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SECTION 1

INTRODUCTION

Wear—resistan t materials with low friction for inertial instrument

gas bearing use have been in development for about 10 years . Designs

using monolithic, wear—resistant ceramic bearings have been, in general,

replaced by those which attempt to surface—modify the basic structural

material . As beryllium is commonly used in the fabrication of instruments,

a beryllium composite gas bearing would have thermal and mechanical corn—

patibility with the remainder of the instrument structure, as well as

possess desirable wear performance at the bearing surface . Coatings on

beryllium that have been developed and continue to be researched for further

improvement include carbides, nitrides, and oxides which have been

variously deposited by sputtering, evaporation, arc-plasma-spray , and

electrodeposition. Several material and process options being used,

together with their limitations are given in Table 1.

The present ONR program is designed to overcome the many processing

problems and intrinsic difficulties encountered with coatings by means of

an entirely different process that will alter the surface region of beryl-

lium and impart the required wear characteristics to the material directly.

The process is case hardening with boron by means of high temperature

reactive diffusion of boron on a beryllium surface to form beryllium

borides.

The attractive features of such a process would include:

(1) Enhancing surface coating integrity with a substrate by

virtue of alloy formation between the coating material and

substrate converting the base metal in situ.

1

_ _  -—-~~~~~ -—-~~~~~~---— -- -~~— -j - — - -  -



- - - -

Table 1. Materials and process options considered
for bearing fabrication.

Material Process Problems Encountered

Solid Ceramic Sintering and Difficult to Machine
Hot Pressing Physical Incompatibility

with Instrument Design
Requirements

Low Thermal Expansion
Poor Thermal Conductivi ty

Hard Coatings Plasma Spraying Porosity, Adhesion, Cohesion,
(Thick) Plus Above

Sputtering Adhesion, Composition,
(Thin) Structure, More Tolerable

than Above because of Thin-
ness of Coating

Electrodeposition Limited Maximum Hardness,
Adhesion, Defects in
Coating

Modified Surface Case Hardening by None of the Above Perceived
Alloying of the
Surface

1/77 C010689

(2) Surface layer usually in slight compressive state which

for hard, ceramic-type coating is desirable stress con-

dition for strength and resistance to pull out .

(3) Typically slight dimensional change of part requiring

minimal finishing to final dimensions; complex shapes

can be coated uniformly; areas can be selectively stopped-

o f f .

(4) Low cost, high reliability and producibility.

A review of the literature reveals only limited research has been

conducted on the beryllium—boron system and little information on the

formation of boride layers on various metals. A summary of the informa—

tion on various beryllium borides is given in Table 2. The high values

of microhardness of the boron-rich borides are very desirable for good

2
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wear performance. Producing such phases in the surface of beryllium is

the thrust of the present program. Several versions of the beryllium-

boron phase diagram are shown in Figures 1, 2, and 3 and are the basis

for predicting reaction compounds in our diffusion experiments since the

structure of diffusion coatings should bear a direct relationship to the

constitution of the corresponding alloy system. In the literature there

is a degree of uncertainty in the exact compositions of several beryllium

boride phases which we hope to clarify through results of this program.
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2000 - 
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Figure 1. Be-B phase diagram (ORN L 1968; G. Godfrey,
V. Frechette) .

4 

—-~~~~~~~~~~ - - -  ~~
- - -  -

~~-
-

~~~~
-- -

~~~~~~~~~~~~~~~~~~~
--

~~~~ - - - —  - - -
~~~~-—- - - - - . -~~ -~~~~~



2500

— ~~2020-
,- 2120°

/ >2000° I -2300°
2000 - _.L>.?~~°_~

• D TA — MEASU RE DP0 INT ~, ~/  I
/ s.8eB, I

0 ~~~~ - ?700°

/ -7500°
4 7500 ,—‘-- - ‘ H

1235° fs.~e
’
~
’a~~~~’

° 
. I,). I

1120.? S:9~~~~~~.fl4O,~
f 

Be2 B ’t)

7000 - S .9e4 9 \ / 985 I I
Be B.Be B IOe.Be 8 ~ 2 BeB~

Be 8.17 I-i, BeB2 I’ BeBs
..Be~9 I - I

500 i I i I l i i i
Be 20 40 60 80 B

BORO N IAt-%I

Figure 2 . Be-B phase diagram (J.  Stecher and
F. Aldinger , Zeitshrift  fur /4etallkund ,
64( 10) 684—689 (October 1978) ).

BORON Iwt %)
0 20 40 60 80 100

::: 2385 T~ 2320

2000 — I —

_ _ _ _  
_j i

B
8e4 8 Be~8 Bes t ss 8eB~~ BeB6

BORON Iatom~c %)

Figure 3. Be—B phase diagram (N.  Stout , unpublished) .
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SECTION 2

OBJECTIVE

The objective of the present program is to surface—modify instru—

n~nt-grade beryllium by solid-state reaction with boron to form beryllium

boride. The resultant surface laye - should have high hardness, good

adhesion and low porosity, all of which are desirable characteristics of

a precision gas-bearing material.

The kinetics of growth of the various intermetallics formsd will

be studied to expand the information available on this binary system and

to allow process control of case thickness, composition, and structural

integrity required for reliable performance.

7 1



SECTION 3

PROGRAM PLAN

The program plan has undergone some modification since the original

program proposal. The objective of accomplishing the surface modification

of beryllium by solid—sate case hardening with boron remains unchanged

and is being pursued by several parallel approaches . The primary tech—

nique being evaluated is high temperature reactive diffusion of boron

from solid and vapor sources into a beryllium substrate. In addition,

we have added surface modification of beryllium by implantation of boron

ions. The changes in the program plan have been in the following areas:

3.1 Diffusion Couples

Initial experiments with solid boron in the form of powder slurries

and sputtered boron films reacted with beryllium at elevated temperature

indicated a need for a more analyzable specimen configuration, namely a

solid—solid diffusion couple to determine the kinetics and direction of

intermetallic growth. These couples can be examined metallographically

and allow diffusion directions and rates to be more conveniently deter-

mined.

3.2 Chemical Vapor Deposition of Boron

Attempts at getting boron from a vapor source available for reac-

tion with a beryllium substrate are being considered. The two vapor

sources of boron being examined are diborane and the boron halides.

-
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3.3 Ion Implantation

Subsequent to the original program proposal, the ion implantation

technique was explored and found to offer potential advantages (see

Tables 3 and 4) - This relatively lower temperature process is now being

evaluated as a subtask in the program. The process of ion implantation

involves essentially bombarding a surface with energetic ions from an

ion accelerator to depths of about a micron in a controllable fashion .

The limitation of the process at this time appears to be a rather low

concentration of implanted atoms considered achievable using the present

capabilities. The implantation experiments are being performed at NRL ,

which include implantation of boron into beryllium surfaces and

analytical procedures to determine concentration and depth—profiles.

Heat treatments and metallographic investigation of the implanted samples

are being performed at CSDL.

10
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Table 3. Advantages of ion implantation.

No sacrifice of bulk properties

Solid solubility limit can be exceeded

Al ‘ preparation independent of diffusion constants

N . coating adhesion problems since there is no interface

No change in dimensions

Depth concentration distribution controllable

Composition may be changed without affecting grain sizes

Precise location of implanted area(s)

Table 4. Ion, implantation parameters .

Implanted elements - Virtually any element from hydrogen
to uranium can be implanted

Ion energies — Normally 2 to 200 KeV. Energies up
to 5 14eV may be obtained with the
Van De Graaff accelerator

Ion ranges — Vary with ion energy , ion species
and host material. Ranges normally
0.01 ~im to 1.0 ~m

Range distribution - Approximately Gaussian. Choice of
energies allow tailored depth
distribution profiles

Concentration - From trace amounts up to 50
percent or more

Host material - Any solid material can be
implanted

Special effects - Sputtering, radiation damage ,
radiation enhanced diffusion

.

11 
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SECTION 4

EXPERI MENTS

4.1 Evaluation of Deposition Methods

Various methods for introducing boron on a beryllium surface to

produce intimate contact for reactive diffusion to take place include :

(1) Powder Pack
(2) Sputter Deposit

(3) Ion Plate ‘ 
-

(4) Chemical Vapor Deposition
(5) Ion Implantation
(6) Molten Salt Bath
(7) Metalliding (Electrochemical Deposition in Molten Salt)

(8) Spark Deposition

It was felt that the least complicated and most contamination-

free processes should be (1) direct combination of solid elements: boron

from powder, sputter deposited and bulk material; and (2) boron deposition

from a vapor phase . These processes also have the advantage of requiring

easily available equipment. A third method, ion implantation , was decided

to be a worthwhile technique to investigate since this process does not

rely on classical diffusion mechanisms, solid solubility limits, or

other parame ters related to equilibrium conditions ; also , since the

process takes place at relatively low temperatures (below about 3000c) ,

microstructural and topographical alteration of the substrate can be

minimized.

13 k4 . ~~~~~ ‘~~~ 1~LAM( 
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4.2 Preparation of Test Samples

Instrument grade beryllium rod stock (Kawecki-Berylco HP-40 and

Brush-Wellman 1—400 ; nominally 4 percent BeO, Balance Be) was machined

into flat disks (0.5-inch diameter, 0.25—inch thick) for both diffusion

and ion implantation experiments. HIP-50 Be, with a lower oxide content

and higher mechanical properties (and, therefore, a potentially superior
gas bearing substrate), has been ordered and will be used in the later

stages of the surface modification program with the most promising coat-
ing technique to emerge . Boron powders were bought as high purity
grades, >99+%• Crystalline ~ rhombohedral was readily available (a stable

form produced at temperatures >1400°C; -60 mesh from Alpha Division

Ventron Corp). Crystalline ci rhombohedral (a form produced at tempera-

tures <1400°C but will transform to ~ on heating >l400
0C) was not avail-

able from the commercial suppliers of boron contacted. Amorphous powder

of <1 micron particle size was obtained from Fisher Scientific Corp .

Crystalline boron rods (0.25-inch diameter) of better than five nines

purity from United Mine ral and Chemical Corp . were used for making dif-

fusion couples.

4.3 Solid Boron Deposition

High purity amorphous boron and high tempe rature crystalline (
~

rhombohedral) boron were each mixed with amyl acetate to form powder

slurries which were then painted on beryllium substrates (0.5—inch diam-

eter flat disks) with a metallographic finish . The effect of beryllium

surface finish ( chemical etch , vapor blast , metallographic polish) was

initially experimentally determined to be negligible with respect to

slurry diffusion reaction rate .

Sputter depos ited (0.5 and 1.0 micron thick) boron coatings

resulted in smooth, adherent layers. Heavier layers of about 3 microns,

were deposited by ion plating but gave non-adherent coatings , probably

due to high residual stresses in the coating and therefore were not
further used.



For the diffusion couples, solid rods (0.25—inch diameter , 0.4-

inch long) of high purity crystalline boron and instrument grade beryl-

lium were lapped flat and metallographically polished on the mating flat

faces. They were assembled in a molybdenum fixture obtained from

Manlabs, Inc.,  Cambridge, Massachusetts, and shown in Figure 4, that
maintains intimate contact at the boron-beryllium interface during high
temperature diffusion annealing by means of differential thermal

expansion within the fixture.

MOLYBDENUM 
STAINLESS STEELSLEEVE

___
\

BORON

__

_ _ _  

ci:: ] 
I

BERYLLIUM 

_

~

_,,
/
/ MOLYBDENUM

STAINLESS STEEL PLUNGER

Figure 4. Diffusion couple fixture.

4.4 Diffusion Heat Treatment

A high purity vacuum/argon atmosphere , all—metal diffusion heat

treating furnace was set up and the temperature profiled (see Figure 5).
This system has been used for all solid boron to solid beryllium dif-

fusion experiments with excellent results from a noncontamination

standpoint . Argon was used as the heat treating atmosphere since it
0 0was found that at the dxffus i.on tempe ratures used (800 C-b OO C) a

moderate vacuum of ~~~~ torr resulted in volatilization of beryllium.

The following experiments were performed in this furnace:

15
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Figure 5. Diffusion heat treating facility .

(1) Amorphous boron and crystalline boron slurry coated

beryllium test samples have been diffusion heat treated

at 8000C, 900°C, 950°C, and 1000°C.

(2) Boron sputter coated samples have been diffusion heat

treated at 900°C and 1000°C.

16
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(3) Boron rod/beryllium rod diffusion couple assemblies

have been treated at 900°C and 1000°C for up to 10 days

at temperature.

Table 5 summarizes the results of experiments with diffusion couples .

Table 5. Experiments and observations of Be-B diffusion couples .

0Run No. 1 900 C/8 hours/argon

No bonding

Boron cracked, spallod at edges; reaction indicated
by ruby red areas on fracture surfaces
Beryllium has shallow crater where in contact with
boron , rough surface ; no color change

XPS and auger show no B on Be surface but Be on B
surface

Run No. 2 900°C/b days/argon

Same as above
l4etalbographic sections through interface show reaction
phase adhering to B, none in Be. See Figure 6.

Chips of boron turned ruby red are undergoing X-ray
diffraction

Run No. 3 900°C/24 hours/argon

Used copper plunger instead of stainless in fixture to
reduce spalling due to excessive pressure - resulted in
no spalling, no bonding

Color changes same as Run No. 1

Run No. 4 1000°C/b days/ argon

No bonding

White deposit on both B and Be surfaces

Color changes same as Run No. 1
Couple surfaces undergoing X- ray diffraction to
identify white deposit. 



~~~~~~~~~~~~~~~~ -—~~~~ - —
~~

- -
~~~

--
~~
- -  - -

~~~ 
-

s’:’ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _____ä~~~~~ ~ I .. p ~~~ 

.
• 
..

~~~~~~~

. -
~~~~~~~~~~~~

‘
~~~ 

—. 
~~~~~~~~~~

.

~~~~~~~~~~~~~~~ 

. ‘V ~~
• ‘

~~~~

-
. ..• ..,4~ - ~~~~~~~~ 

£i~~~,

~~~~~ 
-
.
.. 

~~~
.&— .

‘ ,:~ ~ ~~~~~~ •.‘ , BORON ,
~~
.. - .- 

~~~~~~ ~~~~~~
- ~~‘ik -

~ 

‘ 
. . i.

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 
.

* •
~~. .... ‘.~~~~~~ -i’-. . ~~. .~~.

• 
~
‘ .-

- .... i_ ..
_

REACTED LAYER

—1...~ k_ 20 pm
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after diffusion showing reaction layer at surface.

4.5 Ion Implantation

Ion implantation was performed on a one-square centimeter area in

the center of a 0.5—inch diameter disk with four doses of successively

higher implant energies (95 , 140 , 190 , 250 KeV with a beam current of

lOiia from a BF
3 
ion source) in order to overlap the gaussian depth dis-

tributions of implanted boron atoms to maintain a uniform 10 atomic

percent from the surface to a depth of about 8000 (0. 8jt ) . Th~ lateral

uniformity was achieved by rastering the ion beam across the implant

area. A macrophotograph of the sample is shown in Figure 7, and Figure
8 shows microphotographs of various regions of implanted area. The

circular sample was quartered to produce 4 quadrant samples. One of the

quarters was sent to NRL for Rutherford back scattering measurement to

determine the thickness of the beryllium surface layer covering sub-

merged boron implanted regions . The remaining quarters were used for

heat treatments at 437 0C and 640 °C for 1 hour each . Hardness measure-

ments were performed on these samples and are shown in Table 6.
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Figure 7. Macrophoto of as—implanted beryllium sample.
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Figure 8. Metalbographic views of various portions of
implanted zone.
(a) Unimplanted surface with oxide inclusions.

(b) Fine precipitate or some new phases
forming in area where not all doses
overlapped.

(c) Coarse precipitate at the center of the
implanted area where all doses overlapped .
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Table 6. Hardness measurements of 10% B implanted sample .

_______ 

Knoop Hardness Number
Load Unmodified Area Implan ted Area
5 gm 493 947

As Implanted 2 gin 566 1518

1 gm 543 no impression

5 gin 462 1146

4370C Anneal 2 gin 332 1833

1 gin 241 no impression

5 gut 397 no impression

6500C Anneal 2 gut 306 no impression

1 gut 229 no impression

The data shows that for light loads (1 gin) the implanted surface was not

indented whether annealed or not. Increasing the annealing temperature

increased the capacity of the implanted surface to resist indentation.

It is not yet known whether this is due to the layer itself getting

harder or to its getting thicker by redistribution of boron atoms

through diffusion.

The identification of a metallographic change (appearance of a

precipitate) resulting from annealing boron implanted beryllium is being

carried out by TEM diffraction method.

Scratch tests were performed on both implanted and unimplanted

areas of as—implanted and variously heat treated samples under loads of

3 and 9 grams (see Figure 9) .  The results of scratch tests confirm the

fact that the implanted areas have higher hardness than the unimplan ted

areas . Unexpectedly, scratch tests performed on heat treated surfaces

of implanted specimens did not follow the trends observed by microhard-

ness measurements , i .e . ,  hi gher ha rdness with higher annealing tempera—
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ture . This anomaly is yet to be resolved but is probably related to 
a

the scratch depth being of the order of 800 t imes the implanted depth

of about one micron even for the lightest load used (3 grams) . Knoop
microhardness indentations, on the other hand , even at the maximum load

used (5 grams) are typically 0.5 micron or less deep .

Higher-concentrations of implanted boron (>30 atomic percent) are
planned. Further improvement in hardness compared to the 10 atomic per-

cent boron is expected.

4.6 Chemical Vapor Deposition

Preliminary experiments have been made in reacting boron as it

is being vapor deposited on an induction heated beryllium specimen in

a glass chamber under flowing argon atmosphere . The source of boron

vapor was a commercial bon ding pack cementation compound containing

B
4
C (active boron source), SiC (f i l ler), and KF (energizer), induction

heated in a graphite susceptor close to the beryllium substrate.

Beryllium surface reaction products are being analyzed by Auger and

SINS methods. It is not yeat clear whether the surface layer produced

is pure boron or aBe—B compound, but the coating is adherent in contrast

to the reaction compounds resulting from solid beryllium — boron

interactions, which separate easily from the beryllium substrate .
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SECTION 5

ANALYSIS AND EVALUATION

Most of the current effort is in the area of analysis and evalu-

ation of diffusion and implantation experiments already performed .

5.1 Analysis

The following is a description of the analytical methods being

used.

(1) l~feta1bography of heat treat specimens is being done using

a beryllium metalbographic facility set up for this program

with arrangements for handling toxic dust—producing opera-

tions (see Figure 10) . A technique for specimen edge

retention by means of filled mounting compound is being

used to observe the thin layers produced. Several etchants

for delineating microstructure have been developed.

(2) Knoop microhardness testing of thin reaction zones is being

done using loads down tu the practical limit of this method,
i .e . ,  in the range of 1 to 10 grams. Hardness data must
take into account the influence of such light loads on

results and therefore hardness numbers may not be directly

compared to published values of other materials .

(3) Scratch hardness testing capability has been set up at

CSDL . This is fairly unique since attempts to locate
such a capability at several educational and research

establishments in this area were not successful. A

Bierbaum microcharacter scratch apparatus was obtained
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and upgraded with a new diamond stylus . This tool is

very useful for characterizing hardness and adhesion of

thin films at light loads . Tests have been done on boron

implanted specimens with standard loads of 3 and 9 grams.
Testing at lighter - ~~ds will also be explored.

~~~~~~~~~ (

Figure 10. Beryllium metalbographic facility.

(4) Debye - Scherrer x-ray diffraction of powder samples of

beryllium and boron reaction products after diffusion heat

treatments has been done. Samples of various commercially

prepared beryllium boride powders are also being x-rayed

for use as standards and aiding in interpreting the com-

plex patterns so far obtained.

- - 
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(5) Because of the low atomic numbers of beryllium and boron,

the more familiar analytical tools of energy dispersive

x—ray analysis and electron microprobe are not feasible.

Because of the thinness and possible multiple composition

of reaction products , standard or low angle x—ray diffrac-

tion of test specimen sur faces is not feasible . Techniques

to overcome these probe lius are Auger Electron Spectroscopy

(AES), Secondary Ion Mass Spectroscopy (SIMS and Transmission

Electron Microscopy/Diffraction ( TEN) . Facilities capable

of handling beryllium specimens have been located and have

started analyzing powder beryllium boride standards .

5.2 Evaluation

Initial results after diffusion heat treatment with solid beryllium

in contact with various forms of solid boron indicate a greater tendency

of the beryllium to enter the boron structure than vice—versa. Since

there is no mutual solubility of these elements as evidenced from the

phase diagram, a compound must form immediately at their interface , and

rates of diffusion of the elements through the compound will determine

the direction of compound growth. Further metallographic studies of

diff usion couples run at different temperatures and times will establish

the kinetics of compound growth and the information necessary to control

its development. While at this point, the metallographic evidence is of

compound growth into the boron, it is not yet certain whether this is a

fundamental atomic diffusivity phenomenon or a consequence of the

particular materials and mating conditions used, for example , the

presence of contaminating films at the interfaces or the crystallographic

form of boron. Other evidence of boride formation in the boron rather

than in the beryllium substrate were color changes on boron surfaces,

porous zones between the beryllium and the as-yet unidentified compound

in the boron , and no trace of boron being picked up by Auger Electron

Spectroscopy on the separated beryllium side of diffusion couples.

Further diffusions under different  controlled conditions will hopefully

resolve the diffusion direction question .
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It is felt that introducing boron ~~oms to the beryllium solid

from a vapor phase rather than from a boron solid could give different

diffusion results since conditions at a surface where one component is

condensing are qui te different from those at an interface between solid

diff using materials . Such a process could also control the concentration

of boron atoms free to react with the beryllium to give beryllium-rich

borides. This seems to be indicated in preliminary experiments with
CVD of boron on heated berylliuzn substrates. This resulted in a hard

adherent surface layer with perhaps a coefficient of thermal expansion

more compatible with the beryllium substrate than that of compounds

obtained from solid boron sources which separated from the beryllium.

This will receive further analysis . The use of glow discharge assisted
CVD to deposit boron ions could enhance the driving force for diffusion

of the boron , that is , the concentration of boron atoms in the beryllium

sur face , by overcoming surface contamination effects . This process has

been reported to be successful in greatly increasing the nitriding and

carburizing of various metals .

If , in fact , the diff usion system of Be-B can not be modified to

allow bon ding of beryllium rather than berylliding of boron, the ion

implantation technique will take on added significance since this pro-

cess is not diffusion dependent. The results to date have shown the

feasibility of impl anting in beryllium to depths of about a micron low

concentrations (10 atomic percent) of boron with minimum surface damage

and measurable , significant improvement in hardness and scratch resis-
tance . By the Rutherford backscattering technique , it was shown that
implanted boron can be made to move through the unmodified beryllium
lattice by thermal anneals as low as 400°C. What appear to be fine
precipitates of as yet unknown composition have been observed in specimens
annealed at temperatures of 450°C and coarse precipitates at 600°C.
Identi fication of this reaction is being done by TEM diff raction .
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The maximum concentration of implanted atoms is limited by the

sputtering rate of the substrate during the ion bombardment. Since it

was experimentally determined that beryllium has an extremely low

sputtering coefficient during boron implantation , there is an excellent

prospect of achieving high boron concentrations (>50 atomic percent) in

a beryllium surface layer. This will be attempted in the near future .

A further improvement in hardness properties is expected as well as

enhancing the conditions for forming high boron-containing borides .
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