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INTRODUCTION

Automatic continuity is the study of restrictions that can

be imposed upon the domain and/or range of an operator that will

guarantee the continuity of the operator. Theorems of thisnature
are interesting by themselves, but they sometimes have surprising
applicationsas well - the use of a continuity theorem in Johnson's
proof £10](%hat all complete algebra norms in a semisimple Banach

algebra are equivalent being just one example.

There is another historical link between the study of norms
and automatic continuity. Whether or not there is an incomplete
algebra norm for C(X,C), the algebra of continuous, complex-
valued functions on a compact Hausdorff space X, is a question that
was first raised by Kaplansky [14] in 1949. Badé and Curtis [2 ]
| showed that such a norm would exist if and only if there was a
discontinuous homomorphism from C(X,C) to a Banach algebra, but
despite the interest generated by their work, the question remained
unresolved until very recently. It was finally announced in 1977
[7] that H.G.Dales and J.Esterle had, independently, succeeded in
constructing discontinous homomorphisms from C(X,C). Both construc-

tions require the assumption of the continuum hypothesis.

The purpose of this dissertation is to provide an introduction
to the subject of automatic continuity, with emphasis on this problem

of Kaplansky, the work of Badé and Curtis, and a discussion of Dales'- =




"~ construction.

In Chapter I, some of the 'classical' theorems for the continuity
of homomorphisms and positive linear functionals are proved to show
the types of restrictionsthat can be involved in automatic continuity

arguments. Most of these results are found in [24].

Chapter II begins with an outline of basic representation theory,
directed toward the proof of Johnson's theorem on the uniqueness
of the complete algebra norm in semi simple Banach algebras. This is

used as motivation for consideration of the problem of Kaplansky.

The simplification of the problem by Badé and Curtis is the
subject of Chapter III. Extensions and generalizations of their

results are also considered.

Chapter IV is an attempt to outline Dales' construction of a
discontinuous homomorphism from C(X,C). Even Dales felt uncomfortable
summarizing his paper, which is very complex, so I have contented
myself with highlights and the use of the simplification of Badé

and Curtis.

Throughout, a familiarity with basic concepts of Banach
algebra theory and functional analysis are assumed. For complete-
ness, however, some elementary definitions have been included,
and I have tried to indicate references for results that are used
without proof. Because Dales' construction and some of the theorems
that lead to it embrace so many concepts, I have assumed more in the

last section of Chapter III and in Chapter IV.

Specifically, knowledge of terminology of abstract algebra
is necessary along with properties of the Stone-Tech compactification.

Again, I have tricd to includc references where appropriate.




CHAPTER 1

ORIGINS AND RESULTS FOR RANACH *-ALGEBRAS

The first theorems that could be collected under the heading
"automatic continuity' dealt with properties of homomorphisms from
one Banach algebra into another. Non-zero homomorphisms which have
as range the Banach algebra C of complex numbers are called complex
homomorphisms, and results involving them are the easiest of any

interest.

§1 Homomorphisms

Any Banach algebra A can be isometrically embedded in a Banach

algebra A, with identity, and A1 is called the algebra with identity

1
adjoined. Recall that if x is an element of a Banach algebra A

with identity e such that|| x-e|| < 1, then x is invertible.

1.1 Lemma If @ is a complex homomorphism on a Banach algebra

A with identity e, then @(e) = 1 and P§(x) # O for every invertible x.

Proof. @ is non-zero, so P(y) # O for some y in A, Since

P(y) = P(ye) = P(y)P(e), P(e) = 1. If x is invertible,
1=0(e) = ¢(x’1x) = ¢(x‘1)¢(x) and so P(x) # O.

1.2 Theorem If @ is a complex homomorphism on a Banach algebra A

with identity e, then @ is continuous.
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Proof We show that @ is bounded. Suppose there exists z in A such that

p(z) > |l z [I.

9(z) # 0, so we may write £ = z/Q(z), and ¢(i) = 1. Since

| x || <1, (e-x) is invertible. Thus,
Ple-x) = P(e) - P(x) = 1 - P(x) # O and P(x) # 1.

This contradiction shows P(z) < ||z || for all z in A as required.

Although very simple, Theorem 1.2 is remarkable because it relates
the algebraic notion of homomorphism to the analytic one of continuity.
Bachman [1:334] remarks, ' this is something like saying @ is a
homomorphism, therefore it is green". More importantly, it is ''the

seed ... from which automatic continuity grew". [24:1].

If A is a commutative Banach algebra with identity, the set of
all complex homomorphisms on A is denoted by AA. The radical of A,
rad (A), is given by rad(A) ={i{Ker¢:¢eAA} and A is said to be

semisimple if rad(A) = {0}.

1.3 Theorem [20:269] If : A+ B is a homomorphism and A and B
are commutative, semisimple Banach algebras with identity, then y

is continuous.

Proof. Suppose x + x in A and w(xn) +y in B. Let AA and AB
denote the sets of complex homomorphisms in A and B. Fix heAB and
let @ = hoy. Then ¢8AA, and by Theorem 1.2 h and @ are continuous.
Hence

h(y) = lim h (¥(x)) =1lim P(x ) = B(x) = h (Y(x))

for every heA Thus, y -Y(x) is in the radical of B, and so y = Y(x).

B.
By the Closed Graph Theorem, Y is continuous.

"‘1




5
1.4 Definition An involution on a Banach algebra A is a map *:A > A

such that for all xeA, Aeg,

1) (x+ ¥)* = x* & y*
2) (Qx)* = x*

3) (y)* = y*x*
4) x** = X

A Banach algebra with involution is called a Banach *-algebra. If in

addition

5) [l x*xll =[x I[

it is called a C*-algebra.

1.5 Theorem [20:276] If the Banach algebra A with identity is

commutative and semisimple, then every involution on A is continuous.

Proof Let h be a complex homomorphism on A and define @(x) = h(x*)

By the properties of an involution, @ is a complex homomorphism and

is therefore continuous. Suppose x_ -+ x and xn* + y. Then h(x*)

n

= P(x) = lim P(x)) = lim h(x *) = h(y). Since A is semisimple, y = x*

and * is continuous by the Closed Graph Theorem.

The Closed Graph Theorem is needed frequently in theorems of

this nature, and its use has prompted the following definiton.

1.6 Definition If S is a linear operator from a Banach space X into a

Banach space Y, the separating space of S, denoted €(S), is given by

8(s) = {yeY: there is a sequence {xn} in x with X * 0 and Sx_ - y}.

It is easy to see that @(s) = {0} if and only if S is continuous.

We will have occasion to use the separating space in Chapters II and III.




§2 Positive Linear Functionals

1.7 Definition A linear functional f on a Banach *-algebra A is

positive if f(x*x) 2 O for all x in A.

Several interesting theorems concerning the continuity of positive

linear functionals can be proved, but first we recall three concepts.

1.8 Definition If A is a Banach algebra with identity, the spectrum
of x, denoted sp(x) is sp(x) = {\eC:( e-x) is not invertible in A}.
If A does not have an identity, sp(x) is the spectrum of x considered as an

element of Ay the algebra withidentityadjoined.

1.9 Definition The number v(x) = sup{|l|:AESp(x)} is the spectral radius

1/n i/n
of x, and it can be shown [20:235] that v(x) = inf [[x"| = lim| x"| .

1.10 Functional Calculus Theorem [16:12] Let A be a Banach algebra and

xeA. If f is a complex valued function defined and analytic on a
neighbourhood of sp(x)(and satisfying £(0) = 0 if A has no identity) then

there exists an element f(x) in A such that sp(f(x)) = f(sp(x)).

The following lemma was first proved by Ford [8]. Its importance
rests in the fact that before its proof, similar results could be
obtained only by assuming that the involution was continuous. This proof
is due to Sinclair [27:24] and is a nice application of the functional

calculus.

1.11 Lemma Let A be a Banach *-algebra. Let a = a* be an element

in A with sp(a)n[1,») = @. Then there is a unique x = x* in A satisfying




sp(x)e{zeC:Rez < 1} and 2x-x° = a.

Proof Let A1 be A with identity adjoined. Let f(z) =1 - (1 - z)¥

be analytic in the domain C\[1,®) and use Theorem 1.10 to define
x = f(a). Then (1 - x)2 = 1-a and sp(x)s'{zeg:Rez < 1}. Hence x*

also satisfies
(l-x*)2 = 1-a and sp(x*)e {zeC: Rez < 1} [18:182]
Thus x = x* and 2x-x2 = a.

For uniqueness, suppose yeA, sp(y)< {zeC: Rez < 1} and (l-y)2 = l-a.

Since a = 2y - yz, ya = ay by definition of x. Thus,
sp(x + y) € {zeC: Rez < 2} [19:10]

Therefore, x + y - 2 is invertible and cannot be equal to zero.

Finally,
2 2
(1-x)” = 1-a = (1-y)“, so 0 = (x-y)(x+y-2) and x =y.

The next theorem has as a corollary our first continuity result.

1.12 Theorem [24:74] If a, b, x = x* are in a Banach *-algebra A

and if f is a positive linear functional on A, then

i) f£(a*b) = £(b*a)
ii) |£(a*b)|? < £(a*a)£(b*b)
iii) |f(a*xa)| s f(a*a)v(x)

iv) |£(a*ba)| < £(a*a)v(b*b)”

Proof Let o,BeC. Then
flaa + Bb)*(aa + Bb)] = |a|? £(a*a) + GBRf(a*b) + aBf(b*a) + |B|2£(b*b) 2 O.

This implies that GRf(a*b) + aBf(b*a) is real for all a,BeC.




i) Ifa=R=1, f(a*b) +f(b*a) is real.
Ifa=1, B =1, if(a*b) - if (b*a) is real.
Thus,

f(a*b) + f(b*a)

f(a*b) + f(b*a)

f(a*b) - f(b*a) f(b*a) - f(a*b), and

f(a*b) = f(b*a).
_ f(b*a)
ii) This is proved by letting oo = 1 and B = f(b*b) .

iii) Assume v(x) < 1. By Lemma 1.11, there are y and z in A

such that 2y-y2 = x and 22-22 = -X.

Let v=a ~ya and w = a - za. Then

a* (l-y)za = a*(l-k)a

v*v

w*w a*(l-z)za = a*(1+x)a. Thus '

f(a*a) - f(a*xa) f(v*v) > 0

n

f(a*a) + f(a*xa) = f(w*w) > 0, and

|f(a*xa)| s f(a*a)

iv) By (ii), [f(a*ba)|?= |f(a*(ba))|? s f(a*a)f(a*b*ba),

so by (iii), |f(a*ba)|? < £(a*a)2v(b*b)

The proof of the next corollary depends upon an important result
(Theorem 2.18) in Chapter II, and will be postponed until that chapter

as well.

1.13 Corollary  There is a constant m such that [f(a*ba)| < mf(a*a)|| b||
for all a and b in A, and all positive linear functionals f on A. In

particular, if A has an identity, then every positive linear functional

is continuous.




We now consider the problem of continuity of positive linear
functionals when the algebra does not have an identity. After two
more definitions, a theorem due to Murphy will lead to a conditional

solution of the problem.

1.14 Definition A linear functional f is said to dominate a

linear functional g if f-g is positive.

1.15 Definition For a Banach*-algebra A, let

k_fz ; }
A x[i=1 Xiq Xip eoe Xp ! xij A, n21

z A and

1.16 Theorem [17.171] Let A be a Banacii *-algebra. Let A
let every non-zero positive linear functional on A dominzte a
continuous non-zero positive linear functional. Then every positive

linear functional on A is continuous.

Proof First, the identity
(+) 4ab = (b+a*fTb+a*) - (b-a*)*(b-a*) + i(b+ia*)*(b+ia*) - i(b-ia*)*(b-ia*)

n
implies that because every x in A can be expressed x = I aibi’

i=1
n

it can also be expressed x = I oq.x.*x. (0.€C).
jop +171H

Thus, linear functionals which agree on all elements x*x are
identical. Let F be a non-zero postive linear functional and define

the femily

$ = {G:G # 0, G continuous, linear, positive and F dominates G}.
S is non-empty by hypothesis, and we can define a partial ordering in

S by G1 > G, if and only if G, dominates G,.

e —




10.
Let T be a totally ordered subset of S under >. For all yeA,
lim G(y*y) (GeT) exists because G(y*y) < F(y*y) for all GeT. It is

thus possible to define a functional

@(x) = lim G(x) which is positive, linear and

dominated by F. For every GET, for all xeA

n n n
lex)| = |G(_§ ax;*x) s I fa,| Glx;*x;) < .z lo; | Fex;*x,).
i=1 i=1 i=1

Hence, by the uniform boundedness theorem, there exists an m such

that || G || s m for all GeT, and
)| = 1im[cx)| s |l x]|

Thus, @ is continuous, @€S, and @ is an upper bound for T.

By Zorn's Lemma, S has a maximal element, Go‘

Suppose F - Go # 0. Then by hypothesis there exists a non-
zero continuous, positive linear functional Gy such that F - G, - G,
is positive. Hence Gy + G,es. But G, *+ G; > G, which contradicts
the maximality of Gys S0 G = 0. This implies F - G, =0and F =G,

so F is continuous.

1.17 Corollary [17:172] If A is a commutative Banach*-algebra

such that A2 = A, then every positive linear functional on A is

continuous.
Proof Let f be a non-zero positive linear functional on A and
define

fu(x) = f(u*xu), where ueA.

fu is continuous by Corollary 1.13.

Suppose that fu = 0 for all u in A. Then by Theorem 1.12,

|£(u*x*y) |2 < f(u*x*xu)f(y*y) = 0. This implies £(A) = f(A) = 0,




which is not true because f is non-zero. For some u, then,
% _ 2

f, #0. Since f = | £, we can safely assume that

[lu*u || < 1. Therefore sp(u*u) € (0,1), and by lemma 1.11,

there is a unique x = x* in A such that (l-x)2 =1 - u*u.

Now, £ dominates fu because

n

(£ - £30r%%) = £0r*y - w'y*yw)

f(y*(1l-u*u)y) using commutativity

£(y*(1-x*) (1-x)y) 2 O by definition of f.

E The hypotheses of Theorem 1.16 are now satisfied, and we

are through.

8 Restrictions of a different nature also yield information

about the continuity of positive linear functionals. Recall that

if M is a subspace of a Banach space X, then the codimension of M §

in X is the dimension of the factor space X/M. We require a

definition and a lemma.

1,18 Definition A* ='-Eaj*aj:{ s eees an} is a finite subset of A}.

1.19 Lemma [24:77] If A" is closed and if f is a positive linear
functional on A, then there is a constant m such that f(x) < m|| x|

for all x in A+.

Proof Suppose there is no such constant m. It is thus possible to
choose a sequence {x } in A" such that £(x ) > 2" Il x Il for a1l n.

<o
Now let y = I Z'n”xnll-lxn for m = 1,2, ... . Because A" is closed,

n=m m-1
sl + -n -1
Yp is in A" for all m. Also, y; = nzl 270 x|l Xy * Yy

. — — " “‘||l'
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m-1 s = m-1 h -1
Thus, £(y)) 2 £(CZ 27 (I xJl x)) = = 27 ([ xJ|™" £(x))
n= n=1

1

mel em -1 n
SEOE 2 |IXJ| Il xJIZ =m -1
n=1

for all m, which is ridiculous. This gives the result.

1.20 Theorem [24:78] Let A be a Banach *-algebra. If A2 is

closed and of finite codimension in A, and if At is closed, then

each positive linear functional on A is continuous.
Proof Since Az is of finite codimension, and all linear functionals
defined on a finite dimensional space areé continuous,- it suffices

to show that a positive linear functional is continuous on Az. This

will be done by showing that each element x in A2 can be expressed
- . . . +
X =2z -z, + i(zg - z,) wherel| z; Il < Nlk|l and z; is in A" and

applying lemma 1.18.

+
Let Y = {(xl, Xy Xgs X4) xjeA } and

Ya='{(x1, Xy Xz, x4):” lel s al Let

Auz = {aeA%:]|a || s o} and define amap T: Y + A

2

T (xl, Xys Xg, x4) = X) - Xy 4+ i(x3 - x4).
By identity (+) in Theorem 1.16, T(Y) is equal to Az and so

o0
Az = U T(Yn). By the Baire Category Theorem, there is some
n=1

T(Yn) with non-empty interior, and by a translation, O is in the

interior of T(YZn) . Hence there exists a 8 > 0 such that T(chB) 2 Am2

for all a>0. Let x be in AZ and | x|| <1.

. . E—— L."‘
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A sequence '{yn} can be constructed in Y such that

1) Ty, + oo+ y)- x|l <2

ii) ynE:YB.Z-n+1 [21:236]
- +
If y, = (X0, X500 Xg05 X, ) let By = n-El x; Which is in A
because it is closed.
©o 0 o
Nzl =12 x, Il < 2llx Il < = (282™) = 28 by (ii), and
J n=1 J n=1 n=1

X =125 -2+ i (z3 - 24) by (i).

This completes the theorem.

Corollary 1.17 and Theorem 1.20 make it possible to eliminate
the pfesence of an identity while maintaining continuity of
positive linear functionals, but the concomitant restrictions in
the algebra may seem extreme. With one more definition and a lemma
which we state without proof, we can obtain what is perhaps a more

satisfying result.

1.21 Definition [19:3] Let A be a directed set. A collection
{e(}) :AeA} of elements of a Banach algebra A is a bounded left

approximate identity if

e(A)x * x for each x in A and there exists a positive constant

K such that || e()|| < K for each AeA.

A bounded right approximate identity is similarly defined,
and a bounded two-sided approximate identity is one which is both

a left and right approximate identity.




1.22 Lemma [4:62] Let A be a Banach algebra with a bounded

left approximate identity and let z €A with z Oasn-+« . Then

there exist a,yneA with 3, " ayn(n =1, 2, ...) and ¥, * Oas n-—»>o ,

1.23  Theorem [24:79] Let A be a Banach *-algebra. If A has a
bounded two-sided approximate identity, then each positive linear

functional on A is continuous.

Proof Let f be a positive linear functional on A and let {xn} be
a sequence in A with X, * 0. Then there are a, Yy Yp «eo in A such that
X, = ay, for all n and Yo 0 by Lemma 1.22. By the right

multiplication version of the lemma, there are b, 2y, 2, in A such that

b s znb for all n and z, > 0.

Define F(x) = f(axb). From the identity (+) of Theorem 1.16 and

applying Theorem 1.13, we conclude that F is continuous.
Hence

f(x,) = f(az;b) = F(z ) > 0 as n+ >, and f is continuous.

Rickart [19:245] showed that every C*-algebra has a bounded,

two-sided approximate identity.

We return now, in a rather circuitous fashion, to the consideration

of homomorphisms.
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CHAPTER II

UNIQUENESS OF NORMS AND A PROBLEM OF KAPLANSKY.

The norms || '“1 and || .||, on a Banach algebra A are equivalent
if there exist positive constants a, b such that a ||x[|, < [ix ||, < bllx|l.
for all x in A. Since the most important theorem of this chapter (2.18)
concerns the equivalence of norms on certain Banach algebras, it
may appear that automatic continuity has been temporarily forgotten.
It has already been noted, however, that Theorem 2.18 is required in the
proof of Corollary 1.13. In addition, Theorem 2.18 itself depends
critically upon a continuity theorem - indeed, some considered its

proof a 'victory' of sorts for automatic continuity. Finally, it

Will be shown in Theorem 2.21 that the study of norms and the study

homomorphisms are very closely related. |

In order to deal with these results, though, it is necessary to

address a topic which seems even further removed from automatic

continuity.

! §1 Some Representation Theory

Throughout this section, A will denote a Banach algebra over the
complex field, and all linear spaces will be over the complex field
as well. The definitions in this section are those of Bonsall and
Duncan [4], and though they are a bit dull, they are necessary in

order to achieve Theorem 2.18.




16.

2.1 Definition A left ideal of A is a linear subspace J of A such

that AJS J. An element u of A is a right modular identity for a
linear subspace E of A if A(l-u)g E. A modular left ideal is a left

ideal for which there exists a right modular identity.

A left ideal J of A is proper if J # A, maximal if it is

proper and not contained in any other proper left ideal, and

maximal modular if it is proper, modular and not contained in any

other such left ideal. Similar definitions hold for right and two-

sided ideals.
2.2 Theorem [4:46] Every maximal modular left ideal in A is closed.

Recall that if L is a linear subspace of A, then the factor space

A/L is a normed space under the canonical norm
|| x1|] = inf{|y|| : yelx]} where [x] is a coset in A/L.

If L is closed, A/L is a Banach space, and if L is a closed

two-sided ideal, A/L is a Banach algebra.

2.3 Definition Let M be a linear space. M is said to be a

left A-module if a mapping (a,m) - am of A x M into M satisfies

1) For each fixed acA, m » am is linear on M.
2) For each fixed meM, a -+ am is linear on A.

3) al(azm) = (alaz)m a, azeA, meM.

The map is called module multiplication. Right modules are
defined similarly. M 1is an A bi-module if it is both left and right

and the module multiplications are related by a(mb) = (am)b a,beA, meM.
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2.4 Definition A linear spaceM is a normed left A-module if it is
a left A-module and also satisfies
|l am || <k || a]] || m]] - aeA, meM, K a positive constant.
If Mis complete as a normed linear space, it is a Banach left 1
A-module and of course right Banach A-modules and Banach A-bimodules

are defined similarly.

2.5 Definition Let X be a normed linear space. A representation

of A on X is a homomorphism of A into L(X), the linear space of linear

mapping of X into itself. If m is a representation of A on X, the

corresponding left A-module is the linear space X with module multiplication

™*) ax = mw(a)x

Conversely, given a left A-module X, the corresponding representation '

on X is the homomorphism ™ of A into L(X) given by (*).

The kernel of a representation T is given in terms of the

corresponding left A-module by ker(m) = { acA:aX = {0}}.

Let L be a closed left ideal of A and let a > a' denote the

canonical mapping of A onto A/L. Then A/L is a left A-module under
a[x] = (ay)' a€A, ye[x]eA/L.

This is the regular left A-module, and its corresponding representation

is the left regular representation on A/L with kernel

{aeA : (aA)' = {0}} = ({a:aAgl}

2.6 Definition A left A-module is non-trivial if AX # {0}.

An irreducible 1left A-module is a non-trivial left A-module such that
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X and {0} are the only A-submodules of X, and a representation

of A is irreducible if the corresponding left A-module is irreducible.

2.7 Definition If X, is in a left A-module X, we denote
ker(xo) = {asA:axo = 0}

and call X, cyclic if Axo = X,

2.8 Theorem [4:120] If X is an irreducible left A-module and
X € X\{O} then X, is a cyclic vector and ker (xo) is a maximal

modular left ideal.

2.9 Theorem [4:120] IfJ is a maximal modular left ideal of A, then

A/J is irreducible.

If X is an irreducible left A-module, we consider a special

subset of L(X): p= {TeL(X):aTx = T(ax)a€A,xeX}.
2.10. Theorem [24:35] D = CI, where I is the identity operator.

2.11 Definition Vectors Xps oee X in an irreducible left

A-module X are D-independent if D, ..., D €D and.

Dlx1 * 00 *® ann = 0 implies D1 = D2 =...=D =0-.

2.12 Theorem [4:122] Let x I be p-independent vectors in

1

an irreducible left A-module X. Then there exists an a in A such that

ax, =0 (1 s k £ n-1) and ax, # 0.
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Theorem 2.12 will play an important role in our next continuity

result, but a few more definitions relating to ideals are necessary.

2.13 Definition If L is a left ideal of A, the quotient of L

is the bi-ideal L:A given by L:A ={ acA:aA<L}.

The quotient of a maximal modular ideal is a primitive ideal.

2.14 Theorem [4:123] 1) The primitive ideals of A are the kernels
of the irreducible representations of A.
2) A primitive ideal is the intersection

of the maximal modular left ideals containing it.

’

2.15 Definition The (Jacobsen) radical of A is the intersection
of the kernels of all representations of A, A is semisimple if rad(A) = O !

and a radical algebra if rad(A) = A.

In a commutative Banach algebra, Definition 2.15 and the definition .
of radical used in Chapter I are equivalent. It will probably be a
relief to know that the next lemma will lead to the promised automaiic

continuity theorem.

2.16 Lemma [4:128] Let X be an irreducible Banach left A-module.

Let A, denote the closed unit ball in A and let xoe)k{ol If L is a

closed left ideal of A with Ltker(xo), then there exists K > 0

such that Konoc (L"Ab)xo'

Proof Let M= ker(xo) and a' denote the M-coset of a. Since by

Theorem 2.8 M is a maximal modular left ideal and L&EM, LM = A,
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Therefore a > a' maps the Banach space L onto the Banach space AA.
By the Open Mapping Theorem, there exists K > O such that for every
yeA/Mwith || y || S K, there exists beLn A, with b' = y. Given
aek Ays we have || a'|| £ K and so there exists beLn Aj with b' = a’'.

Thus b - aeker(xo) and ax, = bxo.

2.17 Theorem [4:128] Let BL(X) denote the space of bounded linear
mappings of X into itself. If T is an irreducible representation of
2 normed linear space X such that T (a)eBL(X) (a€A), thenrw

xe sinuous.

Proof The proof can be reduced to the case where ker(r) = {0} as

we now show. Let K = ker(m), so K = {acA:aX = {0}} =N{ker(x): xe X\{0}}.

Since ker(x) is a maximal modular ideal for each xeX\{0}, and since '
ker(m) is a primitive ideal (Theorem 2.14), K is a closed bi-ideal

and B = A/K is a Banach algebra. Define T on B by
T{blx = m(a)x (ae[bleB,xeX).
t[b] is a well defined linear operator on X and
I wib)xll = I vexll < lIn@)ll =<l soz[bjeBLN).

If 1 is continuous, so is ™ , and T isan irreducible representation

{o}.

of B on X with ker (1)

So assume ker(T) 0. If X is finite dimensional, so is L(X),

and since ker(m) = O, A has finite dimension. Thus T is continuous.

We therefore assume that X is infinite dimensional. Given xeX, let

o(x) be the linear mapping of A into X defined by

o(x)a = ax (aeA).

Y e ____________J
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Let Y = {ng:o(x)eBL(A,X)}. Y is an A submodule, because for

yeY and beA we have
o(by)a = aby = o(y)(ab) and
looyrall < ol lebll < llo Il Tall bl

Since X is irreducible, either Y = X or Y = {0}, Suppose first

that Y = X, and denote the closed unit ball by Xo. Then
I ocaall =1 ax|| = [[n@x|l< [ m@ ||  (xex, aca).
By the Uniform Boundedness Theorem, there exists m > O such that
[[o(x) || sm. But this means ||ax|| < m | a]l, or

I m@)|| s m ||al| and 7 is continuous.

Now suppose Y = {0} and let A, be the closed unit ball of A.
By definition of Y, Ajx is unbounded where xeX{0}. Since X has

infinite dimension, X contains an infinite sequence{ x} of D-independent

vectors, and we may take|lxn||= 1L
M = =
Let - ker(xn) and Ln M.1 n ...l\Mn_l. By Theorem 2.12,
there is an a€A with axy, = 0 (1< K £n-1) and ax # 0; in other

words aeL\M . Therefore Lﬂ#h&n and since AgXy is unbounded., Lemma

2.16 shows that (Lnr\ Ao)xn is unbounded.
- < =N
Choose 85, cees By een with anELh,llaJl 2 and

1l a x [|> n+ ||(al+ . an_l)xnll.

n
o (-]
& - ) >
Let b= I a, and b z 3 . We have a €M (k> n)
=1 k=n+1
and since Mn is closed, it follows that bneMn. Therefore bnxn = 0.

But b = a, +...+an + bn’ and so

= a,X + ... +a_x_ whi i ie
bxn 1*n n*n hich implies




I bxg sl apxl - licags..ova, x| > n.

This contradicts the fact that m(b)e BL(X), and we conclude

that Y # {0}, Thus Y = X and ™ is continuous.

Theorem 2.17 was proved by Johnson [10] as the major tool in his proof

of Theorem 2.18.

§2 Uniqueness of Complete Algebra Norms

The uniqueness of the complete algebra norm for commutative
semisimple Banach algebras is an easy consecwence of Theorem 1.3,
and was proved as early as 1948 [4:131]. The non-commutative case
is a very different matter, and Johnson's proof did not appear until
1967. The proof given here is found in Bonsall and Duncan [4:130],
with a trivial addition to make use of the separating space from
Chapter I. -
2.18 Theorem Let (A, |.l| 1) be a semisimple Banach algebra, and let
I .” 2 be a second algebra norm with respect to which A is complete.

Then[f.'[z is equivalent toff.”l "

Proof Let M be a maximal modular ieft ideal of A, X = A/M, and

let || .|| 1',” Al ,' denote the canonical norms on X derived from
Il 1,and”.” ,+ Because M is closed, X is a Banach space with
respect to each norm. Let T denote the left regular representation
of A on X. By Theorem 2.9, T is an irreducible representation of

(A,||.||1) on the normed linear space -l 2'), and since

I m@ ll,t =llatdll < Fall il aea, [xgex,

22.
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'n(a)EBL(X,II - H 2') for each a€A. Therefore, by Theorem 2.17, T
is continuous and there exists a positive constant K such that
I m@ il <xllall I 0 aea, [x) ex.
Let a » a' be the canonical mapping of A onto AM, and let u be a
right modular identity for M. Then for every a in A, au-aeM, and so
m(a)u = (au)' = a'.

Therefore,
NIl =latlit = linGaull,' skllall,llull,', aclxle AM
Since this holds for all ag[x], we have

IIx2I " < kil xIly ull,!

‘

and we conclude that || . || ;' @nd Il .Hz' are equivalent on AM.,

Now look at the identity map I: (A, “ “1 ) > (A,” H 2).

Let aeG(Il), the separating space of I. Then there exists a
sequence { a} in s 1) withllaJI y* 0 and | an—?!lz*' 0.
Thus |[a " Hl' +0 and Han' - a' Hz"* 0. Since the canonical
norms are equivalent on AM, llan'.- a'll 1"* 0, which implies that
a' = 0 and aeM. Since this holds for every maximal modular left
ideal, aerad(A) = {0} by semisimplicity. Thus @(I) ={0} and I is
continuous. I: (A, ||. ||;) * (A, |[.[| ) is continuous as well, so the

norms are equivalent.
An improvement of Theorem 1.5 is immediate.

2.19 Corollary All involutions on a semisimple Banach algebra

are continuous.

DB Ee————
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Proof If * is an involution on A, 1et||x||1 =||x*|l.||:l|1 is a
complete algebra norm and is therefore equivalent to|l.|l, so * is

continuous.
The proof of Corollary 1.13 can now be given, as promised.

Proof of Corollary 1.13 Let R be the radical of A. * induces

an involution on A/R such that [x]* = [x*] because R* = R [18:55].
A/R is semisimple [4:124], so the involution is continuous. Thus,
there exists a constant m> such that || [x*]]| = m]| [x]]| for all x-in A, so

vb*b) = vb*b] < || *blll < llp*1lle |l Bb] || < m? 1l 2 < w?ll ol 2.
Thus, | £(a*ba)| < mf(a*a)|| b || by Theorem 1.12. -
If A has an identity, then

Tew)! s nf(e)ll bll for all b in A and £ is continuous.

The study of norms has assisted the study of positive linear

functionals, now we show its relation to homomorphisms.

§3 A Problem of Kaplansky

The following definition is probably familiar.

2.20 Definition If A is a Banach algebra with identity e, a

multiplictive semi-norm on A is a function [.1 on A to [0,~) satisfying

i) |x+ylslxl + 1yl xyeA
i) |xy| s ||| X, YA
iii) |ox|=lall 4 oeg,xeA

iv) Je|=1
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If | x| = O implies x = O, | .| is a multiplicative norm.

2.21 Theorem [2:592] Let A and B be Banach algebras with identities
e and e' respectively. If ©is a homomorphism of A into B with

6(e) = e', then the function | ¥ =|| 0 (x)|| , xA is a multiplicative
semi-norm on A. If |.| is a multiplicative semi-norm on A, then

there exists a homomorphism © of A into a Banach albebra B such that

Ix| = e, xea.

Proof One way is obvious. Suppose | .| is a semi-norm on A.
I={x:|x|=0} is an ideal in A, and | .| is constant on cosets

of A/I because [x-y | 2 (x| - |y| . Thus, A/I is a normed algebra
under the norm |[x]| = Ix |. Let Obe the canonical homomorphism of

A into the completion of A/I, and we have what we desire.

Let X be a compact Hausdorff space, and let C(X,C) denote the
algebra of continuous, complex-valued functions on X. With pointwise
operations and the supremum norm, C(X,C) is a semié&mple,
commutative Banach algebra, so all complete algebra norms are
equivalent. More is known for tiiis algebra, for Kaplansky
proved in 1949 [14:407] that any norm on C(X,C), whether complete or

not, is greater than or equal to the supremum norm. The next theorem

says the same thing.

2.22 Theorem [24:58] Let X be compact Hausdorff. If© is a
monomorphism from C(X,C) into a Banach algebra B, then ||ef||2H f "

for all feC(X,C).
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Proof By restricting attention to 6(C(X,C)), we may assume B is

commutative with identity. Recall {21:328] that X is homeomorphic
to AC(X,Q) and that AB is compact in the Gelfand topology. Then O
induces a map (E)":AB -+ X defined by f(0*y) = Y8(f) for all ¢ in AB
and f in C(X,C) [16:136]. © * is continuous by definition of the

Gelfand topology, so © *(AB) is compact and therefore closed in X.

Suppose that ©* is not onto. Then there exists )\°€X\O *(8p)
and there are disjoint openlU ,V with ,\er and O*(ALB); V. By
Urysohn's Lemma, we choose feC(X,C) such that £(X\V) =1,
£(0 *(4p)) = O and geC(X,C) such that g(A)) = 1, g(X\U) = O.

Thus, fg = g.

Since f(©*(A_)) = 0, it follows by definition of O that

B
Y(eE) = O for all lpEAB, and so ffcrad(B). Therefore (1 - ©f) is invertible

"

[20:265]. Since fg = g, 0f0og = Og and (1 -0 £)Og = O. “But this implies
that ©g = 0, which contradicts the fact that © is a monomorphism.

Thus,@* (AB) = x'
Finally, if f£eC(X,C),

Il £]l= supl€£x)| = sup|£O*¥)| = v(ef) [20:268]
X
Xe veA
<|lef || as required.

Kaplansky's theorem naturally raised the question, ''Does there
exist an incomplete algebra norm on C(X,C)?" From Theorem 2.22, this
is equivalent to asking "Is there a discontinuous monomorphism from

C(X,0) 2"

This question is the problem of Kaplansky, and its solution is

the aim of the next two chapters.

— v
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CHAPTER III

TOWARD A SOLUTION

Kaplansky's problem did not immediately arouse much interest,
and few papers on the subject appeared for about eleven years. In
1960, Badé and Curtis published a fundamental paper [2] which, along
with providing a considerable simplification of the problem of Kaplansky,

encouraged further work on the continuity of homomorphisms in general.

§1 Results of Badé and Curtis

The main tool used by Badé and Curtis is the following interesting

boundedness theorem.

3.1 Theorem [2:592] Let A be a commutative Banach algebra and
© a homomorphism of A into a Banach algeb;a B, If '{gn} and

{h } are sequences from A satisfying
i) énhn of "NE B oy i
ii) hmhn =0 m#n
then sup || (gl /llg, lllIn |l <=
Proof  Suppose for contradiction that lim sup || (gl Alg [l I h || = + «

We may suppose ||g [[= 1, n=1,2, ... . By (i),[|n |l 21. we

shall construct a linear combination of hn's which maps into

an element of infinite norm. Select distinct elements qij’ 1500 ® 12 vas




|
[ from the sequence R such that
i+j
) lleca; iz 4 py;ll
where pij is the relative unit corresponding to B = qij' Define

(o 2]
o j s
fi = jfl qij/2 i=1,2...)

= 97 N :
pijfi 2 qij’ and this together with (+) shows C(fi) # 0.
For each integer i, select j(i) large enough so that ZJ(llﬁjo(fi)”

and define
N NTOVCa | B
This yields
£y = qij(i)/zi+j(i) I Rij (1) I e L0
By (+) and the way j(i) was selected we have
oo Il Tlocep I 21l ocell 2 229 > 24 aey |

Thus, || @(y)|| > 2" for every i, and this contradiction

establishes the result.

Virtually every paper extending the work of Badé and Curtis
utilizes a theorem similar to Theorem 3.1, and for this reason j

we present a very short example of the kind of assistance it provides.

Let A be a commutative semisimple Banach algebra with identity.
By means of the Gelfand map A may be treated as an algebra of
continuous functions on AA [20:268]. Also assume that A is regular,
that is, for any disjoint closed sets E and F in AA, there exists

a function in A which is zero on E and one on F.

|
|
|
|
|
|
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3.2 Definition Denote by G the family of all sets Es;AA such that

supll ol Al gll I hll=m <=

for all functions g and h with support in E and such that gh = g.

3.3 Lemma [2:595] If'{Eﬁ} is any sequence of disjoint open sets

in A

A then EneG for all sufficiently large n.

Proof If the lemma were not true, there would exist an infinite
sequence {E } of disjoint open sets and functions g, h in A

with support in Em such that
i) |lg, II=1
ii) 8y h, = g and
iii) || ecg)ll > mln |l _ ,

and this contradicts Theorem 3.1. !

Through a series of lemmas involving repeated applications of
Theorem 3.1, G is shown to contain a maximal open set whose complement

is finite.

3.4 Theorem [2:597] Let A be a commutative, regular Banach
algebra with identity, and let O be an arbitrary homomorphism into a
Banach algebra B. Then there exists a finite set F (the singularity

set of 0O) of points in AA and a constant m such that

leey|l < m|l gll |lh|l for all functions g and h in A

having support in AA\F and such that gh = g.
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Restricting our attention once again to C(X,C) for X compact
Hausdorff, let © be a homomorphism of C(X,C) into a Banach algebra

B and let F = {w s mn} be the singularity set of O.

1°

3.5 Definition M (f) = the intersection of the maximal ideals

M(“’i) = {feC(X,0): £w;) = 0}.

J(F) = the ideal of functions each of which
vanishes in a neighbourhood of F, the
neighbourhood depending on the function.

A(F) = the dense subalgebra of C(X,C) consisting

of those functions f such that f(w) = f(wi)
in a neighbourhood of each point w; €F, the

neighbourhood varying with f.

With these definitions, Theorem 3.4 may be strengthened.

3.6 Theorem [2:599] If O is a homomorphism of C(X,C) into a

Banach algebra with singularity.set F, then O is continuous on A(F).

Proof By Theorem 3.4 and the fact that the hn’s may be chosen to

have norm 1 [2:598], we have

ol < Ml g || 263(F), M a positive constant.

Now choose functions e Oxg e < 1 such that eiej = 0 when 1
i#j and ei(w) = 1 in a neighbourhood ofwis F. Then for any

feA(F), £ - T flw)e; eJ(F), so
i=1

n n
| o)l <l ocf - T flwde ]l +ll £ flw)oce)]|
- IR TR

n n
sMlE-2 fwdell +lL £l T Jloe) |l
i=1 i=1
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ol

n
< [sM+ £ || el 1l £ ]| feA®

i=1

and O is bounded.

Since O is continuous on a dense subalgebra of C(X,C), it has

a unique continuous extension W to C(X,C) which agrees with O on A(F).

3.7 Definition A(f) = O(f) - u(f) feC(X,C).

M is the continuous part of ©; A the singular part.

The next important result reduces the problem of finding a

discontinuous homomorphism from C(X,C) to that of finding a non-

trivial homomorphism from a maximal ideal of C(X,C) to a radical

Banach algebra.

3.8 Theorem [2:599] Let O be a homomorphism of C(X,C) into a
commutative Banach algebra B and let R denote the radical of ©(C(X,C).

tet F = {w;, ..., wn} be the singularity set of ©, y and A the

continuous and singular parts of ©, and M a constant such that

lue) |l « M| £ || for feC(X,£). Then T
a) The range of p is closed in B and
W) = u(C(X,C)) ® R, a normed direct sum.
b) R= X(C(X,O)

c¢) R:u(M(F)) = 0 and the restriction of A to M(F) is a

homomorphism.

d) There exist linear transformations Ai, i=1, ..., nsuch H

that:
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ii) R = Rla Rz oo 1) Rn where Ri = Xi(C(X,Q)

iii) Ri- Rj =0 when i #j and R.1°u (M(w.l)) = 0.

iv) The restriction of )‘i to M(wi) is a homomorphism.

Proof a) Let A= {f: u(f) = 0}. Since M is continuous, A is a

closed ideal in C(X,C) and there exists a closed set Gs< X such that
A= {f:f(w) = 0; weG} [21:330]

If C(X,0)/A is given the canonical norm, then C(X,C) is

isometrically isomorphic with C(G) [18:236] and so

It (£1]] = sup|£(w) .

weG
Also, the semi-norm |f| = ||u(f)|| is constant on the cosets [f],
and so C(X,C)/A may bc normed by aefining 1€l = |£]. By

Theorem 2.22,
M1l 2]l £l , feC(x,0).

But for any ge[f], we have |f| = lgl sM|| gl| because M is continuous.

Thus

(*+ |1£1] < Minf{]| gll = gel£1} = M| [£]]).
(*) and (**) show the norms are equivalent on C(X,C)/A.

To show u has closed range, suppose bOEB and bo = limu(fn).

Then
I 6 £l < 15 fyl = N uCEesll + 0

There exists f eC(X,C) such that ”[fo-fn] || > 0. Thus




lluce) - uee, lsMlli£-£ 111~ 0 and by = uC£).

Thus W(C(X,C)) is algebraically isomorphic with C(X,C)/A and

u(c(x,9)nRr = {ol

Now we show that A =0 -p maps into R. If ¢8AB where
o

Bo = O(C(X,C)), then the functionals ¢e and ¢u defined by
¢e(f) = P(O(f)) and ¢]J(f) = @(u(f)) are complex homomorphisms
and therefore continuous by Theorem 1.2. Since they coincide

on the dense subalgebra A(F), Py = ? Thus @ {A(f)) = O for

b
feC(X,0), ¢eAB , and A(f)ER.
o

Thus O(C(X,C)e u(C(X,C))@ R. We must show that O(C(X,C))

= u(C(X,0))®R. Ifb = limG)(fn)', then since u(C(X,C)) is closed in B,

||e(fm - £) | vp(O(£, - £)) (recall V(x) is the spectral
radius of Definition 1.9)

Vg (H(E,- fn))

Vueex,g) M)

W ueg,-£)l-

vV

There therefore exists an fOEC(X,Q) such that u(fo) = limu(fn).

Ifr = b-u(fo), then r = lim ()‘(fn)) and r€R. This completes

(a), and proves (b) as a bonus.

c) Since J(F) is dense in M(F), it is enough to show that
uw(g) A(f) = 0, geJ(F), feC(X,C). Now fgeJ(F), and © and p

agree on J(F). Therefore:

u(A(£)

u(g) [o(H) - u(H]
0(g)o(f) - u(glu(f)
O(gf) - ulgf) =0

]

f




If £, g ¢ M(F), we have

u

A(fg) = o(fg) - u(fg)

[u(f) + A(H)1[ulg) + A(g)] - u(fg)

u(Hulg) + A(HA(g) - u(fy)

A(£)A(g)

and A: M(F) = R is a homomorphism.

d) Choose functions €5 i=1, ..., n such that e is one in a
neighbourhood of w; and eiej =0 for i # j. Definé

N = Ae;D £6C(X,) -
If f,geM(wi), then eif,eigeM(F) and so
2
A DA () - A (fg) = A((ey” - e;)fg) =0

because (eiz-ei) fgeJ(F). Thus, Xi:M(wi) + R is a homomorphism.

X 5 n
Since (1- I ei) feJ(F) for all feC(X,C),
i=1
n n
0= A(1- Z e.)f = AMf) - Z A.f and
. i : i
i=1 i=1
n
AS B N R.+ R. = 0 is immediate.
i=1 * 0

We have two more results to prove: d(ii) and R;-u(M(w;)) = 0.

To finish these, note that

1) 0= G(ei)O(ejf) uley) [u(ejf) + A(ejf)]

u(e;) A(eyf) i#j, feC(X,0)

34.




n n

2) k(eif) [w(l-Z ej) + .2

ue.)] Ale;f)
j=1 i=1 ) 8

u(e;)A(e;£) by 1) and (c).

d(ii) follows easily.

n
e.g+ (1 - I e.,)g, and the last term is in J(F).
1 J j=1 ]

o
n
nmMm=

j

Therefore by 1), and the fact that e_igeM(F), we have

n
k(eif) .Z
i=1

A(e;f)H(e;8) = 0.

Ae; D) u(g) u(ej) u(g)

This finally completes the proof.

The state of affairs may now be summarized.

3.9 Theorem 2:602] If C(X,C), X compact Hausdorff, has any

of the following, it possesses every other.

1
2)
3)
4)

5)

an incomplete multiplicative norm,

a discontinuous multiplicative semi-norm,

a discontinuous isomorphism into a Banach algebra,
a discontinuous homomorphism into a Banach algebra,

a homomorphism A into a radical Banach algebra R with adjoined
identity, such that for some maximal ideal M(wo),k( M(wo)) e R

and A(J(w)) = 9-

e
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Proof (1) <> (3) and (2) <> (4) follow from Theorem 2.21.
(3) » (4) ~ (5) because any one of the Ai's of Theorem 3.9
may be appropriated. Given (5), the norm [x| =|| x|k ||A(x) ||
defines a multiplicative norm on M(mo) which can be extended to

C(X,0), so (5) ~ (D).

Successors to Badé and Curtis fall into two categories:
those who attempted to prove results similar to Theorems 3.6 and
3.8 in more general settings, and those who sought extensions

applicable to the problem of Kaplansky.

§2 Generalizations

Cleveland [5] initiated the study of automatic continuity
under less restrictive circumstances by considering homomorphisms

from non-commutative Banach *-algebras.

3.10 Theorem [5:1104] If O is an isomorphism of a C*-algebra A,

then there exists a constant M such that

b Il < Mol . xea.
The similarity of the theorem to Theorem 2.22 is noted; but
the difference in technique in obtaining it is emphasized.
Cleveland comments [5:1098] that Theorem 3.10 implies every
multiplicative norm on A is complete if and only if every isomorphism
is continuous, and shows [5:1105] that if there is a discontinuous

homomorphism on A, there is a discontinuous isomorphism on A.
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Using the same technique as Badé and Curtis, Cleveland obtained
a slight extension of Theorem 3.4. Let A be a C*-algebra with
identity, ©:A -+ B a homomorphism with B = O(A). If A' is a

commutative C*-subalgebra of A containing the identity, A' is isometrically

isomorphic to C(X,C) for some compact Hausdorff X [18:232]. We have

3.11 Theorem [5:1108] There exists a finite set F in X and a

constant M such that

[l otg?a)|| < M|| gll llgall , acA, geA*, support of ge X\F. 1

Along different lines, Barnes [3] investigated homomorphisms
with restricted range. Note first that an algebra is strongly semi-
simple if the intersection of all maximal modular two-sided ideals

is zero. '

3.12 Definition An algebra A is a modular annihilator algebra

if for every maximal modular left ideal M and every maximal

modular right ideal N,

1) RM) # 0, R(A) = 0 where R(M) 0 for all yeM}

n

" {xeA:yx

"{xeA:xy = O for all yeN}

2) L(N) # 0, L(A) =0 L(N)

3.13 Theorem [3:1036] Let A be a Banach algebra which satisfies
the property |
(*) Whenever I is a closed ideal of A such that A/I is

finite dimensional, then I2 = I,

If0: A+ B is a homomorphism and B is a strongly semisimple |

modular annihilator algebra, then O is continuous.
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That Barnes' theorem is not totally removed from the problem
we are considering follows from his comment [3:1036] that every

C*-algebra satisfies condition (*).

In 1967, Johnson [11] was able to show that for certain special
classes of algebras of operators on a Banach space, all homomorphisms
are continuous. More interesting, though, are his studies of

arbitrary homomorphisms of C*-algebras using the ideal

J = {t:teA, O(t)s = 0 Ysc&(@)}

where A is a C*-algebra and O is a homomorphism into a Banach algebra

B.

’

3.14 Theorem [12:81] J is of finite cedimension in A.

Theorem 3.14 has been stated only to allow the proof of a
corollary which shows once more the usefulness of the separating space.
3.15 Corollary [12:83] If A is a C*-algebra with identity e and no
closed proper ideals of finite codimension, then © is continuous.
Proof By hypothesis and Theorem 3.14, J= A unless J= {0} and
A is finite dimgnsional, which is a trivial case. ThusJ = A and
©(e), which is the identity of ©(A), and thus the identity of O(A),

annihilates G@(©). Therefore &(0) =" {0} and © is continuous.

Theorem 3.14 applies to an algebra without identity, but in
this case it is not possible to obtain a result analogous to Corollary
3.15. However, Johnson claimed that a direct generalization of Thereom
3.6 to C*-algebras would be achieved if it were possible to show that
0]J is continuous. Motivated by thisidea, Stein [27] concentrated on

von Neumann algebras, and was able to generalize Theorem 3.8 to this
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special case.

Thus encouraged, Stein pursued Johnson's suggestion further, but
with less success. Again, let A be a C*-algebra and © a homomorphism

into a Banach algebra B.

3.16 Definiticn

I, = {xeA: su || 0(x2) || < =}
- "zrsl| Il

I

= {xeA: su | 0x2) || < =}
2= !

Stein showed that IL is contained in Johnson's J, and proved

the following result.

3.17 Theorem [28:437] Let U= I be a closed, two-sided ideal.

Then 0 |U is continuous.

Continuing in the same vein, Sinclair [22] considered an ideal

slightly different from Johnson's , namely
J1 =" {acA:f@s =s6a) = {0} Vse§(0)}

Again throﬁgh techniques broadly similar to those of Badé and
Curtis, Sinclair obtained a partial generalization of Theorem
3.8 for non-commutative C*-algebras. It is illuminating to note that
he could not prove part (b) of that theorem, which in the commutative

case relied upon an application of Theorem 1.2. Two corollaries of his

theorem must be mentioned.
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3.18 Corollary [22:4511 Let A be a C*-algebra, B a Banach algebra,
and O a homomorphism from A to B. If B is continuous on all C*-
subalgebras of A that are generated by single hermitian elements,
then @ is continuous.

3.19 Corollary [22:451] If there is a discontinuous homomorphism
from any C*-algebra, then there is a discontinuous homomorphism from
C[0,1], the algebra of continuous complex valued functions on the
closed interval [0,1].
’ 83 Extensions Tailored to Kaplansky's Problem
The desire to gain further information about C(X,C) for X compact
Hausdorff led Sinclair to investigate CO(B), the continuous functions
on the reals which vanish at infinity.
If there is a discontinuous homomorphism from a C*-algebra ;
into a Banach algebra, then there is a discontinuous homo-
morphism from C[0O,1] into a Banach algebra (Corollary 3.19),
and hence there is a discontinous homomorphism ¥ from
q) ,1M)A}) into a radical Banach a‘gebld for some A in
(?1 by Theorem 3.9. By restricting ¥ t C _[0,)A) or C ()\ 1]
we obtain a discontinuous homomorphism from Sne of thes&
into a radical Banach algebra, and ¥ annihilates functions
with compact support [2:603]. Identifying [0,A) or (A,1]
with [0,») homeomorphically, and sending functions with suppost
in (-~,1] to zero, we obtain a discontinuous homomorphism from
Co(R) into a radical Banach algebra. [23:165]

L : This study also yielded: :
3.20 Theorem [23:172] Let X be a compact Hausdorff space and suppose
there is a discontinuous homomorphism from C(X,C) onto a dense subalgebra
of a Banach algebra B. Then there is a closed ideal M in B such that
Y: C(X,C) - B/M, defined by Y(f) = O(f) + M, is a discontinuous
homomorphism whose kernel is a prime ideal in C(X,().

g ' : '
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A new level of complekity in the efforts to extend Theorem
3.8 was reached in the 1976 paper of Johnson [13], which undertook
a more detailed analysis of the finite singularity set F. The methods

of Badé and Curtis were used to find a finite set E such that
E< B(X\F)\ (X\F)
where B(X\F) is the Stone-Cech compactification of X\F. A theorem

paralleling Theorem 3.8 applies to the set.

Two other results in Johnson's paper which are of a different
nature require some definitions. Let A be a totally ordered set.
Write A < x to mean a <x for every a in A; similarly x < A, A <B.
A subset T of A is cofinal (coinitial) if for each acA there exists

teT such that t 2 a (t <a).

3.21 Definition (A,s) is an M set if for any countable subsets

'l‘1 and T2 of A with T1 < T2, there exists aeA such that ’I‘1 <ac< Tz.
This implies that an n,-set is one in which no countable set is

either coinitial or cofinal.

3.22 Definition An ordered field is real-closed if it has no proper
algebraic extension to an ordered field. Equivalently, F is real-

closed if every positive element is a square.

3.23 Theorem [13:46] Let E and F be real-closed nk-fields containing
the real numbers R and of cardinality Nl. Then there is an isomorphism

uiof E onto F with U|R = identity.
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This theorem allows a surprising conclusion.

3.24 Corollary [13:38] Assuming the continuum hypothesis, if
there exists a discontinuous homomorphism from C(X,C) for any
compact Hausdorff X, then there exists a discontinuous homomorphism

for each infinite dimensional C(X,(C).

Taking stock of the situation, we see that Theorem 3.8 provided
the major simplification of the problem of Kaplansky, and the
latest theorems of Sinclair and Johnson indicated that investigating
special cases would be profitable. Although the continuum hypothesis
is anathema to some, Johnson's use of it was the inspiration for the

solution of Kaplansky's problem discussed in Chapter IV.
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CHAPTER IV

A DISCONTINUOUS HOMOMORPHISM FROM C(X,C)

In 1977 it was announced [7] that, working independently and
employing completely different methods, H.G.Dales and J.Esterle
had constructed discontinuous homomorphisms from C(X,C) for X
compact Hausdorff. Both constructions depended upon the assumption

of the continuum hypothesis.

Dales' paper is an excellent example of the synthesis of diverse
fields of mathematics in the solution of a particular problem, and the
purpose of this chapter is to present a highly condensed account of

his complicated result.

§1 Definitions and the Basic Idea

The work of Johnson.suggested that consideration of an
appropriate compact Hausdorff space would be sufficient for the
problem, and for reasons which will become clearer in Theorems 4.2
and 4.20, Dales opts for BN, the Stone-Cech compactification of the

integers.

Select any peBN\N and define the maximal ideal
M1p)
J(p)

{feC(BY,B): f(p) = 0} and the ideal

" {£eC(BN,R): £ 1(0) is a neighbourhood of p in BN}.

Finally, identify Cos the real valued sequences which converge

to zero, withthe set {feC(BN,R):£|(BMN) = O}.
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In keeping with Theorem 3.8, the construction will yield a real
linear homomerphism from j{(p) to a radical Banach algebra that has

kernel J(p) but does not vanish on o -

4.1 Definition A = M(p)/J(p) A1 = C(8N,R)/J(p)

A1 is the algebra A with identity adjoined.

We note that the space C(BN,R) is partially ordered by
fsg if f(x) <g(x) for all x in BN.

Dales shows that the quotient order in A is a total order and proves

the following theorem.

4.2 Theorem [6: Prop 2.7]

i) A is an n,-set.
ii) The quotient field of A is a real-closed nl—field which,

assuming the continuum hypothesis, has cardinality Nl.

The fact that we are dealing with BN is used in Theorem 4.2
because under the continuum hypothesis, C(BN,R) has cardinality N,

[9:185].

More importantly, it is shown that divisibility can be expressed

in terms of this order, and this is written:
b divides a if and only if |a] < [b].

This makes it possible to begin the construction of the homo-
morphism by finding a map Aon a subset of A and considering an algebraic

problem.




e

|
"

If a = bc in A and A(a) and A(b) are already defined, is it
possible to solve A(a) = A(b)x? In case the range of A is a radical
Banach algebra R in which divisibility and order are related in the
same way as in A, and A is isotonic (that is, la] < |blin A »
lk(a)l < IA(b)l in R), the answer is yes. For if
a = be, |al 5 |v], [Aca)| s|A(b)! and so A(b) divides A(a).

Thus, we can set A(c) = A(a) X(b)-l.

This problem is complicated by the fact that each element a in
A" = {aeA:a > O} is infinitely divisible; that is, for any integer
n there exists a b in A such that b" = a. Therefore, A(a) must also

be a non-zero infinitely divisible element in the range. We pause

" for some definitionms.

Let w(t) be a positive measurable function on [0,*) such that

w(s+t) < 0(s)u(t) and lim w(t)/t = o.

4.3 Definition 1. Ll(w) is the space of equivalence classes (under
equality almost everywhere) of Lebesgue measurable complex valued

functiors on f0,*) with norm

” f” = f:lf(tﬂu(t) dt and convolution multiplication

(£*2) (1) = /], £(t-s)g(s)ds.

Zs Ll(o,l) is the Banach space of equivalence
classes (under equality almost everywhere) of Lebesgue integrable

complex valued functions on [0,1] with norm

£ |l= lef(t)[dt and convolution multiplication

(f*g) (t) = f; f(t-s)g(s) ds O <t <1.

Ll(w) is a commutative, radical Banach algebra without identity

[4:5] and so is L1(0,1) [16:29].

45,
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4.4 Definition For 0 > 0 let
e -0t
Lo = {f:f complex valued, measurable on [0,), f°|f(t)|e dt <}

equating functions equal almost everywhere.
A= U{L;:o>01

LU(B) and A(R) denote the real valued functions of Lo and A.

e S -0t s e oo s
With norm ” flhj= folf(t)le and convolution multiplication,
Ly is a commutative, semisimple Banach algebra without identity [ 4:8 ],

A is a linear associated commutative algebra. If % < Y

I, e Lye Ac tlws Lio,n.
1. 2
Ll(w) and L1(0,1) are two of the few radical Banach algebras
in which non-trivial infinitely divisible elements exist, and are

therefore candidates for the range of A. Unfortunately, however, ]

it is not always possible to tell exactly which elements are powers
of other elements. This is where Definition 4.4 comes in, because
it is possible to decide this question in A. Just how this is

accomplished requires some more definitions.

4.5 Definition For 021, let = {zeC:Rez > 1,]z| > o}
A, = {£eC*(Q,0): £ is anmalytic on @} where C*(R,0) is
the space of bounded functions on ﬁ&.
A, = direct limit of the As's [15:219].

AU is an algebra with respect to pointwise operations, and we

define |F| = sup {F(z):260}  for FeA.
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4.6 Definition For 0 2 1, the set Qg is the subset of Ao consisting

of the zero function together with the functions F which satisfy

) F(z)zk is bounded for each integer Kk, 2856
2. F(z) #0 (,ze?io)

3.  E(z)eR(ze0NR).

¢, = direct limit of the (%'s, and is a subset of A_.

4.7 Definition Let O(R) be the algebra of analytic functionson theopen

subset @ of C. For feL,, the Laplace transform of f is
@0 @) = [ ft)e ™ (Rez > o).

LfeOQ ) and L(f*g) =<LfLg [25:171] .

4.8 Definition If FE(% , the inverse Laplace transform is

T+iy

2 -1 _ 1 2 zt
f(t) = K F([) = TET ;i: fr-iy F(z)e“dz t 20, r 20

and is independent of r for each t > 0 [25:175].

The question that generated the last four definitions can
now be answered: the functions in A which are infinitely divisible
are those whose Laplace transforms satisfy conditions (1) and (2)
of Definition 4.6. We now have the barest essentials of Dales’
construction, in that we desire an isotonic homomorphism from A
into A. But to make things work properly, the space C_ must also be

considered. Building a map from A to C; occupies the bulk of Dales'

paper.
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82 Triples and Extensions

Let A be an integral domain. If B is a subalgebra of A, then

B is inverse closed if ab1 = b2 for aeA, bl’ b?. €B with b1 #0
implies that acB. If B is a subset of A, Alg B denotes the smallest
inverse closed subalgebra of A that contains B. We can now show

how Dales relates A to C,

4.9 Definition (Q; ©;3) is a triple if

1. 0Q is an inverse closed subalgebra of A.
2. J is a closed subset of C_ which is a subalgebra of A

3. ©: 0= Jis an algebra isomorphism
A triple (,q; 01; gl) extends the triple (Qz; 92; 32) if

%g Q1 and GIIQZ =G)2.

Dales notes the following result, the importance of which will

soon be clear.

4.10 Theorem [6:Prop.4.17] If Q is an algebraically closed
subalgebra of A, the quotient field of ( is a real-closed field.

The goal now is the exhibition of a partially ordered set of
triples and to use a Zorn's lemma argument to deduce the existence
of a maximal triple, providing an isomorphism from a maximal subset
of A into C_. Naturally, this requires the existence of any triples

at all, and this brings us to the foundation of the construction.
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The first difficult portion of the paper involves producing
such an 'initial' triple, and this is done through the careful
(and lengthy) construction of what Dales christens a 'framework map"
from a certain subset of A to a subset of (_[6: Chapters2 and 3].
The subset of A selected contains elements of co/J(p) [6:Def.2.9],
and in keeping with the requirement that the nascent homomorphism
be non-trivial, the range of the framework map is a subset of C _ that does
not contain zero [6:Def.3.15]. The fact that A is an n,-set is
important both in choosing the subset of A and in building the
framework map. This is where the algebraic problem of Section 1
is solved, because the map is isotcnic. The framework map is
obtained in [6:Thm.3.16] and is used to show the existence of a triple

in [6:Prop.4.1].

If (9;9; 2 is a triple and acA\, the next problem is the
extension of © to an isomorphism from Alg (Q,a), the smallest inverse
closed subalgebra of A containing Q and a. In the case that a is ;

algebraic over (, one chapter is required to prove

4.11 Theorem [6:Thm 4.9] Let (Q;0;3) be a triple and let Q, be
the algebraic closure of Q in A. Then there is a triple (QI;O;JI)

extending (0;0;J).

If a is transcendental over Qs the problem is even more difficult,
and Dales admits being unable to show the existence of an extension
in general. However, if the functions inJ are approximalc (a
property which requires several pages to define), an extension can be

found [6:Thm 6.2].
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Approximability is also important because the collection of
triples (Q;0;3) with the property that each member of J is
approximable may be partiallyordered by @,3059) 2 Q,3039,) if
the first is an extension of the second. Every totally ordered subset

has an upper bound, and so a maximal element exists by Zorn's lemma.

4.12 Definition @Q,.:0:3,) is a triple which is a maximal member of

the aforementioned partially ordered set.

4,13 Theorem [6:Thm 6.4] Q, is an algebraically closed nl—subset

of A of cardinality h&.
Theorem 4.10 yields the next corollary immediately.

4.14 Corollary  The quotient field of 9, is a real-closadn;- set

of cardinality Nl'

Finaily, Theorem 4.2, Corrollary 4.14 and Theorem 3.23 allow
Dales to prove the next theorem, which provides the most important
component of the homomorphism we have been seeking all along.

4.13 Theorem The algebras A and Q, are isomorphic.

Now that the maximal triple has been obtained, we describe

some properties of the inverse Laplace transform.

4,16 Theorem [6:Prop.7.5] Let F,Ge(y, f = £71F and 1et r be

any number with r > 0. Then




i) f 1is continuous on [0,*), f(0) = O and feLr.

Sl'

ii) fel (R)
ii1) 271rg) =L@ L7l in L,

iv) 41'1:3* “A(R) is a real linear algebra monomorphism.

It will come as no surprise that Theorem 4.16 is a result of
the way everything has been defined. Dales knew what he needed,

and set things up accordingly.

This sketch has been very hasty, but it has brought to the

forefront all we need to solve Kaplansky's problem.

83 The Solution of the Problem of Kaplansky

We begin this section with a collection of definitions

4.17 Definitions Let m : M(p) > A be the natural quotient map.
i: A~ Q,  be the isomorphism of Theorem 4.15
© : 9, 3, be the isomorphism of the triple
(2439;34),
L1, g A(R) be the inverse Laplace transform.
It is impossible to resist the following theorem, which is a

fine case of seeing only the tip of an iceberg.

4,18 Theorem [6:Thm 7.6] Assuming the continuum hypothesis,

there is a real linear homomophism A: M(p) = AQB) such that kerA = J(p).

Proof Letr= Llopotlon, )




52.

The next theorem achieves the goal stated before Definition 4.1.
Note that an element a in an algebra is nilpotent if a™ = 0 for some

integer n.

4.19 Theorem [6:Thm. 7.7] Assuming the continuum hypothesis, there
exists a real-linear homomorphism from M(p) into a commutative radical
Banach algebra R such that the homomorphism has kernel J(p). The
homomorphism is discontinuous, and R may have either of the following
properties:

i) R is an integral domain and has a bounded approximate

identity.
ii) R has a dense set of nilpotents and a bounded

approximate identity,

That the homomorphism is discontinuous follows because J(p) is
dense in M(p). Dales shows that Ll (w) satisfies (i) and Ll(O,l)

satisfies (ii), and it has been noted that A= Llw)e L1(0,1).

At long last, we present the solution to Kaplansky's problem .
The proof shows again that Dales' original selection of BN was
expedient.
4.20 Theorem [6:Thm.7.8] Let X be an infinite compact Hausdorff
space. Then, assuming the continuum hypothesis, there exists a

discontinuous monomorphism from C(X,C) into a Banach algebra.

Proof Let R be either of the commutative radical Banach algebras
of Theorem 4.19, and let R; be the algebra with identity adjoined.
Let A be the real-lincar homomorphism of Theorem 4.19. Extend A
first to a real linear homomorphism A: C(BN,R) - R1 and then to a

complex linear homomorphism by
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A(f + ig) = A(f) + iA(g) f, geC(BN,QC).

Let Y be a countable discrete subspace of X, which exists by

[9:5}, and let T: N + Y be a homeomorphism.
By properties of the Stone-Cech compactification, extend ‘T to
T : BN > Y.

If feC(X,C), then foTeC(BN,C). Let A be the direct sum
C(X,Q)C)Rl. A is a commutative Banach algebra with respect to

the coordinatewise algebraic operations and the norm

T

g | = sup{l£ly, =]l (£,7)eA,] |y is the
A
supremum ‘norm
If feC(X,C), let u(f) = (f,A(fotdeA. Then
ﬁ : C(X,Q) -+ A '

is the desired discontinuous monomorphism.

To answer Kaplansky's twenty-eight year old question in its

original form, the norm

Il £ll = lneH) ] W L

is incomplete 3nd dominates the supremum norm.

§4 Final Remarks

In a private communication, A.M.Sinclair informed me that
R.Solovay of the California Institute of Technology had also constructed
a discontinuous homomorphism from C(X,C), but I have been unable to

secure a copy of his work and do not know what technique he used.




However,since the result was mentioned along with those of Dales and
Esterle without special comment, it is likely that it also requires

the continuum hypothesis.

Whether or not a construction is possible without this axiom
is an open question whose resolution will, with any luck, require

less time than Kaplansky's original problem.

54.
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