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INTRODUCTION

In an earlier report (Lyon et al., 1977), a potentially optimal method of
recovering deflections of the vertical from RGSS data was described. This report
continues that work — describing the implementation of the method and estimates
of the errors associated with the method. In the first section of the report
an optimal weighting technique is derived. This technique also leads directly
to a priori error estimates. The second section describes the results from
use of the method on hypothetical traverses. From these data it appears that
the optimal method can indeed lead to a significant reduction in the errors
in estimating the deflections of the vertical. A final appendix gives instruc-

tions for the use of the associated computer program.




ERROR SOURCES AND OPTIMAL WEIGHTING

There are three sources of error which will be considered in this report.

These are
1) correlated gyroscope errors
2) correlated accelerometer errors

3) errors due to the colocation determination of the
deflections during each leg - colocation error.

We assume that the gyro and accelerometer errors follow a Langevin equation
(first order Markovian)

da

— + va =

e a = A(t) (1)
where v is the inverse of the correlation time and A(t) is Gaussian white noise.
This leads to a covariance (Papoulis, 1965)

<at) a (t) > = aoz exp(-v|t, - t ) (2)

2|

where aoz is < a(t) o (t)>, the variance of a. Table 1 gives the values for
aoz and v used for this report. The assumption of eq. (1) is not strictly
true. In particular, the purpose of the reduction scheme outlined here and
in the previous report is to estimate gyro drift rates. The deviations, 6a,
from this estimate, &, say, will not be distributed as equation (1). However,
it is clear that if the total covariance is given by equation (2), then the

maximum value that the variance about the mean may attain is
- 2
Var (a=-a) < a (1 - exp(-VvT))
where T is the length of the mission. Similarly, the correlation time for

values about the mean, T, must be t < T. Thus, even though equation (1)

does not strictly apply to variations about @, we will assume that that

variation holds and the Sa(gyro) are W

< Ga(tl) 6a(t2) > = aoz(l-exp(—vT) exp(—ltl- tzl/T) (2a)




Table 1

Error Parameters Used for Deflection Error Estimates

Source RMS Value Correlation Time
Accelerometers 10 microg's (all axes) 40 minutes
Gyros 250 % 10—3 0/hr (horizontal 2 hours

=13
2.0 x 10~ %/hr (vertical)




The accelerometers have appreciable white noise in addition to the correlated

noise. This may be handled approximately by increasing the accelerometer
variances and decreasing the correlation time. The values in Table 1 are
based on the data given by Huddle and Maughmer (1972) suitably modified in

accordance with the discussion given above.

The colocation errors may be estimated in a straightforward fashion. We
assume that the actual deflection covariance function is the second order
Markovian given by Kasper (1971). The colocation variance is

<(r,—r,e)(r,-r 5
i i j m

S =L > - & . >
) rirj r, r (3)
where the r notation for the deflections was introduced in the first report.
rj is either a north or east deflection depending on whether j is odd or even.
The e superscript denotes the estimated value. Equation (3) may be reduced to
«(r,-r.%5(r,-1,%> = <r,r,>=-<r .t ><r f ><¢ r > (4) 4
i i i j ij AL [F Lk
where the tilde denotes deflections belonging to the basis set from which the

others are estimated.

n n ;
The basic data available relate tou and v , the north and east velocity
errors, respectively, at the end of the n-th leg of the mission. For con-

venience, introduce the notation

(5)

=
it
<

Then the basic equation for the error velocities, equation (40) of the original

report can be written as

n n o B ) .0 (6)




where A and B are matrices def?ned in the first report. u: are the initial
conditions of the solution. wi is the inhomogeneous driving term. If there
are no errors Fz should be identically zero. If errors are present Fz will,
in general, be non-zero. To estimate the errors, we square equation (6) to

obtain

-1
n2 n n 032 n 1o I I
(FE) i (wﬁ = By UK) e Z(WR e UK) ;g; BQKj ¢K
n-1 n-1
n n i
B Nl |
i j=0 m=0 B’¢'<J' fom '« "o ™

n n o 2
We assume no errors in (wz - AEKUK) and that the expectation valucz of the

errors in ¢2, <$2> = 0. Taking the expectation value of equation (7) gives
2 Fn2 y Z Z B n B n < 5‘4')j M}m S (8)
w “ fLxj ~Rom K o

" ] : 2
y n , :
where oﬂi = wi (assumed) - wi (true). <F > is, of course, the variance of

j m
the observed data point. It remains only to evaluate <6wi Gwo >

We use the ordering of Y of the first report, i.e.,

n e n

-g& gsg + daN

gnn génn + Gan

E
0 0

w“ = ol and, then éwn = sa (9)

g" 88"
n
v Sy




n

. gn(e) :

n
and GaE the north and east accelerometer errors,

with 6" = ¢ , ¢a

n

respectively, and éan, 6B, 6yn the correlated gyro errors for Z, N, and E

axes, respectively. Neglecting zero cross-correlations, the error covariance

matrix in equation (8) becomes

(Equation 10 on following page) (10)

Equations (8) and (10) then give an estimate of the errors associated with

n
il

the measurement of W Furthermore 1/<Fln:>is the optimal weighting for the

least squares solution (Brownlee, 1962 ).
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ERROR ESTIMATE FOR DERIVED QUANTITIES

We need now to derive error estimates for the derived quantities in the

least squares solution. We rewrite equation (42) of the original report as

B on n o _ .n
F2 = wl AEK”K Dim hm (11

where the hn are the quantities in which we are interested, i.e., the calculated
deflections and gyro drift rates. Change the notation slightly by replacing

the double index (n,%) by j = 2(n-1) + £ and rewrite equation (11) as

F, =a, =D, hm (12)
J J Jm
where aj = wj - AjKuz. The matrix equation for the least sguares solution for
h is
i hj = by =0 (13)
where
e ™ D . -D)( . -D)w 14
By = B @ - FpO B W, (14)
b= 2';, (a, - &)@ - DWW, (15)
and

N

E aW (16)
K K

k=1

with WK = 1/0K2, the optimal weighting discussed in the previous section.
Writing the normal equation (13) as we have leads to a number of advantages

(Brownlee, 1962 ). The solution of equation (13) is

h, =E, b, %))




The inverse E—l has special properties. If 52 is the mean variance of the

N
1 1 2
observed error velocity, i.e., N o , then
k=1 ©
-1_2
Var h, = E.. © (18)
J qd

Thus, we have an error estimate of the derived quantities. Further, if we

wish to throw out one of the solved for quantities, hp, say, then

' E,
Bomly = Al g4 (19)
J E
uy
and
-1 -1
-1 -1 E‘u EKu
B “Bje T dmd e o ’
pu

where the ' denotes quantities where the assumed dependence on hu has been
removed. Thus, if we wish to remove the gyro drift rates, for example, from
the least squares solution and see how much the deflections are affectd, it

can be done trivially.

As will be discussed in the results section, we follow a somewhat
different procedure in eliminating variables from the least squares solution.
Equation (20) holds if no weighting is used, or if the weighting is unchanged
after removing a variable from the fit. Since we remove variables that do
affect the weighting, we use the more laborious method of starting from scratch

with new weights. It is important to note, however, that equation (18) still

holds and provides an estimate of the errors involved in the fit.




RESULTS AND DISCUSSION

Two hypothetical traverses were used to find estimated errors for the
outlined reduction method. The courses are sketched in Figure 1. The first
traverse is a straight line to the northeast covering 25 km. The second is
polygonal - also covering 25 km. The assumed vehicle speed was 25 km/hr - so
that total travel time was one hour, not counting stops. Deflections of the.
vertical were determined at 10 points evenly spaced along the traverses. The
vehicle was assumed to stop either 20 or 40 times on a mission. This made the
H least squares system well overdetermined. It also helped produce an answer to
| the question of whether fewer or more stops is preferable. Solutions were
generated for cases including all the gyro drifts as fitted variables, includ-

ing just the horizontal axes, and including none of the gyros.

Figure 2 shows the estimated variance in the north velocity channel over

the course of a 20 stop straight line traverse. There are only two signifi-

cant contributors to the total variance - the north accelerometer and the east .
axis gyro. Their contributions are plotted separately in Figure 2. The acce-
lerometer error is more or less constant over the course of the mission. The
gvro drift becomes the dominant contribution early on in the traverse and is
constantly increasing. The value for the gyro variance used for Figure 2 is
that assuming a constant drift rate is removed. Without the removal of the
average drift, the gyro-related variance would be about a factor of two bigger.
The form of the equivalent curves for the 40 stop traverse is nearly identical.
However, the individual variances are about half what they are for the 20 stop
case. This is just a reflection of the fact the errors at individual stops
appear to accumulate as individual random events. Half the time then implies

half the accumulated variance.

The results for the polygonal course are, once again, nearly identical
to that for the straight line traverse. This is a direct consequence of the
fact that the estimated errors introduced from collocation are negligible in
comparison with those from the gyros and accelerometers. According to the
model used here these significant error sources are almost independent of
the direction in which the vehicle travels. Hence, the results from the

polygonal and straight traverses are almost identical.

-10-
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Stop

a)Straight Course

b) Polygonal Course

Start

Figure 1. Hypothetical Traverse Courses
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Figure 3 shows the estimated errors (standard deviation) for the
derived north deflection of the vertical using 20 stops and an optimally
weighted solution. The first point to note is the terrible performance of
the fitted solution when all three gyro drifts are included. Maximum errors
are almost 200" . This behavior occurs only in the north direction. In the
east direction, the solution is as well behaved as the other two curves in
Figure 3. The reason for this strange behavior can be found by considering
the equations for the east gyro error, the vertical gyro error, and the errof
velocity. Taking those equations (7, 10, and 12 from the first report), we
find

= 2 2
o ¢E = r, E-r cos oo + . . . (21)

where Ve is the east gyro error, r, the Schuler frequency, r the terrestrial
rotation rate, £ the north deflection, ¢ the latitude, and o the vertical gyro
drift rate. The point to note is that £ and a come into equation (21) in the
same way. Thus, in a least squares solution, £ and a are to some extent inter-
changeable. Since there is no vertical channel information, there is no real
way to separate the effects of a from &. The east deflection is well behaved
because there is no comparable coupling of the vertical gyro drift rate to the

east deflection.

A significant improvement is made by removing the vertical gyro drift irom
the solution, as can be seen from Figure 3. The results are still somewhat
puzzling as the estimated errors are virtually the same in the case where the
horizontal gyro drift rates are included in the solution as when they are not.
This is in spite of the fact that the assumed variances of the error velocities
is about a factor two smaller when gyro drifts are included in the solution.
Unfortunately, inspection of the error covariance matrix, eq. (18-20), shows
that &£ and y (the east gyro drift rate) are strongly anti-correlated, i.e.
have a large negative covariance in the structure of the least square solution.
This implies that the situation is similar to that discussed with respect to
the vertical gyro. That is, with the given information, the least squares

solution has difficulty telling the difference between an east gyro drift rate
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and a north deflection of the vertical. This, on reflection, should not be
terribly surprising. We can write an equation similar to equation (21) for
the error velocity in the north direction. Keeping just the largest terms,
this looks like
2

g—§~= - rz u+ vy (22)

dt
where u is the north error velocity and Y is the east gyro drift rate. The
north deflection, &, enters equation (22) only through the boundary conditions.
Another way of looking at the problem is that equation (22) describes a sinu-
soidal variation whose phase and amplitude depends on the relative sizes of
5 and y. In effect, the phase and amplitude must both be determined by one
number - the error velocity. What is needed to help is information about,
for example, the acceleration error at a stop. This would serve to disentangle

the two quantities.

Actually, the situation is not nearly so bleak as has been painted. The
values for the variation of the gyro drift rate about the mission mean are
quite conservative. The actual variance could easily be a factor of two lower
than what we have used. In this case the solution including the gvro rates
would clearly be superior. It is interesting to note that at the beginning
of the mission when accelerometer errors dominate the variance, the two
solutions are almost identical. This implies that the accelerometer errors
give a limit to the accuracy of the recovery of the deflection in the neighbor-

hood of 2-3'" for the 20 stop case and the accelerometer parameters used.

Somewhat better results are obtained by using 40 stops. The gain is
essentially by the square root of the number of stops. Thus, a 40 stop case
gives errors about a factor N2 better than the 20 stop case, all other thinss

being equal.

Since the major sources of error have essentially just a time dependence
and not a position or velocity dependence, speeding up the rate of traverse
also increases the accuracy. The increase in accuracy is roughly proporticnal
to the square root of the velocity. This, of course, has a limit when the
vehicle velocity becomes high enough to make the neglect of velocity dependent

terms in the error propagation equations (first report: eq. (1) = (6)) serious.

-15-




So far the results discussed have dealt with weighted least squares
solutions. Figure 4 shows a comparison of error estimates for the derived
north deflections. Inherent in an unweighted solution is a single assumed
variance for all the error velocities. This is in contrast to the increasing
- as a function of time - variances in the weighted solution. It is not
surprising, then, that the deflection error estimates for the unweighted
solution tend to be more uniform than those of the weighted solution. If
the error model used is reasonable then the errors derived from the weighted
solution should be more accurate. In practice, the derived deflections do
not seem to be greatly affected by the choice of either a weighted or
unweipghted solution. Thus, the weighted solution appears to be slightly

preferable.

The results presented in Figure 3 are comparable to those presented by
Huddle (1973) in his discussion of the Position and Azimuth Determining

System (PADS).

We have argued above that a factor two improvement on Figure 3 is
easily attainable without system improvement. This would be superior to
the PADS results. If more information can be obtained from the inertial
svstem - i.e., acceleration errors in addition to velocity errors at each
of the stops - the accuracy of the system should be determined by the
accuracy of the accelerometers, and deflections of the vertical with

accuracies of 1 - 1.5" should be attainable.
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APPENDIX 1

THE OPTIMIZED REDUCTION PROGRAM

A listing of the FORTRAN Program used to determine deflections, and error

o

stimates is given below. The input data are described in the comment cards

at the beginning of the program and should be self-explanatory with two excep-
tions: 1) all input data are cgs and angles are in radians, and 2) the program
is set up to handle a traverse with known deflections at the start and stop.

To use only known deflections at the beginning three things must be done. First,
add a dummy finishing stop to the data with the position of the finish equal

to the start. Second, set XIFIN and ETAFIN equal to XI¢ and ETA¢$, respectively.

Third, set IDEFL = 1.

The output format is also shown below. Solutions are given for cases with

o
—
it

gyro rates, horizontal gyro rates only, and no gyro rates in turn. Before

actual solution the estimated variances of the error velocities is given

(a3
=
(s}

both in total and from the individual sources. The solved-for quantities are

-

each presented with error estimates (standard deviations). Finally, for each

case, the actual deviation of the solution from the data is given.

A-1
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