p—
AD=-AOE1 675 AIR FORCE AVIONICS LAB WRIGHT=PATTERSON AFB OHIO F/G 9/2
POP=11 MICROCOMPUTER TEST STAND.(U)
SEP 78 D J SCHILLER
! UNCLASSIFIED AFAL=TR=78=191

Ell'

NL

END

DATE
FILMED

2 -79

poe

AD-AO6/6 75

AFAL-TR- 78-191

PDP-11 MICROCOMPUTER TEST STAND

SYSTEM TECHNOLOGY BRANCH
SYSTEM AVIONICS DIVISION

SEPTEMBER 1978
TECHNICAL REPORT AFAL-TR- 78-191
FINAL REPORT FOR PERIOD 1 JULY 1975 - 31 MARCH 1978

Approved for public release; distribution unlimited.

AIR FORCE AVIONICS LABORATORY

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES

AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433 1

NOTICE

When Government drawings, specifications, or other data are used
for any purpose other than in connection with a definitely related
Government procurement operation, the United States Government there-
by incurs no responsibility nor any obligation whatsoever; and the
fact that the Government may have formulated, furnished, or in any
way supplied the said drawings, specifications, or other data, is
not to be regarded by implication or otherwise as in any manner licens-
ing the holder or any other person or corporation, or conveying any
rights or permission to manufacture, use, or sell any patented inven-
tion that may in any way be related thereto.

This technical report has been reviewed and is approved for
publication.

Lol [Shlle— ool G Brapd

IETER J. SCHILLER DAVID J. BRAZIL, CAPTAIN, USAF
Project Engineer Tech Mgr, Software & Processor Gp
System Technology Branch System Technology Branch

Wonerd & i

RAYMOND E. SIFERD, LT COL, USAF
Chief
System Avionics Division

Copies of this report should not be returned unless return is required
by security considerations, contractual obligations, or notice on a
specific document.

r———

SECURITY C'LASSIFIEATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE SRR ot R
[T REPORT NUMBER 7. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
AFAL-TR-78-191
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
Final Report
PDP-11 MICROCOMPUTER TEST STAND 11981, RROT) rarch 78

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Dieter J. Schiller

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. 2:¢E)iR&AxOERLKEs'E"NTT.NF:JRMOBJEEgST. TASK
Air Force Avionics Laboratory (AAT-2) Program Element 62204F

AF Wright Aeronautical Laboratories, AFSC Project 2003, Task 200304
Wright-Patterson Air Force Base, Ohio 45433 Work Unit 20030412

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

September 78
13. NUMBER OF PAGES

T4. MONITORING AGENCY NAME & ADDRESS(if dilferent from Controlling Office) 15. SECURITY CL ASS. (of this report)

Air Force Avionics Laboratory (AAT-2) Unclassified
AF Wright Aeronautical Laboratories, AFSC TR T WYY T T T T (T
Wright-Patterson Air Force Base, Ohio 45433 SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) j%‘“m“’" '0’1 '
e e e SRR ;
Approved for public release; distribution unlimited. NTIS Write Section JKI
| oo 8.if Section 21
1 umaxnouNCED]
4 WSTIFICATION .
SRR |
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) -J
AT LIS -
1 msTmgames avaegsT co3es
ot AVAIL and /5 SPECIAL]

18. SUPPLEMENTARY NOTES ﬂ

v e e —

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Microcomputers

Hardware

Software

PDP-11

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

The interface described in this report permits a Digital Equipment Corporation
PDP-11 computer to control and monitor up to four separate microcomputers, The
microcomputers execute their instructions out of the PDP-11 memory. Break point
registers are included such that a print-out may be obtained of the micro-
computer's register contents, etc., after execution of each instruction.

DD , :2:"” 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

o

o b o A A MO L1 5B GRS § ot oS 0

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

e o

FOREWORD

This report describes an in-house effort conducted by personnel

of the System Technology Branch (AAT-2), System Avionics Division (AA),

Air Force Avionics Laboratory, Air Force Wright Aeronautical Labora-
tories, Wright-Patterson Air Force Base, Ohio, under Project 2003,
"Avionic System Design Technology", Task 200304, "Avionic Processing

System Design', Work Unit 20030412, "PDP-11 Microcomputer Test Stand".

The work reported herein was performed during the period 1 July
1975 to 31 March 1978, under the direction of the author, Mr. Dieter
Schiller (AFAL/AAT-2), project engineer, The report was released by
the author in September 1978.

The author wishes to thank Mr. Alfred J. Scarpelli (AFAL/AAT-2)
for his assistance in the software development and testing phase of
the program.

This report is intended to be a users manual as well as a final

report.

14

SECTION

I

II

III

v

TABLE OF CONTENTS

INTRODUCTION

1.1 Purpose

1.2 Background

1.3 . Objective

1.4 Results

1.5 Interface Description
1.6 Modes of Operation
1.7 Interface Functions
HARDWARE ORGANIZATION

2.1 Register Description
2.2 Hardware Operations
SOFTWARE/HARDWARE INTERACTION
3.1 Start-Up Interrupt
3.2 Loading The Interface Registers
3.3 No Trace Read

3.4 No Trace Write

3.5 Trace Read

3.6 Trace Write
CONCLUSION

APPENDIX A

APPENDIX B

B.0. Requirements

B.1l Signal Definitions

PAGE

13
20
20
22
26
29
31
33
36
37
40
41
42

LIST OF ILLUSTRATIONS
FIGURE PAGE

1 System Block Diagram 5

2 Interface Registers ks 8

3 Control Register 8

4 Status Register 11

5 Data Out Register 13

6 Start-Up Interrupt Timing 14

7 No Trace Read Timing- 15

8 No Trace Write Timing 16

9 Trace Real Timing 18

10 Trace Write Timing 19

11 Start-Up Interrupt Flowchart 20

: 12 No-Trace Read Flowchart 27
F 13 No-Trace Write Flowchart 30 f

14 Trace Read Flowchart 32

15 Trace Write Flowchart 35

16 Schematic of Interface 38

! B.1 I-Bus Signal List 51

E B.2 I-Bus Control & Data Transfer Timing 53

B.3 I-Bus Interupt Interactions with Normal Bus

Control and Data Transfers 54

‘ B.4 CLEAR-RESET Timing 55

B.5 TRQ Detail 56
i

vi

E

..—....,.,,.
- p—

SECTION I

INTRODUCTION

1.1 Purpose of This Report.

This technical report serves the dual function of providing a
formal report on the work done under Work Unit 2003-04-12, Distributed
Microcomputer Network Test Stand, and a User's Manual for the hardware

and software developed on this effort.

In order to be able to operate the interface, the user must
familiarize himself with the PDP-11 assembly language and the DR-11C
general purpose interface module. Although the interface was designed for
a PDP-11/20, any of the PDP-11 family computers may be used as the system
monitor. The documentation needed by the user, other than this report is
the 'Processor Handbook' and the 'Peripherals Handbook'. Both of these
documents are paperbacks and are available from the Digital Equipment %3
Corporation, Maynard, MA.

Besides the PDP-11, the user must also thoroughly understand the
I-Bus. The I-Bus is the internal bus used by each of the microcomputers

(See Figure 1). It consists of 38 data transfer lines (16 of which are

data and 16 are address lines), 3 interrupt control 1lines and 3 bus control
lines. The bus control lines are not used by this interface. For a detailed
I-Bus description see Appendix B.

This report is organized into three sections. Section I discusses
the background, purpose and functions of the control panel. In Section II

the hardware is described in detail including all of the internal registers.

Section II presents the software/hardware interface and includes the PDP-11

code necessary to perform each of the interface functions described in

Section I. In addition to the three sections, there are two appendices.
Appendix A contains the gate level diagram of the interface while Appendix

B consists of the I-Bus description.

1.2 Background,

The original objective of this work unit was to provide computer
performance monitoring and control hardware and software for the four
micro-computer breadboard to be developed on Work Unit 2003-04-13, Dis-
tributed Microcomputer Network for Avionics. Three PDP-11 interfaces
were planned, which were to perform the following functions:

(1) Individual microcomputer control,

(2) Global and local intercomputer bus traffic monitoring,

(3) Simulated I/0 injection into the breadboard microcomputers.
The associated support software to control these interfaces and allow
user interaction with the system was included. After this effort was
initiated, the D&F for Work Unit 2003-04-13 was disapproved. In order
to still demonstrate the concept of the Distributed Microcomputer Net-
work for Avionics, work unit 2003-04-11 entitled Distributed Processor/
Memory Simulation Experiments and work unit 2003-04-14 called DMNA Bus

Monitor Interface were created.instead of using actual microcomputers

for the Distributed Micro-computer Network, laboratory PDP-11's were

to be used. The purpose of WU 14 was to develop three bus-control
interface units which were to provide the communication channel developed

for the DMNA between three PDP-11's.

The software for the avionic computers was developed under wu 2003-04-11,

The local executive, global executive, fault-detection/recovery and test

2

3
3

programs were first written in the microcomputer's instruction set
and thoroughly debugged in AFAL's DEC-10 instruction level simulator.
After successful operation in the DEC-10, the programs were trans-

lated into PDP-11 assembly language.

The contractor who was to build the bus-control interface units
for the PDP-11's (Work Unit 2003-04-14) ran out of funds before the
project could be completed and due to no additional funds being avail-

able for this effort, work was halted, The actual laboratory demon-

stration for WU 2003-04-11 and 14 could not be done since the necessary

hardware was never completed.

The concepts evolved during the course of this effort provided
a departure point for specifying a baseline set of monitoring system
features for Work Unit 2003-04-17, "Design of a User-Oriented Micro-
computer and Monitoring System for Avionics Application" as specified
in Appendix B of that Statement of Work.

1.3 Objective.

Design, build, demonstrate and document a PDP-11 interface that

will allow limited (primarily non-real-time) computer performance monitoring

and control (CMAC) avionic microcomputers utilizing a single-bus-oriented

internal hardware architecture, specifically the I-Bus described in Appendix B.

1.4 Results

The interface described in the remainder of this report was designed,
constructed, tested, and successfully demonstrated. The hardware consists
of 4 cards of logic of about 150 IC's, packaged in wirewrap form. A set
of assembly language routines were written to realize the functions listed
in Paragraph 1.6.

The demonstration of the interface was done using a combination of
digital logic, switches, and signal generators to simulate the missing
microcomputer's I-Bus interface functions. Each function was exercised in

this manner.

15 Interface Description.

The interface developed on this effort allows the PDP-11 software
to perform the function of a traditional computer control panel. With the
exception of breakpoint register functions, the microcomputer must be halted
or slowed down while the interface is performing its functions, hence it is
essentially a non-real-time device. The interface can control up to faur
separate microcomputers via multiplexing hardware. Which microcomputer is being
controlled at any given time is sélected under software control. The
microcomputers, themselves, may all be the same, or they may be different. The
only requirement is that each microcomputer conforms to the internal bus

(I-Bus) specifications described in Appendix B.

NP

e 30 o DS 5 R L5085 S 2 St NN 1 M T 0 5 v

et

An interesting feature of the interface is that it allows the

microcomputers to use the PDP-11 memory as a simulation of its own memory.
Hence, only a microcomputer CPU is necessary for the interface to operate.
Also, simulated input can be transmitted to the micrcomputer and output

received. Figure 1 is the block diagram for the control panel interface.

PDP-11 |
|
1
B R
kTl |
|
DR11-C
INTERFACE
|
|
|
!
!
| |
IBUS 1 IBUS 2 IBUS 3 IBUS 4 ;
|
MC1 MC2 MC3 MC4 |
Figure 1

System Block Diagram

i

1.6 Modes of Operation.

Two modes of operation are possible. The first is the free-running
mode. Here, the microcomputer gets a starting address from the PDP-11.

The microcomputer will load this value into its program counter and execute
the program. Upon program completion only the final results will be avail-
able.

The second mode of operation is the trace mode. This feature per-
mits the microcomputer to operate in a pseudo-real-time fashion. In order
to invoke the trace function, the programmer must load the lower break point
register with the lower address bound and the upper break point register
with the upper address bound.

It is possible to obtain a trace of the entire program or of only

a selected part.

<7 Interface Functions.

This control panel interface is capable of performing 13 distinct
tasks. These operations are as follows:

a. Load upper break point register.

b. Load lower break point register.

c. Load control register.

d. Read status register.

e. Issue a microcomputer startup interrupt.

f. Read address lines.

g. Read data lines

h. Read master ID lines

i. Select one out-of-four microcomputer.

.

T

j. Perform a read operation without tracing.

k. Perform a real operation with tracing.
1. Perform a write operation without tracing.

M. Perform a write operation with tracing.

NOTE: The last four tasks consists of a combination of the features listed

in (a) through (i).

2.1

ADDRESS

SECTION II
HARDWARE ORGANIZATION

Register Description.

DR11-C
DRIN BUF DROUTBUF
Upper Break Lower Break . Control
Point Register] |Point Registe DATA OUT Register
l DATA STATUS
\ ~
I-Bus
Figure 2
Interface Registers
2.1.1 Control Register
15 12 33 2 v 3w 9 & 7 6 5 4 3 2 0
l |
! I
- ! S '
= - - Q@ MU> | write |Q read
hv4 = o. = = =
Q —) — — { o |
<C [~ 4 o [~ 4 o (8]
- (&) (&) (&) o | |
| |
Figure 3

Control Register

rerTT—

——

2.1.1.1 Read: Bits "0" and "1" determine which interface register

gets placed on the DR11-C data-in lines. The truth table indicates

which register gets read.

Bit 1 Bit 0 Register
0 0 Interface status
0 1 Address
1 0 Data
1 1 MID

Note: Only the four least significant bits of the MID are
used. The upper twelve bits are meaningless during

a "read Master ID" operation.

2.1.1.2 CRTACKM (Control Register Transfer Acknowledge Memory).

Control register bit "2" is used during a read or write operation.

2.1.1.3 Write: Bits "3" and "4" determines which interface register is to

be written into from the DR11-C output buffer.

Bit 4 Bit 3 Register
0 0 Data Out
0 1 Break point #1 (lower)
1 0 Break point #2 (upper)
1 1 Unused

2.1.1.4 CRTACKI(Control Register Transfer Acknowledge Interrupt).

Bit "5" of the control register is used during a PDP-11 to microcomputer

start-up interrupt procedure.

2.1.1.5 MUX.
Bits "6" and "7" determine which one of four microcomputers the

PDP-11 "talks to".

Bit 7 Bit 6 Microcomputer #
0 0 1
0 1 2
1 0 3
1 1 4

2.1.1.6 CRBPE (Control Register Breakpoint Enable).

Bit "11" determines whether the "trace" function is active

(11 or not 10).

10

2.1.1.7 CRINT.

Bit “K" is used to send an interrupt to one of the micrcomputers.

2.1.1.8 TACKEN.

Enables the transfer-acknowledge signal.

2.1.1.9 Unused Bits.

Control register bits 8,9,10,13 and 14 are unused at this time.

2.1.2 Status Register.

—

5 % 13 12 1 W 9 8 7 6 5 4

|
BemlGE D

Figure 4

O < 0 O™
~r un O -

—
PN D
Yoo

m o >» o A w

-~ >» 4 »n U | o

Status Register

Only bits 0-4 are used in the status register. Their meaning is as
follows:

2.1.2.1 PSTAT
PSTAT (Bit 0) in connection with the data transfer signals indicates

the state that the processor is in and the nature of the data and address Tline.

2.1.2.1.1 Program Counter and Instruction Register.

If the processor is receiving data (DRCV is true (L)) and PSTAT
is true (L), then the address lines have the PC on them and when TACK
comes true, the information on the data lines is the first word of the
instruction.

11

2.1.2.1.2 Interrupt State.

If the processor is sending data (DRCV is false (H) and PSTAT is
true (L), then the processor is saving its program counter and status
word. The data on this address lines is the interrupt stack pointer and
the first word sent, when the processor status (PSTAT) and transfer re-
quest (TRQ) comes true the first time, is the old PC. The second word sent,

when the PSTAT and TRQ come true the second time, is the old status word.

2.1.2.2 10SL (BIT 1).

This bit tells if a memory or I/0 operation is taking place.

2.1.2.3 DRCV_(Bit 2).

The "data receive bit indicates in which direction the informa-
tion transfer is to take place.
If DRCV is low (true) a SENB operation is taking place. The

master shall send 16 bits of data and store it at the address location

i (24 it

specified by the address lines.

If DRCV is high, then a RECEIVE operation is in progress.

2.1.2.4 TRACE (Bit 3).

The "trace" bit indicates whether or not the break-point register
received an address match. Note, that the address must have been placed

on the address lines by a valide"master".

- Data Out Register.

12

19 13 %2 WM w98 - S S L N ¢ 1 9

Figure 5
Data OQut Register

The Data Out Register is used to transfer data from the PDP-11 to the

microcomputers.

2.1.4 Upper/Lower Break-Point Register.

These two registers are functionally identical. Each register
gets loaded with a 16 bit address. The lower BPR contains the lower
address space bound, while the upper BPR contains the upper bound.

If the bit is enabled, then the tracing functions will occur whenever an

address falls between the upper and lower 1imit of the break point registers.

2.1.5 Address Register.

The address register is a 16-bit register which contains the PDP-11

address which the microcomputer wants to access.

242 Hardware Operation

2.2.1 Start-Up Interrupt.

Whenever the PDP-11 wishes to send a start-up interrupt to
any one of the four microcomputers (determined by the MUX bit) then the

programmer must set the appropriate bits in the control register which

13

in turn, causes the IRQ signal to be asserted. As soon as the microcomputer
is ready to honor the interrupt, it will assert the IAKI (interrupt-
acknowledge-in) signal and remove IRQ After the PDP-11 sees that the
microcomputer has acknowledged the interrupt request it will place the

trap vector location on the 'data out' lines and then raise the transfer
acknowledge (TACK) signal. The microcomputer will take the trap vector

address off the data 1ines and remove IACKI.

IRQ
IACKI
DATA OUT VALID| ADDRESS
TACK
Figure 6

Start-Up Interrupt Timing

Upon removal of the IACKI signal the interface clears TACK and the system
is ready for another operation.

The start up interrupt is used to send the beginning address of
a program to the microcomputer. The microcomputer will return the starting
address, place it into its program counter and then start executing from
that location until a return from interrupt instruction is encountered.
During the trace function, the start up interruptis used to invoke the
trace routine and upon its completion control will be returned to the

interrupted program.

14

TRQ

2.2.2 No Trace Read (Read).

Whenever the microcomputer wants to obtain data from memory
(The PDP-11 in this case), it places the desired address on the address
lines and then asserts TRQ (transfer request). The transition of the
TRQ signal causes an interrupt in the PDP-11. Next the software

determines whether a read, write and trace operation is desired.

ADDRESS j></fi VALID ADDRESS

DATA 7& ALID DATA
TACK ML/ “‘I

Figure 7

No Trace Read Timing

In this case the PDP will fetch the data at the desired memory location and
place it on the data lines. After the data has settled, the interface
issues TACK (transfer acknowledge). As soon as the microcomputer detects
the asserted TACK, it takes the data off the data lines and then removes

TRQ. The clearing of TRQ causes TACK to be restored, thereby completing

the cycle.

15

(1

2.2.3 No Trace Write.

The interface action for this type operation is very similar
to the procedure described in 2.22. Whenever the microcomputer wants
to perform a "write" operation it places the address, where the i\
is to be written, on the address lines and the data on the data lines.
After a wait time of approximately 250 ns, the microcomputer then asserts
the TRQ signal. Again, as in 2.22, interrupt is caused at the PDP-11
which will then read the status register to determine what type of
operation is to be performed. Since a write operation is called for the
PDP will read both the address register and the data register. After
interrogation of these two registers PDP software performs the write opera-
tion. Where this is completed then the TACK signal gets asserted. After
receiving TACK, the microcomputer removes TRQ which is term is used

to restore TACK.

DATA >< VALID DATA

ADDRESS X_VALID ADDRESS

TRQ VT
TACK ‘*——;l:§_____

FIGURE 8

NO TRACE WRITE TIMING

16

2.2.4 TRACE READ:

If tracing is desired, then the appropriate bits in the
control register must be enabled. The microcomputer places the
address from where it wishes to get information on the address lines and
then pulls down the TRQ signal. Since tracing is enabled the address
on the address lines gets compared to the upper and lower break point
register contents. If it falls within the bounds of these registers
then the comparators fire and cause an interrupt in the microcomputer.
The microcomputer will not honor the interrupt until the present instruc-
tion is completed.

As soon as TRQ goes low, the PDP gets interrupted and the
software determines what action to take depending on the condition of
the status registers. Since we are talking about a trace-read
operation, the PDP will take the address off the address lines, read
the appropriate PDP-11 memory location and place that information on the
data lines. After a 250 ns settling time (actually much greater since
done in software) the PDP causes the TACK signal to be asserted. The
microcomputer takes the data off the data lines and then removes the
TRQ, which in turn releases TACK. The upward transition of TACK signifies
the end of the read cycle.

The processor will now honor the interrupt that was set by
asserting IACKI. As soon as the interface detects IACKI, it removes IRQ.
The PDP responds to IACKI by placing the trap vector Tocation on the
data lines and then asserting the TACK. As soon as the processor detects
TACK it grabs the information off the data lines and removes IACKI.

This action resets TACK and thus completes the interrupt. The micro-
computer will place the trap vector location into its program counter

and then proceed with manual data transfer operation.

Ly

T
ADDRESS ////// VAEID ADDRESS

TRQ Socae /”F\

IACKI

—h 1,
.

=

DATA K TRAP JECTOR

N__

N

-

Figure 9

Trace Real Timing

2.2.5 Trace Write.

On a write operation the microcomputer places the address on
the address 1inesand the data on the data lines prior to assertion TRQ.
As soon as TRQ goes low, the comparator fires (during a trace operation)
and the interface asserts the interrupt request line (IRQ). The
microcomputer will not respond to this request until the write opera-
tion is completed. Once the PDP-11 detects the TRQ signal, it reads
the interface status register and determines the type of operation to be
performed. Since we are talking about a write operation the PDP must
fetch both the information on the address lines and that on the data
lines. The PDP software then writes the data into the desired memory

location. As soon as that is completed the PDP sends the TACK signal

18

causes the TACK to be released.

Since the write operation is now

completed, the microcomputer will honor the interrupt by asserting

IACK.

data lines and then asserting TACK.

The PDP will respond by placing the trap vector address on the

When the microcomputer sees TACK

it takes the data off the data lines and then removes IACK which

in turn resets TACK and thereby completes the

operation.

aooress 7//pC_VALID ADDRESS

DATA

TRQ

IRQ

TACK

IACK

/),

44>¥<7TRAP VECTOR-ADDRESS

|
|
i

VALID DATA

N

i

o i i oo o

T

=

Figure 10

Trace Write Timing

19

SECTION III

SOFTWARE /HARDWARE INTERACTION

3.1 Start-Up Interrupt.

The following flowchart describes the necessary sequence of

events to send a start-up interrupt to a microcomputer.

ENABLE CSR1

k? {

YES

|

SEND TRAP VECTOR ADDRESS

'

SET THE INTERRUPT BIT 1 ENABLE CSR1

DISABLE CSR1

MICRO-
COMPUTER
ACKNOWLEDGE

INTERRUPT

.

SEND TRANSFER ACKNOWLEDGE

CLEAR CONTROL REGISTER

!

CLEAR DSR1

END

Figure 11
Start-Up Interrupt Flowchart

20

e N

3.1.1 Program For Start-Up Interrupt.
MOV #2 DRCSR Enable DSR1
MOV #11030, DROUTBUF Cause start-up interrupt
MOV #0, DROUTBUF Clear DROUTBUF
CLR DRCSR Disable DSR1
Loop: MOV DRCSR, R1 Read Control & Status register
BIC #77777,R1 Check if REQB came in
BGE LOOP No
MOV # ADDR, DROGUTBUF Set up control register
MOV #2, DRCSR Enable DSR1
3 MOV #1040, DROUTBUF: Set control register to enble CRTAKI,
: CLEAR REQUEST B
] MOV #100040, DROUTBUF Set enable bit
MOV #30, DROUTBUF Clear CR and stop data from being ;

written in DOR
CLR DRCSR Disable DSRI ‘

3.1.2 Program Description.

Inst. 1 - The first instruction opens the data path for the DROUTBUE

of the DRIIC to the interface control register.

Inst. 2 - Loads the control registers with 110300. This bit configura-
tion causes the interface to generate and IRQ (interrupt request) signal.
Inst. 3 - This instruction clears the control register. It is a good
practice to always clear this register after an operation since over-

writing data might cause a momentary race condition which will leac

to improper interface operation. Note that 00 in the write bit causes
i the next word to be written into the DR OUTBUF to be loaded into the

interface DATA OUT Register as long as DRCSR remains cleared.

21

Inst. 4 - In order to prevent further data from being written into the
control register it is necessary to disable DSR1

Inst. 5., 6., & 7. - Contents of the DRCSR get interrogated to check

if a request B (interrupt acknowledge) occurred. The program stays in
a loop until the request B goes hi.

Inst. 8 - The trap vector location gets written into DROUTBUF and as

soon as the NDR pulse arrives it gets latched into the DATA OUT Register.

Inst. 9 - Enable DSR1 and get ready to write into the control register.
Inst. 10 - The value is now written into the control register. This
data places a "1" on the D input of the flip-flop which causes the
transfer acknowledge signal for interrupts.

Inst 11. - The Mov #100040, DROUTBUF instruction writes the value
100040 into the control register which causes the flip flop FF5 to get
loaded with the value on the 'D' input. Since that value is a 'l1',

the interface generates a transfer acknowledge signal (TACK).

Inst. 12. - This instruction clears the control register. Note that the
value 3 in the write bits is not used to direct the data from DROUTBUF
to any interface register.

Inst. 13. - Disables DSR1. The start-up interrupt procedure is now

complete.

3.2 Loading The Interface Registers

3.2.1 Control Register.

To load the control register takes two steps. First a Mov#2,

DRCSR operation is required which opens up the data path from the DR11C

s

buffer to the control register. The second instruction is a MOV #XXXXX,
DROUTBUF. The execution of this instruction places the value XXXXX

into the control register.

3.2.2 Upper Break Point Register

Loading this register takes two more steps than in the case
addressed in 3.2.1. The first instruction is acain a MOV #2, DRCSR.
Rather than sending the actual data, the write bits in the control
register must first be set so the next data written into the DR11-C sutput
data register will get clocked into the upper break point register.
This is accomplished with a MOV # Pp2p, DROUTBUF. Before the correct
value can be loaded into the breakpoint register, a CLR DRCSR instruc-
tion must be issued. This is necessary since its omission would
continuously load the control register with the information written
into the DROUTBUF by the program. The final instruction in the loading
sequence is MOV #XXXXX, DROUTBUF where XXXXX is the value to be loaded

into the upper BPR.

3.2.3 Lower Break Point Register

The program sequence is identical to the one described in 3.22
except that the second instruction loads a 010 into the control register
instead of a 020. The program necessary to load the lower break point
register is:

MOV #2, DRCSR

MOV #P10, DROUTBUF
CLR DRCSR

MOV #XXXXX, DROUTBUF

23

el

3.2.4 Data Out Register.

The following program is needed to load the DATA OUT register.

MOV #2 DRCSR

MOV #0, DROUTBUF (needed if CR did not contain a '0')
CLR DRCSR

MOV # XXXXX, DROUTBUF

The only difference between this code and the UPPER/LOWER break
point register loading sequence is the value being stored into the
control register. In order to route the data from DROUTBUF tc the DATA

OUT register a "0" is required in the write bits.

3.2.5 Master Clear.

The master clear signal resets all interface registers to
zero. It is usually issued when the interface is first turned on or
if the operator desires to reset the interface. The code necessary
for a master clear consists of one instruction. It is MOV #3, DRCSR.
The execution of this instruction causes a one-shot tofijre which will

then clear all of the interface registers.

3.2.6 Read Status Register.

A status register read operation is necessary in order for the
PDP-11 to determine what type of operation the microcomputer desires.
The following sequence is required in order to transfer the information

from the status register to the PDP-11.

MOV #2 DRCSR enable control register

MOV # P3P, DROUTBUF set the read bit to U

CLR DRCSR prevent further data from being written into CR
MOV DRINBUF, RX read the contents of the st atus register

into any PDP-11 register.

oo

N st o3

At v

R ——

3.2.7 Read Address Lines.

Whenever the microcomputer desires to write into PDP memory
or read from PDP memory, the PDP-11 must obtain the address location

that the microcomputer wants to access. This is done in the following

manner.
MOV #2, DRCSR enables control register
MOV #1, DROUTBUF set the read bits to 01
CLR DRCSR
MOV DRINBUF, RX read the information on the address

lines into any PDP-11 register.

3.2.8 Read Data Lines.
This operation is needed when the microcomputer wants to write

into memory. In addition to interrogating the address lines, the PDP
must also obtain the information on the data lines so that it can
perform the write optation. Again, the only difference between this
read operation and the others is the value in the "Read" bits.

MOV #2 DRCSR
MOV #32, DROUTBUF
CLR DRCSR

MOV DRINBUF, RX

3.2.9 Read MID.

The MID lines (master identification) tells the PDP whether a
processor is requesting service, or some peripheral device such as a
bus control interface unit. The sequence of operation is the same with

the exception that both read bits are set to "1",

MOV #2, DRCSR
MOV #33, DROUTBUF
CLR DRCSR

MOV DRINBUF, RX

0 0 . 6 A DS SOt s

3.3 No Trace Read.

Whenever a microcomputer wants to read data out of memory, then
the Processor asserts the transfer request signal (TRQ). At the same
time, it sets the DRVC (Data receive) and the IOSL (Input/output select)
lines to indicate a read operation and places the address on the address
lines. The transition of TRQ causes the address to get clocked into
the interface address register and also generates the request A signal
which tells the PDP-11 that the microcomputer needs servicing. The
request A signal sets a flip flop which, in turn, sets bit number 7 in
the DRCSR register. The PDP-11 program continuously monitors the status
word to see if the request A bit gets set. The following program will

perform a read operation. (See Figure 12).

LOOPA: MOV DRCSR, RP read interface status register
BIC #177577, RO mask off all bits except request A
BEQ LOOPA if not set, then wait
MOV #1,DRCSR clear request A
CLR DRCSR reset DSRO

NOTE: The MOV #1, DRCSR instruction causes a '1' to be written into
bit 0 of the status register (CSRO). This bit is connected through an
inverter to the CLEAR input of the REQUEST A flip flop. The execution
of the MOV instruction clears the flip flop and prevents it from being
reset until the CLR DRCSR instruction has been issued.

The PDP-11 code, up to this point detects a request A condition
and resets the status bit. The next operation is to determine what

type of operation is to be performed. This ic done in the following manner:

MOV #2,DRCSR enable control register
MOV #30, DROUTBUF get ready to read the status register
MOV DRINBUF, RP place the status register contents into R@
CLR DRCSR
26

P b AN e W S

DID
REQUEST
ARRIVE?

YES

Read status register content and
determine what type operation is

requested.

IS THE
OPERATION
REQUESTED A

‘NO TRACE READ'?

NO

v

WRITE THAT DATA INTO
THE INTERFACE DATA-

OUT-REGISTER

l

SEND TRANSFER
ACKNOWLEDGE

READ THE ADDRESS LINES

|

FETCH FROM MEMORY THE
DATA CONTAINED AT THE
GIVEN ADDRESS

No-Trace Read Flowchart

Figure 12

27

GO TO APPROPRIATE
ROUTINE

— *'""'““””'"""F"-"-u---m--u--‘q!

The PDP-11 code, up to this point detects a 'request A' condition and
resets the status bit. The next operation is to determine what type

of operation is to be performed. This is done in the following manner:

is desired.

register.

MOV #2, DRCSR
MOV #31, DROUTBUF
MOV DRINBUF, RO

CLR DRCSR

enable control reqgister
get ready to read status register

place the status regiser contents
into RP

The next procedure is to determine if a valid master is requesting

Then the PDP checks if a trace or no trace operations is

The IOSL signal is checked to see if a memory or I/0 process

is a 'read' or a write.

MOV #2, DRCSR

MOV #31, DROUTBUF
CLR DRCSR

MOV DRINBUF, RI
MOV (R1), R2

MOV #2, DRCSR
MOV #0, DROUTBUF

CLR CRCSR
MOV R2, DROUTBUF
MOV #2, DRCSR

MOV #100004, DROUTBUF

MOV #30, DROUTBUF
CLR DRCSR

Finally, the state of DRVC indicates whether the operation
Once it has been determined that a 'no-trace
read' operation is to be performed the PDP must read the address

This is accomplished in the following manner:

enable CSR1

get ready to read Address
disable DSR1

read the address into register 1

read whatever is at the address
pointed to by R1 and place it into R3

enable DSRI1

get ready to write into Nata out
register

disable DSR]

write the data into Data-out register
get ready to write into CR

send transfer acknowledge

clear DROUTBUF

disable DSR1

28

The MOV #100004, DROUTBUF instruction causes the transfer acknowledge
signal to be asserted which tells the microcomputer that the data is
on the data lines. The microcomputer will take that information off
the data lines and then remove the transfer request signal which, in

turn, removes the TACK and completes the read cycle.

3.4 No Trace Write

The procedure for this operation is very similar to the previous
one. This time, the PDP must read the data-line in addition to the
address line but it does not place any data in the Data out register
like it did previously. It only sends the TACK signal to indicate that

the write operation has been performed.

LOOPB: MOV DRCSR, RP read interface status register
BIC #177577, RP mask off all bits except request A
BEQ LOOPB if request A not set, then wait
MOV #1, DRCSR clear request A
CLR DRCSR disable DSR1
MOV #2, DRCSR enable DSRI1
MOV #31, DROUTBUF set up CR to read Address lines
CLR DRCSR disable DSRI1
MOV DRINBUF, Rl place the address into Rl
MOV #2, DRCSR enable DSR1
MOV #32, DROUTBUF set up CR to read Data lines
MOV DRINBUF, R2 read the data
CLR DRCSR disable DSRI1
MOV R2, (R1) perform the 'write' operation
MOV #2, DRCSR enable DSR1
MOV #100004, DROUT3UF send TACK
MOV #30, DROUTBUF clear DROUTBUF
CLR DRCSR disable DSR1

29

B e

Did
Request A
arrive?

Yes

read address lines

l

read data lines

:

perform the 'write' operation

I

send TACK

Figure 13

No-Trace Write Flowchart

Note that the fourth instruction (MOV #1, DRCSR) enables the
DSR1 bit and the fifth instruction enables the DSR2 bit. Theoretically
the fifth instruction should just overwrite the third without having
to do the clear operation. The problem is, however, that if the
‘clear' is not issued that for a small fraction of time both, bit 1
and bit 2 are on thereby causing a master clear to be unintentionally
issued. The programmer should always clear the DRCSR register before
setting a different bit in it. The same is also true for the interface

control-register.

30

2.5 Trace Read

Whenever the trace feature is enabled then the interface
generates an interrupt to the microcomputer. The microcomputer will
complete the ongoing transaction (in this case a read operation) and
then honor the interrupt. The PDP program is identical to the normal
'read' operation except that when the PDP detects that the trace bit
is set, when it reads the status register, it calls a subroutine,
which interrogates the Request B bit. This bit gets set whenever the
microcomputer honors an interrupt request.

LOOPC: MOV DRCSR, R@
BIC #177577, R@
BEQ LOOPC
MOV #1, DRCSR
CLR DRCSR
MOV #2, DRCSR
MOV #31, DROUTBUF
CLR DRCSR
MOV DRINBUF, R1
MOV (R1), R2
MOV #2, DRCSR
MOV #0, DROUTBUF
CLR DRCSR
MOV #2, DRCSR
MOV #100004, DROUTBUF
MOV #30, DROUTBUF
CLR DRCSR
JMP LOOP2

31

DID
REQUEST A
ARRIVE?

YES

CLEAR REQUEST A

i

READ ADDRESS LINES

PERFORM THE 'READ' OPERATION

WRITE THE DATA INTO
THE DATA-OUT-REGISTER

NO

v

SEND TACK

DID
REQUEST B
RIVE?

YES

PLACE TRAP VECTOR LOCATION
IN THE DATA LINES

¥

SEND TACK

Figure 14

Trace Read Flowchart

32

LOOP2:

3.6

Mov
BIC
BGE
MoV
MoV

CLR
Mov

Mov
MoV
MoV
Mov
CLR

Trace Write

DRCSR, R1
77777, Rl
LOOP2

#2, DRCSR
#0, DROUTBUF

DRCSR
#Addr, DROUTBUF

#2, DRCSR

#1040, DROUTBUF
#100040, DROUTBUF
#30, DROUTBUF
DRCSR

read PDP status register

mask off all bits except request B

if not set, then wait
get ready to write into CR

set up bit to write into Data
out register

disable DSR1

write the Address on the data
Tines

enable DSRI]

enable CRTACKI

send the TACK signal
clear CR -

disable DSR1

This feature is very similar in operation to the trace read.

The normal write operation is performed first and then, just like in

the 'trace read' case, the interrupt is serviced.

program is used for

LOOPD:

MoV
BIC

BEQ
Mov
CLR
MoV
Mov
CLR
Mov
Mov
MoV
MoV
CLR

The following

the 'trace write' operation.

DRCSR, RO
#177577, RO

LOOPD

#1, DRCSR
DRCSR

#2, DRCSR
#31, DROUTBUF
DRCSR
DRINBUF, R1
#2, DRCSR
#32, DROUTBUF
DRINBUF, R2
DRCSR

33

read DR11C status register

mask off all bits except for
request A

wait until request A comes in
clear request A

disable DSR1

enable DSRI1

get ready to read the address
disable DSR1

read the address into Rl
enable DSRI1

get ready to read the data
read the data into R2

disable NSR1

LOOP2:

MoV
MoV
Mov
MOV
CLR
JMP

MOV
BIC
BGE
Mov
MOV

CLR
MoV

MOV
Mov
MoV
MOV
CLR

R2, (R1)

#2, DRCSR
#100004, DROUTBUF
#30, DROUTBUF
DRCSR

LoopP2

DRCSR, R1
#77777, Rl
LOOP2

#2, DRCSR
#0, DROUTBUF

DRCSR
#Addr DROUTBUF

#2, DRCSR

#1040, DROUTBUF
#100040, DROUTBUF
#30, DROUTBUF
DRCSR

34

perform the write operation
enable DSRI

send TACK

clear DROUTBUT

disable D5R1

read DR11-C status register

mask off all bits except request B
if not set, then wait

get ready to write into CR

set up CR bit to write into
data register

disable DSR1

write the address on the data
Tines

enable DSRI1

enable CRTACKI

send the TACK signal
clear CR

disable DSRI

CLEAR REQUEST A

i

READ ADDRESS LINES

!

READ DATA LINES

PERFORM THE 'WRITE' OPERATIONS

SEND TACK

DID
REQUEST B

PLACE TRAP VECTOR LOCATION ON
DATA LINES

¥

SEND TACK

Figure 15

Trace Write Flowchart

35

SECTION IV

CONCLUSION

The unique feature of this interface is the fact that the
microcomputers execute their programs directly out of PDP-11 memory.
Whenever a microcomputer wants to perform a memory read or write
operation, the interface notifies the PDP-11 what type of transfer is
to be performed. The PDP software will perform the desired task and then
notify the microcomputer when it is completed. By doing the traditional
'control panel' features in software, rather than hardware, speed is
sacrificed but flexibility is gained. By simply changing the PDP-11
program, the interface can be made to perform many different tasks
whereas similar hardware features would necessitate major design changes
in the hardware. Using this design also keeps the cost relatively low,

since the number of hardware components is kept at a minimum.

APPENDIX A

SCHEMATIC OF INTERFACE

37

—{ 4
| ,

THIS PAGE IS BEST QUALITY PRACTILICABLE

FROM COPY FURNISHED TODDC ____—
s
|
|

TH1S PAGE IS BEST QUALITY PRACTICABLE

lBDlCOPYFURNI&ﬂﬂ)TODDQ e

—— e

Figure 16
Schematic of Interface

e i

38

APPENDIX B

MICROCOMPUTER

INTERNAL BUS

(1-BUS)

SPECIFICATIONS

B.0 REQUIREMENTS

The 1-Bus is a 16-bit data transfer bus and associated control
lines which serve to transfer data between all subsystems within the
microcomputer (MC). These subsystems include the CPU, the memory, the I/0,
and the local and global serial bus interface units (L-BIU and G-BIU).

The I-Bus is asynchronous. The speed of data transfers over
the I-Bus is determined by the speed of the devices interfaced to it.

Devices interfaced to the I-Bus compete for access on a
priority basis. High-speed peripherals are usually assigned highest priority
and the processor is assigned the lowest. In operation, cycle-stealing
action occurs with the new bus assignment resolution overlapped with the
previous data transfer.

There are two classes of devices which interface to the I-Bus:
master devices, which control data transfers; and slave devices, which
generate or accept data in response to some master. Data transfers in
either direction always occur between one master and one slave. The
processor is an example of a master device and a memory module is an example
of a slave device. All slave devices recognize and are activated by
specific addresses. For example, a memory is activated when some master
device does a memory (MEM) data receive (DRCV) to an address within the
boundaries of that memory module.

When an autonmous transfer controller (ATC) is started by the
processor, it transfers data between memory and the peripheral device by
cycle-stealing with the processor and any other master devices which may
be active. When the ATC needs to transfer a word of data over the I-Bus,
the master device part of the ATC must gain to the I-Bus and then may
address a slave (such as a memory module) and read from it, write to
it, or perform a read-modify-write with it.

41

The requirements are broken down into two major subsections.
This specification covers the definition of the interface signals and
their relations to each other.

B.1 SIGNAL DEFINITIONS

% The next two subsections cover I-Bus block diagram and the

, interface definitions. The convention is that a high voltage is a logic

é "1" (TRUE) and that a low voltage (ground) is a logic "0" (FALSE). Some

1 of the signals are wired - or functions to allow the use of open collector
outputs to drive these signals.

A1l signals are transmitted as complements.

B.1.1 Block Diagram.

Figure 1 shows the various signals assocaited with the I-Bus
to an MC module interconnection.

B.1.2 Interface Definitions.

The subsections which follow define the signal lines which
comprise the I-Bus. These signals are described in five groups according
to their function. The signals associated with data transfer operations
are defined in Section B.1.2.1. Those associated with bus acquisition are
defined in Section B.1.2.2. Interrupt control signals are defined in
Section B.1.2.3. Facilities such as MC system control, clocks and power
are defined in Section B.1.2.4. Miscellaneous signals which serve
special-purpose functions are defined in Section B.1.2.5.

B.1.2.1 Data Transfer Operations.

Data transfers on the I-Bus are handled as a demand/response
sequence between a bus master (such as the processor) and a bus slave
(such as a memory or an 1/0 device).

| s

The following 37 signals are utilized exclusively for data :
transfer operations on the I-Bus. Thirty-two of these signals are 16-bits 1
of address (ADD) and 16 bits of data (DATA) while the remaining signals
(1/0 select (IOSL), data receive (DRCV), transfer request (TRQ), transfer i
acknowledge (TACK), and transfer timeout (TTO)) are used to control the
actual transfer operations. A1l signals are transmitted and received
between a I-Bus master device and an I-Bus slave device as defined in
the following paragraphs.

B.1.2.1.1 Master to Slave Send Cycle

When an I-Bus master device has access to the I-Bus, it shall
accomplish a send cycle through the following action. The master after
gaining I-Bus control asserts transfer request (TRQ). At the same time
the master shall assert a send command by pulling data receive (DRCV) low.
The master shall also at this time specify whether it is a memory or I/0
operation (IOSL), supply a valid 16 bits of data (DATA) and a valid 16-bit
address (ADD). IOSL = TRUE implies a memory operation.

A11 slave devices interfaced to the I-Bus shall receive the
transfer request (TRQ) transmitted from the master. The slave devices shall
decode the address (ADD) to determine which slave is being addressed.

The slave device shall internally delay the transfer request (TRQ) for

a sufficient time to account for the worst case address decode time and

the worst case I-Bus skew. Thus, each slave shall generate an internally
delayed transfer request (TRQ) and use it to strobe a valid address decoder.
The case of a memory module, the internally delayed transfer request (TRQ)
and a valid address decode would generate a memory start signal. When the
slave device has decoded the address as valid, it shall then assert transfer
acknowledge (TACK). At the time the slave device asserts transfer acknowl-
edge, it shall either clock the data (DATA), address (ADD), data receive
(DRCV), and I/0 select (IOSL) signals from the I-Bus into registers, or in
the case of a memory, delay the transfer acknowledge (TACK) until the memory
write cycle is complete.

43

When the I-Bus master device receives the asserted transfer
acknowledge (TACK), it shall release transfer request (TRQ).

The master then looks for the release of transfer request (TRQ)
before releasing data receiv (DRCV), I/0 select (IOSL), address (ADD),
and data (DATA). This allows a slower third party device, such as a
maintenance panel, to delay the transfer while it latches the data and/or
address for monitor purposes.

When the slave device receives the release of transfer request
(TRQ), it hsall release transfer acknowledge (TACK). This is shown as
"TIME4" of Figure 2.

When the master device receives the released transfer
acknowledge (TACK), it may begin a new cycle or it may relinquish the

I-Bus to another master device.

B.1.2.1.2 I1-Bus Master From Slave Receive Cycle

When an I-Bus master device has access to the I-Bus, it shall
accomplish a receive cycle through the following action. The master
asserts transfer request (TRQ), and supplies a valid 16-bit address
(ADD). At the same time the master specifies whether it is a memory or
I/0 operation (IOSL).

A11 slave devices interfaced to the I-Bus shall receive the
transfer request (TRQ) transmitted by the master. The slave devices shall
internally delay request and decode the address as for a send cycle
(B.1.2.1.1). Each slave device shall internally delay the transfer request
(TRQ) for a sufficient time to account for the worst case I-Bus skew and
worst case address decode time. When this is done and the address is decoded
as valid, the slave device will begin to send data. In the case of a memory
module this means starting a read cycle. When the data (DATA) is valid, the
slave device shall assert transfer acknowledge (TACK).

44

When the I-Bus master device receives the transfer acknowledge
(TACK), it shall internally delay it to account for the worst case I-Bus
skew and then release transfer request (TRO). As the master device releases
transfer request (TRQ), it shall clock the data (DATA) from the I-Bus
into its internal register.

The master then looks for the release of transfer request (TRQ)
before releasing data receive (DRCV), I/0 select (IOSL), and address (ADD).
This allows a slower third party device such as maintenance panel to delay
the transfer while it latches the data and/or address.

When the slave device receives the released transfer request (TRQ),
it shall release transfer acknowledge (TACK) and data (DATA).

When the master device receives the released transfer acknowledge
(TACK), it may begin a new cycle or it may relinquish the I-Bus to another

master device.

Bz V.3 Data Transfer Special Cases

In addition to this normal transfer request/acknowledge
sequence there is one way in which a transfer can be terminated abnormally.
A transfer time out (TTO) is generated by a watchdog timer on a memory
controller. This time out is used to prevent a master device from Tocking
up the I-Bus by attempting to address either nonexistent memory or I/0
devices. When the time out occurs, the master uses the time out signal
in the same manner as a transfer acknowledge signal, except it sets its
own time out error flag and proceeds. In the case of the processor, this
will correspond to an I/0 acknowledge time out or a memory error.

B.1.2.2 Bus Control
There are three control lines and a set of four identification

lines associated with bus master control. These three control lines are
used to control the assignment of the bus to a bus master. The assignment is

45

performed on a first-come-first-serve basis, with hardwired priority used
to resolve simultaneous requests. The four identification lines are
associated with the maintenance function. The master that is in control
of the bus places its identification code on these lines (Processor = 0;
the ID default value). This identification is especially useful during
"The Address Breakpoint" maintenance function where it is important to

be able to identify who issued the breakpoint address. The use of four
lines allows the unique identification of up to 15 bus masters in addition
to the processor.

B.1.2.2.1 Normal Bus Requests

The tnree bus master control signals are bus request (BRQ),
bus release (BREL) and bus grant (BGR). The bus request line (BRQ) is
used to initiate a bus master assignment, while the bus release line
(BREL) is used to terminate the assignment. The bus grant line (BGR) is
threaded through each module and is used to resolve conflicts when two
or more masters request the bus simultaneously. A master device can request
the I-Bus only when bus grant (BGRI) is FALSE. When the bus request line
(BRQ) is asserted, the bus grant (BGR) signal starts propagating through the
modules on the I-Bus. When the signal reaches the highest priority requesting
module, it activates that bus master, which blocks the bus grant (BGRO)
signal from propagating to any lower priority module which may also be
requesting the bus. When the master issues TRQ, it also issues a bus release
(BREL). This command forces all bus masters, including itself, to remove
their bus requests (BRQ). When the master sees BGRI go FALSE, it releases
BREL and unblocks BGRO. Block transfers are accomplished by immediate
re-requests of the bus. A device doing a block transfer can always be
preempted between transfers by a higher priority device requesting the bus
when BREL goes FALSE. A new bus master will wait until the bus is quiescent
(transfer request (TRQ) and transfer acknowledge (TACK) have ended) and start
its transfer cycle(s). This sequence allows bus mastership resolving to
be overlapped with the data transfers, thus minimizing or partially
eliminating the overhead associated with bus mastership assignment.

B.1.2.3 Interrupt Control

There are three I-Bus control lines associated with interrupt
control. They are interrupt request (IRQ); interrupt inhibit (INHB); and
interrupt acknowledge (IAK). Interrupts are serviced on a first-come-
first-serve basis with priority resolution if there are simultaneous
interrupts. The interrupt request (IRQ) is issued by any device that
wishes to interrupt the processor (see Figure 6). There may or may not be
an interrupt mask associated with (and internal to) the device which will
inhibit the device from issuing an interrupt request (IRQ). In addition,
there is an interrupt inhibit (INHB) Tine which is used by the maintenance
panel to inhibit all devices from interrupting the processor when it is operating
in the maintenance panel mode. When the processor completes the execution
of the current instruction it honors any interrupt by asserting interrupt
acknowledge (IAK). The interrupt acknowledge line is threated through all
modules and activates the highest priority interrupting device. This device
inhibits the interrupt acknowledge (IAK) signal from propragating to lower
priority modules. When the device receives its interrupt acknowledge (IAK)
it places the address of its memory interrupt trap vector location onto
the data 1ines. It then indicates that it has placed this address on the lines
by asserting transfer acknowledge (TACK) after a 150ns. The processor latches
the address into an internal register and completes the cycle by removing
the interrupt acknowledge (IAK). The device waits for IAK to go away and
then removes the address from the data l1ines, and terminates TACK.

B.1.2.4 General Facilities

The general bus facilities are composed of a free running clock
(FCLK), master clock (MCLK), a master stop (MSTP), a clear/reset (CLR)
signal, power and ground. The free running clock (FCLK) can be used by any
device that needs a clock signal. It does not necessarily have any
particular timing relationship with respect to any of the other bus signals.
The master clock (MCLK) is similar to the freerunning clock except that it
is controlled by the master stop (MSTP) signal while, the free running clock
(FCLK) is not. In general, the free running clock (FCLK) will be used by
slave devices, while, the master clock (MCLK) will be used by master devices.

This choice allows slave memories which must refresh themselves to continue
even though the master stop (MSTP) signal is present. Special care must

be exercised to make sure that each data transfer is allowed to go to comple-
tion before master stop (MSTP) is asserted. Otherwise, a dynamic memory may
be inhibited from doing its normal refresh operation. The clear/reset

(CLR) signal is used to initialize the processor and all other devices.

The bus becomes quiescent when the clear/reset (CLR) is used. When the
clear/reset issuing device issues CLR all activity on the bus aborts, and
all signals, except BREL, go FALSE; BREL stays TRUE until CLR becomes

FALSE. The CPU clears all general registers, sets the Program Counter to
0100 (HEX) and resets internal interrupt flags (for overflwo). A1l other
devices initialize their registers and disable (disarm) their interrupts.
The power and ground lines are used to distribute power and ground to each
device. A large number of pins are used to distribute power and ground

over the connector to minimize any ground and/or power supply induced
transients. The standard voltages have been selected (315, ¥12, ¥5).

Each voltage is assigned to two pins. This distributes the power and

allows pins to be assigned in such a way that the card can be inadvertently
plugged in backward without misconnecting the power pins.

BLl.2:5 Processor Status

There is a single signal associated with the processor status
(PSTAT). 1It, in conjunction with the data transfer signals, indicates the
state that the processor is in and the nature of the data (DATA) and address
(ADD). The processor status (PSTAT) is only TRUE when the processor is making
a transfer.

a. Program Counter and Instruction Registers

If the processor is receiving data (DRCV is TRUE) and the
processor status (PSTAT) is TRUE, then the address (ADD) is the program
counter and when the transfer acknowledge (TACK) comes TRUE, the data (DATA)
is the first word of the instruction. A maintenance panel can use this
information to display the program counter and instruction register during
program execution. If the maintenance panel needs to, it can inhibit the

48

completion of the transfer by holding the transfer request (TRQ) TRUE

until it has had a chance to record the program counter and instruction
register values. This prevents the slave from dropping transfer acknowledge
(TACK), which delays the completion of the cycle. This may be necessary if
the processor is faster than the maintenance panel.

b. Interrupt State

If the processor is sending data (DRCV is FALSE) and the
processor status (PSTAT) is TRUE, Then the processor is saying its program
counter and status word. The address (ADD) is the interrupt stack pointer
(ISP) and the first word sent, when the processor status (PSTAT) and the
transfer request (TRQ) comes TRUE the first time, is the old program counter
(PC). The second word sent, when the processor status (PSTAT) and the
transfer request (TRQ) comes TRUE the second time, it the old status word (SW).
Note that there will be an I/0 device receive with a CAW = 00 (HEX) between
the sending of the old program counter (PC) and the old status word (SW).
The processor performs this I/0 transfer to obtain those bits of the status
word (SW) which are external to it. If the maintenance panel needs to delay
the transfer of the old program counter (PC) and/or the old status word (SW)
it can. To inhibit the completion of the transfer, the transfer request
(TRQ) is held TRUE, as in "A" above.

B.1.2.6 Memory Control

Memory timing, address decoding, parity and write protection
are controlled by a memory control circuit associated with each memory
module. Each memory module is 17 bits wide, 16 for data storage and one
for parity. A transfer time out circuit in the lowest (address) memory
module generates the TTO signal when an I-Bus time out error occurs.

The time out mechanism uses MCLK for timing. A unique interrupt trap
location is provided for each memory module. A status register within
each module is the concatenation of the write protect bit and the parity
bit. The status register is assigned a CAW address, and is reset when
it is read. The interrupt error mask bit is a part of the microcomputer
status word, and is accessed through CAW = 0.

49

B.1.2.6.1 Memory parity is checked during each read, and calculated
during each write. If it is not valid and if the interrupt bit is set,
then the memory controller issues an interrupt and the parity bit is
set. The read is allowed to complete.

B.1.2.6.2 The controller delays writes when the write protect bit is 5
set to check whether the write is addressing a read-write portion of
memory. If the addressed word is in a write protect area, the write is
aborted and the write protect bit is set. If the write protect bit is
set, and the interrupt error mask bit is set, the controller causes an
interrupt.

B.1.2.7 Special Cases |

B.1.2.7.1 Interrupts

BREL is generated by the bus master (always the CPU) during
interrupt servicing at a different time than BREL is usually generated.
BREL must be delayed until TACK is asserted by the interrupting device.

B.1.2.7.2 External Status Bits

Interrupts are masked by mask bits at each device. These
mask bits are represented by 10 bits in the CPU status word. Reading or
writing into the status word implies all devices must be accessed at once
on the I-Bus for accessing each particular mask bit. This is accomplished
by a broadcast mode I-Bus transfer that is designated by a CAW = 0. All i
devices must recognize CAW = 0. A1l devices must hold TRQ TRUE until

they are ready to acknowledge.

SIGNAL TYPE SIGNAL SYMBOL NO. OF WIRES
DATA TRANSFER AND CONTROL | DATA (DATA) 16
ADDRESS (ADDR) 16
1/0 SELECT (10SL) 1
+DATA RECEIVE (DRCV) 1
+TRANSFER REQUEST (TRQ) 1
TRANSFER TIME QUT (TT0) 1
TRANSFER
ACKNOWLEDGE (TACK) 1
BUS MASTER CONTROL +BUS REQUEST (BRQ) 1
+BUS RELEASE (BREL) 1
BUS GRANT IN (BGRI) 1
BUS GRANT OUT (BGRO) 1
MASTER 1D (BMID) 4
INTERRUPT CONTROL +INTERRUPT REQUEST (IRQ) 1
+INTERRUPT INHIBIT (INHB) 1
INTERRUPT
ACKNOWLEDGE IN (IAKI) 1
INTERRUPT
ACKNOWLEDGE OUT (IAKO) 1

+ Denotes a wired or signal.
A1l signals are low true.

Fig B.1 IEPUS Signal List
5

i S 1 i

i

e e oot s i e = 1) S AP T s ML o AA RNRN SRE

SIGNAL TYPE SIGNAL SYMBOL NO. OF WIRES
GENERAL BUS FACILITIES FREE RUNNING CLOCK (FCLK) 1
+MASTER CLOCK (MCLK) 1
+CLEAR/RESET (CLR) 1
POWER/GROUND 20
SPECIAL FUNCTIONS PROCESSOR STATUS (PSTAT) 1

Power & Ground; 2 pins each

*#15
+12
+5

8 Pins for Ground

+Denotes a wired or signal.
A11 signals are low true.

Figure B.1 I-Bus Signal List (Continued)

52

|
|

QUIESCERT MASTER A ' MASTER B
FROM 'A' Complctes

M g |) i ‘
IBC* BGRI L’ W
5 o INHIB 1T)/'r\(> Y

S SERTE ASSERTED y
M BMID E ANSERTED Y N b

> e e
M BREL
M TRQ — f”” "\’ N\~ b

¢+ DI +—»____ P/« Dl —J$_;ﬂ_£§__b/_'

¥ TAcK 150uns |300ns + Data Acccss Time
M I0SL — b € i
M DRCV M tlr S # S to M

HATA From ."'ASTF.R b.a \From SLAVE Y
M ADD X : R Y

IAK l :

This diagram shows two bus master control cases; the first
transfer starts when the bus is quiescent. The second transfer overlaps
bus acquisition with the completion of the previous transfer.

D1 is a delay induced by the slave device. The slave delays
150ns for bus slew and address decoding. For transfers from the slave
to the master, the slave delays another 150ns for bus slew for sending
data back to the master.

DN: Nominal delay (20ns) to insure that the slave and next
master do not overlap assertions on the data lines.

Note that TRQ cannot be asserted by the master until TACK, TRQ,
and IAK are false.

The BREL pulse is a nominal length, =50ns.
*IBC = I-Bus Control Logic

Fig B.2 I-Bus Control & Data Transfer Timing

FROMNM
Cru

CPU

an

.~ CPU

BRQ
BGRI
BGRO
BMID
BREL
TRQ

TACK
DATA
INHB
IRQ

IAKI

IAKO

— —

CPU has no BCQ; it is the lowest priority master.

> M.

N

L
Previous Trans, f{)lSOng\Q;__—//———-
Delay
Must be high for a request to happcn.
\\ E Released by present Slave
R e
[\ INHIBIT HIGH i

The IRQ can be asserted when IAKI is false.

Note that the CPU does not issue a BREL pulse until
TACK and IAKI are both true.

Fig B.3 I-Bus Interrupt Interactions with Normal Bus
Control and Data Transfers.

54

From

CLR
TACK
BREL
BCR
BRQ
DATA
ADD
IRQ
IGR

BMID

TRQ

CLR Device

N\At least 300ns /

P4
| (M s ATTRRETINL
A TN Sy s S
[R N—

y M.

3 , g Wi

—

> A i S
e o S

The CLR signal causes bus quiescence by forcing all
asychronous signals to false (or disable, where applicable) except BREL,
which stays true when CLR is true. An arbitrary minimum signal length
has been selected to be 300ns. or greater to guarantee that all Masters
and Slaves have ceased activity on the bus.

Fig B.4 CLEAR-RESET Timing

o ey S S B0

P
i
ADD e) il
I0SL LY 5
DRCV b S
DAT.;\ e 4 Y
BMID ¢ b

DETAIL_OF TRQ INTERACTION

ITRQ = Internal to master transfer request applied to TRQ wire.
Ptl = Propagation delay time for open collector bus driver.
EXTRQ = wired or signal that actually exists on the TRQ wire.

D1 = Total delay time for address decoding and slew.

Note that ADDR, IOSL, DRCV, BMID, and DATA are not removed until the
TRQ, sensed on the TRQ wire, is false. The TRQ may be held high by slow
devices during multi-device accesses (i.e., CAW = 0), until they send
back TACK.

Fig B.5 TRQ Detail Ei

56

