page
7) Cascade ind i rect addressing
8) 3-level interrupt processing
9) MATHPAC option
10) Input-output controller
11) Indexing via general registers
12) 16-bit memory word
13) Real—t ime and monitor clocks
14) Di rect Memory Access (DMA)

(1) UYK-20 Instruction Description. The UYK—20 has a 6-bit op-code
field , a 2-bit format field , and two 4—bit register fields. The first
register field , Ra , is the accumulator register . Ra is usually the source of
transfers to memory or is the destination of transfers from memory . The
second register , Rm , is typically a memory pointer. Rm may have uses other
than a memory pointer. In single register instructions , Rm i s sometimes used
to expand one op-code into 16 instructions. UYK—2 0 Instruction Formats are
shown in Figure 3.

(2) UYK-20 Register Format Field. Except for op—codes 40 through
47 (jump instructions), 60 through 63 (register immediate instructions), and
70 through 77 (1/0 instructions), the two-bit register format field is used
according to simple , well defined rules . These rules are

:2

--
~

-,- -

~

—-

~

~~~~
-

F 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Op Code Destination
Mode Reg.

O~OiO i I I I i i I

Single Operand

Op Code Source Des t ination
Mode Reg. Mode Req .

I I  I I I I I I I

Double Operand

Op Code Soi.~rcef.
i i 1 Destination

01010101 L 
Reg . 1ode Re~.

Regi ster - Source of Des ti nati on

Base Code Offse t
lO i O iO i’ O i i I

Branch

Op Code

o lO i O i O IO i O i O l O I I i I I I

Mi sce ll aneous

Figure 1. POP-li Instruction Formats3



..—~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

6

I.
Mode Descrip tion

0 Register
2 Register Pointer - autoincrement t
4 Regi ster Poi nter - autodecrement
6 Register Pointer plus next 16-bit ward
1 Register Pointer
3 Register Pointer - indirect -

.iutoincrement deferred
5 Register Pointer - autodecrement

deferred - indirect
7 Register Pointer plus next 16—bit word -

indirect

Figure 2. Operand Derivations

4

— _______



Op-code f Ra Rm

Register — Literal

Op-code 0 0 Ra Rm

Register - Register

r Op-code 0 l ~ d 1
Register - Immediate Type 1

L Op-code 0 1 Ra Rm

Register - immediate Type 2

Op-code 1 0 Ra Rm

y

Register - Constant

Op-code 1 1 Ra Rm

y

Register - Index

Figure 3. UYK-20, AYK-l4 Instruction Formats



Format Impl ied Operation

0 Register to Register Operations (RR) such as (Ra) +
(Rm)— ~.Ra , where (Ra) means the content of register Ra.

1 Register i nd i rect operations (RI) such as (Ra) + (Y*)~*Ra
where Y~ is the content of the memory location withaddress (Rm).

2 Register indexed operation (RK) such as (Ra) + Y-~Ra
Y = (Rm) +y if Rm~ Ro or Y = y  if P.m = Ro and where y is
the content of memory location following the instruction.

3 Register indexed , deferred operati ons (RX) such as (Ra)
+ (Y ) -~ Ra where (Y) is the content of the memory location
derived as i n format 2, above.

c. AYK- 15 (DAIS Processor) Characteristics . The AYK— l5 is the avionics
computer developed by the Air Force in support of the Digital Avionics
Information System (DIAS ) program. This computer also employs a 16-bit
architecture and has a fairly large instruction set with several urique
instructions in support of other DAIS ~~rdware descriptions . Following is a
list of AYK- l5 features related to control functions.

1) 16 general purpose regi sters
2) Direct addressing to 65K
3) Single level indirect addressing
4) 16-bit ininediate operand
5) Indexi ng v ia general regi sters
6 )  Fl oating point
7) Bit operation
8) 16-bit and 32-bit operands
9) 16 l evel vectored interrupt system

10) 2 i nternal timers
11) 1K block write protect
12) 16—bit memory word

(1) AYK—1 5 Instruction Description. The AYK- l5 onl y employs two
instruction formats (16—bit and 32-bit). The field boundaries of the 16—bit
format are identical to that of the upper half of the 32-bit format. Figure 4
shows the two formats . GR1 and GR2 typically specify any of 16 general
registers . The GR1 field , however, may contain a shift count , condition code ,
or bit number in some instructions. Rx is one of 15 general registers that
can be used for indexing. The 16—bit address field is either a memory address
or a 16—bit immediate operated for the instructions specifying immediate
addressing.



- - — — r~~~~~~~~~~~~~ ’ -  ... - - - 

~~~~~

.

Op-code GR1 GR2

16-Bit Format

Op-code GR1 GR2

16-Bi t Address Field

32-Bit Format

Figure 4. AYK — 15 Instruction Formats

7

~~~~~~~~~-.-~~~~~ - - - - .~~ - - .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



The 8-bit op—codes in the AYK-l5 are denoted in hex and tie first digit
specifies the type of instruction:

1) Bit operation 5
2) Shift 6
3) Jump 7
4) Load 8
5) Store 9
6) Add A
7) Subtract B
8) Multiply C
9) Divide D

10) Logi cal E
11) Compare F

The second hex digit generally specifies the modifier on the
instruction type and the addressing option from the following set:

1) Single precision direct 0
2) Single precision regular

to—regular 1
3) Single precision indirect 2
4) Single precision immediate 3
5) Doubl e precision d irect 4
6) Double precision regular-

to-regular 5
7) Double precision indirect 6
8) Floating point direct 7
9) Floating point regular-

to-regular 8
10) Floating point indirect 9

3. INDENTIFICATION OF CONTROL REQUIREMENTS

a. POP- il Instruction Decomposition. Figure 5 illustrates a controller
decode of the POP-il instruction set. This is a general purpose scheme that
is not optimized for speeding up register-to-register operations . Trade—offs
between micro-memory size and execution speed could reduce the execution time
of register—to—register operations at the expense of adding more micro
instructions.

In this scheme once the new instruction has been fetched from memory
and the program counter updated, an “instruction type” decode is performed on
the upper eight bits of the instruction. There are four possible results :
double operand , single operand , branch , and miscellaneous. The “instruction
type” decode sorts an instruction into a category on the following basis:

8 

--- .~~~~~~~~~~~-.



_ _ _ _ _ _ _  

~iI=I
-
.

~~~

C.,

_ _ I

i hnd j •
~~ ’

-

~~~~~

doubl e operand X NNN XXX X
single operand X 000 XXX X
branch X 000 OXX X
miscellaneous 0 000 000 0

where X = don ’t care and NNN not 000

Single the double operand set of instructions embodies most of the instruction
decodi ng maneuvers , that set will serve to demonstrate the process.

The double operand instruction fl ow is shown in Figure 6. The first
operati on loads the source regi ster, determined by instruction bits 9, 8, and
7, into temporary register Temp 6. The second operation loads Temp 6 into
Temp 5 then branches on the source mode (i nstructi on bit s 12 , 11 , and 10) and
whether or not the source register is the program counter (PC) (bits 9, 8,
7 = ill). There are 16 possible end points to the branch , four of which
indicate that an illegal instruction has been detected . The remaining 12
branch end-points initiate the operations necessary to place the source

• operand in Temp 4 and the modified source register value in Temp 5. Temp 6
contains the source operand address which is only needed for byte operations .

As an example , Mode 7 with a source register other than the PC
requires that the source register be added to the index word following the
instruction . The result is the address of the address of the operand . The
micro-code starting at the branch end-point indicating Mode 7 and not the PC

— first fetches the index value by placing the PC (which was incremented by two
during instruction fetch) onto the address bus and initiating a memory fetch
cycle. Prior to being restored in the GPU register file , the PC value is
incremented by two. When available from memory, the index value is added to
the content of Temp 6 and stored in Temp 6. Temp 6 then contains the source
register plus the index value.

The addresss of the source operand is found by performing a memory
fetch using the content of Temp 6 as an address and l oading the data from that
address into Temp 6. Finally, the source operand is determined by performing
a memory fetch using Temp 6 as the address and l oading the content of that
address into Temp 4.

The next set of micro-instructions decodes the destination informa-
tion. The destination operand is placed in Temp 1 , the next value of the
destination register is placed In Temp 2, and the destination address is
placed i n Temp 3.

Since many anomalies occur in the double operand instruction set, it is best
to separate the byte and word instructions (instruction bit 16 true or false).
The operation decode is first split into 16 paths by branching on instruction
bits 16-13. The word instructions such as Move, Compl ement, Add and Subtract
are then executed . The byte operati ons mask the source byte, aligned the

10 

—~~~~~~~~ -. -— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —.— - - -



.

- . - -,

~~~~~~

d ~~z
rv r i i~~~~~

-
~~ ... —

______ _________I!
1~a~.ft~iJ1~JJ ~

_ _ ~I1~LL
!;~ffll~ ~

•-fIEILEJJ1
LII ffl~HiLL LULL’

V

~t1IB— ~h ~iifli

~ll~HllHH
~j JL..F 1 !I1~ ~_

sin
_ _ _ _ _illi

11

_ _ _ _ _ _

~~~~~~~~~~~~~~~~~~~-



source byte wi th the destination byte, and perform the indicated operation .
The peripheral instructions such as Multiply, Divide , Floating— Point , Add ,
etc., require further decoding.

After execution of some instruction , the resul ts must be moved from
the temporary registers to the general register file and/or memory. First , a
four way branch is executed for the source and destination modes . The
resulting branch indicates that the source and destination modes are zero
(SD = 0,0), the source mode is zero and the destination mode is non—zero
(SD = ON ,). If a source mode is zero no action is taken. If a source mode
is non-zero, Temp 5 is loaded into the source register. If the destination
mode is zero, Temp 1 is loaded into the destination register. If the
destination mode is not zero, Temp 1 is stored into the memory location
determined by Temp 3, and Temp 2 is l oaded into the destination register.

b. Controller Features Desirable for the POP-il Instruction Set.

(1) Field Masked Branching. The POP-il instruction decode scheme
previously presented contains several examples in which the ability to
determine that a set of instruction bits is either all zero, neither all zero
nor all ones , or all ones is quite useful . The instruction group decoding is
one example. Sequential field testing would require five micro-cycles and
eight mi cro-memory locations . The field masked branching technique requires
only one micro-cycle and consumes at most nine micro -locations . The field
masking section under consideration for the controller is shown in Figure 7.
The final proposed instruction register will probably be 10 or 12 bits wide
in each controller to allow convenient fiel d grouping. Each field mask
register (FMR) is loaded during initialization with a set of ones and zeros.
A one in a particular bit position causes the FMR to examine the corresponding
bit in the instruction register. A zero in a particular FMR bit position
causes the corresponding instruction register bit to be ignored . The FMR has
two output lines ; one line indicates that all of the enabled instruction bits
are one and the other line indicates that all of the enabled instruction bits
are zero. The eight ouput lines from the four FMR ’s are masked by a general
reg ister in the controller and merged with eight bits from th’e ROM to form
a branch address. The number of possible branch destinations can , thus, be

H any number from 2 to 256.

(2) Field Branching . The PDP-ll also requires taking N bits , such
as 3 or 4 bits from the instruction register and branching to 2N possible
locations . An example of this type of branch is the double operand op-code
branch in which bits 16 through 13 are used to split the decode path into
15 different operations . The exact form of this branch has not been
determined , but a likely protocol is to select either the upper or l ower eight
bits of the instruction register in a controller , mask the instruction
register with a general register in the controller and merge the result with
eight bits from the ROM to form the branch address.

12

-

~ 

-—- - -~~~—~~~ - _ _



- .--~~~~~-—-~~— .

10 0R I2 BIT
L~~

TRUCTtO
~ REGISTER

- LR9~J
Fl E.LD t’WiA<~~ I (to-la B%TS~ o

flE LD ~~~ a (so-Ia ~1TS~~~~0 
_ _ _  

JCOMTROLLER
:GENERAL

— 1RE~ISTER5
IELD MAS~( a

I S 
-

IELD MASK 4(to-Iz et~ts) a

ALU

ROM ADDRESS REGISThR

Figure 7. Field Masking Section

13 

--~~~~~~ - ..-. -.- - - -. .~~~~~~~-.~~~“ -



C. UYK-20 Emulation Approach. The UYK-2O in many ways represents an
excel l ent machine for implementation by a system based on the GPU parts
family. The UYK-2O is a micro-programmed computer with a reasonabl y straight-
forward set of instruction formats . The complex register modification fields
found in the PDP-ll instruction set is almost entirely missing in the UYK—2 0
instruction set.

The main drawback to the UYK-20 is the l arge number of registers
required to control the various types of input/output operations , the two
timing systems, and instruction execution. The estimated register
requi rements are as fol lows :

1 ) 16 - General Regi s ters
2) 15 - Execution Registers
3) 6 - Rea l Time and Monitor Registers
4) 8 - Input/Output Control Registers
5) 64 - Memory Page Registers
6) 2 — Status Registers

An UYK-20 emulation would require most of the same controller features
that a PDP-ll emulation would require. The UYK-20, howeve r, w i ll requ i re more
“fl exibility ” in register selection. The PDP-ll and the GPU reference two
registers in concatenation by assuming that the register numbers only differ
in the least significant bit (register even/register odd). The UYK-20 allows
concatenation to start with any register and extend to sequential registers .
At least one instruction (Load Multiple) allows all of the registers to be
loaded from sequential memory locations .

Proposed architecture for emulating the UYK-20 would be the assignment
of the I/O registers , timing registers , and program counter to one pair of
GPIJ ’s wi th a mostly autonomous controller (the contro l subsystem) and the
assignemnet of the register stack and temporary execution registers in two
pair of GPU’s with a second controller (the execution subsystem). This
arrangement (see fig. 8) not only keeps logically connected registers together
but allows overlapped fetch and execute operations and facilitates 32-bit
arithmetic by controlled contatenation of the two 16-bit files . The micro -
control circuit should be capable of handling both function types .

The general registers in the execution set of GPU’s are split between
the GPU ’s with the even numbered registers in the right pair of GPU ’s and the
odd numbered registers in the l eft pair. In 32-bit arithmetic operations ,
either pair of GPU ’s can assume the role of the upper 16-bit register.

Near the end of the execution of an instruction , the execution
subsystem would send a fetch command to the control subsystem . The control
subsystem i ssues a memory fetch and rece ives the next i nstruc ti on from memory .
The control subsystem makes a preliminary instruction decode. If the format
i s RK or RX , the control subsystem fetches the next memory l ocation and
updates the program counter.

14

- - -.-

~

. -

~

- -~~~~~~~~~~~~~~ - .- -.~~



14
.rI

1i~
g,~0 ~~~~~~~~~~~~

r—~ ~~~~ E-~~~~I.- ,

~~I Z~ao~0

j
~i~Z E-4 CI~O

C I _ _ _ _ _ _ _ _ _ _

~z~~~Z

~~~~~~~~L h i.
14 ~~Z H P .~.r4 Z~~~0IZ
c~ 0r~~ i .

~4 U

~ ~~IE-~
~ 0 I ‘.0 E

SnCI~
j

(1)14
C~J

p4
0 0 .

~~~

~~
~~~~~~~ p40z

I
~
- .,

‘-~~~~ U

0Cl~ E-4 00
..~~z cl, c_)

_ _ _
z U-0 L — — i 0

_ _ _ _ _ _
I

_ _ _

~1

I

z
p-4

15

-~~~~~~ -- -.- - .~~~~~~ - --- - - ~~
--“.. -- -~~~~~~~~-.

~~~~~
-

~~~
- -- .

— .~~~~
_.. ..- .. . ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-- - --r~~~~~~~~~

When the execution subsystem has completed execution of the previous
instruction , it requests the next instruction from the control subsystem and
receives the partially decoded instruction . If the instruction format is RR ,
execution begins at once. If the format is not RR , the execut ion subsystem
transfers the content of Rm to the control subsystem and begins setting up the
execution sequence.

If the instruction format is RI (format 1) the contro l subsystem
fetches the content of memory location (Rm). If the format is RK (format 2),
the control subsytem adds (Rm) to the second half of the instruction. If
the format is RX , the control subsystem adds (Rm) to the second half of the
instruction and fetches the content of the resulting memory address. Once
the operand has been determined , the control subsystem transfers the operand
to the execution subsystem . In the case of multiple word operands , the
control subsystem fetches sequential memory locations as required .

Once the required number of operands has been acquired by the
execu tion subsystem, execution runs to completion and a new instruction
cycle begins.

4. SYNOPSIS OF CONTROL FUNTIONS

All of the machines reviewed utilized a 16-bit architecture with capablity
for handling larger and smaller operands. The use of the controller circuit
is applicable to many sections of a computer and the various requirements of
the different machines point out the need for flexibility in the part .

a. Machine Instruction Interpretation . It is desirable for the
controller to be able to select the pertinent bits from the instruction and map
the information directly to the micro address. Difficulty occurs when
patterns are established for certain fields in an instruction format and
exceptions are inserted . All of the machines exhibit this characteristic. It
is also desirable to be able to make the proper mapping decision in one micro-
cycle and not require a sequential decision making flow requiring several
micro-cycles . This type of problem is more obvious in the POP-li which
incorporates multiple field definitions because of the 16-bit instruction
limitation.

b. Micro—Command Sequercing. Many of the other sections discussed result
in the outpu t effecting the micro—command sequence (DMA , Interrupt , Inpu t!
Output , etc.). Other considerations are the desire to reduce the size of
micro memory by having similar instructions sequenced with a micro program
counter but most routines do not proceed through many steps before a branch
decision is required. Most decisions are based on changing data value , which
makes it desirable to input the normal status information (+, — , 0/F, all
zero) in the controller and efficientl y map the information to the micro
address. In the case of highly parallel architectures that incorporate
parallel or overlap operations it is a requirement to be able to control the
interface between controllers .

16

~~~~~ - -- - - - -~~~~~~- - - --~~~~~



-.- ‘ - — ---- -~~~~~~~~ -

c. Memory Request. Memory systems in the newer generation processors
have several independent sections to service and to resolve conflicts .
Requests can exist from the CPU, I/O processor, DMA, and possible other areas
depending on design. The memory may also incorporate interleaved banks to
increase effective speed . In these cases control is requ i red to admin ister
priority without elimi nating a section from having any access and to determine
when requests are in conflict. Machines desiring interface to a variety of
memory systems can also be easily accomodated with a micro controlled
i nterace.

d. Direct Memory Access (DMA). A DMA channel requires control hand-
shaking, maintaining the word count, addressing memory for data, possible
serialization/parallel lzation , format checks , and memory interface . All of
these should be readily handled by the controller and GPU’s depend ing on
word size.

e. Register Desi gnation. Selection of the various registers in the GPU
‘as to be available to the micro-programmer as wel l as being designated in
e instruction . The ability to test an instruction register field for all
iros is requ i red by all machines to determi ne indexing requirments . The

ability to increment the original register sel ect value and compare to
another value is required for load and store multiple instructions.

f. Interrupts. Multiple vectored interrupts , maskable under program
control , with assigned priority will probably be handled by a custom designed
circuit , but the output will be an input to the control sequence. Multiple
leveled interrupt systems such as the UYK-2O could use the controller to merge
to vari ous leve l s.

g. User Interface. Data registers and machine status in an LSI machine
are not available for monitoring except under micro-program control . The
controller should have the ability to micro-cycle and output information to
the operator as would be the case in previous consoles .

h. Conditional Status Inputs/Storage. ALU status information (+ , - , 0/F ,
.all zero) is required to be compared or mapped in support of conditional brand
Thstructions. These values also make up part of a status register in each
.~achine that must be stored and loaded when servicing interrupts . Since this
information is required by the controller anyway , it is desirable that status
be stored in the controller.

i. Input/Output. The I/O processor in the UYK-20 is similia r in
operation to a CPU and would therefore have simi liar requirments for the
controller. In addition , the controller could be used to handl e channel
protocol and contro l GPU ’s when data man ipulation is required .

. 5. RECOMMENDATION

The identification of control functions relates to the control design as a
list of features to be considered in its design. Following is a list of

17



— - ~~~~

recommendations based on control requirements of the machines surveyed :

1) Register for storage of portion of instruction
pertinent to con trol l er

2) Program coun ter for in-line routines
3) Temporary storage registers for subroutine

linkage
4) Iteration counter for sequential execution

of the same micro instruction
5) Discrete inputs for micro—control branching
6) Mapping and input comparisons for multiply

and divide data dependent decisions
7) Register for storage of ALU status and abili ty

to output
8) Mask registers to obtain field classifications

of the instruction
9) Mask registers for mapping instruction field

to micro address
10) Ability to control interface between controllers

operating simu l taneously

18



. —-- . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
V 

~~~~~~~~~~~~~~~~~~~ ~~~~~

SECTION II

1. GENERA L PROCESSOR UNIT (GPU) SUPPORT

Extensive testing and evaluation of the GPU circuit has been accomplish ed
under separate Air Force contracts . Tracor has supported this activity and
submitted solutions to the i tems identified . Two of these recommendations
effected control definitions.

Make the circuit output identified by the “Destination Control” availalbe
to outpu t for all destination selections if desi red. To accomplish this a
tn -state control was requested in place of the “Al l zero detect input. ” This
resulted in a slight redesign of the all—zero detect circuit making it a one
pin pull down implementation . Also , a no load state was added .

A redistribution of the terms time shared on the most significant connect
pins was recommended to allow isolation of the individual GPU circuits in a
system and to provide a complete arithmetic status at one time .

An update of the control definitions is provided in Tables I through V.
Table VI reflects the change in pin assignment and Figure 9 shows the change
to the block diagram resulting from Item 1.

19

•• -

~

.
~~~~~ • 

V



Tab le I. Source Selec t Con tro l

1 iputs Port 1 Port 2 Condition/
Reference S1 SO Source Source Description

SSO 0 0 ( R )  (T) ~51
(R ) (P 2B) AD 1

SS1 0 1 DI , R (1) ~5T Enable R
i~f LOAD

DI , R (P28) AOl required

SS2 1 0 ( R )  DI ~U1

(R) (T) AOl

SS3 1 1 ( R + l )  DI A151

( R + l )  (1) AD1



Table II. Data Type Selector Control

Inputs Port 1 Port 2 Condition/
Reference 02 Dl 00 ALC In ALC In Description

DSO 0 0 0 Zero False

DS1 0 0 1 True False

DS2 0 1 0 P 1B / 2 False  AD 1

0S2 0 1 0 False False  AD 1

DS3 0 1 1 False Zero

DS4 1 0 0 Zero True

DS5 1 0 1 True True

DS6 1 1 0 P 1B / 2 True AD 1

DS6 1 1 0 False True ~U1

DS7 1 1 1 True Zero

21



Table III. ALC Con trol

Inputs
Reference Al AU Function Comments

ADO 0 0 ADO Firs t port 2 source ,
external carry-in

AD1 0 1 ADD Second port 2, sou rce
external carry-in

AD2 1 0 AND Fi rs t port 2 source ,
logical “1” carry_in *

AD3 1 1 OR First port source,
logical “0” carry_ in *

*Group l evel propagate of external carry-in

22



Tab le IV. Des ti na tion Selec t Con trol

Inputs
Reference M2 Ml MO Description

AOO 0 0 0 Direct store input to register file*

AOl 0 0 1 ALC result left shift one into port 1*

A02 0 1 0 ALC result right shift one into port 1*

A03 0 1 1 ALC result right shift two into port 1*

A04 1 0 0 No load*

A05 1 0 1 ALC result no shift into port 1*

A06 1 1 0 P2B to circuit output , ALC resu lt
No shift into port 1 if l oad clock

A07 1 1 1 P1B to circuit output , ALC resu lt
No shift into port 1 if load clock

*ALC result to circuit output

23

------—- - -V - - - V _ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ V~~~ _V V__- V -V -- 
V



- .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~

.

~~ 4.)
0 0.- — F-.. r-..

‘-I ‘4- 4- -~~ ——.1 NJ NJ S.. S~ C..)
= G) 4) ...J C’4 CSJ
)< ~— .,- > < v~ o~ 0.

= 0 0 — ~~~

. Sn
43 43

a) 0.
C 4.)
C ~~ N. N. N. N. N. N. N.
00  — __

C-) 4.) 43 43 4.) 43 43 43

~,, —1 0 0 0 0 0 0 0
~~ 0!.—1 NJ C-) C-) C-.) C.) C.) C-) C.)

= _J _J _I ~ J _J __J -~~.5- ~~~ .~~ .~~~ .~~ .~~ ~~
~~~

o I
S..
4-’ —. —
C 4) 4.) —o 4- 4- C
C-) 4 - .- . ~~~~~ 0 4)

‘0 •.- .C ~~~~~~ ‘0
4) S.. Sn Sn 4.) 0o 4.) ~~ ~~ ‘4- C..)
a) C U) ~~~ 43 ~~~ 43
C .p~ C 4- ~~ ‘I- .0 0 4)
C Cl 0 a) ‘— a) Sn ,— ‘0o oi — .

~~~ 
5— 5— 4- .5-

C-) ~~l •0 4-’ ~ ~ 4) 5.. C >
43! E ~~ 4- 4- .0 a) 0

~0 S.. 5... •, .5- 0
C 0 4 )  4.) 4.) ....

~~ 43
so 5- C 0. 4-. ~ 4-. ~~ S.. U .

U 0 ~~~~~ 
. (/) 4- 4,

>, Sn 5- ,~~~ 
_j ~~ ~~ 5- .~-. 5-

S.. a) C 0 4 3  Sn U) 0 5-
‘0 0 0 4— 4— 4 -’ 0  0
‘0 .5- .

~ 4.) = 4) 4) C..) a)
C 4) C . 0  s— ~ 04- ‘0 4 3  ‘0 N.

U 0 Sn — —  .S~~ C C  5.. 0
0 4) . ... 4 , 4)  4) C-) 4)

C 4 3 4)  Sn — Sn 43 E ‘0
C U S’- ‘0 ~~~~ C a) 0o ~ ~~ 0 4 3  U 4.) 4) . ‘0(J ~~ (3 .~~ ~ ~ .~ ‘0 ~ C-)

C 5- 0~ C~ a E >
o o .

~~ 0 0 •‘- V) 0 4) .q
4) ~~ C.) U ...J S.. ...J 5- E U ~~~ 0

.0
‘0

a)
(0
S.-
0

0 4-’
C-) 0 .- 0 .- 0 .- 0 v)

Sn >..4-)
(0

0. C.) 0 0 ~ ‘— 0 0 .— — 5-
C 0
— 0.

EC.
~I 4)

C-) 0 0 0 0 ~~ — — I-

U)

4,
U
C
a) 0 ,- c’.j c~ ~~ ‘ Lfl ‘.o N.
S.. U- U- U- U- U- U- U- U-
a) ~~4-
4,

24

_  _ _ _



V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Table VI. Pinouts of the GPU

Pin No. Function Pin No. Function

1 V 55(V) 25 VDD (+V)
2 Data out (B4) 26 R2
3 Data out (B5) 27 R3
4 Data out (B6) 28 12
5 Data out (B7) 29 T3
6 Data out (B8) 30 Rl
7 Carry-out 31 11
8 Tn -State Enable 32 TO
9 AZD out 33 RO
10 MXH (O) 34 Ml

11 MX H (1) 35 MO
12 CO 36 M2
13 Cl 37 MXL (0)
14 C2 38 MXL (1)
15 Data in (B8) 39 LC
16 Data in (B7) 40 D2
17 Data in (B6) 41 AO
18 Data in (B5) 42 Al
19 Data in  (B4) 43 Carry-in (CR!)
20 Data in (B3) 44 Dl
21 Data in (B2) 45 DO
22 Data in (81) 46 Data out (Bl )
23 Sl 47 Data out (B2)
24 SO 48 Data out (B3)

25

V V ~~~~~~~~~~~~~~~~ V~~~~~~~~~~~~~~~~
V L



--V - -~~~~~_ _

8 BITS
4 3

(A)
IN PUT SJ

________  — (2) MXH (0-I)
(2) MXL (0-I) (H) — 

~ SHIFT CONNECT
SHIFT CONNECT ~~— ~~~~~~~F t  

.
— (MSB )

(LS B) [ MUX — 

~~
•1

(4) 
_ _ _ _ _ _  _ _ _ _ _  

_J
BO UNDA RY ~~~~~~ )

S d  ~~~~ REG:sTER~~~ L2~
NTROL

(0 3) DECODE 16X 8  (N) M(0 2)
(2) ~ - I DEST. ~~~S(O— I) -

~ 

— 

~1 SELECT J (I)LC
I (C I) I (C 2) L~~~2.!J~( PORT I ( P ORT 2
~~UFFER LBUFFER

—-1 1—
(D 1H ( D2 )  (3)D(O-2)

PORT I PORT 2 — —  _ _ _ _ _

IN MUX IN MUX

(2) A (O- I) 
— CE ) — 1

CARRY OUT I ARITHMETIC/LOGIC 
— 

CARRY-I N

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ENABLE

8 BITS
AZ OUT

Figure 9. GPU organization

26
*U.S.Goy.r~ m.nt PrInt In9 Of flc.: 1978 — 657~OO2 /2O 7

