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1.

INTRODUCTION

Automatic continuity is the study of restrictions that can

be imposed upon the domain and/or range of an operator that will

guarantee the continuity of the operator. Theorems of thisnature

are interesting by themselves, but they sometimes have surprising

applicationsas well - the use of a continuity theorem in Johnson’s

proof ~lOJ that all complete algebra norms in a semisimple Banach

algebra are equivalent being just one example.

There is another historical link between the study of norms

and automatic continuity. Whether or not there is an incomplete

algebra norm for C(X,~), the algebra of continuous, complex-

valued functions on a compact Hausdorff space X, is a question that

was first raised by Kaplansky [14] in 1949. Bad6 and Curtis 12 1
showed that such a norm would exist if and only if there was a

discontinuous homomorphism from C(X,~) to a Banach algebra, but

despite the interest generated by their work, the question remained

unresolved until very recently. It was finally announced in 1977

171 that H.G.Dales and J.Esterle had, independently, succeeded in

constructing discontinous homomorphisms from C(X,C). Both construc-

tions require the assumption of the continuum hypothesis.

The purpose of this dissertation is to provide an introduction

to the subject of automatic continuity, with emphasis on this problem

of Kaplansky, the work of Bad6 and Curtis, and a discussion of Dalei’.—” 
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construction.

In Chapter I, some of the “classical” theoren~ for the continuity

of hPmomorphisms and positive 1in~ r functionals are proved to show

the types of restrictions that can be involved in automatic continuity

arguments. Most of these results are found in [24].

Chapter II begins with an outline of basic representation theory,

directed toward the proof of Johnson’s theorem on the uniqueness

of the complete algebra norm in semi simple Banach algebras. This is

used as motivation for consideration of the problem of Kaplansky.

The simplification of the problem by Bade and Curtis is the

subject of Chapter III. Extensions and generalizations of their

results are also considered.

Chapter IV is an attempt to outline Dales’ construction of a

discontinuous homomorphism from C(X,~). Even Dales felt uncomfortable

summarizing his paper, which is very complex, so I have contented

myself with highlights and the use of the simplification of Bade

and Curtis.

Throughout, a familiarity with basic concepts of Banach

algebra theory and functional analysis are assumed. For complete-

ness, however, some elementary definitions have been included,

and I have tried to indicate references for results that are used

without proof. Because Dales’ construction and some of the theorems

that lead to it embrace so many concepts, I have assumed more in the

last section of Chapter III and in Chapter IV.

Specifically, knowledge of terminology of abstract algebra

is necessary along with properties of the Stone-tech conipactification .

Again , I have tried to include references where appropriate.
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CHAPTER 1

ORIGINS AND RESULTS FOR RANACH *_ALGEB~~S

The first theorems that could be collected under the heading

“automatic continuity” dealt with properties of homomorphisms from

one Banach algebra into another. Non-zero homomorphisms which have

as range the Banach algebra ~ of complex numbers are called complex

homomorphisms, and results involving them are the easiest of any

interest .

M Homomorphisms

Any Banach algebra A can be isometrically embedded in a Banach

algebra A1 with identity, and A1 is called the algebra with identity

adjoined. Recall that If x is an element of a Banach algebra A

with identity e such that f~ x-eII < 1, then x is invertible.

1.1 Lemma If 0 is a complex homomorphism on a Banach algebra

A with identity e, then 0(e) = 1 and 0(x) ~E 0 for every invertible x.

Proof. 0 is non-zero, so 0(y) ~ 0 for some y in A. Since

0(y) = Ø(ye) = Ø(y)O(e), 0(e) = 1. If x is invertible,

I = 0(e) = Ø(x~~x) = Ø(x~~)O(x) and so 0(x) j~ 0.

1.2 Theorem If 0 is a complex homomorphism on a Banach algebra A

with identity e, then 0 is continuous .
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Proof We show that 0 is bounded. Suppose there exists z in A such that

0(z) > II z

0(z) ~ 0, so we may write x = 
Z/O[z) and 0(x)  = 1. Since

(I x < 1, (e—x) is invertible. Thus,

Ø( e-x) = 0(e) — 0(x) = 1 - 0(x) j~ 0 and 0(x) ~ 1.

This contradiction shows 0 ( z )  .� J~z II for all z in A as required.

Although very simple, Theorem 1.2 is remarkable because it relates

the algebraic notion of homomorphism to the analytic one of continuity.

Bachman [1:334] remarks, “ this is something like saying 0 is a

homomorphism, therefore it is green”. More importantly, it is “the

seed ... from which automatic continuity grew”. [24:1].
If A is a commutative Banach algebra with identity, the set of

all complex homomorphisms on A is denoted by 
~~ 

The radical of A,

rad (A) , is given by rad(A) =fl{KerO:Oc
~A

} and A is said to be

seinisimple if rad(A) = {o}.

1.3 Theorem [20 :269) If ~: A -
~~ B ~s a homomorphism and A and B

are commutative, seinisiniple Banach algebras with identity, then ~‘

is continuous.

Proof. Suppose x~ -‘~ x in A and 
~P(xn) + y in B. Let and

denote the sets of complex homomorphisms in A and B. Fix hc
~B 

and

let 0 hD*. Then 0
~~A’ and by Theorem 1.2 h and 0 are continuous.

Hence

hCy) = lim Ii (iP(x~)) = u r n  O(x~) = 0(x) = h (~ (x))

for every hc~8. Thus , y 4(x) is in the radical of B , and so y =

By the Closed Graph Theorem, ~I is continuous.
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1.4 Definition An involution on a Banach algebra A is a map *:A -
~~ A

such that for all xcA , Xcv ,

1) (x + y)* = x * + y *

2) (Xx)* =~~x*

3) (xy)* = y*x*

4) ~~ = x

A Banach algebra with involution is called a Banach *_algebra. If in

addition

5) f f x*xlI = lix ii 2

it is called a c*_algebra.

1.5 Theorem [20:276] If the Banach algebra A with identity is

commutative and semisimple, then every involution on A is continuous.

Proof Let h be a complex homomorphism on A and define 0(x) = h(x*)

By the properties of an involution, 0 is a complex homomorphism and

is therefore continuous. Suppose x~ 
-

~~ x and xn* -
~~ y. Then h(x*)

= 0(x) = u r n  O(x~) = lim h(x~*) = Ti5~). Since A is semisiinple , y =

and * is continuous by the Closed Graph Theorem.

The Closed Graph Theorem is needed frequently in theorems of

this nature, and its use has prompted the following definiton.

1.6 Definition if S is a linear operator from a Banach space X into a

Banach space Y, the separating space of 5, denoted s(S), is given by

s(s) = {y~Y: there is a sequence {xn} in x with x + 0 and Sx~ -
~~ y}.

It is easy to see that a ( s )  = {o} if and only if S is continuous.

We will  have occasion to use the separating space in Chapters II and III.



—--—.- - -~~~~~~

§2 Positive Linear Functionals

1.7 Definition A linear functional f on a Banach *...algebra A is

positive if f ( x*x) � 0 for all x in A.

Several interesting theorems concerning the continuity of positive

linear functionals can be proved, but first we recall three concepts.

1.8 Definition If A is a Banach algebra with identity, the spectrum

of x, denoted sp(x) is sp(x) = {AcC:( e-x) is not invertible in A}.

If A does not have an identity, sp(x) is the spectrum of x considered as an .

element of A1, the algebra with identity adjoined .

1.9 Definition The number v(x) = sup{fXf:Xcsp(x)} is the spectral radius
1/n 1/n

of x, and it can be shown [20:235] that v(x) = inf tIx 1
~Il = limff x1

~1f

1.10 Functional Calculus Theorem [16:12] Let A be a Banach algebra and

xcA. If f is a complex valued function defined and analytic on a

neighbourhood of sp(x)( and satisfying f(O) = 0 if A has no identity) then

there exists an element f(x) in A such that sp(f(x)) = f(sp(x)).

The following lemma was first proved by Ford [8]. Its importance

rests in the fact that before its proof, similar results could be

obtained only by assuming that the involution was continuous. This proof

is due to Sinclair [27:24 ] and is a nice application of the functional

calculus .

1.11 Lemma Let A be a Banach *_algebra. Let a = a* be an element

in A with sp(a)fl[l,oo) = 0. Then there is a unique x = x1’ in A satisfying 



sp(x)~~{zc~ :Rez < u} and 2x-x2 
= a.

Proof Let A1 be A with identity adjoined. Let f(z) = 1 - (1 - z)½

be analytic in the domain C~ [l ,°’) and use Theorem 1.10 to define

x = f(a) . Then (1 - x) 2 
= 1-a and sp (x)~ {zc~ :Rez < 11. Hence x1’

also satisfies

(l..x*) 2 
= 1-a and sp(x*)~ {zc~ : Rez < i} [18:182]

Thus x x~ and 2x-x2 
= a.

For uniqueness, suppose ycA, sp(y)~ {zcç: Rez < il and (1-y) 2 
= 1-a.

Since a = 2y - y2 , ya = ay by definition of x. Thus ,

sp (x + y) ~ {zc~ : Rez < 21 [19:10]

Therefore , x + y - 2 is invertible and cannot be equal to zero.

Finally,

(l-x) 2 = 1-a = (1-y)2, so 0 = (x-y) (x+y-2) and x =y.

The next theorem has as a corollary our first continuity result.

1.12 Theorem [24:74] If a , b , x = x~ are in a Banach *_al gebra A

and if f is a positive linear functional on A, then

i) f(a *b) = f(b*a)

ii) i f ( a *b) 1 2 
~ f(a*a)f(b*b)

iii) I f ( a *xa) l � f(a *a)V( x)

iv) I f(a*ba)l � f(a*a)V(b*b)~

Proof Let a,8cC. Then

f [cta + ~b) *(cza + sb)] (c&f2 f(a*a) + ~43f(a*b) + c~Bf(b*a) + 1~ I 2 f(b*b) ~ 0.

This implies that ~.8f(a *b) + ct~f(b*a) is real for all a,~~~ .

_ _ _ __ _ _ __ _ _ _



$ 
.

~~~~~~~~~~~~~~~~~~~~ 

_

8.

i) If a = 8 = 1, f(a *b) +f(.b*a) is real.

If a = 1, 8 = i, if(a*b) - if (b*a) is real.

Thus ,

f(a*b) + f(b*a) = f(a*b) + f(b*a)

f(a*b) - f(b*a) = f(b*i) - f(a *b) , and

f(a*b) = f(b*a) .

f (b*a)
ii) This is proved by letting a = 1 and 8 = - 

f(b*b)

iii) Assume v(x) < 1. By Lemma 1.11, there are y and z in A

such that 2y-y2 
= x and 2z-z 2 

= -x.

Let v = a - ya and w = a - za.  Then

v~v = a* (l-y) 2a = a*(l~x)a

w*w = a* ( l_ z ) 2a = a*(l+x)a. Thus

f(a*a) - f(a*xa) = f(v *v) > 0

f(a *a) + f(a*xa) = f(w*w) ~ 0, and

Jf(a*xa)t .� f(a*a)

iv) I By ( i i ) ,F f ( a *ba)t 2 = If(a * (ba)) t2 � f(a *a)f (a *b*ba) ,

so by (iii), If(a*ba) I2 � f(a *a) 2v(b *b)

The proof of the next corollary depends upon an important result

(Theorem 2.18) in Chapter II , and will be postponed until that chapter

as well.

1.13 Corollary There is a constant m such that lf(a*ba)t .� mf(a *a) f)  b it

for all a and b in A , and all positive linear functionals f on A. In

particular, if A has an identity, then every positive linear functional

is Continuous.

_ _ _ _ _ _ _ _ _
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We now consider the problem of continuity of positive linear

functionals when the algebra does not have an identity. After two

more definitions, a theorem due to Murphy will lead to a conditional

solution of the problem.

1.14 Definition A linear functional f is said to dominate a

linear functional g if f-g is positive.

1.15 Definition For a Banach*_algebra A , let

A’( x [j~ 1 X
11 

x~2 . ..  X
j K 

: x . .  A, n �~ l}

1.16 Theorem [17.171] Let A be a Banac~. *..algebra. Let A2 = A and

let every non-zero positive linear functional on A dominate a

continuous non-zero positive linear functional . Then every positive

linear functional on A is continuous .

Proof First, the identity

(t) 4ab = (b+a*ftb+a*) — (b_a *)*(b_a*) + i(b+ia*)*(b+ia*) — i(b_ia*)*(b_ia*)

implies that because every x m A  can be expressed x = 

~~ 

a1b1,

it can also be expressed x = Z ct1x1*x1 (a.c~).
i=1

Thus, ].inear functionals which agree on all elements x~x are

identical. Let F be a non-zero postive linear functional and define

the family

S {G:G p~ 0, G continuous, linear, positive and P dominates G}.

S is non-empty by hypothesis, and we can define a partial ordering in

S by G1 > G2 if and only if G1 dominates C2. : 



Let I be a totally ordered subset of S under > . For all yeA ,

lim G(y*y) (GeT) exists because G(y *y) < F(y *y) for all GeT. It is

thus possible to define a functional

0(x) = lim G(x) which is positive , linear and

dominated by F. For every GeT, for all xeA

= IG (Eaixj*x±)t� E la~i G(x.*xi) ~ E f a 1f F(x1*x1).

Hence, by the uniform boundedness theorem , there exists an m such

that ff G I~ � m for all GeT, and
fØ(x) I � limtG(x) I ~ mit xli

Thus, 0 is continuous, ØeS, and 0 is an upper bound for T.

By Zorn’s Lemma, S has a maximal element, C0.

Suppose F - G0 ~ 0. Then by hypothesis there exists a non-

zero continuous, positive linear functional G1 such that F - G0 - G1

is positive. Hence C0 + G1cS. But G0 
i- G1 > C0, which contradicts

the maximality of G0, so G1 = 0. This implies F - G0 = 0 and F = G0,
so F is continuous.

1.17 Corollary [17:172] If A is a commutative Banach*_algebra

such that A2 = A , then every positive linear functional on A is

continuous.

Proof Let f be a non-zero positive linear functional on A and

define

= f(u *xu) , where ucA.
is continuous by Corollary 1.13.

Suppose that = 0 for all u in A. Then by Theorem 1.12,

ff(u*x*y)f2 � f(u *x*xu)f( y*y) = 0. This implies f(A3) = f(A) = 0, 
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which is not true because f is non-zero . For some u, then,

~ 0. Since 
~au = t a t  2 f , we can safe ly assume that

Ilu*u < 1. Therefore sp(u*u) ~ (0,1), and by l emma 1.11,

there is a unique x = x~ in A such that (l-x)
2 

= 1 - u~u.

Now, £ dominates because

(f - 

~)  (y*y) = f(y*y - u*y*y u)
= f(y *(l....u *u)y) using commutativity

= f(y*(l. x*) (l..x)y) � 0 by definition of f .

The l~rpotheses of Theorem 1.16 are now satisfied , and we

are through.

Restrictions of a different nature also yield information

about the continuity of positive linear functionals. Recall that

if M is a subspace of a Banach space X, then the codimension of M

in X is the dimension of the factor space X/M. We require a

definition and a lemma.

1~ l8 Definition K’ = {~a~*a~:{ a1, . . . ,  a~} is a finite subset of A) .

1.19 Lemma [24:77] If A~ is closed and if f is a positive linear

functional on A , then there is a constant in such that f(x) £ mjf xlt

for all x in A ’ .

Proof Suppose there is no such constant in. It is thus possible to

choose a sequence {x~} in A’ such that f(X n) > ~f ~~~ for all n.
Now let 

n~m 
2 1

~JJx flhI~~ xn for in = 1 ,2 Because A’ is closed,

is in K ’ for all m. Also, y1 = E 2 -n 11 x1j [
1x~ +

~

. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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rn-i 

- -l rn-i 
-Thus, f(y 1) �~ f( E 2 n1, x~Jt xn) ~ 2 nil xA ( 1 f(x~)

n=1 n=l

rn-i
> E 2~~Jf xAI ’I( xAI 2~ 

= - 1
n= i

for all m , which is ridiculous. This gives the result.

1.20 Theorem [24:78] Let A be a Banach *.algebra. If A2 is

closed and of finite codimension in A , and if A’ is closed, then

each positive linear functional on A is continuous.

Proof Since A2 is of finite codimension, and all linear functionals

defined on a finite dimensional space are continuous,~ it suffices

to show that a positive linear functional is continuous on A2. This

will be done by showing that each element x in A2 can be expressed

x = z1 - z2 + i(z3 — z4) wherel! z.. ~f � N~x~ and z. is in A’ and

applying lemma 1.18.

Let Y = {(x1, x2, x3, x4) : x~cA~} and

“
~a 

{(x1, x2, x3, x4):tI x~ t t ~ Let

Aa
2 

= {aeA2:II a II � a) and define a map T: Y -‘. A2 by

T (x1, x2, x3, x4) = x1 - x2 + i(x3 — x4).

By identity (+) in Theorem 1.16, 1(Y) is equal to A2 and so

A
2 

~~~ 

I(Y~). By the Baire Category Theorem, there is some

F~V ) with non-empty interior, and by a translation, 0 is in the

interior of T(Y2~). Hence there exists a 8 > 0 such that T(Ya8) ~ A
2

for all a>0. Let x be in A2 and 
~ xli £1.



13.

A sequence {y~) can be constructed in Y such that

i) II T(y
1 

+ ... + y1~
)- xli < 2

ii) y~ cY
82 -n+l [21:236]

If y
~ 

= (X1~ , X~~~ , X3n~ 
X4n ) let z~ = 

n~1 
Xjn which is in A

’

because it is closed.

~J 
z~JJ = J J Z x~~JI �

~~~JJ x~~JI � Z (.282~~) = 28 by (ii) , and

x =  z1 — z2 + i (z3 - z4) by (i).

This completes the theorem.

Corollary 1.17 and Theorem 1.20 make it possib1e~to eliminate

the presence of an identity while maintaining continuity of

positive linear functionals, but the concomitant restrictions in

the algebra may seem extreme. With one more definition and a lemma

which we state without proof, we can obtain what is perhaps a more

satisfying result.

1.21 Definition [19:3] Let A be a directed set. A collection

{e(X) :X cA } of elements of a Banach algebra A is a bounded left

approximate identity if

e(A)x + x for each x in A and there exists a positive constant

K such that Ii e(A)it < K for each XeA .

A bounded right approximate identity is similarly defined,

and a bounded two-sided approximate identity is one which is both

a left and right approximate identity. 
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1.22 j~~ ma [4:621 Let A be a Banach algebra with a bounded

left approximate identity and let z~cA with z~ .* 0 as n ‘ . Then

there exi st a,y~EA with z~ = ay~~(n - 1 , 2 , ...) and y~ -‘ 0 as n -‘ ~~~

1.23 Theorem [24:79] Let A be a Banach *..algebra. If A has a

bounded two-sided approximate identity, then each positive linear

functional on A is continuous.

Proof Let £ be a positive linear functional on A and let {x) be

a sequence in A with x~ 
-

~~ 0. Then there are a, y1, y2 ... in A such that

x~ = ay~ for all n and y~ -‘ 0 by Lemma 1.22. By the right

multiplication version of the lemma, there are b, z1, z2 in A such that

= z~b for all n and z~ -‘ 0.

Define F(x) = f(axb). From the identity (+) of Theorem 1.16 and

applying Theorem 1.13, we conclude that F is continuous.

Hence

f(x~) = f ( az~b) = F(Z~) + 0 as n -
~ ~~~, and f is continuous.

Rickart [19:245] showed that every C*_algebra has a bounded,

two-sided approximate identity.

We return now, in a rather circuitous fashioz~ to the consideration

of homomorphisms.

_ _
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CHAPTER II

UNIQUENESS OF NORMS AND A PROBLEM OF KAPLAN$KY..

The norms II .11 1 and 
~ •1i 2 on a Banach al gebra A are equivalent

if there exist positive constants a, b such that a tl x ii 1 � lix 112 ~ blix ~~
for all x in A. Since the most important theorem of this chapter (2.18)

concerns the equivalence of norms on certain Banach algebras, it

may appear that automatic continuity has been temporarily forgotten.

It has already been noted, however, that Theorem 2.18 is required in the

proof of Corollary 1.13. In addition, Theorem 2.18 itself depends

critically upon a continuity theorem - indeed, some considered its

proof a ‘victory’ of sorts for automatic continuity. Finally, it

Will be shown in Theorem 2.21 that the study of norms and the study

homomorphisms are very closely re]~ated.

In order to deal with these results, though, it is necessary to

address a topic which seems even further removed from automatic

continuity.

§1 Some Representation Theory

Throughout this section, A will denote a Banach algebra over the

complex field, and all linear spaces will be over the complex field

as well. The definitions in this section are those of Bonsall and

Duncan [4], and though they are a bit dull , they are necessary in

order to achieve Theorem 2.18.

I

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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2.1 Definition A left ideal of A is a linear subspace J of A such

that M~ J. An element u of A is a right modular identity for a

linear subspace E of A if A(l-u) ~ E. A modular left ideal is a left

ideal for which there exists a right modular identity.

A left ideal J of A is proper if J ~ A, maximal if it is

proper and not contained in any other proper left ideal, and

maximal modular if it is proper, modular and not contained in any

other such left ideal. Similar definitions hold for right and two-

sided ideals.

2.2 Theorem [4:46] Every maximal modular left ideal in A is closed.

Recall that if L is a linear subspace of A, then the factor space

A/L is a normed space under the canonical norm

~ 
[x]ti = inf {fl yli : y c[x]} where [x] is a coset in A/L .

If L is closed , A/L is a Banach space, and if L is a closed

two-sided ideal, ALL is a Banach algebra.

2.3 Definition Let M be a linear space. M is said to be a

left A-module if a mapping (a,m) -‘ am of A x M into M satisfies

1) For each fixed acA , in + am is linear on M.

2) For each fixed mcM, a -
~~ am is linear on A.

3) a1(a2m) = (a1a2)m a1, a2cA , meM.

The map is called module multiplicatio’~. Right modules are

defined similarly. M is an A bi-module if it is both left and right

and the module multiplications are related by a(mb) = (am)b a ,bcA , meM.

_ _ _ _ _ _ _ _ _  Li4
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2.4 Definition A linear space M is a nornied left A-module if it is

a left A-module and also satisfies

am 
~ ~ . K ~ all it m~ acA, m~M, K a positive constant.

If Mis complete as a normed linear space, it is a Banach left

A-module and of course right Banach A-modules and Banach A-bimodules

are defined similarly.

2.5 Definition Let X be a normed linear space. A representation

of A on X is a homomorphism of A into L(X), the linear space of linear

mappin~~of X into itself. If iT ~S a representation of A on X, the

corresponding left A-module is the linear space X with module multiplication

(*) ax = Tr(a)x

Conversely, given a left A-module X, the corresponding representation

on X is the homomorphism iT of A into L(X) given by (*).

The kernel of a representation ~T is given in terms of the

corresponding left A-module by ker(Tr) = { aCA:aX {o}} .

Let L be a closed left ideal of A and let a + a’ denote the

canonical mapping of A onto A/L. Then A/L is a left A-module under

a[x] = (ay) ’ aCA , yE [x] CA/L .

This is the regular left A-module, and its corresponding representation

is the left regular representation on ALL with kernel

{acA : (aA) ’ = {o}} = {a:aA;L}

2.6 Definition A left A-module is non-trivial if AX ~f {o}.

An irreducible left A-module is a non-trivial left A-module such that
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X and {0) are the only A-submodules of X, and a representation

of A is irreducible if the corresponding left A-module is irreducible.

2.7 Definition If x0 is in a left A-module X, 
we denote

ker(x0) = {aeA: ax0 = o}

and call x0 cyclic if Ax0 = X .

2.8 Theorem [4:120] If X is an irreducible le ft A-module and

x0C x\{o} then x0 is a cyclic vector and ker (x0) is a maximal

modular left ideal.

2.9 Theorem [4:120] If J is a maximal modular left ideal of A , then

A/J is irreducible.

If X is an irreducible left A-module , we consider a special

subset of L(X) : p= {TcL(X) :aTx = T(ax)acA ,xcX} .

2.10. Theorem [24:35] V = ~I, where I is the identity operator.

2.11 Definition Vectors x1, . . .  x~ in an irreducible left

A-module X are V-independent if D1, ..., DnCV 
and .

D1x1 + ...+ D ~x~~= 0  implies D1 = D 2 = ... = D~~= 0 .

2.12 Theorem [4:122] Let x1, . . . ,  x~ be p-independent vectors in

an irreducible left A-module X. Then there exists an a in A such that

ax k = O ( l
~~~

k�n_ l) and ax~~~ 0.



~ ---—~
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Theorem 2.12 will play an important role in our next continuity

result, but a few more definitions relating to ideals are necessary.

2.13 Definition If L is a left ideal of A , the quotient of L

is the bi-ideal L:A given by L:A ={ acA:aAcL}.

The quotient of a maximal modular ideal is a primitive ideal.

2.14 Theorem [4:123] 1) The primitive ideals of A are the kernels

of the irreducible representations of A.

2) A primitive ideal is the intersection

of the maximal modular left ideals containing it.

2.15 Definition The (Jacobsen) radical of A is the intersection

of the kernels of all representations of A. A is semisimple if rad(A) = 0

and a radical algebra if rad(A) = A .

In a commutative Banach algebra, Definition 2.15 and the definition

of radical used in Chapter I are equivalent. It will probably be a

relief to know that the next lemma will lead to the promised automatic

continuity theorem.

2.16 Lemma [4:128] Let X be an irreducible Banach left A-module.

Let denote the closed unit ball in A and let x0c)M01 If L is a

closed left ideal of A with L~~ker(x0), then there exists K > 0

such that KA0x0c (LnAo)x0.

Proof Let M= ker(x~ and a’ denote the M-coset of a. Since by

Theorem 2.8 H is a maximal modular left ideal and L~.M, L~~M = A.

. ~~~~~~~~~~~~~~~~~~~~~~~ .~~~-
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Therefore a-’ a’ maps the Banach space L onto the Banach space A/~1 .

By the Open Mapping Theorem, there exists K >  0 such that for every

yeA/M with ii y ll~~K, there exists bc LnA o with b’ = y. Given

ad( A0, we have it a’~ .� K and so there exists beLfl A0 with b ’ = a’.

Thus b - acker(x0) and ax0 = bx0.

2.17 Theorem [4:128] Let BL(X) denote the space of bounded linear

mappings of X into itself. If ~ is an irreducible representation of

~ normed linear space X such that 1T (a)CBL(X) (acA) , then ir

:inuous.

Proof The proof can be reduced to the case where ker(rr ) = {o} as

we now show. Let K = ker(Tr), so K = {acA:aX = {o}} =fl{ker(x): xc x\{o}}.

Since ker(x) is a maximal modular ideal for each xc x\ C 0) , and since

ker(ir) is a primitive ideal (Theorem 2.14), K is a closed bi-ideal

and B = A/K is a Banach algebra. Define i~ on B by

r[bJx = ir(a)x (ac [b]cB ,xcX).

tib] is a well defined linear operator on X and

II T [bjxti = Ii 7r (a)x~i ~ tiTI(a)lI II x II , so TIb)CBL(X) .

If ‘r is continuous , so is Yr , and T isan irreducible representation

of B on X with ker(T) = {o}.

So assume k e r (r r )  = 0. If X is finite dimensional, so is L(X),

and since ker(TT) = 0, A has finite dimension . Thus ~r is continuous.

We therefore assume that X is infinite dimensional. Given xcX, let

0(x) be the linear mapping of A into X defined by

a(x)a = ax (acA).



.. —~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Let Y = {x~X:o(x) cBL(A ,X)). Y is an A submodule, because for

ycY and beA we have

a(by) a = aby = a(y) (ab) and

f i 0(by)a It .� (~ ~(y) ii !~ b ii � a (y) I I ( ~ a li ii b (I

Since X is irreducible, either Y = X or Y = ~o}. Suppose first
that Y = X, and denote the closed unit ball by X0. Then

II 0(x) a~~ =11 ax~t = II IT(a)x~l ~ ~I 71(a) (xcX0, acA).

By the Uniform Boundedness Theorem, there exists in > o such that

~ 
o(x) J~ �in . But this means ii ax~ � m a ft , or

II ,y(a) ~ .� m a J~ 
and ir is continuous.

Now suppose Y = {0} and let A0 be the closed unit ball of A.

By definition of Y, A0x is unbounded where xc)~O}. Since X has

infinite dimension, X contains an infinite sequence C xd of .V-independent

vectors, and we may take ~x~ i (= 1.

Let Mn = ker(x~) and L~ =M.1 n ... nM~..1. By Theorem 2.12,

there is an acA with axK = 0 (1 � K � n-i) and axn ~ 0; in other

words aeL~\\ç~. Therefore L~4M ~ and since AoXn is unbounded., Lemma

2.16 shows that (Ln r% A0)x~ is unbounded .

Choose 81, “.‘ 8n with a~CL~~ ita ~l < 2-n and

II 8~X~ lI > fl + il (a1+ ... + a~~1)x~ i l .

Let b = ak and b~ = ~ 
~~~~

. We have ak
cM

fl
(k> n)

n=l k=n+l

and since M~ is closed , it follows that bnEMn• Therefore bnxn = 0.

But b = a1 + .. .ia~ + ~~~ and so

bx~ = a1x~+ . . .  +a~x~ which implies

_ _ _
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i~ bx~ ll~ II a~x~If - I! (al+.. .+an i )xnil > n.

This contradicts the fact that Tr(b)c BL(X), and we conclude

that Y ~ (0). Thus Y = X and ii is continuous .

Theorem 2.17 was proved by Johnson [10] as the major tool in his proof

of Theorem 2.18.

~2 Uniqueness of Complete Algebra Norms

The uniqueness of the complete algebra norm for commutative

semisimple Banach algebras is an easy conseç”ence of Theorem 1.3,

and was proved as early as 1948 [4:131]. The non-commutative case

is a very different matter, and Johnson’s proof did not appear until

1967. The proof given here is found in Bonsall and Duncan [4:130],

with a trivial addition to make use of the separating space from

Chapter I. -

2.18 Theorem Let (A, ~I.II j ) be a semisimple Banach algebra, and let

Ii .)~ 2 be a second algebra norm with respect to which A is complete.

Then (1 .11 2 is equivalent to ll ~~

Proof Let M be a maximal modular left ideal of A, X AIM, and

let 11 .11 ~‘‘II .11 2 denote the canonical norms on X derived from

and ii i~ 2 Because M is closed, X is a Banach space with

respect to each norm. Let 71 denote the left regular representation

of A on X. By Theorem 2.9, 71 is an irreducible representation of

(A,ll .1 i ~
) on the normed linear space cx, If ~ ~~~ 

and since

II 71(a) [x] 2’ = a [x] 2’ ~ Ii a ll  ] i l [x J II 2’ aCA , [x] cx ,

,
. ---

~

. .“~~~~~~~~- ~~~- . - ~~~~~~~~~~~~~~~ -- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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IT(a)CBL(X, 
~ ~ 2~~ 

for each acA . Therefore, by Theorem 2.17, T~

is Continuous and there exists a positive constant K such that

II lr(a)[x] 
~ 2 ~xhl all l ii [x] lt 2’ acA ,[x] cX.

Let a -- a’ be the canonical mapping of A onto A,M , and let u be a

right modular identity for M . Then for every a in A, au-acM, and so

ir(a)u = (au)’ a’.

Therefore,

~ 
[x] 11 2 = ii a’~ 2’ = II71(a)ull 2 ~K ff a ff 

~~ 
uff 2’’ ac[x]c AM

Since this holds for all ac[x], we have

~ 
[x] 11 2 � K lix II 1 I l u  11 2 ’

and we conclude that (f. (( i ’ and II •11 2 are equivalent on AIM .

Now look at the identity map I : (A , ll.R1 )~~ (A ,t( ~

Let ac~(I) , the separating space of I. Then there exists a

sequence { a~ in (A., iI .l~ ~) with tl a~j l ~~ 0 and II an-a ‘~2 0.

Thus (( an ’ ff ~ ’ -‘0 and Ilan’ - a’ 11 2 0. Since the canonical

norms are equivalent on AM, I Ian ’ - a’! I i’-’- 0, which implies that

a ’ = 0 and acM. Since this holds for every maximal modular left

ideal, acrad(A) = (o} by semisimplicity. Thus ~(I) = (o} and I is

continuous. I: (A, II. If 2~ ~ (A , lt~il 1) is continuous as well , so the
norms are equivalent.

An improvement of Theorem 1.5 is immediate.

2.19 Corollary All involutions on a semisimple Banach algebra

are continuous. 
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proof If * is an involution on A, let ll x lt 1 = ii x* ll . i l : il l is a
complete algebra norm and is therefore equivalent to ft . It , so * is

continuous.

The proof of Corollary 1.13 can now be given, as promised.

Proof of Corollary 1.13 Let R be the radical of A. * induces

an involution on A/R such that [x]* = [x*] because R* = R [18:55].

AIR is semisimple [4:124], so the involution is continuous. Thus,

there exists a constant in2 such that [x*] If ~ m l! [x] I ! f~r all x in A , so

v (b*b) = V [b~b] � II [b*b]tf � ii [b~]il ’ II ~b] II ~ . ~2 ~ [b]ll 2 ~ m2 il bI! 2

Thus, l f(a*ba)l ~ mf(a *a)lI b II by Theorem 1.12.

If A has an identity, then

lf(b)t ~ mf(e)if bil for all b in A and f is continuous.

The study of norms has assisted the study of positive linear

functionais, now we show its relation to homomorphisms.

§3 A Problem of Kaplansky

The following definition is probably familiar.

2.20 Definition If A is a Banach algebra with identity e, a

multi plictive semi -norm on A is a function I. I on A to [0,~’) satisfying

i) 
I 

x + y
~ ~~~ l x i + I ~ i x ,ycA

ii) xy ~ lx Ii y x,yCA

iii) I ctx = ki I ~ ac

iv) f e f = l

L.A
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If I x l  = 0 implies x = 0, I .1 is a multi plicative norm.

2.21 Theorem [2:592] Let A and B be Banach algebras with identities

e and e’ respectively. If 0 is a homomorphism of A into B with

~ e) = e’, then the function x~ = ~ 
0 (x)lf , xcA is a multiplicative

semi-norm on A. If I.! is a multiplicative semi-norm on A, then

there exists a homomorphism 0 of A into a Banach albebra B such that

Ix t = ll 0 ( x ) l i ,  xcA .

Proof One way is obvious. Suppose I .1 is a semi-norm on A.

I = {x: l x l =  0)  is an ideal in A, and .l is constant on cosets

of A/I because x-y I ~~ fx ( - yf . Thus, A/I is a normed algebra

under the norm I [x} I = I x . Let Obe the canonical homomorphism of

A into the completion of A/I, and we have what we desire.

Let X be a compact Hausdorff space, and let C(X,C) denote the

algebra of continuous, complex-valued functions on X. With pointwise

operations and the supremum norm, C(X ,Q) is a semisimple,

commutative Banach algebra, so all complete algebra norms are

equivalent . More is known for tlüs algebra, for Kaplansky

proved in 1949 [14:407] that any norm on C(X,C), whether complete or

not, is greater than or equal to the supremuin norm. The next theorem

says the same thing.

2.22 Theorem [24:58] Let X be compact Hausdorff. If 0 is a

monomorphism from C(X,ç) into a Banach algebra B, then l i e  f t ( ~ lt f II
for all fcC(X,~).
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Proof By restricting attention to O(C(X,Q)), we may assume B is

commutative with identity. Recall [21:328] that X is homeomorphic

to 
~c(x,C) and that is compact in the Gelfand topology. Then 0

induces a map EY~:1~ -‘ X defined by f(EY~ip) = i~O(f) for all ~ in

and £ in C(X,~) [16:136]. 0 * is continuous by definition of the

Gelfand topology, so 0 *(t~B) is compact and therefore closed in X.

Suppose that O~ is not onto. Then there exists XjX\O *(AB),

and there are disjoint open U , V with X0cU and 0~~ B)~ 
V. By

Iirysohn’s Lemma, we choose fEC(X,~) such that f(X\V) = 1,

f (O *(A8)) = 0 and gcC(X,ç) such that g(A0) = 1, g(X\U) = 0.

Thus, fg = g .

Since f(O*(LI~)) = 0, it follows by definition of E~ that

= 0 for all and so Ofcrad(B). Therefore (1 - Of) is invertible

(20:265]. Since fg = g, OfOg = Og and (1 -Of)Og = 0. ~But this implies
that Og = 0, which contradicts the fact that 0 is a monomorphism.

Thus,O* 
~~~ 

=

Finally, if f cC( X ,~ ) ,

lIf 11= suplf(x)t = supif(O*~11)t = \)(Of) [20:268]

.~ ~
( Of it as required.

Kapiansky’s theorem naturally raised the question, “Does there

exist an incomplete algebra norm On C(X,~)?” From Theorem 2.22, this

is equivalent to asking “Is there a discontinuous monomorphism from

C(X ,ç)?”

This question is the problem of Kaplansky, and its solution is

the aim of the next two chapters.

.
- - -

~ 

~
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CHAPTER III

TOWARD A SOLUTION

Kaplansky’s problem did not immediately arouse much interest,

and few papers on the subject appeared for about eleven years. In

1960, Bade and Curtis published a fundamental paper [2] which, along

with providing a considerable simplification of the problem of Kaplansky,

encouraged further work on the continuity of homomorphisms in general.

§1 Results of Bade and CurtIs

The main tool used by Bade and Curtis is the following interesting

boundedness theorem

3.1 Theorem [2 :592] Let A be a commutative Banach algebra and

0 a homomorphism of A into a Banach algebra B. If {g~) and

are sequences from A satisfying

i) ~~~~ g~ n = 1,2, ...

ii) h h = O  m # n

then sup II (
~~)lI /II Bn hI tt 1

~n ll < 
~~

Proof Suppose for contradiction that lim sup ~ O(g~) tJ4I g~Il ~ h~ Jf = + ~~~

We may suppose I I g ~ t f = 1, n = 1,2 By (i),f( h~It � 1. We

shall construct a linear combination of he ’s wh ich maps into

an element of infinite norm. Select distinct elements q3~ . 
1, j = 1,2

- ~~~~~~~~~~~~~~~~~~~~~~ - - - --- - - -  ~-~- --, -.~~- .— -~~~~~~~~ --- —.--
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from the sequence g
~ 

such that

(+) II 0(q1~) Ii ~ 4
]~+~1 

~ Pj j  ii

where p~~ is the relative unit corresponding to = q
~~• 

Define

ç = E s~
.I2 J Ci = 1,2 ...

~~~
.

j = l  ~

p...f. = q1.., and this together with (+) shows E(f~) ~ 0.

For each in teger i, select j ( i )  large enough so that 2
~~
’
~.JlO(f~

) II
and define

= 
~ (i) ~ (i)

This yields

i+j (i)f~y = q..(~)/2 
j
~ ~~~~~~ i. = 1,2

By (+) and the way j (i) was selected we have

II 0(y) Ii If O(f~) II � II ~~~~~ II ~ 
~~~~~~ > ~~~~ II

-Thus, f~ 0(y) II > 2~ for every i, and this contradict ion

establishes the result.

Virtually every paper extending the work of Bade and Curtis

utilizes a theorem similar to Theorem 3.1, and for this reason

we present a very short example of the kind of assistance it provides.

Let A be a commutative semisimple Ban ach al gebra with identity.

By means of the Gelfand map A may be treated as an algebra of

Continuous functions on 
~A 

[20:268]. Also assume that A is regular ,

that is, for any disjoint closed sets E and F in 
~A’ there exists

a function in A which is zero on E and one on F.

.

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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3.2 Definition Denote by G the family of all sets E
~~

.i
~A 

such that

sup II 0(g)ll /it ~II II hit = m <

for a] 1 functions g and h with support in E and such that gh = g.

3.3 Lemma [2:595] If {E~
) is any sequence of disjoint open sets

in 
~A’ then E~cG for all sufficiently large n.

Proof If the lemma were not true, there would exist an infinite

sequence {E~ of disjoint open sets and functions 
~~ 

h
~ 

in A

with support in F such that

i) 
~I 
g~ II = 1

ii) g~~h = g ~ and

iii) II 0(g~) I~ > m lI 1~m lI
and this contradicts Theorem 3.1.

Through a series of lemmas involving repeated applications of

Theorem 3.1, G is shown to contain a maximal open set whose complement

is finite.

3.4. Theorem [2:597] Let A be a commutative , regular Banach

algebra with identity, and let 0 be an arbitrary homomorphism into a

Banach algebra B. Then there exists a finite set F (the singularity

set of 0) of points in and a constant in such that

II e(gJ I~ .~~ ml! ~lt ~ hil 
for all functions g and h in A

having support in 
~A
\F and such that gh = g.
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Restr*cting our attention once again to C(X,ç) for X Compact

Hausdorff, let 0 be a homomorphism of C(X,C) into a Banach algebra

B and let F = {w~, ~~~~~~ 
ü~~} be the singularity set of 0.

3.5 Definition M (f) = the intersection of the maximal ideals

M(w1) = {fc C (X ,~) :  f(w1) = 0).

J(F) = the ideal of functions each of which

vanishes in a neighbourhood of F, the

neighbourhood depending on the function.

A(F) = the dense subalgebra of C(X,~) consisting

of those functions £ such that f(w) =

in a neighbourhood of each point o~ cF , the

neighbourhood varying with f.

With these definitions, Theorem 3.4 may be strengthen?d.

3.6 Th~orenj [2:599] If 0 is a homomorphism of C(X,ç) into a

Banach algebra with singularity~set F, then 0 is continuous on A (F).

Proof By Theorem 3.4 and the fact that the h ’ s may be chosen to

have norm 1 [2:598], we have

~ 
O(g) II ~ M If g It gcJ(F), N a positive constant .~

Now choose functions e1, 0 .~ e~ ~ 1 such that e1e~ = 0 when

i I j and e.(~) = 1 in a neighbourhood ofw 1eF. Then for any

fcA(F), f - ~ f (~1)e 1 cJ(F) , so
i=l

n n
II 0(f) II �ti 0(f - E f(w 1)e 1lI +11 E f(L&~ )O (e~) il

1=1 i=l
n n

� M 1ff - E f(c~i~)e.iI ÷ 11 f II Z tI 0 e~) II
i=l i=l
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� [(n+1)M + 

i=l ~ O(e
~
) 11 1 11 f II fcA(F)

and Q is bounded.

Since 0 is continuous on a dense subalgebra of C(X,ç), it has

a unique continuous extension ~ to C(X ,~ ) which agrees with 0 on A(P).

3.7 Definition A (f) = 0(f) - p(f) fcC(X,ç).

~ 
is the continuous part of 0; A the singular part.

The next important result reduces the problem of finding a

discontinuous homomorphism from C(X,~) to that of finding a non-

trivial homomorphism from a maximal ideal of C(X,~) to a radical

Banach algebra.

3.8 Theorem [2:599] Let 0 be a homomorphism of C(X ,C) into a

commutative Banach algebra B and let R denote the radical of 0(C(X,C)).

t.et F = {w1, - . . ,  c~~} be the singularity set of 0, p and A the

continuous and singular part s of 0, and M a constant such that

II ~(f) It � MtI f f~ 
for fcC (X,ç). Then

a) The range of p is closed in B and
.

e(C(X,ç) )  = p(C( X ,Q)) ~ R , a normed direct sum.

b) R = A (C(X,~))

c) R~p(M(F)) = 0 and the restriction of A to M(F) is a

homomorphism.

d) There exist linear transformations A1, i = 1, . - . ,  n such

that :
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n
i) X =  E A.

i=l 1

ii) R = R1 e R2 ... 
~ 

R~ where R~ = X
~

(C (X ,c,)

iii) R
~
s R. = 0 when i ~ j and R1•p (M(w1)) = 0.

iv) The restriction of A1 to M(u1) is a homomorphism.

Proof a) Let A = {f: p(f) = o}. Since P is continuous, ~ is a
closed ideal in C(X ,~ ) and there exists a closed set G~~ X such that

A = {f:f(w) = 0; wcc} [21:330]

If C(X ,CJ/A is given the canonical norm, then C(X ,ç) is

isometrically isomorphic with C(G) [18:236] and so

ii [f]Il = sup~f(~)~.
wcG

Also, the semi-norm t ft = lip ( f ) It is constant on the cosets [f],

and so C(X ,C)/ A may be nam ed by defining I [ f ] I = If !- By

Theorem 2.22 ,

(*) I [f] I �It [fi ll , fcC(X ,ç)

But for any gc[f], we have If I Igi �M II ~tI because P is continuous.
Thus

(**) l Efi l � M inf{Il gil : gc[f]} = MJj [fi ll .

(*) and (**) show the norms are equivalent on C(X,~) /A .

To show p has closed range , suppose b0cB and b0 = lim~(f~) .

Then

II [~‘~~ 1Ik I~ m~~n I = II P(~m~~n) I I  ~~°

There exists f0cC (X ,~) such that ~~~~~~ I~ 
+ 0. Thus
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Ilv(f0) - ~(f~ ~ �M ~I [f -f ] II + 0 and b0 = p (f).

Thus i.i (C(X ,ç) ) is algebraically isomorphic with C(X ,C)/A . and

U (C(X ,~ ) ) f l  R = {o}.

Now we show that A =0 -p maps into R. If where

B0 = 0(C (X ,~) ) ,  then the functionals and defined by

= 0(0(f)) and O~(f )  = Ø(p(f)) are complex homomorphisms

and therefore continuous by Theorem 1.2. Since they coincide

on the dense subalgebra A (F) , Ø
~ 

= - Thus 0 tA (f)) = 0 for

fcC(X ,~), 0~~B0’ 
and A(fJER.

Thus 0(C(X,ç))~ p (C(X ,C))~ R. We must show that 0(C(X,C))

= I1(C(X,C))~~R. If b = limO(f~) ,  then since p(C(X,Q)) is closed in B,

II0(fm - f~) II ~~~ 
v8(0(f - f~)) (recall \)(x) is the spectral

radius of Definition 1.9)

= V
B ~~~~~~~~

= ‘
~p (C(X ,~ )) m~ n~

.� M~~ II 
~~m n ~

11

There there fore exists an f0cC(X ,~ ) such that p (f ) = 1imP(f ~) .

If r = b-p (f0) ,  then r = lim (A(ç)) and rCR. This completes

(a), and proves (b) as a bonus.

c) Since J(F) is dense in M (F) , it is enough to show that

p(g) A(f) = 0, gcJ(F), fcC(X ,ç). Now fgcJ(F) , and 0 and ii

agree on J(F). Therefore:

p(g)A (f) = p (g) [0(f) - ii(f) ]

0(g)0(f) - p(g)p(f)

= O(gf) - p(gf) = 0

Li .
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If f , g c M (F) , we have

A (fg) = Q(f g) - ~i(fg)

= [p (f) + A(f)][p(g) + A (g)} - p(fg)

= p(f)p(g) + A(f)A(g) -~ p(fg)

= A (f )A( g)

and A: M(F) R is a homomorphism.

d) Choose functions e±, i = 1, ..., n such that e~ is one in a

neighbourhood of and e1e~ = 0 for I ~1 ~~
. Define

= A(e1f) fcC(X ,ç) .

If f ,gcM(w~) ,  then e1f,e1gc~4(F) and so

k~(f) A~(g) - A~(f g) = A((e 1
2 

- e1) fg) = 0

because (e~
2-e1)f gE~J(F) . Thus, X

~
:M(w

~
) + R is a homomorphism.

Since (1- E e
~
)fc.J(F) for all fcC(X,~),

i= 1
n n

0 = A(l- E e . ) f  = A(f) - Z A~f and
i=l 1 i=1

n
A = E A.. R.’ R. = 0 is immediate .

i=1 1

We have two more results to prove : d(ii) and R~.p(M(w1)) = 0.

To finish these , note that

1) 0 = 0(e1)0(e~ f) = ii(e1) [~ (e~f) + A(e~f)]

= p(e~) A (e~ f) i 
~
I j, fcC(X ,~)
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2) A(e1f) = [p(1 
j=l 

e~) + 

i~l 
~(e~)] A(e

~
f)

= P(e
~

) A(e
~
f) by 1) and Cc).

d(ii) follows easily.

If gC M (~j),

n n
g = E e.g + (1 - E e .)g ,  and the last term is in J(F).

j=l ~

Therefore by 1), and the fact that e~gcM (F), we have

n
A (e.f)p(g) = A(e.f) E p(e.)p(g)

j=l ~

= A(e.f)p(e1g) = 0.

This final ly comp letes the proof.

The state of affairs may now be summarized.

3.9 Theorem ‘[2:602] If C(X,~) ,  X compact Hausdorff, has any

of the following, it possesses every other.

1) an incomplete multiplicative norm,

2) a discontinuous multiplicative semi-norm ,

3) a discontinuous isomorphism into a Banach algebra ,

4) a discontinuous homomorphism into a Banach algebra,

5) a homomorphism A into a radical Banach algebra R with adjoined

identity, such that for some maximal ideal M ( W0) , A( M (w0))~~ R

and A(J(w )) = 0. 

~~~~~~~~~~~~~~ - - -  .
~~~~~~~~~~

- -



Proof (1)-’-+ (3) and (2)+-+(4) follow from Theorem 2.21.

(3) + (4) -. (5) because any one of the A1’s of Theorem 3.9

may be appropriated. Given (5), the norm Ix l = 11 x t!+ IIA (x)It

defines a multiplicative norm on M(~0
) which can be extended to

C(X ,~) ,  so (5) + (1) .

Successors to Bade and Curtis fall into two categories:

those who attempted to prove results similar to Theorems 3.6 and

3.8 in more general settings, and those who sought extensions

applicable to the problem of Kaplansky.

§2 Generalizations

Cleveland [5] initiated the study of automatic continuity

under less restrictive circumstances by considering homomorphisms

from non-commutative Banach *_algebras.

3.10 Theorem [5:1104] If 0 is an isomorphism of a C*_algebra A ,

then there exists a constant N such th at

lix II � Mff 0(x)(f , xeA .
.

The similarity of the theorem to Theorem 2.22 is noted, but

the difference in technique in obtaining it is emphasized .

Cleveland comments [5:1098] that Theorem 3.10 implies every

multi plicative norm on A is complete if and onl y if every isomorphisni

is continuous , and shows [5:1105] that if there is a discontinuous

homomorphism on A , there is a discontinuous isomorphism on A.

L .. . -~~~~~~~~~~~ - .- - -~~~-~~~~~~~~~~~ -~ .~~~~~~~~~~~~~~~~~~ _ _ _ _  
_ _ _
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Using the same technique as Bade and Curtis , Cleveland obtained

a slight extension of Theorem 3.4. Let A be a C*_algebra with

identity, e:A -~
- B a homomorphism with B = 0(A). If A’ is a

commutative C*_subalgebra of A containing the identity, A’ is isomc’~rically

isomorphic to C(X,~) for some compact Hausdorff X [18:232]. We have

3.11 Theorem [5:1108] There exists a finite set F in X and a

constant H such that

j~ 0(g 2a)~ � Mf~ g f l  ~(gaff , acA , geA’, support of g~ X~F.

Along different lines, Barnes [3] investigated homomorphisms

with restricted range . Note first that an algebra is strongly semi-

simple if the intersection of all maximal modular two-sided ideals

is zero. , -

3.12 Definition An algebra A is a modular annihilator algebra

if for every maximal modular left ideal H and every maximal

modu lar right ideal N,

1) g(M) 1 0, R(A) = 0 where R(M) = ~.xcA :yx = 0 for all ycM)

2) L(N) 1 0, L(A) = 0 L(N) = {xcA:xy = 0 for all yeN)

313 Theorem [3:1036] Let A be a Banach algebra which satisfies

the property

(*) Whenever I is a closed ideal of A such that A/I is

finite dimensional , then =

If 0: A B is a homomorphism and B is a strongly semisimple

modular annihilator algebra, then 0 is continuous.

- 
LA
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That Barnes ’ theorem is not totally removed from the problem

we are considering follows from his comment [3:1036] that every

C*_al gebra satisfies condition (*) .

In 1967 , Johnson [11] was able to show that for certain special

classes of algebras of operators on a Banach space , all homomorphisms

are continuous . More interesting, though , are his studies of

arbitrary homomorphisms of C*_al gebras using the ideal

J = {t:tcA, 0(t)s = 0 Vscr~(0) }

where A is a C*_algebra and 0 is a homomorphism into a Banach algebra

B.

3.14 Theorem [12:81] 3 is of finite codmmension in A.

Theorem 3.14 has been stated only to allow the proof of a

corollary which shows once more the usefulness of the separating space .

3.15 Corollary [12:83] If A is a C*_algebra with identity e and no

closed proper ideals of finite codimension , then 0 is continuous.

Proof By hypothesis and Theorem 3.14, 3= A unless 3= {o} and

A is f inite dimpnsional , which is a trivial case. Thus J = A and

0(e) , which is the identity of 0(A) , and thus the identity of 0(A) ,

annihilates ~ (0) . Therefore ~,(0) =
‘ {o} and 0 is continuous.

Theorem 3.14 applies to an algebra without identity, but in

this case it is not possible to obtain a result analogous to Corollary

3.15. Hpwever, Johnson claimed that a direct generalization of Thereom

3.6 to C*_algebras would be achieved if it were possible to show that

4 Of J is continuous. Motivated by thisidea, Stein [27] concentrated on

von Neumann algebras , and was able to generalize Theorem 3.8 to this

L - -  
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special case.

Thus encouraged, Stein pursued Johnson’s suggestion further, but

with less success. Again , let A be a C*_al gebra and ® a homomorphism

into a Banach algebra B.

3.16 Definition

= {xcA : sup I~ 
0(xz) II <

II zJ~ � 1

= {xcA : sup II 0(xz) It < °~}

~ z il ~~l

:r = ‘R~~ 
1
L

Stein showed that is contained in Johnson ’s J, and proved

the following result.

3.17 Theorem [28:437] Let U ~. I be a closed , two-sided ideal .

Then 0 f U  is continuous .

Continuing in the sane vein , Sinclair [22] considered an ideal

slightly different from Johnson ’s , namely

ii ’ = {acA :~~ s =s6~) = { 0} Vsc~ (0)}

Again through techniques broadly similar to those of Bade and

Curtis, Sinclair obtained a partial generalization of Theorem

3 8  for non-commutative C*_algebras . It is illuminating to note that

he could not prove part (b) of that theorem , which in the commutative

case relied upon an application of Theorem 1.2. Two corollaries of his

theorem must be mentioned.

I
LÀ 
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3. 18 Corollary [22:4511 Let A be a C*_algebra, B a Banach algebra,

and 0 a homomorphism from A to B. If B is continuous on all C*_

subalgebras of A that are generated by single hermitian elements ,

then 0 is continuous.

3.19 Corollary [22:451] If there is a discontinuous homomorphism

from any C*_ al gebra, then there is a discontinuous homomorphism from

C[0,1], the al gebra of continuous complex valued functions on the

closed interval [0,1].

§3 Extensions Tailored to Kaplansky’s Problem

The desire to gain further information about C(X,ç) for X compact

Hausdorff led Sinclair to investigate C0(R) , the continuous functions

on the reals which vanish at infinity.

If there is a discontinuous homomorphism from a C*_algebra
into a Banach algebra, then there is a discontinuous homo-
morphism from C[0,l] into a Banach algebra (Corollary 3.19),
and hence there is a discontinous homomorphism ~ f r om
C~~([0,1~{A)) into a radical Banach algebra for some A in
[O,lJ by Theorem 3.9. By rcstrict in g ~ to C0[0,A) or C0(A ,l]we obtain a discontinuous homomorphis m from one of these
into a radical Banach algebra, and ~P annihilates function s
with compact support [2:6031 . Identifying [0,A) or (A ,l]
with [O ,oo) homeotnorphically, and sending function s with support
in (..co ,1] to zero , we obtain a discontinuous homomorphism from
C0Q~

) into a radical Banach algebra. [23:165]

This study’ also yielded :

3.20 Theorem [23:172] Let X be a compact Hausdorff space and suppose

there is a discontinuous homomorphism from C(X ,ç) onto a dense subalgebra

of a Banach algebra B. Then there is a closed ideal N in B such that

~: C(X,ç) -+ B/M , def ined by ~(f) = 0(f) + M , is a discontinuous

homomorphism whose kernel is a prime ideal in C(X ,ç).
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A new level of complexity in the efforts to extend Theorem

3.8 was reached in the 1976 paper of Johnson [13], which undertook

a more detailed analysis of the finite singularity set F. The methods

of Bade and Curtis were used to find a finite set E such that

E~ ~(X\F)\ (X\F)

where ~(X\F) is the Stone-Cech compactification of XIF. A theorem

paralleling Theorem 3.8 applies to the set.

Two other results in Johnson ’s paper which are of a different

nature require some definitions. Let A be a totally ordered set.

Write A < x to mean a. < x  for every a in A; similarly x < A, A <B.

A subset I of A is cofinal (coinitial) if for each acA there exists

teT such that t � a (t ~ a).

3.21 Definition (A,~~ is an set if for any countable subsets

T1 and T2 of A with I~ 
< T2, there exists acA such that T1 < a < T2.

This implies that an fl1-set is one in which no countable set is

either coinitial or cofinal.

3.22 Definition An ordered field is real-closed if it has no proper

algebraic extension to an ordered field. Equivalently, F is real-

closed if every positive element is a square.

3.23 Theorem [13:46] Let E and F be real-closed ~1-fie1ds containing

the real numbers R and of cardinality N1. Then there is an isomorphism

u~of E onto F with t I I R  = identity.
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This theorem allows a surprising conclusion.

3.24 Corollary [13:38] Assuming the continuum hypothesis, if

there exists a discontinuous homomorphism from C(X,~) for any

compact Hausdorff X, then there exists a discontinuous homomorphism

for each infinite dimensional C(X,~).

Taking stock of the situation, we see that Theorem 3.8 provided

the major simplification of the problem of Kaplansky, and the

latest theorems of Sinclair and Johnson indicated that investigating

special cases would be profitable. Although the continuum hypothesis

is anathema to some , Johnson’s use of it was the inspiration for the

solution of Kaplansky’s problem discussed in Chapter IV.
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CHAPTER IV

A DISCONTINUOUS HOMOMORPHISM FROM C(X,Q)

In 1977 it was announced [7] that, ‘~~rking independently and

employing completely different methods, H.G.Dales and J.Esterle

had constructed discontinuous homomorphisms from C(X,~) for X

compact Hausdorff. Both constructions depended upon the assumption

of the continuum hypothesis.

Dales’ paper is an excellent example of the synthesis of diverse

fields of mathematics in the solution of a particular problem, and the

purpose of this chapter is to present a highly condensed account of

his complicated result.

§1 Definitions and the Basic Idea

The work of Johnson suggested that consideration of an

appropriate compact Hausdorff space would be sufficient for the

problem, and for reasons which will become clearer in Theorems 4.2

and 4.20, Da1e~ opts for 8J~J, the Stone-tech compactification of the
integers.

Select any pcB~J\~ and define the maximal ideal

M{p) = {fcC(8~ ,g) : f(p) = 0) and the ideal

J(p) =
‘ {fcC(8N ,~ ) :  f~~ (0) is a neighbourhood of p in ~~}.

Finally, identify c0, the real valued sequences which converge

to zero, with the set {fcc(~~,B) :f l (~j~ ) = o}.
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In keeping with Theorem 3.8, the construction will yield a real

linear homomorphism from M(p) to a radical Banach algebra that has

kernel J(p) but does not vanish on c0 .

4.1 Definition A = M ( p ) / J ( p )  A1 = C(~~,R) /J (p)

A1 is the algebra A with identity adjoined.

We note that the space C(~~,~) is partially ordered by

f S g  if f(x) ~~g(x) for all x in ~?j.

Dales shows that the quotient order in A is a total order and proves

the following theorem.

4.2 Theorem [6: Prop 2.7]

i) A is an fl1-set.

ii) The quotient field of A is a real-closed p1-field which,

assuming the continuum hypothesis, has cardinality K1.

The fact that we are dealing with 8~j is used in Theorem 4.2

because under the continuum hypothesis, C(BN ,R) has cardinality 
~~

[9:185].

More impoftantly, it is shown that divisibility can be expressed

in terms of this order, and this is written:

b divides a if and only if ta l ~ Ib i .

This makes it possible to begin the construction of the homo-

morphism by finding a map A on a subset of A and considering an algebraic

problem.
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If a = bc in A and A (a) and X(b) are already defined, is it

possible to solve X(a) = A (b)x? In case the range of A is a radical

Banach algebra R in which divisibility and order are related in the

same way as in A, and A is isotonic (that is, t at ~ Jb J in A +

fA (a) I ~ IX (b)I in R), the answer is yes. For if

a = be, Ia~ ,~~ fb t , IX (a)I.~-tA (b)t and so X (b) divides A(a) .

Thus, we can set A (c) = X(a) A (b)~~ .

This problem is complicated by the fact that each element a in

A
4 

= {acA:a > o} is infinitely divisible; that is, for any integer

n there exists a b in A such that b~ = a. Therefore, A (a) must also

be a non-zero infinitely divisible element in the range. We pause

for some definitions.

Let w(t) be a positive measurable function on [0,co) such that

w(s+V) ~ W(S)~~(t) and lini w(t)
L
~
t 

= 0.

4.3 Definition 1. L1(w) is the space of equivalence classes (under

equality almost everywhere) of Lebesgue measurable complex valued

func tiozs on [0,°°) with norm

ii f it = /011(t)kt) dt and convolution multiplication

(f*g)(t) = f ~ f(t-s)g(s)ds.

2. L1(0,l) is the Banach space of equivalence

classes (under equality almost everywhere) of Lebesgue integrable

complex valued function s on [0,1] with norm

hf  11= f~If(t) fdt and convolution multiplication

(f*g) Ct) = f~ f(t—s)g(s) ds 0 £ t ~ 1.

L 1(w) is a commutative, radical Ban ach algebra without identity

[4:8] and so is L 1(O,l) [16:29] .
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4.4 Definition For a > 0 let

La = Cf:f complex valued, measurable on [0,~) ,  f:If(t)I~~
t 

dt <~~}

equating functions equal almost everywhere.

A = O {La : a > 0 }.

La(R) and A (R) denote the real valued functions of L
~ 

and A.

With norm JI f”a = f If(t)Ie
_C
~
t and convolution multiplication ,

is a commutative, semisimple Banach algebra without identity [ 4:8 ].

A is a linear associated commutative algebra. If a1 
<a2,

La ~ L0 ~~. A ~ L1(w)~~ L
1(O,l).

L 2

and L1(O,1) are two of the few radical Banach algebras

in which non-trivial infinitely divisible elements exist, and are

therefore candidates for the range of A . Unfortunately, however,

it is not always possible to tell exactly which elements are powers

of other elements. This is where Definition 4.4 comes in , because

it is possible to decide this question in A . Just how this is

accomplished requires some more definitions.

4.5 Definition For a ~ 1, let 
~a = 

- {zc~ :Rez > ~~~~ > a)

Aa = {fd*(?~ ,~): f is analytic on 
~

2a~ 
where C*(?ia~~) is

the space of bounded functions on na.

A~, 
= direct limit of the Aa’S (15:219].

is an algebra with respect to pointwise operations, and we

define I F t a sup {F(z):zcn0} for FCAa•
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4.6 Definition For a ~ I, the set C,, is the subset of A~ consisting

of the zero function together with the functions F which satisfy

1. - F(z)zk is bounded for each integer k, zc?ia
2. F(z) ~ 0 (zC~~)

3. F(z)cR(z4(%R).

= direct limit of the Ca
l s, and is a subset of A,,.

4.7 Definition Let 0(~2) be the algebra of analytic functions on the open

subset ~ of C. For fCLa~ the Laplace transform of f is

(.~f) (z) = .1 f(t) e
_Zt

dt (Rez > a).

~ fc O(1~,,) and ~~ f*g) ~~~~~ [25:171]

4.8 Definition If FCC~ , the inverse Laplace transform is

r+iy
f(t) = (.& F) (t) = 2~~ 

u r n  I 
-

. F( z )e Ztdz t � 0, r � or

and is independent of r for each t �. 0 [25:175] .

The question that generated the last four definitions can

now be answered : the functions in A which are infinitely divisible

are those whose Laplace transforms satisfy conditions (1) and (2)

of Definition 4.6. We now have the barest essentials of Dales’

construction, in that we desire an isotonic homomorphism from A

into A. But to make things work properly, the space Ce,, must also be

considered. Building a map from A to C occupies the bulk of Dales ’

paper.
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§2 Triples and Extensions

Let A be an integral domain. If B is a subalgebra of A, then

B is inverse closed if at,1 = b2 for acA, b1, b2 eB with b1 ~ 0

implies that aeB. If B is a subset of A, Alg B denotes the smallest

inverse closed subalgebra of A that Contains B. We can now show

how Dales relates A to Cd,

4.9 Definition (Q• ; 0;J) is a triple if

1. Q is an inverse closed subalgebra of A.

2. ~ is a closed subset of C~, which is a subalgebra of 4,,,

3. 0 : ~~~~-‘~ ~7is an algebra isomorphism

A triple ~~~ O~; ~~ 
extends the triple (Q2 02; 2~ 

if

~ Q1 
and O~J Q2 = 0

2~

Dales notes the following result, the importance of which will

soon be clear.

4.10 Theorem [6:Prop.4.17) If Q~ 
is an algebraically closed

subalgebra of A, the quotient field of ~ is a real-closed field.

The goal now is the exhibition of a partially ordered set of

triples and to use a Zorn’s lemma argument to deduce the existence

of a maximal triple, providing an isomorphism from a maximal subset

of A into ç. Naturally, this requires the existence of any triples

at all, and this brings us to the foundation of the construction. 

~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~
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The first difficult portion of the paper involves producing

such an ‘initial’ triple, and this is done through the careful

(and lengthy) construction of what Dales christens a ‘~framework map”

from a certain subset of A to a subset of ç[6: Chapters 2 and 3].

The subset of A selected contains elements of c0/J(p) [6:Def.2.9],

and in keeping with the requirement that the nascent homomorphism

be non-trivial, the range of the framework map is a subset of C e,, that does

not contain zero [6:Def.3.15]. The fact that A is an ri1-set is

important both in choosing the subset of A and in building the

framework map. This is where the algebraic problem of Section 1

is solved, because the map is isotcaic. The framework map is

obtained in [6:Thm.3.l6] and is used to show the existence of a triple

in [6:Prop.4.l].

If (Q~;0;~ 
is a triple and aCA\~), the next problem is the

extension of 0 to an isomorphism from Alg (Q,a), the smallest inverse

closed subalgebra of A containing Q and a. In the case that a is

algebraic over one chapter is required to prove

4.11 Theorem [6:Thm 4.9] Let (Q;0;J) be a triple and let Q 1 be

the algebraic closure of Q in A. Then there is a triple (Q1;O;J1)

extending (Q0;1).

If a is transcendental over 
~~~
, the problem is even more difficult,

and Dales admits being unable to show the existence of an extension

in general. However, if the functions in~ are approximthlc (a

property which requires several pages to define), an extension can be

found (6:Thm 6.2].
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Approximability is also important because the collection of

triples (Q;0;j) with the property that each member of J is

approximable may be partiallyordered by (~1;0;~1) ~ (92 ;0;J~ ) if

the first is an extension of the second. Every totally ordered subset

has an upper bound, and so a maximal element exists by Zorn ’s lemma.

4.12 Definition (Q~;0;J~) is a triple which is a maximal member of

the aforementioned partially ordered set.

413 Theorem [6:Thm 6.4) Q, is an algebraically closed n1-subset

of A of cardinality Yi~1.

Theorem 4.10 yields the next corollary immediately.

4.14 Corolla!Z The quotient field of 
~~ 

is a real-closoI~ 1- set

of cardinality 
~~~~

.

Finally, Theorem 4.2, Corrollary 4.14 and Theorem 3.23 allow

Dales to prove the next theorem, which provides the most important

component of the homomorphism we have been seeking all along.

.

4.1$ Theorem The algebras A and ~ are isomorphic.

Now that the maximal triple has been obtained, we describe

some properties of the inverse Laplace transform.

4.16 Theorem [6:Prop.7.5] Let F,GcC~, £ = and let r be

any number with r > a. Then
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i) f is continuous on [0,~ ) , f(0) = 0 and fcL
~
.

ii) fcL (R)

iii) .~t
4(FG) ~

_ l
~~.) *~~

4(G) in L

iv) ~~1 3, ~A (R) is a real linear algebra monomorphism.

It will come as no surprise that Theorem 4.16 is a result of

the way everything has been defined. Dales knew what he needed,

and set things up accordingly.

This sketch has been very hasty, but it has brought to the

forefront all we need to solve Kaplansky’s problem.

§3 The Solution of the Problem of Kaplansky

We begin this section with a collection of definitions

4.17 Definitions Let ~ir : M(p) + A be the natural quotient map.

i : A 4 Q~ be the isomorphism of Theorem 4.15

0 : Q~ 
+ J~ 

be the isomorphism of the triple

-~
. A(s) be the inverse Laplace transform.

S 4

It is impossible to resist the following theorem, which is a

fine case of seeing only the tip of an iceberg.

4.18 Theorem [6:Tbm 7.6] Assuming the continuum hypothesis,

there is a real linear homomophism A: M(p) -‘ A (R) such that kerX = 3(p) .

Proof Le t A =  .C1 000 io i r .

I
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The next theorem achieves the goal stated before Definition 4.1.

Note that an element a in an algebra is nilpotent if a~ = 0 for some

integer n.

4.19 Theorem [6:Thm. 7.7] Assuming the continuum hypothesis, there

exists a real-linear homomorphism from M(p) into a commutative radical

Banach algebra R such that the homomorphism has kernel J(p). The

homomorphism is discontinuous, and R may have either of the following

properties:

i) R is an integral domain and has a bounded approximate

identity.

ii) R has a dense set of nilpotents and a bounded

approximate identity.

That the homomorphism is discontinuous follows because J(p) is

dense in M(p). Dales shows that L~(w) satisfies (i) and L~(0,l)

satisfies (ii), and it has been noted that A~~. L
1(w)~~ L

1(O,l).

At long last, we present the solution to Kaplansky’s problem

The proof shows again that Dales’ original selection of was

expedient.

4.20 Theorem [6:Thm.7.8] Let X be an infinite compact Hausdorff

space. Then, assuming the continuum hypothesis, there exists a

discontinuous monomorphism from C(X,C) into a Banach algebra.

Proof Let R be either of the commutative radical Banach algebras

of Theorem 4.19, and let be the algebra with identity adjoined.

Let A be the real-linear homomorphism of Theorem 4.19. Extend A

first to a real linear homomorphism A : C(~~,R) + R1 and then to a

complex linear homomorphism by

_ 
_ _ _ _ _ _ _ _ _ _
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A(f + ig) = A (f) + iA (g) f, gcC(~jJ,C).

Let Y be a countable discrete subspace of X, which exists by

[9:5], and let ~: -‘~ Y be a homeomorphism.

By properties of the Stone-tech compactification, extend -Ito

~j

If fcC(X,C), then foTEC~$N,C). Let A be the direct sum

C(X ,~)€~R1. A is a commutative Banach algebra with respect to

the coordinatewise algebraic operations and the norm

II(f,r)II = sup{IfI
~
, li r li } (f,r)cA ,!.I~ 

is the
A

supremum noria -

If f cC(X ,ç) , let p(f) = (f , A(fo rj)cA. Then

is the desired discontinuous monoinorphisin.

To answer Kaplansky’s twenty-eight year old question in its

original form , the norm

II fil = II~
(f) hA. fEC(X,C)

is incomplete ~nd dominates the supremum norm.

§4 Final Remarks

In a private commu±ation, A.M.Sinclair informed me that

R.Solovay of the California Institute of Technology had also const ructed

a discontinuous homomorphism from C(X ,C),  but I have been unable to

secure a copy of his work and do not know what techn ique he used .

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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However,since the result was mentioned along with those of Dales and

Esterle without special comment, it is likely that it also requires

the continuum hypothesis.

Whether or not a construction is possible without this axiom

is an open question .whose resolution will , with any luck, require

less time than Kaplansky’s original problem.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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