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(a) a systematic overvier of possible splittings for several types of
matrices and cigenvaluc intormation.

(b) applications to nonsymmetric linear systems.

(c) solution of generalized eigenvalue problems for sparse linear
systems.‘

The research on (a) has resulted in more insight on how to choose the
appropriate preconditioning for matrices of a special structure. Morcover,
splittings have been proposed for other problems, e.g. 3D-problems and
periodic boundary condition problems.

The rescarch on (b) has not yet led to satisfactory iterative solution
m>thods, though for special problems an always converging method has been
deve loped.

The cigenvalue problems mentioned under (¢) have been solved satisfactorily 1
with Lanczos-type algorithms. These problems were met in the investigation
of convergence properties of the methods mentioned wnder (a) and (b).
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Summary . In ref. 1 special splittings of the matrix of a sparse linear
system were proposed. These splittings can be combined with the conjugate
gradients method, which results in very efficient iterative solution methods
when the matrix is a symmetric M-matrix 3.
The research reported in this Final Technical Report has been focused on
three major subjects:
(a) a systematic overview of possible splittings for several types of
matrices and eigenvalue information
(b) applications to nonsymmetric linear systems
(¢) solution of generalized eigenvalue problems for sparse linear
systems.
The research on (a) has resulted in more insight on how to choose the
appropriate preconditioning for matrices of a special structure. Moreover,
splittings have been proposed for other problems, e.g. 3D-problems and
periodic boundary condition problems.
The research on (b) has not yet led to satisfactory iterative solution
methods, though for special problems an always converging method has been
developed. v
The eigenvalue problems mentioned under (c¢) have been solved satisfactorily
with Lanczos—-type algorithms. These problems were met in the investigation

of convergence properties of the methods mentioned under (a) and (b).

1y A matrix A=(nii) is an M-matrix if aii~0 for i+j, A is nonsingular and

0.
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Splitting techniques for several types of symmetric matrices
P g q

In ref. | the idea of incomplete decompositions LU for arbitrary

M~matrices A was introduced. For symmetric matrices A those

decompositions were used as preconditionings for the conjugate gradient

algorithm to solve the linear system Ax=b. In the examples given in

ref. | matrices were considered arising from 5-point discretisation of

a self-adjoint elliptic partial differential equation on a rectangular

region.

During the period of the Grant, attention has been given to a more

systematic investigation of possible preconditionings. From the information

that came out this investigation also precoditionings could be proposed for

other types of matrices. We mention here problems that come from p.d.e.'s

with periodic boundary conditions, 3D-problems and problems where the

resulting matrix has an arbitrary non-zero structure. Also research

has been done for problems where the matrix is not an M-matrix.

This research has been reported briefly in ref. 2 and extensively in

Appendix A. As a conclusion we mention that, with respect to either

economy of space or the amounts of computational work, optimal choices for

a preconditioning can be made for problems that come from discretisations d
of elliptic self-adjoint p.d.e.'s.

The eigenvalue information, reported in Appendix A, demonstrates the
effects of constructing a more or less incomplete decomposition for

use as a preconditioning.
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ITI. Iterative methods for nonsymmetric systems

The algorithms mentioned in section I work all fine for symmetric
positive definite linear systems but they fail to work for nonsymmetric
systems since they are based on the conjugate gradients method.
Variants of the conjugate gradients algorithm, that converge also for
certain classes of nonsymmetric systems, are proposed by Concus and
Golub [3], Widlund [4] and others. They share the disadvantage that a
symmetric system has to be solved in each iteration step. Thus in
general these methods can not compete with the original cg-method for
symmetric matrices.

It has been investigated during the Grant-period whether incomplete
LU-decompositions could be used to speed up the convergence of some
well-chosen method. Two different ways have been followed, each of which

seems to have promises but research is only in its very first stage.

The first way was to base iterative methods on the following splitting

of a given matrix A:

A

alk & &) + ({1 = aIA ~ aAd)
oM + N

instead of A=£(A+AT)+£(A-AT) which is more usual.

In Appendix B formulas are given that yield a converging method if A+AT
is symmetric and positive definite. It is shown in Appendix B that the
replacement of M by its incomplete LLT-decomposition in general results
in faster convergence.

The other way was to follow ideas expressed by Manteuffel [5] based on
Chebychev acceleration of iterative methods for non-linear systems. It
was recognized that the use of incomplete LU-decompositions of A could be

used as a preconditioning and they gave more efficient solution methods

than for instance the use of a Fast-Poisson-Solver as a preconditioning.




ITI. Generalized Eigenvalue Problems

In order to study the convergence properties of the iterative methods
mentioned in I and II it was necessary to inspect the eigenvalue
distribution of the respective iteration matrices.

The Lanczos-algorithm as proposed by Paige [6] has been chosen to compute
a large number of eigenvalues. In ref. 7 the numerical experiments are
described for calculating eigenvalues of BA where B and A are both
symmetric and positive definite.

Since also eigenvalues were required of matrices BC, where B is

symmetric positive definite and C--CT (antisymmetric), a variant of the
Lanczos~algorithm is proposed in Appendix C. ,
The often very tedious examination of the numerical results, as usually &
required when using Lanczos-methods, has been largely overcome by an

automatic selection procedure. This research is also described in

Appendix C.
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APPENDTIX A

Guide lines for the usage of incomplete decompositions
in solving sets of linear equations as occur in

practical problems.
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SUMMARY

This report presents incomplete decompositions for various types of

matrices as occur in the implicit discretisation of practical problems.

A review is given of methods for the usual five-point discretisation of
a self-adjoint elliptic second-order partial differentizl equation in two
dimensions on a square. The matrices which occur in this type of problem 1
are symmetric M-matrices of very regular structure. The convergence behaviour
of the different decompositions for this case is demonstrated by
nurerical experiments. The report also gives decompositions for the
following type of matrices:

(1) Symmetric M-matrices of a different structure
(ii) Symmetric positive definite matrices
(iii) Non-symmetric positive definite matrices

KEYWORDS

Matrix algebra, numerical analysis, partial differential equation.
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GUIDE LINES FOR THE USAGE OFF INCOMPLETE DECOMPOSITIONS IN SOLVING SETS
O LINFAR EQUATIONS AS OCCUR IN PRACTICAL PROBLEMS

L. INTRODUCTION

In Ret. 1 the idea of incomplete decomposition WU for arbitrary M-matrices

A was introduced. For symmetric matrices A those decompositions were used as
preconditionings tor the conjugate pradient algorithm to solve the linear
equation Ax=b. 1In the examples piven in Ret. 1 matrices were considered arising
from S-point discretisation of a self-adjoint elliptic partial differential
cquation on a rectangular vegion. Only two difterent incomplete decompositions
were denonstrated.

In this report we present a more systematic review of the possible incomplete
decompositions tor that problem (section 3.1). In addition, we shall discuss
incomplete decompositions for other types of nuh‘,ivvsv, e.g. M-matrices
arising from problems with periodic boundary conditions (section 3.2)

and M-matrices with a more arbitrary structure (sections 3.4 and 3.5). For v
this purpose we need an extension of the detinition of an incomplete
decomposition piven in the proof of theoram 2.3 in Ref. 1. In the process
detined there some oft-diagonal elements were omitted after each elimination
step. I, instead of omitting some off-diagonal elements, we replace them

by negative elements which are smaller in absolute value, or if diagonal
elements are replaced by larger ones, the construction process does not

break down and the resulting incomplete decomposition 'LWU' defines a regular
splitting of A. This new process describes the extended concept of incomplete
decompositions. A specific example of this process is the following: In the

th s b P % . "
K : step of the Gaussian elimination process elements are eliminated with

th

the K7 row. This may cause three effocts:

1) zero off-digponal elements turn to negative non-zero values
11) non-zero oft=diagonl elements become smaller (although larger in
absolute value)

i1)diagonal elements become smaller (but remain positive).

Thus omitting to carry out the elimination corrections for some of the
elements of the mitrix results in an incomplete decomposition. Examples of
this type of decomposition are given in sections 2.1.2, 2.1.3, 2.4% and 2.5.

5 3
Other approximite factorisations are discussed by Stone”, Dupont et all™ and




e

\‘.u::t.\tl::on“. They all introduce one or more panauneters into the decomposition
process to accelerate convergence. The property of regular splitting is lost
in nost of their examples.

Rershaw® and Manteuffel® provide extensions for positive detinite matrices.
We shall describe these briefly and present another one in section 3.
Inconplete decompositions tor p.d.e.'s in three-dimensions are treated in
section 2.3, In section b alporithms for non-symmetric matrices are described.
In section b convergence results as well as 'eigenvalue' information on the

decompos it ions described in section 2.1 are given for some specific examples.

2. INCOMPLETE DECOMPOSTTIONS TOR SYMMETRIC M=MATRICES

2.1 Five-point discretisation ot elliptic partial ditferential equations in

two-dimens tons

The linear equations in this section arise trom five-point discrete approxi-

mition to the second-onder selt adjoint elliptic partial difterential equation:

v
J J )
ey AlX,Y) Y ulx,y) - J.: BOx,y) “\“‘ ulx,y) + COxLy) ulx,y) = DIx,y)

(21L)
with ACx,Vv), BOx,y)>0, CIx,y)=0 and (x,y) € R, where R is a rectangular

vegion. Along the toundary SR of R the houndary condition
Y+ 8 9
AN, y) ulx,y) + pix,y) :m-u(x,_\’) = yix,y)

holds, with alx,y), BOX,y)20 and alx,y) + B(x,y)*0 and where —{;—“— 1s the
outwand derivative perpendicular to SR. The structure of the resulting
synmeteric M=matrix A of onder N is shown in Fig. 1. The elements of

the diagonal of A are denoted by s those ot the tirst upper diagonal by bi
and those of the m=th u.ppvx' diagonal by Cis where 1 1s the index of the row
ot A in which the respect ive elements occur, and m is the halt handwidth

ot the matrix. For the derivation of such linear systems see Ret. 7.




2od.1 Diagonal sealing

The simplest allowed choice for K is the diagonal of A. The resulting
conjugate gradient method is the same as the c.g. method applied on the
mitrix scaled by its diagonal. This scaling is in some respect optimal, since
: $ o 5 e ! :
Lt minumises approximitely the condition number of K "A among all diagonal

g 8
scalings .
[f the equation is scaled in advance, the number of multiplications is

10 N per iteration. If not, this nwrber will be 11 N.

2.1.2 I00G_(1,1)_and_SSOR_(w=1)

: : - i . 1
Here the matrix K is chosen so that its decomposition factor L7 has the

same sparsity pattern as the upper triangular pact of A. This decomposition

: e iRl tel
has been considered by many authors 3

D

It 1s convenient to write this decomposition as K = L

i el 2,1 1,0 l'],l’

vhere Ly is an upper triangular matrix and Dy diagonal matrix equal
bl v »

to the 1nverse of the main diagonal of l.l 1 [n common with the elements of
T = - t B -

A, those of L are denoted by a, b. and ¢, and those of D by d.

- L 1,1 [SEREIS & A4 l{ i l i 1,1 a4 i

(see Fig. 2). The following relations are easily verified:

~ ~ _l gt 10 ~ ~ 3 ~
ay =y =oas <hes ds “c. d.
1 Nl al L=l 3=l 1~m ~1-m
} femsamllede: L osN
b . = B \llld Cs = Ca
1 1 1 1

In these relations the non—defined elements are zero. Only extra storage tor
the elements :li is required. The resulting hybrid conjugate gradient method
is called ICCG(L,1). The indices are used to indicate that there is one
non-zero diagonal next to the main diagonal and one non-zero diagonal at the
outward side of the band. This is 1CCG(0) of Ret. 1. The number of
multiplications for this method is 16 N multiplications per iteration.

The SSO0R(w=1) decomposition arises if all Gaussian elimination corrections
are neglected. Thus SSOR(w=1) is an example of the extended class of
incomplete decompositions mentioned in section 1. The number of multi-
plications remiins the same as for ICCG(1,1), but one armay of storage

has been saved. For the use of SSOR as a preconditioning technique see

@i

B . ——————




2,1.3 1006(1,2)

Me matrix K L. D L Ot the previous section is a matrix equal

Lyl Lot Ml TRl

to A, except for two diagonals adjacent to the outermost two diagonals,

as indicated by the dotted lines in Fig. 3. By including non-zerv entries

Vit those lines in Loand L) we expect to mprove: the approximate decomposition,

This approximation will be written as

where D | is the diagonal matrix equal to the inverse of the main

. 3 é i, ’ 0 R =3 " o
diagoral ot l'l,." 'lhv‘g-lc-tm'n!:: Ot !‘l..‘ are denoted {\\' Al l\i. e and ‘1
and those of D, . by d. (see Fig. %), The elements ;s Diy ;s d. and e,

) 44 1 . 1 1 1 1 1

can be carputed recursively from

. ~ l s ~ O ) N . ) ~
&, =d. a. = b. 1, - @, 1. =g ,
= i i=1 “i-=1 ismdl Vieml T Ciem ‘lwln
b, by ~ @ d, e, for i=1,2,....N
i i Ciemel Yiemel Siemed RSy vaey
e - e 1. b
i “iel V-1 Yi-l
:‘ O
i i

The non-det inal elements are all zero.

Stomage 18 required for three arnays of length N. The number of multipli-
cations necessary tor each iteration step Of the resulting hybrid conjugate
gradient methad 10CG(1,2) is equal to 18 N.

In order to save computer storage (one array) the relatively small

cortection on {‘i can be amittexd. Thus f‘i - t\i. This {8 another example ot the

- . . . . W™ ) )
extended class of incomplete decompos it ions and will be denotead by 1CCG (1, D)

The matrix S 5 equal to Ay except tor the two dot tad diagonatls as
| %
indicated in Fig. 5. These non-zero elements can be eliminated by mtraduc ing,

an extra diagomal in L7 (see Fig. 6). The elements on these Jdiagomals will

be denoted by tl This incamplete decomposition will be demoted by



, - ; &
[he elements of D and L can be conputed from:
P2 13
e -3 -2 - - <2 -
L Sl R ] J\-l fi-me2 Yi-me2 “{-m+1 di-—rml Ciem S
By 2 By = Ciomol Yicasl Pieatl T Yeme2 di-me2 Fi-me2
B bk 3 * . & 9 R
By ® %5 Y By
oy R T M
i = = ¢,
i i

I'he non-defined elements are zero.
The resulting ICCG(1,3) process necessitates about 20 N multiplications

per iteration and requires four arrays of length N for the decomposition.

Unlike }‘I | and k\l _ l\1 ) difters trom A by tour non-zero diagonals

- 5 ; i
(Fig. 7). 10 eliminate these, two more non-zero diagonals in L are
5 =~ ~ e 3 ’
necessary. ‘The elements on these diagonals are denoted by hi arxl 8; (Fig. '8). \

This incomplete decomposition is written as

1
and the elements of L, y nd D, , follow from

- A
3 -1 2 =y 3 =y . 3 38 3 <2 5 -2 3
o Bl 81 “Pie1 Y1 P2 Y422 “Biemed Yemed “Fiome2 Yime2 “iemel Yi-mil Ci-m Yi-m
By = By "My dit Biot “Tiemed Yiomed Biemed “Meme2 Yirmen Tiome2 “Ci-met Yi-me1 Ci-med
B * 7€ med Yiomed 8i-med Si-me2 Yi-me2 Fi-me2
50 - SRR
85 * "% Yer Mieg “Fraa M1 Bia

f\ €2 dx—‘ h\_, e, di_l ‘1—1
: Sy =t Moy

< = O,

1 1

The non=detined elements are zero.
The resulting ICCG(2,4) process necessitates about 24N multiplications per

iteration and requires six armays of length N for the decomposition.

If, instead of the two extra non-zero diagonils h and ;' in l.’I, we take only
the h-diagonal, then the ICOG(3)-methad of Ref 1 arises. This method 1
denoted in this report by ICCG(2,3).




- Rl

2.1.6 Some other decompositions

- 2

Proceeding in this manner, we obtain a sequence of incomplete decompositions

K3,6° Ks,9° g 140 K3,
non-zero diagonals grows rapidly and thus the amount of work. However,

s €tc. From this we see that the number of

for most practical problems the two diagonals next to those of the
previous decomposition cause the major improvement. In this way K(3,5)
K(4,6) etc., together with the corresponding ICCG methods ICCG(3,5),
ICCG(4,6) etc., are developed.

Up to now we have always added complete diagonals in the decomposition
process. The diagonals, however, contain their non-zero entries only in a
blockwise structure (see Fig. 9). In particular, this implies that in our
terminology a complete choleski factorisation is equivalent to "incomplete

decomposition" with 2m-2 extra "diagonals".
E

2.2 Yive-point discretisation for problems with periodic boundary conditions

The linear equations in this section arise in the same way as the linear
equations in section 2.1, except that a periodic boundary condition holds in
at least one direction. In the examples we have restricted ourselves to a
periodic boundary condition in the x~direction. This boundary condition gives
rise to additional elements in the matrix A, as indicated in Fig. 10. These
extra elements are denoted by B;- Since i is the row index, only Bys B

; m+l’
B2m+1" .. are non-zero. Again A is an M-matrix.

2.2.1 I00G(1,1)

In common with the non-periodic case in 2.1.1 an incomplete decomposition
can be constructed in cases where the upper triangular factor has the
same sparsity structure as the upper triangular part of A. This decompo-
sition is written as

E y
i o Bl 6 B 1 R )




The elements of Lll1 and Dl can be calculated from
b ’

1
AR LA, CMEALT b TR =
8 =4 T Ay by G B Yiomel “Siem Yem
i=1.2,...N
b, = by c; Ty B; = B,
. ond 2 ~
Non-defined elements are zero. Note that the term 8. ., d. .. # 0 only

it i=m, 2m, 3m,.... The resulting ICCG(1l,1) process again takes
approximately 16N multiplications per iteration.

2.2.2 JCOG(L.2

The matrix Ky g of 2.2.1 has elements as indicated in Fig. 11. To annihilate
? ’I’

these elements in L, non-zero elements are required in these places. These

elements are denoted as shown in Fig. 12 by 5i, Bi’ Ei’ éi

and the clements of Dy, by :li. They' can be calculated from
32

e. s Ok
b l, Yl’ i

- iz g L= = e ‘
B 59 8 By Yy % Yt "Shem Yien ¢
T
i-1 “i-1 (only for i=m+l, 2m+l, 3m+l,--) .
i=1,2,3...N
o T :
~ ¥5omg Yieme “Fram Yoy SO fur 10, 2 :
B; = By ~Ciomel Yomel Simel
g = ¥4
e, = =C d b

3 * i Y D

~ ~ ~ ~ ~ ~

¥

8. = -

i Ci-me2 di-m+2 1%m, 2=

i-m+2 “Ci-m+l di—m+l Bi—m+l

- o ~ ~

Y5 ® “Pyag 931 By 122, mé2, 2me2,--=

8. i=1, m+l, 2ml.---

Note that Bm’ b and él’ e -- are hon-zero.

m m+l’
The resulting ICCG process takes 18N multiplications per iteration and

requires roughly three arrays of length N for the incomplete decomposition.




2.2.3 1CCG(1,1) periodic

D

The incamplete decomposition of 2.2.1 does not have a periodic structure.
To obtain a K with a periodic structure we write
L}

K 2 (L +D" 1D a + D
S Tl - Tl “Tie Tl -

Y

The periodic structure of the matrix Lp is given in Fig. 13. Dp is a

diagonal matrix. The elements of Lp and DD have to satisfy:

~ ~

b.L » B c; = ¢y Bi = B; for i=1, 2,--N (22,31
- O - Nl ey
A Hdy P b Nl i Y o §82, 3,7, m, B2, B3, 20 2060

SR O T T
G = a7 e B2d,, ) o2 d
1 “1 P YY1l Yiem “i-m for 1=1l, m+l, 2m+l,--, N-m+¢l (2.2.3.3)

1+
1

(¥
"

The di cannot be calculated straightforwardly, since in the second formula

d is present. We can calculate them by substituting (2.2.3.3) into (2.2.3.2)

i+m-1
for the next i, and continuing in this way, we find quadratic equations for

the dkm' For d}\m we choose the largest root, since this choice results in

smaller elements b. afl
3 d=l

derivation for the formula for am. The akm can be computed in a similar

C:m-1 in the error matrix K -A. We now give the

way. We rewrite (2.2.3.3) as

d." = vV d, i=2, =--m (2.9.3:5)

From induction it follows that:

i p: +q. d
3, o St for i=1, 2, =-=-=-,m
Vw4 s d
i m

s

i

The coefficients Pi» 9 and s; satisfy p, = 1 % 0 By S 8
Piad " "1 Yaa "% T "MiaTi Via P %5a * Wia 57 Via%
This leads to the quadratic equation in d with known coeeficients Pyt

r-and s _:
m m




~2 ~
s d +(r‘m-qm)dm-p =0

m m m

from which the largest root can be calculated.

~
<

.3 Seven-point discretisations of elliptic p.d.e.'s in three dimensions

The seven-point discretisation for equation (2.1.1) in three dimensions
leads in a similar way to a matrix with seven non-zero diagonals. The
structure of this matrix A is shown in Fig. 1l4. The elements of the upper
triangular part of A are denoted by a, bi’ Sy and ess where 1 is counted
rowwise. If n, m, k are the number of gridpoints in the x,y,z directions,
respectively, the order of the matrix and the sizes of the blocks are

nxmxk, nxmand n.

"

2.3.1 I006(1,1,1)

In common with the 2-D case the ICCG (1,1,1) factorisation is the one ‘ ,
where the upper triangular factor has the same non-zero structure as the
upper triangular part of A. Again thls decomposition is written as
T
}\1 1.1 ® I,1 1, lDl 1, lLl 1,1° where Ll 1.4 is an upper triangular matrix
ard Dl 1,1 a dlagoml matru equal to the inverse of the main diagonal of
T
1 1,10 The elements of 1‘1 1,1 are denoted by a. T Bl, ¢; and el and the

elements of D1 1.1 by dl. 'I'hese elements are given by the recurrency
y=y -

relations:
PR W sy o e EF o
= . = a o - . -
al dl 1 b AB dl—l Cl—n i=n 1-mn i-mn
for i=1,2,---,n xm x k
B = Db E. = 4 o o
e : Gt b Wi

Non-defined elements should be replaced by zeros. It can easily be seen
that for major problems where the diagonals cannot be stored all together
in core, the Zli can be calculated by taking successively only parts of the
order of n x m in core.

The resulting hybrid conjugate gradient method requires 20 N
multiplications per iteration.




————

2.3.2 Other decompositions tor 3-D

. ']‘
e o . ~ > = )
e matrix &) ) ) = Ly D)k,

matrix equal to A, except for six diagonals, as shown in Fig. 15 as dotted

of the previous section is a

lines. We obtain the next decomposition by including non-zero entries on

! ~ ~

. . i S e
ese lines in L and L. The elements of L are denoted by a, bi, C.

e.
It

~

th
fi. g; and f\.l. as shown in Fig. 16, and can be calculated from:

. 4=l - 2 s e :
& 2d.” = &, = BS . Ay e i ~<: d. -g: d.
; Okl i i-1 Yi-1 Henel Yienel Vien Yien ®iepmen SYienmen
- ) - - )
Wl d. Q5 3 {28
i-tmel T i-nmel i-nm o 1-nm
b, = b, ~ d. h. -e. d. s
b i Ci-nel Yi-nel Pienel "%i-mnel Ciemntl “l-mnel
h. = “‘ ~1. b =F. \L g
1 Si-1 Yi-1 Ti-l i-mnen Ci-nnen gx—mnm
1=1,...,Amk
Cs: B Q, =€ d ;‘_
i i “i-nnen Vi-nnen Mi-mnen
L ) h. -e. _ d, S
& i-nel Vienel Vienel ien Yien Si-n
£, = -e, ~1, b.
i i-1 Yi-1 “i-1
&y S €.
i i

Six arrays of length N are required to store the non-zero diagonals of I.I.
The resulting ICCG methad requires 26N multiplications per iteration.
Unfortunately, if we proceed in this manner the number of diagonals

in the subsequent decompositions will increase rapidly. For instance, the
next decomposition has 12 non-zero diggonals in its upper triangular part.

The resulting ICCC methad takes 36 N nultiplications per itemation.

2.4 M-matrices arising from five-point discretisations on irregular regions

So far we have only considered discretisations on square regions. We are
now going to comment on regions with internal boundaries (no-flow
boundaries) or differently shapad regions. For convenience it will be
assumed that the region consists of small squarves.

An internal boundary is reflected by some extra zeros in the matrix, but
the matrix remiins a symetric M-matrix, thus incomplete decompositions

can be constructed as before. An internal boundary implies that there is no




direct connection (no flow) between points on different sides of the

boundary. This property is preserved in each of the above-mentioned decompo-
sitions. This is in contrast with Stone's SIP method2, where the use of the
iteration parameter may cause a connection through a no-flow boundary.
Irregularly shaped regions can be extended in an obvious way to square
regions with an internal boundary at the point of the original real boundary.
The linear system arising from this extended region can be treated as

before, bearing in mind that the extended parts do not require

computational work.

.5 M.matrices with an irregular non-zero structure

M-matrices with an irregular non-zero structure arise, for instance,
from same finite-element methods on irregular meshes11 and pipeline net-
\\D:*I\:;I . - }

We write the matrix A as A = L + D + U where L, U are strictly lower

and upper triangular, respectively, and D the diagonal of A. If we omit .
all Gaussian elimination corrections on off-diagonal elements (see sectién 1))

then the incomplete decomposition is given by K= CL & DO) D;l (Do + U).

Do is determined by the relation that the diagonal of KO-A, which is

equal to the diagonal of D, + diag(LDo-lU) -D, is zero.

If the matrix is symmetric, this decomposition can be combined with

the conjugate gradient method. For non-symmetric matrices see

section u.

3. ALGORITHMS FOR SYMMETRIC POSITIVE DEFINITE MATRICES

If the matrix is not an M-matrix, the construction of an incomplete
decomposition may fail, because of the occurrence of non-positive diagonal
olmentss. Small positive diagonal elements are also undesirable, because of
stability problems.

Three different strategies which seem to overcome this problem have
currently been proposed:




(1) If a diagonal element of less than a prescribed positive value

is encountered during the construction of the incomplete LL
decomposition then some already computed off-diagonal elements
in the corresponding column of L' are set to zero.

(i1)  The diagonal element can be enlarged if necessary by adding a
sufficient amount to the original elements.

(iii) We can also add al to the matrix®. If a is large erough, the signalled
problems will not occur.

4. ALCORITHMS FOR NON SYMMETRIC POSITIVE DEFINITE MATRICES

If the matrix is non-symmetric, then an incomplete LU decomposition K
can be constructed in a similar way as described previously for the

symretric matrices. Since symmetry and positive-definiteness are both
required for the conjugate gradient algorithm, the CG algorithm can be

applied: v

o i
ATKT KA x = AT Kb

This algorithm requires twice as much work per iteration as the

corresponding symmetric case and the upper bound for the number of
iterations increases by a factor of two.

5. NUMERICAL EXPERIMENTS

To obtain an impression of the convergence behaviour of different
incomplete decompositions, we have for the ICCG-methods introduced in

~

gsection 2.1:

(i) compared the convergence results

(11) calculated the eigenvalue distribution of the preconditioned

matrices K 1/\.




The two test problems

over 0sxsl, Osy<l with boundary conditions u

J

with Ax = 1/31 and Ay

were.

ﬁ=0for~x=0‘andx=l,

3;1 =0 fory=1and u =1 fory = 0. A uniform rectangular mesh was chosen,

= 1/31, which resulted in a linear system of 992

equations. The solution of this equation is known to be u(x,y) = 1 and

as initial starting vector for the iterative schemes a vector was chosen

with all entries random between 0 and 1. This was done to prevent co-

incidental fast convergence.

2.
2.0

Y o—p

On the boundary of R,
D(x,y) = 0 over R and

A uniform rectangular
system of 1849 linear
to be u = 0. A vector
starting vector.

In Tables 1 and 2 the
can conclude from the

Since the convergence

1.0 =
M Y
L]
3 -
. L}
(]
4
0. 10 2.0 2.1
X —
the boundary conditions are g% = 0. Further,

the functions A, B and C are given by

Region A(x,y)  B(x,y) Cx,y)
1 1.0 LU 0.02
2 2.0 2.0 0.03
3 3.0 =0 0.05

mesh was chosen with 0.05 mesh spacing, so that a
equations resulted. The solution of the system is known
similar to the one in problem I was chosen as a

convergence results are listed. In both tables we
last column that ICCG(1,3) is almost optimal.
behaviour depends on the eigenvalue distribution,

where the condition number and clustering play an important role,

a number of the lowest and highest eigenvalues have been calculated.




The eigenvalues are all divided by Amin for the matrix of problem 1,
preconditioned with several incomplete decompositions because an

upper bound for the convergence of the conjugate gradient method is
given by (/c=1)/(/c}l), where c = Apax/Apin: The distribution of these 2

min
scaled eigenvalues has been plotted in Figs. 17-21.
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Iterative methods for a class of non-symmetric systems

of linear equations, based on splitting-off a symmetric
part.

Henk A, van der Vorst

1 Introduction.

In recent papers Concus & Golub f1/ and Widlund /2/
discuss conjugate gradient like iterative methods for
the iterative solution of real non-~symmetric algebraic
equations.

Ax=0D> £1.1)
These methods are based on the splitting of the matrix
A in a symmetric and a skew-symmetric part'

A=t (A+aT)+ 3 (a-2a") e
and the requirements are that 3% (A + AT) is positive
definite., In this paper a class of splittings of the
matrix A is considered and the influence of the special
choice of these splittings on the convergence of a
simple related iterative method is discussed.

A combination of these splittings and the incomplete

-l

choleskl factorization, described by Meijerink & van der

Vorst /4/, has been treated in more detail. Simple
numerical experiments, showing the various effects are

demonstrated, Methods for acceleration, such as those

based on Manteuffel's ideas /3/, are not considered here,

although they might be very effective, since the eigen-
values of the occurring iteration-matrices are locatad

in the complex plane on straight lines parallel to the

Y-axis .
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2, Splitting—off a symmetric part,

S L:‘;‘(\“‘J
Throughout this paper we think :;gnéigﬂh of matrices that

arise in the five-point discretisation of elliptic partial

differential equations, that have essential, i.e. not
e&*“\\ removable, first order differential terms. Let us

for simplicity think of the equation
AW 4(’\\\(‘: Q (:7.1)

(in this case however, the first-order term is easily

removed, if (B is some (WM continuous function),

For the matrices A, arising in this way, {t follows that
A+ AT is a symmetric M~matrix, and thus positive definite
(see Varga /5/).

Very simple splittings that take advnntngé of this are

splitting I Aw d(A 4 aT) w(a 2 AT (202) |
and ¥
. b\ P
splitting 11 A= (A+A) <A (2.3)

Let us now consider a simple basic iterative method, that

arises from the splitting A = M - N 3

Mx,,=b+Nx (2.4) |
This leads for splitting I and 1l resp. to
LAY Xoy, - LoL0-aT) & (2.5) |
and b »
((\09 )i‘.” I A X (2.6)

for the solution of (1.1). |

If the respective errorvectors \\ and \; are defined

by :
bz Xi= W and W - X. - % {2:7T)

) .
where x is the solution of Ax-b, then we have the
relations -
™Y S
\\‘ i (ﬂ v 6 \ (n =Y W, ('.‘.H,‘

and

\

Vo l"! ,'_l(n.n‘)-(a ¢\‘7\ \\:‘ : £0.8)




The expressions (2.3) and (2.9) lead to a first obser~
vation, If A - AT is small, we have that splitting I

results in a rather fast converging method, whereas in
splitting II the convergence behaviour is limited by a

factor %, In this case one might expect splitting I to be

the most efficient one, The assumption A - P 135$:£L'>4‘ wot
unreasonadble, since from (2,1) the matrix A - AT arises

from the first order term, and thus we have A - AT = 0(h)
compared to A + AT.

One might however put the question what happens if A - AT
is not very small ?

From matrix theory it is known that all the eigenvalues A;
of (A+AT)-1(A-AT) ~re purely imaginary and let us

define )hm‘ as the maximum absolute value of these eigen-
values., Then for gplitting I, XhAKis a measure 8;1 the speed
of convergence, while for spvlitting II the convergence
factor behaves likolg* 5‘Xuox\ . Thus we conclude that for
()
while splitting II still yields a converging process.

k“i<;V\ y splitting I leads to a divergent process,

More explicitly, it follows that for aVLc Avan < Vs , splitting
IT will be the faster one, Therefore the question arises
whether the convergence can be influenced by other splittings
of the matrix A,
Consider now the following class of splittings
B} & A DeBT) ((\-d)(\ - o QTX (2,10)

where « 40 is an arbitrary real constant, The splitting
(2.10) results in the iterative method

m(@\e.ﬂT\xm s L-[(*-«i)Q~«QT]x; (2.11)
And, for L;? X - X we have

’r\.‘ilI— ,‘",‘ %.‘(Q'QT)“(“,;\W)}\A;—' (2.12)

The eigenvalues hj of the matrix

(4 3V - L (e Y (00

o~

’




are related to the purely imaginary eigenvalues AS of
Ty=-1 T
(A+A7)T ' (A=A") 3

v el
‘J" A X Lxxs (2-13)
For Khh*;wgleS‘ it follows that the choice
)
\ e
ol olorr: ks 2)\\,.5.\ (?»014)
leads to the expression _
B : ﬁ—“ﬁ‘- (2415)
Lok Ay ﬂu‘

whore },,, - Wax| BJ\ .
)
From (2.15) it follows that we may expect convergence

always, if .o y Since Y.,.< 71 . Tt follows imme=-

opt
diately from (lu:4) that if AnAT, we have dorr:g s 8ince
\m“l: 0 . This agrees with our earlier observation that the
splitting I (2.2), which results from o =%, is optimal for
almost symmetric matrices., The splitting II (2.3) results
from (2,10) if we choose -1 |, and this choice is opti-
mal if Ax¢; =1

The next observation is that for systems that arise from
problems like (2,1), we have in general ANA‘: O(\Y, where

h is a measure for the gridsize over which is discretised,
From the definition of o, , it follows that Y. ..: O(W")
This indicates that the proper choice of ‘“ort yields
considerably faster convergence of the corresponding
{terative method (2.11), The last observation is that the
eigenvalues \J are all situated on the straight line X: 4- i(
in symmetric positions to the X~axis. One could use this

fact in order to follow Manteuffel's ideas for acceleration
of the {terative method (2.11),
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Outer and inner iterations,

In each step of the iterative method (2.11) a linear
system of the form

(Red)y - % (3.1)
has to be solved,

Such a step will be called an outer iteration step. If the

linear system (3.1), arising in each outer iteration step,

is solved by aq iterative method, then the steps of this
Aescrnibhea

kN
method will be masatisws g?YXRner iteration steps.

In this secticn we will consider iterative methods, for
solving (3.1), that are based on regular splittings /5/
BeRT : kR . (3.2)

For these regular Splitting§$h;1ds L(q'zo and R o

and moreover, if R +o ’
0 <k < (Arn’ Y (3.3)

One might follow different strategies in the outer-inner-

iteration process, the most extremal strategies are consi-

dered here in some detail,

Strategy 1. The equation (3.1) is solved at each outer-itera-
tionstep accurately, that is, with an accuracy
less than or equal to the desired accuracy in the
final solution of Ax=b,

Strategy 2. Only one step of the inneriteration process to
solve (3.1) is performed at each outer-iteration
step,

It might be expected that strategy 2 leads to an increase in

the number of oufer-iterations, needed to reach a certain

accuracy, as compared to strategy 1, From a practical point
of view however, it is interesting to investigate whether the

total number of inneriterations decreases,




[n the numerical experiments (section 4) {t was observed

that strategy ' was the cheapest one, It was even observed

that strategy 2 needed sonstimes less outeriterations, which

{s somehow in contrast with the conservationlaw of trouble,
This effect will be more or less explained here for the case
-1 , For a wmore general choice of &S0 , the effects
can be explained ::tmllnrlb.
For strategy 2 it follows from (3.2) that

W oxgy, s bo ﬂ'\‘ LN (3.4)

Ol
and, if we set R« K~ (A + Al) and hi “ Xy =X, then

[ ATyl @en'y | b

we have

‘\ \‘\H

(3.5)
or, more conveniently
) [ T-3k (Pea™)-tK NG \\\,\ (35.6)
We now assume, in a very rough and not precise way that
k! )w(ﬂ»ﬂ‘)' (3.7) "
and from (5.3) we have wot
Bquation (3.0) can now be rewritten in
\\\-,,« l(‘ ',)\\Ij \,M(‘\°r")|(“ ﬂ‘\\\\; (3.8)
For the eigenvalues \\) of the matrix ({- ‘;’\\I - \,\\(‘h"r)(ﬂ -A')
we have that
O; - A-L%a In A (5.9)
For strategy 1, we have w-1 , and thus ‘\i : )‘ « 1t may bde

)y

expected that strategy 2 needs less outeriterations if

T - Y., » Nhere . '\\c:-‘ X‘} .
Let therefore N\ be defined as A the solution of
&“N Prae (et JW ) (3.10)
From simple calculationa, it follows that
he G R1I-A 5,11
A KR N( -11)

As {n general w\ will be very near to 1, we have A2 . This
e
explaing somehow that in atrategy 2 k;.' outeriterations are
w_‘.'l . However, {t should be stressed wase, that
(S TUN
for '\M_\‘ t , atrategy 1 needs 1". outeriterations indeed, bdut
often far more inmeritervations,

necessary {f \




4. Numerical exveriments,

The mgtrices in the experiments can be considered as to
LAY (SN E:M : . . . - -
= 3 the five-point discretisation of the partial

differential equation

A+ @24‘ -0 - (4.1)
where U, is discretised by a central difference formula,
The equation (4.1) is given over a rectangular region, and
u is equal to a given function along the bdoundaries, The

matrix arising thus, has the structure

(4.2) v

10 Pye ©40 4y

and e where i is counted rowwise, As a regular splitting for

The elements of the diagonals are denoted by a

A+AT we choogsef the incomplete decomposition that arises in the
1cCG(3)-method /4/. In both the examples, (4.1) has been dis-
cretised over a rectangular grid with 30 meshpoints in the
x-direction as well as in the y-direction, This yielded a
matrix A of order 900 and with half bandwith 30,
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Example 1,

In the first example we demonstrate some of the
T alieaay Aeschsd
effects mﬁw. Therefore (> , the constant in

differential equation (4.1) has been chosen such, that the

non-zero values of the elements in (4.2) were:

= 4.

= —1.
a4

» by = =1.25, ¢

it

’ di £ G TS ei = =1,
In table 1 the results for different strategies are listed.

The number of outeriterations and the total number of inner-

iterations to reach a certain precision are represented,

The precision was estimated by wax|X;. -Xﬂ;l , where X“

the i-th ele

ment of the

outeriterationvector

X. o From

rather rough calculations it followed that Xnk(the max, of

is

the absolute values of the eigenvalues of (A+AT)-1(A-AT) has

a value of approximately 1.7.

fecision 1 ) N N v N
P 8 Bla ®sl6 Bl s]|8 & |8
o -e¢ |q wly el wla %
o t S
aF L
w? S A |1q 3t 28 R 3q 39
o ;: i\)" 30 Y| 1Y 36| 23 By8  oyg| s
-y 3 1-1-' S ¢
0 53 | 3% s}[32  ybj2ag  a¥ PR
g’-:' 1 Jg ©
16* iR 6 &5 & 3 a
= yo skl 33 3 ¢
¥ o & -
-L — = o
- Sk 4}  bs| 3} 3% B

Explanation

Table I, Results for different strategies

of )
t» table I:

The numbers

The number of outeriterations is counted by A and B repre-

I up to VI stand for the different strategies,

sents the total number of inneriterationsteps. The strategies

were:




I: (X=1) For each outeriterationstep, the inneriteration-
process was performed in an accurate way (with a
maximun of 10 steps). This is strategy 1 (conv. for
Au*‘ <\ B_

B B G Q£:1)‘ The inneriterationprocess was stopped as soon as
the residual was less than 10% of the initial residual
at each outeriterationstep ( in || |, -norm).

III: @1:*) The inneriterationprocess was stopped as soon as
the residual was less than 20% of the initial residual,

IV: (= 1) Strategy 2.

Vi (o=} Stratesgy 2.

VI: (<= L) Strategy 1. (convergence for A~5‘<1 )

A few additional remarks: .
te As Ah“ﬁVs it could be expected that strategy I resulted

in a convergent process and strategy VI in a divergent

I

process.

2. It is surprising that strategy V (ol:} ) leads to a
convergent process,

2e The ideas in section 3 are underlined by the results of
strategies I, II, III and IV,

Example 2, In 6rder to demonstrate some effects for a smaller

AuA‘, @> was chosen such that the following values for the
nonzero elements in (4,2) resulted:

wa,

ai=-1. ’ bi-—1.1 ’ 01'4. 9 d1="on9 ’ ei

From rough computation, it was estimated that Xw“;.} L€t s
In table II the results are given for strategy 1 (accurate

inneriteration) and strategy 2 (1-step inneriteration), both
for the choice -1 in (2,11),
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Table II. Results for example 2.
A = number of outeriterations.

B = total number of inneriterations,

As could be expected, we see that the number of outeriterations

increases from strategy 1 to strategy 2. From the other side

we gsee that the total number of inneriterations decreases

sharply, and thus the total computing time too.
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Se¢ Final remarks.

It was observed in practical situations that the choices

< ‘1 or -1 in the iterative method (2.11), in combi=-
nation with a 1-step strategy for the inneriteration often
lead to a fairly efficient and easy to program method,
Only the inneriteration based on an incomplete choleski=-
factorization (see ICCG(3) in /4/) has been considered,
No attempts have been Qﬁéﬁ to accelerate (2.11), nor has it
been tried to estimate )ku‘ in order to choose an optimum

/

value « « It should be mentioned that for strategy 1,

e
the eigenvalues X) of the iterationmatrix are also situated
on a line parallel to the X-axis in the complex plane, while
in strategy 2 the eigenvalues 55 are not situated on such

a line, but in the neighbourhood of it,
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Introduction

Useful variants of the Lanczos scheme for the determination of
eigenvalues of large symmetric matrices have been developed in the

vast few years (Paige [6], Golub [7], Lewis [11]). Symmetry of the
matrices 1s essential in the Lanczos method. Some other eigenvalue
problems can be reduced to symmetric problems after some preliminary
work e.g. if the matrix A is skew-symmetric (A=-AT) the scheme can be
applied to the matrix AZ, which involves twice as much computational
work (Cline [12), Lewis [11], Platzman [13]).

Another important class of problems is concerned with the determination
of eigenvalues of the productmatrix CB where C and B are symmetric
matrices and one of them, say B, is positive definite as well. A common
way to solve this problem with the Lanczos scheme is to construct first
a Choleski decomposition B=LLT and then to apply the scheme to LTCL
which has eigenvalues identical to those of CB (Golub [77). Since Lanczos-
schemes are specially attractive for sparse matrices, a disadvantage of

this approach might be a loss of sparsity in the Choleski decomposition.

In section 1 of this report a generalized Lanczos scheme is proposed
that applies directly to matrices A whether they are symmetric or
skew-symmetric, and to productmatrices CB where C is either symmetric
or skew-symmetric and B is symmetric positive definite,

The matrices A, B and C do not have to be represented in the usual way
as two-dimensional arrays of numbers, but as rules to compute the
products Ax, Bx, and Cx for any given x. This allows us to take full

advantage of any sparsity structure.

Lanczos schemes yield approximations for the eigenvalues of the given
eigenvalueproblem. One of the main difficulties is how to distinguish
between good and bad approximations, since both are generally present
(Paige [6], Parlett and Kahan [2]). In section 2 an algorithm is proposed
to determine the good approximations and to remove the bad ones. It
should be mentioned here that any multiplicity of an eigenvalue of the
matrix can not be detected, A multiplet, if there is one, will be

represented by only one single eigenvalue; this problem is peculiar to

Lanczos schemes (Kahan and Parlett [2]),




In section 3 an implementation of the algorithm of section 2 is given,
Numerical examples for the algorithms of both sections | and 3 are
presented in section 4.

We did not consider in detail the problem of determining of eigenvectors.
In section 5 we summarize the main results of Kahan and Parlett [ 2] as

well as some of our numerical results.

Fortran subroutines for both the generalized Lanczos scheme and the

detection of good eigenvalue approximations are covered in the final

section of this report.

4:.‘*55-'.‘._1




| B A generalized Lanczos scheme

In this section we describe Lanczos schemes that apply to skew—
symmetric matrices or product-matrices CB, where B is symmetric
positive definite and C is either symmetric or skew-symmetric
(all the matrices A, B and C will be of order n). It should be
mentioned here that the eigenvalues of CB are identical to those
of BC.

Eigenvalue problems Cx=ABx can be reduced to either of these
forms.

The algorithms are closely related to an algorithm published by
Widlund [57] for the solution of non-symmetric linear systems.
The eigenvalue problems of a skew—symmetric matrix A can be

reduced to the eigenvalue problem of a symmetric matrix by

- . ) . . 2
squaring the matrix: A%, This is not necessary in our formulation,

T N Y P I Y L = g

e




(r.1

Definition of the generalized Lanczos scheme

Let A be of the form A=CB, where B is symmetric positive definite
and C 1s either symmetric or skew-symmetric.

Choose an arbitrary vector Vi with (vl,vl)“~l, and tform ul-Avl.
Rows {vj}, {qi}. {,} and (y,! are then generated by

| i

N\
R, ™ (VJ » AV.i)“

W, ™ 0. ",
] .
B

e (v, W)
L ’_l )

E> j=1,2,...,m

B. Uy
+1 +1 ‘
] \ (as fas as y.40,
1 see note 1)
Y e W
p+1 \_i*l i
g “ Av, -~ R .
Yier T e t.i+lv_|

wvhere (X.Y)““\x,ﬂy\, with B symmetric and positive definite,

and =1 if C“Ul

S ik
t=<] 1f C==C

(see also note 2)

The constants «., B. and Y; detine a tridiagonal matrix T :
8 m

Note 1: If in some stage )i*(‘. then one can either restart with a new
v, or proceed with yi replaced by some small constant, In
practice the situation Yj=o occurs very ifncidentally, In our
tmplementation such a \j'is replaced by a small constant,

Note 2

For B=l and 1t=1 we have the original Lanczos scheme as
defined by Paige.




Theorem

We assume that either C-CT (t=1) or C---CT (T=~1) holds and that

B is a positive definite symmetric matrix and A=CB, then the

generalized Lanczos scheme applied to A generates a tridiagonal

matrix Tm’ where limit-values of the eigenvalue of Tm for

increasing m, should be equal to some of the eigenvalues of A,

but they may differ by a certain amount depending on the precision

of computation,

Proof

i)

ii)

For C=C and B=I, the result is well known (Paige [6], Golub [7]).

For C=~C and B=1 the proof is as follows:
It is only necessary to establish that the generated row
{vk}k= Ls an orthonormal row. The nréof is by induction.

ltcc

Let {vk}k=l,...,j be an orthonormal row.

Then we have for vj+l the relation:

WimgTger * Vg = Sifies Ry

where we assume that Yj+l+0’ since in that case the recurrence

relation terminates,

For k<j-1:

Oar¥iarsVid = Cvy = Byv = agvyevd

b

b (Vj ’ Cvk)

* = Y ien * BVieg * B!

= Q




For k=j-l:

(Y'+|vj+l'vj-l) = (Cvj’vj-l) - Bj(vj_l,v. )

] 7=l

» (Cvj’vj_l) = Bj

Si , - -y, = - .Vv.,v.) = = (Cv, .) = (Cv,,v.
ince BJ ¥ (YJ J,vJ) ( v_]"l’v_]) ( ‘fJ’ J_l)
it follows that (Yj+lvj+l'vj—|) = 0
For k=j:
(Yj+lvj"'|,vj) - (Cvj’vj) b aj - 0
Finally, we have
1
(v. ,v. ) = (Av, - B.,v. . = a,v.,Av, - B.v - a.v.)
gl Y2 i 1 =1 i =~ 33 i,
j+l . \
|
ks (u, - o:jv.,uj = ajvj)
Yj+|

Thus the row (v, }

r=1 41 is an orthonormal row.
55 568




iii) When C=CT and B is symmetric positive definite, B can be

written as B=LLT, where L is lowertriangular.
Since the eigenvalues of CB are equal to those of LTCL, the

original Lanczos scheme might be applied to LTCL (with normal
inner-product ( , ) ).
In this case we then have the special relation

E
a. = (v.,L CLv,)
J J ]

and

T
uj+l = (L Cij+l Bj+lvj)

it follows that
Lu, . = LL¥eL - 8. Ty
i+ L

T~ : . .
If we replace x by L X, this equation can be rewritten:

LLTG. = LLTCLLTS.

e
j+l j+l Bj+]LL vj

e?

1 7 e T By

=AV. , -8B

j+! j+1V;

The other Lanczos relations follow from

T
a. = (L CLv.,v.
J i’ J)

i T .
= (L'CLL v.,L v.) = (CBv.,Bv.)
( 37 ( '3

= (Avj,vj)B




2 T T
- Yj*l (wjij) (L Wj.L wj)

2
Bj"‘l

= (Bw.,V.) = (w.,w.)
i’ i’i’s

The relations
w. =u, -a,v,
3 ] [ |

and

are obvious.

The vectors Gj’ Vj and Gj produce the desired result.

- % . . T . 2
The remaining case A=CB, where C=-C and B is symmetric
positive definite, follows from the previous ones (with

==1), il v

Remarks

le I C--CT, we have qj=0 for all j.

The above theorem allows the computation of the eigenvalues of
CB, which are equal to those of BC, without the explicit need
for an LLT—factorization of the matrix B, This makes the new
schemes very attractive, especially if B has a sparse structure,
However, it should be noted that eigenvectors cannot be computed
by these schemes directly, since then an LLT~factorizntion is
required for a proper transformation,

Eigenvectors may be computed by a Raleigh-quotient iteration
scheme [1], once one has a (fast) solver for systems like Bx=y,
For sparse matrices B, for which fast direct or iterative
solution schemes exist, this Lanczos scheme can also be used for
determining eigenvalues of Cx=ABx, via B_le-kx. The scheme should

be applied to CB-I which has identical eigenvalues.

R T

- ) -




(1.3)

3,

-0 =

We should like to mention briefly certain aspects of programming.
For the generalized problem the adapted schemes (1.1) require
only one extra matrix-vector multiplication and only one
additional vector to store Bﬁj. Remember that BVj can be

computed from

BV, = BW.
] Yj*" ]

If C is skew-symmetric (T=-1) then the generated matrices Tm
are also skew-symmetric. Eigenvalues of a tridiagonal skew-
symmetric matrix can be computed as follows:

the matrix i'l‘m is Hermitian and has real eigenvalues. Since in

the computation of the eigenvalues with Sturm-sequences, only

5 2 .
squares of off-diagonal elements, Bj’ are involved, these
eigenvalues can be computed without any complex computation.

Once the eigenvalues of ITm|:

Il =

B

m

B 0

m

. J
have been computed, they should be multiplied by i so that they

represent the eigenvalues of Tm.




(2.1

(2.2)

Monitoring of the Lanczos process

In the single vector Lanczos processes, as described in section I,
rows of mutually orthonormal vectors are generated.

The coefficients aj, B. constitute a tridiagonal matrix Tm the
eigenvalues of which bear some relation to those of A.

We only consider here the symmetric case (t=1), the other one

(t==1) 1is obvious.

2
\
@ B
By a, By 9
63 g BA
T =
m
Bm--l
9
Bm—l am—l Bm
B a
m m
\ J

For B=I, T is related to A by

T
= +

Avm vam Bm+1vm+l “n

where Vm is an orthonormal n*m matrix, in which the v _ are the
columns, and e:-(0,0,...O,l), the m~th unitvector (n {s the order
of the matrix A).

The relation of the eigenvalue-problem of T, to the eigenvalue-

problem of A is discussed and demonstrated by extensive numerical

experiments reported by van Kats and van der Vorst [37.

|
1

|




(2.3)

(2.4)

(2.5)

(2.6)

2a.

2b.

The eigenvalue problem me=kx.

The eigenvalues of Tm are the roots of
det(T - 2) =0
m

If the leading k-th order principal minor of T, is denoted by
Tk’ then the following recurrence relation holds

det(T, = ) = (o = Ndet(T,_| = 1) - B;det(Tk_z - 2)

If we define det(TO-A)=l and since we have det(Tl-A)=a‘-X, it follows

that the above relationship 1is exactly that of orthogonal polynomials
p(x) = (& - x} p_.(x) - 20 (%)
k % k-1 BPr-2

It follows that the zeros of pk separate the zeros of pk_l(x)
and pk+1(x) in a strict sense if none of the Bk equals zero
(Wilkinson [17).

By analogy then, if the ordened eigenvalues of T, are denoted by

k
Agk), we have

NGNS ISR (S
1 1

i-1

Recognition of limitvalues

From relation (2.6) it follows, that the extreme eigenvalues of

Tm’ for increasing m, converge strictly monotonically. Since
according to Paige limitvalues of the row Tm are equal to eigenvalues
of the original matrix A, except for some amounts that depend on

the precision of computation, this property may be used for an

automatic determination of the extreme eigenvalues, However, it is

evident that limit sequences can also be recognized for internal




2.7)

should hold.

As soon as relation (2.6) is violated, either because Agk) equals
one of the Agf;]) or Aik_l), or is outside the interval [AgEIl),Agk-])J
we know that at least in the precision in which we are working it

is not possible to distinguish between Agk) and the respective
eigenvalue of Tk—l' Consequently we have a limitvalue and thus an
approximate eigenvalue of A, Since we are working in a finite
precision and the extreme eigenvalues are bounded by the extreme
eigenvalues of A, the separation relationship (2,6) will be violated
sooner or later,

In practice this provides us with an excellent means of recognizing

limitvalues automatically.

As soon as one case of violation has been encountered one measures
how much the respective values, say b and c, differ relatively.

A value €he is defined as follows

_ abs(b-c)

€bc = T¥abs(b)

The maximum over all violations will be taken as €. This € yields an
impression of the relative accuracy with which all the eigenvalues
'1‘k and Tk—l have.been computed,

(N.B.: this is not to be confused with the accuracy of the Lanczos-
process itself).

As a rule of thumb this € is multiplied by n (the order of the
original matrix A) and all eigenvalues of Tk and Tk—} which differ
by less than n*e will be taken as possible limitvalues.

In the next section this will be stated more precisely.




EVSCAN; an implementation of the monitoring process

The monitoring process 1is essentially based on the separation
relationship, as described in the previous section. This requires
the computation of all the eigenvalues of two succeeding tridiagonal
matrices T, _, and Tk'

At the first stage of the process one checks to see whether the
separation relationship has been violated. It is well known thar in
the lanczos-process multiplets of eigenvalues are introduced as soon
as orthogonality has been lost r31.

The next step is to recognize these multiplets. Each multiplet will
be represented by one single eigenvalue interval. Tf the original
matrix A has a multiplet eventually, this will not be recoguized.
After the eigenvalues of Tk~1 and Tk have been scanned for multiplets,
¢he resulting multiplet-free rows are compared in order to determine
those limitvalues, which represent eigenvalues of A,

The monitoring process will be described in detail below.

Step 1:
Check whether the eigenvalues Agk) of Tk separate the eigenvalues
ng“) of T, _, in a strict sense. If some Agk) is outside

the interval fkgt:l),kgk-‘)] then this yields a lowerbound S
for the highest attainable relative precision in all the
eigenvalues, and we define e"=max €', where the maximum is taken
over all violations. If no violation has been encountered then
€'" is taken to be 2-t, where t is the number of digits in
floating point arithmetic.

An upperbound for the relative working precision, to be used

in the following steps, is estimated by

where n is the order of the matrix A,




Step 2:
With the € resulting from step 1, the row {ng-])} and {ng)}

are both scanned separately for multiplets. As soon as a
multiple value has been discovered, i.e. two values are
encountered which differ relatively by less than €, the
eigenvalue concerned is represented as an interval with the
smallest value of the multiplet as the lowerbound of the
interval and the largest one of the upperbound. If successive
eligenvalues are recognized as belonging to the same multiplet,

this may lead to a larger value for the relative precision
( abs (upperbound~lowerbound) y

1+abs (lowerbound) =
Step 2 is repeated with the most recent value of € as long as

8

€ increases.

Step 3:
From step 2 two rows of intervals result, representing
eigenvalues of Tk—l and Tk respectively, These rows are, as

far as possible, multiplet-free with respect to €.

For each interval in one row one checks to see whether there
is an interval in the other row that intersects with the first
one or is at a distance of less than € relatively. If one of
these conditions has been met, a new interval is chosen as the
span of both. The length of the new interval yields a new
value for €.

Step 3 is repeated with the most recent value of € as long as €
increases.

If 6 successive intervals in this process are encountered
belonging to Tk-l or Tk for which the above condition does not
hold, then a hole in the spectrum is assumed, The value 6 has
been chosen érom numerical experience and could be replaced by

any better value.

Continuing in this fashion, step 3 delivers one single row of
intervals, each of which may be considered to contain a limitvalue.
These limitvalues differ only from the eigenvalues of the original

matrix A with regard to the degree of precision in which we are computing.

THIS PAGE IS BEST QUALITY PRACT1CABLE
FROM COPY FURNISHED T0DDC
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In some situations it may occur that step 3 yields an interval

which contains no eigenvalue of A. However in such cases there is
an eigenvalue in the neighbourhood of the interval. In these
situations it is common for the process to yield also the interval
in which the respective eigenvalue is situated; thus two very
close intervals are obtained.

In order to identify both intervals as representing the same
eigenvalue, it is advisably to apply only step 2 to the final row

with a slightly larger value for € (I0*e,say).

- 29 -~
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Numerical Experiments

All the numerical experiments have been carried out on the CDC
Cyber 73-28 of ACCU. The relative working precision is 48 bits
(about 14 decimal digits).

The Bar—problem

The bar-problem is known to cause difficulties in the determination
of the eigenvalues at the lower end of the spectrum [4, 3]

The 40th order matrix is given by:

<
5 =4 ]
-4 6 -4 1 1)
1 -4 6 ~4 1
¢ 1 =4 6 -4 1
1 =4 6 -4
1 =4 5
\ }

With EVSCAN the eigenvalues are determined in each 10th step of

the Lanczos-process i.e. is compared to T,, ., ;. In table I

TlO*k
we summarize the number of different eigenvalue intervals, as
delivered by EVSCAN for k=3 up to 40, We note that when k is 29,
30 or 37 more than 40 eigenvalues are found. If we follow the
advice and make an extra scan, as described in section 2, then in
general the number of eigenvalue intervals is not affected, except
when k is 29, 30 or 37. In the latter cases the final number of

eigenvalues was corrected to 40 at the cost of some slightly larger

intervals., This implies that there have been migrating eigenvalues

very close to an eigenvalue.

oK

-




From the experiments it follows that all eigenvalues, including
those at the lower end of the spectrum, are detected by EVSCAN at
some stage. In order to determine the eigenvalues at the lower
end one has to perform a number of Lanczos steps larger than the

order of the matrix (70 steps; order is 40).

From table I it can be seen that the estimated €, scaled with
respect to the machine-accuracy, increases slowly. Since it is
natural to relate the accuracy to the order of the respective
tridiagonal matrices it can be seen from the fourth column of
table I (¢/k) that the eigenvalue determination with this process

is rather stable,

.’. -—
Wilkay L 21 and \J;”

Wilkinson [ 1] has introduced two classes of tridiagonal matrices

W and W,
el 09 Woner®

W,* is defined by the relations

2ntl
a, =n+1=-i (i=1,...n¢1) , a, = i=n-=1 (i=n+2,...2n+1)
Bi = ] (i=2,...2n+1)

and wZn*l by the relations
a; = n + 1 =1 (i=l,...n+l1) , “i =n+1~1 (i=n+2,...2n+l)
Bi = | (1=2,...2n+1)

X +
The matrices W, and W have been used for our tests.

! 21

"
101
1 9 1
(4
I
N, 1 03
y 8 1
¢
b %




10 ] }
1 9 1 ()
] 8 ]
w;l - S |
1 -8 1
4 1 ~9 1
1 =10

s " . g x
Table 11 gives the eigenvalues of W, and table TTL those of \\"l

1

As can be seen tfrom table 11 some of the eigenvalues of N:I are
quite close. With the precision tn which we are computing we cannot
expect to detect 1 separate eigenvalues; at least A"l and .\,0
might behave as multiple etgenvalues,

Since the error in the Lanczos—process increases slowly (see 4.1),
w',‘ has been chosen in order to determine which etgenvalues are
recopnized as being distinct in several stages of the process,

Also we may get some impression of the behaviour of the Lanczos-—
process tor (almost) multiple eigenvalues, The motivation tor the
choice ot N_,l is somewhat dittferent, The eigenvalues of w,_,] are
equal and opposite in pairs, Tt is well known that the power method
gives slow convergence in such cases [1], Since there is some
relationship between the powermethod and the Lanczos-method it might
be interesting to apply the Lanczos—process to this matrix.

. . . . -
With respect to the numerical experiments for W

'y the following

observations have been made,

= From a selection of the results, as represented in table IVa, it
follows that in no case all 2?1 eigenvalues are detected. Only for
w32, 20 eigenvalue intervals have been determined, for higher

values ot m even \l‘) and \l“ are represented by one eigenvalue
§ > !

interval. This explaius also the increase in v,




- A more serious defect is the following. With almost multiple
eigenvalues, which are distinct within our accuracy of computation
(Xlg, XIS and Al?’ Al6) eigenvalue intervals are delivered which are
in between both eigenvalues. These eigenvalue intervals differ
significantly from both true eigenvalues, see table Va (eigenvalue
.8038.....E+0! and .9210.....E+01) and compare these values with
those in table II.

- Table Va-d list detailed results for W;].

With respect to Wzl it is observed that there are no problems in

determining the eigenvalues, except with respect to the speed of

convergence, For m=16 (see table IVb) no eigenvalues have been
detected automatically.

Detailed results are listed in table VIa-c.

Pathologically clustered eigenvalues

It is well-known that the convergence properties depend highly on
the relative clustering of the eigenvalues. Therefore we have
constructed a matrix with a cluster of eigenvalues at each end of

the spectrum and one single eigenvalue in between both clusters.

The matrix A chosen was a 40th order diagonal matrix with diagonal
elements:  1.001, 1,002, vveeeve..., 1.019, 2,000,
3:021; 3,022, vicsssssssy 36039, 3.040,

After 10, 20, 30 steps of the Lanczos-process only the eigenvalue
2.0 is determined automatically (no convergence at the lower and
upper end of the spectrum),

After 40 Lanczos steps convergence was signalled at both lower and
upper end of the spectrum but the second eigenvalue of A (1.002)
was not found. For results see table Illa.

After 45 Lanczos steps all eigenvalues have been determined, see
table VIIb,




A large full matrix

The Lanczos-method is proposed usually for the determination of
the extreme eigenvalues of sparse matrices. We have used the Paige
style Lanczos algorithm to compute some of the extreme eigenvalues

of a symmetric full matrix of high order (n=519).

The matrix, used in this example, originates from a nuclear shell-
model calculation [8].

In such a calculation one computes the matrix elements of a given
one plus two-body interaction Hamiltonian in a set of j—j coupled
many particle basis-states. After diagonalisation one obtains the
energies and the wave-functions of the systems. In the present case
the basis chosen is approximate for the description of nuclear
states in %N.L with zero angular momentum and positive parity.

The order of the matrix is 519; it contains about 587 zero-valued
elements. No advantage has been taken of the zero values which are
distributed in rather an irregular way.

This matrix has well separated eigenvalues (no multiplets), which

are distributed over the interval (~160.0, -180.5).

In general the eigenvalue problem for full symmetric matrices is
solved by the Householder method [1].

For matrices which cannot be stored in fast core, this process 1is
complicated to programme, Since the CP-time used is roughly
proportional to 1/3 n3 (n is the order of the matrix), the Lanczos-
process for the determination of the extreme eigenvalues 1is
advantageous if less than 1/3 n iterations are required.

Other practical advantages of the Lanczos—process in this case

are that it is easy to restart and easy to programme.

In table VIIIa-b the results are listed for 40 and 60 Lanczos steps
respectively; in the latter case the scanning process has been

performed with a larger € too (table VIIIc).

A larger € has been chosen since the process for a large full matrix




is generally expensive and one wants to extract as much information

as possible from the iteration-steps performed. The possibility
of scanning with a larger € has not been included in EVSCAN but

could be with a minor modification.

For results see table VIITa-c. For m=40, convergence at the lower
end of the spectrum is detected, for m=60 convergence is detected

at both the lower and the upper end,

A large sparse matrix

For the matrix used here, we have chosen the modified Laplace
problem as describe in [14].

The matrix A results from five point discretisation of Au=0 over
the square region 0<x, y>1. The boundary conditions are %5-()
for x=0 x=1 and y=1, and u=1 for y=0.

This equation was discretised over a rectangular grid with
meshspacings hx= 3% and hy= = 5 , thus yielding a matrix of order

2
992, For this matrix the ICCG(3) decomposition

A= L3L

w

+R3

-1, . -T
3 AL3 have to be

computed. They are very strongly clustered around the value 1.0,

is constructed (see [91). The eigenvalues of L

Also at the upperside of the spectrum the eigenvalue distribution
is very dense. The largest eigenvalue is 1.17 and the smallest one

is close to 0.,0.

In table IX the results (number of eigenvalues and scaled €) are
listed for several stages of the Lanczos-process (m denotes the
number of steps).
In figure I the following quantities are represented as a function of m:
- the total number of eigenvalues, detected by EVSCAN (x)
- the number of eigenvalues at the lower end of the spectrum (0).
This number was fairly well represented by the parameter NDIV
(see the description of EVSCAN),

- the number of eigenvalues at the upper end of the spectrum (+),




4.6

A generalized eigenvalue problem CBx=Ax

In order to demonstrate the applicability of the generalized |
Lanczos~scheme, as described in section 1, the following problem .
has been chosen. Some of the eigenvalues of CB will be computed,

where B is the 5 point finite difference approximation of the

Poisson~operator A over a square 10%x10 grid and C is the central

difference approximation of the operator é% on the same grid.

The matrices look like this

0 +0.1 |
Iy T‘\ \\ | blocksize is 10,
E ey ' ¢ 10 blocks along the
i diagonal: order of
28 \+0 || 5
. | C is 100
C = FHINELOE .2 5. 7 ol
0 +0.1
T ‘
% SR
I N \\
¢ | IO
NN
AN
\ +g.|
0.1 © !
L I -1 |
N |
-1 > < | < |
< N | N I
NN N | N
= \\ 14 | N same structure
* 2y 2 as C
wew b s o O - 7 =
-1 I 4 <1
N | _{\ N
\ L Y
\ | & " X
N N N
[ N |
| N %
i} -1 4

The results are listed in table X for m=15, 30, 60, where m is the
order of the tridiagonal matrix, generated in the generalized

Lanczos=scheme.

- Py m: S M SR IS rv—— J




5e Notes on eigenvectors

5.1 Theoretical Aspects

Before we mention some results of our numerical experiments,
relevant results of Kahan and Parlett [2]are summarized.
The results of the Paige style Lanczos scheme for a symmetric or

skew-symmetric n-th order matrix A can be written as: ‘

T
LU I L L

where e1=(0,0,0,...,0,1), the k-th unitvector,

Vk is formed by the columms Vi S 1) (PRI |

For any ji and normalized vector x, the quantity ||Ax-ux|| bounds
the error between } and some eigenvalue A of A, If y is an \

eigenvalue of T, and y the associated eigenvector then

k

X - ul 2 [ax - ux|| = ||avy - w y]]
4
= flavy -7 2y}
i IlBu+]vk+le:yll
(B iy ] [l

Thus the error in this computed eigenvalue is bounded by lBk+lI

times kal and if Yier which is the last component of the vector y,

is small, then the.bound may be sufficiently small even though
Bk+l is of moderate size, From this analysis it follows that the

more accurate approximations to eigenvalues may be those eigenvalues

of Tk whose associated eigenvectors have rapidly dwindling components.




Numerical results

Eigenvectors of the original matrix A have been computed in the
following way.

With EVSCAN eigenvalue intervals of the final tridiagonal matrix
Tk have been determined, Since TSTURM (Eispack [10]) requires
intervals, these intervals could be supplied directly. Since an

eigenvalue of T, could be equal to an upperbound or a lowerbound

k
of an interval, which is not permitted by TSTURM, the intervals
have been made slightly larger. The eigenvectors of Tk have to be

backtransformed by V. to eigenvectors of A.

2 5 4 .y .
For productmatrices an extra LL -decomposition of the matrix B
(see section 1) is required for backtransformation, thus nullifying

the advantages of the generalized Lanczos—scheme.

In the experiments we demonstrate the behaviour of the last
components of a normed eigenvector of Tk' To this end, the matrix

+ :
le (see section 4) has been chosen,

For k=13 no eigenvalues could be detected automatically by EVSCAN;
this is reflected by the behaviour of the last components of some
eigenvectors.

A Lanczos-approximation for the eigenvalue 2,130209219363 was:
2.13327....... . The last 4 components of the corresponding
eigenvector of T ., are:

13

0.31 , =0.35 , =0.013 , 0.21 :

These components also indicate that no convergence had occurred.

3y» 10.746194182903 has

been approximated by 10.746194182902, The better convergence is

Also for k=13, the largest eigenvalue of W

reflected by the last 4 components of the corresponding eigenvector
Tont
of 13

~.0041 , —.0010 s =«00013 sy —.000013
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For k=16, EVSCAN detected a number of eigenvalue intervals

(see section 4).

A Lanczos~approximation X for the eigenvalue 10.746194182903 was
given by the same value. The last 4 components of the corresponding

eigenvector of T] are:

6

. 13E-04 » «27E-06 » «37E-09 and .59E-10.

+

1f we denote X as the backtransformed eigenvector of W21

f[wl % - % ||
have 21 .o +.35E-10

1511,

In this case EVSCAN yields an eigenvalue interval which does not

, then we

contain an eigenvalue of w;l (though there is one close by).
The eigenvalue 7.003952209528 was approximated by: 7.003952209098.

In this case the last 4 components of the eigenvector of T,  are:

16

.21E-01 s «89E-03 » -48E-05 and . 15E-05.

Wy, % - %%|],
Finally we have -~————————= = _86E-06.

11511,




Conclusions

As far as accuracy and efficiency are concerned the generalized
Lanczos-scheme applied to skew-symmetric matrices is more attractive
than the original Lanczos-scheme applied to the squared matrix, with
respect to both accuracy and efficiency.

For product-matrices it should be preferred because it needs no LLT—
decomposition. However special care has to be taken if eigenvectors
are desired.

One of the main difficulties in using Lanczos-schemes is the
monitoring of the results. This difficulty has been largely

overcome by the monitoring process, described in this report.

However it should be stressed that the problem of determining whether

an eigenvalue of the original matrix is single or not has not

been solved.
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2. Programmature

Subroutines, in Fortran IV, are available of implementations of the
Paige-style Lanczos and of the generalized Lanczos-schemes. These
subroutines, LSVLAN and GENLAN, as well as the subroutine EVSCAN are
included in the programlibrary ACCULIB of the Academic Computer

Centre Utrecht.
In this section documentation and listings are given. This

documentation contains a complete example of use.
AL R R TR EEE L E RS RN S

HSADING 70517
LA R X R R LR R RN
SU3ROUTINS LSVLAN(N, IFIRSTyMyRCSTRT, N1y AX,SAVEQ,Uy V04 ALPHAL,BET A
LCGICAL RISTRT
OIMENSION QLEM) 4C3 (N) 4UIN) JALPHA (M) JBETA (')
EXTERNAL AX4SAVEC

SIBBISLBsIIBRBEBEIE.

PUR FOSE
LA R AR TR R LR L R L LR R
TO TRANSFOSI A SYMETRIC ATRIX A TO TRINIAGONAL FORM T, BY ORTHOGCNAL
TRANSFCRMATIONS 3Y ThI LANCZ0S=-“ZTHQOD. 2
THE PATRIX & N_EDS NOT TO BI GIVEN EXPLICITLY.
EIGENVALUES OF T APPRCXI!ATE THZ ZIGINVALUES OF A.
AS EACH STE? OF THE LANCT7JS PRGCESS NEEDS A MATRIX=VICTOR
MULTIPLICATION, THIS FROCIZSS IS CNLY SUITABLI FOR SPARSE MATRICES.
LA R RN EEEEREREREREERE]
INPUT=PARA 4ZTERS
R R L
N ~INTEGIR. THZ OFCER OF THZ MATRIX A,
IFIRST ~INTZGER. THE FIRST COLUAN OF THE SATRIX T, WHICH HAS TC BE
COMPUTE0 CN THIS CALL OF LSVLAN,
ON INITIAL CALL IFIRST SHOULO 8% 4.
IF LSVLAN IS RESTARTED (58X INPUT-PARAMETER RESTRT),
IFIRST SHCULD 33 EQUAL TC THI LAST COLUMN=NUMBER OF T 1IN
THE PREVICUS CALL °LUS 4.
H ~INTEGER. THe TOTAL NUMIER OF COLUNS OF T TO BE COMPUTED
( THE MUMECR OF COLUMNS IN ZARLIZR CALLS ARZ INCLUGEC).
RESTRT ~LOGICAL.
RESTRT=.FALSE. ¢ INITIAL CALL FCR A NEW FROALEM,
RESTRT=.TRUZ. 1 INDICATES A RISTART AFTES A PREVIOUS
CALL CF THE SANE 9R08LIN,
Q4 ~DIAENSION Qi(N). IF 2ESTRT=.FALSZ, ! ARAITRAPY STAITING VECTCR
FORF THC LANCZO0S PR0CESS, NOT NECESSARILY OF NORM 1,
IF RESTRT=,TRUZ. f NL(4) SHOULD HAVE THE SAMZ VALUSS AS CN
EXIT OF THI PRIVIOUS CALL (ALSO CUTPUT=-PARAMETER).
AX ~SUBROUTINE AX(Y,AY,N) :
OIFENSION Y (%) ,AY(N)
THIS USZR=SUPPLIZ) SURIOUTINE CELIVERS FCR A
GIVEM VICTOR Y THZ VECTCR AY, THAT RESULTS FROM
JULTIFLYING THZ “YATRIX A WITH THZ VECTOR VY.
Y SHOULD NCT BE DZSTROYZIG WITHIN AX,
SAVEQ =SUBROUT INE SAVEC(Q,N)
DIMENSICN Q)
THIS USER-SUPPLIZY SUTIROUTING, WHICH CAN 8Z US:ID
TO STORZI THE COLU INS Q CF THE CRTHOGOMAL TRANS-
FORMATION MATRIX, FOR UST IN CCMPUTING THE
EIGENVECTORS OF A,
IF ZIGENVECTORS ARE MNOT GESIREC, THIS SUARCUTINE
MUST STILL 32 SUPOLIZD==TT NEEC NOT ACTUALLY
DO ANYTHING.
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«DIMENSION U(N). SCRATCH=AFRRAY,
~0IMZNSION QIINY . IF RISTRT=.FALSC. ¢ Q) NEED NOT TO BE
INITIALI2ED,
IF RESTRT=,TRUZI, & QU SHOULC HAVE THE SA~E VALUES AS CAM
EXIT OF THI PREVIOUS CALL OF LSVLAN
( ALSO QUTPUT=PARA 4T,
=DIMCANSION AL®PHA (1), IF RESTRT=, FALSE, ¢ NO INITIALIZATION
NECESSARY.
IF RESTRT=,TRUZ. 1 ALFHA(L) UP TC ALOHA(MMI, WHERE NN
(MALT i) IS THI VALUE OF ¢ IN THE ©O9REVICUS CALL
OF LSVLAN FOR THE SA€ PROJLEM, SHOULD CCNTAIN
THE VALUcCS OF ALPHA AT IXIT OF THIS PREVIOUS CALL
 ALSO OQUTPUT=PARANMETZR) .
~DIMENSION BeTA(*). IF RESTRT=,FALSE, 8 NO INITIALIZATION
NECESSaRY.
IF RESTRT=,TRUZ., t JzTA(L)Y UP TO BETA(MM) SHOULD CONTAIN
THZ VALUCS OF 3cTA AT EXIT OF THZ PREVIOUS CALL.,
( ALSO CUTPUT=-28RA4ETZIR) .

PSPPIV PIIIVIIIBINIEIRLS

QUTPUT=PARA IETERS

LA R E R L R R B R R R LR ER X

Q1

Qad

ALPHA

BETA

=DIMZNSION QL(N). Q1 CONTATIANS THE LAST COLUMMN USZO IN THE LANCZCS
PROCESS OF THZ ORTHOGONHAL TRANSFORMATION NATRIX,
( ALSO INFUT=RARANMETEIR),

=DINZNSION QC(NY. Q3 CONTAINS THE COLUMN PREVIOUS TO Q1 IN THE
TRANSFORMATION PICCESS. N0 AND Qi ARZ NECESSARY FOR
RESTART PUN?ISES (ALSC INPUT=PARANITZIN.,

=DIASANS TON ALPHA G o THI DJIAGONAL OF THE TRINDIACONAL ™MATRIX T,
WHICH IS ROUGHLY SIMILAR 70 A, ( ALSC INFUT-PARAMETER),

=DINENSION 3ETA(M). THE SUPZIIDIAGONAL ZLESNSATS CF THE MATRIX T,
BETA (1) CCONTAINS RESTART=INFORMATION,
( ALSO INFUT-PARANCTCR),

AR L RS R R E R R NN

INTERNALLY CALLED SUB2ROGRANS

LA R R RS E R LR R EEE RN R R

(F0323)

SrpPRBrBPREERRIRERIRIER

REMARKS

LA EE R R R LR R R RN Y

)8

I1D)

LSVLAN IS SPeCIALLY OZSIGHSC FOR THE DZTERIINATION OF THE
EXTREME EIGINVALUZS CF A SPARSE MATRIX A, IT IS OR/STRVED,
THAT THZ ZIGZNVALUES OF THZ TRIDIAGONAL MATRIX T, RIPRESENTEC
BY ALFHA AND BETA, FOR INCIZASING OROER CF T TEAD TO THE FIX:EC
VALUES, WHICH CAMN 3T CCNSIJERZD AS ZIGENVALUSS COF a.
FCOR PROBLISy ARISING WITH THZ DJSTERJINATION OF THE EIGENVALUES
WNE REFZR TO?S
VAN KATS J.'lay VAN DER VORST H.A.,
“NUNERICAL £EXPIRIMEINTS OF THE PAIGe=-STYYLE LANCZOS NETHCD
FOR THE COJPUTATION OF EXTREME EIGINVALULES OF LARCE
SPARSE MATRICZIS",
19764 ACCU, TR3.

EIGENVALUZS OF THZ TRICIAGONAL HATRIX T CAN 8E COMPUTED BY
IMTALL
RATAR
BISZCT
ALL CCNTAINEQ IN EISFACK ( THIS PACKAGE IS IN UTRECHT AVAILASLE
AS LIJRARY ON PCRIANINT FILET LINTARALGEPRA,ID=UACCU).
LSVLAN IS SENT IN BY J. LEWIS (CCO!'PUTER SCIENCE DEPARTMENT)
STANFGRD, UsSedas

(AR R L R R R R R R R R R

EXANPLE

0F Ust

LA R R R R R LR R R RN

IN THE FCOLLOWING PROCRAI L6 LANCI0S=STZPS ARL PERFOONED ON A 24TH
ORDEAR MATRIX (WHICH IS KNOWN AS THZ MATRIX W21+ OF WILKINSON),
EIGENVALUES OF THE MATRIX W21e AL COMPUTED BY EVSCAN, USING

THE RESULTS OF LSV LAMN,
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PROGRAN LACZOS(QUTPUT)
DINENSIOMN 22(21),Q1€24),U(21) ,ALPHA(L16)4,BETA(16)
LOGICAL RZISTRT
EXTIRNAL W21°LS,SAVEQ
DIMENSIOM TK(1642),TK1(16,2)
LOGICAL LCW,UP,0QIV
N=21
IFIRST=4
=15
RESTRT =, FALSC .
NScc0=.1J777
CALL RANSGT(NSZIED)
DO 10 I=1,N

10 Q1(I)=RANF(SZZ0D)

CALL LSVULAN(N, IFIRSTM,RZISTRT4Q1,W21FLS,SAVEN,U,ND
+ 2 ALPHA,3ZTA)

fiT=4¢€

CALL CVSCANC 4Ny IT4ALPHAJ2STAGNIV,LOW,UP 401V,
+ NCIVyTKsTKLy IZRRecFS)

IF(ICRR«NE.J) STOP "SRR IN EIGENVALUECCMPUTATION"

IF(LOW) FRINT L300
IF(UP) PRINT 1310
IF(DIV) FRINT 10320,NJIV
PRINT 103J,HZV

C IF NIV EQUALS 3 NO ZIGENVALUZ INTERVALS HAVE EEEN DETECTED.
C LSVLAN SHJULD £z RISTARTEID FOS FURTHZII BZTZCTIONy WITH THZ
C DIMENSIONS OF ALPHA, 3ETA, TK ANO TKi PROPZRLY ADJUSTED.

IF (NEV.ZG.J) GOTO 70

30 6J I={ NZV
60 PRINT 13404 I,TK(Iy1),TK(I,2)

74 CONTINUC

1000 FORMAT (* CONVERGEZNCE AT LCWEZR SIOE *)
1610 FORHAT (®* CONVZIRGZINCZ AT UFPZR SI0E *+/)
1020 FORIAT (* *,13,* INTERVALS AT LOWEZR END *)
1433 FORAAT(* *,//,* *,I13,% INTZQVALS ARE FOUND *,/,
+ s NR LOWER30UND UPPERSCUND*, /)
1040 FORHAT (* %,13,% *,2(E20.134* *))
ENO

SUEBRQUTIAC SAVZCQ(Q.N)
DIAENSION Q(N)

C NO EIGINVZCTORS ARZI COMPUTED,y SO WE DO NOT STORE
C THZ ORTHOGOWAL TRANSFOR-ATION=-MATRIX.

RETURN
END

SU3SROUTINZ W2LPLS(X,AX,N)
DISNENSION X (), AX(N)

C HATRIA IS TAKZIN FRO.I WILKINSON (THEZ ALGZBRAIC EIGENVALUEPROELZIM)
C AND I35 CALLZD W2i+.

c 10 i 0
Cc i 3 1 0
c g 4 & & @ :
Cc o o s o SUAT: 1T XI\A\'IL M
€ * » e o W);‘:T W -
S PAGE IS E m)b o
g ?i. : ‘1! : mm‘m corY Fund LSBED TV
Cc 0 i 10
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AX(L)=10vX (1) +X(2) FROM COPY FURNISHED TO DDC
B0 106 I=2,23
AX(I)=X(I=1)+IAPS(L4=T)*X(I)eX(I+1)
10 CONTINUZ
AX(2L) =X (20) +10*X(21)
RETURN
END

i

THE OUTPUT OF THIS PRCGRAM ISt

CONVERGINCE AT LCWER SI0c
COMVERGENCE AT UFPZR SIJE

2 INTCRVALS AT LOWZR cNO

6 INTERVALS ARE FOUNC .

NR LOWERBOUND UPPERBOUND

1 ~e1125%4415221295431 ~e1425442522119E+01
2 «253865817037312+3) «2538U58470936c+30
3 ¢730395220394222+012 «73339522094242+01
& «8J33894112237€2+0U2 8023362122376+ 01
5 «321067BEHTII7E+IL «9210678647337=+01
6 «10746194.8290c402 «4074519418290E4+02

BESFP ISR R PRy
METHOD
LRI R R R T R LR EEE LRSS
BASED ON THE PAIGZ STYLE LANCZOS PROCZSS DESCRIBZD IN2
LEWIS J., THESIS (TO AFPZAR),
VAN KATS Jeiles VAN DER VORST HeA., “NUMERICAL EXPERIMEINTS OF
THE PAIGE=STYLZ LANCZ0S “ZTHGC FCR THE CCHFUTATION CF
EXTREHNE EIGENVALUSES GF LARGZ SPARSE HMATRICES™,
1976, ACCU TR3.
VAN KATS J..ley VAN DER VORST H.A., “AUTOMATIC MCNITORING CF
LANCZOZ 3:CHIIES FO2 SYUMITRIC AND SKEW=SYMMETRIC
GENERALIZED EZIGENVALUZ PRCBLEMS, 1377, ACCU TR7.

SUBOUTINE LSVLAN(Ny FIRST,y #,y IEST
1 ALPHA, BEZTA)
SU3RJUTINS TC CARRY JUT LANCZOS PROCZSS FOR A SYHHSTRIC REAL MATRIX
IAFYTe i => THZ SIZE OF THE HATRIX
FIRST => THZ FIRST COLUMN TC 82 COMFUTEC OM THIS CALL YO THE
THE SUBROIOUTINZ (ON INITIAL CALL, FIRST WILL BE 1)
I => THZ (IAXIAU) NUPEZx OF COLU¥NS CF THE PRCCESS TO BE&
CO/FUTZ0
RESTRT => A LOGICAL YARIAELZ INCICATING WHZTHZIR WE ARE
RESTAITINEG FrCY A PReVIOUS PARTIOL
TRIDIAGONALIZATION QR STARTING A NEW ONE.
AL => FTH: FIRST COLUSN OF Dy A REAL VECTOR, NOT ASSUMER
SO BE CF HGRE L
AX => A SYIROUTINE TO CARRY 0OUT THZ #ATRIX=VECTOR
SGULTIPLICATICN. INFUT TG AX IS A REAL VECTOR,
QUTPUT SHOULEL BE A FEAL VECTOR.
SAVZQ =>» A SUZROUT INE WHICH SAVES THE COLUINS GENERATEC 3Y
THE LANCZCS ALGORITHM4y FOR USE IN CO4YFUTING
SLGENVECTCRS, IF 2IGENVECTORS ARE NUT QESINED,
FHES SUSRELETENE sUST STILL HE SURPLIGDssIT NeST
INT ACTUALLY OC ANYTHING,

al

Ty Q91, AX, SAVEN, U, GJ,
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SCRATCH 2

U => A RZAL VICTOR CF LENGTH N
GJd => A REAL VECTCR OF LENGTH M
MZITHZR U MNOR Q) NZEG RE INITIALIZED
THo SO ITLNTS JF Jt, N3 AND U WILL EZ DISTROYEN
QUT FUT ALPHA => THZ NTAGCMNAL CF TH:Z TRIOTAGINAL “MATRIX WKICH IS
ROUGHLY ST ILAR T 4,
IETAH => THZ SU2Z~CIAGCNAL IF THZ TRINDIAGCNAL YATRIX
ALPHA ANC BETA A2Z RzZAL VY=CTQORS.
PROC:SS USZIT THIS SUBRDUTINE IMPLIMENTS A SIEFINED VEISION CF THE
PALGZ=3TYLE LASICZAS PROCLSS.
INEZG.R Ny e FIRST
LOGICAL RESTRT
IXTIRIAL AX, 35AVZ]
RZAL i)y 30D

Qb UINY
REAL ALPHA(H) 4 3ETALCL)

RZAL LTC.4Fy LALPHA, LBZTA
REAL =PHLEH
INTEZGIR I, K
JACHINE DEPINCENT QUANTITIES?
IOSLON IS THE RESLATIVI TRUNCATICN LEVEL CF SINGLT PSECISION
Yafhe ZPSLEH £ Lez =L
IF (XISTXT) GC TO 61

S k& s HORMALIZ. 2L TGO UNIT LINGTH
LTS, iR = VVIPP(QLeleNlslsh,T)
IF (LTEWMP «=Neadl) GO TG g0
LTE P = 1:J/S62T CLEZNP)
00 9 I=1,4
1161y = QL EE) *LTEP
L) COMNT INUL
COIFUTE 02
2d CALL SAVEGC(ALs MN)
CALL AX(Y1, Uy M)
LAL2HA = VVI‘:p(U'LUQl'l'r"T’
090 3J I=3%4s
JeI) = (1) - LALPHA*GL(I)
30 COMTINZ
FOR USE Iii AN LITIRATIVE LANCZ20S PRCCISS, SINCE 3ZTA MAY AcS
VZRY ShAlkbL, We RZICRTHOGONALIZE N2 WITH SESPECT TO A4 IN ORDER
TJd AVII] LOSS OF 4 LCT OF CUR ORTHCGONALITY RIGHY OFF.
LTEUP = YVIPPU, L4014 Ly NgTY
00 < I=1,0
JEI)Y = UGCI) = LTFS(iP*J1CT)
wg CONTINUZ
MOWN {0 1ALTIZZE )2

LBETA = VVIPP(Ugis ol NsT)
LIETA = SGRTILIZTA) \ABLE
~ PRACTICAB
LTE 1P = L.0/L38TA Tﬂlsmggxsmswqumnéhf:
10 3J I=l4 N SHED 10 DD
ATEE) & MDD FROM COFY FUSAISHED S

A3tl) = UCI)Y*LTENP
59 CONT INUC
CALL SAVZQ(TL,y, W
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€C CoOIlP)Te INITIAL ALTHA AND B
ALPHACL) = LALPHA
}STA(L) = LIZTA
o= 2
¥ FQ 7

C R A B B - - ]

CReESIT ART I NG

C - e B P i e e s e B - 5 B2

€ THE USZ3 #JST HAVE RESTCREN N1

c KRABAA AS THIY WeRzs AT THE END €

C STOXED IN 3cTA(FIRST=_)

25 X = F L ST
L3=ETA = gETA(K=1)
CALL SAVEQ(QLs M)

C wmcecmccccace=- cemmcccae -

C NIW Ca=2Ry JQUT LANCZOS ?ROC

C @ - wes w w wm - B -

C FAR K = 2 TO M=}

€ < COIRPLT= SUCCecIIMNG

Tv LF t%,GYerY GC TO 43Y

C COIRUTE 9= VICUS ALPHA AND

LTE IP = VVIPP(QLgly ULl
CALL AX(liy Uye N
LALPHA = VYVIPF(l),1,N141
ALPHA(K) = LALSHA
13 JU TI=i,,N
JOI)Y = UCI) = LALPHA
8d CONT I-N&
C NORPMALIZE NEXT VECTOR
L3ETA = NVIPE(UslUeleN

LBETA = SERT(LIZTA)
IF CLEETA.LT ERSLENDY LB
LIEdR = Leb/AL3eTh

BeTA(K) = LBETA
10 13 I=L N
1J(D)
1L (1)
3J CONTINUC

Qi)
U Ty “LTE P

"

(1)

THISP%GP‘ISHFnTJ”\I[TY

S1a. : PRACTICAB
FROM COFY FURN L 3

SHiD IO DD

 ——

ANC G), ALPHA, 3ZTA AND
F THS LAST caLL. L3=va 1IS

. G W W W -

£€S FOSR K = 39 49 eoey 't¢

" .- .- w e N W TS w - w-- -

COLU IS OF CRTHOGONAL ™ATRIX 0 >

CIRECTLCY CF NaXT VECTOR
Ny T

1Ny T)

XGL (L) = L3ETAYQGNT)

T

tETA = TFSLGON

IF (KeLT.PF) CALL SAVEQ(GL, N)

K= K + 1
GO TC 70

1)) RITURM
EHD

(AL R AR L R R LR AR RN

HEAOING 70518

LR R R L RS R R RN

SUBROUTINE GENLANIN, JFIRST,#yRESTRT4N1,CX+sBX¢SAVEQ,U UM,
QO ALPHAGELTALZANT I)
LOGICAL RESTRTZANT
DIMENSTION QLCH) o CQu EN) JUIN)  ALPHA (1) ¢ BETA (M) JUWIN)
EXTCRNAL CX,B8X,S5AvEn

(AL R L R R R AR RN

PUR FOSE

LR R L R R R R R

YO GENERATC A TRIDIAGCNAL JATRIX T BY THE LANC?0S PROCESS FOK A

MATRIX C*9, WHERED

C IS WHETHER SYHAETRIC OR SKIW=SYNYETRIC AND

8 IS SYMIZTRIC PCSITIVE OZFINITE,

THC MATRICZIS 9 AND C MNZZD HOT TO 06 GIVEN EXPLICITLY,
EIGENVALUES OF T APPRCXIIATE THE EIGENVALULS OF C*8,

AS EACH ST P OF THE LANCZCS PRCCESS NZZ0S & MATRIX=VECTOR
HULTIPLICATIONS, THIS PROCZISS IS VLRY ATTRACTIVE FOR SPARSE
MATRICES.

aeatilomn o) cichash
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THISPAGFISBESTQUALITYPRACTICABLE

C INPUT-PARAMETERS * FROM COPY FURNISHED T0 DDO
C *%rsvvvnvvmsvsnnnssy i & ol
N ~INTEGEZ. THE ORC=Z2 OF THE MATRICZS C AND B.
IFIRST ~INTEGERe THo INCEX OF THZ FIRST COLULN OF THE MATRIX T, WHICH

HAS TO BZ CO.wPUTcO OM THIS CALL OF GEZMNLAN,

ON INITIAL CALL IFIRST SHQULD 32 1.

IF GENLAN IS RISTARTZID (ScZ INPUT=PARAMETER RESTRT),
IFIRST SHCULD 3¢ ZQUAL TO THZ LAST COLUMN=NUMBER OF T IN
THC PRIVICUS CALL PLUS 1.

N ~INTEGZRs THE TCTAL NU~3IR OF COLYANS OF T TO BE COMPUYTED
( THE NUJEZIR OF COLUMNS IN ZARLISR CALLS ARZ INCLUCED)Y,
RESTRT -LOGICAL.

RESTRT=.FALSC. t INITIAL CALL FOR A NIW PROALEM,
RESTAT=,TRUZ. 3 INDICATES A RESTART AFTER A PRIVIOUS
CALL CF THI SANMI PRO3LIM,
Q1 =DIAENSTON Q1(N). IF RESTRT=.FALSZ, t ARNITRARY NONZERO STARTING
VECTOR FCR THZ LANCZOS PR0CESSs MNOT NECESSARILY CF NCRF {.
IF RISTRT=.TIUZ. ¥ QL) SHOULD HAVE THE SAMZ VALUES AS CN
EXIT OF THZ PRIVIOUS CALL (ALSO GUTPUT=-PARAMETER),
Ex =SUBRGUTINI CX(Y,CY,N)
DIMENSION Y (N),CY(N)
THIS USER=-SUPPLIZ3 SUIROUTINE CELIVERS FCR A
GIVEN VECTCR Y THE VECTCR CY, THAT RESULTS FRQr
THZ MULTIPLICATION OF Y 8Y THE (SYM~ETRIC OS
SKEW=SYNIZTRIC) “IATRIX C.
Y SHOULD NCT 8BS DISTROYED WITHIN CX.
B X ~SUBROUTINZ BX(Y,3Y,N)
DINENSION Y(N),3Y (1)
THIS USE2-SUPPLIZD SUIRCYTINE CELIVERS FCR A
GIVIN VICTOR Y THS VEICTOR 3Y, THAT PISULTS FRO™
THE JULTIPLICATION OF Y 2Y THE SYMMETRIC
POSITIVE DEFINITE MATRIX O,
Y SHOULD NOT BE DESTROYED WITHIN SX.
SAVEQ -SUBRCUTINE SAVER(Q,N) ' ,
DIAENSION Q(N)
THIS USER=-SUPPLIED SUBROUTINE, WHICH CAN 8E USED
TO STORE THE COLUNS N OF THE CITHCGONAL TIANS=
FORMATION (ATRIX, FOR USZ IN COMPUTING THE
EIGENVECTORS OF C (IN THIS CASE € SHOULD
BE THZ INSATITY HATRIX).
IF EIGENVECTORS ARE NOT DESIRED CR WHEN § IS
NOT THE IOENTITY YATRIX, THIS SUBROUTINE
HUST STILL BS SUPPLIED-~IT NEEG NOT ACTUALLY
D0 ANYTHING.

U =DIMENSTION UCN), SCRATCH=-ARTAY,
UW =0IMZINSION UW(N). SCRATCH=-ARIAY,
Q9 =DIMENSION Qu(N)., IF RISTRT=.FALSZI, % Q) NEED NOT TO 8t

INITIALIZ2ZD. ,
IF RESTRT=.TRUZ, ¢t QU SHOULU HAVE THE SANE VALUES AS CA
EXIT OF THE PRIVIOUS CALL OF GENLAN
( ALSO OUTPUT=PARAIETER).
ALPHA ~CIMENSION ALPHA(M). IF RESTRT=,FALSE. t NO INITIALIZATIOAM
NECESSARY.,
IF RESTRT=,TRUZ. 1 ALPHA(1) UP TO ALPHA(¥M), WHEGE MY
(NMoLT. M) IS THE VALUS OF i IN THZ PREVICUS CALL
OF GENLAN FOR THS SANS PROBLEM, SHOULD CCATAIN
THE VALUES OF ALPHA AT IXIT OF THIS PREVIOUS CALL
( ALSO OUTPUT=PARAIETIR) .
BETA -DINENSION DETA(M). IF RESTRT=.FALSZ. t NO INITIALIZATION
NECESSARY.
IF RISTRT=,T2UC. ¢ BETA(L) UF TO BETA(MM) SHOULD CCATAIN
THE VALUZS OF BETA AT EXIT OF THE PRIVIOUS CALL.
{ ALSO OUTPUT=PARAZTER),
ANT I ~LOGICAL.IF THE FATRIX C IS SKEW=SYMMITRIC, ANTI SHOULD BE SET
TO .TRUE., IF THE ~ATRIX C IS SYMMETRIC ANTI SHOULO 8E
SET TO .FALSE..
LA T R R L E R LR LR R L RS NS
OUT PUT=PARAIETERS
IR RS R R R R R R B R LY
Qi =DIMENSION 1L (N). QL CCNTAINS THE LAST COLUIAN USED IN THE LANCZCS
PROCESS CF THE CRTHOGOIAL TRANSFORMATION MATRIX.
( ALSO INFUT=PARAMCTER) .
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Qo

ALPHA

BecTA

= 3A = THIS PAGE 1S BEST QUALITY PRACTLICABLE
FROM COY'Y FURNISHED T0O DDC e

=O0IMENSION Qu(N)e QJ CCNTAINS THE COLUMAN PREVIOUS TO Q1 IN THE
TRANSFORSATION FROZZISS. 10 AND N1 ARS NECESSARY FOF
RESTART FLRPISTS (ALSC INPUT=-PARAMETZR),
=0IHENSTION ALPHAC ) . THZ OIAGONAL OF THZ TRIJIAGONAL ~ATRIX T,
WHICH IS ROUGHLY SIMILAR TO C*9, ( ALSO INOPUT-PASAMTEIZ),
=DIMENSION 3JETA(NM)., THE SUPZRITAGINAL ZLE“SANTS GF THE MATEIX T.
BETAC!) CCATAINS RESTA2T~IMHFOR=~ATIGN,
IF C IS SKIW~SYMAZTRIC, THTN TMZ SUBDIAGCNAL ELEMENTS
ARE EQUAL JUT OFPOSITE IN SIGN,
( ALSO INFUT=PARAAETZRY,

I 2 2 E X R R R R R EE R EEE R RS

INTZRNALLY CALLIO SUIPRIGRANMS

(IR R YRR RS R EEEEE SRS

VVIPP (704923)

EX I R R R YRR EREE R ER RN EEE S

RCMARKS

LA R E R YT E R EEEREEE R ER RS

I

In

III)

Iv)

V)

IF 8 IS THe IODEANTITYHATRIX ANO C IS SYMAIETRICy THEN LSVLAN
(70517) SHOULD EE PREFEZ~ARI0D BOTH FOR TIME AND STCRAGE COMSICERA-
TIONS.
GENLAN IS SFLCIALLY ATTRACTIVS FOR THE CETERYIMATION OF THE
EXTREME EIGINVALUES OF A SPASSE MATRIX C*8 WITH C AND/OFc A SPARSE,
THE EIGONVALULS CF THS TRIOIAGONAL MATRIX T, REPRESCNTEC
BY ALFHA AND 3=TA, FOR INCRCASING ORDER OF T TEMND TO THZ FIXEC
VALUES, WHICH CAN 8C CONSIDZRZD AS SCIGENVALUZS CF C*8.
FOR PROJLcSy ARISING WITH TH- DETZRMINATION OF THE EIGENVALUCS
WE REFEZXR TO3

VAN KATS J,!1.¢ VAN 0ZR VORST H,A.,

“NUNMERICAL EXFZIRIMENTS OF THZ PAIGE=-STYLS LANCZOS PFETHCD

FOR THE COAPUTATION OF cXTREME EIGENVALUZS OF LARGE
SPARSL PFATRICZIS",

1376, ACCU, TR3.
THOSE EIGCNVALUZS OF THC TRIDIAGOML HMATKRIX T, REPRESENTEC
BY TH:Z ARRAYS ALFHA ANC BETA, WHICH CORESPOND TO EIGENVALUES
OF THZ ORIGINAL FROODUCT=IATRIX C*3 CAN 9E COMPUTED Y EVSCAN
(70519 .
IF THC JIATRIX IS SKzZW=SYMIZTRICe THZIN THE ZIGENVALUSS DETEZR~INED
BY TVSCAN (7U054€) SHOULD 9% NULTIPLIZOD 9Y SARRT(-1).
GENLAN IS WRITTcN BY H.,A. VAN DER VORST (ACCU) UTRICHT.

SPPPPIPIIIVPEINRLIIEILIESY

EXAMPLE OF USE

LA R R R R R R LR R RS

THE FCLLOWING PROGRA: COMPUTES, WITH EVSCAN (70519), THE SIGEAVALUES
OF A SKCW SYNMUETRIC PATRIX.

PROGRAM LNCGEN(QUTPUT)
DIHZNSION Qu (20)4,2L(2U),UC20),UNC20),
. ALPHA(Z5) yBETAL25)
LOGICAL RISTRT,ANTI,LOW,UC,DIV
EXTERHAL SKCHWA,ICENTILSAVEQ
DINENSION TK(2542)4TK1(25,2)
N=20
IFIRST=14
M=25
RESTRT=,FALS=,
ANTI=.TRUZ.
NSEE0=330¢77
CALL RANSZITINSZEQ)
D0 10 I=1,N
10 QLCI)=RANF(SEED)
C A NONZERODO RANCC/I STARTV=CTO®R
CALL GEMULAN(N, IEFTRST o FyRESTRT 401 ¢SKEWALTOENTIT,
. SAVEQ,UsUWs Qs ALPHA, B TALANTI)
T =25
CALL SVSCANC 14N, MToALFHA BETAGNLV,LOW,UP,CIV,
- NOIV, TKyTKL, ICRRE0S)
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THE

IFC(IERR.NE ) STAP “ERROR IN EIGZNVALUZ COAPUTATIOMN"

IF (LOW) FRINT 1300

IF (UP) PSINT 1010

IF (DIV) FRINT 410204NDIV
PRINT 1030,N2V

{ IF NEV EQUALS Uy, NO EIGENVALUZ INTERVALS HAVE 3EEN CETECTEG,
Cc GEMLAN SHOULC BZ REZSTARIZN FOR FURTHZIR INFOSHATION, WITH THE
Cc DIMENSIONS OF ALPrA,3ITA,TK ANO TKL PRQPIRLY AQJUSTED.

IF (NZV.cQ.d) GQTO 70

DO 60 I=i.NIV
o0 PRINT 1u4uslsTK(IZ2),TK(IL2)
70 CONTINUZ

1000 FORMAT(* COMVIRGENCc AT LCWZR ENO *)

1043 FCRIIAT(* CONVERGINCI AT UPPSR ENC *)

1020 FORHAT(* *,I3,* INTERPVALS AT LOWEX :INT *)

1030 FORIAT(® ¥,//,* *,15,* INTZIRVALS ARZ FOUNC *,/,

¥ % NR LOWERBOUND UFPER3OUND *,/)

1040 FORAATI(™ *,I3,* *,2(F23.13,% *))
END

SU3ROUTINI SAVEQ(NLN)
DIAZHSION CCH)

c NO EIGCHVICTCRS ARZ REQUIRZO,. SO WE DO NOT STCRE THE

c ORTHOGONAL TRANSFORHATION MATRIX.
RETURN
END

SUBROIJTINE SKEWA(X,CX,N)
DIMENSION X(N)CX{N)

OO0

OTHZR ELZAZMTS ARZ Q.
CX (1) =x(2)
NL=N=-1
D0 10 I=2,N%
10 CX(I)=X(I41)=X(I~1)
CX(NY==X{N1)
REZTURN
END

SUBROUTINE IDENTI(X,8X¢N)
DIHEZNSION X (N) 43X (N)

THE SUBOIAGCMAL EZLEMENTS OF THIS SKEW SYMMETRIC MATRIX ARE
CHOSZN TO B8E =1, THI SUPCIDIAGONAL ELSHINTS ARZ +#1 ANC ALL

Cc THE TRANSFORFATIOH 8 IS THE IDENTITY XAT2IX IN THIS CASE.

00 LU I=1,N
13 X (I)=X1(I)

RZTURN

END

OUTPUT OF THIS FROGRAM4 ISt
THIS PAGE IS RES

CONVERGENCE AT ECWER END FROM COFY FURNIS
CCNVESGENCE AT UFPER ZNG
20 INTCRVALS AT LOWER END

20 INTEZRVALS ARE FOUND

AR LOWZR30UNC UFPZIRICUND

i ~1.9776616524493 =1.9776616524498
2 =1e31444804457147 -1.911145€115716
3 ~1480143277353.45 =1.8J49377358)4%4
4 =~146524775436317 =1.€5247754L36316
5 ~1.4661)137456593 =1.406510537436593
6 ~5e24€97¢€0337272 “1.24€9795337172
7 =y 9999999399959 ~+99999396399¢639
8 =+730082J437327 ~e73068204A7327
9 -e 4453413679125 ~eb650412679125
10 =ell49400i874729 ~«1494631871728

TQUALITYiRACTICABLB
HED TO DDC
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T

i1 «1894E€04L374723
12 e e 5J413079125
13 e 7305823437326
14 «939939€9933390
15 2e24697S02137.73
16 e 6015274365¢€2
17 14€65247725680313
18 180.9237735813490
19 19114450115715
20 1.97766106524493

I Z X BRI RS E R R RS RS R R R Y

METHOD

LA AR RE R R R R R R RS RN LR

THE GENZIRALIZZID LANC2CS SCHEHE

1996601871723
4450416679125
«73063204873206
«99399999991390
1.24069730603747Q
1.466106374L36593
1.65247756 1363146
1.9919377353)40
1.9111456115716
1.9776646524433

AS DZSCRIBED INt

VAN KATS Jeilesy VAN DIR VIRST H,.A.,
“AUTOPATICAL MONITORING OF GENERALIZCO SYMNYETRIC
OR SKEWSYMMETRIC LANCZCS SCHIHZS™,
1977, ACCUs UTRECHT, TR7.
SUBROUTINE GUwlLAN(N, IFIARST, 1y RISTRT, Cre AXy BX, SAVEG, U, UW,
1 Ouy ALPHOA, 3ITA, ANT D)
LOGICAL ANTI, RISTRT
SXTIRNAL AX, EX, 54VaIN
RIAL Q1) Do)y UCNY, UNINYy ALFPHA(M) o GITA(H)
ReEAL LTEIR, LALPHAN, LBETA
ek LPSECH
INTIG62R I, K
DATA EPSLCN AY.8E=1&/
C GZHLAN GEHERATES <0WS FOR THE PRQOLCT MATRIX 8X * AX, hHZIRE
€ 38X IS SYIETRIC AND POSLITIVE BEEINIT=, v

€C AX I3 WHETHER SYJSH/ETRIC 3
C 0 ANTISY IM=ZTRIC H

ANTI=.FALSE. o
ANTI=,.TRLE,

‘h;‘
. -~
SR

-
-
[

3 W

IF (RZSTRTY GG TO
CALL 8X(Q1,y UWe N)
LTE P VVIPP(NLedio W el sNeT)
IF (LTZ.IP«ZR.2sg) GO TO
LTE.'P LoU/SGRTLLTE!HP)
g3 Ld I=g.N
YR 6Ly =
HW(I) =
CONTINUZ
CALL SAVIQ(QL, 1
CaLl AX(Uw, U,
IF (ANTIY GO TO &
LALDPHY = VYVIPF(UelyUWsiysN,T)
DO S5d I=1.N
UCI) = UCI) = LALPHA*GL(D)
CONT INUE 1
CONT INUE
CALL 3IX(U, Uu, 1)
LT=i® = VVIOP(UWysLlyNLyloh,T)
33 B4 I=14N
UCIY = U(I) =
CONT INULZ
LBETA
LBETA

-
LA

e
-u

W nou

QLI *LTZ 4P
UWLID) *LTZ P

CTEPEEICT)

it

VVIPP (g ieUylyNeT)
SCGRT(LAI=ZTA)
LIEN2 1.0/LBETA
D0 od I=4,N
D)
QLI
JW(I)
CIONT INUCZ

o

A1 (D)
UCLI*LTENP
UWCI) *LTNP

H n on
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CallL 5AVZQ@L, )

I& CATIY LALZMA = J. THIS PAGE IS R ‘ si
ALPHA(Z) = LALA FROM COPY M{Nﬁfgﬁfﬁzmcn;mm
JoTA(Z) = L3ITA

= 2

(ot s o R Y

K = IFIRST
LASTA = RETA(K=3)
CALL 3AV=ZC(as, O
30 IF (KeGTer) GC TO 140
CALL AX(UWy, U, )
IF (ANTI) GO 7O 1Jd
LAL2HA = VVIFF(UWelyUgeleh,T)
ALPAHA(K) = LALPHA
JO d0 I=L,
UCI) = U(T) = LALPHA*CI(I) = LBITA*NI (D)
30 CONTINUC

co

60 T0 L2
1090 ALPHA(K) = u.
00 Lid I=x.N
UCI) = UCI) + LBZTA*GE(I)

1.5 CONTINUE
220 CALL 3X(U,y ity D)
LAeTA = VVIPP(UylyUNygiyh,T)
LBETA = 3QRT(LIITH)
IF CLB=FTA.LT<EPSLOMNY LIETA = ZESLON
LTc P = 1.4/L3c7TA
BITAK) = L3IETA
D0 30 I=i4n

NJCI = Q1D
14401 = UCI*LTEP
UWCI) = UWII) *LTIHD

£30 CONTINUZ
IF (KoabLTeX) CALL SAVEZQ(Q1. N)
K= K + |{
GO TO 3a
140 RCTURN
=ND

SEPSEBPBPRBR BNy

HEADING 705519
LE T R R R R RN LR
SUBROUTINE ZVSCANCHgN s IToALPHA,3CTAGNEVLOWoUP DIV NOIV,TK,
TK1,IERR,cPS)
OIMENSION ALPHAM) 4 BITACA) s TK(MT ¢2) 3 TKL(MT,2)
LOGICAL LOW,UP,DIV J

LR R L L AR R S A R R L 2 E 2

PURPOSE

LI R R R R R R L R R LR 22 .
TO DESTYILLATZI A ROW CF OISJUNCT INTERVALS, ZACH OF WHICH COATAINS AT
LEAST ONZ EIGENVALYE CF A GIVIN TRIOIAGONALMATRIX T, WHICH ARISES
IN THE SINGLZ-VEZECTOR LANCZOS PROCZzZSS.

LE LR R R R L R R
INPUT=PARAHCTLRS
LI E L RS R R R R R TR R
M =INTEGERs THE ORCEXR OF THZ TRIDIAGONAL FMATRIX T, AS GENERATEC
8Y THE LANCZOS-PROCESS.
(M IS ZQUAL TO THZ NUMGER OF ITERATIONS IN THIS FRCCESS).

N - INTEGEIe THL ORCER OF THE CRIGINAL MATRIX A, ON WHICH THE
LANCZ0S=FRQCZSS HAS EEIN 4P2LICO,
HT ~INTEGERe THE NUMIZR IF ROWS IN THE ACTUAL DECLARATION CF THE
i ARRAYS Tk AND TKi.
ALPHA ~DIMENSION ALPHA (). THS NDIAGONAL OF THE TRIDIAGONAL MATRIX T

AS ODELIVERZD 3Y THc LANCZ(CS=PROCESSe THE ELEMENTS
OF ALPHA ARE NOT ALTERID.
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IERR
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I1I)

Iv)
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38 -

=0IASNSION JCTA(E) . SITA(L) THROUGH AZTA(M=1) CCNTAIN THE
SUPEROTIAGCNAL SLEMENTS OF TH= TRIDIAGONAL “ATRIX T,
THE ELCNENTS OF BETA ART NOT ALTERED,

=DINCNSION TXI(NT42). A SCRATCH=ARRAY,

LA A R A R R R E R R R NN R

QUTPUT=-PAAICTRS

(AL E R EN RS R R R RN

=INTEGZIRe THE NUXBER OF DIFFERENT TIGINVALUZ INTERVALS, IN
WHICH ZIGINVALJES OF THE ORIGINAL MATRIX A AL CONTAINEN,
-LOGICAL. IF LOW IS .TRUC. 3 COAVIRGENCE AT THE LCWER SIDE OF
THZ SPICTRUM,.
IF LOW IS .FALSE. 3 NO CONVIRGENCZ AT THZ LOWER SICE.
«LOGICAL. IF UP IS .TRUE. ¢ CONVERGINCE AT THE UPPEP SICE OF
THE SPECTR!IUN,
IF UP IS .FALSZ. 8 NC CONVERGENCE AT THE UFPZR SIDE.
~LOGICAL. IF DIV IS JTRUZ. 1 EVSCAN HAS DoTSMINED NOIV E IGENVALUE
INTCRVALS, WHICH ARE JILIZVID TJ REPIISEANT THE NOIV
SHALLESTY CIGINVALUZS OF A (T.E. ALL NOIV SwALLEST
EIGeNVALUES OF A HAVE 3ZIN JISCOVIRED)Y,
CAUTION® FRO THE NATURE OF THE LANC20S=FRCCZSS IT IS
CLEAR, THAT THIS PARAHETER MAY YIELD WRONG
INFORNATION,
= INTEGER, SZ= D1V,
=0IMENSION TXK(NT,J)e THZ SAIRS (TK(1,1),TK(L.,2)),
(TK(242) 2 TK(Z42)) ¢ eee o (TKINEVLL1) 4TKINEV,2))
REPRISENT THC NEV INTERVALS, WHICH CONTAIN ETGENVALUSS
OF A,
«INTEGER., €RIRORINDICATION,
THC VALUZ OF IZRR IS SZT =ZQUAL TO AN CRRCR COMPLET ION COCE,
THE NORJAL COAPLETYIGN CODE IS Je
IF HOR- THAN 33 ITCRATIONS ARE REQUIRIN TO OCETERFIANE
AN EIGINVALUE (USING THE SUJIROUTINE YITHNL1)Y OF THy
SYFMETRIC TRIOIAGAONAL MATRIX T, ISR IS SET ZQUAL 710
THZ IMNJEX OF THE cIGeoNVALUZ FOR WHICH THE FAILUR: CCCURS.
-REAL. A fE€ASURE: FOR THC RclATIVE ACCURACY IN THE CONMFUTED
EIGENVALUE INTCRVALS, AS QOELIVERZD IN TK.

LA R R R LR R

INTERNALLY CALLED SUIPROGRANS
LA R R R EEE R R EEEEES
IMTQLL (A SUSROUTINZ FROM THZ EISPACK=-PACKAGE)
HOND IS
SCANIIP
COJINT
EPSSPN

(ALL THISC ROUTIANIS ARE INCLUDED IN THIS 02£cK)

MLTPLT (71520)

LA R L R 2 R R EE RN ERL RN

RCHARKS

PP AL EPrEFRE SIS

EVSCAN ,JAY BZ CALLEDO AFTER A CALL OF LSVLAN (70517) OR
GENLAN (70543).
SOIETINES €VSCAM DcLIVERS AN INTERVAL, WHICH CONTAINS NO
EIGENVALUZ OF A, HOWIVES IN SUCY A CASce THIRE IS AN EIGEANVALUE
IN THO NIIGHAOURKOOOD OF THAT INTZIRVAL. IN THESE SITUATICNS IY
IS COMIION THAT THZ PROCISS YIZLOS ALSO TH: INTESVAL IN WHICH
THE R:zSPECTIVC ZIGENVALUZI IS SITUATED. IN ORDER TO IDENTIFY 8BCTH
INTERVALS A5 RcFRISEINTING THE SaNME EIGENVALUZ, IT IS ADVISED
TO USS THa SUBRCUTIND FLTPLT (70520) WITH A SLIGHILY LARGER
VALUE OF THEZ OQUTFUTVALUZ €PS (LJ*€PS, SAY)t

EPS=13 "SFS

CALL MTLFLTIMT «NEV,ZFS,TK)
FROM THE NATURE CF TH:Z LANC205-PROCESSe IT FOLLCWS THATY
POSSIBLY SO’ EICCNVALUIS AnE NOT DISCOVERED AT AlL.
IF THE ORIGINAL MATRIX A HAS A MFULTIPLET, THAN THIS MULTIFLICITY
IS IGNORZD.
EVSCAN IS WRITT=N BY J.N. VAN KATS AND H.,A. VAN OER VORST
(ACCU) UTRECHT,.

VYQUA!\TYYRACTLCABLE

SHED TO DDC e

THlSYAGFlStWL
FROM CO X FULNL




THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC ~

c AR R RS R YN

C EXANPLE OF USE

C **ssrssssvvnrrvnns

IN THE FOLLOWING PROGRA 1 15 LANCZ0S-STZPS AR:Z FERSOR<EC CN A 21TH
QRIOER rATQIX (WHICH IS XKNOWN AS THZ MATRIX W24+ OF WILKINSON).
EIGENVALUES OF THE MATRIX W21l¢ ARE CO-PUTEZD 3Y SVSCAM, USING

THZ RESULTS OF LSVLAN, i

PROGRA!i LNCZOS(CUTPUT) )
DINENSIOM NJ(2.),04(€22),U(21) 4 ALPHA(16) ,RETA(16)
LOGICAL REZISTRT
EXTERNAL W21PLS,SAVEN
DIMENSIOM TK(10,2),TK1(1E,2
LOGICAL LCW,UP,QJIV
N=21
IFIRST=4
H=16
RESTRT=. FALSZ,.
NSEED=120777
CALL RANSZT (NSEED)
DO 10 I=1N

10 Q1(I)=RANFI(SZZD)

CALL LSVLAN(N,IFIRST,MsRESTRT4N1,W21PLS,SAVEN,LU,Q0
+ s ALPHAL8ZTA)

HT=410

CALL EVSCAN(H.N."T'AL°HA,BETA.NEV.LOH;UP,OIVo
+ NCIV,TK,TKL, IERRLEPS)

IF(ICRR.NE.Q) STOP "cRROR IN ZIGENVALUECCHPUTATION®

IFILOW) PRINT 1332
IF(UP) PRINT 1313
IF(DIV) PRINT LJ2JsNDIV
PRINT 102Q,NEV

C IF NIV EQUALS ¢ NC €IGEMVALUEZ INTERVALS HAVE BZIN DZITECTEOD,
C LSVLAN SHOULO BZ ReSTARTEC FOR FURTHEZR NETCCTYION, WITH THE
C DI!ZINSICNS OF ALPHA, BITA, TK AND TK4i PROPEZRLY ADJUSTESD.

IF (NEV.ZC.0) GCTO 70

00 60 I=1,NEV
60 PRINT 10409I,TK(I,1),TK(I,2)

70 CONTINUZ

1000 FORMAT (* CONVZRGENCE AT LOWER SIJE *)
1040 FOFHAT (* COMNVERGENCEZ AT UFPIR SINE *,7)
1029 FORJAT(® *,13,% INTERVALS AT LOWER END *)
10630 FORHAT(* *3//4% ®413,% INTZRVALS ARE FOUND *,4/,
+ . NR LOWER3OUND UPPERBCUND*, /)
1040 FOSHAAT(® ®,I5,* *,2(E20.13,* *))
=NC °

SUBROUTINE SAVEC(QN)
DIMENSION Q(N)

C NO EIGENVICTOSS ARZ COMPUTED, SO WE DO NOT STORE
C THE ORTHOGONAL TRANSFORAATION=FATRIX.

RETURN
END
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SUBROUT INE

WILPLS (X A%, N)

40 - -
(ALITY PRACTLILAD
THISFAGEISHESTQ\A.I»):AQ X LB

FROM COL X FURNISHED IO DDV e

OIMENSION X(N),A8X ()

C NATRIX IS TAKEN FRO{ WILKINSOY (THZ ALGEBRAIC < IGENVALUEFROELEM)
C ANO IS CALLCO w24is.
c 10 1 0 ?
c i 3 b 4 J }
C 0 1 [ L5 0
C . . . L '
C . . . .
Cc 2 8 1 0
Cc 0 > 9 b ¢
€ 0 1 10
AX(2)=10%*x(1) +X(2)
DO 10 I=g,2)
AXCI)=X(I~1) ¢TA3S(L4=-T)*X(I)+X(I+1)
10 CONT INUE
AX(24) =X(20) +4103*x (21
RETURN
ENC
THZ OUTPUT OF THIS PRCGRAM ISt
CONVERGINCE A7 LCWZR SIO:

CONVERGEINCE AT UFPER STII:

2 INTTRVALS AT LONWZIR2 END

6 INTERVALS ARE FOUNC

NR LOWERBOUND
1 -.1125L445224192404
2 «2533U58,739731400
3 «7T0033522094222401
4 ¢30339441223765401
5 e Q2100736473372 404
6 «107451541829Jc 402
FPP VPP BPPUBBREBE LN
HETHOD
LR R R R R EE R R REE NN
DISTURBANCE OF THEZ
TRIDIAGONAL MATRICLZS,

VAN KATS Joclaw

1977,

SUSSQJTINZ —VSCAN{1y Ny M7, AL
X TRy FRLiy IERRs c¥S)
O 1aNSION ALPHA(Y)y BETALN)y T
LCGICAL LGoWy UPy DIV
NZV = (
LOW = LFALS:Z,
upP «FALSE .
NOIV = ¢
O Ld I=2,41
J=uf = L@ g
TKEJ+1,2) =2 3ETALY)

CONT INUC

INTERNAL #ONOYONY OF THE E IGENVALUSS OF SUCCESSIVE
AS DSSCRIBED INS

VAN DIR VORSY H.A.,
“AUTOMATICAL P ONITORING
OR SKEWSYMMETRIC LANCZOS SCHEMES™,
ACCU, UTRECHT,

UPPEZRIQUND

=e1125441522119E4+01
«25330581709¢865¢C0
eTUI33522094247¢01
¢8J1333L11223762+01
e 9213078647337+ 21
«137461941.82¢0=+02

OF GENERALIZED SYMVETRIC

TQ?.

FHA, 2ZTA, NIV, LOW, UO,

CIv,

NDTV,

K{lsTggly TKIMHTy2)
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t
F
E

a9 5 Tk R
WOM C URNISHED TODDC _.
TK(I,4) = ALPHACI) S i P
TX_(I,1) = ALEHACI)

TK.ETs2) = TKUIL;2)
:u CONT INUCZ

o .

R R e R R Ry ]
CALL ITMTAOLLEt, TKs TKE1:2)Va IZRR)

R R R R R P R Y YR Y

IF (ZI=RReN2eJ) RSTURN

TR 1egn) = G
R R R R R R R R P R
CALL IrTQLLCHs TKLy TKLU01:2)« IZRR)

Cl“‘.!l‘!“l"l!!!l*l‘!!“‘.!!‘l‘U‘l.l"0.““¥‘.‘l.“l"“‘.“‘.‘.""

IF (ISRRJNEWwIY RETUSN
o O R R R |
CALL I0MOISETKe TKL, il EPS)
R R T T T T T T T L L L LT oy

CFS = FLOAT(NY*AHAXI(EPS 2, %% (=47))
C IF Ouo WANTS A LA=GER VALUE CF EFS, THIS VALUZ SHOULD 8E INSERTIQ0 WERE

B0 533 I=4'%
TK(I,2) = TK(I,L) 3
TRty 2} = TRICT 1) 1
3J CONTINUZ
TKL(J,:) = TK;(:,;,
K = M
Ki = |

{

|

|
R A R R E P e R R R R R Y PR Y Y RN P RS R R R SR g gepgegegegegy

CALL SCANFP(MT, Ky K1,y TKy TKi, ZPS)

(O i R Y B R I R I R I R R R g pgepegegegy

+J4 CONTINUZ
E2S000 = EPS
(o R R e R R R R R TR PN PR YRR BRI R PR Iy g pepepegegegegy

CALL CJHINT(VT. TK' TKL' K. Ki. 233! LOW. UD' NEV, DIV' RGIV‘

C“l’ll’ﬁ‘.%“"l“!‘%‘.!"“."‘l'l"l.'..#“"‘U.‘.‘.F‘..‘I'......‘..‘
IF (EPS.GT.EPSOLDY GO TC 40
:F (.NOT.LJH) 7IV = anLsfo
RITURY
CND ‘
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PAGE 1 . e
'Er'i\lws COPY FURNISHED TODDC e
SUBRCIITINE SCaAl iRl 1y Xe Kle TKe TKL, =P3)
JE VNS TIN TK G 2)Y ey TKL e ye)
C HITH TYHI VALUYU: I3F €335, TW40 RCWS (ZACH AFART) AR SCANMNED FOR ~ULTIFLET
C THIS .4Y JZLINER A New VALUE 3F ERS ANO THE PROCESS IS REPEATEQD AS
C LYIG AS =PS CHANG:=S,
C THLIS <S=Z3ULTS I1 TW) WWLTIPLET=FXZE ROWS.
€ TS ™M= ISz GF RAWS IMN Tk AND TK1,
C K IS THS U 382 OF INTE2vALS IN TK.
C K= TS Tuc NIHEER OF INTERUYALS N TKL.
a0 SEEET XU
<CIET = K
K.0LO = K1
ZPSOLY = 295
CALL . JLTPLT .1y, Ko EPSOLE, TK)
CALE LT2LTC1s Kies £25, TKL)
2FS = A JAX:L (E-SOLE+=PS)
IF (X HE JKOLEY s0R, (KIGNE.KLCLBY)Y GO FO 10
ek A
= N
SUBROUTINE COMYINT Uity TKy TK1y Ke Kiy, EPSy LOWERs UPPER, JDZF,
1 9IV, JIJIV)
DIMENSION TKU el2)y TKL(iFe2)
LIGIOAL LEWERF UPEER, BISJET
LISICAL D1V
C COIRARISIIN OF TWC 20WS OF INTERXRVALS GIVEN IN TK AND TKi.
C IF AN TINT_RVAL IN OUZ ROW IS CLOSC TJ AM INTESVYAL IN THE OTHER ROW,
C THAN THE SPAN OF 3307TH INTERVALS IS XECCROZD IN TK,
€C SO0 THcE YALUES OF TK HAVZ BEEN OVERWRITTEN,
C LINWZR I3 .TRUZe * CONVERGENCE AT THZ LOWER END OF THE SFECTRU»M, »
C U2 IS «TRUZe 3 CONVZIRGENCE AT THEZ UPFZR SHND CF THt SFEZCTRUM,
€ 9LV IS +TWWces ¥ A HILE IN THE SCECTRUM IS DETECTED.
€ JISF IS THE WL I8Ek OF THz CCrPUTZD EIGENVALUS INTERVALS,
C JIIV GIVES THzZ WU I3ZR 0F ZIGZNVALUE INTERVALS AT THE LOWER ENCe.
JIV = JFALSZ.
IDES = §
LOWEZR = sFALSZs
HEPER = SFRLS=.
FOLD = A 'I:Jl(T(;(.'LQVL)’TK(l'i))
20Ld = (1.-5IGN{D«L1FOLBNY*FOLE
FOLJ = =aLd
< =3
Ja. = 1
JUSF = 39
aU CONT INUS
CALL SPSSENITRIIe1)Y s TKIJs2)y TKICIL41)s TKIGJ142)s EPSy Es Fy
& DESJICTY
Er CEESJEYY 666G TO 50
iDI3 = § ;
IF (J-::’-lol -Oi;o J.Lo:r]ol, LONED = -T;U:.a
IF (Je2Qe K ¢ O0Re JieQoKiY UPPER = (TRUEZ
IF $FsLE.FOLDY GO TO 240
LF KEsGT+EQLDY JO=F = JLCeF *= 1
NGy 4 = 2
&0LO = ¢
FTREJUZF2) = F
FOLD = F
2o LIF (TRK{Jy2YelceTKL(J142)Y) GO TC 0
30 ConNTINUE
J = J + §
IF §J;LEsK) GG TO Lo
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= 0% L
L aGT a8 683 TO 89
5 kY=
= oFE L
(do b 2sksd GO TG 43
i 3 S
L s
(JGT K} GO TA 485
TIqUC
SS3IVELY 5 DISJUNCT INTSRVUALS ARE 'ET. A HOLS IN THE SEECTRUM
0320,
= IIIS & L
{«NOT.OIY «AllD., (IDIZ.EN.6)Y) GO TO 60
Ta 7
= JEE
= IIJL
(T\L(J¢.l).GA.TK(J,‘)) GD TC 39
TO 4«
MTINUZ
(.NOT o (LOW.R ,ANDs (4NOT,DIV))) RETURN
JIV = «TRUE.
JOIV = J0EF
RZTURMN
=B
SU3IROUTINE I°SSON(A, 3,4 Cy Oy EFSy £ Fy NISJCTY
LOGICAL DISJCT
IF TWO INTE2VALS TA,31 AMO [C,01 ARE RLELATIVELY CLOSE WITH RESOECT TO
EPS,s [E,F) GIVES THZ SPAN OF BOTH, AND GISJCT IS ST TO .FALSE,
IF THZY A®Z NCT CLOSS, DISJCT IS SET TO ,TRUZ,,.
JISJCT = ,TRUZ,
EPSE 2 S
IF (A.LELC) GG TO 10
IF (0.65.8) GC To 20
IF (A3S{D=A)/(1, +ASS(D)I.LE,Z2S) GO TO 23
ReT XN
13 IF (CutZ.8F 6C TO 28
IF (A3S(C-R)/{1,+ABS(C))LELZPS) GO TO 23
RITURN
20 CONTINNUE
DISJET = FALSE,
£ AIHL (A, C)
F A1AXL (D, 0)
IPSS = (FeZ)/(1.¢ABS(Z))
IF (EPSS,GT.ERS) EPS = £F3S
QITIN
NN .
SUBROUTINE {ONDIS(TK, TKi, Ke EFS)
JIAZNSION TK(K), TKL(2)

1= R T
iy £ Nk
I
»
+

§e

v
v

e X P)
o
m !
vzl -
T H b DS O e s GO
-—‘UD‘.

L i e B TR T e T
vl

< I &)
)
<

oJ

-~

7d

3d

= O 4
Mmoo e ML

OO0 0

“edl LOW
C DISTYURBANCZ OF HONOTONY OF ThO SUCCEISSIVE ROWS OF EIGENVALUES GIVEN 1IN
G 4D FKi.
C TK1 HAS OdE EIGedVALUE .IORE THAN TK (K+1i AND K RESP,.).

UP = TKI(L1)

VaL = TKL1(1)

=PS = Ul

IF (viL,Lz.UP) GO TO 10
ZPS = ARS(VAL=-UP)/(ABS(VAL)+L,)
«U CONT INUE
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LA4 = LP FROM COFY FURNISHED TODDC v
VAL = TXL(I)
12 = TK(ID)
IF (7ALGI.LINY GO TC 2)
2 = AES(VAL-LCW) Z(AES(VAL) +1,)
I5 (Z245T..P3) EFS = &R
&4 IF (VAL.LZ.42) GO TO i
2P = ABRS(UF=~VAL)Z(A3S(VAL)+1,)
IF (cP.GT.325) =S = ¢9
30 CONTINUZ

VAL = TKL(K+1)
IF (VALLG:.2) GO T <1
Z° = AJS(VAL=-UR)I/Z(A3S{VAL)+1,.)
iF (29,GT.cPS) €S = P
+u CCONTINUJZ
E23 I3 THZ AxI.tUM OF THE RELATIVZ GISTANCE IN CASZ OF DISTUREANCE CF
THCE INJTONY CRIT:ZIRIUine
RV )N
NN
SURBRCUTINE IHTALL(Ny Oy Es IERK)
INTEGZR I' Jo Lo ity N, II’ fl."‘.l., I-X=x
RZAL DN, S (N)
D\Z‘\L "' C, Fy G’ 13’ Q’ Sg ,"ACHEQ
RZIAL SQATHAS,SIGN g
THIS SU3RJIUTIME IS A TRANSLATION OF THZ ALGOL PROC=Z0OURE ImMTCL1,
NUMe iATHe 29 $77-333(.969) Y MARTIN ANT WILKINSON,
A3 ~O0DIFIZD IMN NU4e 1ATH. 15, 45001370) B8Y 0OU3IWLLE,.
HAMND300K FOR AYTO, CO-P.y VCL.II~LINEAR ALGE3RA, 241-24801371).
THIS SU3ROUTINZ FINDS THc ZICGENVALUES CF A SYMMETRIC
TRIDIAGIONAL MATRIX 3Y THZ IMFLICIT AL MEZTHOC.
0N THPUT =
N IS THE ORDZR OF THZC ATRIX,
C CONTAINS THZ OJIAGOMAL ZLEMENTS JOF THZ INPUT HATRIX,
£ CONTAINS THZ SUBCIAGONAL CLZ4ENTS CF THE INPUT MATRIX
IN ITS LAST N=_, POSITICAS., Z(1) IS ARBITRARY,
01 QUTPUT= .
C CONTAINS THSE EIGENVALUES IN ASCEZINDING ORDER., 1IF AN
cRAGR ZIXIT IS ~MACS, THE EIGENVALUES ARE CORRECT AND
OROZRZ0D FOR ITHOICZS LelyeselfRRA=1, AUT MAY NOT 8E
THZ SHALLZST ZIGENVALUES,

H
[~
2ER0D FCR NCRJAL RETURN,
J IF THE J=TH EIGEZINVALUE HAS NCT BEEN
DETZQ%INEO AFTZR 39 ITZARATIONS.
QUSSTIONS AHD CO t*ZHTS SHOULLC 83T CIRECTED TO Be Se GARBOW,
APPLICO JJATHZINMATICS DIVISION, ARGANNE NATIONAL LABORATORY
¥¥rrereves (ACHIP IS A MACHINZ DEPENDZNT PARANZETER SFECIFYIMNG
THE RZLATIVE PRECISION CF FLCATING SOINT ARITHMETIC.
EER R RS Y
TACHZ P = go**(~=47)
ISR=: = 3]
D0 LJ I=241
Z(I=L) = £(I)
10 CONTINUEZ

=1
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SR

=) =
20 ;:. L
Jo= o
C LI N RN R LOC,( F\)' S~ALL SUE-OIAGCNQL ELE’IEKT SP08830888
& )JC 3J M=Leh
IF L. 2811 GO TO &)
IF (A3S(CC)) LT ACHEP*(AIJS(TC 1Y) +A3S(D(%+1))3))Y GO YO &C

THIS PAGE i3 BEST QUALITY TRACTICABLE
FROM COPY FURNISHED TO DDC e

J
A

Su CONTINLC

-J Q= .‘(L,
IF (ieZlel) GO TO 34
Sz el

C L E R R R R L B FO.‘.Q SHIFT LEE XX ENEE R R

S T DL el)=2) 7 (2.5 %E L))
2T SOARTUG*G+1.0)
G = 2(#) = 2 & Z(L)/(CH+SIGH(3,4,G))
35 % aAeb
& = 1.9
P o= Jeu
ML = M

- L

C *vvsvyrvsr FOR [=n=l STEP =1 UNTIL L 00 == %*svsissssss
70 7)) II=ie L

4 =~ II

S*: (D)

¥z (1)

F (A3S(F)«LT,A3SI(C)) GO TO 50

G/F

SART(C*Ce+Lla )

T¢1) = FeR

Lel/R

C*S

J T'J nf)

F/G

SART(S3*5+1L,J)

L) = G¥R

Led/R

S*C

O(I+y) = P

(D(I)~GI*S + c.0*C*)

ST

41) = G + °

C*Q - 8

A OMM
W

2 W @ IR77) l‘
nou

-

W on IIZIIHII (L L T T e I T I 1|

6U

OC)‘UZ;OU)O(UNV)

79 CONTI
1 (L)
Z (L) G
& ) Jo U
GO TO 29
C #evvwvssss ORLZR ZIGENVALUES %%wvevunmw
30 IF (LQE‘)QL) GO TO 14d3
C *evsevsesa FOR [=L STEP =f UNTIL 2 DO =<« *wvsvssuss
00 3u II=2,L
= L e g2 = 5l
IF (P.GieN(I=2)) GC TO 1iu
D(I) = D(I=-1)

D(L) - P

eIV CONTINUE
‘ LU I =4
l 1.9 Dil) = ©

120 CONTINUE




G TO L)

LR R R :._’

&,

eXndl == O CLNVORGENCT TC AN

C SICENVALYS AFTER ) LTSRATICAS vhrevvssrss |
2 3d IERA = L |
L0 2T

(54 Sevsrpveve LAST CARD OF IITCLY Svevvuuses
C NAT. JaZiU/T7¢e

[ sBererr N OF ) (K*eeervrsvre IATCLA

i LR R N L R R R N N R

“ND

(A EEZ R RN E N NN NN
HEADING 7050
SoPPPPPPIOIPIITIRTPIOIRPIIRLTS
SUBROUTIHNS ILTPLTINGNINT,CFS,A)
DIMCNSTION A(M,2)
AL N Y R N R NN RN NN W
PURFOSE
AL R R RN R NN RN NN NN
TO RePLACL, IN A ROW OF INTERVALS, THOSE INTERVALS THAT ARE RELAYIVELY
CLOSC Y TH-IR S©PAN,
LR L R R
INPUT PARAMITERS

L Ad R A R L R R AR R RN R RN NS

M =INTEGERS THE NUSOER OF ROWS TN THE ACTUAL DECLARATION CF THE v
ARRAY A,

NINT =INTCGe e THe NUMDER OF INTCRVALS GIVEN IN ARRAY A,
CALSO QUTFUT PARA>CTON)

EPS =REAL. IF THe OISTANC. OF TWC SUCCESSIVE INTCRVALS IS RILATIVELY

LESS THAN tPSe THCY ARC RIPLACCD 0OY THEIR SPAN.
(ALSO QUTFUY PARAWT N)
A ~0IMENSION AC1,20). TH  PAIRS (AC L, 1) ,AC L)), CAC2,1),A(2,2))
CACNINT G3) ACNINT G 20Y ROPRESTNT THT NINT INTERVALS,
THE FOLLCWING CCNDITICNS SHOULD MCLOS
1e ALLL2) .Goe ACILY)
2e¢ A(IeL 1) Goo ACIM
(ALSO QUTFUT PARANETER)

A R L AL R R A R R R RN XY

OUT FUT PARAICT. RS

A A R AT A R A R R AR R Y Y

NINTY =INTEGER. THE NUPOZR OF DISJUNCY INTIRVALS IN THE FINAL ROW A,
CALSO INFUT TARARETER)
EPS =REAL, THE MAXIMU L OF THE RELATIV: WIOTHS OF TH: INTERVALS IN

THC FINAL ROW Ay ODLFIN D nvg
HANCCACT o2 =001 2 P24 5CA T ,10¢L .00 o
IF THIS VvALUC IS SHALLIR THAN THC INFUY VALU. OF E©S THEN
EPS IS NCVY CHANG.D.
(ALSO INFUT PA2A ILTEN)
L) “DIMENSION A(tig2). CONTAINS THE QTSULYING NINT INTEOVALS.

(ALSO INFUT PAQASETIR)D

SOV PVPIPPIPEIISIIPIIOIIIETS

INTERNALLY CALLED SUBPROG AMS

AL R AT NN A R R YN

SPP PO IIIIPIOEIIITOEIIILS

REMARKS
L Y T
I MLTPLY 4AY 9E UScD AFTIR EVSCAN (70549 1IN ORDER YO R MOVE

POSSTIOLY SOURIOUS R_SULTS,
FOR OcTAILS Scoe
VAN KATS JoMee VAN DER VORST M A, ,
“AUTOMATICAL MHONLTORING OF GENERALIZED SYMMETRIC

C
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C
C
C
C
C
c
C
C
C
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c
C
C
c
Cc
c
c
C
C
c
C
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C
c
C
Cc
C
C
C
c
c
c
C
C
C
[~
c
Cc
Cc
c
c
C
C
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OR SKEWSYMIETRIC LANCZOS SCHEMES™,
1977, ACCU, UTRICHY, TR?,
I1) MLTPLT MAS 3CEN WRITTEN BY Joife VAN KATS X M,A. VAN DER VORSY
(ACCU) = UTRECHT

(AL R L AT E R N AR R LR LN

EXAMPLE OF USc

PSP P NPV PIPIBOIVIRIRIORS

PROGRAM MLITES(OUTPUT)
DINMENSION A(4L,2)
M=y
NINT =4
EPS=&.E"2
AlL, 1) =043
ALL,2) 204305
Al2,4)320.51)
Al2,2)25.5¢
A(3,1)=0,520%
A(3,2)=0.53
AlL, 1) =0, 7€
Alh2V=0677
CALL HLTPLYCI1.NINT,cPS,A) |
PRINT 103U WNINT,EPS |
1000 FORUAT(® ®,* WNU'CZR OF FINAL INTERVALS *,12,/, |
®EPS %E£9.3477)
PRINY 1010
00 L0 I=L NINT
10 PRINT 1020¢A(Ie1),A(I,20
1010 FOR‘ATU(® *,* LOWERBOUND UFPPIROOUND *)
1020 FORJIAT(® *,2(i13.6,2X))
< ND

.

THE OUTPUT OF THIS PROGRA!NM ISt

NUABCR OF FINAL INTERVALS 3
EPS ..32:i-01

LOWERBOUND  UPFEBOUNC
«30QUJ0T 0V «3050J05+0)
e 5100005400 «53)J0GE*0D

OO0 ODDODOOODNO0O0000000O00OCO0O0000O00000O0O0O00O00 0

«7640000:¢00 «TTJ50LESD)D

SUBROUTINE NLTPLT My NINT, SPS, Q)
JIMENSTION AlM,2)
C THZ PART ACNINT,2) CONTAINS THFE MULTIPLET=-INTERVALS.
EPS ) = £AS
) = 3
C J GIY.S THe NUAI_ R OF THE CURRENT MULTIPLETY.
00 20 I=24NINT *
[F (ARSCA(T,y)=A(U42))7(Le+ABSCACTL1))) GTLEPSY GO TC 10
Al )Y = A(I, 2
C THE UPPIRBOUNT OF THe J=TH MULTIPLET IS U2DATED,
SPSUUL = AASCACD 2V =2 (U ))Z7(L, #APRS(A(De1) )Y
IF (CPSHUL.GT.PSY)Y EFSY = EPS UL
GO TO Cu
1) J=x Jd ey
A(SetY = ACTL )
AlSe2) = ALIL2)

20 CONTINUL o) CARLE
NINT = J o REST qQuan™ YML‘T
EPS = g0§y LS PAGE :';nm\f““‘“‘ 20 DC
oTuURN oM RURS
ZND
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number of : ~ number of E -~

k |eigen- £= -—5—:z7 % k |eigen~ En — E

values 40«2 values 4042
21 40 152, 7.2
22 40 132, 6.0
3 0 1 0.3 (23 40 276. 12.0
4 24 M) 5.1 1.3} 24 40 188. 7.8
$1 32 % 21, 4.2 25 40 156. 6.2
6] 35" 20. 3.3 126 40 159, 6,1
7] 40 13. 1.8 || 27 40 287, 10.6
8| 40 44, 5.5 |} 28 40 275. 9.8
9] 40 33, 3.7 )§29 41 7)) 224, V.7
10| 40 62. 6.2 |30 41 %) 114, 3.8
11 40 56 5.1 |31 40 262, 8.5
12| 40 130. 11.0 |} 32 40 282, 8.8
13| 40 93, 7.2 {133 40 281, 8.5
14| 40 72. 5.1 1|34 40 192, 5.6
15| 40 17, 7.8 i35 40 359, 10,2
16| 40 116. 7.3 || 36 40 167. 4.6
17 40 61. 3.6 || 37 AF ) 388, 10,5
18] 40 183, 10.2 || 38 40 346, 9.1
19| 40 205, 10.8 || 39 40 228, 5.8
20 40 288, 14,4 || 40 40 215, 5.4
Table I

Results of the monitoring process for the bhar prohlem.

') for k=4,5,6, all eigenvalues were detected at the upper end of the

spectrum.

?) if the recommended extra scan is performed, 40 eigenvalues are

detected.




2.130209219363
2.961058884186
3.043099292579
3.996048201383

-1.125441522119 6.000217522256
0.2538058170974 6.000234031583
0.9475343675298 7.003951798616
1.789321352695 7.003952209528

8.038941115813
8.038941122828
9.210678647304
9.210678647360

4,004354023440
4.,999782477742
5.000244425001

10.74619418290339
10.74619418290332

+

Table II: Eigenvalue of WZI

10.74619418290
9.210678647331
8.038941119304
7.003952002664
6.000225680184
5.000008158672
4,000000205070
3.000000003808
2.000000000054
1.000000000000
0

I+ 1+ |+ 1+ 1+ 1+ 1+ |+ |+ |+

Table III: Eigenvalues of w'z'l




- BD
» zzTZiza?ﬁcs e < E47
8 21 %2

13 0 .15E-12 1

16 6 «13E-1] 8.9
32 20 .83E-12 5.5
150 19 .19E-10 129,
300 19 .16E-10 109.

Table 1Va: Results of EVSCAN after m iterations of
the Lanczos-scheme applied to W}

21
5 number of S SR
eigenvalues bk 2l*2-&7

13 0 L 1SE=12 i

16 0 J1SE-12 !

37 21 +I15E=-12 20.9
150 21 S1E-11 93,
300 21 +29E-10 196.

Table IVb: Results of EVSCAN after m iterations of

the Lanczos-scheme applied to w:l.
2




upperbound-

No lowerbound upperbound lowshound
1 -.1125441522119E+01 -.1125441522119E+01 +135E-12
2 .2538058170973E+00 .2538058170981E+00 .815E-12
3 .7003952209096E+01 .7003952209100E+01 .38IE-11
4 .8038941119703E+01 .8038941119703E+01 . 114E-12
5 .9210678647329E+01 .9210678647329E+01 .568E-13
6 .1074619418290E+02 .1074619418290E+02 0.

Table Va: m=16
No lowerbound upperbound Hkperhocnd -
lowerbound
I -.1125441522119E+01 =.1125441522118E+01 . 104E-11
2 .2538058170977E+00 .2538058170980E+00 .293E-12
3 947534367530 1E+00 .9475343675303E+00 .263E-12
4 .1789321352695E+01 .1789321352695E+01 .284E-13
5 .2130209219363E+01 .2130209219363E+01 .711E-13
6 .2961058884185E+01 .2961058884185E+01 .156E-12
7 .3043099292578E+01 .3043099292578E+01 .568E-13
8 .3996048201383E+01 .3996048201383E+01 . 1 14E-12
9 .4004354023441E+01 .4004354023441E+01 0.

10 .4999782477742E+01 .4999782477742E+01 0.

11 .5000244425001E+01 .5000244425001E+01 .853E-13
12 .6000217522256E+01 .6000217522256E+01 L171E-12
13 .6000234031583E+01 .6000234031584E+01 .853E-13
14 .70039517986 15E+01 .70039517986 15E+01 «256E-12
15 .7003952209528E+01 .7003952209528E+01 . 114E-12
16 .8038941115813E+01 .8038941115813E+01 .568E-13
17 .8038941122828E+01 .8038941122828E+01 . 114E-12
18 .9210678647304E+01 .9210678647304E+01 0.

19 «9210678647360E+01 .9210678647360E+01 0.

20 .1074619418290E+02 .1074619418290E+02 . 125E-11

Table Vb:

m=32




upperbound-

No lowerbound upperbound frashsbaaind
1 = 1125441522118E+01 ~.11256841522111E+01 LJ14E-11
2 .2538058170894E+00 .2538058171016E+00 .122E-10
3 .9475343675312E+00 .9475343675369E+00 .575E-11
4 .1789321352696E+01 .1789321352700E+01 LLAL2E-11
5 L2130209219362E+01 L.2130209219364E+01 .205E-11
6 2961058884 184E+01 .2961058884186E+01 . 189E-11
7 . 36G43099292578E+01 . 3043099292586E+01 .794E-11
8 3996048201 379E+01 3996048201 384E+01 L493E-11
Q LA4004354023435E+01 L4004354023442E+01 LH614E-11
10 L4999782477739E+01 LA4999782477743E+01 . 350E-11
11 LS000244424997E+01 L5000244425001E401 JA15E=-11
12 .6000217522252E+01 L6000217522256E+01 LA49E-11
13 L6000234031577E+01 L6000234031583E+01 L631E-11
14 700395179861 1E+01 .7003951798763E+01 . 152E-09
15 L7003952209500E+01 . 7003952209528E+01 .218E-10
16 L8038941115805E+01 L8038941115813E+01 L767E-11
| 17 803894112282 1E+01 L8038941122828E+01 .682E-11
I 18 L9210078647298E+01 L9210078647360E40 1 L619E-10
19 <10740619418289E+02 L1074619418289E+02 L483E-11
Table Ve: m=150
No lowerbound upperbound s el
lowerbound
1 LI25441522119E+01 =, 1125441522106E+01 . 128E-10
‘ 2 2538058170901 E+00 .2538058171041E+00 . 140E-10
3 .9475343675327E+00 .9475343675446E+0Q .119E~10
4 . 1789321352690E+01 .1789321352702E+01 . 126E-10
- «2130209219362E+01 .2130209219372E+01 .958E~11
6 L2961058884136E+01 .2961058884187E+01 .S510E-1Q
7 . 304309920257 7E+01 «3043099292591E+01 . 139E~10
| 8 . 3906048201372E+01 . 3996048201384E+01 L112E=-10
} 9 L4004354023434E+01 L4004354023441E401 .685E-11
: 10 L.4999782477737E+01 L4990Q782477745E+01 .867E~11
| 11 .5000244424993E+01 LS5000244425001E+01 .801E~-11
E 12 L6000217522246E+01 LO000217522256E+01 LA01E=-10
| 13 L6000234031570E+01 L6000234031583E+01 .132E-10
: 14 L 7003051 793607E+01 . 70039517980 14E+01 L747E=11
15 . 7003952209507E+01 < 700395220052 7E+01 .203E-10
16 .8038941115798E+01 LB03894111S813E+01 . 149E=-10
17 L.8038941122814E+01 L8038941122828E+01 L136E-10
18 L9210678647290E+01 L9210678647359E+01 L697E~10
19 LN074619418288E+02 L0746 194182888402 . 750E=11

i applied to W

Table Vd:

+
a0

m=300

Eigenvalue intervals determined by EVSCAN after m Lanczos itevations




No lowerbound (a) upperbound (b) b-a
1 -.1074619418290E+02 -.1074619418290E+02 .248E-11
2 -.9210678647332E+01 -.9210678647332E+01 2278=12
3 -.8038941119305E+01 -.8038941119305E+01 . 114E-12
4 -.7003952002662E+01 -.7003952002662E+01 .256E-12
5 -.6000225680184E+01 ~-.6000225680183E+01 . 142E-12
6 -.5000008158671E+01 -.5000008158671E+01 «227E=12
7 =.4000000205070E+01 -.4000000205070E+01 «227E=12
8 -.3000000003807E+01 -.3000000003806E+01 .384E-12
9 -.2000000000054E+01 -.2000000000054E+01 . 185E-12
10 -. 1000000000000E+0 1 -.9999999999998E+00 .298E-12
11 .7531604183839E-12 .1089622219482E-11 .336E-12
12 . 1000000000001E+01 . 100000000000 1E+01 +39NE=12
13 . 2000000000053E+01 . 2000000000053E+01 .284E-12
14 .3000000003807E+01 .3000000003807E+01 .568E-13
15 .4000000205068E+01 .4000000205068E+01 .568E-13
16 .5000008158671E+01 .5000008158671E+01 .199E-12
17 .6000225680181E+01 .6000225680182E+01 «171E=12
18 .7003952002661E+01 .700395200266 1E+01 .142E-12
19 .8038941119301E+01 .8038941119301E+01 .
20 .9210678647327E+01 .9210678647327E+01 .568E-13
21 .1074619418290E+02 .1074619418290E+02 .210E-11
Table VIa: m=32
No lowerbound (a) upperbound (b) b-a
1 -.1074619418290E+02 -.1074619418289E+02 . 144E-10
2 -.9210678647332E+01 -.9210678647319E+01 .131E-10
3 -.8038941119305E+01 -.8038941119291E+01 . 138E-10
4 -.7003952002662E+01 ~.7003952002653E+01 .901E~11
5 -.6000225680184E+01 ~.6000225680176E+01 .782E-11
6 -.5000008158671E+01 ~.5000008158662E+01 .892E~11
7 -.4000000205070E+01 ~.4000000205060E+01 .955E-11
8 -.3000000003808E+01 -.3000000003799E+01 .904E-11
9 -.2000000000055E+01 -.2000000000046E+01 .918E-11
10 -.1000000000002E+01 -.9999999999924E+01 .952E-11
11 -.1337897763203E-11 .4887256470544E-11 .623E-11
12 .9999999999981E+00 . 1000000000002E+01 .352E-11
13 .2000000000050E+01 .2000000000054E+01 «355E-11
14 .3000000003803E+01 .3000000003806E+01 .315E-11
15 .4000000205063E+01 .400000020506 7E+01 +406E-11
16 .5000008158665E+01 .5000008158667E+01 +222E-11
17 .6000225680176E+01 .6000225680182E+01 +585E-11
18 .7003952002654E+01 .7003952002660E+01 .560E-11
19 .8038941119292E+01 .8038941119314E+01 .221E~10
20 .9210678647315E+01 .9210678647319E+01 .381E-11
21 .1074619418288E+02 .1074619418289E+02 «995E~11

Table VIb:

m=150




_56_
No lowerbound (a) upperbound (b) b-a
1 -.1074619418290E+02 -.1074619418287E+02 .335E-10
2 -.9210678647331E+01 +.9210678647302E+01 .290E-10
3 -.8038941119305E+01 -.8038941119280E+01 .254E-10
4 -.7003952002662E+01 -.7003952002643E+01 . 196E-10
5 -.6000225680184E+01 -.6000225680158E+01 .26 1E-10
6 -.5000008158671E+01 -.5000008158651E+01 .206E-10
7 -.4000000205070E+01 -.4000000204931E+01 . 140E-09
8 -.3000000003809E+01 -.3000000003788E+01 .207E-10
9 -.2000000000057E+01 -.2000000000036E+01 .208E-10
10 -.1000000000004E+01 ° -.9999999999878E+00 . 160E-10
11 -.3882333782009E-11 .1472361028863E-10 . 186E-10
12 999999999994 3E+00 . 1000000000003E+01 .855E-11
13 .2000000000046E+01 .2000000000053E+01 .726E-11
14 .3000000003798E+01 .3000000003806E+01 .800E-11
15 .4000000204992E+01 .4000000205063E+01 .710E-10
16 .5000008158657E+01 .5000008158664E+01 .648E-11
17 .6000225680167E+01 .6000225680187E+01 .202E-10
18 .7003952002645E+01 .7003952002653E+01 .821E-11
19 .8038941119280E+01 .8038941119290E+01 . 105E-10
20 .9210678647299E+01 .9210678647308E+01 .875E-11
21 .1074619418286E+01 .1074619418288E+02 . 143E=10
Table VIc: m=300

Eigenvalue intervals determined by EVSCAN after m Lanczos iterations

applied to W

211




n‘/

Table VIIa: m=40 eps=1, 34402
see soction 4.3

e I WV L FL R S R SN LT Ll 3
lowerbound (a) upperbound (b) b-a
i P SRR R IR TR IR IR IR IR IR DR N A N | LACTOQ0000000E O ! LA828-13
L 10 19000000000 +0 | L 1O 12000000000E+01 L924E-13
L 2000000000000E +0 1 . 2000000000000E+01 LAB3E~12
L 3039999999990 +0 1 L 3039990999999 8E+0 | L1 34E-11
3 =47

loworbound (a) upperbound (b) b-a
L 100 TOVV000000OE+O | L 100 TO0000000VE+O 1 L142E-13
- 100 2000000000E +0 1 ., 1002000000000E4+01 L1IE=14
L 100 3000000000E+0 ) L 100 3000000000E+0 ) LA26E-13
. 1040000000001 +0 1 . 10040000000G00E+0 | L213E-13
1 . 1O05S000000000E+0 1 . 1O05000000000E+0 1 LA97E-13
L NO00000000000E+O | . 006 Q00000000E+0 1 LA208~13
. 100 70000000008 +0 1 . 100 7000000000E+0 1 LB53E~-13
L 1OORO00000000E +0 1 L 1OORO00000000E+O ) LA20E~113
L 1002000000000 +0 1 L 1002000000000E+0 1 LK1
L 1O 10000000000E +0 1 1O T0000000000E+0 1 LA26E-13
01T T000000000E+0 ) L 101 1000000000E4+0 1 L284E~13
10 12000000000E+0 1 L10127000000000E+01 L284E-13 v |
L 1O 13000000000E+0 1 . 101 3000000000E+0 1 LA26E-11 |
A TAC0U000000E +Q 1 L O TGQ000000E 0! «213E~13
1O TH000000000E+0 1 <10 15000000000E+0 1 L355E~13
L 1O 1Te000000000E+0 1 L 1O 1T0000000000E+0 1 LA97E~13
L1011 7000000000E+0 1 L1011 7000000000E+01 L213E-113
. 1O TEO00000000E +0 1 L 1O TRO00000000E+0 1 LJ55E-13
L 1O 190000000008 +0 1 L 1O 19000000000E+01 LA426~13
1999999009999+ | . 2000000000000E+0 1 LH690K=12 |
L 3020099990090 ¢+0 1 302 1000000000E401 LA4E~13
L J0220000000008+0 ) L 3O22000000000E4+01 . 284E~13
L 30.22999999990E 40 1 . 3023000000000E4+0 1 L284E~13
. 3024000000000E+0 1 L 3024000000000E+01 .284E-13
L 30249990099999E40 1 L 3024999999999E4+0 | .284E~13
L JO26000000000E+01 . JO26000000000E+0 1 L284E-13
. 302 7000000000E+0 1 . JO27000000000E+01 A206E~13
L JO2E8000000000E+0 1 . JO28000000000E+01 0.
L JO2RO9999900014+0 1 . 3028990990990 E4+0 1 L142E~13
L 3029999999999 K+ ) . 30 30000000000E+01 LS08E~13
. 3030999999999 E+0 1 3030999999999 +0 1 LH68E~13
L 3031999999999E4+0 1 L3031999999999K+01 LA20E-13
L 0329999999998 0 1 L 3032099999999 18+01 L284K-13
L 3033999999909 K+0 1 . 3033909999009 +0 1 LA20E-13
. 3034999999909 K+0 1 L 303409999009991540 1 LNA2E=13
.30 315999999090E40 | . 3035999999999 E+0 1 JATIE~13
O I6999999999E +0 1 L0 36999999999E+01 L284E~13
L 3037999999999 E 40 ) 3017999999909 E+0 1 LA42E-1)
L3O I8V99999999K +0 ) 30 IROVO909990E+0 | L1A2E-13
. 3039999999999+ 0 1 . JOA0000000000E+0 1 JA2E~13 j
\
4(‘] 1

Tahle VILb: w45  eps=d, /4402
see section 4,)




lowerbound upperbound
= 180310920294 3L ¢0 3 =, 80 oV o024 00
= 2N 75920302 18K 03 “ 2575920102 18K 0 )
)

Fable VIla: =519« "7 40 Lanczos steps,

Cl-time requived tor LSVLAN: 152 seconds
CP=time required tor EVSCAN: 0.4 saconds
lowerbound uppe thound

“L 1803109094 308
L5590 300 1 8E 00

1RO V10926294 0 3
17!

- YIHU O 0 IREO R

70390 %0 000K 0 “o 120 W o W00oE O

1738962296 225E+03 I B PSS T O FERAIRAY SRS A

= 17357872 18202K+01 = 12ANIR IR0 E 00

7320050 700 70«08 = 12300448 015 20808
=12 0120025077 K08 S 2312305077300 4
L7285 10 700400 20 J0M0AE 00 \

N R R T L SR R | =812 77068 7 Joa0k+08

LIHh00 /008 /52 7E+ 08 LS00 o on N B0

=4O}
Fable VILIb:  e=5194a A0, o0 Lanczos steps,
CP=time requited for LSVLANG 200 seconds
CP=time requirved tor EVSCAN: 0.9 seconds
lowe rbound uppe rthound

S IR0 09 2ot90 0 S B0 AT H050E0 )

2S00 02 18E 0 S 2SN 008G TR0

S 2a 300 do 00K e} =174 190 30 2 300003

=, 1738962 2962 25E4013 B VAR D T OO T ALY LR A R |

EZASIRIIARIGE O = U2 ANIRIDIROIEA0N

L2 AAA4 015 70 0 S AAGA 01 0K O

S22 30507 70 S 2N 0050 77 W0

=S 223510 705948 08 22N 100 70504800000

J2O1 01910500 S 120101000 JoE O

S I PV 100 AP I L SR O LI o859 3503

L2 TEOAB00 12 1E0) S I I N CRY O AT R SR A R |

L INTTORSH VIO S IS 7708050540 180

“ 157701300/ 72800 LIS 7700089 1ASE 08

“L IS5 7042295 WK 0 B EPERARRUDFAL TR

5740 1095099980008 LS 74 V0945000 W O

LIS T05 77049800 S I (R A TR T SO R |

v 1h0970 /0852 TERO Y LIH00 o o8 IS RO

Rl

Table VIlle; “519410° , 00 Lanczos ateps
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General information:

~ order of the matrix n=519.

-~ the matrix was available on a diskfile, no attempts have been
made to optimize the matrix-vector multiplications required

for LSVLAN.




- &0 =
|
=T T T 4 ;
number of eps number of eps |
eigenvalues 992‘2-67 eigenvalues 992.2-47
30 6 6.7 220 56 16,
40 8 2.7 230 59 16.
50 10 2.9 240 62 19.
60 14 2.0 250 64 13.
70 20 2.8 260 65 15.
80 23 7.4 270 67 17.
90 26 6,2 280 68 15
100 28 3.4 290 68 18,
110 30 6.4 300 73 20,
120 32 5.0 310 17 28.
130 36 1. 320 77 11,
140 37 8.4 330 7 Y 6. *)
150 38 6.9 340 78 19,
160 41 9.4 350 83 19,
170 46 12,5 360 85 10,
180 46 7.6 370 87 14,
190 49 4.9 380 87 20,
200 56 16. 390 88 17.
210 56 13. 400 89 ') 96. ')
Table IX

Results of EVSCAN after m Lanczos-iterations applied to the 992-th

order matrix described tn section 4.5

') Results after second scan with S+eps

SR




-

lowerbound upperbound
-.2383672694904E+00 -.2383672694901E+00
+2383672694900E+00 +2383672694904E+00
Table Xa: m=15
lowerbound upperbound
-.2383672694904E+00 -.2383672694904E+00

=-.1476900716874E+00
-.1373857686379E+00
.1373857686379E+00
.1476900716874E+00
.2383672694903E+00

~-.1476900716874E+00
-.1373857686379E+00
.1373857686379E+00
. 1476900716874E+00
.2383672694903E+00

Table Xb: m=30

lowerbound

upperbound

-.2383672694903E+00
=.1476900716874E+00
=-.1373857686379E+00
=.1055710572521E+00
=.1017762399231E+00
-.8098832373012E-01
=-.8014875412532E-01
=.7608597598440E-01
. 7608597598434E-01
.8014875412526E-01
.8098832373009E-01
.1017762399230E+00
. 1055710572520E+00
.1373857686378E+00
.1476900716873E+00
.2383672694902E+00

=.2383672694903E+00
~.1476900716874E+00
~.1373857686378E+00
~.1055710572521E+00
=~.1017762399231E+00
~.8098832373012E-01
~.8014875412531E-01
~.7608597598440E-01
. 7608597598435E-01
.8014875412526E-01
.8098832373009E-01
.1017762399230E+00
.1055710572520E+00
.1373857686378E+00
.1476900716873E+00
.2383672694904E+00

Table Xc: m=60

Eigenvalue intervals delivered by EVSCAN after m Lanczos-
iterations applied to the product matrix described in 4.6.

Note: The values in the table above should be multiplied by
i(=SQRT(-1)) so that they represent eigenvalues of A,

"
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