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PREFACE

This report preseﬁts the results of the second phase of an investigation
of the effects of rare-earth additives on titanium alloys performed by the
McDonnell Douglas Research Laboratories under Office of Naval Research
Contract No. N0O0014-76-C-0626. The scientific officer for the contract is
Dr. Bruce A. MacDonald of ONR.

The principal investigator is Dr. Charles R. Whitsett. Co-investigators
are Dr. Shankar M. L. Sastry, Mr. James E. O'Neal and Mr. Richard J. Lederich.
The cooperation and attention to detail of Dr. F. H. Froes, Mr. V. C. Peterson,
and Mr. C. F. Yolton of the Crucible Materials Research Center in the
preparation of alloys for this study are gratefully acknowledged.

This report has been reviewed and is approved.
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1. INTRODUCTION

A systematic investigation is being conducted of the effects of rare-
earth (RE) additions to Ti-6Al1-4V. In the first phase of this investigationl
the influence of different concentrations of erbium, yttrium, and mischmetal
on the microstiucture and room-temperature tensile properties of Ti-6A1-4V
subjected to various annealing procedures was determined. In Phase I, 0.1
wtZ Er and 0.02-0.05 wt% Y in Ti-6A1-4V were determined to be effective for
grain refinement and to not adversely affect the room-temperature tensile
properties. In Phase II, which is reported here, Ti-6A1-4V with these Er
and Y concentrations was more intensively characterized with respect to
effects of different annealing procedures on room-temperature tensile and
fracture-toughness characteristics and crystallographic texture development.
For direct comparison of the effects of Y203, one ingot with 0.038 wt% Y203
was prepared with the same alloy chemistry as the Er- and Y-modified Ti-6A1-4V.
Phase III alloys have been prepared for plane-strain fracture toughness,
creep, and high-temperature deformation studies, and these results will be
presented in a subsequent report.

A recent study2 showed that Y, O,-additive is a beta-grain refiner in

2-3

Ti-6A1-4V and significantly improves ingot forgeability. When Y203 powder is

added to Ti-6A1-4V, it remains as large (1-10 um) inclusions, which tend to

agglomerate in Ti-6A1-4V and can degrade the tensile strength and fracture

: y ; ; : AN3=D
toughness, particularly in the short-transverse direction. Previous studies

of rare-earth additives to 0-Ti showed that metallic Y and Er dissolve in the
molten Ti and precipitate as fine and uniformly-distributed particles, which
effectively refine the microstructure of Ti. A near-term objective of this
research is to demonstrate that a uniform, fine dispersion of metallic rare-
earth additives in Ti-6A1-4V can improve the high-temperature formability,
and thus reduce fabrication costs, of the alloy without adversely affecting
strength and toughness.

The results presented in this report show that the room-temperature
tensile properties and plane-strain and plane-stress fracture~toughness of
Ti-6A1-4V are not adversely affected by 0.10 wt% Er and 0.02-0.05 wt?% Y
additions. The effects of Y203 additive on the properties of Ti-6A1-4V are
qualitatively similar to but less pronounced than the effects of metallic-Y

additive.

i
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2. ALLOY PREPARATIONS

2.1 1Ingot Melting, Forging and Rolling of Phase II Ti-6A1-4V-RE Alloys

Five l4-kg ingots were cast with the nominal compositions Ti-6A1-4V,
Ti-6A1-4V-0.10Er, Ti-6A1-4V-0.020Y, Ti-6A1-4V-0.050Y, and Ti—bAl—bV-O.O38Y20
The alloy with 0.038 wt% Y20

3 was prepared to obtain data for directly ;
comparing the relative effects of adding Y in the metallic and oxide forms.
The same raw materials were used for the Phase II alloys as for Phase 1. The
charge for each alloy was blended and pressed into twelve 76-mm diam
briquettes. The Ti-RE master alloy was broken into small pieces, wrapped in
Ti foil, and inserted between the briquettes, which were then welded together
to form a single-pole electrode. In the case of Y203 additive, the Y203
powder was tumbled with the Ti-sponge used to make the briquettes. The
electrode was consumably melted into a 100-mm diam, water-cooled, copper mold,
and the resultant ingot was inverted and remelted into a 143-mm diam, water-
cooled, copper mold.

For the earlier, Phase-1 alloys, the rare-earths were added to the
consumable electrodes either in the elemental form or as 75A1-25RE master
alloys. The Al-RE master alloys had undesired inclusions, and therefore for
the Phase-II alloys, 75Ti-25RE master alloys were used. The Ti-RE master
alloys, which were prepared at the Naval Research Laboratories by levitation
melting in vacuum, had the hypoeutectic microstructures shown in Figure 1 and
showed no evidence of inclusions or oxidation of the rare-earths.

Each ingot was coated with Metlseel RA—537f to minimize oxidation during
forging. The ingots were heated to 1095°C, upset-forged 30%, and drawn out
to 136-mm width and thickness. The ingots were then reheated to 1095°C,
drawn out to 1l14-mm width and thickness, again reheated to 1095°C, and drawn

out to 114-mm width and 51-mm thickness. All ingots forged well with little

cracking or void formation.

Ingots for this investigation were cast, forged, and rolled by Crucible

Materials Research Center, Colt Industries, Inc., Pittsburgh, PA.

1-Tradename of Glidden-Durkee Division of SCM Corp., Cleveland, OH.




(b) l 100 um J

GP72.0835-15
Figure 1. Microstructures of Ti-RE master alloys: (a) Ti-25Er and (b) Ti-25Y
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The alloys were rolled according to the schedule shown in Figure 2.

The different rolling schedules were designed to obtain‘qualitative hot-

formability data in the form of rolling pressures required, but the plates

were too small to obtain significant rolling-pressure data.

Double vacuum-arc-melt 14-kg ingots; upset and draw-out forge at 1095°C

Ti-6Al-4V (reference) Ti-6Al-4V-0.010Er Ti-6Al-4V-0.020Y Ti-6AI-4V-0.050Y Ti-6Al-4V-0.038Y203

P

i

Cut into 2 sections

A

8

1

[ .

Isothermally, unidirectionally roll-at 870°C
to 26 mm thickness in 5 passes; same
thickness reduction each pass

Isothermally, unidirectionally roll at 870°C
to 26 mm thickness in 5 passes;
same % reduction each pass

1

Continuously roll from 940°C to 13 mm
thickness in 4 passes

Continuously roll from 1025°C to 13 mm
thickness in 4 passes

Cut into 2 sections

Cut into 2 sections

AT

ATL

BI

B-II

|

Continuously roll
from 940°C to 3.2 mm
thickness in 4 passes

I

Continuously roll
from 1025°C to 3.2 mm
thickness in 4 passes

Figure 2. Rolling schedule for Phase-II Ti-6Al-4V-RE alloys

2.2 Chemical Analyses of the Alloys

GP78-0635-16

The chemical analyses performed by the Crucible Materials Research

Center (CMRC) are summarized in Table 1.

Samples for analysis were cut from

the 13-mm thick plates and are representative of material at the mid-heights

of the original ingots.

The principal alloying elements and interstitial

impurities are within the expected ranges.

CMRC did not analyze for Er.

The



Y concentration in the reference alloy is < 10 ppm. The alloys to which Y

was added had 0.013 wt% and 0.052 wt%Z Y. The Y203-containing alloy has 0.012

wtZ Y, which is about half the concentration corresponding to the addition of

0.038 wt?% Y203 to the starting material.

TABLE 1. CHEMICAL ANALYSES OF PHASE-II Ti-6Al-4V-RE ALLOYS PERFORMED BY
CRUCIBLE MATERIALS RESEARCH CENTER

Chemical analysis

Aty Son (w5

i (wt%) AE Fe c N 0 H v
31 None 60 41 008 0028 0016 0118 00054  <0.001
32 0.10Er 61 41 008 0030 0017 0120  0.0067 i
33 0.020Y 61 41 006 002 0016 0125  0.0058 0.013
34 0.050Y 61 41 008 0029 0020 0135  0.0060 0.052
3  0.038Y,03 61 41 008 002 0016 0126  0.0062 0.012

GP78-0635-2

Samples cut from different regions of the 13-mm and 3.2-mm plates were
submitted for Er and Y analyses to the United States Tésting Company (USTC)*,
and the results are summarized in Table 2. The analyses were performed by
x-ray fluorescence spectroscopy of the rare-earths precipated as oxides in
the case of USTC and precipitated as fluorides by CMRC. Measurements by
CMRC on ten standards containing 0.0010 wt%Z Y gave an average concentration
of 0.00075 wt?% Y with a standard deviation of 0.00016 wt% Y, and measurements
on ten standards containing 0.0040 wt? Y gave an average concentration of
0.0033 wt% Y with a standard deviation of 0.00056 wt%. The CMRC analytical
method gives too low a value by up to 40%, although the method is reproducible
to within + 20%. USTC performed no analyses on standards, but they claim
their method is accurate to within * 57.

The USTC analyses give Y and Er concentrations significantly lower than
the nominal compositions and those reported by CMRC and indicate that the
rare-earth concentration varies from region to region in a single alloy plate.
Because of the analysis of errors on measurements of standards by CMRC,
greater confidence may be placed on their Y determinations. It is probable
that the rare-earth concentrations are approximately half the nominal

concentrations used to describe the alloys in this report.

*United States Testing Company, Inc., 1415 Park Avenue, Hoboken, N. J. 07030.
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2.3 Heat Treatment of the Alloys

The variously processed plates were heat treated according to the

schedules shown in Table 3.

TABLE 2. CHEMICAL ANALYSES OF PHASE-II Ti-6Al-4V-RE ALLOYS PERFORMED BY
UNITED STATES TESTING COMPANY, INC.

All Nominal Specimen Concentration of RE
oy composition no. (wt%)
1 0.059
: 2 0.075
32 Ti-6Al-4V-0.10Er 3 0.061
4 0.064
1 < 0.0025
2 < 0.0025
33 Ti-6AI-4V-0.02Y 3 0.004
4 0.007
5 0.0125
1 0.005
34 Ti-6AI-4V-0.05Y 2 0.007
3 0.022
- 0.0025
36 Ti-6AI-4V-0.038Y 703 2 <0.0025
GP78-0635-3

TABLE 3. HEAT TREATMENT SCHEDULES FOR PHASE-TII Ti-6AIl-4V-RE ALLOYS

Heat treatment

Schedule

Recrystallization anneal

Beta anneal

Solution treat and age

Solution treat and overage

a-0 solution treat and age

930°C for 4 h; furnace-cool to 700°C;
air-cool to 25°C

1040°C for 0.5 h; air cool to 25°C;
re-anneal at 700°C for 2 h; air-cool
to 25°C

955°C for 2 h; water-quench; age at
550°C for 4 h; air-cool to 25°C

955°C for 2 h; water-quench; age at
710°C for 4 h; air-cool to 25°C

955°C for 2 h; air-cool to 25°C;
anneal at 710°C for 4 h; air-cool
to 25°C

GP78-0635-4
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3. MICROSTRUCTURAL CHARACTERIZATION

The microstructures of the Phase-1I reference alloy and rare-earth
containing alloys processed according to schedules A and B are shown in
Figures 3 and 4. The alloys processed per schedule A are characterized by
a heavily-worked, unrecrystallized, two-phase microstructure. The Er and Y
additions have no significant effect on the microstructure. Schedule B
involved extensive rolling above the beta-transus temperature, which maintains
a large volume-fraction of the B-phase during the rolling process.
Consequently, the microstructure of the alloys processed according to schedule
B consists of fine-scale transformed-f. The rare-earth-bearing alloys have
a finer colony size than the reference alloy (Figure 4a-4c).

Figures 5a-5d are electron micrographs of the reference alloy and the
rare-earth-containing alloys processed according to schedule A and subsequently
recrystallization-annealed. The Er- and Y-bearing alloys contain small
dispersoids in the size range 10-100 nm; however, the number of dispersoids in
the thin foils was much lower than expected from the nominal rare-earth
concentrations in the alloys.

The microstructures of the Phase~II1 alloys after the different heat
treatments were as expected from the results for Phase-I alloysl. The
principal effect of the rare-earths is to reduce the colony and grain sizes
of beta-annealed alloy, as is shown in Figures 6 and 7. There is no
significant effect of the rare-earths on the microstructures of the alloys
after recrystallization-annealing and solution-treat-and-aging. The alloys
rolled per schedule B exhibit elongated alpha grains after recrystallization
annealing (Figures 7a and 7b).

In addition to being given the conventional heat treatments as indicated
in Table 3, the alloys were subjected to 1.0 h anneals at 600°, 700°, 800°,
900°, and 1000°C and water-quenched to determine their recrystallization
behavior. The temperature for rapid recrystallization of the alloys is from
800° to 900°C. Whereas the alloys annealed at 800°C were only partially
recrystallized, the alloys annealed at 900°C exhibited a completely
recrystallized, two-phase microstructure consisting of grains of primary
equiaxed-alpha and transformed-beta. The grain sizes in the alloys annealed

at 900°C are 5-10 pm. The recrystallization temperature and the recrystallized

0+B microstructure of Ti-6Al-4V are unaffected by the rare-earth additions.
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Figure 3. Microstructures of alloys processed per schedule A; (a) Ti-6Al-4V reference alloy,
(b) Ti-6AI-4V-0.10Er, (c) Ti-6AI-4V-0.05Y, and (d) Ti-6AlI-4V-0.038Y503
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Figure 4. Microstructures of alloys processed per schedule B; (a) Ti-6AI-4V reference alloy,
(b) Ti-6AI-4V-0.10Er, (c) Ti-6Ai-4V-0.05Y, and (d) Ti-6Ai-4V-0.038Y,03




(a) L 5um | (b)

5 um GP78-0635-19

(c) L | (d)

Figure 5. Transmission electron micrographs of alloys processed per schedule A; (a) Ti-6Al-4V
reference alloy. (b) Ti-6AI-4V-0.10Er, (c) Ti-6Al-4V-0.05Y, and (d) Ti-6Al-4V-0.038Y,03
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Figure 6. Microstructures of beta-annealed Ti-6Al-4V-RE alloys; (a) Ti-6AIl-4V reference alloy,
(b) Ti-6AI-4V-0.1Er, (c) Ti-6A1-4V-0.05Y, and (d) Ti-6Al-4V-0.038Y,03
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Figure 7. Microstructures of (a) Ti-6Al-4V reference alloy and (b) Ti-6AI-4V-0.02Y alloy

processed per schedule B and recrystallization annealed




4. CRYSTALLOGRAPHIC TEXTURE

The crystallographic textures of the hot-rolled, beta-annealed,
recrystallization annealed, and solution-treat-and-overaged Ti-6A1-4V-RE
alloys were determined by x-ray pole-figure goniometry. The texture
development in the alloys was studied by analyzing (0002) and (1010) pole
figures of the 3.2-mm thick sheets.

The major texture components in the alloys processed per schedule A are
near-basal and near-transverse-basal (Figure 8). The deformation texture is
unaffected by the rare-earth additions. Beta annealing results in a loss
of transverse-basal texture components and the development of a basal texture-
component (Figure 9). Annealing in the a+f field increases the sharpness of
the near-transverse-basal texture components in the Y- and Y203—containing
alloys (Figures 10 and 11).

Alloys rolled per schedule B exhibit stronger basal texture components
(Figure 12), and annealing in the a+f field sharpens the basal texture
(Figure 13).




GP78-0635-54

(c) (d)

Figure 8. Texture development in alloys processed per schedule A; (a) Ti-6Al-4V reference alloy,
(b) Ti-6Al-4V-0.1Er, (c) Ti-6Al1-4V-0.05Y, and (d) Ti-6A1-4V-0.038Y203:
(0002) pole figures are shown




(c) (d) GP78-0635-55

Figure 9. Effects of beta annealing on texture of Ti-6Al-4V-RE alloys; (a) Ti-6Al-4V reference
alloy, (b) Ti-6AI-4V-0.1Er, (c) Ti-6AI-4V-0.05Y, and (d) Ti-6AI-4V-0.038Y503;
(0002) pole figures are shown
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(c) (d)

Figure 10. Effect of recrystallization annealing on texture of Ti-6Al-4V-RE alloys; (a) Ti-6Al-4V
reference alloy, (b) Ti-6AI-4V-0.1Er, (c) Ti-6AlI-4V-0.05Y, and (d) Ti-6AI-4V-0.O38Y203:
(0002) pole figures are shown
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(c) (d)
Figure 11. Effect of solution-treatment-and-overaging on texture of Ti-6Al-4V-RE alloys;

(a) Ti-6AI-4V reference alloy, (b) Ti-6Al-4V-0.1Er, (c) Ti-6Al-4V-0.05Y, and
(d) Ti-6A|-4V-0.038Y203: (0002) pole figures are shown
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(a) (b) GP78-0635-58

Figure 12. Texture development in alloys processed per schedule B; (a) Ti-6Al-4V-0.05Y and
# (b) Ti-6AI-4V-0.038Y,03: (1010) pole figures are shown

GP78-0635-59

(a) (b)

Figure 13. Effect of recrystallization annealing on texture of alloys processed as per schedule B;
(a) Ti-6AI-4V-0.08Y and (b) Ti-6AI-4V-0.038Y503: (1070) pole figures are shown
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5. ROOM-TEMPERATURE TENSILE PROPERTIES

The room-temperature mechanical properties of the Phase-II Ti-6A1-4V-RE
alloys were completely characterized for each of the conventional annealing
treatments. Longitudinal and transverse tensile specimen blanks were
machined from 13-mm thick plates processed according to the schedules A and B
defined in Figure 2, encapsulated in quartz tubes under vacuum, and annealed
in accordance with the schedules shown in Table 3. Tensile specimens with
8.0 x 6.0 x 3.1-mm gauge sections were machined from the blanks. The room-
temperature tensile-properties data for the Phase-II alloys are shown in
Figures 14-23 and listed in Tables Al-A6 of Appendix A.

Although for the Phase-I alloys a slight lowering of yield stress and
ultimate tensile stress was observed in rare-earth-containing alloys, the
Phase-II alloys showed no significant effect on strength by the Er and Y
additions. This absence of an effect on strength may be attributable to
smaller than nominal RE concentrations in the Phase-II alloys, but additional
chemical analyses must be performed to substantiate such a conclusion. There
were slight differences in the tensile properties between the Phase-I and
Phase-II alloys, which may be due to small chemistry differences. For
example, the Phase-II alloys had less total oxygen and nitrogen (* 0.13 wt%

O and 0.02 wt% N in Phase-II alloys compared with %~ 0.16 wt% O and 0.03 wt% N
in Phase-I alloys), and the Al:V ratio was slightly lower in the Phase II
alloys.

For both the Phase-I and Phase-II alloys, the slight yield-stress
differences between the reference alloy and alloys containing 0.10 wtZ% Er
and up to 0.05 wt?% Y are not significant.

Phase-I and Phase-II alloys with RE additions had slightly higher
ductility than the reference alloy for the B-annealed, solution-treat-and-aged,

and solution~treat-and-overaged conditions.
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Figure 15. Yield stress of beta-annealed Ti-6AI-4V-RE alloys
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Figure 14. Yield stress of hot-rolled and unannealed Ti-6Al-4V-RE alloys
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Figure 18. Yield stress of o -3 annealed and aged Ti-6AIl-4V-RE alloys

Figure 19. Total elongation of hot-rolled and unannealed Ti-6Al-4V-RE alloys
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Figure 20. Total elongation of beta-annealed Ti-6Al-4V-RE alloys

Figure 21. Total elongation of recrystallization annealed Ti-6Al-4V-RE alloys
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Figure 22. Total elongation of solution-treat-and-overaged Ti-6Al-4V-RE alloys
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Figure 23. Total elongation of «-/3 annealed and aged Ti-6AI-4V-RE alloys




6. FRACTURE TOUGHNESS

The fracture toughness (K.) values of the alloys were determined from

three-point-loaded slow-bend tgsts of Charpy V-notched and fatigue-precracked
specimens. The specimens were tested after the following heat treatments:
(1) beta anneal at 1040°C for 0.5 h, air cool to room temperature, stabiliza-
tion anneal at 700°C for 2 h, and air cool to room temperature; (2) recrystal-
lization anneal at 930°C for 4 h, cool at 55°C/h to 700°C, and air cool to room
temperature; and (3) solution-anneal at 955°C for 2 h, water quench, age at
710°C for 4 h, and air cool to room temperature. The room-temperature KQ
values of the Phase-II alloys are shown in Figures 24-29 and listed in
Tables A7-A9 of Appendix A.

The solution-treat-and-aged alloys have lower KQ values than the beta-
annealed and recrystallization-annealed alloys. There are no significant
dif ferences between the KQ values of the reference alloy and the rare-earth-
containing alloys in the recrystallization-annealed and solution-treat-and-aged
conditions; the differences are within the experimental scatter-band
characteristic of the test technique. In the beta-annealed condition, the
Er- and Y-containing alloys have slightly lower fracture toughness than the
reference alloy. The reduced fracture toughness is a consequence of smaller

prior-beta-grain size rather than the presence of the rare-earth dispersoids.
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Figure 24. Fracture toughness (KQ) of beta-annealed Ti-6Al-4V-RE alloys processed according

to schedule 8
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Figure 25. Fracture toughness (Kq) of beta-annealed Ti-6Al-4V-RE alloys processed according

to schedule A
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Figure 26. Fracture toughness (KQ) of recrystallization-annealed Ti-6AI-4V-RE alloys processed
according to schedule B
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Figure 27. Fracture toughness (KQ) of recrystallization-annealed Ti-6Al-4 V-RE alloys processed
according to schedule A
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Figure 28. Fracture toughness (KQ) of solution-treat-and-overaged Ti-6Al-4V-RE alloys processed

according to schedule B
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Figure 29. Fracture toughness (Kq) of solution-treat-and-overaged Ti-6Al-4V-RE alloy processed

according to schedule A
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7. PLANE-STRESS FRACTURE TOUGHNESS

The fracture toughness, KQ’ under plane-stress conditions was measured
on center-cracked tension specimens of the Phase-II Ti-6A1-4V-RE alloys
subjected to various heat treatments. The 3.1 x 76 x 203 mm sheet specimens
were tested for susceptibility to crack growth in the transverse direction
under loading in the longitudinal, or rolling direction.

At present there is no standard method for plane-stress fracture-toughness
testing. For the test method chosen for the present investigation, cracks
are initiated by fatigue on both sides of a notched hole in the center of
the specimen, the specimen is then pulled in tension and the half-crack length
is recorded as a function of applied tensile load. Figure 30 shows the
specimen geometry and test set-up. The stress intensity, full-section stress,
and half-crack length for the given sample geometry are related in accordance

with the expression

K = ovmaz , (1) :

where 0 is the full-section stress (load divided by total cross-sectional
area), a is the half-crack length, and Z = sec(Ta/w) is the finite-width
correction factor. The plane-stress fracture-toughness is defined as that
value of K for which crack growth becomes unstable. Because under plane-
stress, significant crack growth occurs before instability, the instantaneous,
rather than the initial, half-crack length must be used. For each alloy

heat treatment, there is a unique relationship, called the crack-growth-
resistance curve, between crack length and the applied stress-intensity factor.
Instability arises when the stress intensity at the crack tip, defined by
Equation (1), increases more rapidly than the material response as given by
the crack-growth-resistance curve. The following equation, developed by

Forman6 and modified to account for the finite specimen width, relates the

instantaneous half-crack length to the applied load and crack opening as

measured by a vertical-displacement gauge:

az = L . 2)

| )
; sinB + 1
; £ Oy.s. A (sinB - l)

| where C is the vertical displacement as measured by a crack-opening-displace-

z
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ment gauge, E is the elastic modulus of the material, © Fuf is the yield
strength of the material, and B = (n/2)(0/0 .S.). The crack-growth-resistance
curve is obtained by using Equation (2) to calculate a half-crack length for

a given load and crack-opening, and then employing Equation (1) to calculate
the stress intensity associated with this half-crack length and applied load.
The fracture toughness value is obtained by locating the point of tangency
between the crack-growth-resistance curve and an applied-stress-intensity

curve of the appropriate value of applied load, as shown schematically in

)’ \3.2 mm

76 mm

6.2 mm diam hole
/‘ ‘/ Half-crack length, a
Knife edges
203 mm epoxy-cemented

(_\ in hole

. C
Clip-on
crack-opening-displacement
gauge
|~

GP78-0635 60

Figure 31.

\

Figure 30. Specimen geometry and mounting of crack-opening-displacement gauge for
measurement of plane-stress fracture-toughness
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Figure 31. Schematic representation of plane-stress fracture-toughness determination

The fracture toughness values determined by this method for the alloys,
rolling schedules, and heat treatments of this study are shown in Figures

32-34 and listed in Table Al0 of Appendix A. The beta-annealed alloys

generally have the highest fracture toughness. There are no significant
differences between the KQ values of the reference alloy and the rare-earth
containing alloys in the recrystallization-annealed and solution-treat-and- ﬂ
aged condition. However, in the beta~annealed condition, rare-earth-con-
taining alloys have a slightly higher fracture toughness than the reference

alloy in contrast with the result of slow-bend, plane-strain tests on the

s A

same alloys described in Section 6.
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Figure 32. Plane-stress fracture toughness of beta-annealed Ti-6Al-4V-RE alloys
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A = Ti-6Al-4V
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Figure 33. Plane-stress fracture toughness of recrystallization-annealed Ti-6Al-4V-RE alloys
processed according to schedule A
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Figure 34. Plane-stress fracture toughness of solution-treat-and-overaged Ti-6Al-4V-RE alloys




8. HIGH-TEMPERATURE DEFORMATION OF PHASE-11 Ti-6Al1-4V-RE ALLOYS
Tensile and compression tests from 700° to 950°C were performed on
Phase-I1 Ti-6A1-4V-RE alloys to determine temperatures and strain rates to

be used for the next phase of this study.

8.1 High-Temperature Tensile Tests

The high-temperature tensile tests were performed on samples heated in
air to the desired temperature in a three-zone quartz-lamp furnace. The
test samples were heated to the desired temperature at the rate of 100°C/s,
and the tensile tests were conducted at initial strain rates of 0.0l s-l
and 0.1 s 1.

Figures 35a and 35b show the photographs of two sets of Ti-6A1-4V-RE
alloys deformed 407% in tension at 870°C at an initial strain rate of 0.1 s-l.
The set of Y- and Er-containing alloys shown in Figure 35a had uniform
elongation without necking, whereas the Ti-6A1-4V reference alloy exhibited
significant necking. When the tests were repeated on the set of Ti-6A1-4V-RE
alloys shown in Figure 35b, the Er-containing alloy also exhibited necking,
possibly because the sample contained little Er as a result of a non-uniform
Er-distribution in the rolled plate. However, minute inhomogeneities on
specimen surfaces can cause premature necking in the high-temperature tensile
tests, and although the results of the above tests are indicative, they are
not conclusive.

The details of the o+f microstructure of the Ti-6A1-4V specimen deformed
at 800°C at a strain rate of 0.1 s_l are shown in Figure 36. The deformation
structure consists of Widmanstatten a-f plates with high aspect-ratios. An
important feature of the deformed structures is the presence of the "interface
phase'", shown in the dark-field micrograph in Figure 36d. Extensive
dislocation activity can be seen in the alpha phase.

The effects of temperature and strain rate on the substructure are shown
in Figures 37a-37d. The undeformed specimens consist of fine, equiaxed,
primary alpha and grain-boundary beta. The specimens deformed at 800°C and
850°C and subsequently cooled at a fast rate consist of primary alpha and
Widmanstatten a-f plates. The morphology of the a-R plates reflects the

deformation history of the B phase at the test temperature. Whereas there

is only one dominant orientation of B plates in the specimens at 800°C, the
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specimens deformed at 850°C consist of B plates of at least two different
orientations. The interface phase in specimens deformed at 800°C is wider
for the slow strain rate of 0.01 s_l than for 0.1 s-l. The a-B morphology

is a consequence of both thermal history and deformation history of the

C D &

GP78-0635-4%

specimens.

A Ti-6Al-4V reference alloy
B Ti-6AI-4V-0.1Er

C Ti-6Al-4V-0.02Y

D Ti-6Al-4V-0.05Y

E Ti-6Al-4V-0.038Y 504

A B

Figure 36. Photographs of two sets of Ti-6Al-4V-RE alloys processed per schedule B and deforrned
40% in tension at 870°C at a strain rate of 0.1 s 1
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Figure 36.

L

A

(c) I_M_.J (d) GP78-0635-43

Details of o -8 microstructure observed in Ti-6Al-4V specimens deformed at 800°C at a
strain rate of 0.1 s-1; (a) bright-field electron micrograph, (b) selected-area diffraction

pattern, (c) dark-field electron micrograph with « reflection, and (d) dark-field
electron micrograph of the interface phase
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(c) L 2um | (d) GP78-0635-44
Figure 37. Effects of temperature and strain-rate on deformation substructure of Ti-6Al-4V

specimens deformed in tension; (a) undeformed, (b) T = 800°C, ¢=0.01s1,
(c) T=800°C, ¢ =0.1s-1, and (d) T = 856°C, ¢ = 0.01 s~ !

8.2 High-Temperature Compression Test

Compression tests were performed on cylindrical specimens of 8.9-mm diam
and 12-mm height using 60-mm diam stainless-steel compression rams. The
sample and the flat faces of the rams were coated with several thin layers

*
of Formkote T-50 to provide lubrication and inhibit oxidation. The specimens

*
Tradename of E/M Lubricant, Inc., N. Hollywood, CA  91605.
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were heated to the desired temperature in a three-zone, resistance-wound, split
furnace and maintained at temperature for 10 minutes before compression was
begun. Compression tests were conducted on mill-annealed and beta-annealed
specimens at 700°, 800°, 850° and 900°C at a strain rate of 0.05 s_l. The
deformation-load and ram-displacement were recorded by an x-y plotter, and

the true-stress/true-strain curves were constructed from the data.

The true-stress/true-strain curves at various temperatures for the

mill-annealed and beta-annealed specimens are shown in Figures 38-43. The

o Ti-6A1-4V-0.038Y203 2
Ti-6Al-4V-reference
Ti-6Ai4V-0.1 Er
Ti-6AI4V0.05Y
450 =
©
a
2
g
s 300 —
o
=
-
150 -
0 L | 1 i " L L |
0 0.25 0.50 0.75 1.00
True strain GP78-0835-45

Figure 38. True-stress as a function of true-strain for beta-annealed Ti-6Al-4V-RE alloys
deformed at 700°C at an initial strain rate of 0.05 s~ 1
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stress-strain curves are strongly influenced by initial microstructure and

_ test temperature, but they are not significantly altered by the rare-earth
additions because of the similarity of microstructures of the reference

alloy and the Er- and Y-containing alloys in the heat-treated conditions.

While the stress-strain curves of beta-annealed and mill-annealed specimens

are similar at 800°C, the differences between the stress-strain characteristics
of mill-annealed and B-annealed specimens are more pronounced at higher
temperatures. The principal difference is the lower values of flow stress

of mill-annealed specimens compared with those of beta-annealed specimens.

A greater degree of initial softening is observed in beta-annealed specimens

than in mill-annealed specimens. The flow stress increases with decreasing

temperature.
450 T T T T T T T ’
Ti-6AI-4V-0.05Y
300 |- i
© Ti-6AI-4V-0.1Er
a.
2
4
(Y]
=
w
@
P~
o
[
150

Ti-6Al-4V-reference

Ti-6AI-4Vv-0.038Y203 —

0 0.25 0.50 0.75 1.00
True strain GP78-0635-46

Figure 39. True-stress as a function of true-strain for beta-annealed Ti-6Al-4V-RE alloys deformed
at 850°C at an initial strain-rate of 0.05 s~ 1
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True strain GP78-0635-47

Figure 40. True-stress as a function of true-strain for beta-annealed Ti-6Al-4V-RE alloys deformed
at 900°C at an initial strain rate of 0.05 s-1
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Figure 41. True-stress as a function of true-strain for mill-annealed Ti-6Al-4V-RE alloys deformed

at 700°C at an initial strain rate of 0.05 s-1
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Figure42. True-stress as a function of true-strain for mill-annealed Ti-6Al-4V-RE alloys deformed

True stress (MPa)

at 800°C at an initial strain rate of 0.05 s-1
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Ti-6AI-4V-0.1Er
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Figure43. True-stress as a function of true-strain for mill-annealed Ti-6AI-4V-RE alloys deformed

at 850°C at an initial strain rate of 0.05 s~ 1
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8.3 High-Temperature Deformation Substructures

The microstructures of beta-annealed specimens deformed at a strain rate
of 0.05 s_l at different temperatures are shown in Figures 44a-44d. At 700°C,
extensive dislocation activity in the O phase, continuity of slip across the
B phase, and absence of polygonization result in profuse shearing of the B
phase. At 800°C and above, dynamic recovery occurs as evidenced by hexagonal

networks of dislocations in the o phase and nearly-straight elongated a-f

(a) L_2um (b)

(c) | ! AL (d) GP78-0635-51

Figure 44 Effect of temperature on deformation substructures of beta-annealed Ti-6Al-4V
specimens deformed in compression at an initial strain rate of 0.05 s-1; (a) 700°C,
(b) 800°C, (c) 850°C, and (d) 900°C




plates. The influence of strain rate on the deformation substructure of
beta-annealed specimens deformed at 700°C is shown in Figure 45. At the
slower strain rate of 0.001 s_l, both dynamic recovery and recrystallization
occur as evidenced by the absence of shearing of the B phase and the formation

of small, equiaxed, alpha grains.

(b) L
GP78-0635-52
Figure 45. Effect of strain rate on deformation substructure of beta-annealed Ti-6Al-4V specimens
deformed in compression at 700°C; (a) strain rate = 0.001 s-1 and (b) strain
rate = 0.05 s-1
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The deformation substructures produced in mill-annealed specimens at
700°C, 800°C, and 850°C are shown in Figures 46a-46c. The deformation
substructure produced at 700°C is characterized by a high dislocation density
in the o phase without any dynamic recovery and recrystallization. At 800°C
and 850°C, dynamic recovery and recrystallization occur continuously,
resulting in fine equiaxed-alpha and grain-boundary beta (Figures 46b and 46c).

Because at these temperatures, grain boundary sliding also contributes to

deformation, the finer grain size in mill-annealed alloy results in reduced
flow stresses.




r—

R

MGk e e e

(b) L 2um |

(c)

| 2um |

Figure 46. Effect of temperature on the deformation substructure of mill-annealed Ti-6AIl-4V
specimens deformed in compression at an initial strain rate of 0.05 s-1; (a) 700°C,
(b) 800°C, and (c) 850°C

GP78-0835-53
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9. CONCLUSIONS

Conclusions based upon the study thus far of the Phase-II Ti-6A1-4V-RE
alloys are qualified by the uncertainty of the rare-earth concentrations,
which probably were about half the nominal values, and by the rare-earths not
being uniformly dispersed. Additional chemical analyses and the study in
progress of the Phase-III alloys should remove these ambiguities.

The addition of 0.02 wt% Y, 0.05 wt%Z Y, and 0.1 wt%Z Er to Ti-6Al1-4V
results in microstructural refinement similar to that observed in Phase I
alloys. The grain-refinement effect of Y203 is similar to, but less
pronounced than, that of metallic Y.

The room-temperature tensile properties of Ti-6Al1-4V are not significantly
altered by Er and Y additions. The tensile results are similar to those for
Phase-1I alloys.

Plane-strain and plane-stress fracture toughness of Ti-6A1-4V are not
adversely affected by Er and Y additions.

The crystallographic texture developed during rolling of Ti-6A1-4V is
‘ unaffected by rare-earth additives. Annealing in the o+f field results in
‘ an increase in the sharpness of the near-transverse-basal texture componeants
in the Y- and Y203-containing alloys.

The uniform elongation of Ti-6Al1-4V during high-temperature deformation
is increased by Y and Er additions. The high-temperature compressive stress-
strain characteristics of variously processed and heat-treated Ti-6A1-4V are

not altered by Y and Er additions.

—
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APPENDIX A: ROOM-TEMPERATURE TENSILE PROPERTIES AND FRACTURE
TOUGHNESS OF PHASE-II Ti-6A1-4V-RE ALLOYS

Tables Al-A6 list the room-temperature tensile properties of the
Ti-6A1-4V reference, Ti-6A1-4V-0.1Er, Ti-6A1-4V-0.02Y, Ti-6A1-4V-0.05Y, and
Ti—bAl—loV—O.O38Y203 alloys prepared for the Phase-II study. Each of Tables
Al-A6 is for a different heat treatment. Tables A7-A9 list the fracture
toughness values determined by three-point slow-bend testing of fatigue-
precracked Charpy V-notched specimens subjected to three different heat

treatments. Table AlQ lists the plane-stress fracture-toughness values

for the alloys.

TABLE A1. ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE-II Ti-6Al-4V-RE ALLOYS
IN THE LONGITUDINAL (L) AND TRANSVERSE (T) DIRECTIONS; HOT-ROLLED
AND UNANNEALED, AS RECEIVED

Yield stress at Ultimate tensile Uniform Total
Alloy Processing 0.2% offset stress elongation elongation
composition condition (MPa) (MPa) (%) (%)
L T L T N L T
, A 930 998 960 1028 56 3.8 11.6 103
Ti-6AI-4
i B - 923 = g% = 29 = 1N
. A 998 910 1028 975 4.8 45 11.8 126
Ti-6A1-4V-0.02Y
Gandi B 870 960 945 1005 55 45 135 135
. A 938 1005 975 1020 4.8 4.0 145 11.8
Ti-6AI-4V-0.05Y
' B B 900 923 960 1012 53 41 137 127
, A 900 960 930 1013 63 38 143 126
Ti-6AI-4V-0.
Lo LA 8 870 930 938 997 65 4.0 13.0 134
; A 953 990 983 1043 58 6.1 15.8 13.2
Ti-6AI-4V-0.
' Lt B 870 953 908 998 5.1 3.8 122 128

" 2 A ) o GP78-0835-5
Processing condition: A continuously rolled from 26 mm to 13 mm thickness from 940" C

B = continuously rolled from 26 mm to 13 mm thickness from 1025°C




TABLE A2. ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE-II Ti-6AI-4V-RE ALLOYS
IN THE LONGITUDINAL (L) AND TRANSVERSE (T) DIRECTIONS:;
RECRYSTALLIZATION ANNEALED

Yield stress at Ultimate tensile Uniform Total
3 £ longation elongation
Alloy Processing 0-2% offset stress e
composition condition (MPa) (MPa) (%) (%)

L T L T L L T
) A — 848 — 894 - 82 - 163
E TEGALAY B 765 758 855 848 7.3 40 162 10.8
i . v A 780 863 855 938 57 80 120 16.2
THGAEaEa0d B 780 780 855 863 6.2 4.3 16.0 16.0

: A 870 855 938 930 72 7.2 154 14.1
EAAEAS Gl B 833 745 915 878 7.2 45 16.2 15.8
i A 758 862 833 910 60 7.2 15.3 14.8
TLGAREEC1BEY B 788 780 870 870 712 42 163 14.9
] A 855 870 923 953 69 8.1 16.2 16.2
THOAEAE 008 a0S S 795 780 880 870 59 4.0 16.1 14.4

, o GP78-0635-6
continuously rolled from 26 mm to 13 mm thickness from 940~ C

Processing condition: A = c
= continuously rolled from 26 mm to 13 mm thickness from 1025°C

B

TABLE A3. ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE-TI Ti-6AI-4V-RE ALLOYS
IN THE LONGITUDINAL (L) AND TRANSVERSE (T) DIRECTIONS; BETA
ANNEALED '1

50

Yield stress at Ultimate tensile Uniform Total
Alloy Processing 0-2% offset stress elongation elongation
| composition condition (MPa) (MPa) (%) (%)
L T L T L 10 L T
; A 870 855 920 923 3.3 36 8.5 7.7
g o B 840 863 923 915 3.9 31 Wy a2
! A 877 848 953 930 53 39 120 88
L pmbn B 840 848 923 930 51 45 126 133
A 863 855 953 947 44 49 1.5 11.0
-6AI-4V-0.05Y
bis o B 840 863 930 953 54 54 145 13.9
A 840 - 915 - 48 - 12.8 -
i-6AI-4V-0.
Lol B 848 863 938 945 53 5. 135 14.2
: A 885 855 960 945 54 43 11.0 9.3
-6AI-4V-0. Y
L oomdioondd o SO0 877 885 945 945 49 38 140 1.2
Processing condition: A = continuously rolled from 26 mm to 13 mm thickness from 940°C ke
B = continuously rolled from 26 mm to 13 mm thickness from 1025°C




TABLE A4. ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE-II Ti-6AI-4V-RE ALLOYS
IN THE LONGITUDINAL (L) AND TRANSVERSE (T) DIRECTIONS;
SOLUTION-TREAT-AND-AGED
Yield stress at  Ultimate tensile  Uniform Total :
Alloy Processing 0-2% offset stress elongation elongation
composition condition (MPa) (MPa) (%) (%)
L T L T L T L T
” A 1020 1072 1110 1178 24 1.8 5.0 3.8
WeRhieA B 1080 - 163 - 24 - 46 -
: A 1230 — 1298 - - 1.8 - 4.5
Ti-6Al-4V-0.02Y
A B 1103 1080 1178 1170 28 24 7.2 6.8
: A 1125 - 1200 - - 1.7 - 4.1
Ti-6AI-4V-0.05Y
FOAES A B 1110 1013 1205 1133 38 29 7.9 7.1
: A = - = = Sk = =
Ti-6Al-4V-0.10Er 8 _ i L
: A 1103 - 1193 - D7 56 — b
THOAELEREBYILS B 1110 1133 1193 1200 28 24 6.6 6.1
'
GP78-0635-8

Processing condition: A = continuously rolled from 26 mm to 13 mm thickness from 940°C
B = continuously rolled from 26 mm to 13 mm thickness from 1025°C

TABLE A5. ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE-1I Ti-6Al-4V-RE ALLOYS
IN THE LONGITUDINAL (L) AND TRANSVERSE (T) DIRECTIONS;
SOLUTION-TREAT-AND-OVERAGED

Yield stress at Ultimate tensile Uniform Total i
Alloy Processing 0-2% offset stress elongation elongation
composition condition (MPa) (MPa) (%) (%)
L T L T LT L T
: A - 1020 - 1088 = 97 = B8
Ll B 990 975 1057 1050 3.7 3.1 76 5.7
. A 983 1028 1073 1080 3.8 29 78 6.9
SESSEREROES B 998 998 1080 1073 35 3.2 102 9.0
: A 1013 990 1088 1073 38 28 100 7.0
TSI B 998 1028 1080 1088 3.8 3.6 10.7 95 ,
4
. A 983 990 1050 1065 3.0 28 98 6.7
EESERE s B 990 975 1073 1057 30 38 80 103
: A 998 998 1070 1080 3.2 3.0 68 6.2
Ti-6AI-4V-0038Y203 g 4020 o998 1088 1080 4.2 35 99 7.8

GP78-0635-9
continuously rolled from 26 mm to 13 mm thickness from 940°C

Processing condition: A
continuously rolled from 26 mm to 13 mm thickness from 1025°C
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TABLE A6. ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE-II Ti-6AI-4V-RE ALLOYS
IN THE LONGITUDINAL (L) AND TRANSVERSE (T) DIRECTIONS: -3 ANNEALED
AND AGED
Yield stress at Ultimate tensile Uniform Total
: Alloy Processing 0-2% offset stress elongation elongation
composition condition (MPa) (MPa) (%) (%)
L T L T L T L T
: A 825 878 923 945 56 7.3 14.2 16.3
Teaniay B 795 848 900 923 6.8 56 16.1 138
: A 848 885 945 945 6.6 4.9 14.8 121
Ti-6Al-4V-0.02Y
g b B 810 855 915 923 6.1 5.2 42 122
Ti-6A1-4V-0.05Y A 885 893 975 960 7.7 5.6 16.5 14.6
B 825 885 923 945 5.8 5.1 154 109
Ti-6A1-4V-0.10Er A 840 848 938 923 6.7 4.7 144 127
B 803 870 893 945 6.2 6.6 15.1 146 1
; A 893 893 975 960 83 54 16.2 114
Ti-6AI-4V-0.038Y,0
' REata 6 775 885 906 907 4.9 4. 136 11.9
1]
Processing condition: A = continuously rolfed from 26 mm to 13 mm thickness from 940°C ot
B = continuously rolled from 26 mm to 13 mm thickness from 1025°C

TABLE A7. FRACTURE TOUGHNESS VALUES (Kg) DETERMINED FROM SLOW-BEND,
PRECRACKED, CHARPY SAMPLES OF RECRYSTALLIZATION-ANNEALED
PHASE-II Ti-6Al-4V-RE ALLOYS

Ka
Alloy Rolling
composition schedule [MPa \/m (ksi\/in.)]
T-L L-T TS
{
{
: A 84.7 (77) 92.4 (84) -115.5 (108)
MESIGERN B 127.6 (116) 94.6 (86) 116.6 (106)
: A 85.8 (78) 81.4 (74) 100.1 (91) ?
EGAESEAGEY B 86.9 (79) 95.7 (87) 86.9 (79)
] A 80.3 (73) - 96.8 (88)
Lo o sl B 63.8 (58) 89.1 (81) 77.0 (70) j
: A 75.9 (69) 83.6 (76) 78.1 (71)
FECEER SN B 91.3 (83) 101.2 (92) 115.5 (105)
: A 82.5 (75) 90.2 (82) 141.9 (129)
Ti-6A1-4v-0.038Y 203 B A 102.3 (93) 92.4 (84)

; GP78-0635-11
Processing condition: A = continuously rolled from 26 mm to 13 mm thickness from 940°C

B = continuously rolled from 26 mm to 13 mm thickness from 1025°C
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TABLE A8. FRACTURE TOUGHNESS VALUES (Kq) DETERMINED FROM SLOW-BEND,

PRECRACKED. CHARPY SAMPLES OF BETA-ANNEALED
PHASE-II Ti-6Al-4V-RE ALLOYS

Ka
Alloy Rolling
composition schedule [MPa+/m (ksi+/in.)]
TL LT Ts
PR A 85.8 (78) 96.8 (88) 90.2 (82)
i B 94.6 (86) 85.8 (78) 89.1 (81)
_ A 71.5 (65) 81.4 (74) 70.4 (64)
THEAEAV-0.02% B 69.3 (63) 74.8 (68) 72.6 (66)
. A 58.3 (53) 75.9 (69) 59.4 (54)
TeBAHAT-A.u0F B 58.3 (53) 72.6 (66) 62.7 (57)
, A 63.8 (58) 72.6 (66) 72.6 (66)
TEGAL4V-0.10€r B 72.6 (66) 80.3 (73) 68.2 (62)
. A 70.4 (64) 81.4 (74) 75.9 (69)
CRGAERUO.GI8 205 B 73.7 (67) 77.0 (70) 75.9 (69)

Processing condition:

TABLE A9. FRACTURE TOUGHNESS VALUES (Kq) DETERMINED FROM SLOW-BEND,
PRECRACKED, CHARPY SAMPLES OF SOLUTION-TREAT-AND-OVERAGED

A = continuously rolled from 26 mm to 13 mm thickness trom 940°C
B = continuously rolled from 26 mm to 13 mm thickness from 1025°C

PHASE-II Ti-6AI-4V-RE ALLOYS

GP78-0835-12

Ka
Alloy Rolling 5
composition schedule [MPav/m (ksiv/in.)]

T-L LT Ts
; | A N.D. 46.2 (42) 50.6 (46)
AESAESY B 52.8 (48) - 51.7 (47)
\ A 42.9 (39) 46.2 (42) 45.1 (41)
Liooiballiods B 33.0 (30) 41.8(38) 40.7 (37)
, A 37.4 (34) 33.0 (30) 40.7 (37)
HEGAESV-UINGE B 40.7 (37) 49.5 (45) 36.2 (32)
: A 44.0 (40) N.D. 42.9 (39)
Licaumialio B 42.9 (39) 45.1 (41) 44.0 (40)

, A 44.0 (40) 38.5 (35) -
THOARSV-0.0387293 B 33.0 (30) 45.1 (41) 45.1 (41)

Processing condition:

A = continuously rolled from 26 mm to 13 mm thickness from 940°C
B - continuously rolled from 26 mm to 13 mm thickness from 1025°C
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TABLE A10. PLANE-STRESS FRACTURE TOUGHNESS VALUES DETERMINED FROM CENTER-

CRACKED TENSION SPECIMENS OF PHASE-II Ti-6Al-4V-RE ALLOYS

Fracture toughness

Ka
Alloy Rolling [MPa\/ m (ksi+/in.)]
Alloy L
composition schedule
Recrystallization Solution-treat-

Beta annealed annealed and-aged
. A 132 (120) 130(118) 143 (130)
at TeafkAy B 140 (127) = 151 (137)
2 A 154 (140) 123 (112) 136 (124)
+ FREAAV-0.00Y B 153 (139) - 121 (110)

. A 152 (138) 123 (112) =
i s et Ca B 158 (144) o 139 (126)
! A 165 (150) 130 (118) 134 (122)
42 [IRR A aOEs B 154 (140) 5 136 (124)
. A 161 (146) 134 (122) 129 (117)
s bt B 143 (130) - 150 (136)

GP78-0635-14

Pracessing condition: A = continuously rolled from 26 mm to 13 mm thickness from 940°C
B = continuously rolled from 26 mm to 13 mm thickness from 1025°C
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