|
L

SECURITY CLASSIFICATION OF THIS PAGE (Whew Date Enteces) UNCLASSIFIED

: REPQRT DOCUMENTAT!O\! PAGE BEFORE COMPLETING FORM

). REPOAT NUMBER 2. GOVT ASCESSION NO.| 3. RECIPIENT’'S CATALOG NUMBER

S=PYPE OF REPORT PGR!OD COV!REU

A\ RECOVERABLE PROTOCOL_ FOR _;.oop-s'm DISTRIBUTED \ 2 (G rechnical_/ /77, /
ROUTING A A _A% A X\)
e — f S8 3 z ruuu.uﬂ
s PA TR LIDS-P-848

8. CONTRACT OR GRANT NUMBER(3)
ARPA Order No. 3045/5-7-57

Ky hd \ D%
> A ¥ AgH.
A A N

AD A () 6 1 66 s/@y'

Y

Ny
E COP

DOC Fil

P. M. Merlin @m'ﬁ#ue@o’m 75-C~- 1183]-_
R: G ﬁana er| 3 F/ e
T PERS 9. PERFORMING ORGANIZATION NAME AND AQOAESS « PROGRAMECERENTAPROIEICT, T
Massachusetts Institute of Technology Prg“r‘;.:\ ":o"g‘e“';;; ""5",1?;8’
Laboratory for Information & Decision Systems - ONRgI dentif .' .N 049-383
Cambridge, Massachusetts 02139 SRR]
11. CONTROLLING OFFICE NAME AND ADORESS 1 :
Defense Advanced Research Projects Agency H] =8P » 3878
1400 Wilson Boulevard - 13. HUMBER OF PAGES
Arlington, Virginia 22209 ; 29
"Ta MONITORING AGENCY NAME & AOORESS(If dillerent from Coniralling Ollice) | 15. SECURITY CLASS. (of this reparr)
Office of Naval Research et s
Information Systems Program } Y0 e ;
Code 437 . E ' [15e, DEGLASSIFICATION/ DOWNGRADING
2t . SCHEDULE

— e e e
16. DISTRISUTION STATEMENT (of this Repart)

Arlington, Virginia 22217

Apprcved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the ebstract entered in Block 29, if diflecent from Repert) g

(Vg

13. SUPPLEMENTARY NOTES
TS BOTELR

A QOPY Fune i
SPEIPTOATT il B as‘ s e 10 TR
Lot b s & 01720 B4 1 S .
19. XEY WOAODS (Continue on reveese aside If y and 14y by Slock ber) i
Routing Networks Communication Routing Paths

120. ABSTRAGT (Continue on reverse side If necessary and identify by block aumser)

An algorithm for adaptive routing in data-communication networks is presented. The
algorithm uses distributed computation, provides loop-free routing for each destinagi
in the network, adapts to changes in network flows and is completely failsafe. The
latter means that after arbitrary failures and additions of nodes and links, the
network recovers in finite time in the sense of providing routing paths between all
physically connected nodes. Proofs of all these properties are provided in a

separate paper.

A

ot

DD ':2:94" 1473 EDITION OF) NOV 63iS OBSOLETE - IS
’ { :

// Z ¢,' /'; 7 [& Y CLEESIFIRATION OF THIS PAGE (od)

September 1978

A RECOVERA
\ \

[}

A,

DISCLAIMER NOTICE

An algorithm

presented. The algor THIS DOCUMENT 1S BEST QUALITY
M Bt PRACTICABLE. THE COPY FURNISHED
is completely failsafe TO DDC CONTAINED A SIGNIFICANT
additions of nodes and NUMBER OF PAGES WHICH DO NOT
of providing routing p REPRODUCE LEGIBLY.

all these properties a

The work of A. Segal cr-~-=w +u past Dy the Advanced l
Research Project Agency of the US Department of Defense (monitored by ONR)
under Contract No. NO0Q14-75-C-1183, and in part by Codex Corporation.

* Department of Electrical Engineering, Technion - Israel Institute of Technology,
Haifa, Israel.

Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, Mass., U.S.A.

September 1978 LIDS-P~848

A ﬁECOVERiDiE PROTOCOL FOR LOOP-FREE DISTRIBUTED ROUTING
\ \

A

A. Segall*, P.M. Merlin* and R.G. Gallager**

. Abstract

An algorithm far adaptive routiné in data-communication networks is
presented. The algorithm uses distributed computationm, provides loop-frez rout-
ing for each destination in the network, adapts to changes in network flows and
is completely failsafe. The jatter means that after arbitrary failures and
additions of nodes and links, the petwork recovers in finite time in the sense
of providing routing paths between all physically connected nodes. Proofs of

all these properties are provided in a separate paper.

The work of A. Segall and R.G. Gallager vas supported in part by the Advanced
Research Project Agency of the US Department of Defense (monitored by ONR)
wnder Contract No. NO0014~75~C-1183, and in part by Codex Corporatiou.

2 Department of Electrical Engineering, Technion - lsrael Imstitute of Technology,
Haifa, lIsrael.

#* Department of Electrical Engilneering and Computer Science, Massachusetts
Institute of Technology, Cambridge, Mass., U.S.A.

I. INTRODUCTION

Reliability and the ability to recover froam topological changes are

properties of utmost importance for smooth operatior of data-communication

netvorks. In today's data networks it happenms occasionally, more or less 5

otten'depending-on the quality of the individual devices, that nodes and-
communication links fail and recover; also nevw nodes or links become
operational and have to be added to an already operating network. Th;
ﬁ reliability of a computer-communication netvork, in the eyes of its users, T
depends on its ability to cope with these changes, meaning that no breakdown
;f the'entire network or of large portions of it will be triggered by such
changeé ;nd that in finite - and hopefully short - time after their occur-
rence, the remaining network will be able to operate normally. Unfortunately,
recovery of the network under all conditions, namely after arbitrary number,
timing and location of topological changes is a property that is very hard
to insure and little successful analytical work has been done in this direc-
tion so far. 1
The above reliability and recovery problems are difficult whether ome
uses centralized or distributed routing control. With centralized routing, one

has the problem of control node failure plus the chicken and egg problem of

needing routes to obtain the network information required to establish routes.

Our primary concern here is with distributed routing; here one has the problems
of asynchronous computation of distributed status information and of deaigning
algorithms which adapt to arbitrary changes in network topology in the absence
of global knowledge of topology. In previous works [1], (2], minimum delay

routing procedures using distributed computation vere developed. If the topo-

logy of the network is fixed, these algorithms maintain a loop-free routing at
each step, and {f furthermore the input traffic requirements are stationary,

the algorithms bring the network to the minimm delay routing.

R ——

The basic algorithm in this paper is similar to, but somewhat
simpler than the algorithms of [1], [2]. Here ve do rot seek optimality,
but are still interested in maintaining a loop-free d:istributed adaptive
routing. One of the main contributions of ;he algofi:hm given ln the pre-
sent paper is to introduce features insuring recovery of the network from
arbitraiy topological changes. As such, the resultirg algorithm to be pre-

sented in Section II is,to our kncwledge, the first one for which all of °~

the following properties hold and are rigorously provad:
(a) Distributed computation.
(b) Loop~freedom for each destination at all times.

(¢) Independently of the sequence, location and gueatity of topological

changes, the network recovers in finite tire,

The algorithm provides a protocol using distrituted camputation for
building routing tables. For each destination, tte routing table at each
node { consists of a preferred neighbor p; and =2n estimated minimum
distance d, to the destination (the distence is meas:red in terms of pos-
sibly time-varying link weights). Property (b) adcve —eans that the links
(i,pi) never form a loop. According to prcperty {¢), the algorithm insures
that a finite time after (arbitrary) topological chazges happen, all nodes
physically cengected to the destination will form a sinzle tree defined by
the relationship (i,pi) with the root at the destizezion. ,These properties
are stated formally in Secticn ITII and rigereusly proved in [11].

We may also note that, since we are concerned here Szl with bdbuilding rout-
ing tables, the algorithm can be used in {(actual or virzual) line switching,
as well as in message or packet switching or any combination thereof. Finally,
the algorithm has the property of not employing any tize-out in its operation,

a feature which greatly enhances its amgn,bggity to anziysis.

€D

AR

In addition to the introduction of the algorithm sbd théiproofs of
its main properties, the paper provides contributions in the giﬁ,ﬁti«: of
modeling, analysis and validation of distriduted algorithms. Th# operations
required by the glgorithn at each node are summarized as a finite-state
pachine, vith transitions between states triggered by the arrival of wupdat-
ing messages. During the activity of the algorithm, messages are sent
between neighbors, queued at the receiving node and then processed on a first-
come=Lirst-served basis. The processing of & message consists of its
taporary storage in an appropriate memory locatioa, follawed by activation
of the finite-state machine, vhich takes the necessary actions and performs
the corresponding state transitions. In addition to its state, ekh node
has a set of memory items (i.e. variables) that are used as "context™ in the
execution of the finite-state machine. Thus, predicates oa the value of
those variables can de used as conditions for transitions to occur, and the

occurrence of transitions may change the value of the variables.

Methods for modeling and validation of various communication proto-
cols are proposed in [3] - [6]. These methods are designed hovever to handle
protocols involving either only two communicating entities or nodes connected
by a fixed topology. The model we use to descridbe ocur algorithm is a com-

“bination of these known models, but is extended to allow us to study s fairly
complex distributed protocol, where arbitrary failures and added l_inl;a and
nodes cause topological changes. The analysis and validation of the algorithm

is performed by using a special type of induction to be descrided in Section III
that allows us to prove in [l11] global properties while essentially looking at

local events.
Several routing algorithms possessing some of the properties indicated
above have been previocusly indicated ip the literature. 1Ia (9], a routing

algorithm similar to the one used in the ARPA netvork, bdut vith unity link

veights, is presemted. It is shown that at the time the algorithm terminates,
the resulting routing procedure is loop-free and provides the shortest-paths

to each destination. As with the ARPA routing, however, the algorithm allows
temporary loops to be formed during the evolution of the algorithm. The algor-
ithn proposed in [10) ensures loop-free routing for individunl ;-oocgea. This
property is achieved by requesting each node to send 2 probing message to the
destination before each individual rerouting; the node is allowed to indeed
perform the rerouting only after receiving an acknovledzement from the dest{nation.
Loop freedom for individual messages is a weaker property than loop freedom for ‘
each destination. Pbr example, in a three-nocde network, sending traffic from
node 3 to node 1l via node 2 and seonding traffic from node 2 to node 1 via node 3

would be loopfrec for individual messages, but not loopfree for each destinationm.

See (12] for a more complete discussion of loop freedem.

IT. THE ALGORITHM

The algorithm is described ip several steps. Wwe first present the
operations to be performed at a node in "norzal" conditions, vhen no topological
changes occur. Then we describe the addition to the algorithm in case of
failures and finally the protocols for adding & link <0 the network. After
the various features of the algorithm are irtroduced and explained, we proceed

to present the formal algorithm for each node in the zetvork.

Informal Description of the Algorithm
The algorithm proceeds independently for each destination. Conse-

quently, for the rest of the paper we fix the des<inetion and present and

analyse the algorithm for that given destizatiom, whish Is denoted by SINK.

In normal conditions, each node i in the network 2as s routing table for
this destination consisting of a preferrec neighbor »,, & node counter

number ni and an estimated distance d1 ¢ the des<ization. Essentially,

the algorithm is intended to update or establish these quantities at each step,

- e ———

’

:

e s . S S AL AR A SO S

- — 5 —

eliminate links or nodes that have left the network. In additiom to the

quantities Py» Byo d a node i keeps a list of its current neighbors,

1)
and for each node l:eLIS'l‘i it keeps two memory locations

named LIST

1
called Ni(k) and Di(k). intended for storage of messages r;coived from k.
During the update activity, messages with format (SINK,m,d) are transmitted
between neighbors, where, if 2% 1is the sender, themn m =n

, aad d=4a.

(Since we are looking at a particular SINK, we shall suppress this parametér

from now on). After appending the identification of the sender to each re-
ceived message, the receiving node puts the messages in a queue and processes
them one by one on ; first-come-first-served (FIFO) basis. We say that a mes-
sage is‘;ééeived at node i at time t, if the processor at node i starts
processing the message at time t. As a rule, the first part of processing of
a message (m,d) received at i from L say, consists of adding to d the
current distance diz from i to L and then storing m and (d4-diz
can be the estimated delay

) in

Hi(k)' Di(k) respectively. The distance d,,
over tde link (i,2) (as e.g. in ARPA), the estimated incremental delay over
(1,2) as required in {1],{2], or any other quantity reflecting the routing
eriterion of interest. This quantity must be positiye, but can be estimated in

an arbitrary manner at each node i for each outgoing link. Procedures for

estimation of the incremental delay are indicated in (7], (8}.

e b s

An update cycle is started when the SINK sends a message (m, d=0) to
all its neighbors. Let us look now at an arbitrary node i in the network,
and describe its procedure under "normal" conditions, ne=ely when no topologi-
cal changes occur. A nod2 i collects all messages i: receives from neighbors
and stores them as described above; it does nothing else until a message is
received from the preferred neighbor Py At this point the node enters an
"alert" state named S2, updates its d, as the minizum of all D;(k) re-

ceived up to now during the present update cycle and sends (the updated) di

+n all rnairshhAare BvAand bas amaPocme.d =2 LN . A .~ e a o0

.|l----l-----u-u-in-uu-n-u-u--u.........._.._.._._,, -

5 (A

operations, the node continues to collect and store messages, until messages are
received from ALL its neighbors. At this point, node i seads di to its pre~
ferred peighbor Pys then updates Py to be the node with minimum Di(k) among
all neighbors, erases all stored values N (‘) and returns to the "pormal”state
usl.d S1. The 1dea of this par: of the algorich- is that, since,; as well be sesn
in Section III, the relation (i,pi) defines a tree in the petwork in normal condi-
tions, the update cycle will propagate from the SINK to the peripheries while up-

dating di and then back from the peripheries to the SINK while updating the ércn.

The transition of node i from state S2 to state Sl signifies completion of
the update step for node i. In particular, transi:ion from S2 to Sl of the
SINK (the SINK enters state S2 when startin g the cycle, mears completion of

the update cycle by the entire network.

Until now, we have not described the role ¢ the cycle counter number
m and of the node counter number ni. Indeed, if =5 topological changes occur,
there is no need for these numbers as long as the SI¥X starts no rev update
before the previous one has been completed. It is easy to see that completion
of each cycle is guaranteed to occur in firite time if there are no failures

and if transmission of messages over any link taxes a finite time. The formal

statement of this property is included in Theore= .

Next, ve describe the additions and changes <o the basic algorithm for
proper treatment of topological changes. It is here <hat the role of the
Eycle and node counter numbers n and ni beccmes apparent. The SINK starts
consecutive update cycles with nondecreasing couzter zuxbers. If a cycle is
completed, the SINK is allowed -0 start a new cyc.e with the same counter number
provided that a cycle with higher number 2as no: been previously started. On
the other hand, when topological changes osccur, ncies in the netwcrk may re=-
quest (by a distributed protocoi tc be descrited rresently), that the SINK will
start a cycle with a counter number tha® i5 higher zzen e specified number. In

L% 3 s samas PP eha QTNY har wns mtewtad e~= ar 'imia-as evcle before, i+t will

- —

s

start it immediately and will never reduce the update counter numbers afterwards.
For instance, a sequence of starts and ends of update cycles with their appro-

priate counter numbers may be: start 1, end 1, star% 1, start 2, ‘end 2, start 2,
e It the SINK starts a cycle vxth counter numbex- m and conpletes it before

starting a new cycle, we say that there has been a proper completion. We denote

the time of proper completion of a cycle with number m by PC(m). “

If a node i discovers a failure on link (i’pi)' it enters a "listening”
state S3, sets d1¢-- sends (m = o, d = =) to all neighbors except P> sets

Py * nil .and deletes the neighbor corresponding to the failed link from the list

of neighbors LISTi. A node i receiving (m, d = @) from Py performs similar
operations, except that it also sets o, +m and stores (m,d) into
(Hi(pi),Di(pi)), but dces not delete p, from LIST,. In this vay, the
knowvledge of the failure propagates backwards to all nodes whose best paths
to the SINK pessed through the failed link or node and to their neighbors.
A node i that loses its preferred neighbor by this operation goes into
state S3 and reattachment (i.e. establishing a nev preferred neighbor pi)
will occur as soon as it receives a message (m,d) such that m > n, and
d <®», If at the time it enters S3, node i has already received such a
message, it reattaches immediately. Reattachment consists of choosing as
the new Py io be the node from which such message was received, going to

state S2 and updating ny . On their part, the neighbors of the nodes in S3

will know not to choose such nodes as their preferred neighbors.

Up to now, we have described the algorithm of a node i in case
failure occurs on a link (i,pi). If failure occurs on & link other than
the preferred one, this link is erased from LISTi, but no special action is
needed except if the noide is in state S2. In such situations it may happen

(at this time or later) that the node will receive messages from all the re-

—— —— _

-8 =
maining neighbors and will complete its part iz the step of the algorithm by

the usual transition to S1. This is a situation we would like to avoid, because

' the transition from S2 to Sl is supposed to signal proper comﬁletion of a atep

of the algorithm by the corresponding node and in the case under consideration
tSeAQSdQ ;ill.cb;plete ;he ste§ becauge iﬁ'lost.sﬁe et igs neighbors and not be-
cause it received the appropriate signal from it. Consequently the algo}ithn.
dictates that if a node i is in state S2 and discovers a failure on links
other than (1,p,), the node will go into a "stagnated” state 52, from vhich
it wvill not move uﬁtil it receives a message over its preferred link. In this
case, it.will return to S2 and will continue the algorithm as usual. In Section
III and Appendices, vwe show that proper advance of thé algorithm after this
transition is guaranteed. Another possible tramsition is from state S2 back to
state S2. This happens when a node is in state S2 and receives a message (m,d)
with m large enough and d<= from its preferred neighbor. From this point
On.'fhe node will proceed as usual. The state diagra= for a node is depicted

in Figure 1.

Fig.- 1 - State diagram for a node.

R ————

-9 -

In addition to the above operations, any node discovering a failure
‘on any of the links connected to it generates a message called® REQ(ni).
" The number 'ni 'is exactly the node counter number of the generating node.
A node that generates or receives REQ(m), sends it over to its preferred
' neighbor 1 it ' # pil; othervise it destroys the message. When a '
message REQ arriQes at a node, it is put in the regular quau; and processed
according to FIFO as all other messages. When the SINXK receives REQ(m)
it starts a nev cycle with counter number (m+l), provided that such cycle
has not been started previously. Proposition 2 guarantees that if a REQ(m)
is generated, a cycle with counter number (m+l) will alwvays be started

within finite time.

We finally describe the protocol for adding components to the net-~

vork. A node i comes up in state S3 with counter number ni = 0, For

bringing a link uwp (i,k) say, its twvo ends compare their node numbers

n, and B (via a local protocol) and decide that they will bring the link
up with a number strictly higher than

zi(k) = zk(i) = nax(ni,nk) ’ (1)

Aso, if n, i_nk, then i generates REQ(n;). The link is finally brought

up by node { when n, > zi(k) or when it receives from k a message

i
(m,a) ‘with m > zi(k). The same algorithm holds for k. Bringing link
(1,k) up at node i consists of appending k to LISTi and opening memory
locations Ni(k), Di(k)' In the formal description of the algorithm, this

is done in B.l and SUBROUTINE NEW. Proposition 2 guarantees that a cycle

with counter number higher than zi(k) will be started in finite time after i

the REQ message is generated.

- 10 =

Notations

In this subsection, we present several notations that will be used
in the rest of the paper. The notations Dy (=,d), a,, di"li(k)' Di(k),
zi(k), LISTi, s1, S2, Sé, S3, PC(m), have b;en introduced already. W: add
the time in parentheses when we want to refer to tze above quantities av. e

given time t; for example pi(t), Ni(k)(t), etc. We also use the nota-

tions:

SX[(n] = state SX with node counter number =n.

si(t) = state and possibly node counter number ni cf node i at time t.
Therefore we sometimes write si(t) = S3 for instance and sometimes
s, (t) = s3(n].

i
mxi(t) = largest counter number m received up o tize t by node i.
ADD; = list of nodes k neighboring i such shat link (i,k) 1is ready

to be added to the network.

We use a compact notation to describe changes accompanying a transition, as

follows:

Txy(t,i,RECV(ml,d1,21),SEND(m2,d2,%2),(nl,n2),(32,d2},(pl,p2),(mxl ,nx2)]

will mean that transition from state Sx to stzte 3y takes place at time
t at rode i caused by receiving (ml,dl) <£rena rneighbor 21l; in this
transition i sends (m2,d?) +to %2, zhanges i:is ncde counter number ni

frcm nl to n2, its estimated distance 20 des<inaszion di from dl o

d2, 1ts preferrec neighbor p, from pl to 322 =ani the largest update

" . |

- Ao

counter numSer received up to now mx, from mxl to mx2. For simplicity,
ve delete all arguments that are of no interest in a given descfiption. and
if for example nl is arbitrary we write (¢,n2) instead of (nl,n2).
Siﬁiihfii; if one 6f'iﬁg:statés'15‘&rﬁ£€raryi' ¢ will replace"this state.
In particular observe that

T¢2(t,SINK,(9,n2)] (2)
means that an updatips cycle with number 22 is started at time t and

T21(t,SINK,(n2,n2)] (3)

means that proper completion of the cycle occurs at time t. If Txy[t],

then we use the notations:

time just before the transition ,

t+ time Just after the tramsition .

Ve Aiso use
(t,i,RECV(m,d,2)] (%)

to denote the fact that a message (m,d) is received at time ¢t at {

from 2, whether or not the receipt of the message causes a transitiom.

Assumptions and Definitions

Throughout the paper, we assume that the following hold everywhe:e

in the network.
1. All links are bidirectional (full duplex).

dil(t) >0 for all links (i,2) and all t.

3, If a message is sent by node { to a neighbor L&, then in finite

time, either the message will be received correctly at L or

- 12 -

£ will declare link (i,2) as failed. Notice tbet this essumption
.

does not preclude transmission errors that are reco'vereaﬁy a local

link protocol (e.g. "resend and acknowledgmeat"). ;;

4. Failure of a node is considered as failure o? all links éﬁinoctod to it.
. A node i comes up in state 33, with »hi'tko ‘and viisbeupéi tables.

S« A link is said to have become operational as soon as messages can dbe

sent both ways through it. : .

6. A link (i,k) is said to be up if 1eLIST, or xelLIST,, or both.

T. Two nodes are said to be physically connected at time t 4f there
..1s a sequence of links that are up at time ¢ corcnecting the two

nodes.

8. A message is said to arrive at node i when it physically arrives
there. A message is said to be received at node i, when the message

is taken from the queue and the message processcr starts processing it.

9. When a message (m,d) is received at a node, <he possidle values of
d may be numerical, d =e or 4 = FAIL, In the following, d < =

means d §# = and d # FAIL. Also D, (k) < = means D, (V) # = and D, (k) A FAIL.

10. The local protocols for discovering failures and declaring links opera-

tional are arbitrary, provided they possess the following properties:

(a) 1f node i declares link (i,k) ¢to be failed then node k declares
link (i,k) to be failed in finite time cr node i will rtry to re-

open the link in finite time.

(b) If node k notices that node i tries to bring link (i,k) wp
| while node k still considers the link operational, node k first
declares link (i,k) as failed (and periorms step A.4 in the

Formal Description of the Algorithm) and then proceeds to reopen

the link.

B « _ P

- 13 -

Formal Descrigtion of the Algorithm

We ere now reedy to display the formal azorithm performed by node 1.
We divide the description into three parts; the off-line operatioms, the

ﬁannnge processor and the finite-state machine.

The off-line operations are performed independently of the nallcg;
processor and are triggered by a message errival to the node, by link failures
detected at the node or by new links becoming operational. The main proc:sgcr
takes the message at the head of the queue and starts processing it. The main
part of the processing consists of the finite-state machine being called and
zero, one.or more tramnsitions taking place. As soon as no more transitions

are possible, the action is returned to the message processor.

The "Fscts" given in the algorithm are displayed for helping in its

understanding and are proven in Theorem 2.
A. - e (o]

A.l1 Tompiling the list of newly operational links

If (i,2) becomes operational, set
zi(z) - max(ni;nz} s
Append (L,zi(z)) to ADDi. If o, 2 ny, generate REQ(ni) and put it in queue

(if n, =a it is enough if only one of the nodes generates the REQ).

l.

"A.2 Message (m,d) arrives at node i from node £ such that fLe¢ I.IS'I.';l or Le AIJDi

Put (m,d,L) in queue;

A.3 Message REQ(m) arrives at node 1

Put message in queue

A.4 Failure of link (i,2) detected at node i

Set
d « FAIL, m « FAIL ;

Put (m,d,%) in queue. Generate REQ(ni) and put it in queue.

-1k -

-

B. erations Done the Message Processor when & Mess is Received
(i.e., wvhen processor at i takes this message from the qu“& and

starts processing it).

If the message is REQ(m), send it to Py it P, ¢ nil and-Qestroy
it ir p = ol

If the message is (m,d,2), then:

B.l Open new links:

If LeADD,, then if m > zi(z). append ¢ to LIST, and delete

" it from ADDi.
B.2 Execute
If 4d#FAIL, d # =, then 4 « a+d,,;
ni(r.) + m;
D,(2) + 4;
If m # FAIL, then mx, + max{m,mx, };
EXECUTE FINITE-STATE MACHINE;

IF m = FAIL, delete L from LIS‘l'i.

C. Finite-State Machine

State Sl

Tl2 Condition 12 £ = P;p 4 <= == mx,.

F_&C_t_l_?_ m _>. r‘i‘
Action 12 d; « min Di(k);
k:Ni(k) =n
Di(k) <w
ni + m;

chADDi (i n, >z (k), CALL MMEW (k)"

transmit (ni,d‘.) to neighbors, except Py

- . - S—

15 a

T13 Condition 13 t =p and (d = e or 4 = FAIL).

-

Fact 13 If m # FAIL, t2en m 2> n
Action 13 di + -

If 4 # FAIL, then n

10

"™
ﬁcwni. it o,

transmit (ni’di) to neighbors, except P

P, * nil.

State S2
T21 Condition 21 Vk LIST, ¥, (k) = n, = mx;;

Jx LIST,, s.t. D, (k) < 4;;
Di(pi) < =
d # FAIL.

Fact 21 di < =,

Action 21 Transmit (ni’di) to Pys

P * k" that echieves min Di(k);

Ykeus'r , se* ni(x) « nil;

i
exit Finite-State Machine.

> z,(k), CALL "NEW (k)";’

T22

122

T23

Condition 22

Action 22

Condition 22

Action 25

Condition 23
Fact 23

Actizn 23

L =p,

Same as

l#pi!

NONE .

Same as
Same as

Same as

d<o ms= mx, > D, .

Action 1l2.

d = FAIL.

Condition 13.
Fact 13

Action 13.

T O ——

- 16 =
State S3
T32 Condition 32 erLISTi such that mx. = %.(x) > LTS Di(k) <®w,
L O bt Dt SRR ,
Aczion 32 Let k" achieve =i D;(k)
k:Ni(k) = =x,
D.(k) <=
Then Py - k.;
a, * o ;

d, « D, (x");
1 A
chADDi, if n > z,(k), CALL "NEW(k)".

Transmit (ni,di) to neigt:ors, except)

State S2
T22 Condition 82 ¢ = p,
Fact 22 If m # FAIL, thea (223, e3d if m=n; then d= =),

Action 22 None

SUBROUTINE "NEW(k)"

Append k to LIST,;
dele*s k from ADD.;

set Ni(k) < =4

This completes the description of <he 2l3srithm for all nodes in the

network, except the SIIK, The SINK performs <he 2:__cwing algorithm:

Off-Line Ogerations

Same as for all other nodes and in addizizzn, if s = Sl1, <he
SINK can start a new upcdate cycle at any zize by going to S2 and

4 e) = ai=rbers.
transmitt‘ng (nSINK’ d = 0) =to all eeiznve:

= 3T =

Operations Done by the Message Processor vhen a Message is Received

If the message is REQ(m) and n

SINK > m, destroy the mdssage.

- 1f the message is REQ(m) and g .. < m, go to state S2 and start a new
cycle as follows:

g~ (m*1);
Vk:ADDsmK. CALL “NEW(X)";

transmit (nSINK' dsrhk = 0) to all neighbvors.

If the message is (m,d,2), d = FAIL, then delete £ from LISTéINK‘

If the message is (n,d,l)’d # FAIL, then

li(l) - m;

EXECUTE FINITE-STATE MACHINE FOR SIKK.

FINITE-STATE MACHINE FOR SINK

State S2

T21 Condition 21 Tke LISTg s B (K) = ngrn

Action 21 ke LISTg s set N, (k) + nil.

III. Properties and Validation of the Algorithm

T Some of the properties of the algorithm have already been indicated
|

in previous sections. Here we state zhem explicitly along with some c¢f the

others. We start with properties that hcld throughcut the operation of the

netvork, some of them referring to the entire network at a given imstant of
time and some to a given node or link as time progresses. Then we address

| the problem of reccvery of the network after topological changes.

At a given instant t, we define the Routing Graph RG(t) as the

directed graph whcs= node: are the network nodes and whose arcs are given by

- —— . -

- 18 -

the pointers Py pamely there is an arc from node { to node & if and
only if pi(t) = 1. In order to describe properties of the RG(¢), ve also

define an order for the states by S3 > S2 = 82 > S1. Also Sx 2> Sy means

8x > sy or sx = gy. For conceptual purposes, we regard all the actions
Ql.ocia:ed'vith a transitioﬁ of the finite-state machine to take plaée at

the instant of the transition.

Thecrem 1

At any instant of time) RG(t) consists of a se< of disjoint trees

with the following ordering properties:

i) the roots of the trees are the SINK ard all ncies in S3;
1) if p(t) = 2, then 8, (t) 2 n (t);

iii) ir pi(t) =1 and nz(t) = ni(t), then s 1T > si(t);

iv) if pi(t) = £ and nl(t) = ni(t) and s (%) = si(t) = S1, then
CAS di(t).
The proof of Theorem 1 is given in [ll]. Acccrding to it,
the RG consists at any <ime of a set of disjoint trees =r equivalently, it
contains nc loéps. Cbserve that a tree consisting -7 2 single isoclated node
is possitle. The algorithm maintains a cerzai: orderizz in the trees, namely
that concatenation >f ini,si) {s nondecreasing wvhez =-ving from the leaves

te the roct ¢ a <ree and 1n additizn, for ncies iz 3. and with the same node

counter rumber, the estimated distances t0 the SINX zre s:rictly decreasing.

In additicn t5> properties <of the entire ne<wcrz at each instant of
time, we zan 1ock at local properties as time progresss:. Some of the meost

importan: are given in the following *thecrexz whese ;rozf appears in [11].

|

T

Theorem 2

i) For a given node i, the node counter number n is _nondecreasing

1
and the messages (m,d) received from a given neighbor have non-

decreasing numbers m.

ii) Between two successive proper completions PC(m) and Pc(;),' for each
given m with @ <m <m, each node sends to each of its neighbors

at most one message (m,d) with d < =,

1ii) Between two successive proper completions 2C(z) and PC(m), for each
given m with m <m=< ;, a node enters each of the sets of states

{s1(m]}, {s2(m], S2(m]}, {S3(m]} at most oace.

iv) All "Facts" in the formal description of the elgorithm in Sectionm II

are correct.

A third theorem describes the situation in the network at ihe time

proper completion occurs:

Theorem

At PC(m), the following hold for esch nmode ::

i) If n, =m, then s, =Sl or s

1 i 5

3
11) If a message (m,d) with d < e is oa its wer to i, then

=S3 and n, = .

s i

i

: -and
iii) If either (ni =m/ s

= sz) or n, <@, the: for all k e LIST,

i i
it cannot happen that (N (k) = m, D, (x) < =:.

J

A combined procf is necessary tc show that tte properties appearing
in Thecrems 1, 2, 3 hold. The proof uses a two-level iInduction, first assum-
ing properties at PC tc hold, ther shcwing that the :ther properties hold

betweer this and the next PC and finally provicg thet <he necessary proper-

P

i oo it
Wiia il ki s

-

- 20 -

ties hold at the next PC. The second induction level proves the properties

between successive proper completions by asluning.that the property holds

until just before the current time t and then showing that any pouuibie

change at time t preserves the property. The entire rigorous procedure

’
-

appears in [11].

In order to introduce properties of the algorithm regarding normal

activity and recovery of the network, we need the following:

Definition
Consider a given time t, and let ml be the highest counter number

of cycles started before t. We say that a pertinent topological change

happens at time t if a node i with n,(t-) = ml detects at time t a
failure of one of its neighboring links or observes at time t that an
adjoining link became operaticral. In other words, a pertinent topological
chlgge hspp;n; at time t if and only if a message REQ(ml) is generated
at time t, vhere ml 1is the largest cycle counter number available at

time t in the network.

Theorem L (Normal activity)

Let
L(z) = {nodes physically cconected to SINK at time t}.

Suppose
T$2(tl, SINK, (ml,ml)] (s)

pnamely a cycle is-started at tl with a number that was previcusly used.

Suppose also that ho pertinent topological changes have happened while

nSIRK = ml before tl and no such changes happen after tl for long enough

time. Then there exist, t0, t2, t3 with t0 < tl < t2 < t3 < = such that

a), bJ, ¢), 4d) hold:

a) T21(t0, SINK, (ml,ml)]; (6)

b) %& € (29,t3], we have L(%, = L(z0);
el “far all e L(to)) we have
Te2(t2,, £, (m,m1)] SRR
for some time naie {e1,t2]:
a) 1) T21(t3, SINK, (ml,ml)]; (8)
ii) RG(r3) for all nodes in L(t0) is a single tree rooted at

SINK.

In vords, Theorem 4 says that under tze given conditions, if a new
cycle starts with a number that was previously used, then PC with the same

number has previcusly occurred and the new cycle will be properly completed

in finite time. The proof of Theorex 4 is giver iz [11].

The reccvery properties of the algorithm are described in Proposi-

tions 1, 2 and in Theorem 5. The proofs of the propositions appear in [ll].

Propesiticn 1

Let Lit) ™e as in Theorem L. Suppose
Te2(<1, SINK, (ml,m2)] ; =2>m1, (9)

narsly a cycle starts at time tl1 with a nu=ber that was not previously

used. Suppcse also that no pertinent topological changes happen for a

leng enough pericd after tl. Then

- 22 -

a) there exists a time t2, with tl < t2 < ®, such that for all

.

ieL(t2)
¢2(t2,,1,(¢,m2)] (10)
happen at some time t2i with tl < tZi‘i t2.
") There exists a time t3 < ® guch that
1) T21(t3,5INK,(m2,m2)) ; (li)

ii) RG(t3) for all nodes in L(t3) is a single tree rooted at SINK.
Part of a) of Proposition 1 says that under the stated conditionms,
all nodes in L(t) will eventually enter state S2[m2]. Part b) says that

the cycle will be properly completed and all nodes physically connected to the

SINK at time PC(m2) will also be connected to the SINK by the Routing Graph.

Finally, we observe that reattachment of a ncde loosing its path to
the SINK or bringing a link up requires a cycle with & counter number higher
than the one the node currently has. Proposition 2 ersures that such a cycle

has been or will be started in finite time by the SIXKX.

Proposition 2
Suppose that a message REQ(ml) is generated at some time t at

Some node in the network. Then the SINK has received tefore t a message

REQ(ml) or will receive such a message in finite <ize after t.
Propositions 1 and 2 are combined in:

Theorem 5 (Recovery thecrem)
lat L(t) bYe as in Theorem 4. Suprose there is a time tl after

vhich no pertinent topological changes happen in the retwork for long enough

time. Then there exists a time t3 with tl < t3 < = such that proper

completion happens at t3 and such that all nodes in L(t3) are on a single

treearcoted at SINK.

-y

Tet t0 < tl be the time of the last pertinen* topological change
before tl. Let i be the node detecting it and let =n = ni(to-). Then
by definition, a message REQ(h) is generated at ting t0. By Proposi=-
tion 2, a message REQ(m) arrives at some finite time at SINK. Let
t2 < = be the time the first REQ(m) message arrives at SINK. The algor-
ithm dictates that SINK will staert at time t2 a new cycle, with nurber
ml = m+l. Since by the definition of pertinent change, m is the largest
number at time tO, we have that tO < t2. By assumpticn, no pertinent
topolcgical changes happen after time t0O for e lcng enough period, so

that no such changes happen after time t2. Comsecusntly Proposition 1

holds after this time and the assertion of the Theorem follows.

IV. DISCUSSION AND CONCLUSIONS

The paper presents an algorithm for constructing and maintaining
loop-free routing tables in a data-network, when arbitrary failures and
additions happen in the network. Clearly, these properties hold also for
several other versions of the algori:hﬁ, some of then simpler and some of
them more involved than the present ome. We have decided omn the present
form of the alébrithm as a compromise between simplicity and still keeping
some properties that are intuitively appealing. Fc: example, one possibility
is to increase the upda*e cycle number every time a new cycle is started. This
will not simplify the algorithm, but will greatly simplify the proofs. On the
other hand, it will require many more bits for the update cycle and node num-

bers m and n, than the algorithm given in the paper. Arother version of the

i

algorithm previously considered by us was to require that every time a node

receives a number higher than n, from scme neigrtcr, it will “forget" 211
its previous information and will "reattach" tc that node immediately, by a
Sizilar operation to transition T32. This change in the algorithm woulad
considersbly simplify.both the algerithm and the rrocfs, but every topologi-
cal change will affect the entire neiwork, since alser any topological change,
all nodes will act as if they had no previcus information. On the other

hand, the version given in the paper "locelizes" fsilures in the sense that
only those nodes whose best path to SINK was destroyed will have to forget

all their previous informstion. This is perforzed in the algorithm by re-
Quiring that nodes not in S3 will wait for a sigrel frcz the preferred neigh-
bor pi before they proceed, even if they receive z number higher than ni
from other neighbors. The signal may oe eitrer =, :in which case the node
enters S3 (and eventually reattaches) or less ther @, 1in which case the

node proceeds as usual. i

. - 25

References

[1] Rr.G. Gallager, A minimum delay rovting algoritmm using distributed
computation, IEEE Trans. on Comm., Vol. COM~25, pp. 73-85,
Jan. 1977.

(2] A. Segall, Optimal distributed routing for line-switched data net-
; works, submitted to IEEE Trans. on Cor=m.

(3] G.V. Bochmann and J. Gecsei, "A unified method for the specificstion
and verification of protocols", Publication #247, Departement
4'Informatique, University of Montreal, Yov. 1976. To be pre-
sented at the IFIP-Congress 1977, Toroato. -~

(L] P.M. Merlin, A methodology for the design and implementation of com-
munication protocols, IEEE Trans. on Cocmnmications, Vol. COM=24 ,

No. 6, pp. 614-621, June 1976.

(5] C.A. Sunshine, Survey of communication protccol verification tech-
niques, Trends and Applications 1976: Ccmputer Networks,
(Symposium sponsored by IEEE Computer Society; HNational Bureau
of Standards), Gaithersburg, Maryland, Nov. 1976.

(6] M.G. Gouda and E.G. Manning, protocol machizes: A concige formal
model and its automatic implementation. Proceedings of the

Third International Conference on Computer Communication,
pp. 346-3%5, Toronto, Aug. 1978.

(7] A. Segall, The modeling of adaptive routing iz data-communication
netvorks, IEEE Trans. on Comm., Vol. COM-25, pp. 85-95, Jan. 197T.

(8] M. Bello, Estimation of the delay derivative for purposes of routing
in data networks, S.M. Thesis, Dept. EECS, MIT, Feb. 1977T.

(9] W.D. Tajibnapis, A correctness proof of a topology information
maintenance protocol for a distributed cc=puter network,
Communications ACM, Vol. 20, No. 7, pp. L77-485, July 1977.

(10]) W.E. Naylor, A loop-free adaptive routing elgcrithm for packet switched

networks, Proc. Lth Data Communication S7=posium, Quebec City,
PP. 7.9-7.15, Oct. 1975.

[11] P.M. Merlin and A. Segall, A failsafe algorithx= for loop=free distributed
routing in data-communication networks, submitted to IEEE Irans. on
Comm.

I

[12]) R.G. Gallager, Loops in multicommodity flows, Paper ESL-P-772, Electronics
Systems Laboratory, MIT, Cambridge, Mass., Sept. 1977.

Distribution List

Defense Documentation Center 12
Cameron Station
Alexandria, Virginia 22314

Assistant Chief for Technology 1
Office of Naval Research, Code 200
Arlington, Virginia 22217

Office of Naval Research 2
Information Systems Program

Code 437

Arlington, Virginia 22217

Office of Naval Research 1
Branch Office, Boston

495 Summer Street

Boston, Massachusetts 02210

Office of Naval Research 1l
Branch Office, Chicago

536 South Clark Street

Chicago, Illinois 60605

Office of Naval Research 1
Branch Office, Pasadena

1030 East Greet Street

Pasadena, California 91106

New York Area Office (ONR) 1l
715 Broadway - 5th Floor
New York, New York 10003

Naval Research Laboratory 6
Technical Information Division, Code 2627
Washington, D.C. 20375

Dr. A. L. Slafkosky 1
Scientific Advisor

Commandant of the Marine Corps (Code RD-1)

Washington, D.C. 20380

Copies

Copy

Copies

Copy

Copy

Copy

Copy

Copies

Copy

~

Office of Naval Research
Code 455
Arlington, Virginia 22217

Office of Naval Research
Code 458
Arlington, Virginia 22217

Naval Electronics Laboratory Center
Advanced Software Technology Division
Code 5200

San Diego, California 92152

Mr. E. H. Gleissner

Naval Ship Research & Development Center
Computation and Mathematics Department
Bethesda, Maryland 20084

Captain Grace M. Hopper
NAICOM/MIS Planning Branch (OP-916D)
Office of Chief of Naval Operations
Washington, D.C. 20350

Mr. Kin B. Thompson

Technical Director

Information Systems Division (OP~91T)
Office of Chief of Naval Operations
Washington, D.C. 20350

Advanced Research Projects Agency
Information Processing Techniques
1400 Wilson Boulevard

Arlington, Virginia 22209

Dr. Stuart L. Brodsky
Office of Naval Research
Code 432

Arlington, Virginia 22217

Captain Richard L. Martin, USN
Commanding Officer

USS Francis.Marion (LPA-249)
FPO New York 09501

1 Copy

1 Copy

1 Copy

1 Copy

1 Copy

1 Copy

1 Copy

1 Copy

1 Copy

