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OPTIMAL DISTRIBUTED ROUTING FOR VIRTUAL LINE—SWITCHED

DATA NETWORKS

Adr ian Segall
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Haifa , Israel.

Abstract

~An algorithm that provides minimum delay routing in a data communica-

tion network using virtual line—switching is presented. The algori thm uses

distributed computation in the sense that the nodes of the network update

their information in an orderly fashion based on messages received from their

neighbors. Receipt of these messages also trigger the various steps of the

update and rerouting, so that these operations are performed in appropriate

sequencing. For stationary input requirements and fixed topology the algor-

ithm reduces network delay at each step and provides loop—free routing in

the network. The method also provides an algorithm for quasi—static routing,

when the input flows are slowly changing.
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I. INTRODUCTION

In a recent paper [1), an algorithm for distributed adaptive

routing tha t achieves minimum average delay in a message (or packet)

switched data network was introduced . The essence of the algo rithm

is to dynamical.Ly change the entries of the routing tables, consisting

of the fractions of incoming flow for each destination that a node

sends on each outgoing line. The sequencing of the changes is such

that the routing is always loop—free and converges to the minimum

delay routing .

The main purpose of this paper is to extend the algorithm of [1]

to networks using virtua l line-switdhing namely store—and—forward

networks where a user calling into a particular node of the network is

assigned one or more virtual channels to that node. The capacity of

the channe3.s is not preassigned, but rather the nodes use some kind of

statistical multiplexing to combine data belonging to the calls routed

through each link. During conversations, if the situation in the net—

work requires it , rerouting of virtual channels or portions thereof is

possible, and finally th. channels are cancelled when the conversation is

over. Virtual line-switching is- probably best suitable for networks

wher, the basic message is composed of a small, number of characters and is

in fact already used in a number of termin al—oriented data netwo rks , like

TThNET r9) and networks projected to use the CODEX 6000 Intelligent

Network Processor (10]

Regarding analysis of distri buted routi ng , there are two interrelated

- .
~~~~

, 
-

. -
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main differences between message (or packet) switching and line—

switching; in line—switching , the quantities to be controlled are

the flows themselves and not the fractions, and also , if a node

decides to initiate the rerouting of a channel passing through it,

the entire portion of the old channel from tha t node to the des-

t ination will have to b~ cancelled and a new line established . The

f i r s t  issue above ma kes the analysis of line switching somewha t easier

than for message switching, because under suitable assumptions the

functions involved are convex in the flows , but not in the fractions ;

on the other hand, the second issue makes the implementation harder , since

rerouting for line—switching requires a certain sequencing from the

nodes to the destination, while in packet switching it suffices to

update rout l.ng tables locally at each node and to perform the rerouting

independently fro. node to node.

Finally , it is interesting to note that the algorithm of (1] as

well as the version in this paper are actually a combina t ion of the

reduced gradient algorithm (7 , p~26Z] and an algorithm proposed by

McCormick (8] modified for the purpose of data network optimization.

The resulting algorithms have the remarkable property of being imple—

mantable using distributed cc.nputation, when the nodes receive infor-

mation in an orderly fashion from their neighbors , update their own

information, and then perform the rerouting. The algorithms have the

further properties that, for fixed topology and stationary traffic

requir ents, every single rerouting reduces the network delay and the

routings provided by the steps of the algorithm converge to the optimal

- ~~~~~~~~
- -

~~~~ -~ -
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routing in the sense of minimum average delay. Becaus e of the above

prope rties , the algorithms can be implemented on—line , while the net-

work is operating and thus provide what they are reall” intended for ,

algorithms for quasi—static routing , when requirements are changing

slowly compared to the speed of convergence of the algorithm and links

or nodes occasionally fai l  or are added to the network. In the version

of this paper , the rerouting must be performed in an appropriate

sequencing , percolating from the initiating node down to the destina t ion.

As an important byproduct , the algorithm insures that the destination

will know the time of completion of each update—rerouting cycle and

therefore -will start a new cycle oniX after the previous one is completed .

— ~~~~ :‘~-t’ - - -  ~~—~- -
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II  THE MODEL

Consider a data-communication network consist ing of N nodes

11 ,2,... N). The direc ted link connecting nodes i and k w i l l  be

denoted by (i ,k) and the col lect ion of l inks by I . We shal l  assume

throughout the paper that a l l  l ines are byplex , namely if (i ,k)  E .C ,

then (k,i) € .C and for each node i, deno te t ~’ 1(i) the collection of its

nei ghbors.

Let r
~
(j) > 0 be the average traffic entering the network at node i

and destined for node j , 
~~~~~~ 

be th e flow in link (i , k) of messages

destined for node j and CIk be the capacity of l ink (i ,k ) .  Then the

flows must satisfy

E 
~~~~~ 

— ~ f~~(J) a D j (J ) all i , j ,  i 
~ 

. (1)
kEZ(i). L€Z(i)

all i , j , k , i 
~~ 

j . (2)

< all (i ,k) € £ . (3)

The objective of the routing is to minimize the average delay in the

network. Let Dik be the total delay per unit time of all traffic passing

• through link (i , k ) .  Explicitly , Dik is the average delay per uni t of traf-

fic multiplied by the a ount of traffi c per unit time transmitted over

link (i ,k) .  We sha ll assume here that Dik is only a function of the total

traffic flow • ~ ~~~~~ 
passing through link (i ,k) .  Some of the

ccns.qu.nc.s of this assu~~ tion ar e indicated in (1]. Then the total delay

- ~.: -~~ - ~~~~~~~~~ - _~ _~~~~~.
_ ;
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in the network per unit time is given by

D (f) = 
~ D.k (f.k) (f lT (i ,k)€~ 

‘ 
~

and since the total traffic in the network is independent of the routing

procedure, we can minimize the average delay in the network by minimi zing

DT. The main purpose of the paper is to indicate an i terat ive algorithm

for performing this minimization .

Before proceeding, we should point out that the algorithm requires

no explicit knowledge of the function Djk(f jk). Formulas for this

function for various traffic models ahd assumptions have been previous ly

obtained [11], (12], but here we shall need to assume only the following

reasonable properties of the functions Dj k ( •)

is a non negative continuous increasing function of 
~1k’

with continuous first and second derivatives . (Sa)

• Dik is convex U • (Sb)

• lie D.k(f jk) (Sc)
ik ik

• Djk(f ik) > 0 for all 
~ik’ where Dj~ is the derivative

of Dik . (Sd)

In addit ion, observe that the flows f are taken to be continuous

variables. From a practical point of view this means tha t the flow

for each connection is of emall enough size , or that two or more

subpip es can be opened for each pair of source—destination devices

______ -

- -
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(i.e. N—plexing is allowed) and a continuous amount of flow can be

transferred from one subpipe to the other . This assumption will be

further discussed in Section V.

Theorem 1 Assume that the set of flows satisfy ing ( 1) ,  (2) , (3) is

nonempty. If the delay functions have properties given in (5) ,  the flow

= min imizes DT under constraints ( 1) ,  (2) , (3) if and

only if there exists a set of numbers (Lagrange multipliers) 
- 

A = (X.(j)}

such that the Kuhn-Tucker conditions

* * 

= X~(j )  
•, 
~~ > 0

Dj k (f j k ) + Xk (3)
* *

>. ~ (i) ~ =

i~~~j ,  kEZ (i) (6)

are satisfied . Here

• 0 , (6a)

and D ’ k is the derivative of Dj k (f ik ) .

-5--- — -

— ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 
, - -

, . 
~~~~~~~~~~~~~~~ -
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The proof of this type of theorems is well-klo’~%1l (see e.g.  [13]) and

therefore omitted. It. is also well known [7, p . 2311 that the Lagrange

multipliers A~ are the sensitivity coefficients of the optimal cost

with respect to the level of the constraint. In our situation, if the

flow r~ ( j)  is increased by an incremental quantity 
~~ 

( j)  and

everything else is held fixed , then the incremental increase in inini~:nzn

delay will be A~(j) • orjj). Consequently , the optimality conditions (6)

have an interesting interpretation: Consider a given destination j and

an arbitrary node i in the network. Look at all nci~hbours k of i

and calculate the sun of their incremental delay coefficient X~ (j) and

the incremental delay coefficient on the line connecting i to k.

Optimality requires that for all neighbors to which i sends traffic

destined for j ,  this sun will be the same and no larger than the sum

corresponding to neighbors to which. i sends no traffic with. final destina-

tion j .  If and only if this is the situation for all nodes and all
*destinations in the network, the corresponding routing f is optimal .

Another fact to be noted before proceeding is that in the optiinality

conditions (6) , X’ s corresponding to different destinations are not

related . It is expected therefore that the rerout ing algorithm will evolve

independently from one destination to another.
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III. THE R E R O U T I N G  ALGORITHM

Simila r to [1], the opt imal i ty  conditions (6) show that general ly

speaking,  the algo rithm shoul d  be such that nodes wi l l  ~~creas .~ t r a f f ic

on links with small incremental delay Djk + A k (j )  and decrease t ra f f ic

on those with large incremental delay . In order to perform these actions ,

each node i wil l  need the inc rementa l delays Dj k over each outgoing

l ink (i , k) and the incremental delay X k ( i )  of each neighbor k .

The quantity Dj k can be obtai ned by node i by estimating 
~~~

and using one of the fo rmulas for D j k (f j k ) . Alternatively,  and probably

preferably, node i can estimate Dj k di rectly, thereby avoiding

assumptions on the flow that are not ‘always reasonable. Clearly both

procedures will depend on the particular schemes for sending messages

through the lines. An algorithm for estimating Dj k for a virtual line-

switched character multiplexing network was developed in (2 , Eq. (30)-(33)].

The node incremental delays X k (j)  will have to be sent by the

neighbors . This ininediately brings up the question of a potential dead-

lock: in order to calculate X~ (i) ,  node i needs the numbers

from all the neighbors k , but to calculate its own X k ( j ) ,  a neighbor

k needs the numbers from all its own neighbors , i included . It is

therefore necessary to break this deadlock at the outset , and realize

tha t in each step of the algorithm , each node will have to use only a

subset of its neighbors to establish its number X~ (j ) .  This is some-

what different from [1, Eq.(5)], where node i needs numbers only from

a subset of its neighbors to calculate its sb/ar
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We define a step of tho algorithm to be a complete cycle

consisting of updating of A’ s and rerouting in the entire network.

We shall see later that the destination can start a new step only

after the previous one was completed , and althoug h the al~orithrn ~s

distributed , it has the property that the destination will indeed

know when this completion occurs. In order to see how a step ~ t

the algorithm progresses throug h the network , we need several

definitions. The discussion wi l l  refer to a given des t ina t ion  j.

For a node i that has any f low passing through it destined for j,

all neighbors k suc h that  > U are called its real cons

and node j  is called their father (a node can have more than one

father ) .  A node i such that  = 0 for al l  neighbors k has

no real sons , but ha s exactly one adopted son; this is its prefered

neighbor to which it would send any t raff ic  destined for j  if such

traffic conies in. Observe that this is different from [1], where the

concept of adopted son is nonexistent and not necessary . A node k is

said to be a son of i , if it is either its real son or its adopted

son. We denote by S~ (j) the li st of sons of node i for destination

J at step n of the algorithm . The exact algorithm to choose adopted

sons will be presented shortly. Again similar to ( 1], if there is a

sequenc e of nodes i1, i2 , . ..  
~m such that is the son (real or

adopted , for destination j) of for r 1,2 , . . .  (rn- i ) ,  then we

say that i1 is upstream from i~ (for destination j) and is

downstream from i1. The network is said to be loop-free if there

are no two nodes that are each upstream from each other , and is said to
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have loops otherwise. If the network is loop-free for a given

des tination , then the downstream relationship forms a partial ordering

of the nodes in the network . -

A step of the algorithm will proceed such that the updating of

A ’ s propagates from the destination upstream using the above mentioned

partial ordering and the rerouting proper will propagate downstream

from the peripheries towards the destination. We see therefore that

maintaining loop-freedom in the network at each step of the algorithm

is not only saving resources, but is also essential to provide a

natural sequencing in the network .

Before indicating the algorithm , it will be useful to discuss several

special point s connected with updating , loop -freedom -and rerouting.

The discussion will hopefully help in understanding the various parts

of the algorithm . We are still referring to a given destination j .

Regarding updating, in order to be sure to prevent loops, we shall need

the concept of blocking introduced in (1] . Briefly, if > 0

and X~ (J) 
~ 

Xk(j), then there is danger of producing a loop in the

next step . Therefore if, because of the constraints on the step-size ,

node i is not sure that in one step it can reroute all of f
~k U)~ 

it

declares itself blocked and so do all nodes upstream from it. If a

node k was not the son of a node i at stage n and node k is

blocked , then k cannot become its son at stage (n+l) . The exact

procedure and proof that blocking prevents looping appear in the algo-

rithm and the subsequent theorems.

_ _ _ _ _ _ _ _-
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Another issue to be raised is connected with routing. As said

before , since we are dealing with (virtual) line-switched networks ,

if a node decides to initiate the rerouting of a line , the entire

portion of the old line from that node to the destination will have

to be cancelled and a new line established . This procedure will

be performed in a distributed fashion , but it requires that a node w i l l

do its own rerouting only after all  of its fathers - and in fact all

nodes upstream from it - have completed their rerouting. This is

because a node must know what connections passing through it have

been cancelled by nodes upstream , and only then it can adjust the

remaining connections. In fact , at each stage , the routing procedur e

at each node will consist ~f three possible parts: cancel those out-

going lines corresponding to lines that were previously coming in, but

have been cancelled by fathers , initiate rerouting , and finally establish

outgoing lines corresponding to new incoming lines . 
-

We are now ready to indicate the algorithm. It proceeds indepen-

dently for each destination , so that we shall describe it for a given

destination j .  For the sake of clarity, we shall first describe an

arbitrary updating-rerouting step and then show how to initialize the

algorithm. A step of the algorithm is started by the destination that

sends — 0 to all its neighbors and it consists of taking the

flows f” — f~~(~ ) and obtaining a new flow ffl+i (f fl+l
(fl} Nodes

that have at stage n any fl ow destined for J will proceed in a
slightly di fferent way than nodes that have none . The algorith m has

a step-size n connected with it; this will be discussed later . 

.- - --—--— _ _ _ ~~~t~ - 
—
- ---

-
- -
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A. Algorithm for a node i with 
~~~~~ 

> 0 for some k.

Updating

(i~ Wait until receiving ~‘s from all sons. If tiny of the sons is bl ock ed ,

node i declares i t se l f  blocked . Let C~ (j) be the set (at node i) consisting

of all  son s and also those nodes that have sent their A by now and

are not blocked.

(ii) Let

= 

kEC~ ( j )  
[A ~(J) + Dik] ( l j

(iii) If for any son k,

A~ (j)  ~~ ‘ A~(j) and (8a)

n.[~
(i-) + Djk -

- ~(i)] < 

~~~~~ (8b)

then node i declares itself blocked.

(iv) Send A~(j) and a special tag indicating blocking status to all

neighbors , except 80118

(v) Wait until A’ s were received at node i from all neighbors , and

let B~’(j) be the set (at node i) of all neighbors k , 
- 
excep t those that

are both blocked and 
~~~~~ 

a 0. For all neighbors k , let

aik (i) - 
[A~ (J ) + Dik] - {~w + D’i] / (9)

Let 1c (i,j) be any neighbor that achieves the miniu in (9).

~~~~~~~~~~~
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(v i) Cancel al l  out going lines corresponding to incoming pipes that have

been cancelled by fathers . Let f!~~(j)  be the remaining outgoing

flows.

(vii ) Let

= mm ~ç~(J )~ na.k(JJ (10)

Rerout e as fol lowc

f~~(j) ~~~ik~~~ 
for k ~ k~ (i , j )

g - (11)

f~~ (J )  + 

~~~~~~~~~~ 
for k = k~(i ,j ) .

(viii) Outgoing l ines corresponding to new incoming lines are all opened

on (i , k~ (i , j ) ) ,  so that

fy~(j) k k~ (i , j )

~ii+lr
~k 

(j) a 
- (12)

I f’ikW + niiy new flow k a k~(i,j) .

(ix) The list S~~’(j) of sons will include k ( i ,j) a~d all nodes k
such that ffl+l(J) >

Cx) Send 
- 

A~ (J ) and blocking status to all neighbors k for which

___________________
~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Note that step Cx) allows the rerouting to percolate down,

from peripheries to the destination. Also observe that fn does

not uniquely define both because the minimum in (9) may be

achiev ed by more than one neighbor , and because the cancellation in

(vi) depends on the paths of the individual lines and not only on

ffl However , we shall show in the next section that this is irrelevant

insofar as the properties of the algorithm are concerned .

B. Algorithm for a node i with = 0 for all k.

The algorithm insures that at each step after the initial one,

each node has at least one son.

Ci) Wait for A from the adopted son. If the adop ted son is blocked ,

node i declares itself l locked . Let C~(j) be the set (at node i) cons isting

of the adopted son and those nodes that have sent their A by now

and are not blocked .

(ii- ) Same as in A. (ii)

(iii) Send A~ U) and a tag indicat ing blocking status to all neighbors

except the adopted son . 
-

(iv) Wai t w~til - A’s were received at node i from all neighbors and

lit 17(j ) be the set consisting of the adopted son and all other

non blocked neighbors . Let k~ (i ,j) be any node in B7(j ) that

________
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achieves

mm + 
Djrn] . (13)

mEB 4 ( j )

(v) Send A~ (j) and blocked status to the adopted son, and let

S~~
1 ( j)  cons ist of k~(i,j) ~i.e., this is the new adopted son).

cvi) If any new lines are opened to node i, continue them over the

link (i,k~(i,j)). In this case, k~(i,j) becomes a real son.

We may note that although the concepts of rea l and adopted sons are

u s e f u l  for  analys is and descriptional purposes, the nodes do

no t need to distinguish between them. 
- -

In order to complete the description of the algorithm, we nee~d

only to indicate how to initialize it. Observe that when the network

starts operating, no blocking is present at the first stage and the list

of sons is empty at each node .

C. Initialization

(i) Let k1(i ,J) be the first node from which i receives a nuii~ er 
- 

A

Let

A7(J) a. + Djk (14)

(ii) Send 7 7(j) to all neighbors except k 1(i , j ) .

(iii) By the time A ’s were received fro . all neighbors , let 17(j ) be

the set consisting of all neighbors . Let k ( i ,j) be any neighbor

that achieves

- -  -
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(i v) Send A~~( j) to k 1(i , j )  and let the list of Sons S~ (j)  consist

of k:ci ,j ) .

(v) Same as B. (vi).

In words , since nodes have no lists of sons , the role of a son is

played by the first node one hears from. This allows the nodes to

establish numbers A and later choose their adopted sons. The traffic

is routed then to the adopted sons (at which stage they become real sons).

Clearly this procedure may require flows that numerically exceed link

capacity, but a good end to end flow control can regulate the inputs until

enough routes to accommodate all requirements are found (clearly, such

flow control is needed during the ope;ation of the -network as well).

- ~~~~~~~~~~~~~~~~~ - ~~~~- - -
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IV P R O P E R T I E S OF THE A LGOR ITHM

In this section we investigate the descent , convergence and loop-

freedom properties of our routing algorithm . Spec i f ica l ly ,  we shall

show that every step reduces the delay in the network, that the algo-

rtthm converges to the minimum delay routing and that at each step the

network is loop-free. The latter also irnples that , since the updating

propagates upstream and the rerouting action propagates downstream ,

both operations are deadlock free, namely each node that is physically

connected to the destination will  updat e and reroute exactly once at

each step .

As said before , another interesting property of the algorithm is

the fact that at each stage n , a node that has received numbers A

from all neighbors knows that all updat ing and rerouting has been com-

pleted at nodes that were upstream from it at stag e n (the only further

action it may hav e to tak e after completing its own rerouting is to have

to open new lines corresponding to new incoming lines) . This property

can be used by the destination to insure that it will not start a new

updating before the previous one is completed ’.

We remind the reader that we are working throughout under the

standing assumptions (5) .

Definition A set of nodes L~~t 2~ • • .  
~~~~~~~~~~~~ 

form a ‘oop if ~~~~~~~ is

a son of for j  a 1,2,... (m-l) and if £1 is a son of

Theorem 2 For arbitrary step size i~, there are no loops in the

— -.---
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network at each step of the algorj~~~~

Proof. The proof is similar in spirit to the proo f of (I , Thm .4]except that here we have to look separately at adopted and real sonsand also, because of the specia’ rerouting sequence, the intermediateflow values V defined in A . (vi) in the Algorjt~~ enter expli-
ci tly in the calculation5

We first show that if there are no loops at stage n ~ 1, thenthe network has no loops at stage (n i-i) . Suppose there is a loop atstage (n+ 1) for destination j .  Then it must contain a l ink (i ,m)such that A~ (j) c A ~ (J ) .  But m cinnot be the adopted son of i~,since A. (ix) and B. (v) in the algorj t~~ and the assumption (5d )shows that this would require A~ (j) > A~ ( j ) .  Therefore m is a realSon of 9. at stage (n+1) , i.e. f~~~(j) > 0. Since the a1gorj t~~increases flow only on links Corresponding to neighbors with lowernumbers, we also have f~~(j) > 0.

This implies that

< 
~~

) 
~ ~~~~~ 

(16)
But on the other hand from (13) and (11) we have -

.

fla (j) 
~ ‘~ 

~~~~~ 
• - A~ (J)] 

(17)
SO tha t 

Jn ~~ • D~ ~C~)J ~ ~~
0)

and therefore t is blocked ~t stag. n.
-- - - -- -  - - ~~~~

---  *

~~~~~ .

~~~~~~~~~~~~~~~~~~-
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Now mo ve backwards around the assumed loop at stage (n i- i )  to the firat

li nk (i , k) such that k is not a son of i for stage n. There mus t be

such a link if the network was loop-free at stage n. But since 2. is

blocked at stage n , so i s k , since on the portion from k to 2. , of the

assumed ioop, each node is at stage n a son of the previous node . But

this says that k was not a son of i at stage n and became one at

stage (n+l) , altho ugh it was blocked at stage n . . -The algorithm does not

allow this to happen and we therefore have a contradiction .

The proof is completed now if we observe that at stage 0 we have

only adopted sons , so that there cannot be loops at stage 1.

Theorem 3 Let = DT (f 1) and let M be an upper bound to all

D” k ( f ik ) over the set

F = {f I D T (f) < D 1}. - (19)

If n (2~.t4~)~~ , any rerouting strictly decreases the total delay

in the network and

DT (f 1) ‘~~DT (t) - (~ 4 5) 
[~~k~j ]2  - . (20)

The proof appears in the Appendix.

Note The asserted bound exists because the set (19) is compact
and D” is continuous.

-1

___________________________________ ________ ___________________

._

~ 

-
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The next theorem is interes t ing in its own and wil l  also be used

to prove convergence properties of the algorithm. It shows that if an;’

flow is such that the algorithm requires no flow changes , then that

particular flow has no blocking. In particular , we shall  show late r

(see Appendix ) that , as expected , no reroutings are produced if a flow

is optimal , i.e. satisfies (6), so that no blocking is present in optimal

flows . On the other hand it shows intuitively that blocking will not

occur very often near optimality . This statement is addressed more

precisely in the proof of Lemma 3 in the Appendix.

Theorem 4 If any blocking is present in an updating stage, then routing

changes definitely occur in the network in that stage.

Proof. Let i be any node that declared itself blocked for a destination

j in A. (iii) (rather than A. (i) or B. (i)) and let k be the son that

caused the blocking. Suppose th is happen ed during updating stage n.

Then 
~~~~~~ 

> 0 from (8) . Also a~k (j )  > 0 since

~ (J) + D~~(f~~) ‘ A~ (j) > A~(j) ~ mm ~~ + D !m (f im)1 (21)

(The last inequality follows from (7) and the fact that B~ (j) ~ C~ ( j ) . )

Now if f~~(J ) 
~ ~~~~~~ 

then clearly there was a routing change up-

stream of i. If f
~~( i)  

~~~~~~ 
then

A~ k (j ) a am 
[~ kw~ 

na
~k (i

)] 
> 0 (22)

so that a routing change occurs at i. 
-
~~~~~~ ——------—--—



- 
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We are finally able to state the theorem describing the convergence

properties of the algorithm.

Theorem S Let D - be the value of the minimum delay in the networktTu. n

and let F be the set of optimal flowsmm

F - = {fjl) (f) = 0 . ) . (23)
mm T mm

Let d(f,F) be the Euclidean distance between a vector of flows f and

a set F , defined by

d2(f ,F) a mm 
. ~~ik~~ -~ 

- . (24)
f°EF i,k,j

Then for each initial flow f 1, and for step size as in Theorem 3,

we have as n i -~

(a) D
T

(f ’
~
) 
~ 

. (25)

(b) •d(fn,P~~~) 
.,. 0. (26)

This implies that any limit point f of f
II is an optima l

flow. It also implies that if Dik (•)  are all strictly convex , then

consists of a single point f and + f -

The proof of the theorem appears in the Appendix.

)
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V. D I S C U S S I O N

In Section 1 we have indicated the main differences between the

~!~orithms for messag’~ (picket) switching (~~) of [1] and for virtual

line-switching (LS~. After indicating the algorithm and its proper-

ties , we are now in a hetter position to elaborate on these differences

and on other points :egarding the algorithms .

As already said , LS requires a particular sequencing for re-

routing, from nodes with no fathers, using the downstream relationship

for sequencing, down to the root (destination). This provides a natural

update-rerouting cycle, which, although using distributed computation,

allows the destination to know exactly the time of completion of each

cycle, and therefore makes it possible that no two cycles will simul-

taneously run in the network. Clearly, it requires only a simple change

in the algorithm of [1] to obtain a similar property for MS~, but in

the context of MS networks with fixed topology thi s property is not

really essential . It becomes indispensable however when topological

changes have to be taken into account (see (14] - (16)).

The above mentioned ordering through the network also requires

that each node with real sons will . use a careful sequencing for its

routing , namely first cancel , then reroute and then continue new incoming

lines. The concept of adopted son is necessary for nodes with no flow

to the destination, to designate the “beet” neighbor to which it

would route traffic when it comes in. Also observe that in the LS

a1gorithm~the number A is defined by a minimizing operation (7) , while
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in the MS algorithm it is calculated by a weighted average [1, Eq. (5)].

While both are natural quantities for the corresponding algorithms , other

possibilities probably exist.

J~egarding implementation of the LS al~orithin , its use for quasi-

static routing should now be clear. lirmiediately or an ~rhitrary interval

of t irr~ after its previous update-rerouting cycle was completed , each

destination starts a new update that propagates upstream through the network;

then the rerouting propagates downs t ream . The nodes estimate the incro::~cntal

delay Dj k and use them in the update . The destination node knows that the

cycle is completed as soon as it receives numbers A from all neighbors .

Old connections that are terminated are cancelled together with the rerout-

ing , while the algorithm propagates doi~rnstream . New connections can be

established at any time, but it may be preferable to wait for the next re-

routing stage . Observe that the algorithm creates situations in which the

new circuit is only partially established during rerouting, while the old

circuit is partially or totally destroyed , with no physical circuit connect-

ing the .source to the destination. This however does not mean that the call

niist be suspended during this time. When a node initiates the rerouting of a

line, it stops sending data on the old line and at the same time it can start

sending it over the new one. This of course asstmies that the protocols for

sending data over each link and for establishing new lines are such that either

both are processed on a comon first-come-first-served basis or such that estab—

lishi.ng lines takes priority . Since in a network with fixed topology every

newly initiated line will indeed reach the destination, there is no need to
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hold the data until the end-to-end protocol for establishing a line

is completed . Clearly, in actual implementation, more thought is

necessary to decide the final protoLols best suited for the parti-

cular application.

Another issue regarding implementation is the step-size n, and

this is common to both line-switching and message switching . Our

assumption just before Theorem 1 means that the atomic size of flow

is much smaller than n • Dik. On the other hand , ri is taken in

Theorem 3 to be very small , in order to prove convergence. It is of

course important to know that a certain r~ insures convergence to the

optimal routing, but practically speaking this may not be the best

step size. First , because muc h larger n ’s will probably still insur e

convergence, while also allowing enough routing dynamics to follow

slowly changing traffic requirements and second , even if convergence

to the exact optimum does not occur, stil l we may be able to provide

bounds on the performance. In fact, an interesting future research

topic is to obtain such bounds for a given step size n. Other impor-

tant future research top cs are to study the dynamics of the networks

using the algorithms of Ii] and of this paper, as well as the stochastic
behavior due to stochastic requirements and errors in the estimation of

9.k• Finally, we aa~ mention that although the algorfthms have been

shown to be deadlock-free when the topology is fixed , they are clearly

not suitable in their present form to aconunodate failures and recoveries

of links and nodes. Using those algorithms in a simpler form as a basis,

— ,- —

~~~~~

-- 

~— 

— 

-
~~~~
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a distributed update algorithm has been developed in (14] having the

properties of i) loop freedom , and ii) deadlock freedom and recovery

in finite time under arbitrary sequenc e, location and quantity of

topological changes. The proofs of these properties appear in (15]

More recently, the algorithms of U] and this paper have been completed

to acommodate topological changes, and the resulting algorithm s (16]

provide optima l routing, while also retaining properties i) and ii)

above.



- — : ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ -- - -. _. - ~~~~~~~~~~~~~~~~ - “-- --
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 26 -

A P P E N D I X

Proof of Theorem 3 First recall that when a node i decide3 to

reroute a line passing through it and going to destination j ,  then

the entire portion of the line from i to the destination will be re-

routed. We call such rerouting of a single line an elementary rero~tir~g.

Now using assumptions (5), the change in delay from stage n to stage

(n+l) is

D1(f
’~~’) - D1(f’~) 

i ,k 1k 1k L 1k - 

i ,k 1 k 1 1( [ 1k  - 
2 

(27)

where £ is some point on the segment connecting ? and f~t ’~

Lemma 1

i , k lk lk [f~~
1 

~~k] ~ _ fl _ l
E [ A

n (J )]
2 (28 )

Proof. Consider first an elementary rerouting of a line through which
the flow is A , transferred from a path (i,k,t

1
,. . .L~,j) to a path

~i , k~ (i , j ) ,  r1,... r~~J ) .  Its contribution to the left hand side of (28)
wil i be -

A• {— Djk+ Djk - (D
~t +Dj & + +Dj

mj
) + (Di r +D ; r + ... ~~~~~~~ (29)

Now observe that r 1 is the best node out of k0 in the sense that it

achi eves the minimizatio n in (9) for k0 , node r 2 is the best node out
of r1 and so on down the path, so that using the fact that C~(J) C B~(j)
for any node i, we have : .

—~~~~~~
-

- — -
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> A~ (j) + D ’ . = 0’ .

)~
f l ( j )  ~~~~~ (j) + 

~~ r r +

p-i p p-l p p-l p p

and by induction

A~~ (j)  > D~ + D ’ + ... + D~~. (30)

On the other hand , before the rerouting, the line in question passed

through nodes k 1,L1,L2,... L ,3, so that each was a son of the previous

one and hence was included in its set C~’(j) appearing in (7).

Therefore ,

A
~ m

(J) ~A7 (i ) + Dj
mj — ~~~

- 
A~ (j) I~~A~~ (j) + D~ ~ 

+ D~ 
~ni- l m m-l m m-l m m

and by induction

~ 
Di~t1 

+ + ... + . (31)

Equations (31) and (30) imply that expression (29) is

~~A s {_ D j k  • D~~ • A ~~~(j) - A~ (j )} — •a7k (
~
)øA (32)

Sinc, at step n a total f’ow of A ik (j ) was rerouted from paths starting

-~~~~~ 
; 

~~~~~~~~~~~~~ .

- 

~~~~~~~~~~
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with link (i ,k~, their contribution to the left hand side of (28) is

- a~~(j) . A~~(~) ~~~ - 

~ 

2 
(33)

Summing up over i,k,j gives (28).

Lemma 2 Let M be an upper bound on 0”k ~~~~ 
over all  i ,k , when

A . n n+lf ranges over the segment connecting £ and f . Then

•
E D

~k
(f
~k
)(f

~~
’ - 

~~~ 
~ (~~ 5)

• ~ k j ]2

Proof. We have

2 D’.’k (f? ’k)(f
~~
’ - 

~~~ ~~M E ( f~~
1
~ - ~~~ (35)

and since the largest change in flow in any given link cannot be larger

than the sum of all changes occuring in the network

I f ~;1 
~~k I ‘

~~ ~~~~ 
t~ m (J ) (36)

Now the sum in (36) has no more than N(N-l)(N-2) terms, so that app lying

the Cauchy-Schwartz inequality gives

(±j~ 
- 

~~~ ~~N
3 ’ E 
[
8~~~J~~

2 
. (37)

S~~~ing over (i ,k) and using (35) gives (34).

Now, combining the results of the lei~ as 1,2 we have for P4 as in 3

lemma 2

- DT(t) 
~~~ 

( - A + p . 45) . z [A7k i] 
2 

(38)

- -~~~~
- --~~~~~~-~~~~~~-
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If we choose n = (2MN~~~
1, then DT(f’

~~
’) < D1(f ~ ) and by induction

< D1(ñ < D~ (f 1) so that both ~~ and f fl+ l as we l l  as the

entire segment connecting them is in the set F of ( 19).  Consequently

M can be taken as in the statement of Theorem 3. Also the above choice

of n gives (20) which completes the proof of the theorem.

Proof of Theorem 5 Since DT(f 1
~
) is bounded from below by zero and

is a decreasing sequence, it has a limit D . Since {f fl} belo ng to

the compact set F of (19), it has a limit point f ( i .e .  a subsequence

converging to f )  and continuity of DT implies that

DT(f
~
) ‘

~ 
DT ( f )  — D . (39)

For simplicity, we denote this subsequence also by {t)

We shall now continue the proof with a series of lemmas : Lemmas 3
*and 4 show that f is an optimal flow, namely it satisfies the

Kuhn-Tucker conditions. This implies that D - which proves

part a) of th. Theorem. Part b) will be covered in Lemma 5.

Lemma 3. No routing changes occur when applying the algorithm to 
*

Proof. Suppose the contrary. En any flow pattern f that has routing

-
- changes (for destination j) there must exist a node i such that

A ikU) > 0 ai~d ~‘~~(i) — 
~~~~ 

for some k. (If f~~(J ) 
~ 

f~~(J )

at a nods i with A ikU) > 0 for so.. k, keep moving upstream in

all paths until you find a node such that none of its fathers has a

routing chang. or until $ node i with A jk(J) > 0 for some k with no

fathers). Th. triplet i,k,.J will remain fixed for the rest of th. proof
of Le 3.
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Now observe that all A’ s as generated by the algorithm are

positi ve and bounded by

max ~ 0’ (f ) <~~~ (4 0)
f€F t,m Lm Zn

so that both ( ffl} and (A~} belong to compact sets. Also observe that

the sets C~(j), B~(j) as generated by the algorithm are drawn from a

finite set (the power of the set of all neighbors of i). Therefore,

there must exist a subsequence , whi ch we again denote by {n} for

simplicity, such that ~~~~ ffl ~. f , 
- 
A~ converges to some 3~, and

the sets C~ (j) and B~(j) are nonvarying along the mentioned sub-

sequence and are identical to the corresponding sets generated by the

algorithm when applied to f .  Let us denote them by C~ (J) and B~ (j)

respectively, and then we have

X~(J) — m&n .(A~(i) + D!L (f~L
)) (41)

LECi(j) 
1 1

a A~ (j) + Djk(f~k
) - i4n .(A~U) + Dj & (f

~&)) (42)

A ik(J) — ~~ [na~kwI ~ kW ] 
(43)

implying that

‘ 

~~~~~ 
(44)

~~~~~~ 
•A jk(S) (45)

where 
~~~~~ 

A ik (J ) are gen.ra :.d by applying the algorith m

to f , na.sly from (41)-(43 ) with £ replacing f.
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Now let f be the flow obtained after applying the algorithm to
*
f . From Theorem 3 follows that

** * r~ 12 
-
~~~D.~(f ~ - 0T~~ ~ ~ 

~~~~~~~~~~~~~~ (46a)

and for any n along the subsequence in consideration

DT(f~~
’) - DT(f

~
) < ( ~

5 ) [~k (i)1 
. (46b)

But (45) and the fact that A . k ( j )  is assumed to be strictly positive

(at the beg inning of this proof) , imply that there exists an N 1 such

that , for n > N 1 we have

DT (f
~~

’) - DT(fn) ~ ~~~~~ [
~~k a]2 ,2 . (47)

Moreover since DT(f”) ‘~ DT (f ) ,  we can choose N 2 such that for n > N2
we have

DT(f
’
~) 

- DT(f
*
) < (!4I~) [A~k j~~

2
,2 . (48)

But (47) and (48) imply that for n > max(N1,N2) we have

DT(f~~
’) -c DT(f)

which contradicts (39).

*Note. Lemma 3 implies that if the algorithm is applisd to f an

*arbitrary number of times, still f reaains unchanged. Observe however

that the Lagrange multiplies X are not necessarily identical to A of

Theorem 1. The next lemma settles this question.

b 

I ~~~~~ - - - -  
- -
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Lemma 4. The flow f sa t i s f ies  the Kuhn -Tucker condit ions (6) for

some Lagrange mul t ip l ie rs .  After application of the algorithm to f

at most N times, the A’s generated by the algorithm which we cafl ~

are such that f , A satisfy the Kuhn-Tucker conditions (6).

Proof. From Lemma 3 and Theorem 4 fo l lo ws  that no b locking  occurs when

the algorithm is app lied to f .  This implies that f~r every node i , the

~et B.(j) as generated by the algorithm applied to f is the set of

all nei ghbors of i. In addition 
~~~~~ 

- 
~~~~~~ 

so that

0 -A ~ 1~(~) * “~~~~~‘ ~~~~~ na.k(n] . (30)

Now , if a node i has nonzero flow destined for j ,  then al l  its neighbors

k such that 
• ~~~~ 

> ° ~~~ — 0. This Implies that fi)r such i~i2hbors k

+ Dj k (f k ) - am [~ a (J )  + Dj (fj )
] 

-
- ~~(J) (51)

where ~ are the
rn 

A’ s generated by the algorithm applied of f and the

minimum is taken over all neighbors of I. In words, the first

equality in (51) says that all neighbors k such that 
~~~~ 

> 0 have

the same A~ • and this number is less than or equa l to this sum Comp-

uted for neighbors with - 0. The second equality in (51) follows if

we observe that the set Ci(J) of (7) contains at lust one neighbor

with 
~~~~ 

> 0. Therefore , for nodes i with nonzero flow , f
* 

~atisfiss

the Kuhn-Tucksr conditions with A —. I . It is also easy to see that at
*these nodes not only f , but also X do not change, no matter how many

tiass the algorit hm ii applied to f

______________________________

I - - 

- : ~~~~~~~~~ -
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The situation is di f feren t  at nodes i such that ck U )  o
fr ~,r all ~- . There the A ’ s ma y s t i l l  change , but the following shows

~~~~~it  -if ~~~r it  ~~~~~~~~~~ ~: ~~~~ t :.~~~~~ will remain fixed and will satisfy

the Kuhn-Tu cke~ conditions . Consider a group of connected nodes with

no flow to destination j . Consider the link with minimum

where the minimum is calculated over all links

such that i is in this group and k is outside. Then in the next

iteration i will choose k as its adopted son and in the iteration

after that it will definitely define A~(i) to be

A. (j) — A~ (j) + D ’ k(f.k) . (52)

It  wi l l  not change its decisions for all coming iterations . Clearly

satisfies the Ku hn-Tucker conditions . Continuing in a similar

manner for all nodes with no flow to j, we obtain that in not more than

N iterations , all nodes will  arrive to . A ’ s that satisfy the Kuhn-Tucker

conditions.

Lemmas 3 and 4 show that f is an optimal flow , so that

- Dmin~ This completes the proof of par t a) of Theorem S becaus e of

(39) and the sentences preceding it.

Lemma S. The sequence of flows (f it ) obtained by repetitive

application of the algorith m converges to the set of minimum flows in the

sense of (26) .

Proof . We first not e hers that denotes again the original sequence

(and not all subsequences considered in L . s  3 and 4). Now suppose (26 )
ft

is not true. Then th.re is an c ’  o and a subsequence U *) with
- p.



—~ 
. 

- , ~~~~—.———. . -‘. ~~~~~~~~~~~~~~~~ ~~~ ~-_  ~. ~~.. ~— -  - . - - . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.--——~‘-- ~~~~~~~~~~~~~~~~~~~ ~- - —

- 34 -

~ such thatm

1~
d ( f  mu F . - ~~ . ~~3)mm

Since {f m } belongs to a compact set , it has a converging sub-

sequence , {f } such that n -
~~~~~~ , and let f be the limit.mk

Then (57) shows that

d(f, F . )  ~ (54)

which implies that D.f(f) 
~ 

1
~min

• But f
”
~ -

~~ £ and continuity of

Dr imply

~ ~nin (55)

which contradicts part a) of the theorem.
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FOOTNOTES

1. Algorithms having this property were first indicated to the author

by R.G. Gallager
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