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ABSTRACT

A continuous state space model for the problem of dynamic routing in
data communication networks has been recently proposed. |In this paper
we present an algorithm for finding the feedback solution to the associated

linear optimal control problem with linear state and control variable

" inequality constraints when the inputs are assumed to be constant in time.
The Constructive Dynamic Programming Algorithm, as it is called, employs ‘
a combination of necessary conditions, dynémic programming and linear
programming to construct a set of convex polyhedral cones which cover
the admissible state space with optimal controls. Due to several com-
plicating features which appear in the general case the algorithm is
presented in a conceptual form which may serve as a framework for the
development of numerical schemes for special situations. |In this vain

the authors present in a forthcoming paper the case of single destination 1

network problems with all equal weightings in the cost functional.
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I. INTRODUCTION

A data communication network is a facility which interconnects a
number of data devices, such as conputers and terminals, by communication
channeis for the purpose of transmission oi data between them. Cach
device can use the network to access some or all of the resources avail-
able throughout the network. These resources consist primarily of
computational power, memory capacity, data bases and specialized hard-
ware and software. With the rapidly expanding role being played by data
processing in today's society it is clear that the sharing of costly
computer resources is an eventual, if not current, desirability. In
recognition of this fact, research in data communication networks began
in the early 1960's and has blossomed into a sizeable effort in the
1970's. A variety of data networks have been designed, constructed and

implemented with encouraging success.

We begin our discussion with a brief description of the basic com-
ponents of a data communication network and their respective functions.
For more detail, refer to [1]. Fundamentally, what is known as the
communtcation subnetwork consists of a collection of nodes which exchange
data with each other through a set of connective links. Each node
essentially consists of a minicomputer and associated devices which may
possess data storage capability and which serve the function of directing
data which passes through the node. The links are data transmission
channels of a given rate capacity. The data devices which utilize the

service of the communication subnetwork, known as wusers, insert data
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into and receive data from the subnetwork through the nodes.

The data traveling through the network is organized into messages,
which are collections of bits which convey some information. In this
paper we shall be concerned with the class of networks which contain
message storage capability at the nodes, known as store-and-forward
networks. The method by which messages are sent through the network
from node of origin to node of destination is according to the technique
known as message switching, in which only one link at a time is used
for the transmission of a given message. Starting at the source node,
the message is stored at the node until its time comes to be transmitced
on an outgoing link to a neighboring node. Having arrived at that node
it is once again stored in its entirity until being transmitted to the
next node. The message continues in~§his fashion to traverse links and
wait at nodes until it finally reaches its destination node. At that
point it leaves the communication subnetwork by being immediately trans-

mitted to the appropriéfe user.

Frequent use is made of a special type of message switching known as
packet switching. This is fundamentally the same as message switching,
except that a message is decomposed into smaller pieces of maximum length
called packets. These packets are properly identified and work their way
through the network in the fashion of message switching. Once all of the
packets belonging to a given message arrive at the destination node, the
message is reassembled and delivered to the appropriate user. Hence-

forth, any mention of message or message switching will apply equally as




well to packets or packet switching.

The problems of routing messages through the network from their nodes
of origin to their nodes of destination is one of the fundamental issues
involved in the operation of networks. As such, it has received consid-
erable attention in the data communication network literature. It is
clear that the efficiency with which messages are sent to their destin-
ations determines to a great extent the desirability of networking data
devices. The subjective term '"efficient'" may be interpreted mathemat-
ically in many ways, depending on the specific goals of the networks for
which the routing procedure is being designed. For example, one may wish
to minimize total message delay, maximize message throughput, etc. v
In this paper we shall restrict attention to the minimwn delay message

routing problem. 3

In order to arrive at a routing procedure for a data-communication !
network one must begin with some representation of the system in the form
of a mathematical model. As is always the caSe, there are a number of
important considerations which enter into the choice of an appropriate
model. Firstly, one wishes the model to resemble the nature of the actual
system as closely as possible — for instance, if the system is dynamic
the model should be capable of simulating its motions. Secondly, the
model should describe the system's behavior directly at the level in which
one is interested — not too specific or not too general. Finally, the
model should be of some use in analyzing or controlling the ultimate

behavior of the system.
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These issues pose challenging problems in the formulation of models
which are to be used as a basis for the design of message routing procedures
for data communications networks. The basic problem is that there is no
natural model which describes the phenomenon of data flow in such a
network since the nature of this flow is largely apendent upon the char-

acter of the routing procedure to be developed.

In this paper we do not confront the question of modelling message
flow but rather base our analysis on a model proposed by A. Segall in [2].
This model, which is a continuous dynamical state space description of
message flow, was formulated in order to overcome some basic deficiencies
in previous models which are based upon queueir; “heory. The fundamental
advantages of this model with respect to previous models are discussed in
detail in [2] and are presented here briefly. Firstly, the model may
accommodate completely dynamic strategies (continual changing of routes
as a function of time) whereas previous techniques have been addressed
primarily to static strategies (fixed routes in time) and quasi-static
strategies (routes changing with intervals of tinme that are long compared
to the time constants of the system). Next, the model can handle closed-
loop strategies, where the routes are a function of the message congestion
in the network, in contrast to the open-lcup strategies of static proced-
ures, in which the routes are functions only of the various parameters of
the system. Finally, the independence assumptic» regarding message
statistics, which is required in order to derive routing procedures based

upon queueing theory, is not required to derive procedures based upon the



model under consideration. On the other hand, dynamic and closed-loop
procedures possess several drawbacks, such as difficulty in computation

of the routing algorithm and implementation in the network.

in (2], the minimum delay dynamic routing probiem is expressed as
a linear optimal control problem with tinear state and control vartable
{nequality congtraints. The inputs are assumed to be deterministic
functions of time and a feedback solution is souaht which drives all of

the state variables to zero at the final time.

Little thoeretical or computational attention has been paid to the
class of control problems with state variable inequality constraints
and the control appearing linearly in the dynamics and performance index.
in this case, the control is of the bang-bang variety and the costates
may be characterized by a high degree of nonuniqueness. in [3) the
necessary conditions associated with this problem are examined when the
control and state constraints are both scalars, and an interesting analogy
is presented between the junction conditions associated with state boundary
arcs and those associated with singular control arcs. However, no comp-

utational algorithm is presented.

Perhaps the most intersting computational approach presented for the
all linear problem is the mathematical programming oriented cutting
plane algorithm presented in (4). The basic algorithm consists of solving
a sequence of succeedingly higher dimensional optimal control problems

without state space constraints. The drawbacks to this approach are that



the dimension of the augmented problem may grow unreasonably large and

that even unconstrained state linear optimal control problems may be
difficult to solve efficiently. In the same paper, an alternative
technique is suggested whereby the problem is formulated as a large

linear program via time discretization of the dynamics and the constraints.
However, this technique also encounters the problem of high dimensionality
when the time discretization is sufficiently fine to assure a good approx-
imation to the continuous problem. Besides, n=ither of the above tech-

niques provide explicitly for feedback solutions.

in [2] an approach is suggested, by way of a simple example, for
constructing the feedback solution to the linear optimal control problem
associated with message routing when all the inputs to the network are
assumed to be zero. The purpose of this paper is to elaborate upon this
approach by extending it to the general class of network problems with
inputs which are constant in time. An algorithm is presented for the
construction of the feedback solution which exploits the special struc-

ture of the problem.

We begin by presenting in Section Il the model of [2] and the
associated optimal control problem for closed-loop minimum delay dynamic
routing.

The necessary conditions of optimality for general deterministic
inputs are developed in Section 11l and shown to be sufficient. It is
immediately seen that the costate variables may experience jumps when the

associated state variables are on their boundaries and that the costates



are possibly nonunique. Also, the optimal control is of the bang-bang
variety and may also exhibit nonuniqueness. We subsequently restrict
consideration to the case in which the imputs are constant in time and
present a controllability condition for this situation. A special prop-

erty regarding the final value of the costates is also presented.

In Section IV we define special subsets of the state space known
as feedback control regions. Associated with each such region, in
principle, is a set of controls which are optimal for all the states
of the given region. Feedback control regions are shown to be convex
polyhedral cones, and the goal is to construct enough of these regions
to fill up the entire admissible state space. We demonstrate in
Section V how this may be achieved for two simple examples, and generalize
the notion in Section VI into the constructive dynamic programming
concept. The basic idea is to utilize a certain comprehensive set of
optimal trajectories fashioned backward in time from the necessary cond-
itions in order to construct the feedback control regions. An algorithm
is then presented, in conceptual form, for the realization of the
constructive dynamic programming concept. Several of the basic comput-
ational techniques associated with the algorithm are presented in Appendices

A and B. Discussion and conclusions are found in Section VIiI.

Several complicating features of the algorithm render it too dif-
ficult to compute numerically for general network problems. In [5] and
a forthcoming paper by the authors it is shown that for a class of problems
involving single destination networks these compl icating features disappear.
For this case it is possible to formulate the algorithm in a form suitable

for numerical computation.



g
ik THE MODEL FOR DYNAMIC ROUTING IN DATA COMMUNICATION NETWORKS ;
We now describe the model presented in [2]. For a network of N nodes

let N denote the set of nodes and L the set of links. All links are
taken to be simplex and. (i,k) denotes the link connecting node i to k
node k with capacity C. (in units of traffic/unit time). Attention ;
is restricted to the case in which all the inputs to the network are

deterministic functions of time. The message flow dynamics are given by:

B N R P TP

xi(t) = al(t) - I uJik(t) % = () (1)
KEE (i) €I (i) i
L#] i €N, J £ i v é
where 1
xg(t) = continuous state variable which approximates the amount of :

data traffic (measured in messages, packets, bits, etc.)

at node i at time t whose destination is node j, i#j.

a%(t) instantaneous rate of traffic input at node i at time t

with destination j.

ugk(t)= control variable which represents that portion of Cik

used at time t for messages with destination j.

collection of nodes k such that (i,k) € L.

ECi)

collection of nodes 2 such that (2,i) € L.

I(i)

We have the positivity constraints

x{(n >0 (2)

uJ;k(t) >0 (3)

e R W
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and the link capacity constraints are

ol (o) <c,., (€L, JeEN. (4)
Slee ke ik
j#i
The goal is to empty the network of its current message
storage in the presence of inputs in such a fashion as to minimize
the total delay experienced by all the messages traveling through

the network. Consider the cost functional

te
J = J [ £ aéxé(t)]dt (5)
R 2 :
o j#i v

where tf is such that

x(tg) =0 LJEN, AT . (6)

It is demonstrated in [2] that when a% =1l Vi,jEN, j# i, expression
(5) is exactly equal to the total delay. Priorities may be incorporated

by taking the weightings a{ to be unequal.

For convenience we define the column vectors x, u, a, C and a to
be consistently ordered concatenations of the state variables, control
variables, inputs, link capacities and weightings respectively. In
this paper we shall not be concerned with the particular ordering.
Denote n = dim(x) = dim(a) = dim(a), m = dim(u) and r = dim(C).

Equation (1)-(6) may then be expressed in the vector form:
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Dynamics x(t) =8 u(t) + a(t) (7)
Bowundary Condittions 5_(1:0) =X, 5(tf) =0 (8)
(s, SR n“..;“ﬂ.’,,LQ >~ - >
State Comstrainks x(t) 20 Ve € [t ,te] (9)
D u(t) <C
Control Constraints U vt € [to'tf] (10)
u(t) 20
of
Cost Functional J = J ng(t)dt (1)
t

In (7) B is the nxm incidence matrix composed of 0's, +1's and
-1's associated with the flow equations (1) and D is the rxm matrix
composed of 0's and 1's corresponding to (4). We now express the
linear optimal control problem with linear state and control variable
inequality constraints which represents the data communication network

closed-loop dynamic routing problem:

Optimal Control Problem

Find the set of comtrols u as a function of time and state
ult) & u(t,x) t€ et (12)

that brings any initial condition x(t ) = x = to the final cond-

ition 1(tf) = 0 and minimizes the cost Functiomal (11) subject

V



to the dynamics (7) and the state and control vartable inequality

constraints (9)~(10).

Several assumptions have been made in order to facilitate the

modelling and salution. These are now diuscussed briefly.

(i) Comtinuous state vartables. Strictly speaking, the state var-
iables are discrete with quantization level being the unit of traffic
selected. The assumption Is justified by recognizing that any single
message contributes little to the overall behavior of the network;
theraefore, it is unnecessary to look individually at each of the

messages and its length.

(i1) Detarministic inputs. Computer networks almost always operate In
a stochastic user demand environment. It is suggested in [2] that the
deterministic approach may take stochastic inputs into account approx-
imately by utilizing the ensemble average rates of the inputs to gen-

erate nominal trajectories. Also, valuable insight into the stochastic
situation may be gained by solving the more tractable deterministic

problem.

(iit) Centralised Controller. This is implied by the form of the

control law u(t) & u(t,x). This assumption may be valid in the case of
small networks. Also, obtaining the optimal strategy under this assumption
could prove extremely useful in determining the suboptimality of certain

decentralized schemes.




(iv) Infinite capacity buffers. Message buffers are of course of

finite capacity. This may be taken into account by imposing upper

bounds on the state variables, but this is not done in the current

analysis.

(v) All state variables go to zero at te- During normal network

operation the message backlogs at the nodes almost never go to zero.
Our assumption may correspond to the situation in which one

wishes to dispose of message backlogs for the purpose of temporarily

relieving congestion locally in time.
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. FEEDBACK SOLUTION FUNDAMENTALS

We begin by presenting the necessary conditions of optimality

for the general deterministic inputs case.

Theorem 1 (Necessary Conditions)

Let the scalar functional h be defined as follows:
a T, \° T N
h(u(e), Ae)) = A (e)x(t) = A7 (e)[B u(z) + af:)l. (13)
A necessary condition for the control law u*(+) € U to be optimal

for problem (7) - (12) is that it minimize h pointwise in time,

namely

AT(0)8 wr(t) <AT(t)8 u(t) (14)
Vu(t) € U ve € [t ,tc].

The costate A(t) is possibly a discontinuous function which satisfies

the following differential equation

-dA(t) = adt + dn(t), t € [t ,tc] (15)




- ik -

wirzre componentwise dl)_(t) satisfies the following complementary

slackness

The terminal boundary condition for the costate differential

equation is

Altg) = v free
and the transversality condition is

ATt x(ty) = 0.

Finally, the function h is everywhere continuous, i.e.

h(u(e?), A(eT)) = n(u(th),A(t") ve € (e, ,t].
Proof: in [6] a generalized Kuhn-Tucker theorem in a Banach space

(16)

(17)

(18)

(19)

(20)

for the minimization of a differentiable function subject to inequality

constraints is presented. For our problem, it calls for the formation

of the Lagrangian



t, t

f &l
T T \ .
J= | ax(tddr + | A (x) (B ulx) + alr) = x(x}]dr
t t
o 0
t'.
T, \ T
. ,[ do ()ala) + v ix(eg)
4
t
[
where n is an nx1  vector adjoining the state constraints which

satisfies the complementary slackness condition

S

[ dv‘T\'.)x(l\ - 0
J - =
t

Q

dn(r) w0 Vi € [to.tf].

The vector v which adjoins the final condition is an

of arbitrary constants.

For u*(+) to be optimal J must be minimized at u*(:), where

x(*), x(tg) and t, are wncomarrained and u € U. Taking the

f

differential of J with respect to arbitrary variations of 5(-),

5(tf) and t, we obtain

i
- T T
dd = I a Sx(r)du + gg‘_(tf)dtf
t
o
Sy L
- J[ AT 8x(1)dr +
t t

c

d!_\_T(t)cS:(_( ) + gdi(tf)

at optimality:

nx1

(24)



where Sx is the variation in x for time held fixed and

di(tf) a 6£(tf) + _;<_(t';)dtf (25)

is the total differential of E(tf)- We next integrate the third
term of (24) by parts, substitute for di(tf) from (25) and take

into account that 6éx(t ) = 0 to obtain
t

f
dJ = J' Sé_T(T)[&dT + dn(t) + da()] + [1T ¥ ‘AT(tf)ldg_(tf) (26)

+ [sTi(tf) - gi_(tf)]dtf. J

How, in order for J to be stationary with respect to the free

variations  éx(1), Gi(tf) and dtf we must have

adt + dn(t) + di(z) = 0 (27)
L(tf) = v v free (28)
_Y_Tg.(_(tf) = AT(tf)i(tf) = -ng(tf)- (29)

Equations (22) and (23) together with the constraints x > 0 imply

dd(Oxd(e) =0 veelt,td i, EN, jAi. (30)
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o

If we integrate the term I lT(x)iﬁt)d: by parts in equation

f
o

(21) and substitute equations (22) and (27)-(29) into (21) we obtain

e
J = J lT(t)[g_g}r\ + a(1)ldr. (31)
Ye

in order for J to be minimized with respect to u(+) € U, the term

T S : 9 > : .
A (1) 8 u(r) must clearly be minimized pointwise in time, that is

AT(0)8 wr(x) <2T(1)B u(x) vu(t) €U, t € [e,t] (32)

Thus, we have accounted for Equation (14), leaving only (20) to be proven.

To this end, let us assume that we have an optimal state trajectory
x*(t) and associated costate trajectory A(t), t € [to.tf]. Then by the
principle of optimality, for any fixed t< te, the functions x*(t) and
Ale), £ € [to, t], are optimal state and costate trajectories which carry
the state from x, to x{z). Hence, all of our previous conditions
apply on [to. t] with 5(tf) = x(v). Applying the transversality con-

dition (29 ) at t¢ = T, we obtain
AT(x(0) = -a'x(0). (33)

Since Equation (33) holds for all T € [to,tf] and x(t) is everywhere
continuous, then é?(r)i(r) must be everywhere continuous. This proves

Equation (20). '
a

!
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We shall now describe the behavior of the costate variables as
functions of the corresponding state variables. We distinguish between
the case when x% > 0 (xé is said to be on an interior arc) and when

x2 =0 (x%

is said to be on a boundary arc). When x% is on an
interior are Equation (16) implies dn% =0 and Equation (15) can

be differential with respect to time to obtain

-i{(t) = o . (34)

When x{ is on a bourndzry zrz its costate is possibly discont-

inuous, depending upon the nature of n%. At points for which n% is
absolutely continuous we define u?(t) 3 dng(t)/dt. Differentiating (15)
with respect to time and taking into account (16) and (17) we obtain:

A (0) = o * (o) ui(t) <o. (35)

On the other hand, at times when n{ experiences a jump of magnitude

An% we have from Equations (15)-(17) that A% experiences the jump

and = -An‘ii >0. (36)

It is not difficult to see that the costate vector may be non-
unique for a given optimal trajectory — this is a fundamental charac-
teristic of the state constrained problem. Previous works such as 66]
have found this nonuniqueness to occur in costates corresponding to

state variables which are on boundary arcs. However, due to the fact

ae —
r—— __4-rz___i;:::::.l.l.....ll!!!ftnﬂg,;; s




that in our case the pointwise minimization is a linear program, this

nonuniqueness may also be exhibited by costates corresponding to state
variables which are on interior arcs. This behavior is demonstrated in

Example 3.5 of [5], pages 186-183.

In general, any trajectory which satisfies a set of necessary
conditions is an extremal, and as such is merely a candidate for an
optimal trajectory. Fortunately, in our problem it turns out that any
such extremal trajectory is actually optimal, as is shown in the following

theorem.

Theorem 2 The necessary conditions of Theorem 1 are sufficient.

Proof. tet x*(t), u*(t), A(t) and nlt) satisfy (7)-(10) and the
necessary conditions of Theorem 1. Also let, x(t) and u(t) be any
state and control trajectory satisfying (7)-(10). If we consider

§J = J(x) - J(x*) we have

(ad

f
Gd = J ET(T)(EXT) - x*(1))dT. (37)

)

Substituting from (15) and expanding we obtain

t
f
9= [ el @am - K@ (38)
t

o]
+ x4 (1)da(r) + xT(x)dn(0)).

w RO i T . 5 '
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From Equation (22)

=
f
1
x* ' (t)dn(z) =0 (39)
t
o
We now integrate the first and third terms on the right side of (38)

by parts, take into account  x(t ) - 5_f=\to) = x(tg) = i”\tf) =0

and finally substitute from (7) to to cbtain

i t
s0= | ATBue) - wer - | ' (ea(a). (40)
t t
A 5
But by (14)
L
[ 2T s - woar >0 (41)
o

and since x(t) 20 and dn(t) SO we have

“f

Jf x (t)dn(7) <0. (42)

"

o

Therefore, ¢6J =20 Yu(-) €U, x(+) 20
O

From inequality (14) of the necessary conditions we see that the
optimal control function u*(+) s given at every time 1t € [to,tf]
by the solution to the following linear program with decision vector g(r):

ut(t) = ARG MIN [AT(0)B u(t)] . (43)
- _L_x_('t)ﬁu ESE



-2 =

This is a fortuitous situation, since much 1is known about charac-
terizing and finding solutions of linear programs in general. We know,
for instance, that optimal solutions always lie on the boundary of the
convex polyhedral constraint region U. However, for the special forms
of the matrices B and D which correspond to our network problem
we may proceed immediately to represent explicitly the solution of the
pointwise (in time) linear program. The minimization can actually be
performed by considering one Llink ac a time. Consider the link (i,k)

and a possible set of associated controls:

u] u2 ui-l ui+| o
lk?Eik” ik 2 ik 2 ik

a given control variable may appear in one of the two following ways:

1) u{k enters into exactly two state equations:
] s ] J
xi(t) uik(t) +ooot a3
(4k)
) R Jj
xk(t) +uik(t) oot Ay
2) u?k enters into exactly one state equation:
ok __k k
xi(t) = -up het g (45)
Hence, all controls on link (i,k) contribute the following terms
to ABu:
J oo sy 6
j;z‘:i“k Xi)uik(t) (71«)

where A:(t) = Q.
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The quantities which determine the optimal controls are the coef-
ficients of the form (Ai(t) - \{(t)) which multiply the control u{k.
The only situation is which it is optimal to have ugk strictly positive
is if (Ai(t) - A%(t))" 0. In terms of the network, this says that it
is optimal to send messages with destination j from node | to node k
at time t only if the costate associated with x% at time t is greater
than or equal to that associated with xi at time t. This suggests an
analogy between the frictionless flow of fluid in a network of pipes in
which flow occurs from areas of higher pressure to areas of lower pressure,
and the optimal flow of messages in a data comunication network, in which
flow occurs from nodes of 'higher costate'' to nodes of ‘''lower costate''.
By way of analogy to pressure difference we refer to (\i(t) - x{(t)) as
the costate difference which exists at time t on link (i,k) and is
associated with destination j. Therefore, it is oprimzl to send

messages of a given destination only in the dirgation o] a negative (or zerv)

costate difference.

If the costate difference on link (i,k) associated with destination
j is strictly negative and less then all the other costate differences on
this link, then the optim | control is u?k = cik and all othgr controls
are zero. However, when two or more costate differences on the same link
are non-positive and equal the associated optimal control will not be
uniquely determined. In such a situation the optimal solution set is in
fact infinitely large. The actual computation of the optimal control at

time t requires knowledge of A(t), which in turn requires knowledge of

v
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the optimal state trajectory for time greater than or equal to t.
This is the central dilemma in the application of necessary conditions
in the determination of a feedback solution. In order to overcome this
difficulty, we shall asubsequent?y ho somatdering only the aituation in
which all the inputs (a{(t) Yi,j] EN, Jé1) are constant funations
of time over the interval of intersst t € [to.tf]. From the network
operation point of view, one can conceive of situations in which the
inputs are requlated at constant values, such as the backlog emptying
procedure mentioned in Section Il. From the optimal control viewpoint,
constant inputs appear to provide us with the minimum amount of structure
required to characterize and construct the feedback solution with

reasonable effort.

We begin the feedback solution for the constant inputs case by
presenting a simple theorem which characterizes all those inputs which
allow the state to be driven to zero under given link rate capacity

constraints.

Theorem 3  (Controllability to zero, constant inputs).

All initial conditions of the system (7)-(10) are controllable to
zero under constant inputs if and only if

a€ int(X) (a € R", X e RM
where

X8 (x| -x=8u and u€U)cR"
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is the set of feastble flcows attainable through the available controls.

Proof. See (5], pages 69-72.

We shall assume from herein that the controllability to zero condition
of Theorem 3 is satisfied. The following is an easy consequence of Theorem 1

and therefore the proof is omitted.

Corollary | (constant inputs) There always exists an optimal solution

for which the controls are piecewise constant in time and the state trajec-

tories have piecewise constant slopes.

The solution to the constant input problem is of the bang-bang
variety in that the optimal control switches intermittently among boundary
points of U. Also, in situations where one or more costate differences
are zero or several are negative and equal, the control is termed singular.
Under such circumstances, the optimal control is not determined uniquely.
In th; solution technique to be presented, this non-uniqueness will play

a major role.

Owing to the bang-bang nature of the control, every optimal trajec-
tory may be characterized by a finite nunber of parameters. We now

present a compact set of notation for specifying these parameters:

Definition I.

u(x) & (ST TR PERRI Py

and
T(x) d (tget)oenote)
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are a sequence of optimal controls and associated control switch time
gequence which bring the state x optimally to 0 on t € [to,tf],

where u_is the optimal control on t € [tp,t 1, p € (0,1,...,f-1].

p+l
An additional property of a given optimal trajectory that shall be

of interest is which state variables travel on boundary arcs and over

what periods of time. This information is summarized in the following

definitions:

Definition 2:

5,4 0d | K0 =0, rele

o )}

ptl

is the set of state variables traveling on boundary arcs during the

application of gp .

Definition 3:
B(x) = {Bo'Bl""’Bf-l}
is the sequence of sets Bp corresponding to the application of U(é)

on T(x). B(x) is referred to as the boundary sequence.

In preparation for the development of the feedback solution we present
the following corollary to Theorem | which narrows down the freedom of the

costates at the final time indicated by necessary condition (18).

Corollary 2 (constant inputs)

If any state variable, say x?, is strictly sositive on the time

R p— -
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interval [ ] of an optimal trajectory, then x?(tf) = 0.

TSR

. : e 3 k e -
Proof . Consider a specific state variable x; satisfying the hypothesis.

. " , Ll k .
By Corollary | we have x?(tf) < 0 since x'(t\ is constant for
T € ltf-]"f]' Therefore, there must exist a directed chain ot links
from node i to node k (arbitrarily denote them by ({(i,i+1), (i+1,i+2),...

(k=1,k)}) carrying some messages with destination k, that is

kK k R K
i tEe) 200 a2 0y ()

9=

We now recall that messages may only flow optimally in the direction

of a non-positive costate difference. The sequence of costate values v

k

k 5 - <
i+l(tf), e Ak_](tf)} must therefore be non-increasing from

k
(Ai(tf). A

i to k-1 and since Xt(tf) =0 we must have x:-‘(tf) 2 0. Consequently,

all members of the above costate sequence are non-negative.

We now proceed to show by contradiction that \T(tf) = 0. Suppose
X?(tf) > 0. Then the transversality condition .E.if(tffi(tf) = Q implies
1,) o
that there must be at least one i?(tf) < 0 such that \?(tf) < 0. But

the above reasoning applied to x? implies that l%(tf) 2 0. Hence ,

a contradiction.
a
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(V. GEOMETRICAL CHARACTERIZATION OF THE FEEDBACK SPACE FOR CONSTANT I[NPUTS

Our solution to the feedback control problem shall be based upon

the construction of regions in the admissible state space to each of

which we associate a feasible contro! (controls) which is optimal within

that region. The set of such regions to be constructed will cover the
entire admissible state space, and therefore the set of associated optimal
controls will comprise the feedback solution. In order to assist in the
systematic construction of these regions, we focus attention on regions
with the following property: when we consider every point of a particular
region to be an initial condition of the optima) control problem, a common
optimal control sequence and a common associated boundary sequence apply
to all points within that region. Formally, we define the following

subset of IR":

Definition 4: A set R,Rc R", is said to be a feedback control region

with control set Q,Q < U, if the following properties hold:

(i) Consider any two points Xio %y € Int(R). Suppose U(§‘) =y with
associated switch time set T(x,). Then U(x,) = U for some switch

time set T(gz).
(ii) 3(51) = 3(52) %

(iii) Any control u € @ that keeps the state inside R for a non-zero

interval of time is an optimal control and there exists at least one

such control.

o .
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Prooi. See ([5], page Il4.

- 38 -

A fundamental geometrical characterization of feedback control
regions may be deduced directly from the necessary conditions. This
interesting characterization, which shall subsequently be shown to be

very useful, is given by the following theorem.

Theorem 4: The feedback control regions ~f Definition % are convex

polyhedral cones in R".

!

Note that Theorem 4 applies for arbitrary matrices B and D, not

only those special to our network model.




V. EXAMPLES OF THE BACKWARD CONSTRUCTICON OF THE FEEDBACK SPACE

A basic

they are functions of the entire future sequence of controls which carry

observation with regard to feedback control regions is that
g

any memper state optimally to zero. This general dependence of

policy upon the future is the basic dilemma in computing optimal controls.
This problem is often accommodated by the application of the principle
of dynamic programming, which seeks to determine the optimal control as
a function of the state by working backward from the final time.
algorithm to be developed employs the spirit of dynamic programming to
enable construction of feedback control regions from an appropriate set of
optimal trajectories run backward in time.
fashioned to satisfy the necessary and sufficient conditions of Theorem 1,

as well as the costate boundary condition at te given in Corollary 2. #

We motivate the backward construction technique with several two

dimensional examples which introduce the basic principles involved.

Example 1

3 3
u'3<l. u23<|.0
3
ul, < 0.5
~—
x? \\\“‘——;—~.——~”'ﬂ x;
uzl‘CO.S

Figure 1. Simple Single Destination Network

These trajectories are

the current

The |

S A I e A MR



The network as pictured in Figure | has a single destination, node 3;

hence, we can omit the destination superscript '3'" from the state and
control variables without confusion. For simplicity, we assume that the

inputs to the network are zero, so that the dynamics are:

() = mu (0 = a0+ g (1)

13
(47)
;2(t) - -u23(t) + uy,(e) = uy (¢)
with control constraints as indicated in Figure 1. The cost function is
the total delay
ot
D = J (x'(t) + xz(t)}dt. (48)
%

Let the vector notation be

Y12
X
1 u
x : H.Q :
Xy Y13
Uy

We wish to find the optimal control which drives any state

_x_(to) 20 to 5(tf) = 0 while minimizing D.

As our intent is to work backward from the final time, we consider

all possible situations which may occur over the final time interval

[tf_'.tf] with respect to the state variables x, and x,

(i) x (1) <0, x,(r) = iz(t) =0, v € [te ,.tc]




This situation is depicted in Figure 2. We begin by considering the
time period [:f_|,tf] in a general sense without actually fixing the
switching time tf_‘. This is simply the time period corresponding to
the final bang-bang optimal control which brings the state to zero with
;‘\tf) < 0 and xzitf) = ;2§Lf) = 0. We now set out to find if there
is a costate satisfying the necessary conditions for which this situation
is optimal; and if so, to find the value of the optimal control. The

] is

linear orogram to be solved on T € [tf-l’tf

ARG MIN [\1(:);](r) + \z(r)iz(r)]
L_xEU

,_
=t
ot
-
~
i

ARG MIN [ (A, (1) - x‘(r))ulz(r) + (\‘(r) - kz(r))uZI( )
E€U

- X‘(T)UIB(T) - XZ(T)u23(r)]. (49)

Now, the stipulation i] < 0 tells us from Corollary 2 that

\(tg) =0 (50)
and since x, is on an interior arc, Equation (34) gives
Aylr) = =) v € [te .te) . (51

This is shown in Figure 2. Now, since we specify Xy = 0 on this
interval, its costate equation is
=d\, (1) = 1 dr + dn,y (1) (52)
dnz(r) <0

Az(tf) = vy free e [tf_'.tf] 3




1, Case (i)

State - costate Trajectory Pair

for Example

Figure 2.

—
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where N, is a possibly discontinuous function. We now submit that

the costate value X, (7) = 3, (x) =0, <€ (eo_y.tel, satisfies the

£
necessary conditionsand is such that there exists an optimal solution

for which ;‘ < 0 and ;2 = 0. Firstly, the final condition

A:\EFJ = 0 is acceptable since tne necessary conditions leave Az(tf)

entirely free; also, the choice of dwz(r) = -dt gives iz(r) =0
through Equation (52). Now, the reader may readily verify that

Xo(x) = 0, © € [t ] is the only possible value which allows ;2(:) =0

f-1tf
optimally since Xz(r) >0 and kz(:) < 0 necessarily imply that
QZ(T) < 0 and Rz(t) > 0 respectively. With the costates so determined,

one solution to (49) is

u(t) = (0.5, 0, 1.0, 3.5)7 (53)

T € [te |,tel

We emphasize that the above solution is only one among an infinite
set of solutions to (49). However, it is the solution which we are
seeking. We now make an important observation regarding this solution.
Since il(r) = -1 and iz(r) =0 for 1t € [tf-l’tf]’ the control (53)
remains optimal on 1 € (-w,tf]. But as beey T x](tf_]) + o,
Thinking now in forward time, this implies that any initial condition

on the X" axis can be brought to zero optimally with the control

specified in (53). Therefore, the X axis is a feedback control region
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in the sense of Definition 4 for which we have:

R= (x| x, =0}

2
where
U= {(0.5, 0, 1.9, 0.5} : (54)
B = {{x,}}
Q= (0.5, 0, 1.0, 0.5)".

We have therefore determined the o-vtimal feedback control for all

points on the xj-axts.  This is indicated in Figure 3.

Suppose now that we wish to consider a more general class of tra-
jectories associated with the end condition under discussion. What we

may do is to temporarily fix t

(

-1 and stipulate that the control on

e e - St -
tepotey) has x, negative; that is, insist that x, ''leave the

boundary' backward in time. As before, the initial time

te o of the
segment [tf-z'tf-1) is left free. The program to be solved is (49)
with T € [tf-z’tf-I)‘ Now, since X4 is on an interior arc across

teqs by (34) its costate must be continuous across te 1o that is

- +
Al ) =2 (ee ) = tp -t (55)

Since (52) allows for only positive jumps of Ay forward in time,

we have

A(te ) = A (g ) = 0. (56)




(0,0.5,0.5,1.0)7

u
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8 .;.’:\J u]3- 1.0 U23- 1.0
1"

5 05u;,$0.5 0<uy <05

/V i2= - 1.5

X) = -1-Upprup

Xp = T+uUp-up

\\

u=(05010|0)T/

Xl-'l 5
--05
ﬁ-/%y/xz >

tfl

u-(os 0,1.0, 05)
X;=-1.5

Figure 3 | Feedback Solution for Example 1
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Also, since both X and X, are on interior arcs on {t

f-2%F-1
Equation (34) gives

i,(r) = -1
T € [tf—z'[f—x) . (57)

The resultant costate trajectory is depicted in Figure 2. We now
perform the minimization (49) for 1 € [tf_z,tf_‘). Since

A\ (o) > \(r) >0, v €ltg ,,te ), the solution is

u(t) = (0.5, 0, 1.0, 1.0)7 (58)

so that

iy () = <15 3 ale) = = 8.5 (59)

Therefore, the optimal control gives ;z(r) < 0, which is the
situation which we desire. Once again, we see that the control is
optimal for Tt € (-,tf_‘]. Since ;]/iz =3, upon leaving the X,
axis backward in time the state travels parallel to the line X, - 3x2-t0
forever. Now, recall that tf-l is essentially free. Therefore, from
anywhere on the Xy axis the state leaves parallel to Xy = 3x2-'0 with
underlying optimal control (58). Thinking now in forward time, this
implies that any initial condition lying in the region between the line
Xy = 3%, =0 and the x,-axis (not including the x‘-axis) may be

brought optimally to the x‘-axis with the control (58). See Figure 3.

Once the state reaches the x‘-axis, the optimal control which subsequently

v
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takes the state to zero is given by (53).

Based upon this logic we may now readily construct the following

feedback control region:

*
R={£l0<xq\T}

where

U= {(0.5,0, 1.0, I.O)T, (0.5, 0, 1.0, O.S)T}

B = ({8}, (x,})
5
Q= (0.5, 0, 1.0, 1.0) (60)

With the two feedback control regions just constructed we have

managed to fill out the region {x | 0= Xy <-§l} with optimal controls.

x
_—

(ii) ;2(1) <0, xl(r) = il(r) =0, T € [t ).

F-1'%¢

This situation is the same as (i) with the roles of Xy and X,
simply reversed. |If we let Xy leave the boundary first backward in
time, we may construct a feedback control region consisting of the

x,=axis in a fashion analogous to that of (i). |If we subsequently allow
to leave the boundary backward in time, we may construct the feedback
X
<=3
3

controls are illustrated in Figure 3.

~

control region  {x | 0 < X4 < These regions and associated optimal

(1) x (1) <0, xp(v) <0, 1€ [te ,.tel
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We are considering the situation in which both states go to zero

at  te. Since Xy and X, are on interior arcs over this time interval,

Corollary 2 gives
v ) = = 4
\‘(\f, \Z(tr) 0 (1)
and from Equation (34)

X lx) = Ap(t) = =1 € [Lf_].tf]. (62)

Hence, the costates are always equal over this time interval. The sol-

ution to the linear program (49) on (e otel  ds:
up3(t) = 1.0 u23(r) = 1.0 (63)
0<u|2(\') < 0.5 0<u2](r)<0.5

so that
Q‘(r) = =10 =y, (1) + vy, (1) (64)

Qz(r) = =1.0 + u, (1) = uy (1)

In this situation we have encountered non-uniqueness of the optimal
control which we seek. The optimal values of uyp and u,, are com-
pletely arbitrary within their constraints. The optimal directions with
which the state leaves the origin backward in time at tf lie between
xl/xz = 3 and x2/xl = 3, that is, between the lines Xy - 3x2= 0

and Xg = 3x, = 0. Moreover, for any 1 € ( w.tf] the entire set of




-39-

controls and associated directions in the state space remain optimal.
As before, we now translata this information to forward time and recog-
nize that for any point lying between the lines Xy 3x2= 0 and

Xy - 3%1 =0 (not including these lines) the complete set of controls

(63) is optimal. Therefore, we may construct the following feedback

control region (ui = [a,b] means that any value of u, between a

and b is optimal):
Xy
R={5_|T"<x1<3x2} (65)
where
U= {000,0.5],. L3.8:83, 1.0, 1.6}
B = SEIES)

f={(l0o,0.5,,03,0.587, 1.6.1.3) "}

This region is i{llustrated in Figure 3.

Having completed al! three cases in this fashion we have filled up
the entire state space with feedback control regions. The specification

of the ontimal feedback control is therefore complete.

O Example 1.

Example 2. The network is the same as for Example 1, but the cost

functional is taken as the weighted delay

¢
3= | e s o (66)

t
o
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As in Example |, we take the approach of working backward from the
final time, beginning with the three possible situations which may occur

at that time.

The linear program to be solved over the final time interval 1 € [tf_l.tf]
is (49) with \](r) and Xz(r) appropriately determined. The final
condition (50) applies, but since the weighting on X, is a, = 2

the appropriate differential equation for Al is

A (1) = -2 v € [ty uted (67)

Now, Az(r) is determined in the same fashion as in case (i) of

Example 1. That is, the value

kz(r) = iz(r) = 0 T € [t (68)

fo10te)

allows the solution to (49) to be such that ;z(r) =0, 1 € [tf_‘,tf].
Consequently, the optimal control (54) applies here. The feedback

control region on the x, -axis is tierefore the same as (54). See Figure k4.

Let us now allow Xy to leave the boundary backward in time at

some time t. ,. In this case we have

AgltpLg) = Ayltg ) = 2v, = £y} (69)

- +
A(tpy) = Apltey) = 0.
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u = (0,0.5,1.0,1.0)7
— i] =-0.5

X2 p xp =-1.5

e

o

©

o

oG < u=(05,0,1.0,1.0)7
4 i1 = -1.5

= z =-0.5

~ xz = o

31

g

.0
%2
By u=(05,0,1.0,1.0)7
il =-15
iz =-0.5

u = (05,0,1.0,0.5)7
i‘ =-1.5

Figure 4 | Feedback Solution for Example 2
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Since both x and

1 x, are on interior arcs over this interval, their

differential equations are
xl(r) = -2

(r) = -1

)

{ T€ [te .t ) . (70)
. !
A, J

Also, as before, all that matters in the solution of the linear program
is that A (1) > A,(x) >0, t€[t, ,,t. ). Therefore, the solution

x
is given by (58) and the feedback control region  {x | @ < x2'< §L }

is as specified in (60). See Figure 4.
(ii) xale) < 0y xlx) = % le] =0, =€ [k k).

The details of this situation are depicted in Figure 5.

We know from Corollary 2 that
Ag(tg) = 0 (71)
and from (34) that
Ay (1) = -1 T € [te_j.tel (72)

We now may find by the process of elimination that the only value of

Al(r), T € [tf_',tf] for which x; = 0 is optimal is:

M) mag(e) =0 1€ [ty 0tgl (73)
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State - Costate Trajectory Pair

Case (ii)

for Example 2,

Figure 5.



= b =

It is easily shown that A, (1) as given in (73) satisfies the necessary
conditions. Therefore, the solution to (49) is the same as in Example 1,
case (ii), and the feedback control region on the xz-axis is assigned

in identical fashion. See Figure 4.

As the next step, we now Stipulatz that X leaves the boundary

backward in time at te Since xz(tf_]) >0

_]'

- +
ltg ) = dpleg ) = tg = tp . (74)

Since costate jumps can only be positive in forward time, we must have
A(te ) = 0. (75)
Also, since xI(r) >0, xz(r) >0, 1t € [tf_z,tf_|).

il(r) . 3

t € [t ) (76)

f-20tf-1
Ay(1) = -1

See Figure 5. We now notice a fundamental difference between this
and the previous situations. At some time before te the sign of
( () - Az(r)) changes, which imples that the solution to the linear
program changes at that time. Therefore, te o is not allowed to run
to -» , but is actually the time at which the costates cross and the
control switches. The optimal controls and state velocities on either

side of the switch are:
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T € ftf_z.tf_]):
T
u = (0, 0.5, 1.0, 1.0) (77)
2, = 0.8 3 &, » -1.5. (78)
T & [t‘-B’tf-?;)
u= (0.5, 0, 1.9, ;.00 (72)
X, = ) L ;2 = =05 (30)
The relationship between the states X, and x, at tf-z may be
calculated as follows:
Mlteg) = Mleg ) + 20, - te )
(81)
Mplte ) = Mplee ) + (ee ) -t y)
but
Mt ) =0
(82)
Mlee )= (e - tg)

i i = ) im i
The crossing condition l‘(tf_z) Az(tf_z imolies from (81) and (82)

that

t -t =t - te . (83)




2 e s

Now
xplee o) = xleg ) + 0.5(8c , = tgy)
(84)
Xolte o) = xplte () + 1.5{ee 5 - e )
but
xl(t‘_1) = 0.0
(85)
x,(te ) = P5(ee ) - te).
Finally, (83) and (84) give
xp(te 5) - bx,(te_,) = 0. (86)
That is, the switch of control corresponding to the time tf-z always

occurs when the state reaches the line (86). Therefore, backward in
time the state leaves from anywhere on the X, axis with optimal
control (77) and associated rate (78). The direction of travel is
actually parallel to the line Xy - 3x1 = 0. Upon reaching the line

Xy - 6x‘ = 0, the optimal control switches to (79) and the state travels

parallel to the line x, - 3x2 = Q0 forever. This sequence is illus-

1
trated for a sampled trajectory whose portions are labeled 1 s 2 45 3

in Figures 4 and 5.

From these observations, the following may be inferred by thinking

in forward time: The control (77) 1is optimal anywhere within the region
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: 5 5 3 5 . -
Pownded by ihe xpmaxis and the line

Y o (snod - y 1) e P o~
X)=aTis (snaded in Figure 4). The co

within the regton boundad by the lines

not including the former lire.

Therefore, we can construct tne following two feedback control regions:
%5
R-{1{O<x]<g—: (87)
where
¥ = {(0, 0.5, 1.0, I.O)T, (0}, 0.5, 0.5, 1.o)T}
3 = {{8}, {xz}}
2= (0, 0.5, 1.0, I.O)T
and
2
R = {E.I “F € %y < 3x2 } (88)
where
u = {(0.5, 0, 1.0, 1.0)7, (0, 0.5, 1.0, 1.0)", (0, 0.5, 0.5, 1.3)7}
8 = ({8}, (8}, (x,}}
T
Q2= (0.5, 0, 1.0, 1.0)

2 1
rol (73)
Xy = 6x

= 0, not including the
25 optimal arywhere

= 0 d Xy - 3x2 =0

This region is also indicated in Figure &4.

Since the entire state space has now been filled up with feedback

control regions, the

complete.

specification of the feedback solution is now

0O Example 2.
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We ncw summarize the contents of the preceding examples. By starting
at the final time te we have allowed state variables to leave the
boundary x = 0 backward in time and have computed the corresponding
optimal trajectories as time runs to minus infinity. In the instances
when the optimal control did not switch, we were able to construct one
feedback control region. When the optimal control did switch, as in
case (ii) of Example 2, two adjacent feecback control regions were
constructed. By ccnsidering encugh cases we were able to fill up the

entire state space with feedback control regions, thus providing the

feedback solution.

Note that all we need for the final specification of the feedback
solution are the geometrical descriptions of the feedback control region
(R's) and their associated optimal control sets (Q's). The sequences
of optimal controls (U's) and the boundary sequences (B's) are involved

in an intermediate fashion.
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vVi. THE CONSTRUCTIVE DYNAMIC PROGRAMMING ALGORITHM

The examples of the previous section suggest an approach by which
the feedback solution to the constant inputs problem may be synthesized

in general:
The Comstructive Dynamic Programming Concept.

Comstruct a set of bacxward optimal ircjectories, each starting
at the final time te and moning to t = -=, arong which all
possible sequences of state variables leaving the boundary backward
in time, both singly and in combination, are represented. Each
segment of every optimal trajectory (where a segment is that portion
which occurs onm the time interval between two successive switch timas
tp and tp+1, not tnecluding tp+1) 18 utilized in the comstruction
of a feedback control region with associated optimal control set.

These feedback control regions are convex rolyhedral cones, and the

wion of all such regions is the entire acdnissible state space.

The conceptual structure of an algorithm which realizes the cons-
tructive dynamic programming concept is now presented. Due to several
complicating features the algorithm as it is presented here is not in a
form suitable for numerical computation. Instead, it serves as a frame-
work for the development of numerical schemes for special simplifying

situations. First, we present some shorthand notation:
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Definition 5: ] = {x! l x!(x) > 05 ¢ € [ig ot )} is the set of
e e p i i p’ ptl!
state variables traveling on interior arcs on [t ,t ).
P ptl
Definition 6: L = {xJ | xJ € R and x? s designated to leave the
e P | i [6) |

boundary backward in time at tp}.

Definition 7: Jp 4 cardinality of Ip'
P = cardinality of £
P P

p
optimal trajectories on the segment [t

Detinition 8t the feedback control region constructed trom the

p'tp+l)'

The algorithm is characterized by the recursive execution of a
basic step  In which one or more feedback control regions are constructed
from a previously constructed feedback control region of lower dimension.
To describe a single recursive step of the algorithm we begin with the
feedback control region Rp which has been constructed in a previous
step. On the current backward optimal trajectories the state variables
of Ip are on interior arcs and those of BP are on boundary arcs.
Hence, Rp [ IRop, where we assume that op < n. The basic action
of each step of the algorithm is to allow a subset fp of state
variables in B to leave the boundary backward in time simultaneously;

o
that is, allow the state trajectory to leave Rp c R P and travel
0 +p

directly into IR v The set of state variables which are subsequently

on interior arcs is Ip-l'



in order to formulate the algorithm we must make the following
assumption: 1t is optimal for all of the stasz variables in Ip_1
to remain off of the boundary as time runs to minus infinity. This
is equivalent to assuming that once a state variable reaches the boundary
in forward time it is always optimal for it to remain on the boundary.

This assumption is certainly not always valid, and a counter-example is pre-

sented in Example 3.7 of (5], p.197. The most general class of problems

N

’

for which this assumption holds is not currently known. However, in [S] p.263
it is shown to be valid for the specific class of single destination
network problems with all unity weightings in the cost functional.

We now provide the rule which stipulates the complete set of steps which

is to be executed with respect to R :

P
Consider all of the sulseis of Sp wntern are combinations of its
elements taken 1,2,...,n~0_ at a time. Sters are to be executed for

P
equal to each one of the subsets sc determinzd, or a total of

n-=g
2 P - steps.

We now describe a single step of the algorithm by choosing a particular

£p c Bp. Figure 6 is used to illustrate this description.

STEP OF THE ALGORITHM

- Operation I Partition Rp into subrezicms with respect to Sp
The definition of subregion is deferred until Operation 3 since notions

are required which are developed in the interim. Subregions, like feedback



-52~

Xp€ Xp (£ p)'#
s

Figure 6 . Construction of Successive Feedback Control Regions
from Subregion Ry (L)

.

-
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control regions, are convex polyhedral cones &~c the method by which

the partition may be performed is presented in (5], p.165. For the present,
let us assume that Rp has been partitioned into s subregions and
denote them by R;([D), Ri(fp),..., R;(fp), wn2re the dependence of

the partition on the set Ip is indicated in -z-enthesis. Ve now

perform the subsequent operations of the step for each of the s sub-
regions taken one at a time.

-~ Operaticn 2 Consider the typical subregion Rp(ﬁp). We now call

for the state variables in LP to leave backward in time from each

of a finite set of points of Rp(fp) taken one at a time. This set of
points is denoted by Xp(ﬁp) and as in the case of subregions fhe
definition is deferred until Operation 3. Let us now focus attention

on a typical such point ﬁp € Xp(£p). We assure that % has been
reached through a backward optimal trajectory constructed from a sequence
of previous steps, and that the time at which ép is reached along

this trajectory is tp. Associated with §p at tp is some possibly
nonunique set of costate vectors. We are intarested in only those

costate vectors which allow for the optimal departure of the state variables
in Lp from the boundary backward in time at tp , known appropriately

as leave-the-bowndary costatzs. This set may also be nonunique, in which
case it will in fact be infinite. It is shown in [5], p.189, that we need

only consider a certain finite subset of the total leave~the-boundary

costate set and a method for determining this particular set of costate

e ———— e —
J BPUR I S -
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vectors, or for showing that no such costate vectors exist, is presented.

We assume now that this set has been found and denote it by Ap.

- Operation .3 Consider the typical leave-the-boundary costate

A€ Ap. We now consider the situation in which the state variables in
£p leave the subregion Rp(£p) backward in time from the point Ep'
We note that the set of state variables which are traveling on boundary
arcs backward in time subsequent to the departure of Lp is

B =B | L and the set on interior arcs is I =] ul.
p-1 p P p-1

We must now solve the following problem:

. Given the state X and the costate ﬁp at time ty find all
optiml trajectories backward in time om 1 € (—w,tp) for which

Qg(r) =0 forall xf €8 _ or determine that no such point

1
trajectory exists.

According to assumption stated earlier in this section it is optimal
for all of the state variables of Ip-l to remain off of the boundary
for the entire time interval 1 € (-w,tp). Therefore, by the necessary
conditions (which are also sufficient) we know that any (and all)
trajectories which solve the above problem must have a control which
satisfies the following, henceforth referred to as the global optimia-

ation problem:
Find all

u*(t) = ARG MIN _X_T(T)i(t) = ARG MIN f(r)_e_ u(r) (89)
u(r)eu u(r)€eu



where
e ) =2 9
ale) =4 (90)
Sc) w =il vyl €7 a
(<) H x €1 (e1)
-\ (1) = 3;Ur + dntia
i_ w J c R )
\ X' s .\D"] (9‘-)
|
d’]l(f) =0 {

¥r € (-t .
o]

Qur task is tharafare to finc 1! solutions 2o the alobal cptimiz-
ation problem whick satisfy the constrairts x{(?) =0 for all
x% € 8p_1 and all <t € (-m,to) or show that no such solution exists.
To find solutions requires producing vaiues of 1?(1) such that ;{(:)= 0
is optima! for all x% € BD_] and a'l t € (-w.:o). A method for

so'ving this problem is presented in Apoendix A.

If it is shown that no solution exists we immediately terminate
this step. On the other hand assume that using the technique of Appendix A
we have arrived at a sequence of optimal switching times and optimal control
sets on 1t € (—m,tp). Suppose that q switches occur in the optimal
control over this interval and denote the times at which the switches occur

by t suveyt 9 , where the control remians unchanaed from time
P-q p-2’"p-1

tyq *© minus infinity. All these switching times the backward optimal
trajectory intersects the hypersurfaces of various dimensions which separate
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adjacent feedback control regions. The points of intersection are
referred to as breakpoints and the hypersurfaces, which are convex
polyhedral cones of dimension op + op -1, are referred to as breackwalls.
We denote by wp_S the breakwall which is encountered at the s-th

switch time tp-s and denote the entire set of breakwalls encountered

T € {-o,t b
on ( p) y

A,

\Np-q""’wp-Z'wp-l}'

W

We shall show how to construct W later on in this operation.

Define to be the complete set of optimal controls on

.
; . ; ol e
T € (tp-s’tp-s+\) which satisfy the constraints xi(t) 0 for all
J
x5 € BP_], or formally
A " T
9 _ = {ur | u* = ARG MIN A (1)8 u(x),
P u€l
ij(r)-o VxéEB
LX i p-1
T € [tp-s’tp-s+1) where A(t) is determined by (90)-(92) and

ép ranges over all members of Ap}.

Accordingly, the collection of optimal control sets on 1t € (-w,tp) is
denoted
A
Qs {Q_”,Qp_q, 3% 'Qp-Z'Qp-i}

where Q__ is the solution set which applies from time tp_q to minus
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infinity. We are now able to provide various details which have been
left unspecified until now. First, the definitions of subregion and the set

of points Xp(fp) c Rp(ﬁp) mentioned in Operations | and 2.

Definition §: Suppose the set of state variables fp is designated to
leave the feedback control region RP backward in time. Then a swregion
Rp(ﬁp) of Rp is the set of all those points in Rp which have taken

5

as the point of departure of £p result in a common & and a common W.

Definition 10: If no control switches occur on = € (-n,tp) then Xp(£ )

o}
consists of exactly one point, and this may be zny point of Rp(ﬁp).
If one or more control switches occur (i.e., one or more breakwalls are
encountered) then Xp(fp) consists of exactly one point from each edage

of Rp(ﬂp), where we may choose any point of a given edge.

Therefore, if no control switches occur we have exhausted XP(EP)

by the consideration of the single point §p. On the other hand, if one
or more control switches occur then we must repeat Operations 2 and 3

for all of the remaining points of Xp(ﬁp).

By the definition of subregion we shall obtain the same collection
of optimal control sets £ and encounter the same set of breakwalls W
for every point in Xp(fp). However, the breakpoint corresponding to a
given breakwall will in general be different for optimal trajectories

emanating from different points of Xp(fp) or for different optimal
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trajectories emanating from the same point. We may now specify how to
construct the breakwalls from the breakpoints: Find the complete set of
breakpoints occuring at the s-th su<itoh time which ecorrespord to

extreme point solutions of Q___, wizre we consider trajectories eman-

p-s
ating from every point of Xp(ﬂp). Fzrm the set of rays in the state
space which pass through these brzciz:ints. Then w is the convex

p-s
hull of all the rays.

- Operation ) The sets @ and W obtained in the previous operation
are now utilized to construct feedback control regions. We consider the

two cases:
(i) g=0

In this case Q= {Q__} and W= {#}. Consider the linear
transformation y = -é_- B u - a and the convex polyhedral set

LI {1 I‘g € n__} . For every extreme point of Y, form the ray

g_+p
in RP " which passes through that extreme point. If there are w

extreme points then denote the set of rays by L {vl.vz,...,vu}.
It is readily seen that each of these rays represents an extreme direction
of travel of the optimal trajectory in the state space. Now, let Cof(-)

denote the convex hull function and from the convex polyhedral cone

R__ = CQ(RP(IP) v V_.)IRP(IP) .

It is proven in Appendix B that R_' is an feedback control region with
associated optimal control set Q__ in the sense of Definition 4.

-~
-

We refer to R__ as a non-break fzezck comtrol region.

v
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(ii) q>0

In this case 0= {n_m,n I and

g wvs N5t i
P-q pir2sp=l

W= { }. Form the sequence of gq+1 adjacent convex

wp-q’ e ’wp-Z'wp-l

polyhedral cones

Rp_‘ = co(Rp(£p) J wp_1)/RP<£p)
Rp-Z = Co(wp_1 u wp-Z)/wp-1
Rpmq = Colipqur ¥ ¥5oq) Mpoquy
R, = Co(wp_q U V_m)/wp_q :
It is proven in [5], p.176, that Rp-1'Rp-2""'Rp-q are feedback control

regions with associated optimal control sets 7] ,8 5 s S

p-1’"p-2 P-q
respectively. These are referred to as break feedback control regions.
Here R__ is the non-break feedback control rezion with associated

optimal control set Q_”. See Appendix B for proof.

e Step of Algorithm

Note that upon the completion of a single step q+l1 feedback
control regionshave been constructed: exactly one non-break feedback
control region and q break feedback control regions, 0 < q < =,

We may refer back to Example 2 to find simple examples of both type of
feedback control regions: the region specified in (87) is a break

feedback control region and that of (88) is of the non-break variety.
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Having detailed a single step we now discuss how the overall algor-
ithm operates. The procedure is initiated at te with the first feed-
back control region Rf being the origin. Here the set Bf is composed
of all the state variables of the problem. We allow £f to range over
all possible 2" non-empty subsets of Bf and perform a step of the
algorithm for each. To this end we know by Corollary 2 that the values
of the costates at te corresponding to those state variables leaving
the boundary at tf are zero. The constrained optimization of Appendix B
may then be solved since only those costates are required which corres-
pond to state variables off the boundary. For each set of state variable
leaving the boundary which is found to have globally optimal trajectories,
feedback control regions are constructed which range from one dimensional
(axes of R") to n-dimensional subsets of IR". At each step we
propogate backward in time an appropriate set of state and costate trajec-
tories and save the information which is required to execute subsequent
steps. Each region of the set thus constructed is used as the starting
point for the sequence of steps which buiids new higher dimensional regions.
This process continues until all the feedback control regions which are
constructed are n-dimensional. Note that the complete set of backward
state and costate trajectories which is constructed during the execution
of the algorithm will not in general be unique due to the arbitrariness

in the selection of the set Xp(tp) at each step.

We point out that the feedback control regions constructed during

a particular step may have been constructed previously. In essence, we
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are being conservative in insisting that Lp be set equal successively
to all possible non-empty subsets of 8p, but no method is currently
known for the a priori elminination of those subsets which will produce
previously constructed regions. However, our thoroughness allows us

to state the following:

Theorem 5. Complete execution of the constructive dynamic programming
algorithm will result in the spacification of thes optimal feedback con-

trol over the entire admissible state space.

Proof: Feedback control regions are constructed for every conceiv-
able type of optimal trajectory in terms of sequences of state variables
on and off boundary arcs. Moreover, we are finding the largest such regions

since we are taking into account all optimal controls corresponding to
each sequence. Therefore, the feedback control regions constructed must

cover the entire admissible state space.

a

Summarizing, the following questions which have been left unresolved

in the current discussion:

1) The validity of the assumption that it is optimal for all the state

variables in 1 . to remain off the boundary as time runs to

minus infinity.

2) Partitioning Rp into subregions (Operation 1)
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3) Determining the leave-the-boundary costate values (Operation 2).
4) Determination of global cptimality (Operation 3 — part (b) of
Appendix A).

As the algorithm is presented hare in principle oniy we shall not
enter into details regarding off-line calculation or on-line implement-
ation. However, two points are worthy of mention. First, the number of
steps to be performed and the number of feedback control regions cons-
tructed will be very large for reasonadble size networks. |In constructing a
numerical version of the algorithm we must therefore be concerned with
the efficiency of the various operations. Secondly, a large amount of
computer storage will be required to implement the solution in real time.
The feedback control regions must be scecified by a set of linear inequal-
ities which in general may be very large, and the optimal controls within
these regions must also be specified. This situation illustrates the
tradeoff which occurs between the storage which is required for the on-
line implementation of feedback solutions calculated off-line and the
amount of calculation involved in the repeated on-line calculation of

open-loop solutions.
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Vil. CONCLUSIONS

We have considered the linear optimal contro! problem with linear
state and control variable inequality constraints proposed in [2] as
a method of analyzing dynamic rcuting in data communication networks.
The conceptual structure of the Constructive Dynamic Programming
Algorithm has been presented for finding the feadback solution to this
problem whan all the inputs to the network are assumed to be constant
in time. Several required tasks of the algoritnm pose compiex questions
in themselves and are therefore left unresolved here. These questions
are confronted in detail in [5] and a forthcoming paper by the authors,
where in the case of single destination networks with all unity
weightings in the cost functional simplifications arise which permit

a numerical formulation of the algorithm.
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APPENDIX A - COMPUTING BACKWARD OPTIMAL TRAJECTORIES

Consider the following constrained opcimization problem (i.e. constrained

in state) in which the n% do not appear:

Find all
ut(1) = ARG MIN B A{(:)i@(r) (A. 1)
u(T)EU xJET '
= i p=1
subject to
%) 4 J
xi(r) 0 in € Bp-l (A.2)
where
Aj(t ) = appropriat £ A (A.3)
'S ppropriate component o & ) -3
vx) €1
ae . i p-1
A4(r) - (A.4)

I [}
V1 E '”,t .

The following is presented without the proof, which is trivial:

Theorem A.1 Any solution to the global optimization problem which
satisfies ;g(T) =0 for all x{ € Sp_1 is also a solution to the
constrained optimization problem.

We are able to solve the constrained optimization problem immediately
since we know all of the coefficients of (A.1) and the values of AJ
for x? € Bp-l are not required. However, solutions to the constrained

optimization problem may not be solutions to the global optimization

problem. These observations suggest the following two part approach to

- - .. R ———
—— " B - ﬂ-l“
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[inding all solutions to the global oprimizatvicn problem which satisjy

xJ =0 for all x) €8
i i p

..]'

(a) Find all solutions to the constrained optimization problem.

(b) Produce values of X%(T), T € (-w,tp), for all xé € Bp_1 which satisfy
the necizsary cond’tiors o~d  such that all solutions to part (a)
are also solutions to the global optimization problem or show

that no such values exist.

The above tasks were performed in a simple fashion for the examples
of Section V, where due to the small dimensionality of the problems we
were able to solve part (b) by inspection. Of course, this is rarely
possible, and 2 general method for solving part (b), referred to as the

determination of global optimality, is presented in [5], p.163.

We now turn our attention to the solution of part (a). Taking into
account the dynamics (7) and integrating (A.4) backward in time from tp
we may re-write (A.1) - (A.4) in terms of the underlying decision vector

u as follows:

u*(r) = ARG E(:;gu’ (g * tey)ulx) (A.5)
D u(t) <SC (A.6)
u = u(t) 20 (A.7)
blu(o) = -l vxd €8, (A.8)

J

where g{ = row of B corresponding to X3

.‘.L:]lllllililllll==='—“”—
- - T e T ——————
——




co = T A (¢ )b
xJ €1 Pl
i p-l
¢ = 2 aJl_g"l
Jer '
t p=id

and T is time running backward from tp to minus infinity.

The presence of the constraints (A.8) prevents us from immediately

specifying the optimal solution at a given time in terms of the costates
as is possible in the absence of these constraints. However, since for
fixed 1t (A.5) - (A.8) is a linear program the Simplex technique may

be applied to find a solution. Moreover, the cost function of (A.5) is
a linear function of the single indepandent parameter 1, while the
constraints are not a function of 1 since a is constant. This is
precisely the form which can be accommodated by parametric linear prog-
ramming with respect to the cost coefficients. The solution proceeds

as follows:

Set v =6, where 8§ is some small positive number which serves to

perturb all costate values by a%é. We wish to start our solution at

time tp-& since we may have A%(tp) =0 for some x{ € Bp-l’ so that
the solution exactly at tp may not correspond to xg leaving the bound-
ary. The number & must be such that 0 < § < tp-l' where tp-‘ is

the first break time to be encountered backward in time.

We now use the Simplex technique to solve the program at 1 = §,

There are many linear programming computer packages which may be enlisted
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for this task which utilize efficient algor thmic forms of the Simplex
technique to arrive at a single optimal extremum solution. Given this

starting solution which we call gp most packages are also equipped

-]'
to employ parametric linear programming to find the value of t for
which the current solution ceases to be optimal as well as a new optimai
solution. These are the break time tp_‘ and the optimal control 9p-2
respectively. We continue in this fashion to find controls and break

times until the solution remains the same for =< arbitrarily large.

This final solution is the control u__

The linearity of the pointwise minimization associated with the
necessary conditions has enabled us to find a sequence of optimal controls
on the time interval (-w.tp) by the efficient technique of parametric
linear programming. However, in the description of Operation 3, we call
for all optimal solutions on every time segment. Since we are dealing
with a linear program, the specification of all optimal solutions is
equivalent to the specification of all optimal extremum of the solution
set. Unfortunately, it turns out that the problem of finding all the
optimal extremum solutions to a linear program is an extremely difficult
one. It is easily shown that given an initial optimal extremum solution
this problem is equivalent to finding al! the vertices of a convex poly-
hedral set defined by a system of linear equality and inequality constraints.
Discussion of this problem has appeared intermittently in the linear
programming literature since the early 1950's, where several algorithms

based upon different approaches have been presented. However, none of

- A—‘w-nw«- T TS AR ‘
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these methods has proven computationally efficient for a reasonably

large variety of problems. The fundamental difficulty which appears

to foil many algorithms, no matter what their underlying approach, is
degeneracy in the original linear proaram. As our problem is charac-
terized by a high degree of degeneracy, one would expect pcor performance
from any of these algorithms. Hence, it appears at this time that the
development of an efficient algorithm for the solution of this problem
is contingent upon the discovery of methods for resolving degeneracy

in linear programming. As degeneracy is a frecuent nuisance in most
linear programming procedures, this problem is the subject of much on-

going research.
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APPENDIX B - CONSTRUCTING NON-BREAK FEEDBACK CONTROL REGIONS

Exactly one non-break feedback control R__ is constructed in either of
the cases q=0 or gq=21. If g =0 then the state variables in £p
leave Rp(£p) backward in time with optimal control set €__ and R_|
is constructed adjacent to Rp(fp). Similarly if q 21 then the state
variables in Ep leave the breakwall wp_q backward in time with
optimal control set @ _ and R__ is constructed adjacent to wp_q.

In this discussion it is unnecessary to distinguish between these cases;

~

we therefore let Rp represent either the subregion Rp(fp) or the

=1

breakwall wp-q depending upon whether g =0 or q# respectively.

Theorem B. 1 Suppose Q_ is the set of optimal controls with which

the state variables Lp leave Rp backward in time. Then
R =co(R_uV )R
it o P ‘”) p

is the non-break feedback control region with associated control set

Q__ in the sense of Definition b.

Proof. We must show that items (i)-(iii) of Definition 4 apply to

R and Q@ . The situation is depicted in Figure B.l.

We prove item (iii) first. Consider x € Rp. Translate each ray
in V by placing its origin at x and call the translated set

e {vi,v'.....v&) . Next form the conical region x(x) = Co(:_U Vl,)/i'

See Figure B.1. If x, € n(x), then there exists a direction which is
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some convex combination of the members of V! = which takes X, to x.

Hence, for any x

1 =1

Now, R__ = Co({n(x) | x € Rp}) since the sma'iestconvex set containing

{1(5) | % € Rp} is clearly R__ . Therefore, for any x, € R__ there

exists some direction which is a convex combination of members of V
=

which carries Xy to some point x € Rp. This is equivalent to saying

that for any x, € R__, there exists a u € Q__ such that é_= Bu+a

1

1

R until it strikes R _.
-0 p

carries x to some point x € Rp. Also, the trajectory remains within

7

Now, let us select some X € R_m and apply any control Y, €a__

which helps the state within R__ for a non-zero period of time At.
Clearly there exists such a control by the above argument. Denote by

x the state which results after applying u for the time At. Then

2 1
also by the above argument there exists some control u, €a_ which
takes x_, to some point X3 € Rp. See Figure B.l. The control u,

is optimal since Q_, is constructed such that any u € Q__ is optimal

to move the state off of Rp backward in time. Finally, Y, is optimal

since Y € Q__ and the trajectory segment Xy * Xy in part of the

trajectory x, > X which leaves from Rp' We have therefore shown

3 =2 1

that item (iii) of Definition 4 is satisfied.

> X

N

Items (i) and (ii) follow easily from the fact that Rp is itself

part of a feedback control region.

O Theorem B.1

€ n(x) there exists a u € 2__ which takes x, to x.

P T L Ry Sy —



op*Pp !

Figure B.1 |

Geometry for

Proof of Theorem B.!
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