
—‘~AD~ AO bi 615 AIR FORCE AVIONICS LAB WRIGHT—PATTERSON AFB OHIO FIG 9/2
POP—ti ~,ICROCOMPUTER TEST STANO .(U)

• SEP 78 0 hi SCHILLER
UNCLASSIFIED AFAL—TR— 78—191 NL

• I _

_ _ _ _ _

I
END

2 - - 79
boc

AFAL-TR- 78-191

~4’) PDP—11 MICROCOMPUTER TEST STAND

~~~~

~~~ ~~~~~~~~~~~~~~~

Ct
~:

SEPTEMBER 1978
TECHNICAL REPORT AFAL—TR— 78—191
FINAl. REPORT FOR PERIOD 1 JULY 1975 — 31 MARCH 1978

Approved for public release; distribution unlimited.

AIR FORCE AVIONICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE , OHIO 45433

78 11 24 018

— -w — _ _ _ _ _ _

NOTICE

When Government drawings, specifications, or other data are used
for any purpose other than in connection with a def initely related
Government procurement operation, the United States Government there-
by incurs no responsibility nor any obligation whatsoever; and the
fact that the Government may have formulated, furnished, or in any
way supplied the said drawings, specifications, or other data, is
not to be regarded by implication or otherwise as in any manner licens—
ing the holder or any other person or corporation, or conveying any
rights or permission to manufacture, use, or sell any patented inven-
tion that may in any way be related thereto.

This technical report has been reviewed and is approved for
publication.

/ -~~ ~~~~~~~~
c~ ~f~t~~L

DIETER/~. SCHILLER DAVID J. BRAZIL, CAPTAIN, USAF
Project Engineer Tech Mgr, Sof tware & Processor Gp
System Technology Branch System Technology Branch

RAYMOND E. SIPERD , T CDL , USAF
Chief
System Avionics Division

Copies of this report should not be returned unless return is required
by security considerations, contractual obligations, or notice on a
specific document.

ii .
~_ 4

SECURITY CLA$SIFICATION OF THIS PAGE (%Th.n Dat. Ent.red)
- ___________________________________

bE
~~

A
~~
r F~f~~~ i I iA ~~Ll1 £ 1~It%LI ~ £ READ INSTRUCTIONSr~ UIfl% l U’J~~.VM~~ I’~ I ~~ I I~~~I’~ rD~v BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION P40. 3 RECIP$ENT S CATALOG NUMBER

AFAL—TR—78— l9 1 ____________________________
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

PDP 11 MICROCOMPUTER TEST STAND ~~~R,~~tt31 March 78
6. PERFORMING ORG. REPORT NUMB ER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(S)

Dieter J. Schiller

9. PERFORMING ORGANIZATION NAM E AND ADDRESS tO. PROGRAM ELEMENT, PROJECT . TASK
A R E A 6 WORK UN I T N U M B ER S

Air Force Avionics Laboratory (AAT—2) Program Element 62204F
Al Wright Aeronautical Laboratories, AFSC Project 2003, Task 200304
Wright—Patterson Air Force Base1 Ohio 45433 Work Unit 20030412
It. CONTROLLING OFFICE N A M E AND ADDRESS 12. REPORT DATE

September 78
13. N U M B E R OF PAGES

14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report)

Air Force Avionics Laboratory (AAT—2) Unclassified
AF Wright Aeronautical Laboratories , AFSC Is.. OECLASSIFICATION/OOWNORADING
Wright—Patterson Air Force Base, Ohio 45433 SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report) ACCE $1~~~
Approved for public release; distribution unlimited. W ile Sect oR$

w..tt s&~~ r~U~~ NOU~C(D 0
JUSTW1CAT1CM _.~___ .~- - _ .-_ _

17. DISTRIBUTION STATEMENT (of th. abatract entered in Block 20, if different from Report) ,

BY —-——
I TlIrT~ /AVAL~ tflf ~3f S

Dist . AVAIL end/or SPEC~M.

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Contlnu. on ,.v.v.. aid. if n.c...ary end identify by block number)

Microcomputers
Hardware
Software ¶
PDP—ll

20. ABSTRACT (Continue on revere, aid. if n.cee..ry and Identity br block numb. ,)

The interface described In this report permits a Digital Equipment Corporation
PDP—l1. computer to control and monitor up to four separate microcomputers. The
microcomputers execute their instructions out of the P1W—il memory. Break point
registers are included such that a print—out may be obtained of the micro-
computer’s register contents, etc., after execution of each instruction.

DD JA N 73 1473 EDITION OF I NOV 65 IS OSSOL ET E

SECURITY C L A S S I F I C A T I O N OF THIS PAGE (When Data Entered)

-

SECURITY CLASSIFICATION OF THIS PAGE(Wh w Dat. Entered)

SECURITY CLASSIFICATION OF THIS PAGE(WPi. n b.ta Ent.r.d)

~~~~~~~~~~~~~~~~~~~~~~ .—- — ---.— —~~~~~~~~~~ .- .——~~~ ----~~~~~~~~~~



-

~~~~~~~~

FOREWORD

This report describes an in—house effort conducted by personnel

of the System Technology Branch (AAT—2) , System Avionics Division (Ak),

Air Force Avionics Laboratory, Air Force Wright Aeronautical Labora-

tories, Wright—Patterson Air Force Base, Ohio, under Project 2003,

“Avionic System Design Technology”, Task 200304, “AvionIc Processing

System Design”, Work Unit 20030412, “PDP—ll Microcomputer Test Stand”.

The work reported herein was performed during the period 1 July

1975 to 31 March 1978, under the direction of the author, Mr. Dieter

Schiller (AFAL/AAT—2) , project engineer. The report was released by

the author in September 1978.

The author wishes to thank Mr. Alfred J. Scarpelli (AFAL /AAT—2)

for his assistance in the software development and testing phase of

the program.

This report is intended to be a users manual as well as a final

report.

iii

-~~~-~~--..

TABLE OF CONTENT S

SECTION PAGE

INTRODUCTION 1

1.1 Purpose 1

1.2 Background
.

2

1.3 Objective 3

1.4 Results 4

1.5 Interface Description 4

1.6 Modes of Operation 6

1.7 Interface Functions 6

II HARDWARE ORGANIZATION 8

2.1 Register Description 8

2.2 Hardware Operations 13

III SOFTWARE/HARDWARE INTERACTION 20

3.1 Start—Up Interrupt 20

3.2 Loading The Interface Registers 22

3.3 No Trace Read 26

3.4 No Trace Write 29

3.5 Trace Read 31

3.6 Trace Write 33

IV CONCLUSION 36

APPENDIX A 37

APPENDIX B 40

B.0. Requirements 41

B.l Signal Definitions 42

‘

V

—.- .~~~~~~~- _ _ _

LIST OF ILLUSTRATIONS

FIGURE PAGE

1 System Block Diagram 5

2 Interface Registers 8

3 Control Register 8

4 Status Register 11

5 Data Out Register 13

6 Start—Up Interrupt Timing 14

7 No Trace Read Timing~ 15

8 No Trace Write Timing 16

9 Trace Real Timing 18

10 Trace Write Timing 19

11 Start—Up Interrupt Flowchart 20

12 No—Trace Read Flowchart 27

13 No—Trace Write Flowchart 30

14 Trace Read Flowchart 32

15 Trace Write Flowchart 35

16 Schematic of Interface 38

B.l I—Bus Signal List 51

B.2 I—Bus Control & Data Transfer Timing 53

8,3 I—Bus Interupt Interactions with Normal Bus
Control and Data Transfers 54

B.4 CLEAR—RESET Timing 55

B.5 TRQ Detail 56

vi

_ _ _ _

rr~~ ~~

,

~~~~~~~~~~

. .

SECTION I

INTRODLJCT ION

1.1 Purpose of This Report.

This technical report serves the dual function of providing a

formal report on the work done under Work Unit 2003—04—12, Distributed

Microcom puter Networ k Tes t Stand , and a User ’s Manual for the hardware

and software developed on this effort.

In or der to be abl e to operate the interface , the user mus t

familiarize himself with the POP-li assembly language and the DR-1IC

general purpose interface module. Although the interface was designed for j
a PDP-ll/20. any of the PDP-ll family computers may be used as the system

monitor. The documentation needed by the user, other than this report is

the ‘Processor Handboo k’ and the ‘Per ip herals Handbook ’. Both of these

documents are paperbacks and are availabl e from the Digita l Equipment

Corporation, Maynar d, MA.

Besides the PDP—ll , the user must also thoroughly understand the

I—Bus. The I-Bus is the internal bus used by each of the microcomputers

(See Figure 1). It consists of 38 data transfer lines (16 of which are

data and 16 are address lines), 3 interrupt control lines and 3 bus control

l ines. The bus control lines are not used by this interface. For a detailed

I-Bus description see Appendix B.

This report is organized into three sections. Section I discusses

the backgroun d, purpose and functions of the control panel . In Section II

the hardware is described in detail including all of the internal registers.

Section II presents the software/hardware Interface and includes the PDP—1l

1 



code necessary to perform each of the i nterface functions described In

Section I. In addition to the three sections , there are two appendices.

Appendi x A contains the gate level diagram of the Interface while Appendix

B consists of the I-Bus descri ption .

1 .2 Background.

The original objective of thi s work unit was to provide computer

performance monitoring and control hardware and software for the four

micro-computer breadboard to be developed on Work Unit 2003-04-13, Dis-

tri buted Microcomputer Network for Avion Ics . Three PDP-l1 interfaces

were pl anne d, which were to perform the following functions:

(1) Individual microcomputer control ,

(2) Global and l ocal intercomputer bus traffic monitoring,

(3) Simulated I/O injection into the breadboard microcomputers .

The associated support software to control these i nterfaces and allow

user Interaction with the system was Included. After this effort was

initiated , the D&F for Work Unit 2003-04-13 was di sapproved . In order

to still demonstrate the concept of the Distributed Microcomputer Net-

work for Avionics , work unit 2003-04-il enti tl ed Distri buted Processor!

Memory Simulation Experiments and work uni t 2003-04-14 called DMNA Bus

Monitor Interface were created.instead of using actual microcomputers

for the Distributed Micro-computer Network, laboratory PDP-1l’s were

to be used . The purpose of WV 14 was to develop three bus-control

Interface units whi ch were to provide the communi cation channel devel oped

for the DMNA between three PDP-l1’ s.

The software for the avionic computers was developed under wu 2003-04-il.

The local executive , global executive , fault-detection/recovery and test

2



—V  

programs were first written In the microcomputer ’s i nstruction set

and thoroughly debugged in AFAL ’s DEC-10 instruction l evel simulator.

After successful operation in the DEC-10, the programs were trans-

lated into PDP-ll assembly language .

The contractor who was to build the bus—control interface units

for the PDP-ll’s (Work Uni t 2003-04-14) ran out of funds before the

project could be completed and due to no additional funds being avail-

able for this effort, work was ha lted. The actual labo ratory demon-

stration for WU 2003-04-li and 14 could not be done since the necessary

hardware was never compl eted.

The concepts evolved during the course of this effort provided

a departure point for specifying a baseline set of monitoring system

features for Work Unit 2003-04-17 , “Design of a User-Oriented Micro-

computer and Monitoring System for Avionics Application ” as specifi ed

in Appendix B of that Statement of Work .

1.3 Objecti ve.

Design , build , demonstrate and document a PDP-l l interface that

3



. -.-.~- - - - -.-..-- , - - - -—~~~~~
. .

~~~~ - .~~~
--. - - —- .-~~

.—-- --.. -—-- - W

will allow limi ted (primarily non-real-time) computer performance monitoring

and control (CMAC) avionic microcomputers utilizing a single-bus-oriented

internal hardware architecture , specifically the I-Bus described in Appendix B.

1.4 Results

The interface described in the remainder of this report was designed ,

constructed , tested , and successfully demonstrated . The hardware consists

of 4 cards of logic of about 150 IC’s, packaged in wi rewrap form. A set

of assembly lanquage routines were written to realize the functions listed

in Paragraph 1.6.

The demonstration of the interface was done using a combination of

digital loaic , switches, and signal generators to simulate the missing

microcomputer ’s I-Bus interface functions. Each function was exercised in

this manner.

1.5 Interface Description.

The interface developed on this effort allows the PDP-ll software

to perform the function of a traditional computer control panel . With the

exception of breakpoint register functions , the microcomputer must be halted

or slowed down while the interface is performing its functions, hence it is

essentially a non-real-time device . The interface can control up to faur

separate microcomputers via multiplexing hardware . Which microcomputer is being

controlled at any given time is selected under software control . The

mi crocomputers, themselves , may all be the same , or they may be different. The

only requirement is that each microcomputer conforms to the internal bus

(I-Bus) specifi cations described in Appendix B.

4 Ii

An interesting feature of the interface is that it allows the

microcomputers to use the PDP-ll memory as a simulation of its own memory.

Hence, only a microcomputer CPU is necessary for the interface to operate.

Also , simulated input can be transmitted to the micrcomputer and output

received . Figure 1 is the block diagram for the control panel interface.

POP-li

I I I I I
UNIBUS

I I I ’ ’
DR11-C

1 1 1 1 !

INTERFACE

I
i — I — I — I —

~~~

—

~~~

—

~~ 1~1 I I •1•
~1~1~IBUS 1 IBUS 2 IBUS 3 IBUS 4

HJJ~ Ji l l liii liii
~

MC1
j

MC2] MC3 ~ ~MC4

Figure 1

System Block Diagram

5

1.6 Modes of Operation.

Two modes of operation are possible. The first is the free-running

mode. Here, the microcomputer gets a starting address from the PDP-ll.

The microcomputer will load this val ue into its program counter and execute

the pro~jram. Upon program completion only the final results will be avail-

able.

The second mode of operation is the trace mode. This feature per-

mi ts the microcomputer to operate in a pseudo-real—time fashion. In order

to invoke the trace function, the prograniner must load the l ower break point

register with the lower address bound and the upper break point register

wi th the upper address bound.

It is possible to obtain a trace of the entire program or of only

a selected part.

1.7 Interface Functions.

This control panel i nterface is capabl e of performing 13 distinct

tasks. These operations are as fol l ows:

a. Load upper break point register.

b. Load l ower break point register.

c. Load control register.

d. Read status register.

e. Issue a microcomputer startup interrupt.

f. Read address l i nes.

g. Read data lines

h. Read master ID lines

i. Select one out-of-four microcomputer.

6

j. Perform a read operation without tracing .

k. Perform a real operation with tracing .

1. Perform a write operation without tracing.

M. Perform a write operation with tracing.

NOTE: The last four tasks consists of a combination of the features listed

in (a) through (i).

7

~~~~~~~~~ -i~—._~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ -~~~~ — -~~“—



_ _ _ _ _ _ _  -~~~- - ~~--~~~~~~-—- - 

SECTION II

HARDWARE ORGAN I ZATION

2.1 Register Description.

r DR11-C

DR IN BUF DROUTBU F

7 ( (~J~~ r Break ~ ~Lowe r Break I DATA OUT Control

/ I~ ~.
roint Registetj [Point Registe~ ______________ 

Register

( 
_ _  _ _

ADDRESS DATA [ STATUS

I-Bus I
Figure 2

Interface Regi sters

2.1.1 Control Register

15 14 13 12 11 1 0 9 8 7  6 5  4 3 2 1  0
— — — — —  ________ — ________

— 
I I

MU write ~ read
~~ 

I-
— ~~ — I- I

L)
F— L) L) L) L) I I

I — I

FIgure 3
Control Register

8



_ _ _ _ _ _ _ _ _ _ _  - - _ - ~~~~~~~--~~-. --~~~~~~~~~~~~~ .- ~~~~~~~~~ - - .  
— - - -~~~~~~~~— . -- ——-,-.-~~

2.1.1.1 Read : Bits ~‘O” and “1” determine which Interface register

gets placed on the DR11-C data-in lines . The truth table indicates

wh ich register gets read .

Bit 1 Bit 0 Register

O 0 Interface sta tus

O 1 Address

• 1 0 Data

1 1 MID

Note: Only the four least significant bits of the MID are

used . The upper twelve bits are meaningless during

a “read Master ID” operation .

9



r. - - — — - -‘- -~ 
-
~~-~

-- -—--- —

2.1.1.2 CR1ACKM (Control Register Transfer Acknowledge Memory ).

Control register bit “2” Is used during a read or write operation.

• 2.1.1.3 Write: Bits “3” and “4” determInes which interface register is to

be written into from the DR11—C output buffer.

Bit 4 Bit 3 Register

O 0 Data Out
0 1 Break point #1 (lower)
1 0 Break point #2 (upper )
1 1 Unuse d

2.1.1.4 CRTACKI (Control Register Transfer Acknowledge Interrupt).

Bit “5” of the control register is used during a PDP-11 to microcomputer

start-up interrupt procedure.

2.1.1.5 Mlix.

Bits “6” and “7” determine which one of four microcomøuters the

PDP-ll “talks to”.

Bit 7 Bit 6 Microcomputer #

0 0 1
O 1 2
1 0 3
1 1 4

2.1.1.6 CRBPE (Control Register Breakpoint Enable).

Bit “11” determines whether the “ trace ” func tion is act ive

(11 or not 10).

10

_______ _ _ _  

j



_
__  - -  .~~~~•— •—- -- ---~-~~~~ - - •--•-~--— --. .--—-

2.1.1.7 CRINT.

Bit “K” is used to send an interrupt to one of the micrcomputers.

2.1.1.8 TACKEN.

Enables the transfer-acknowledge signal .

2.1.1.9 Unused Bits.

Control register bits 8,9,10,13 and 14 are unused at this time.

2.1.2 Status Register.

15 

1

14

1 

13 12 1 1 0 9  8 7 6 5

~I 1 I 1 I 1 L I ~~I !_ ~~Figure 4

Status Reg ister

Only bits 0-4 are used in the status register. The ir mean ing is as
follows :

2.1.2.1 PSTAT
PSTAT (Bit 0) in connection with the data transfer signals indicates

the state that the processor is In and the nature of the data and address line.

2.1.2.1.1 Program Counter and Instruction Register.

If the processor Is receiving data (DRCV is true (L) ) and PSTAT
Is true (1), then the address lines have the PC on them and when TACK
comes true, the Information on the data lines is the first word of the

instruction.

11

a-



. - --.~~~-~~~~~~ - • .-. • -- —-~-~~~~~~~~~~~

2.1.2.1.2 Interrupt State.

If the processor is sending data (DRCV is false (H) and PSTAT is

true (L) , then the processor is saving its program counter and status

word . The data on this address lines is the interrupt stack pointer and

the first word sent, when the processor status (PSTAT) and transfer re-

quest (TRQ ) comes true the fi rst time, is the old PC. The second word sent,

when the PSTAT and TRQ come true the secon d time , is the o~d status word .

2.1.2.2 IOSL (BIT a ) .
This  b i t  t e l l s  if a memory or I/O operation is taking place .

F 2.1.2.3 DRCV (Bit 2).

The “data receive bit indicates in which direction the informa-

tion transfer is to take place .

If DRCV i s low (true) a SENB operation i s tak ing place . The

master shall send 16 bits of data and store it at the address location

specified by the address lines.

If DRCV is hig h, then a RECEIVE operation is in progress.

2.1.2.4 TRACE (Bit 3).

The “ trace ” bit indicates whether or not the break-point register

received an address match . Note, that the address must have been placed

on the address lines by a valide ”mas ter ”.

2.1.3 Data Out Register.

12

L. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



1!” 
,-•., .

15 14 13 12 11 10 9 8 7 6 5 4 3  2 1 0

Figure 5

Data Out Register

The Data Out Register is used to transfer data from the PDP—ll to the

microcomputers.

2.1.4 Upper/Lower Break-Point Register.

These two registers are functionally identical . Each register

gets loaded with a 16 bit address. The lower BPR contains the lower

address space bound , while the upper BPR contains the upper bound .

If the bit is enabled , then the tracing functions will occur whenever an

address falls between the upper and lower limit of the break point registers.

2.1.5 Address Register.

The address register is a 16-bit register which contains the PDP-1l

address which the microcomputer wants to access.

2.2 Hardware Operation

2.2.1 Start—Up Interrupt.

Whenever the PDP—ll wishes to send a start-up Interrupt to

any one of the four microcom puters (determ ined by the MUX bit ) then the

programmer must set the appropriate bits in the control register which

13

_______________ —-~~~~~~~~~~~~~~~~~~~~
- - - —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


in turn, causes the IRQ signal to be asserted. As soon as the microcomputer

is ready to honor the interrupt, it will assert the IAKI (interrupt-

acknowl edge—in) signal and remove IRQ After the PDP-ll sees that the

microcomputer has acknowl edged the interrupt request it will pl ace the

trap vector location on the ‘data out ’ lines and then raise the transfer

acknowledge (TACK) signal. The microcomputer will take the trap vector

address off the data lines and remove IACKI .

IRQ

DATA OUT

_

~~~~~~~~~~~~~~~~~~~ DDRESS

Figure  6

Start-Up Interrupt Timing

Upon remova l of the IACKI s ignal the interface clears TAC K and the system
is ready for another operation.

The start up interrupt is used to send the beginning address of

a program to the microcomputer. The microcomputer will return the starting

address, pl ace it into its program counter and then start executing from

that location until a return from interrupt inst~ruction is encountered.

During the trace function , the start up interruptis used to invoke the

trace routine and upon its compl etion control will be returned to the

interrupted program.

14



• - .---,-— ,• - -‘•...

2.2.2 No Trace Read (Readi.

Whenever the microcomputer wants to obtain data from memory

(The POP-Il in this case), It p laces the des i red add ress on the address
lines and then asserts TRO (transfer request). The transition of the

TRQ signal causes an interrupt in the PDP-ll . Next the software

determines whether a read, write and trace operation is desired .

ADDRESS )<‘~~ IAL ID ADDRE SS

F igure 7

No Tra ce Rea d T im ing

In this case the PDP will fetch the data at the desired memory location and

place it on the data lines. After the data has settled , the interface

issues TACK (transfer acknowledge). As soon as the microcomputer detects

the asserted TACK , it takes the data off the data lines and then removes

TRQ. The clearing of TRQ causes TACK to be restored, thereby completing

the cycle.

15 

-—---- .-., - .-
~~~~~~~~~~~ -~~~~~~~~--—-“—••• - .- •


T~~~.
_

.—,--- —- ..-

~~

. _ _ _

2.2.3 No Trace Write.

The interface action for this type operation is very similar

to the procedure described in 2.22. Whenever the mi crocomputer wants

to perform a “wri te ” operation it places the address, where the ii

is to be written, on the address lines and the data on the data lines .

After a wait time of approximately 250 ns , the mi crocomputer then asserts

the TRQ signal . Again, as in 2.22, interrupt is caused at the POP-li

whdch will then read the status register to determine what type of

operation is to be performed. Since a wri te operation is called for the

POP will read both the address register and the data register. After

interrogation of these two registers POP software performs the wri te opera-

tion . Where this is completed then the TACK signal gets asserted. After

receiving TACK , the microcomputer removes TRQ which is term is used

to restore TACK.

DATA ~-)(VALID DATA

ADDRESS T~
(VALID ADDRESS

FIGURE 8

NO TRACE WRITE TIMING

16

_ _ --- .
~~~~~~ •-- -— .- —.— -- --.~ .-- - .•~- • - - ----—_-

~~
—---- •-- 



-~~~

2.2.4 TRACE READ:

If tracing is desired , then the appropriate bits in the

control register must be enabled . The mi crocomputer places the

address from where it wishes to get information on the address lines and

then pulls down the TRQ signal. Since tracing is enabled the address

on the address lines gets compared to the upper and l ower break point

register contents . If it falls within the bounds of these registers

then the comparators fire and cause an interrupt in the microcomputer.

The microcomputer will not honor the interrupt until the present instruc-

tion is completed .

As soon as TRQ goes low, the PDP gets interrupted and the

software determines what action to take depending on the condition of

the status registers. Since we are talking about a trace-read

operation , the PDP will take the address off the address lines , read

the appropriate PDP-ll memory l ocation and place that information on the

data lines . After a 250 ns settl ing time (actually much greater since

done in software ) the POP causes the TACK signal to be asserted . The

microcomputer takes the data off the data lines and then removes the

TRQ, which in turn releases TACK. The upward transition of TACK signifies

the end of the read cycle.

The processor will now honor the interrupt that was set by

asserting IACK I. As soon as the interface detects IACK I , it removes IRQ.

The POP responds to IACKI by p l ac ing  the trap vector locat ion on the

data lines and then asserting the TACK. As soon as the processor detects

TACK it grabs the information off the data lines and removes IACKI .

This action resets TACK and thus completes the interrupt. The mi cro-

computer will pl ace the trap vector location into its program counter

and then proceed with manual data transfer operation .

17 

—_~~~~~~~~~~~~~~~~~ --~~~- .• - • - -



~~• • • ~ //•‘~~~~/
ADDRESS ;

~
-/-;‘

~~~~ VALID ADDRE SS

TRQ

I RQ

IAC K I

~~~~~~ 
‘

- , ~~~~~~~~~~~~~~~~~~~~~~ VALI I DATA TRAP

Figure 9

Trace Real Timing

2.2.5 Trace Write.

On a write operation the microcomputer places the address on

the address linesand the data on the data lines prior to assertion TRQ .

As soon as TRQ goes low, the comparator fires (during a trace operation )

and the interface asserts the interrupt request line (IRQ). The

microcomputer will not respond to this request until the write opera-

tion is completed. Once the POP—li detects the TR Q signal , it reads

the interface status register and determines the type of operation to be

performed. Since we are talking about a write operation the PDP must

fetch both the information on the address lines and that on the data

lines. The PDP software then writes the data into the desired memory

location. As soon as that is completed the PDP sends the TACK signal

18



causes the TACK to be released. Since the write operation is now

completed , the microcomputer will honor the interrupt by asserting

lACK. The POP will respond by placing the trap vector address on the

data lines and then asserting TACK. When the microcomputer sees TACK

it takes the data off the data lines and then removes lACK which

in turn resets TACK and thereby completes the operation.

ADDRESS 
_____ 

VALID ADDRESS

DATA 
____ ~(VALID DATA TRAP VECTOR-ADDRESS

Figure 10

Trace Write Timing

19 

~~~ . - ---- ,-•- -~~~ ~~~ - -— ——•-.


——,--— • . - ~~

SECTION III

SOFTWARE/HARDWA RE INTERACTION

3.1 Start-Up Interrupt.

The following flowchart describes the necessary sequence of

events to send a start-up interrupt to a microcomputer.

(BEGIN ID YES

ENABLE CSR1 1 [SEND TRAP VECTOR ADDRESS

SET THE INTERRUPT BIT 1 I ENABLE CSR1

DISABLE CSR1 I SEND TRANSFER ACKNOWLEDGE

DID CLEAR CONTROL REGISTER

_____ I CLE::DsRl

Figure 11
Start-Up Interrupt Flowchart

20

—--~~.—- ~~~~-- . . —- ---~~~~-.

3.1.1 Program For Sta rt-Up Interrupt.

MOV #2 DRCSR Enabl e DSR1
MOV #1 1030, DROUTBUF Cause start-up interrupt

MOV #0, DROUTBUF Clear DROUTBUF

CLR DRCSR Disable DSR1

Loop: MOV DRCSR , Rl Read Control & Status register

BIC #77777,R1 Check if REQB came in

BGE LOOP No

MDV # ADDR , DROUTBUF Set up control register

MOV #2, DRCSR Ena bl e DSR1

MOV #1040, DROUTBUF: Set control regi ster to enble CRTAKI,
CLEAR REQUEST B

MOV #100040 , DROUTBUF Set enable bit

MOV #30, DROUTBUF Clear CR and stop data from being

written in DOR

CLR ORCSR Disabl e OSRI

3.1.2 Program Description.

Inst. 1 - The first instruction opens the data path for the DROUTBUE

of the DRIIC to the interface control register.

Inst. 2 - Loads the contro l registers with lIO3O
~
. This bit configura-

tion causes the interface to generate and IRQ (interrupt request) signal .

Inst. 3 — This instruction clears the control register. It is a good

practice to always cl ear this register after an operation since over-

writing data might cause a momentary race condition which will lea~

to improper interface operation. Note that 00 in the write bit causes

the next word to be written into the DR OUTBUF to be loaded into the

interface DATA OUT Register as long as DRCSR remains cleared .

21

-~~~~- •-

_-~~~~~~~~~ .- ----~~~~~~~~~~~~ -- ---- - - , -~~~~- - —. —

Inst. 4- In order to prevent further data from being written into the

control register it is necessary to disable DSR1

Inst. 5., 6., & 7. - Contents of the DRCSR get interrogated to check

if a request B (interrupt acknowl edge) occurred. The program stays in

a loop until the request B goes hi.

Inst. 8 - The trap vector l ocation gets written into DROUTBUF and as

soon as the NDR pulse arrives it gets latched into the DATA OUT Register.

Inst. 9 - Enable DSR1 and get ready to write into the control register.

Ins t. 10 - The value is now written into the control register. This

data pl aces a ~~ on the D input of the fl i p— flop which causes the

transfer acknowl edge signal for interrupts .

Inst 11. — The Mov #100040, DROUTBUF ins t ruc t ion writes the va lue

100040 into the control register which causes the flip flop FF5 to get

loaded with the value on the ‘0’ input. Since that value is a ‘1’ ,

the interface generates a transfer acknowledge signal (TACK).

Inst. 12. - This instruction cl ears the control register . Note that the

value 3 in the write bits is not used to direct the data from DROUTBUF

to any interface register.

Inst. 13. - Disables DSR1 . The start-up interrupt procedure is now

complete.

3.2 Loading The Interface Registers

3.2.1 Control Register.

To load the control register takes two steps. First a Mov#2,

DRCSR operation is required which opens up the data path from the DR11C

22

~

--. --~~~~ -— -~~~-~~~- - -~~~~~~~~~~~ —.-- • - - -—-—-~~~~~~~~~~~~~~~~~~ - • . .--- ,.

• buffer to the control register. The second instruction is a MOV #XXXXX ,

DROUTBUF. The execution of this instruction places the value XXXXX

into the control register.

3.2.2 Upper Break Point Register

Loading this register takes two more steps than in the case

addressed in 3.2.1. The first instruction is aqain a MOV #2, DRCSR.

Rather than sending the actual data, the write bits in the control

register must first be set so the next data written into the DRll-C output

data register will get cloc ked into the upper break point register.

- • This is accomplished with a MOV # 020, DROUTBUF. Before the correc t

value can be loaded into the breakpoint register, a CLR DRCSR instruc-

tion must be issued. This is necessary since its omission would

continuously load the control register wi th the information written

into the DROUTBUF by the program. The final instruction in the loading

sequence is MOV #XXXXX, DROUTBUF where XXXXX is the value to be loaded

into the upper BPR.

• 3.2.3 Lower Break Point Register

The program sequence is identical to the one described in 3.22

except that the second instruction loads a 010 into the control register

instead of a 020. The program necessary to load the lower break point

register is:

MOV #2, DRCSR
MOV #010, DROUTBUF
CLR DRCSR
MOV #XXXXX , DROUTBUF

23

--.-- - -
_
~-.—- a----- • .—-- -•-. - -~~~-—-..

~~~~ -~ • .-



- - --—~~~ ~~~ -- -~~~~~~~-~~— - . -_—-- -— --- ~~~----- -

3.2.4 Data Out Register.

The followi ng program is needed to load the DATA OUT register.

MOV #2 DRCSR
MOV #0, DROUTBUF (needed if CR did not contain a ‘0’)
CLR DRCS R
MOV # XXXXX , DROUTBUF

The only difference between this code and the UPPER/LOWER break

point register loading sequence is the value being stored into the

control register. In order to route the data from DROUTBUF to the DATA

OUT register a “0” is required in the write bits.

3.2.5 Master Clear.

The master cl ear signa l resets all interface registers to *

zero. It is usually issued when the interface is first turned on or

if the operator desires to reset the interface. The code necessary

for a master clear consists of one instruction. It is MOV #3, DR CSR.

The execution of this instruction causes a one-shot tofire which will

then clear all of the interface registers.

3.2.6 Read Status Register.

A status register read operation is necessary in order for the

POP-il to determine what type of operation the microcomputer desires.

The following sequence is required in order to transfer the information

from the status register to the POP-li.

MOV #2 DRCSR enabl e control register
MOV # 030, DROUTBUF set the read bit to U
CLR DRCSR prevent further data from being written into CR
MOV DRINBUF , RX read the contents of the st atus register

into any PDP-ll register.

24

L~. - - -~~~~~~~~~~~~~~~~ -.. • • -
~~~~~ - •~~~~~~ • . ~~~~~~~~~~~~~~~~~~~~~~~~ -- ----.-~~~~~~~~~~ - 


3.2.7 Read Address Lines.

Whenever the microcomputer desires to write into POP memory

or read from PDP memory, the PDP-l l must obtain the address location

that the microcomputer wants to access. This is done in the following

mann er.

MOV #2, DRCSR enables control regi ster
MOV #1, DROUTBUF set the read bits to 01
CLR DRCSR
MOV DRINBUF, RX read the information on the address

lines into any PDP-ll register .

3.2.8 Read Data Lines.
This operation is needed when the microcomputer wants to write

into memory. In addition to interrogating the address lines , the PDP
must also obtain the information on the data lines so that it can
perform the write optation. Again , the only difference between this
read operation and the others is the val ue in the “Read” bits.

MOV #2 DRCSR
MOV #32, DROUTBUF
CLR DRCSR
MOV DRINBUF , RX

3.2.9 Read MID.

The MID lines (master identification) tells the PflP whether a

processor is requesting service, or some peripheral device such as a

bus control interface unit. The sequence of operation is the same with

the exception that both read bits are set to “1” .

MOV #2, DRCS R
• MOV #33, DROUTBUF

CLR DRCSR
• MOV DRINBUF , RX

25

- -- -.-_---~~~~ —. --- -
~~~~~ --~~~~~~ • • .• rn ~~~~~~~~~ • • . --



~- — - - 
• -—-- —---- 

~~~~~~~~~~~ 

3.3 No Trace Read.

Whenever a microcomputer wants to read data out of memory, then

the Processor asserts the transfer request signal (TRQ). At the same

time, it sets the DRVC (Data receive) and the IOSL (Input/output select)

lines to indicate a read operation and pl aces the address on the address

l ines. The transition of TRQ causes the address to get clocked into

the interface address register and also generates the request A signal

which tells the POP-il that the microcomputer needs servicing. The

request A signal sets a flip flop which, in turn , sets bit number 7 in

the DRCSR register. The POP-li program continuously monitors the status

word to see if the request A bit gets set. The following program will

perform a read operation. (See Figure 12).

LOOPA : MOV DRCSR, RO read interface status register
BIC #177577, RO mask off all bits except request A
BEQ LOOPA if not set, then wait
MOV #1 ,DRCSR clear request A
CLR DRCSR reset DSRO - •

NOTE: The MOV #1 , DRCSR instruction causes a 1’ to be written into

bit 0 of the status register (CSRO). This bit is connected through an

inverter to the CLEAR input of the REQUEST A flip flop. The execution

of the MOV instruction clears the flip flop and prevents it from being

reset until the CLR DRCSR instruction has been issued .

The POP—l i code, up to this point detects a request A condition

and resets the status bit. The next operation is to determine what

type of operation is to be performed. This i~ done in the followi ng manner:

MOV #2,DRCSR enabl e control register
MOV #30, DROUTBUF get ready to read the status register
MOV DRINBUF , RO pl ace the status register contents into RØ
CLR DRCSR

26

L ______

- ~ -~~~-,,-- .—-- - - —~- ‘ ‘~~~~~~~~~~ • - •.- .~-—-—-— -— - ---.,-—.

~~~

CBEGIN D 
_ _ _ _

~~~~~~~~~~~~~ WRITE THAT DATA INTO
THE INTERFACE DATA-

NO
RE QUEST OUT-REGISTER

YES SEND TRANSFER________________________________ ACKNOWLEDGE
Read status register content and I
determine what type operation is
requested.

_ _ _ _ _ _ _ _

(END
D

IS THE

‘NO TRACE READ ’?
NO

~~~~OU~~~

YES

[READ THE ADDRESS LINES

_ _  _ _

FETCH FROM MEMORY THE
DATA CONTAINED AT THE
GIVEN ADDRESS

__________________ __________________

Figure 12

No-Trace Read Fl owchart

27

_____________ ••-_ ~~~~~~ - —~~~~~~~~~~~ —.-~~~~~~~~~~~~~~~~~~~~~~
- •



• The PDP-ll code, up to this point detects a ‘request A’ conditi on and

resets the status bit. The next operation is to determine what type

of operation is to be performed. This is done In the following manner:

MOV #2 , DRCSR enable contro l register
MOV #31 , DROIJTBUF get ready to read status register
PIOV DRINBUF, RO place the status regiser contents

into RØ
CIR DRCSR

The next procedure is to determine if a valid master Is requesting

service. Then the POP checks if a trace or no trace operations is

desired . The IOSL si gnal is checked to see if a memory or I/O process

is desired . Finally, the state of DRVC indicates whether the operati on

is a ‘read ’ or a wri te. Once it has been determined that a ‘no-trace

read’ operation is to be performed the POP must read the address

register. This is accomplished in the following manner :

MOV #2, DRCSR enabl e CSR1
MOV #31 , DROUTB IJ F get ready to read Address
CLR DRCSR disabl e DSR1
MOV DRINBUF , Ri read the address into register 1
MOV (Ri), R2 read whatever is at the address

pointed to by Ri and place it into R3
MOV #2, DRCSR enable DSR1
MOV #0, DROUTBIJF get ready to write into flata out

register
CLR CRCSR disable OSR1
MDV R2, DROUTBUF write the data into Data-out register
MOV #2, DRCSR get ready to write into CR
MOV #100004, DROUTBUF send transfer acknowledge
MDV #30, DROUTBIJF clear DROUTBUF
CLR DRCSR disable OSR1

28



_ _ _ _ _ _ _ _ _  --- -~~-

The MDV #100004 , DROUTBUF instruction causes the transfer acknowledge

signal to be asserted which tells the microcomputer that the data is

on the data lines . The microcomputer will take that information off

the data lines and then remove the transfer request signal which , in

turn , removes the TACK and completes the read cycle.

3.4 No Trace Wri te

The procedure for this operation is very similar to the previous

one. This time , the POP must read the data-line in addition to the

address line but it does not place any data in the Data out register

like it did previously. It only sends the TACK si gnal to indicate that

the write operation has been performed.

LOOPB: MDV DRCSR , RO read interface status register
MC #177577 , RO mask off all bits except request A
BEQ LOOPB if request A not set, then wait
MOV #1 , ORCSR clear request A
CLR DRCSR disabl e USR1
MOV #2 , DRCSR enable OSRI
NOV #31, DROUTBUF set up CR to read Address lines
CLR DRCSR d i sab le  DSR1
MDV DRINBUF , Rl place the address into Rl
MDV #2 , DRCSR enabl e DSR 1
MDV #32, DROUTBUF set up CR to read Data lines
MDV DRINBUF, R2 read the data
CLR DRCSR disable DSR1
MOV R2, (Rl) perform the ‘write ’ operation
MDV #2, DRCSR enable DSR1
NOV #100004 , DROUTBUF send TACK

MDV #30, DROUTBUF clear DROUTBUF
CIR DRCSR disable DSR1

29



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~~~~

C_Begi n_9
Did

Request A
arri ye?

read address lines 1
read data lines

II,
perform the ‘wri te’ operation]

~Ifsen d TACK I
L END

Figure 13

No-Trace Write Flowchart

Note that the fourth instruction (MDV #1 , DRCSR) enables the

DSR1 bit and the fi fth instruction enables the DSR2 bit. Theoretically

the fifth instruction should just overwrite the third wi thout havi ng

to do the clear operation . The problem is , however , that if the

‘clear ’ Is not issued that for a small fraction of time both , bit 1

and bit 2 are on thereby causing a master clear to be unintentionally

issued . The programmer should always clear the DRCSR register before

setting a different bit In it. The same is also true for the interface

control-register.

30

- -S 

-.- - - - - ~~~~— ..- ~~~~~~~~~~~ - -
—..- --

~~~~~~~~~~~


— -—-- -—•.——.. .— -*.—— .————-.-.,., .----.—.— .--- -• -— •—— ---.—_—-. .-. -—.• -.-—

3.5 Trace Read

Whenever the trace feature is enabl ed then the interface

generates an interrupt to the microcomputer. The microcomputer will

complete the ongoing transaction (in this case a read operation) and

then honor the interrupt . The POP program is identical to the normal

‘read’ operation except that when the PDP detects that the trace bit

is set, when it reads the status register , it calls a subroutine ,

which interrogates the Request B bit. This bit gets set whenever the

microcomputer honors an interrupt request.

LDOPC: NOV DRCSR , RØ
BIC #177577, RØ
REQ LOOPC
MOV #1 , DRCSR
CLR DRCSR
MDV #2, DRCSR
MOV #31 , DROUTBUF
CLR ORCSR
NOV DRINBUF, Ri
MDV (Rl), R2
MDV #2, DRCSR
MDV #0, DROUTBUF
CIR DRCSR
MDV #2, DRCSR
MDV #100004, DROUTBtJF
MOV #30, DROUTBIJF
CLR DRCSR

JMP LOOP2

31

- -~~~- •~~~~~~~~~~~ -— ---~~~ _~~~~~~~~ • - - ~~~~-~~--. --. ----~~~•


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .

(_BEGIN 9

CLEAR RE QUEST A

READ ADDRESS LINES

3,
I_PERFORM THE ‘ READ ’ OPERATION

1’
WRITE THE DATA INTO
THE DATA-OUT-REGISTER

SEND TACK

PLACE TRAP VECTOR LOCATION
IN THE DATA LINES

SEND TACK

~If

~~~~~N D 9

Figure 14

Trace Read Fl owchart

32

-— • - • — -.-- ----..-- •~~~~~~~~~~. ‘ - • • -~~~~~~~~~ ---~~~~.-.•——-— —-- --—-~~——• -- . --- -•---- - ---

• - ~~~~~~~~~~~~~~ ~~~- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

LOOP2: NOV DRCSR , Rl read PDP status reg i s ter

BIC 77777 , Ri mask off all bits except request B
BGE LOOP2 if not set, then wa i t
MOV #2, DRCSR get ready to write into CR
MOV #0, DROUTBUF set up bit to wri te into Data

out register
CLR DRCSR disable DSR1
MOV #Addr , DROUTBUF write the Address on the data

lines
MOV #2, DRCSR enable DSR1
MOV #1040, DROUTBUF enable CRTACKI
MOV #100040, DROUTBUF send the TACK si gnal
MOV #30, DROUTBUF clear CR •

• .

CLR DRCSR di sable DSR 1

3.6 Trace Write

This feature is very simi lar in operation to the trace read.

The normal wri te operation is performed first and then , just like in

the ‘trace read’ case, the interrupt is serviced . The following

program is used for the ‘trace wri te’ operation .

LOOPD: MOV DRCSR, RO read DR11C status register
MC #177 577 , RO mask off al l bi ts except for

request A
BEQ LOOPD wai t unt i l request A comes in
MDV #1 , DRCSR clear request A
CLR DRCSR disa ble DSR1

MOV #2, DRCSR enabl e DSR1
MDV #31 , DROUTBUF get ready to read the address
CLR DRCSR disabl e DSR1
MOV DRINBUF , Rl read the address into Ri
MOV #2, DRCSR enable DSR1
MOV #32, DROUTBUF get ready to read the data
MDV DRINBIJ F, R2 read the data into R2
CLR DRCSR disabl e DSR1

33

I

L.~~~~~
. .-- - •- •- - •~~~~- •— -~~~~~~ •. . •• -~~~~~~~ • •~~~~~~—- -.- - - -

_____________________ — ,—•—.— — ,
~~~• •-——.—,.-. •-.-.~~ ———.— ‘— -—‘•...,-~

—
~
-—.‘- - - — .-•- - -•---.-—- ---. -.—. • —- -. - - - .• —.—---• ‘~ ~~~~~ -~~~~~~ •

MOV R2 , (RI ) perform the wri te operation
MOV #2, DRCSR enable OSR1
MDV #100004, DROLJTBUF send TACK
MOV #30, DROUTBUF clear DROUTBUT
CLR DRCSR disable D~Rl

JMP LOOP2

LOOP2 : NOV DRCSR, RI read DR11-C status reg ister
• BIC #77777 , Rl mask off a l l  b its except request B

BGE LOOP2 i f not set , then wait
MDV #2, DRCSR get ready to write into CR
MOV #0, DROUTBUF set up CR bit to wri te into

data register
CLR DRCSR disable DSR1
MDV #Addr DROUTBUF wri te the address on the data

lines
NOV #2 , DRCSR enable DSR 1
MDV #1040, DROUTBUF enable CRTACKI
MOV #100040, DROUTBUF send the TACK signal
MOV #30 , DROUTBUF clear CR
CLR DRCSR disa ble DSR 1

34



- -

~ ~~~~~~~~~~ •~~~~
---‘

~~
— • • ~~~~~~~~~~~~~~~~~ •~~~~~• - ~~~~~~~~~~~~~~~~~~~~ 

-.----•- -. 
~~~~~~~~~~~~~~~~~~~~~~~~~ 

•
-~~~--

C BEGIN

~~~~RR~~E?

FLEAR REQUEST A j

~1,.
[READ ADDRESS LINE~~j

~ EAD DATA LINES ]
PERFORM THE ‘WRITE’ OPERATIONSI

SEND TACK 1
LNO~~~~~~~~RE QUEST B

RRIVE:

PLACE TRAP VECTOR LOCATION ON
DATA LINES

SEND TACK 1
LEND)

Figure 15

Trace Wri te Flowchart

35

~



- r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—---— -- -- - - -—-.

SECTION IV

CONCLUSION

The uni que feature of thi s interface is the fact that the

microcomputers execute their programs directly out of POP-il memory .

Whenever a microcomputer wants to perform a memory read or wri te

operation , the interface noti fies the PDP-ll what type of transfer is

to be performed. The POP software will perform the desired task and then

noti fy the mi crocomputer when it is completed . By doing the traditional

‘control panel ’ features in software , rather than hardware , speed is

sacri fi ced but flexibility is gained. By simply changing the POP—i l

program , the interface can be made to perform many different tasks

whereas similar hardware features woul d necessitate major design changes

in the hardware . Using thi s design also keeps the cost relati vely low ,

since the number of hardware components is kept at a minimum .

36

—- —---- - - ---— - —-----•-~~~~-- -~~~~



APPENDIX A

SCHEMAT IC OF INTER FACE

37

A _~~_~__ ~.•_.___ ~ — — - _____________________



_ 
— --- -- -.—

••~~~~~~~~~~~ ---~~~~~-~~~~~~~~~~~~~~~~~~~~~~~~ .-----— - - - - - - .-—~~~~~~~ -

L -~~~ 

I 

-

THIS PAGE IS BEST QUALITY P1 CILC A,~~a~ 
- ,-

. 
•

~R&~M COPY FURNISHED TO DDC ._.. ~~— ~~~~~:~
- 

~~

- -
-

~~~~~
;
~~~

-
~~

• • .

I 
- 

r —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~

--- ‘

_I~ L:~.~T ~

I
-

S

I
-

I
~~~~~~~

- - 
H

- 

- 
j • i~

II 
-‘

_ _ __ _ _



- *rfl - - - -  — - r~~~~~~~~~~~~~~~~~~~ 
— - --- ,~~~-~~~ —-r~ -~~~~ --~~~~~~~ ~~~~~~~ --.-.~~~~~~~ ~~~~ ~~~~~~ 

--

_____- - - -— —. -• ——-- --— - - ——--—-_---_--- -

~ ~~~~~~~~

J~’
F 1] :

I 

L _

- 

: 
~~~~~~~ 

~~~ :T - ~~~< ---
~

- - -
~ 

------- - -H ~ 
-

-

~1 4 
~~*

I 

{__
_ 

I I [ 
-

I ~~~~~~~~~~~~~~~ ‘
I

~~~ 

I I

•

~~~~~~~~~~~~A 
A • A A 1

Figure 16
Schem atic of Interface

38
4~~

- L~~~~~~~ _-.--_ . —-- -- -



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — 
—•_-—---- ..——-.

~~~~~~~
-- ------•- -—— - --—— —-----

~~
- —

~
——

~~
-—

~

APPENDIX B

MICROCOMPUTER

INTERNAL BUS

(I-BUS)

SPECI FICATIONS

40



__________________________________ •.— -• .

B.O REQUIREMENTS

The I-Bus Is a 16—bit data transfer bus and associated control
lines which serve to transfer data between all subsystems within the
microcomputer (MC). These subsystems include the CPU, the memory, the I/O,
and the local and global serial bus interface units (L—BIU and G-BIU).

The I—Bus Is asynchronous. The speed of data transfers over
the I-Bus is determined by the speed of the devices interfaced to it.

Devices interfaced to the I-Bus compete for access on a
priority basis. High—speed peripherals are usually assigned highest priority
and the processor is assigned the lowest. In operation , cycle—steal ing
action occurs with the new bus assignment resolution overlapped wi th the
prev ious data transfer.

There are two classes of devices which interface to the I-Bus:
mas ter dev ices , which control data transfers; and slave devices, which
generate or accept data in response to some master. Data transfers in
either direction always occur between one master and one slave. The
processor i s an exampl e of a master device and a memory modul e i s an example
of a slave device. All slave devices recognize and are activated by
specific addresses. For example , a memory is activated when some master
dev ice does a memory (MEM) data rece ive (DRCV ) to an address within the
boundar ies of that memory module.

W hen an autonmous transfer controller (ATC ) is started by the
processor, it transfers data between memory and the peripheral device by
cycle—stealing with the processor and any other master devices which may
be active. When the ATC needs to transfer a word of data over the I-Bus ,
the master device part of the ATC must gain to the I-Bus and then may
address a sl ave (such as a memory module) and read from it, wri te to
it, or perform a read-modify-write with it.

41



The requirements are broken down into two major subsections.
This specification covers the definition of the interface signals and
their relations to each other.

B,l SIGNAL DEFINITIONS

The next two subsections cover I-Bus bl ock diagram and the
interface definitions. The convention is that a high vol tage is a logic

“1” (TRUE) and that a low vol tage (ground ) is a logi c “0” (FALSE). Some
of the signal s are w ired - or functions to allow the use of open co l lector
outputs to drive these signals.

All signals are transmitted as complements.

B.l.l Bl ock Diagram .

Figure 1 shows the various signals assocaited with the I-Bus
to an MC module interconnection.

B.1.2 Interface Definitions.

The subsections which follow define the signal lines which
comprise the I-Bus. These signals are described in five groups according
to their function. The signals associated with data transfer operations
are defined in Section B.i.2.l. Those associated with bus acquisition are
defined in Section B.l.2.2. Interrupt control signal s are defined in
Section B.l.2.3. Facilities such as MC system control , cl ocks and power
are defined in Section B.l.2.4. Miscellaneous signal s which serve
special -purpose functions are defined in Section B.l.2.5.

B.l.2.l Data Transfer Operations.

Data transfers on the I-Bus are handled as a demand/response
sequence between a bus master (such as the processor) and a bus slave
(such as a memory or an I/O device).

42 

-_ - -- -- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



~~~~~~~~~~~~~~~~~~~~~~

The following 37 signals are utilized exclusively for data
transfer operations on the I-Bus. Thirty-two of these signals are 16-bits
of address (ADD) and 16 bits of data (DATA) while the remaining signals
(I/O select (IOSL), data rece ive (DRCV), transfer request (TRQ), transfer
acknowledge (TACK), and transfer timeout (Tb)) are used to control the
actual transfer operations. All signals are transmitted and received
between a I-Bus master device and an I-Bus slave device as defined in
the following paragraphs.

B.l.2.l.l Master to Slave Send Cycle

When an I-Bus master device has access to the I-Bus, it shall
accomplish a send cycle through the following action. The master after
gaining I-Bus control asserts transfer request (TRQ). At the same time
the master shal l assert a send command by pulling data receive (DRCV) low.
The master shall also at this time specify whether it is a memory or I/O
operation (IOSI), supply a valid 16 bits of data (DATA) and a valid 16-bit
address (ADD). IOSL = TRUE implies a memory operation.

All slave devices interfaced to the I-Bus shall receive the
transfer request (TRQ) transmitted from the master. The slave devices shall
decode the address (ADD) to determine which slave is being addressed.
The slave device shall internally delay the transfer request (TRQ) for
a suffic ient time to account for the worst case address decode time and
the worst case I-Bus skew. Thus, each slave shall generate an internally
delayed transfer request (TRQ) and use it to strobe a valid address decoder.
The case of a memory module , the internally delayed transfer request (TRQ)
and a valid address decode would generate a memory start signal . When the
slave device has decoded the address as valid , it shall then assert transfer
acknowledge (TACK). At the time the slave device asserts transfer acknowl-
edge, it shall either clock the data (DATA), address (ADD), data receive
(DRCV), and I/O select (IOSL) signals from the I-Bus Into registers, or in
the case of a memory, delay the transfer acknowledge (TACK) until the memory
write cycle is complete.

43

-- - _- -- • - - - -—- -- --- - - --- — - - - - - - - .- —_ - -

When the I-Bus master device receives the asserted transfer
acknowledge (TACK), it shall release transfer request (TRQ).

The master then looks for the release of transfer request (TRQ)
before releasing data receiv (DRCV), I/O select (IOSL), address (ADD),
and data (DATA). This allows a slower third party device, such as a
ma intenance panel , to delay the transfer while it latches the data and/or
address for monitor purposes.

When the slave device receives the rel ease of transfer request
(TRQ), it hsal l release transfer acknowledge (TACK). This is shown as
“TIME4” of Figure 2.

When the master device receives the released transfer
acknowle dge (TACK) , it may begin a new cycle or it may relinquish the
I-Bus to another master device.

B.l.2.1.2 I-Bus Master From Slave Receive Cycle

When an I—Bus master device has access to the I-Bus, it shall
accomplish a receive cycle through the fol lowing action . The master
asserts transfer request (TRQ), and supplies a valid 16-bi t address
(ADD). At the same time the master specifies whether it is a memory or
I/O operation (IOSL).

All slave devices interfaced to the I-Bus shall receive the
transfer request (TRQ) transmitted by the master. The slave devices shall
internally delay reques t and decode the add ress as for a send cycle
(B.l.2.l.l). Each slave device shall internally delay the transfer request
(TRQ) for a sufficient time to account for the worst case I—Bus skew and
worst case address decode time. When this is done and the address is decoded
as valid , the slave device will begin to send data. In the case of a memory
module this means starting a read cycle. When the data (DATA) is valid, the
slave device shall assert transfer acknowledge (TACK).

44

— — - -—---~~~~~~~ -•- -~~~~~~——-—~~~~~~—• - -— ~~~- - --.—- - - -

- :.A ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

When the I-Bus master device receives the transfer acknowl edge
(TACK), it shal l internally delay it to account for the worst case I-Bus
skew and then release transfer request (TRO). As the master device releases
transfer request (TRQ), it shall clock the data (DATA) from the I-Bus
into its internal register.

The master then looks for the release of transfer request (TRQ)
before releasing data receive (DRCV), I/O select (IOSL), and address (ADD).
This allows a slower third party device such as maintenance panel to del ay
the transfer while it latches the data and/or address.

When the slave device receives the released transfer request (TRQ),
it shall release transfer acknowl edge (TACK) and data (DATA).

When the master device receives the released transfer acknowledge
(TACK), it may begin a new cycle or it may rel i nquish the I-Bus to another

master device .

B.l.2.l.3 Data Transfer Special Cases

In addition to this normal transfer request/acknowledge
sequence there is one way in which a transfer can be terminated abnormally.
A transfer time out (TTO) is generated by a watchdog timer on a memory
controller. This time out is used to prevent a master device from locking

up the I-Bus by attempting to address either nonexistent memory or I/O
devices. When the time out occurs , the master uses the time out signal

in the same manner as a transfer acknowle dge s ignal , except it sets its
own time out error flag and proceeds . In the case of the processor, this
will correspond to an I/O acknowl edge time out or a memory error.

B.l.2.2 Bus Control

There are three control lines and a set of four identification
lines associated wi th bus master control . These three control lines are
used to control the assignment of the bus to a bus master. The assignment is

45

performed on a first-come-first-serve basis , with hardwired priority used
to resolve simultaneous requests. The four identification lines are
associated wi th the maintenance function. The master that is in control
of the bus places its identification code on these lines (Processor = 0;
the ID default value). This identification is especially useful during
“The Address Breakpoint” maintenance function where it is important to
be able to identify who issued the breakpoint address. The use of four
lines allow s the unique identification of up to 15 bus masters in addition
to the processor. F

B.l.2.2.l Normal Bus Requests

The three bus master control signals are bus request (BRQ),
bus release (BREL) and bus grant (BGR). The bus request line (BRQ) is
used to initiate a bus master assignment , while the bus release line
(BREL) is used to terminate the assignment. The bus grant line (BGR) is
threaded through each module and is used to resolve conflicts when two
or more masters request the bus simultaneously. A master dev i ce can request
the I-Bus only when bus grant (BGRI) is FALSE. When the bus request l ine
(BRQ) is asserted, the bus grant (BGR) signal starts propagating through the
modules on the I—Bus. When the signal reaches the highest priority requesting
module , it activates that bus master, which blocks the bus grant (BGRO)
signal from propagating to any lower priority module which may also be
requesting the bus. When the master issues TRQ, it also issues a bus release
(BREL). This command forces all bus masters-, including itself, to remove

their bus requests (BRQ). When the master sees BGRI go FALSE , it releases
BREL and unbl ocks BGRO. Block transfers are accomplished by immediate
re-requests of the bus . A device doing a block transfe r can always be
preempted between transfers by a higher priori ty device requesting the bus
when BREL goes FALSE. A new bus master will wait until the bus is quiescent
(transfer request (TRQ) and transfer ac know ledge (TACK) have ended) and start
its transfer cycle(s). This sequence allows bus mastership resolving to
be overlapped with the data transfers, thus minimizing or partially
eliminating the overhead associated with bus mastership assignment .

46

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



_ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

B . l . 2 . 3  Interrupt Contro l

There are three I-Bus control lines associated with interrupt
contro l . They are interrupt request (IRQ); interrupt inhibit (INHB); and
i n t e r r u p t  acknowl edge (IAK). Interrupts are serviced on a first—come—
first—serve basis with priority resolution if there are simultaneous
interrupts . The interrupt request (IRQ ) is issued by any device that
wishes to interrupt the processor (see Figure 6). There may or may not be
an interrupt mask associated with (and internal to) the device which will

inhibit the device from issuing an interrupt request (IRQ). In addition ,
there is an interrupt inhibit (INHB) line which is used by the maintenance
panel to inhibit all devices from interrupting the processor when it is operating
in the maintenance panel mode. When the processor completes the execution
of the current instruction it honors any interrupt by asserting interrupt
acknowl edge (IAK). The i nterrupt acknowl edge line is threated through all
modules and activates the highest priority interrupting device. This device
inhibits the interrupt acknowledge (IAK) signa l from propragating to l ower
priority modules . When the device receives its interrupt acknowl edge (IAK )
it places the address of its memory interrupt trap vector location onto
the data lines . It then indicates that it has placed this address on the lines
by asserting transfer acknowl edge (TACK) after a l5Dns. The processor latches
the address into an internal register and completes the cycle by removing
the interrupt acknowl edge (IAK). The device waits for IAK to go away and
then removes the address from the data lines, and terminates TACK.

B.l.2.4 General Facilities

The general bus facilities are composed of a free running clock
(FCLK), master clock (MCLK), a master stop (MSTP), a clear/reset (CLR)
signal , power and ground. The free running clock (FCLK) can be used by any
device that needs a clock signal. It does not necessarily have any
particular timing relationship with respect to any of the other bus signals.
The master clock (MCLK) is similar to the freerunning cloc k except that it
is controlled by the master stop (MSTP ) signal while, the free running cloc k
(FCLK) is not. In general , the free running clock (FCLK) will be used by
slav e dev ices , while, the master clock (MCLK) will be used by master devices.

47



-~~~~~~~ -~~~~ - -  -~~~~~~~~~~- -—- --~~~~- -— -—- - --- -~~~~~~~~~~~~

This choice allows slave memories which must refresh themselves to continue
even thoug h the master stop (MSTP) signal is present . Special care must
be exercised to make sure that each data transfer is allowed to go to comple-
tion before master stop (MSTP) is asserted . Otherwise, a dynamic memory may
be inhibited from doing its normal refresh operation. The clear/ reset
(CLR) signal is used to initialize the processor and all other devices .
The bus becomes quiescent when the clear/reset (CLR) is used . When the
clear / reset issuing device issues CLR all activity on the bus aborts , and

all signals , except BREL , go FALSE ; BREL stays TRUE until CLR becomes
FALSE. The CPU clears all general registers , sets the Program Counter to
0100 (HEX) and resets interna l interrupt flag s (for overflwo). All other
devices initialize their registers and disable (disarm) their interrupts.
The power and ground lines are used to distribute power and ground to each
device . A large number of pins are used to distribute power and ground
over the connector to minimize any ground and/or power supply induced
transients . The standard voltages have been selected (±15 , ±12, ±5).
Each voltage is assigned to two pins. This distributes the power and
allows pins to be assigned in such a way that the card can be i nadvertently
plugged in backward without misconnecting the power pins.

B.l.2.5 Processor Status

There is a single signal associated with the processor status
(PSTAT). It, in conjunction with the data transfer signals , indicates the
state that the processor is in and the nature of the data (DATA) and address
(ADD). The processor status (PSTAT) is only TRUE when the processor is makin g
a transfer.

a. Program Counter and Instruction Registers

If the processor is receiving data (DRCV is TRUE) and the
processor status (PSTAT) is TRUE , then the address (ADD) is the program
counter and when the transfer acknowl edge (TACK) comes TRUE , the data (DATA )

is the first word of the instruction. A maintenance panel can use this
information to display the program counter and instruction register during
program execution . If the maintenance panel needs to, it can inhibit the

48 

- - - -~~~~~~~-- - --- —~~~~~ _ • --- - •



: - ‘~‘~“!- --- -.-~~~~~ - ----_ _
~

-- —_ - , -
~

.-_ . .. .—•---_ -_____
~

________ - ____ ._____
L_____ _ - -~~~~~~~~~

completion of the transfer by holding the transfer request (TRQ) TRU E
until it has had a chance to record the prog ram counter and instruction
register values. This prevents the slave from dropping transfer acknowledge
(TACK), which delays the completion of the cycle. This may be necessary if
the processor is faster than the maintenance panel .

b. Interrupt State

If the processor is sending data (DRCV is FALSE) and the
processor status (PSTAT ) is TRUE , Then the processor is saying its program
counter and status word. The address (ADD) is the interrupt stack pointer
(ISP) and the first word sent, when the processor status (PSTAT) and the
transfer request (TRQ) comes TRUE the first time , i s the old program counter
(PC). The second word sent, when the processor status (PSTAT ) and the
transfer request (TRQ) comes TRUE the second time , it the old status word (SW).
Note that there will be an I/O device receive with a CAW = 00 (HEX) between
the sending of the old program counter (PC) and the old status word (SW).
The processor performs this I/O transfer to obtain those bits of the status
word (SW) which are external to it. If the maintenance panel needs to delay
the transfer of the old program counter (PC) and/or the old status word (SW)
it can. To inhibit the completion of the transfer , the transfer request
(TRQ) is held TRUE , as in “A” above .

B.l.2.6 Memory Control

Memory timi ng , address decoding , parity and write protection
are controlled by a memory control circuit associated wi th each memory
module. Each memory module is 17 bits wide , 16 for data storage and one
for parity . A transfer time out circuit in the lowest (address) memory
module generates the TTO signal when an I-Bus time out error occurs.
The time out mechanism uses MCLK for timi ng . A unique interrupt trap
locat ion is prov ided for each memory module . A status regi ster within - 

-

each module is the concatenation of the write protect bit and the pari ty
bit. The status register is assigned a CAW address, and is reset when
it is read . The interrupt error mask bit is a part of the microcomputer
status word , and is accessed through CAW = 0.

49



- -  

1

B.l.2.6 .l Memory parity is checked during each read , and calculated
during each wri te. If it is not valid and if the i nterrupt bit is set,
then the memory controller issues an interrupt and the pari ty bit is
set. The read i s al l owed to complete.

B.l.2.6.2 The controller delays writes when the write protect bit is
set to check whether the wri te is addressing a read—write portion of
memory. If the addressed word is in a write protect area, the wri te is
aborted and the write protect bit is set. If the write protect bit is
set, and the interrupt error mask bit is set, the control ler causes an
interrupt.

B.l.2.7 Special Cases

B.l.2.7.l Interrupts

BREL is generated by the bus master (always the CPU) during
interrupt servicing at a different time than BREL is usually generated.
BREL must be del ayed until TACK is asserted by the interrupting device.

B.l.2.7.2 External Status Bits

Interrupts are masked by mask bits at each device. These
mask bits are represented by 10 bits in the CPU status word . Reading or
writing into the status word implies all devices must be accessed at once
on the I—Bus for accessing each particular mask bit. This is accomplished
by a broadcast mode I-Bus transfer that is designated by a CAW = 0. All
devices must recognize CAW = 0. All devices must hold TRQ TRUE until
they are ready to acknowledge.

50 

-_ -~~~----~~~--—-~~~~~ -- ~~~~~-- - -  ~~~~~~~~~~~~~—- - - •_ - - - ---- ---



SIGNAL TYPE SIGNAL SYMBOL NO. OF WIRES

DATA TRANSFER AND CONTROL DATA (DATA) 16

ADDRESS (ADDR) 16

I /O SELECT (IOSL) 1

+DATA RECEIVE (DRCV) 1

+TRANSFER REQUEST (TRQ) 1

TRANSFER TIME OUT (TTO) 1

TRANS FER
AC KNOWLEDGE (TACK ) 1

BUS MASTER CONTROL +BUS REQUEST (BRQ) 1

+BIJS RELEASE (BREL) 1

BUS GRANT IN (BGRI ) 1

BUS GRANT OUT (BGRO) 1

MASTER ID (BMID) 4

INTERRUPT CONTROL +INTERRUPT REQUEST (IRQ) 1

+INTERRUPT INHIBIT (INHB) 1

INTERRUPT
AC KNOWLEDGE IN (IAKI ) 1

INTERRUPT
ACKNOWLEDGE OUT (IAKO ) 1

+ Denotes a wired or signal.

All signals are low true.

Fig B.l I—Bus Signal List
5].

______________________ 

A



- _ - 

~~
— - - -_ —:z=:::~•,~ - - 

~~~~~~~~~~~:-~=~ - ~~
:;-_-

~~~
:- 

~~~~~~~~~~~~ ~~

_

---_ w~~-~_=----

SIGNAL TYPE SIGNAL SYMBOL NO. OF WIRES

GENERAL BUS FACILITIES FREE RUNNING CLOCK (FCLK)

+MASTER CLOCK (MCLK) 1

+CLEAR/RESET (CLR) 1

POWER/GROUND 20

SPECIAL FUNCTIONS PROCESSOR STATUS (PSTAT) 1

Power & Ground ; 2 pi ns eac h
+15

+12

+5

8 Pins for Ground

+Denotes a wi red or signal .
All signals are low true.

Figure B.l I-Bus Signal List (Continued)

52

~

•

~

- - - - --
— - - — ———~~ - - - — --~~~~~~~~~~ ~- -- - - - --- —-- - - - - ----

‘~-- ~“-~~~~r _- ___. __ -__ — —

QLJIESCI.~T MASTER A B
FPOM ‘A’ Completes

M BRQ
~~~~ 

fl’ 7

IBC* BGRI

H BGRO ~ \(—~~ i~ i\
~ 

1T
~/T’\ 

_ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _

H BMID >“ ‘K ASSERTED

M BREL ~~~- -J ’ N ~/

H TRQ \- 
- 

_ _ _ _ _ _ _ _ _ _ _

~- Dl -~~~~~~~~~~ \._ _ _ _ _ _ _  
Dl —~NH ~ T~Lj~’S TACK iSOns I 

_ _ _ _ _ _  
300ns + Data Access Time

H IOSL

H DRCV \ !i t~ S /‘~~~ S to M

DATA ~~~~~~~~~~~~~~~~ ~‘A ST F ~L)” ‘
~<i’rom SLAVF?Y’

• H ADD Y ~~~~~~~~~~~~~~

IAK 1-
• This diag ram shows two bus master control cases; the first

transfer starts when the bus is quiescent. The second trans fer over l aps
bus acquisition with the completion of the previous transfer.

Dl is a delay induced by the slave device. The slave delays
l5Ons for bus slew and address decoding. For transfers from the slave
to the master , the slave delays another l5Ons for bus slew for sending
data back to the master.

ON: Nomina l delay (2Ons) to insure that the slave and next
master do not overlap assertions on the da ta lines .

Note that TRQ cannot be asserted by the master until TACK , TRQ,
and IAK are false.

The BREL pulse is a nominal length , =SOns.

*IBC = I-Bus Control Logic

Fig B.2 I-Bus Control & Data Transfer Timing

53



------ — -•~~ .-- -~~~~~~~~—- 

FROM
CPU BRQ

BGRI ~~~~~~~~~~~~~~~~~~~
BCRO CPU has no BC~ ; it is the lowest prior ity master.

~MID~~~~

H BREL N /

cpu TRQ /
S TAC K Prev ious Trans / ~~>15On ~4~ j’

_____________________ 
Delay I

S DATA

INUB Mus t be high for a request ~o happen .

- - 

IRQ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _  

,~~~~~~ased by Pre5~ n t Slav e

S IAKO “K IN H I B I T  HIG U

The IRQ can be asser ted when IAKI is fals e.

Note that the CPU does not issue a BREL pulse until
TACK and IAKI are both true.

Fig B.3 I-Bus Interrupt Interactions wi th Normal Bus
Control and Data Transfers.

54



Fr om

C1J J ) , v S c c

cJ . R 
—— 

\~At least 300ns7

TACK 
-

BP~EL. ,/ \~~ CLR Device 
/

DATA _______________

ADD . ‘/ 
-

IRQ .

ICR

BMID ~
—::/

TRQ ,“ N.

The CLR signal causes bus quiescence by forcing all
asychronous signals to false (or di sab le, where applicable) except BREL ,
which stays true when CLR is true. An arbitra ry minimum signal length
has been selected to be 300ns. or greater to guarantee that all Masters
and Slaves have ceased ac ti v ity on the bus.

Fig B.4 CLEAR-RESET Timing

55

_ __ __ __ __ _ __ __ __ __ __ _ _  —~~~~~
-—--



r — --
~~~

- -

~~~~~~~~~~~~~~~

- ---— -- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~ 

-

______ Pt l—t i+ Dl $ _____________________________
ITRQ IN I
EXTRQ N _ .  ____________

TACK

ADD 
_ _ _ _ _ _ _ _ _ _ _ _ _

IOSL 
-~~~ 

-

DRCV

DATA 
__________________________

BM ID 
____________________________

DETAIL OF TRQ INTERACTION

ITRQ = Internal to master transfer request- applied to TRQ wire .
Ptl = Propagation delay time for open col l ector bus driver.
EXTR Q = wired or signal that actually exists on the TRQ wi re .
Dl = Total delay time for address decoding and slew .

Note that ADDR , IOSL , DRCV , BMID , and DATA are not removed until the
TRQ, sensed on the TRQ wire, is false. The TRQ may be held high by slow
devices during multi-device accesses (i.e., CAW = 0), until they send
back TACK.

Fig 8.5 TRQ Detail

56 j
_ __ __ __ __ __ _  -~~~~


