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ABSTRACT

An analysis of a seal model is made where the rotating element has

both fixed tilt and two-lobe waviness. The stator is assumed to be gimbal
mounted and to have inertial mass. Hydrodynamic lubrication is assumed,
following the short bearing or narrow seal model. Conditions are examined
where the stator precesses in synchronism with the rotor rotation. Par-
ticular interest is given to operating conditions where such behavior appears

to degenerate.
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In recent years, numerous theories have been advanced to investigate
the mechanism of mechanical face seal. It is now widely accepted that
misalignment alone or coupled with seal surface waviness is the cause
for the existence of a lubricating fluid film between seal faces. 1In
the case of non-flexible mounted face seal, while stable operation is
possible if only one of the surfaces is misaligned, Harrdt & Godet [1]
have shown that axial vibration may occur if both of the faces are mis-
aligned. Flexibly mounted face seals are used in many applications to
accomodate misalignment. These should have at least second mode
waviness on one of the surfaces in order to have stable motion has been
stated and experimentally proved by Stanghan-Batch & Iny [2].

Thin film flows between solid boundaries can cause viscous heating v 4

which may lead to thermal deformation of the solid surface and consequent

alterations in the flow. The heating and deformation may enhance each
other progressively to cause large surface distortions and failure. The
phenomenon, referred to as "Thermoelastic Instability'" has been studied
by Banerjee [37. Critical sliding speed, above which instability may

occur, has been found, for thermal conductor sliding on insulator:

. 7 [K
vcrit h Vo (1)

where mean film-thickness h is held fixed, K is the wave number of the dis-
turbance, K the thermal conductivity of the conductor and «o its coefficient
of thermal expansion. The critical speeds measured experimentally were
found to match those predicted by Eq. (1) extremely well. This equation is,
however, restricted to constant h and non-flexible mounting. Later, an
improved model where constant h condition is relaxed has been studied La],

finding that thermoelastic effects lead to a continuous change in surface .
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waviness as well as mean film-thickness, with changing speed. Conse-
quently, the unstable region cannot be obtained in practice because there

exists no path to it from the initial waviness at rest. This theory is

based on the assumption that mounting is inertialess therefore eliminates |
the effect of misalignment completely. In a set of experiments

later performed [57, where a gimbal has been used to simulate the flexible
mounting, although mean film-thickness is predictcd very well by the theory,
it is observed that first mode wave grows almost three-fold in the tested

speed range. This increase is believed to be thermoelastic in nature,

and is a consequence of gimbal inertia, loading the faces.

In view of the above fact, a new model for the flexible mounted face
seal is studied here, taking both first and second mode waviness into
account, to provide a better understanding of its dynamic characteristic

and thermoelastic effect.




METHOD OF APPROACH
A three degree of freedom face seal model has been proposed which

is illustrated in Fig. (1). The "rotor" is a floating element with both

tirst and second mode waviness on the seal surface; the "stator" is tlex-

ibly mounted such that the edge of its tlat surface can have angular dis-
placement about its center of mass. It is also assumed that rotor is a good
thermal conductor while stator is a good insulator. This assumption is
reasonable [6] and leads to considerable simplification of the analysis,

The procedure for solving the problem can then be stated as tollows:

[refer to block diagram, Fig. ()]

1. Assuming that tilm stitfness largely insures tracking, that is, the
stator will follow the rotor synchronously (but not necessarily in
phase). v

2, Considering steady state solutions only and choosing the most con-
venient rotating coordinates.

3. Assuming small-perturbations, thus allowing hydrodynamic pressure
to be a linear function of operating waviness.

Case 1. Removing second mode waviness from rotor.

This enables one to calculate the force and moment integrals.
This is examined to see what is the role of the first mode film-
thickness when the stator is flexibly mounted.
Case 2. The configuration where first and second modes exist.

The information previously obtained is used to simplify the
analysis. It will be found that the problem can still be treated
as a linear one where force and moment depend '"seperately" on second
mode and first mode operating waviness, so long as waviness amplitude

is small compared with film-thickness. Once force and moment integrals




have been carried out, one can easily arrive at the last step of the
block diagram, where operating waves are composed of initial waviness
and thermoelastic deformation on the rotor, plus stator tilt which is
caused by hydrodynamic forces. Use of this result enables one to obtain
the condition of thermoelastic instability, and to find out critical
sliding speed.

When the restriction of small-perturbation is removed, it will be
shown that the characteristics of the problem remain the same while only
a numerical correction factor need to be considered.

Reiterating, the motion of face seal elements will be investigated,
where the rotor is rigidly fixed to a shaft, and may be tilted as well as
wavy in the second mode. It will be treated as a thermal conductor and
subject to thermal deformation as the result of frictional heating by the
fluid film. The stator will be treated as a flat, thermal insulator
supported in gimbals. Operation will be studied where the waviness component
of film-thickness is small relative to the mean value (a condition observed
in experimentg, and particular interest will be given to those operating
conditions where this configuration becomes impossible. Hydrostatic pressure
and leakage effects will be omitted from the present analysis.

Comment on Notation. In that which follows the tilda (Nﬁ will denote

quantities associated with the stator and the carat (") will denote
quantities associated with the rotor. First mode or tilt of the stator

would be, in such notation, X cos 6, when 6 is a measure of angular position.




THEORY

Hvdrodynamic equations:

Referring to Fig. (3), it will be assumed that radius R is much

larger than width L ot seal surtace, therefore a one dimensional Revnold's f

equation with narrow-face approximation [7]) can be written as

2 m3 ARy . ¢ @b > ah o
w O3y ‘V§?+1' at (2)

where h is overall film-thickness, a tunction of x and t but not of v.
]

Hence, integrating p twice with boundary conditions p = 0 at v = +L/2

results in

2 2 2
p = (%y‘ - gty SulRh , LB Bny (3
2 8 3 dx 3 At
h h
Width-averaged pressure can be calculated as
1 et &5
p = 112 pdy _B¥L_ b b ah (4)
LJd 3 dx 3 At
L 2h h
T2
Rotating coordinates may be chosen to simplify the problem. Under I

the assumption of synchronous motion, it can be recognized that the pressure
distribution is rotating wave, but non-varving in shape; therefore it will
be convenient to choose moving coordinates such that pressure function will
be fixed with respect to them. In this favorable reference frame system,
the film-thickness wave is fixed. This does not require that the wave
representing tilt of the rotor or stator to be in phase with the film-
thickness, but only that the phase relationships in the ensemble are
preserved in time. Recall that the surfacewaves are fixed to the rotor,
hence dh/dt disappears, and the stator surface is moving past with the

velocity -V. When this sign is taken into account Eq. (4) is replaced by

b 4
= o BVL" ah
p 3 on (5

2h~




-6-
where V is now simply the magnitude of the sliding speed. This equation
shows that pressure is a function of position and that squeeze effect is
not seen in the chosen coordinates.

Force and moment, according to definitions, are
" LRd®
f = Ji pLRd (6)
P
- 2
MX el PLR sin6d® (7)
. P
=02
M, = |, PLR"cos8dé (8)
P

where "p+" is used to denote that integrals are effective only when pressure
is positive, while in the region of negative pressure cavitation is assumed
to occur and pressure is zero. This condition has been experimentally

proved to be quite accurate for the face seal [2]. v




Motfon ot stator and detinfition ot rotating coordinates

When seal fa steadily operating at certain speed, hydrodynamic
torce s constant {n amplitude but moving along the edge of the stator
surface, It can be seen that {1t the tilting amplitude 21 (Fig. 4) is
small compared with R, which {8 generally true, then the angle ot tilt

will be approximately:

~

1
- 9

Rotating coordinates (see Fig, 4) may be chosen so that the y axis
ts the axis about which tilt occurs, and it may also be taken to lie {n
the plane of the tace of the stator. The x axis is perpendicular to the
v oaxts and potats in the dirvection of maximum elevation ot the stator. The
Zoaxts {s that about which the votor turns and {s taken to be vertical,
while the 2z axis vepresents the normal to the plane ot the stator tace.

The dynamics ot an axfally symmetric mass moving with auch an Eulervian
trame are well understood (see Appendix F tor turther comment). For the
case where the tilt angle y (measured between the 2 and Z axes) rvetatns

constant magnitude, while the direction ot the v axis votates steadily at

the angular speed of the shatt, @, the moments acting on the mass ave such

that

M =0, M =0
X 2

y
LR @ atnycosy (10

It the stator (s taken to be a thin ving
~ 9
1 = mR™/2 (1

where R {8 the mean radius of the ving, and Eq. (10) becomes, tor small y

‘e

lR— Pl aM

reiz2t

M =
v

Recall that this moment {8 of constant magnitude and always acts to oppose

the angular diaplacement y.




Heating effect and thermoelastic deformation

It has been shown [8] that for fncompressible flow in thin films,

viscous heat generated within the tilm is given by
Jh
du, 2
q= J u(s;) dz
(8]

Under the short bearing model, the tluid velocity distribution {n the

tilm approaches Couctte flow which is

theretore

Vv ,
q= UT 13

Georgopoulos [9) has found that under typical seal conditions convected
heat {s only a small amount of percentage of that conducted. In view of
this {t can be assumed that generated heat will be removed by conduction
alone, furthermore, it would conduct totally into the rotor which is the
only conductor under consideration.

The equation relating heat fnput to a surface and the corresponding

surface curvature has been shown by Burton et al [10], and will be written

as
)
‘rslh vq'
e i ‘__‘LK (14)
dx

where 8 means the thermoelastic deformation on the rotor surtace, and

th

q' is non-uniform part of total heating q since unitform heating can only

lead to zervo curvature.

"




ANALYS1S FOR SMALL-PERTURBATION

Case 1. Rotor has only tirst mode waviness

In this case, we shall examine whether a steady state solution is
possible when there extsts only tirst mode waviness, and its amplitude
very small compared with mean tilm-thickness h.

Overall film-thickness is the sum of h and the operating wave h“.
where h“ comes trom rvrotor waviness and stator motion, To be consistent
with chosen coordinates, {t will be written as

h o= Elstu(ewl) - Z]cu.-m (15

O

\ amplicude ot the stator

A~ -~
where zl denotes amplitude of rvrotor waviness, =z

and ¢, ts a phase angle determined by initial waviness and thermoelastic

1

deformation. For convenience, h“ may be simplitied {nto one term as

h" - zlsln(6+®)\ (10)
with the relation
a'.! aA ~ "'2‘,\
zy = (2] - lzlzlsln o, + z‘) an

and

: (18)

P sln@l = z‘sinal -z

1
Recalling Eq. (5) and noting that positive pressure implies dh/d® > 0, or

zicos(0+0‘) >0 (19

Theretore the positive pressure region around the seal surtace will be

With use of this interval and the assumption of small amplitude waviness
(such that li/ﬁ << 1), the tollowing results can be easily derived trom

Eq. (6), (7) and (8)

)

re b g (20
h
0=
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3
M = HEE%—B zisin@l (21)
4h

3

W = EEM z'!'cosd (22)
=3 1 1
4h

Remembering Mx = 0 and MY > 0 for the chosen coordinates, it follows that
Ql must be zero. With this constraint, Eq. (18) becomes
7= 2,sind, (23)

inserting this into Eq. (17) yields

z) = JE% - ;i sin® (24)
Physically @1 = 0 means the stator will follow (tilt) in a way such that
the operating wave h0 1s 90° out of phase with the stator wave. The
generated pressure will be symmetric about X axis, therefore it will
produce no moment about this axis. Also it is observed from Eq. (23)
that ;1 should be smaller than 21. Consider the special situation, where

the stator is fixed, then the operating wave reduces to

ho = zlsine (25)

which is the case investigated earlier [4]. Another limiting case happens
when 21 = ;1, it turns out that ¢1 = /2 and zi = 0 which means stator

keeps parallel with rotor, obviously no pressure will be generated in this
position hence impossible. Wevertheless it points out that if zi is very
small compared with 21, then ;1 approaches 21 and there is a slight phase

shift from ¢1 = 17/2,

The relation between force and moment derived from Eq. (20) and

Eq. (22) is

.




T e
inserting into Eq. (12) yields
2
zZ, = o (26)
2mV
~ ~ 60V ~ -
Rewrite this by changing m to w/g, and i;i = N, where w is the weight of the

stator, N is revolutions per minute, and it becomes, after some rearrangement

3 - (£ (£ (892
G Q6 @7

In general the axial load f is not necessarily related to stator weight.
In this case, however, we may assume that axial load is equal to the weight
of the rotor and be consistent with the experiment previously performed.

It is then found that z, will be too large even for relatively high speed.

1
For example, take f = 10;, N = 3000 r.p.m,, tilt amplitude will be approx-

imately

El = 1.5mm

and for N = 1000 r.p.m.,

"z‘l = 13.75mm

But as stated before, steady operation requires 21 always bigger than ;1

which means initial waviness should have at least same order of amplitude
as ;1, and is impractical.

It can be concluded that for a flexible mounted face seal, if axial
force is comparable with stator weight, then there will be no steady state
solution under the assumption of synchronous motion. The reason lies in ;
the fact that single wave provide both force and moment. The moment
required by the stator is very small while the moment gemerated is large if same
wave has to support the load.

Returning to Eq. (27) and requiring Z, = 2 , one finds the limiting

1 1’
speed below which operation is strictly forbidden, this being |

2
N - 60 fg (28)
8m ~a
wzl




Case 2. Rotor has both first and second mode waviness

The operating film wave in this case can be expressed as

ho = zlsin(0+®l) + zzsin(26+¢2) - zlcose (29)

-~

where z

2 is the amplitude of second mode on rotor, @

2 is the phase angle

relative to the stator. As in previous cases, it can be reduced to

= ! =
hO zlsin(9+@1) + zzsin(26+¢2) (30)

where zi and 61 are defined in Eq. (17) and (18). The condition of positive

pressure becomes

dh ; =
FTy zlcos(9+§1) + 222cos(29+¢2) >0 (31)

D

Assuming again ho/i << 1, amd l/h3 R 1/F3, force and moment equations
assume the following forms

£l [2cos(8+8.) + 27,cos(26+0,))d6 (32)
o 1

M, = -uVL R [zicos(6+¢1) + 2§2c05(29+¢2)]51“9d9 (33)

W, - EVL3R
2h°

»

[z'cos(9+§l) + 2§2cos(29+¢2)1c0s9d0 (34)

J+ =71

P

Eq. (31) shows that integration interval §+ is a function of zi, 22, Ql
and wz, therefore the analytical treatment of Eq. (32), (33) and (34) seems
impossible. However, conclusions from the previous case and the symmetric
property of second mode can be used to make reasonable simplifying assumption
which will make closed form solution possible.

As stated before, if first mode alone is responsible for the face load,
then the moment generated will usually be too much for equilibrium. In
order that moment be of reasonable magnitude, one must let z.! become very

1
small such that it is unable to lift the load. On the other hand, the second

=12-

v




=13=

mode has the ability to lift load while producing no moment owing to its
symmetric property. So in the combined case of first mode plus second
mode, it is reasonable to assume that zi

second mode waviness 52, such that the second mode is largely responsible

should be very much smaller than

for the load support and the first mode wave is small but sufficient for
dynamic tracking.

To prove the above argument, recalling the dynamic equation of the
stator again, it becomes, for this case

2 3

z'
T = B 2 j [rlcos(9+® ) + 2cos(26+¢,) Jcos6d® (35)
1 ;VZ =3 2 ﬁ+ z, 1 2

where Ql and ¢2 must satisfy condition Mx = 0. By defining

(36)

e
[}

N1 N

N -

and substituting Eq. (32) into Eq. (35) it will result in, after some

rearrangement,

£ 603 L [Ccos(9+§1) + 2cos(2649,) Tcos6d®

5~ O
pand " [ccos(ewl) + 2c0s(26+3,) Jde
P
- (B £ gg 2 INT (M)
PO G (37

where INT(M) and INT(F) are notations for moment and force integrals.
Computer results [Fig. (5) & Appendix A1 indeed show that { must be much

smaller than unity to keep Z, within practical range. For instance, if

1
N = 3000 r.p.m. and £/w = 10, then
z D.2 % (INL(M).
2 3 GNT(F)? -

for %, < 2.5 x 10™3 @) INT(M) /INT(F) should be less than 1.25%10" 2. From

Fig. (5) one finds that { < 0.1 (for any possible phase angle) or zi < 0.1 22.

And for N = 1000 r.p.m., { should be less than 0.01.
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As shown before, small { which implies small zi (= C22) will mean

that the stator follows in the position almost parallel to the rotor.
It can be expected that if the stator appreaches the inertialess condition
then zi approaches zero and second mode will be the only waviness in the
operating film.

Under the assumption of small {, positive region can be determined ;

approximately by only second mode since first mode can only slightly change it.

Hence p+ will be

® ) ) ®
m 2 m =2 3n 2 517 2
o Tal bt el Tk S il

Assuming that hO/F << 1, and { << 1, force will be approximately

3
£ ”—‘% Z, f 2c0s(26+0.)d0
= + 2
2h P v
2uvL? .
S AL (38)
F3 2

this equation fits very well with numerical data [Fig. (6) and Appendix A

with € = 0]. Mean film-thickness can be derived from it as

3
= (22\;1, y 173 &, 1/3 (39)

With same kind of reasoning, the moment can also be calculated. From Eq. (33)

3 .
= BYER S | s
Mx 2§3 $+ zlcos(6+§1)sin9d9 + j+ 222cos(26+¢2)sin6d9} (40)

The second integral can be equated directly to zero by recognizing the
symmetrical property of the second mode, the result is
3

= BVL R , g o B
Mx 2€3 2y {sin(&l ¢2) 3 sin@l} (41)

For the chosen coordinates, Mx = 0, hence there exists a relationship between

@1 and oz, which can be derived from Eq. (41) as




—

e
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sin@z
taan = - (42)
cos@z s

with the above restriction, MY will be the total moment, which if follows

the same procedures as MX did

EVL3R ' 5 n s }
= LR, S = - . P

MY =3 4 L cos ( 1 @2) + cosd, (43)

2h

Computer results (Fig. (7) and Appendix Al show that the total moment /H§+M$ is

accurate even when { approaches 0,5. From Eq. (12), tilt of the stator

becomes
g 2.3 N
., = BRI o scos(d,-0.) + = cosd_* (44)
1 ~ =3 ] \ 1 "2 2 1
2mVh

Equation (39) and (44) show that mean film-thickness depends on second
v
mode only, and tilt of the stator depends on first mode wave amplitude

alone but will be affected by second mode position (02).

Heating effects and thermoelastic deformations will now be dealt

with. Recalling that

q= i, o B . BX 4 (45)
_h n FZ o ’
h(l+—y

h

where first term is the uniform heating which does not contribute to surface
curvature. The second term is non-uniform heating caused by operating film

wave. It can be further expressed as

vl | |
q' = %%F 1zis1n(9+@1) + zzsin(29+02)[ (46)
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Substituting into Eq. (14) yields

a?y 2

th _ -apVv | a
e 7 1z'sin(9+¢ ) + zzsin(29+¢2)} 47
dx Kh 1 1 '

After integrating twice,

-

V2R2 ( 22 \L
Bth = Eiii—— 1zp5in(8+8)) + <=sin(26+8,) | + C,0 + C, (48)

Clearly, both C1 and C2 should be zero because of seal geometry.

Therefore thermoelastic deformation is composed of first mode and second

mode component which will be expressed as

2.2

3, =R aisin(erd)) (69)
1 &

2.2
g, =R g

sin(26+¢.) (50)
thy  4ih ‘

2

It is noted that the above derivation implicitly assumes that heating is
generated by the full film. Stanghan-Batch [2] has shown that although
cavitated regions exist, the fluid is partially continuous around seal
surface. Therefore actual values of heating and surface deformation should
lie between the extremes, full film and absent film when p = 0.

Referring to the block diagram again [Fig. (2)7, two equations can
be written from initial and operating conditions by separating first and

second mode components

Py ~ - 1
2, sin(eH ) + 8th1 - 2 c0s8 = zisin(B+d,) (51)

221s1n(2e+w2) + Sthz = Ezsin(29+¢2) (52)

where 211, 221 are initial amplitude of first, second mode waviness of the
rotor, &1 and 12 are phase angles relative to the stator wave. Substitute

Eq. (43, 49, 50) into Eq. (51) and Eq. (52) which yield

‘0
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‘ 2 2.
5. alnl(Bi.) = »! {1 5 29!-5—}31n(e+¢ % b coed
11 1 2 1 1

1
o~ - 22
-3 '_ﬂ‘ﬂ_ﬂ {_1 . Eg"—_‘;‘—ﬁm(w@l) + cose} (53)
F(¢1,o2)un L Kh
and
a Wikt vzkzl
2,,81n(204,) = Z, {1 - EE=sin(20+0,) (54)
4KhC
where
n
F(¢1,®2) = cos(¢1~®2) + = cos¢1 (55)

From Eq. (54) it is found that

¥, =9, tm
which means thermoelastic deformation in the second mode will be in phase
with the initial waviness. Operating waviness 22 can be obtained by

substituting Eq. (39) into Eq. (54) as

3 »
“ . uavzk 2uVL3 2/3

. 1/3
20 "% "4k CfD) (z))

(56)

Therefore if initial amplitude z is known, then operating amplitude 22

2i
can be determined and will depend on load, sliding speed and other physical
properties.

The initial conditions of the rotor waviness including amplitude and

phase relationship. Phase shift between first mode and second mode

waviness will be defined by

¥, )
LR il Bl R (57

where A'i ranges from -m/2 to T/2.

|
|

x'
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Inserting this into Eq. (53) and taking two orthogonal components yields

two equations

ili cos(jftﬂ-A#i) =z —3 ngh (1- Eg¥3§—)1cos§1 (58)
BRILOF(2,,8,) #

£, sm(sz-Aqi) - %, - zﬂﬁl"—h—— (1 - R eing, (59)
LR L F(§1,¢2) Kh

where ¢2 ranges from -1 to M. Recalling Eq. (42) which relates Ql to ¢2,

and dividing Eq. (59) by Eq. (58) will yield

% L (12-:!:‘”-[\& ) + si (Lzmww ) (60)
e S el g4 = ATy i
s 5 .
1i 2 cos¢2
By defining
~ —3
A= (61)
wRL
dVZR2 vV, 2
Brl-ai - ) (62)
Kh crit
and substituting Eq. (60) into Eq. (58), one finds
¢2 m
cos(==2m-Ay ) (5-cos@,)F (2. ,9,)
2 i’ 2 el ke e
- 3 = AB (63)
Ll 2 2
[7r ain(jf*ﬂ-bvi) + sin(7?1n+Avi)]cosQ1
Also Eq. (44) now becomes
~ & J?_ '
z; A z1 (64)
therefore
' ~
z; e z; -
s L T LT

?
|
:
!




A computer program [Appendix D) has been written to evaluate AB and zi/AEli.

Part of the results, where negative ;1/21 is not allowed, are shown in Table

i

1. It is found that AB may have positive and negative values for any initial 3

phase angles, and is zero when ;1 = 211 and ¢1 = 900, which means zi is

restricted. Although this is true, it is also found that zi/AEli reaches ' |

maximum (when Avi = 00) or near maximum (for other Avi) at AB = 0. Values

of zi/Aili for AB = 0 are shown in Fig. (8). Whether these values can be
reached depends on A. For example, take the worst case when Avi = 00, Fig.
' & -
(8) shows that zl/Az11 1.75, so
zi mv rit—3
= = (1.5 = 3.5 —Ste— (66)
Zy4 B=0 wR L
By substituting for h from Eq. (39),
' ~ 2
z1 my crit
e ©7)
Zy4 fR

A limiting case is that m becomes very large (approaching the fixed mounting

case), then zi will approach infinity, which is the case investigated

earlier [1]. Eq. (67) can be changed to

1
2 /e %
crit ;:' s - (68) H
)

Since the stable condition requires zi s 22, it is instructive to choose

values of zi/Ez as the limiting condition to evaluate critical speed. For

instance, if zi/zz = 0.1, then Eq. (68) becomes

2 __m ,
crit ~ A
70mz11

The ranges of f,R,; and Z., may vary broadly for face seals, and so will

11
the critical sliding speed. Eq. (69) points out that bigger f,R and smaller

s e e X A — R —— . e
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‘;,211 will make vcrit higher, hence safer, and vice versa. Also, by

noting that larger £/m requires smaller zi relative to 22 it follows from

Eq. (68) that the radius of the stator and the initial amplitude of the

rotor are the most important factors in considering thermoelastic effect.

It is noted again that when m approaches zero, there exists no operating first
mode wave in the film; same result will occur when initial first mode

waviness approaches zero. In both cases, there will be no thermoelastic
deformation in the rotor first mode hence no thermoelastic instability.

These observations can be reflected from Eq. (69) by noting that V

crit
approaches infinity and are consistent with the previous theory [4].

v
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RESULTS AND DISCUSSION

For flexibly mounted face seals, {f there exists only first mode
waviness on the rotor, and axial load is comparable with stator weight,
then there will be no admissible steady operation under the assumption
of synchronous motion. If there exists only second mode waviness, then
thermoelastic instability will not occur [4). For the case where both
first and second mode waviness is present, the condition for steady
operation requires zi << 22. It is found that axial load is supported
largely by the second mode while the first mode wave will be responsible
for the motion of the stator. In such situations, thermoelastic deformation

will grow when sliding speed increases. Although it will not reach infinity

as in the case of the fixed mounted face seal [1], it may reach a certain

value where the requirement of zi << 22 fails. This enables one to determine ¥ :
the critical sliding speed, which will depend on load, mass of stator, radius

of stator, initial first mode waviness of the rotor and initial phase angle

between first and second mode waviness of the rotor. J

=
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Rotor

Stator

v

First mode plus second mode waviness

V = Ro

First mode wave

Figure 1. Sketch of Three Degree of Freedom Face Seal Model
with Two Modes of Waviness




|

———— T T o e Ty

initial waviness

of the rotor Ei

operating film-thickness
h=h+ 2z

i
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hydrodynamic

pressure p

heat generation

q

thermoe lastic

deformation arh

force f

moment M

mean film-

thickness h

tilt of the

~
stator h

Figure 2. Block Diagram for Thermoelastic Analysis
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¢ = amplitude of second mode wave (22)
Figure 5. (Moment integral/Force Integral) vs. { for

small-perturbation Analysis
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2 A =T1/6
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.125 .25
amplitude of first mode wave (zi)
¢ = amplitude of second mode waveAZEz)
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h
Figure 6. Force Integral vs. { for Both Small-perturbations

(e =0) and Large Amplitude Waviness (e = 0,5)
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Figure 7. Moment Integral vs. { for Small-perturbation
Analysis
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Figure 9. (Moment Integral/Force Integral) vs. { for
Large Amplitude Waviness (¢ = 0.5)
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Ay ®, L AB zi/A;.l1
0 0 0 8.70 1.18
0 45 -32 0.57 1.47

0 86 -3 0.04 1.75
0 94 3 -0.04 1.75

0 135 32 -0.57 1.47

0 180 0 -8.70 1.18
30 30 -23 0.71 1.31
30 56 -3 0.37 1.50
30 86 20 0.05 1.54
30 98 28 -0.10 1.50
30 128 39 -0.80 0.98
30 146 13 -9.50 0.01
60 68 28 0.43 1.00
60 75 32 0.30 1.00
60 86 38 0.09 0.97
60 97 39 -0.20 0.84
60 109 31 -0.64 0.54
60 116 13 -1.10 0.40
90 -244 -40 -1.27 0.45
90 -210 -23 -4.45 0.21
90 0 -180 -39.2 0.03
90 6 8 39.2 0.03
90 38 28 3.35 0.26
90 71 38 0.87 0.47

TABLE 1

Results of Appendix D

V




Appendix A - Program for computing force and moment integrals
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Appendix B - Force equation for large amplitude waviness

Recalling that

| VL T 1 dh
| £ =y i+ ;3 38 de 1)

where

~

h=h+ z1sin(B+d)) + Z,5in(264,)

| 1
¢
and p+ means
I
@ @ o} )
™ 2 m 2 3 2 ST 2
2ol el o L =s SIUEER o e
i g o s e L e

Changing the variable to h, another way to calculate f will be

3
o BVL J‘ 1
E=Te J+ e

3
- - BV [
L 2]+ (2)
h™"p
+
where p becomes

. z'sin(-%+ i -5, ch<h+ z’sin(%+ A) + 2

1 2 1 2
and
= 3n ~ e 5t ~
h+zisin(l‘ + A - 22<h<h+zisin(T+ 7&)4-22
where
[
2
Ao §, - (3)

Consider only the case zi << 52, wihere 52 not necessarily small compared

with h, then p+ becomes approximately

® < h < z
h z2 h h + 22

and F-z2<h<i+2

insertion into Eq. (2) yields




when € = 0, Eq. (4) converges to

f-ZP_‘.’L__; (5)

which is the case for small-perturbation analysis.

S P D
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Appendix C - Moment equation for large amplitude waviness

Recalling that

—gVL3R . zlcos(0+§1) + Zzzcos(26+¢2) e
M= "3 s 3sin (1)
2" b [1+ccsin(e+¢1) + esin(29+¢2ﬂ

where zi
C

= x

)

and
€ = 72
h

For convenience, write MX as

3
M, -'LZV;‘_TK {twrau) + INT(M,) | )

where INT(MI), INT(MZ) denote first and second mode components of the integral
in Eq. (1).

Consider INT(MI), when § << 1 as assumed, it becomes approximately
z’cos(9+§1)sin9

1
INT(M,) =
" ‘L* [1+esin(2e+¢2)13

d6 (3)

+
where p means

(0] (4] ®

il 2 il 2 5T &

— . —< LA - — & B o wis

4 2 9 4 2 o 4 2 3 4 2

by changing variable 8 to 8' as follows

m
¢ - -
6 20 + ¢ + 3

The integration interval becomes

0<9'<Tand 2 < @' < 3m
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EqQ. (3) can be changed to the following form
z! Al (T
INT(MI) - 7} (-sinQI J dé 3 + cos(@l-¢2)J —-222!22-5
o [1-ecos8] [1-ecos®]
TT
+sln(§l-¢2) [ s1in0d6 5 “)
‘o [1-¢ecosb]
The integrals in Eq. (4) can be carried out (11 by writing
-€ + cosf e ¥ . cosfp
cosp = 1-€ cos® or cost 1+€¢ cos (%)
such that
2.8
dg o A= D 2B
(1 + ecosP)
results will be
T 4e 14(¢2/2) ]
J ;g oy ()
o (l-ecos®) (1-¢7)
T

cos®d® (3/2) em

7
o (1-8c039)3 (l-ez)S/2

[M_singde _ _ 2

(Y

o (l-ccose)3 (1-62)2

(8)
hence
( ﬂsian 1+(62/2) 3ncos(Q1-¢2)

€
INT(M,) = 2! +
it LoE R

e2 5/2 4 2.5/2
sin(@1-¢2)1

) (1-¢)

+ (9

(a-e")"

when € ~ 0, it converges to

(R 3
INT(MI) =z 2sln¢1 + sin((’1 @2)} (10)

which is the same as derived for small-perturbation analysis.




T

T

As for integral INT(MZ), the Ccsin(6+§l) term cannot be neglected,
in fact, it is the dominant term in the integral. A closed form solution
seems impossible; instead, it will be carried out by series expansion as
follows

1
(1+y)

%1 v Spk Gy = 00 4 1B eers (11)

where in this case

y = e[Csin(9+§1) + sin(29+¢2)]
since §{ << 1, higher order terms are approximately

v ez[zcsin(e+ol)s1n(ze+¢2) % sln2(29+02)]

y3 = 63[3Csin(6+§1)sin2(29+¢2) + sin3(29+®2)]

y" o= cn[nCsin(9+§1)sinn(26+¢2) + sinn(29+¢2)] (12)

It can be shown that, for integer n
| n
$+ cos(20+¢2)sin (29+m2)sin9d0 =0

{+ cos (2040,) sin" (26+9,) cos8d0 = 0

By changing variable as in the evaluation of INT(MI), one finds

INT(M,) = 22; [-3e£+sin(e+x)coszesinede

i
+1282J+sin(9+k)c052691n22651n9d9
P

-30 €] sin(8+N) cos20sin 20510048 +-...} (13)
P

where

@
2
ARy~ %

The final result, taking only the first three terms, is

"
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INT(MZ) = zi i-6e[cos§1 - %cos(bl-¢2)] +8 czain(§1-¢2)

- 20¢:tcos§1-l—32cos(01-¢2)'] +-. } (14)

It is clear that INT(MZ) is also a linear function of zi, and will converge
to zero when € approaches zero. From Eq. (2,9,14), the total value will be

3

2 Incos(d,-9.)
;—uVL . +(e/2 1 "2 €
My {[ gsing LEC 2ﬂ§}i % 2,572
(1-¢) (1-¢)
sin(%,-6,) r
+ -—-—52—_] -6€(cosd, - cos(@ -9,))

(1-¢7)

+ 8¢ sin(<l> ¢2) - 20¢?cos§ cos(@ ¢2))

) ,,J} (15)

MY can be obtained in the same way with the following result

{[ 1+<c ) s Tninity o) ¢
2°° 1-¢2)5/2 4 (1-¢2y372
. cos(%,-0.) -
1 %271 | Al
+ -(—1-?)—2——_] + L-6e(sin§1-zsin(§1-¢2))

+8€2cos(§1-¢2) -20€3 (sind 3"sin(§ -,))

11
+-...]} (16)

When € ~ 0, it converges to

EVLJR

JT 6.)
= zy17¢08%, + cos(¥; ¢2),t (17)

MY=

which is the case for small-perturbation analysis.
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Appendix D - Program for determining maximum thermoelastic effects
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Appendix E - Remarks on large amplitude waviness

If the restriction of small-perturbation is removed, which means first
mode and second mode waviness as well as stator wave amplitude not necessarily
small relative to mean film-thickness, force and moment will be different but
not change much if QZ/F is not very far away from zero.

Following the same procedure as did before, the stator amplitude is

found to be

= (& &y (89y2 INT(M)
z, (an)ﬂ;)(n) INT(F))

where

[Ccos(9+§1) + 2cos(26+¢2)]cos9d9

INTQM) = |, 5
P [1+Cesin(9+§1) + €sin(26+9,) ]

[Ccos(0+8) + 2cos(29+¢2)]d9

INT(F) =

e

b’ [14Cesin(8+d) + esin(26+9,) 1>

(2]
]
= INN’

We can still conclude that { << 1 in order to keep Z, within practical range

1
[Fig. (9) and Appendix A].

Under the assumption of zi << 22, where 32 may be comparable with K,

Appendix B shows that force will be approximately

£ = ZuVL3 22
B a-eh®

Therefore force will be changed by the factor
1
(1-¢%)?

for example, if € = 0.3, force will be 1.2 times compared with small-

perturbation case.
Appendix C has derived the moment integrals. Results show that moment

is a linear function of z!, and will not change too much if € is not too big.
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! Appendix F - Stator motion in Eulerian Coordinates
The formulation of Kupperman (12) has been reviewed, and is felt to
be appropriate for small, steadily precessing tilt of the type studied
here. 1f one refers to any advanced dynamics text, one finds the angular

velocity vectors, referred to Eulerian axes, to be, using present notation:

Q- ésinY
X

Qz = écosy+é

Here é would correspond to w the speed of rotation of the rotor and if the
stator follows rotor tilt it will be the speed of precession of the stator. |
The quantity ¢ is the spin of the stator relative to the moving coordinate |
system and must be such as to keep the absolute Qz = 0, if gimbals or O-rings

keep the seal ring from rotating. If the tilt angle is fixed (steady

precession, no rotation), then ¥y = 0. Using this information the only

moment is that given in Eq. (10).
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