
~ ~~~~~ 
~~~~~~ ~~

SECURITY CLASSIFICATION OF THIS PAGE (W~ ma ~~~~~~~~~~~~~ 
UNCLASS~~ IED

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ 
READ WSTRU~TZO~S~ ~~ ~~~~~~~~~~~~~~ ‘~~~ ‘ ~~~ “ ‘  ~~~ BEFORE CO MPL ET iNG FORM

I. REPORT sUNdER 2. GOVT ACCESSION 50. 3. RECIPjENT’S CATA LOG NUMBER

L 717I ‘(--d 1. blftt.) ~~~~~~~~~~~~~~~~~ - ~~—~~ VPE OF WEPORT PER,00CoyCREO

C~ç ~ roTocoL .Fo
~~~~~~~~~~ E .P1sTR1~~% 2’ . Technica~~~~ /~~~~~~~ ).

Oc) ‘i
~ &.~ RF~~~I...&a 6R4M TIftJM$i *

. .._—~‘ J LIDS-P-B 42J’
r~~~ S. CONTRAGTOR GRANT NUMBER(.)

(
~ 
A. j~egal3, 1W ‘

~* ~. 
ARPA Order No. 3045/5-7-57

~~ 1 P M /4erl~n I ‘~~~ 
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

/ R G.J~~llage~J ~~~~~~~ ó~~~~
/ I

~~
kk1.

~
.—

~ (1.-~
-/

S PERFORMING ORGAMIZA N NAM E AND ADDRESS .U.I ! ~,-PfiOJ ECt , TASN.
Massachusetts Insti.tute of Technology AREA C WOR K UNIT NUMBERS

Laboratory for Information & Decision systems Program Code No. 5T10

Cambr idge, Massachusetts 02139 ONR Ident~.fyi.rtg No. 049-383

II. COsTROI..UNO OFFICE NAME AND ADDRESS I

Defense Advanced Research Projects Agency ‘

1400 Wilson Boulevard 13. NUMBER OF PAGES

~~~ ~rlington, Virginia 22209 29
IC. MONITORING AGENCY NAME C AQDRESS(U dUI.,w* Ira. , Coe&~Uh,~ OWe.) IS. SECURITY CLASS. (.1 QUa 

~~~~~
Office of Naval Research
Information Systems Program 

~~~~ 
) (,/ j UNCLASSIFIED

Code 437 J~I 1 IS.. QECI.ASSIFICAT ION/OOWNGRAQI$G

AZ~l.tnljt0fl , Virginia 22217 ..- • • .. .I.~~~ 
$CME DUI. &

16. DISTRISUTIOM STATEMENT ~~ Uii• R.~.rt)

Approved for public release; distribution unlimited .

1 L)

- L U
— 17. DISTRIBUTION STATEMENT (o~ 

ffi~ ~ba*zaeS ~ te.r.d I,’ fitoek 2~, ~I dill. ,w,t fte~ R.p.rf)

.7) .’

1$. SUPPI.. ZNINTARY NOTES
-i

~~~~~~~~~~ ~~~~~~~~~ ~~ ~~~~ ~~~~~ ~~~
~~~~~~~~~~~~~~~~~

11. KEY IIOROS (Co.fflma . an ra, 1. aId. U n uaamV and jd.fI!II ~ b~ block umad.,)

Pouting Networks C twtication Pouting Paths

L ABSTRAC T (C.stlm.. en i.e.,, . aId . IS n.e.... ,, end Iden(i~~ by black ma,,..?)

An algorithm for adaptive routing in data-c unication networks is presented. The
algorithm uses distributed computation , provides loop—free routing for each destina ion
in the network, adapts to changes in network flows and is completely failsafe. The
latter means that after arbitrary failures and additions of nodes and links , the
network recovers in finite time in the sense of providing routing paths between all
physically connected nodes. Proofs of all these properties are provided in a
separate paper.

/
1

DD , ~~~~~~~~ 1473 EQ TION 0, 1 NOV 65 ~S OBSOLETE

// I .Z’ /~: 7~ 
(SOY CLISIFIATIOM OP This PACE 

~~~~ ~~~



Septem~ er 1978

~~~RE COVERA -

A. 

DISCLAIMER NOTICE

An algorithm

presented. The algor THIS DOCUMENT IS BEST QUALITY
ing for each destinat: PRACTICA BL E. THE COPY FURNISHED

completely failaaf~ TO DDC CONTAINED A SIGNIFICANT
additions of nodes 

~ NUMBER OF PAGES WHICH DO NOT
of providing 

REPRODUCE LEGIBLY .
aU the.. propertie. a

The work of A. Sega.l 
~~~~~ Dy tne AdvancedResearch Project Agency of the US Depar tment of Def ense (monitored by ONR)under Contract No. N00014—75—C—].j .83, and in part by Codex Corporation .

* Depsrtment of Electrical. Engln..ring, Technio~ — Israel Institute of Technology,Beifa , Israel .

-
•

~~~ Depar tment of Electrical Engineering and Co.puter Science, Massachusetts
Institut, of Technology, Cambridge , Ma..., U.S.A.



/

September 1978 LIDS-P-848

A aECOVERA B.LE PROTOCOL FOR LOOP-FREE 
DISTRIBUTED ROUTING

A. Segall5 , P .M. Merlin~ and E.G. GalLager**

Abstract

An algorithm fo~ adaptive routing in data.-cc~~tmiCatiOU networks t.

presented. The algorithm uses distributed computation , provides loop—f re3 rou t-

ing for each destination in the network , adapts to eKa~ges in network flows and

is coupletely failsafe. The latter means that after arbitrary failure. and

additions of nodes and links , the network recovers in f inite time in tb. sense

of providing routing paths between all, physically connected nodes . Proofs of

aU thes. properties are provided in a separate paper .

L

Th. work of A . Segail and E.G. Gallaget was suppotted in par t by the Advanced

Ra.earch Proj ect Agency of the US Depar tment of Defense (monitored by ONE)

under Contract No. N00014—75 C U83, and in par t by Codex Corporation.

* D.psrtmsnt of Electrical Engineering. Technion 
— Israel Institute of Technology,

Haifa , Israel .—

~~ Depar tment of El.cttic*l Engineering and C~~~uttT Science, Massa chusetts

Inatitute of Technology, Cambridge, Maas., th S.A.



— L -

I. IRTRODUCTIO1~

Reliability and the ability to recover from topological ‘hanges are

properties of utmost importance for smooth opera.t~on of data—co~~ inicatjon

networks. In today’s data networks it happens occasionally, ~~re or less

often depending on the quality of the individual devices, that nodes and

c~~~unication links fail and recover ; also nev nodes or links become

operational and have to be added to an already operating network. The

reliability of a computerLcomunication networks in the eyes ot its users,

depends on its ability to cope with these changes, meaning that no breakdown

of the entire network or of laxge portions of it vii]. be triggered by such

changes and that in finite — and hopefully short — tine after their occur-

rence , the remaining network will be able to operate normally . Unfortunately ,

recovery of the network under all conditions , nanely after arbitrary number ,

timing and location of topologi cal changes is a property that is very hard

to insure and little successful analytical work nas been done in this direc—

tion so far

The above reliability and recovery problems are difficult whether one

uses centralized or distributed routing control. With centralized routing, one

ha. the problem of control node failure plus tb. chicken and egg probl em of

needing routes to ob tain the networ k information required to establish routes .

Our primary concern here is with distributed routing ; here one baa the prob lem.

of asynchronous computation of distributed stat us information and of designing

algorithm, which adapt to arbitra ry changes in network topology in th. absence

of global knowledge of topology . In previous vorks (1], (21, minimt delay

routing procedures using distributed computation were developed. If th. topo-

logy of the network is fixed , these algorich maintain a loop—fr.. routing at

each step , and if furthermore the input traffic requirements are stationary,

the algorithms bring the network to the minim’~ delay routing.



— 2 —

The basic algorithm in this paper is similar to , but so1nevhat

simpler than the algorithms of (11, (2]. Here we do not seek optimality ,

but are still interested in maintaining a loop—~ree d~.stributed adaptive

routing. One of the main contributions of the algorithm given in the pre-

sent paper is to introduce features insuring recovery of the network from

arbitrary topological changes. As such, the resu.].:ir.~ algorithm to be pre-

sented in Section II is,to our kncvledge, the first one for which a].]. of

the following properties hold and are rigorously proved :

(a) Distributed computation .

(b) Loop—freedom for each destination at all tines .

Cc) Independently of the sequence , location and ~~antity of topological

changes, the network recovers in finite tine.

The algorithm provides a protocol using d.is;r~~uted computation for

building rout ing tables. For each destination , the rot~ting table at each

node i consists of a preferred neighbor p~ and an estimated minimum

distance d~ to the destination (the distance is me as .~~ed in terms of pos-

sibly time—varying link weights) .  Property (b~ &~cve neans that the links

(i~~~~) never form a loop . According to property ( c ) , the algorithm insure.

that a. finite time after (arbitrary) topological changes happen , all nodes

physically connected to the destination will form a s .~le tree defined by

the relationship (i,;1) with the root at the iest~
:a:ion. These properties

are stated formally in 3ecticn III and rigcro~sly p~:ved in [11].

We may also note that, since we are concerned her e orLy with bui-lding rout-

ing tables, the algorithm can be ‘ised in (actual or virtual) line switching,

as well as in message or packet switching or any combination thereof. Finally,

the algorithm has the property of not employing any tine—out in its operation,

a featur e which greatly enhances ~ts amen,b i~l tty tc~ an.a.ysis.

:~~~~~ ) 
~fi , &

L ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— 3 —

In addition to the introduction of the algorithm ~~d thó!~prv.f of

its main properties, the paper provides contributions in the ~i~ietiou of

mod ling, analysis and validation of distributed algorit~~~. ~~~ opsrstion*

required by the algorithm at each node are s~ ized as a. finits-~tst.

machine, with tran sitions between stat es triggered by the .rriv*3. of vpd.at—

ing messages. During the activity of the algorithm, me..ó~er arm sent

bstvesn neighbors, queued at the receiving nods sod then peacessed on a first-

c~~~—first—served basis. The processi ng of a. massag. consists of its

t~~~~ rary stora ge in en appropriate memory location, foliceed by ictivation

of the finite—state machine , which takes the necessary actions sa4 performs

the corresponding state transitions • In addition to its state , etch node

has a set of m~~~ry items C i .e. variables) that are used. as “contert” in the

ezsc~tjon of the finite—state machine. Thus, predicates at the va.lue of

thos. variables can be used as conditions for transitions to oce~~, and the

occurrence of transitions may change the valu, of the variables .

Methdda for modeling and validation of various com.’~~ cation proto-

cols are proposed in (3] - (6 ) .  These methods are designed however to handle

protocols in’volving either only two comsunicating entities or noda. connected

by a fixed topology. The model we use to describe our algorithm is a. com-

bination of these known ~~dels , but is extended to allow us to study a fairly

coisplek distributed protocol , where arbitrary failures and added links and

nodes cause topological changes . The analysis and validation of the algorithm

is performed by using a special type of induction to be described in Section III

tha t allows us to prove in (11.] global properties while essentia lly looking at

local events .

Several, routing algorithms possessing some of the properties indi cated

above have been previously indicated in the literature. In (9], a routing

algorithm similar to the one used in the ARPA network, but with unity link



____

- 
— 4 —

weights, is presented . It is shown that at the time the ai.gorithm terminates,

th. resulting routing procedure is loop—free and provides the shortest— paths

to each destination. As with the ARPA routing, however , the algorithm aU.owa

te~~~rary ioopa to be for med during the evolution of the algorithm. The algor-

ithm proposed in (10) ensures loop—free routing for individual, messages. This

property is achieved by requesting each node to send a probing message to the

destination befor. each individual rerouting ; the node La allowed to indeed

perfo rm the rerouting only after receiving an acknoviedgesent from the dutLnatiøn.

Loop freedom for individual messages is a weaker pr oper ty than loop freedom for

each destination. For example, in a three—node network, send ing traffic fro m

nods 3 to node 2. via node 2 and sending traffic from node 2 to node 1. via node 3

would be loopfres for individual messages bu t ~ot loopfree for each destination.

Se. (121 for a more complete discussion of loop freed om .

II. T~~ ALG0RIT~ 4

The algorithm is describe d in several steps . we first present the

operations to be performed at a node in “normal” conditions , vtien no topological

changes occur • Then vs describe the addition to the algorithm in case of

failures and finally the protocols for add ing a. link :o the network. After

the various features of the algorithm are tr.t roduced and explained, we proceed

to present the formal algorithm for each node in the network.

Informal Descrjptjon of the Algorithm

The algorithm proceeds independently for each des;ination. Cense—

çuentl.y, for the rest of the paper we fix the des~ in a . i~ n and. present and

analyse the algorithm for that ‘iven destina:.,tt, vhi~n ~.s denoted by SINX.

In normal conditions , each node i in the ne:vor k ha.s a. routing table for

this destination consisting of a preferr ed r~ei~bbor p . ,  a. node counter

rn~ xer n . and an est ima ted distance d :~ the des j~&t~on. Essentially,

the algorithm is intended to update or establish these quantities at each step,

-



- 
— ‘ . ‘

el4~ 4”.ts links or nodes that have left the network. I~ addition to the

quantities ps,, ~~ d~ a node i keeps a list of its cur ren t neighbors,

n d  LIST i1 and for each node k E LIST~ it keep. two m~~~ry locations

called N.(k) and Dic k) ,  intended for storage of messages received from k.

During the update activity, messages with Thrmat (SINX ,m,d) are transmitted

between neighbors, where, if t is the sender, then m = n~ and d

(Since we are looking at a particular SINK , we shall suppress t~his parameter

from now On). After appending the identification of the sender to each re-

ceived message , the receiving node puts the messages in a. queue and. processes

them one by one on a first—come—first—served. ( FIFO ) basis. We say that a mes-

sage is received at node i at time t, i~ the processor at node I starts

processing the message at time t . As a rule, the first part of processing of

a message (m .d.) received at i from t say , consists of adding to d the

c~~rent distance d.j~ 
from i to I and then storing m and (d+d ~1) in

N1(k) , D~ (k )  respectively . The distance d11 can be the estimated delay

over the link (1,1) (as e.g. in ARPA) , the estimated incremental delay over

(i ,t) as required in ( lL [2) ,  or any other quantity reflecting the routing

criterion of interest. This quantity must be positive, but can be estimated in

an arbitrary manner at each node i for each outgoing link . Procedures for

estimation of the incremental delay are indicated in (7), (8)..

An update cycle Is started when the SINK sends a message Cm , d O )  to

all its, neighbors . Let us look now at an arbitrary node i in the network,

and describe its procedure under “normal” conditi3ns , nanely when no topologi—

cal changes occur . A node i collects all messages i: receives from neighbors

and stores them as described above; it dues nothing else until a message is

received from the preferred neighbor p~ . At this point the node enters an

“alert” state named S2, updates its d . as the ninin~~ of all D1(k) re—

ceived up to now during the present update cycle and sends (the updated) di
+~‘~ •11 I’hSI ~~~~~~~~~~ ~~~~~~~~~ — # ._ _ _  _. . , ,  . ... — . —



- — 6 —

operations , the node continues to collect and store messages, until messages are

received from ALL its neighbors. At this point , node I sends d~ to its pre-

ferred neighbor p~, then updates p~ to be the nods with atnimt~ D~ (k) a~~ng

aUme4.ghbors , erases all stored values N1(~) and retur ns to the “normal .ta ts

nimed Si.. The idea of this part of the algoritl~ is that , since, as veil be .~~n

in S*ction III, the relation (i.~~) defines a tree in the ne~~~rk in normal condi-

tions , the update cycle will propagate from the SINK to th. peripheries while up-

dating d1 and then back from the peripheries to the SINK while updating the t~r...

Th. transition of node i from state S2 to state $1 signifies completion of

the update step for node I. In particular, transition from 52 to Si of the

SINK (the SINK enters state S2 when starting the cycle nea.cs completion of

the updat e cycle by the entire network .

Until now, we have not described the role :f the cycle counter nt~ ber

m and of the node counter ni.~ber n1
. :naeed, if no :opologica.l changes occur,

there Is no need for these nt~ bers as long as the S~NX start s no r.ev update

before the previous one has been completed. It ~s easy to see that completion

of each cycle is guaranteed to occur in finite t~ne if there are no failures

and if transmission of messages over any link takes a finite time. The formal

statement of this property is included in Theoren ‘- .

Next , we describe the additions and changes to the basic algorithm for

proper treatment of topological changes . :t is ~ere that the role of the

cycle and node counter n~~bers n and n . becomes a.pparent . The SINK starts

consecutive update cycles with nondecreasing co’.~nter n~~bers . If a cycle is

completed, the SINK is allowed ~ start a new cyc~.e with the sane counter number

provided that a cycle with higher nt~ber ~as r.o: been previously started . On

the other hand , when topological changes ~ccu.r , nc~es in the netvcrk nay re-

quest (by a distributed protoco . to be descr ibei ;~ esent J .y ) ,  that the SINK will

start a cycle with a counter ni.~ber that ~.s higher than a. specified n~~ber. In

14 
~~~~~ ~~~~W ~~~~~~~~~~~ ~~~~~~~~~ ~~ .. ~~~ . ~~~~~~~~~~~~~ cycle before, it will



— 7 —

start it i~~ed.tately and will never reduce the update counter n~~bers afterwards .

For instance , a. sequence of starts and ends of update cycles with their appro-

priate counter n~~bera may be: start 1, end 1, start 1, start 2,~end 2, start 2,

If the SINK starts a cycle with counter nt=ber m and completes it before

starting a new cycle , we say that there has been a proper completion. We denote

the time of proper completion of a cycle with nunber m by PC(~~) .

If a node I discovers a failure on link (ip 1),  it enters a “listening”

state S3, sets d1~~” 
sends (a n1

, d — “) to all neighbors except p~, sets

p~ • nil .and deletes the neighbor corresponding to the ~ai.led 1j~nk ~~~~ the list

of neighbors LISTi
. A node i receiving (m , d “) from p~ , performs similar

operations, except that It also sets n
1 

a and stores (m ,d) into

but dc’es not delete p. from LIST~ . In this way , the

knowledge of the failure propagates backwards to all nodes whose best paths

to the SINK passed through the failed link or node and to their neighbors.

A node I that loses it8 preferred neighbor by this operation goes into

state 93 and. reattacbment (i.e. establishing a new preferred neighbor

vii]. occur as soon as it receives a message (m ,d) such that a > n~ and.

d ‘ •. If at the time it enters S3, node I has already received such a

message, it reattachee i ediateiy . Reattachnent consists of choosing as

the new p1 to be the node from which such message was received , going to

state 92 and updating ~~~~. On their pert , the neighbors of the nodes in S3

viii know not to choose such nodes as their preferred neighbors .

Up to now, we have described the algorithm of a node i ~~ case

failure occurs on a link (i ,p.). If failure occurs on a link other than

the preferred one, this li nk is erased from LIST1
, but no special action is

needed except if the nole is in state S2. In such situations it may happen

(at this tIme or later) that the node will receive messages from aU. the re—



— .

— 8 —

mining neighbors and viii complete its part ~n the step of the algorithm by

the usual transition to Si. This is a situation we would like to avoid , because

the transition from S2 to Si is supposed to si~~.al proper completion of a step

of the algorithm by the corresponding node and in the case under consideration

the node viii complete the step because it lost one cf its neighbors and. not be-

cause it received the appropriate signal from it. Consequently the algoMthm

dictates that if a node 1. is in state S2 and. discovers a failure on links

other than (i,p1), the node viii go into a “stagnated.” state S2, from which

it will not ~~ve until it receives a message over its preferred link. In this

case , it vii]. return to S2 and vii]. continue the algorithm as usual . In Section

III and Append.tces, we show that proper advance of the algorithm after this

transition is guaranteed. Another possible transitIon is from state S2 back to

state S2. This happens when a node is in state S2 and receives a message (m ,d.)

with m large enough and d < from its preferred neighbor. From this point

bn, the node viii proceed as usual . The state diagr am for a. node is depicted

in FIgure 1.

H

/ \ T21
I I J’3 )

T12 T32

T23

“-Thy
T22

T22~
’ ~ T22

t!)
Fig.. 1 — State diagram for a node.



— 9 —

In addition to the above operations , any node discovering a failure

on any of the links connected to it generates a message caUed~ RZQ(nj ).

The nusbér n~ ii exactly the node counter number- of the generating node,.

A node that generates or receives REQ (m), sends it over to its preferred

neighbor p~ if p~ ~ nil; otherwise it destroys the message. When a

message REQ arrives at a node , it is put in the regular queu.e and processed

according to FIPO as all other messages • When the SINK receives RBQ(a)

it starts a new cycle with counter number (m+i) ,  provided that such cycle

has not been started previously . Proposition 2 guara.nteea that if a REQ(m)

is generated., a cycle with counter number (m+l) will always be itar t ed

within finite time.

We fina lly describ e the protocol for adding components to the net-

work . A node I comes up in state 63 with counter number n~ ~ 0. For

bringing a Link up (i ,k) say, its two ends compar e their node nimbers

and (via a local protocol) and decide that they will bring the link

up with a number strictly higher than

z1(k) = z
k
(i) = ma

~
.(nj~

nk
) (1)

Also, if n~ ~ ~k ’ then I generates ~~
( n1) .  The link is finally brought

up by node I when n1 > z
1
(k) or when it receives tram k a message

(m ,d.) with a ~ z1(k) . The same algorithm holds for k .  Bringing link

(i ,k) up at node I consists of appending k to LIST1 and. opening memory

locations N~ (k ) .  D1(k ) .  In the formal description of the algorithm, this

is done in B.]. and SUBRO(7~INE NEW . Proposition 2 guarantees that a cycle

with counter number higher than z1(k) viii be started in finite time after

the REQ messag e is generated.



‘~T~ ~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— 10 —

Notations

In this subsection, we present several notations that will be used.

in the rest of the paper. The notat ions p1, (m ,d.) , n~ , d~ , N1(k) , D~(k)~
LIST., Sl, S2, S2, 53, PC(m), have been introduced already. W.~ add

the time in parentheses when we want to refer to the above quantities ~.Da

given time t ;  for example p .Ct), NJk)(t), etc. We also use the nota-

tions:

SXfri] = state SX with node counter n~~ber n .

s.(t) = state and possibly node counter n~niber n. of node i at time t.

Therefore we sometimes write 5 (t) = S3 for instance .nd sometimes

s.(t) S3(n].

mx.tt) = largest counter nunber a received up to tine t by node i.

ADD~ list of nodes k neighboring i such that link (i,k) is ready

to be added to the network.

We use a compact notation to describe changes acco~panyirig a tra~~ition, as

follows:

T t ..i ,~ECV(ml ,dl ,il) ,SEND ( m2 ,d2 ,L2 ) ,(n l ,n2)~ (~~.,d2~ 1(p 1 ,p2 ) ,(mxi ,~~c2) ]

will iean that transition fr cm state Sx to state ~ takes place at time

t at node i caused by receiving ( rJ.,d.1) from neighbor Li; in this

trans~tjon i sends (m2 ,d2) to p.2, changes ~-.s r.cde counter number

from ni to n2, its estimated distanc e ~o destination d1 from dl to

d2, ~~~ preferred nei~ hbor p~ from ~i to ~2 a~~ the largest update

~~~~~~~



— 11 -

coi~ t.r number received up to nov ax
1 

from axi to mx2. 7or simplicity,

we delete all arguments that are of no interest in a given description , and

if for example ni. is arbitrary we write (~ ,n2) instead of (nl ,n2).

Similarly , if Sné of the ~tatés ii arbitrary, • will replace this state.

lu particular observe that

T42(t ,SI1X ,(~ ,n2)] (2 )

means that an updating cycle with mmber n2 is started at time t and

T21(t,SI!I1C, (n 2,n2)) (3)

means that proper completion of the cycle occurs at time t. It Txy(t],

then we use the notations:

— = time just before the transition

t+ = time just after the transition

We also use

(t ,i,RECV(a,d,L)] (1i)

to denote the fact that a message (m, d) is received at time t at I

from L , whether or not the receipt of the message causes a transition.

Assumptions and Definitions

Throughout the paper , we assume that the following hold everyvbe e

in the network .

1. All links are bidirectional (full duplex).

2. d11(t) > 0 for all links (i ,i) and all t .

3. If a message is sent by node I to a neighbor I, then in finite

time , either the message will be received correctly at I or

j



I will declare link (i ,t) as tailed. Notice that thii e.ssuaptjon

does not preclude transmission errors that ire recovered b~ a local.

link protocol (e . g. “resend and acknovled~~ent ” ) .  :

le. Failure of a node is considered as failure Qf all lIr~1~e e)nn.cted to~it.

- A node I comes up in state 33, with R O  and. with e pty table3.

5. A link is said to have become operational as soon as messages can be

sent both way s through it.

6. A link (i,k) is said to be~~~~if iCLIST) or kcLIST~~ or both.

7. Two nodes axe said to be physically connected at time t it there

is a sequence of links that are up at time t connecting the two

nodes.

8. A message is said to arrive at node i when it physically arrives

there. A message is said to be received at node i , when the message

IS taken from the queue and the message processor starts processing it.

9. When a message (a,d) is received at a node, the possible values of

d may be numerical, d = or d * PAIL. In the following, d c ~

means d j~ — and d ~ PAIL. Also D~(k) < means D 1(k) # ~ and D~(k) j’ PAIL.

10. The local protocols for discovering failures and declaring links opera-

tional are arbitrary , pro vided they possess the following properties:

(a) I~ node i declares link (i,k) to be failed then node k declares

link (i,k) to be failed in finite time or node i will try to re-

open the link in finite time.

(b) If node k notices that node j  tries to br ing link ( i ,k) up

while node k still considers the link ope~a:iortal, node k first

declares link (i,k) as failed (and perf3rns step A.4 in the

Formal Description of the Algorithm ) and z~en proceeds to reopen

the link.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~..- j



— ~~~~~~~~~~~~~~ ~~~~~~~~ —
~
- . I —— 

- —~~
-
~—-~~~~

Formal Description of the Algorithm

We are nov ready to display the formal a..gorithm. performed by node 1..

We divide the description into three parts; the ott—line operstio~s, the

message processor and the finite—state machine .

The gff—line operations are pertormed tndepeudeat~~ of the message

processor and are triggered by a message arriva.. to the nod.s, by link failures

detected at the node or by new links becoming operational. The main proc~ssor

takes the message at the head of the queue and starts processing it. The ma in

part of the processing consists of the finite—state machine being called and

zero, one .or ~~re transitions taking place. As soon as no more transitions

are possible, the action is returned to the message processor.

The “1~cts” given in the algorithm are displayed for helping in its

understanding and are proven in Theorem 2.

A. Off—Line Ooerations

A.]. compiling. the list of newly operational links

If (i,L) becomes operational, set

z~ ( t )  4- max (n~~n1
) ;

Append (L,z1(&)) to ADD
1
. If > n2, generate R~EQ(n~) and put it in queue

(if n1 — n1, it is enough if only one of the nodes generates the REQ) .

•A.2 Message ’(m,d) arrives at node i from node I such that L~~LIST1 or It ADD 1
Put (m ,d,L) in queue;

A.3 Message REQ(m) arrives at node 1.

Put message in queue

A 4  Failure of link (i,L) detected at node i

Set
d a - FAIL, m~~~FA IL

Put (m,d ,t) In queue . Generate RzQ(n~) ar~d put it in queue.



-“-u’

— l i ’—

3. Operations Done by the Message Processor when a Mesas, is R.~.jved

(i . e . ,  when processor at I takes this massage fr~~~tbs qu~~~ .m4

starts processing it).

It the message lB REQ(m) , send it to p~ if Pt ~ nil sn4 dsstr~~

:.

~

tif . . pi

~

l.

If the message is (m,d,t), then:

3.]. Open new links:

If tzADD~, then if a ‘ z~ (t ) ,  append L to LIST1 aM delete

it from ADD~.

3.2 Execute

If d # PAIL,d
~~~~

, then d...d+d
IL;

+ a;

D1
(L) •d ;

If a ~ FAIL, then axi 4-

E~~CTY~E FINITE-STATE MACBINE;

IF a FAIL, delete I from LISTS.

C. Finite—State Machine

State Si

T].2 Condition 12 1. = p~, d < — , m =

Fact 1.2

Action 12 d. • mis
~ k:N~ (k )  =

D1
(k) <

+ a;

V kC ADD if n . > z ( k ) ,  CALL “ NEW ( k ) ” ;
i g  . i

transmit (rt 1,d.4 ) to neighbors, except p1.

_



— 2.5 —
T13 Condition 13 1 a p. and (d a — or d • F AI L ) .

Fact 13 If a ~ FAIL, ;nen a )

Action 13 d
1 
•

If d ~ FAlL, then n
1 a;

- - . .. 
~~~~~~~~~ i~~

• 
~~~ 

CALL “
~~~~~~ (k)”;

transmit (n 1,d 1
) to neighbors , except Pt ;

p1
. nil.

State S2

T21 Condition 21 P’k LIST~~ 2(1(k ) a n1 • ax1;

3k LIST1, s .t .  D1( k )  d1;

D~(p.) < a;

d ~ FAIL.

Pact 2].

Action 21 Transmit (n .,d..) to Pt ;

p. • k’ that achieves m.tn

P’keLIS’r~ set Ni ( k )  nil;

exit Finite—State Machine.

T22 Condition 22 1 — p~, d < •, a ax1 > a1.

Action 22 Same as Action 12.

T22 Condition_22 £ 
~ 

p
~
, d a FAIL.

Action 22 NONE.

T23 Condition 23 Same as Cond.ttlon 13.

Fact 23 Same as Fact 13

Action 23 Same as Action 13.



-

~~~~~~~~~~~~~~~~~

— 16 —

State 53

T32 Condition 32 3kc LIST1 such that mx~ = L (~~) ‘ ‘a~ , D~(k) c ••

Fac t 32 p
~ = nil , di =

Action 32 Let k achieve 
- 

~in D (k) 
- . -

k:N 1(k) = _x

D~ (k)

Then p.

nI
d.. • D (k *~ ;

Ykc~~ D~, if r.. z
1
(k), :~~ “t~~ (k )” .

Transmit (n..d~) to ne±~~:ors , except p~.

State 52

T~2 Condition ~2 £ — p.

Fact 22 If a $ FAIL , then (n > n , e.nd if = a12 
then d =

Action 22 None

SUBROUTINE “NEW( k ) ”

Append k to LIST4 ;

dele~e k from ADD.;

set N~ (k )  cii .

This c~nplete3 the d.escriptlor. of the a :~:thn for all, nodes in the

network , except the ~~~~ The SINK perf~~~ the ft~~.oving algorithm:

Off—Line Operations

Same as for all other nodes and i~ a , if S~ 1~~ Si, the

SINK can start a new update cycle at ~~y tine by going to S2 and

transmitting 
~~SINK’ 

d = 0) tc all ~~~~~ bCr3 .



— 17 —

Operations Done by the Message Processor when a Message is Received

If the message is REQ(a) and n51~~ 
> a, destroy the message.

- : it .tht ~eesage is~~~Q(m) . ~~~ ~~~~~~~~~~~~ to state S2 and .t~~~ a new

• cycle as follows :

X simc (m+ 1);

Vkc ADD31~~, CALL “NE W(k)” ;

transmit (n
31~~, dSINK 0) to all neighbors.

If the message is (a ,d ,L ) ,  d a FAIL, then delete £ from LIS!rS~~K.

It the message is (m,d,t)~d # FAIL, then -

N~(L) • a;

E~~CJrE FINITE-STATE MACHINE FOR SINK .

FINITE-STATE MACHINE FOR SINK

State S2

T21 Condition 2]. Ik C LISTSINK , N1(k )  =

Action 21 ‘IkcLISTsINK, set N1(k )  • nil.

III. Properties and Validation of the Algorithm

Some of the properties of the algorithm have already been indicated

in previous sections. Here we state them explicitly along with some of the

others. We start with properties that held throughout the operation of the

network, some of them referring to the entire network at a. given instant of

tIme and some to a given node or link as time progresses . Then we add ress

the problem of recovery of the network after topological changes.

At a given ~.nstant t , we define the Routing Graph R G(t )  as the

directed graph whcs~ nod~~ are the networic nodes and whose arcs are given by 

• - ‘- - . • • - . 



— 18 —

the pointers Pj; nsmely there is an arc from node i to node L if sat

only if  p1
(t) - I. In order to describe properties of the RG(.t), we also

define an order for the states by $3 > S2 S~ > SI.. Also Sx > S~’ means

ax > sy or ax • sy. For conceptual purposes, we re*ard all, th. actions
• • 

associated with a transition of the finite—state machine to take place at

the instant of the transition.

Theorem 2.

it any instant of time
1 RG(t) consists of a se: of disjoint trees

with the following ordering properties:

i) the roots of the trees are the SINK and all nodes in $3;

ii) if p~(t) • £ ,then u1(t) .~ a1
( t ) ;

iii ) it p~(t) — I and a1(t) — n
1
(t), then s

~~
t

iv) if p1
(t) — I and n1(t) 

a a1
( t )  and s~(t~ a s .(t) • $1, then

<

The proof of Theorem 1 is given In (11). Acccrding to it,

the RG consists at any time of a set of disjoint trees or equivalently , it

contains no loops . Observe that a tree consis:~ng of a s .ngle isolated node

is po.siE.e . The algorithm maintains a. certai: orIer:~~ ~.n the trees , namely

that eoncater .ation ~f :n . , s . )  ~.s r,ondecreasir.g v~e: .o;~.ng from the leaves

to the root of a t r ee and in addition , for r.:~ es iO ~~. a d  with the same node

counter number , the estImated dista nces to the SINX are s:rlctl.y decreasing .

In edditicr. t-~ pr oper ti es of the er.t~ re netw:~~ at each instant of

time, we :a~ ~~ok a~ :oc,1 prope :tles is t i t e  ~r gre!3e ~~. Some of the nost

importan t are given ~.n the following theorem whose ;r::~’ appears In tll].

_ _ _ _ _ _ _ _ _



_____ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—U ’

— 19 —
Theorem 2

i) For a given node i, the node counter nt=ber fl
j  

is noadecreasing

and. the messages (m ,d) received from a. given neighbor have non-

decreasing numbers a.

ii) Between two successive proper completions PC( ) and. PC(~~) ,  fo~ each

given a with ~ a ra, each node sends to each of its neighbors

at most one message (m ,d) with d < — .

iii) Between two successive proper completions PC( ) and. PC(~~) ,  for each

given a with ; < a < rn, a node enters each of the sets of states

{Sl(m]), (S2(m], S2(zn]}, {S3(a]) at most once.

iv) AU “Facts” in the formal description of the algorithm in Section II

are correct .

A third theorem describes the situation in the network at the time

proper completion occurs :

Theorem 3

At Pc(s) , the following hold for each node I:

i) If — , then s~, = SI. or s~ S3.

ii) It a message (~ ,d) with d < • is on its vay to I, then

• and n1~~~~.

and
iii) If either ( n 1 

a / s~ si) or n1 < a, the: for all k e LIST1 ~
it cannot happen that {N~(k) = ~, D~,(k) <

A combIned proof is necessary to show that :r.~e pro perties appearing

in Theorems 1, 2 , 3 bold . The proof uses a tvo—leve , inductIon , first assum-

ing properties at PC to hold , then shoving that the other properties hold

between this and the next PC and finally proving that the necessary proper—





I
— 21 —

a) T2l(tO, SINK , (&.,ml~ ) ;  ( 6)

b) ~t c ( t ~~,t 3J ,  we have L(~~, = L.(tO);

c i for all i c UtO) we have
I

• - 
• 

- T*2(t2., i,- (ml,mi.)] - (7)

for some time t2. e (tl,t2];

d) i) T21(t3, SINK , (al ,al) ]; (8)

j j :  BG(~ 3) for all nodes in L(tO ) is a single tree rooted at

SINK .

In words, Theorem 4 says that under the given conditions , if a new

cycle starts with a number that was previously used., then PC with the same

number has previously occurred and the new cycle will, be properly completed

in finite time. The proof of Theorem 4 is give: in (11].

The recovery properties of the algorithm are described in Proposi-

tions 1, 2 and ifl Theorem 5. The proofs of the propositions appear in (113 .

PropositIon 3.

Let L t ) ~‘e as in Theorem 4. Suppose

Ts2(:l, SINK , (ml,m2)) ; 2 ml , (9)

nam~1y a cycle starts at time ti with a number that was not previously

used. Suppcse also that no pertinent topological changes happen for a

long enough period after U .  Then

-- - --~~~~~~~~~~~~ - - - -~~~~ - _ _ _ _ _ _ _ _ __ _ _ _



— 22 —

a) there exists a time t2, with t]. < t2 < , such that for all

I ~ L(t2)
T+2(t2~~i 1( + ~m2 ) ]  (.3.0)

happen at some time t21 with tI. c t2i < t2.

b) There exists a time t3 < such that

i) T21[t3,SINK ,(m2,m2) )  ; Cu. )

ii) RG(t3) for al]. nodes in L(t3) is a singl, tree rooted at SINK.

Part of a) of Proposition 1 says that under the stated conditions ,

all nodes in L(t) will eventually enter state S2(m2) . Part b) says that

the cycle will be properly completed and ..ll nodes physically connected. to the

SIlK at time PC(m2 ) will also be connected to the SINK by the Routing Graph .

Finally , we observe that reatt achmen t of & node loosing its path to

the SINK or bringing a. link up requires a cycle with a co~~ter n~~ber higher

than the one the node currently has . Proposition 2 er.suxes that such a. cycle 1:
has been or will be started in finite time by the SINK .

Proposition 2

Suppose that a message RE~(m1) is generated. a.: some time t at

some node in the network. Then the SINK baa received before t a message

REQ(al) or will receive such a message in finite :ie after t.

Propositions 1 and 2 are combined in:

Theorem 5 (Recove ry theorem)

Let L(t) be as in Theorem ~~. Suppose there ~.s a time ti after

which no pertinent topological changes happen in the network for long enough

time. Then there exists a time t3 with ti < t3 < = such that proper

completIon happens at t3 and such that all nodes in L(t3) are on a single

tree.i~ooted at SINK .



— - _~_ J —i —-- - — .-- — --•——,-.
~~

----• -— -•—
~
.--•-.•- • - —- --•—• — —  - - - - — - — — - - -  - -•- - —-.—-—•-— •---—-•-- - ,--- •---— •-••-•-.• •--—.- -—-——-—-—•-— ——• — -

- 23—

Proof

Let tO < ti be the time of the last pertinent topological, change

before ti . Let i be the node detecting it and let m = n
i
(tO_). Then

by definition, a message REQ(m) is generated at tine :0. By Proposi—

tio~. 2, a message REQ( m) arrives at some fini te  t ime at SINK . Ltt

t2 < ~ be the time the first REQ (m) message arrives at SINK. The algor-

ithm dictates that SINK will start at time t2 a new cycle , with number

ml = m+l . Since by the definition of pertinent change, m is the largest

number at time tO , we have that tO < t2. By assumption, no pertinent

topological, changes happen after time tO for a long enough period , so

that no such changes happen after time t2. Conseq~en;ly Proposition 1

holds after this time and the assertion of the Theorem follows .

I-V . DISCUSSION AND CONCLUSIONS

The paper presents an algorithm for construct ing and maintaining

loop—free routing tables in a data—network , when arbitrary failures and

additions happen in the network. Clearly , these properties hold also for

several, other versions of the algorithm, some of them simple r and some of

• them more involved than the present one . We have decided on the present

form of the algorithm as a Compromise between simplicity and still keeping

some properties that are intuitively appealing. Fe: example , one possibility

is to increase the up da~ e cycle number every tim e a new cycle is started . This

will not c~impli fy the algo ri thm , but will greatly simplify the proofs. On the

Qthe r hand , it will require many more bits for the update cycle and node nt.~~ —

he rs m and than the algorithm given in the paper. Another vers ion of the

algorithm previously considered by us was to require that every tine a node

- -

~

- • -

~

—• -

~

-•





.

• References -

[i) R.G .  Gallager , A minimum delay routing algorIthm using &tetrib~rted,computation, I~~~ Trans. on Comm., Vol . COM—25, ~p. 73-85.
Jan. 1977.

(2] A. Segall, Optimal distributed routing for line—switched, data net—• works , submitted to ~~ E Trans. on C.~~~~
(3] G.V. Bochaann and J. Gecaej , “A unified method for the specificationF and verification of protocols”, Publication #2147, Depsrt~~ent

d’Informatjque, University of Montreal, Nov. 1976 . To be pre-
sented at the IPIP-Congreis 1977, Toronto .

(Z~] P.14. Merlin, A methodolo~~’ for the design and impl,ementsticn of cam-munication protocols , I~~~ Trans. on C~~~unieationa. Vol. CON—214,
- 

No. 6, pp. 6114_621, June 1976. -

( 5]  C.A. Sunshine , Survey of co~~unicatj on protocol verification tech-niques , Trends and Applications 1976: Ccmputer Netvorka,( Symposium sponsored by I~~~ Computer Society; National Bureauof Standards), Gaithersburg, Maryland , Nov. 1976.

(6) M.G. Gouda and E.G. Manning, protocol machines: A concise tor~almodel and, its automatic implementation. Proceedings of the
Third International Conference on Conouter Co uziication,
pp. 3146—345, Toronto, Aug. 1976.

(7] A. Segall, The modeling of adaptive routing in d.ata—co unica.tj on
networks , I~~~ Tran s. on comm ., Vol. CC~’.—25, pp. 85—95, J an . 1977 .

(8) M. Bello, Estimation of the delay derivative Th~’ purposes of routingin data networks, S.M. Thesis, Dept. E~CS, ICT, Feb . 1977 .
(9 ]  W .D . Ta.jibna.pj s , A correctness proof’ of a topolo~ ’ information

maintenance protocol for a distributed cc~puter network ,Co=unicatj ons ACM, Vol . 20 , No. 7, pp. ~77—1485, July 1971.
(10] W.E. Naylor , A loop—free adaptive routing algorithm for packet switchednetworks, Proc. 14th Data Co uziication Srmposium, Quebec City ,

pp. 7.9.-7.114, Oct . 1975.

(11] P.M. Merli n and A. Segall , A failsafe algor±t~’. for loop—free di~trjbutedrouting in data—communication networks, submitted to IEEZ Trans. onComm .

[12) R.G. Gai.1.ager, Loops in mu1.tico~~odity flows , Paper ESL—P—772, ElectronicsSystems Laboratory , MIT, Cambridge , Mass., Sept. 1.977.



- -

Distribution List

Defense Documentation Center 12 Copies
Cameron Station
Alexandria, Virginia 22314

Assistant Chief for Technology i Copy
Office of Naval Research , Code 200
Arlington , Virginia 22217

Office of Naval Research 2 Copies
Information Systems Program
Code 437
Arlington, Virginia 22217

Office of Naval Research 1 Copy
Branch Office , Boston
495 Suxmner Street
Boston, Massachusetts 02210

Office of Naval Research 1 Copy
Branch Office , Chicago
536 South Clark Street
Chicago, Illinois 60605

Office of Naval Research 1 Copy
Branch Office, Pasadena
1030 East Greet Street
Pasadena, California 91106

New York Area Office (ONR) 1 Copy
715 Broadway - 5th Floor
New York, New York 10003

Naval Research Laboratory 6 Copies
Technical. Information Division , Code 2627
Washington , D.C. 20375

Dr. A. L. Slafkosky 1 Copy
Scientific Advisor
Commandant of the Marine Corps (Code RD-i)
Washington, D.C. 20380



• .

Office of Naval Research 1 Copy
Code 455
Arlington, Virginia 22217

Office of Naval Research 1 Copy
Code 458
Arlington, Virginia 22217

Naval Electronics Laboratory Center 1 Copy
Advanced Software Technology Division
Code 5200
San Diego, California 92152

Mr. E. H. Gleissner 1 Copy
Naval Ship Research & Development Center
Computation and Mathematics Departhent
Bethesda , Maryland 20084

Captain Grace M. Hopper 1. Copy
NAICOM/MIS Planning Branch (OP-916D)
Office of Chief of Naval Operations
Washington, D.C. 20350

Mr. Kin B. Thompson 1 Copy
Technical Director
Information Systems Division (OP-9lT)
Office of Chief of Naval Operations
Washington, D.C. 20350

Advanced Research Projects Agency 1 Copy
Information Processing Techniques
1400 Wilson Boulevard
Arlington, Virginia 22209

Dr. Stuart L. Brodsky 1 Copy
Office of Naval. Research
Code 432
Arlington, Virginia 22217

Captain Richard L. Martin, USN 1 Copy
Commanding Officer
USS Francis Marion (LPA—249)
FPO New York 09501


