
SCCURITY CLASSIFPICATIO14 OF THIZ PAGE (bIefWh Date Enter* -1) UNCLASSIFIED
REPOT DCUMNTATON AGEREAD INSTRUCTIONS

REPO~r DCUMNTATON PGE BEFOA2E COMPLETING FORM
I.,WORT NUM91EA 2. GOVT ACCES.SION NO.1 3. RF1CIPIENT*S CATALOG ?FUMUER

io~~ fAIL.F.PISTRIBUTED ROUTING PROTOCOL ecnc;

V1.ARE Sk "MI REPORU T NUM BERS

Phlip a he~2rlinfrain A Deiinss~ P OgramCder No. L95/5--5

CabigMassachusetts 02139dbe o Teh ie~ ON Identimfying No. 5T04-8

SDefense Advanced Research Projects Agency -1 6Sepom 1978

140 Inoraion Systemsr ProgramIROrrl~ut

c.Arlington, Virginia 22217 7

Cj Code 437IUINSAEET(@ ecardetrdinBok2,1 ~trn IS&. ReeCAt) FCTINDWNRD

R:.Arigout ingia Networ Comi ain D StribUtEd optto

10. AEY TRACT (Continue sev reverse eaide It neasr mi~d identify by black number)

An algorithm for c~onstructing and adaptively maintaining routing tables n
xmmiunication networks is presented. The algorithm can be employed in store-&l id-
orward as well as line switching networks, uses distributed computation, provides

Srouting tables that are loop-free for -ýach destilatilon at all times, adapts to changis
in network flows and is completely failsafe. The latter means that after arbitrary
failures and additions, the network recovers in finite time in the sense of provid-
ing routing paths between all physically connected nodes. Complete rigorous proofs
of all these properties are provided.

FORM *j OI TW1ON OF I r4OV 69 13 OSSOLIETIE

~~ ~~ sIECURtTY CL ASS&0CAMM OF THIS PAGE gh.e~F

9E PUB. No, 313
Sap. 1977
Revi~ed 'May 1978

September 1978 LIDS-P-852

A FAILSAFE DISTRIBUTED ROUT7,"G PROTOCOL

Philip M. Merlin and Adrian Segall

Department of EleCtrical Engineering
Technion-Israel Institute of 2echnology

Haifa, Israel.

Abstract

An algorithm for constracting and eidaptively maintaining

routing tables in communication networks is tresented. The algor-

ithm can be employed in store-and-Jfcorwar azs well as line switching

networks, uses distributed computation, pcrles routing tables

that are loop-free for each destination 7 s-1-1 times, adapts to

changes in network flows and is completely failsafe. The latter

means that after arbitrary failures and additions, the network

recovers in finite time in the sense of prc-'_ding routing paths

between all physically connected nodes. Cc=plete rigorous proofs

of all these properties are provided.

N.M

The work of A. Segall was supported by the Advranced Research Project
Agency of the US Department of Defense (=ritored •y ONR) wnder
contract No. N00014-75-C-1183.

-i --

1. INTRODUCTION

Reliability and the ability to recover from topological changes are

properties of utmost importance for smooth operation of data-communication

networks. In today's data networks it happens occasionally, more or less

often depending on the quality of the individual devices, that nodes and

comunication links fail and recover; also new nodes or links become opera-

tional and have to be added to an already operating network. The reliability

of a computer-communication network, in the eyes of its users, depends on its

ability to cope with these changes, meaning that no breakdown of the entire

network or of large portions of it will be triggered by such changes and that

in finite - and hopefully short - time after their occurrence, the remaining

network will be able to operate normally. Unfortunately, recovery of the

network under arbitrary number, timing, and location of topological changes

is hard to insure and little successfL] analytical work has been done in

this direction so fax-.

The above reliability and recovery, problems are difficult whether

one -Ases centralized or distributed rout control. With centralized rout-

ing, one has the problem of central node failure plus the chicken and egg

problem of needing routes to obtain the network informaticn required to

establish routes. Our primary concern here is with distributed roiý.ting that

recovers from topological changes; here one has the problems of asynchronous

computatlon of distributed status information and of designing algorithms

which adapt to arbitrary changes in network topology in the absence of global

knowledge of topology.

The paper presents a distributed protocol that maintains a route

from any source to any destination in a network. The protocol is distributed

in the sense that no central tables are required and there is no global

knowledge of the routes, i.e, eaca node knows only who is the next node

(called the "preferred neighbor") on the route to a given destiiation. Each

-2-

node is responsible for updating its own tables (e.g. choosing a new pre-

ferred neighbor) and these updates are coordinated by the protocol via

control messages sent between adjacent nodes. For a given destination, the

set of routes maintained by the protocol are loon-free at all times, and

whenever no failures occur, they form a spanning tree rooted at the destina-

tioni (i.e. a tree that covers Rl nodes).

To each link in the network, a strictly rosi-ive "distance" (or

"weight") is assigned which represents the cosz of using the link. Accord-

ing to utilization and porsibly other factors, -his° distance may vary with

time following long-term trends. The length of any _zath is the sum of the

distances on the links of this path. Desti.na-icns =ay asynchronously trigger

the protocol and start update cycles to change rs*tes according to new dis-

tances. Such a cycle first propagates uptree while nodifying the distance

estimates from nodes to the destination and then prozagates downtree while

updating the preferred neighbors. Each cycle te-_is to find routes with

short paths from each node to the destination, a=4 assuming time-invariance

of link weights, the strict minimum (i.e. shortest: naths) will be reached

within a finite number of update iterations.

The proposed protocol also provides for recovery of routes after

failures and for additions of links or nodes to 6he network. When a link

fails, appropriate information is propagated baclriards in the network and,

in addition, a "request" message is generated and forwarded towards the

destination. New links are brought up via a sirila- protocol. The request

message triggers an update cycle and it is guararn-eed that within finite

time, all nodes physically connected to each des na=e:ion will have a loop-

free route to it. This holds also for multiple to-ogica2 changes, and

even if such changes occur while the protocol is active and the update is

in progress. The recoverability of the protocol is achieved without employ-

ing any time-out in its operation, a feature which greatly enhances its

amenability to analysis and facilitatea structured im-plementation.

-3-

The protocol is mainly intended for quasi-static routing in colmuni-

cation networks and the routes provided by the protocol can be used in a

variety of ways for actual routing of information. Although specification of

information routing algorithms is outside the scope of the present paper,

we indicate h.?re a few applications. In a (physical or virtual) line-

switched network, it is often impractical to reroute already established

conversations, except in case of disrutrticn caused by failure or priority

preemption. In this case, the routes provided by the present protocol may

be used for assigning paths to new or disrupted calls. For example, in a

virtual line-switched network the link weights may represent link delays,

and then the path provided by our protocol in steady state will give the

minimum delay route for the new call. If the weights represent incremental

delay, then the path will minimize network average delay (see [1, eq. (25)]).

Othe, criteria like probability of blocking, can also be taken into con-

sideration in the link weight. Observe that if the link weights change

drastically, the above strategy may allow new conversations to follow paths

so different from the old ones that together they form a loop, but this is

still the best one can do under the constraint that established conversa-

tions cannot be rerouted.

Similar strategies can be used in networks using message switching,

where the preferred neighbor indicates the first hop of the present best

estimated route towards the SINK and the node may for example increase the

fraction of messages routed over this path while reducing the fraction

sent over other routes. More sophisticated failsafe routing and update

procedures, where exact amount of increase and reduction of traffic

fractions are indicated so that optimality and routiag loop-freedom are

achieved, have been obtained using ideas similar to the protocol of this

paper and are presented in a subsequent report [211.

4

Finally, we may mention that the present protocol can replace the

simple-minded saturation routing that is presently used in several networks

to locate mobile subscribers and to s lect routing paths [3]. The protocol

of this paper has all the advantages indicated in [3, Sec. II] for satura-

tion routing, but requires no time-out and provides a route selected not

only on the basis of the instantaneous congestion but on averaged quantities.

This work was inspired by [4i and [51, minimum delay routing

algorithms using distributed computation were _e7e.oped. These algorithms

also maintain a per destination loop-free rou-ing at each step. One of the

main contributions of the protocol given in -,he present paper is to intro-

duce features insurinj recovery of the routes fr•_or arbitrary topological

changes of the network. As a result, the protocol. of the present paper is,

to our knowledge, the first one that is distributed and for which all the

following properties are rigorously proved:

(a) Loop-freedom for routes to each destination at all times.

(b) Independently of the sequence, locaticn and quantity of topolog -al

changes, the routes recover in finite •ine.

(c) Under stationary conditions, the routes converge to paths with

minimal weighted length.

Several routing algorithms possessing s9=e of the propert 'ed

above have been previously indicated in the liierature. In [6j, a routing

algorithm similar to the one used in the APPA network [7] but with unity

link weights, is presented. It is shown there, that at the time the algorithm

terminates, the resulting routing procedure is loor-free and provides the

shortest paths to each destination. As with the AYA routing, however, the

algorithm allows temporary loops to be formed during the evolution of the

algorithm. The algorithm proposed in [8] ensures loop-free routing for

individual messages. This property is achieved by requesting each node to

send a probing message to the destination before each individual rerouting;

the node is allowed to indeed perform the rerouting only after having received

an acknowledgement from the destination. 'The extra load on the network by

sending probing messages from each node to each destination for each rerouting

is clearly extremely large. Also loop freedom for individual messages is a

weaker property than loop freedom for each destination. For example, in a

three-node network, sending traffic from node 3 to node 1 via node 2 and send-

ing traffic from node 2 to node 1 via node 3 would be loopfree for individual

messages, but not loopfree for each destination. See (9] for a more complete

discussion of loop freedom.

In addition to the introduction of this particular protocol and the

proofs of its main properties, the paper provides contributions in the

direction of modeling, analysis and validation of distributed algorithms.

The operations required by the algorithm at each node are summarized as a

finite-state machine, with transitions between states triggered by the

arrival of special control messages from the neighbors, and the execution

of a transition may result in the transmission of such messages. Methods

for modeling and validation of various communication protocols were proposed

in (10] - [13]. These methods are designed however to handle protocols in-

volving either only two communicating entities or nodes connected by a fixed

topology. The model we use to describe our algorithm is a co&bination of

these known models, but is extended to allow us to study a fairly complei:

distrihuted protocol. Th ar.0tlysis and validation of the algorithm is per-

formed by using a special type of induction that allows us to prove global

properties while essentially looking at local events.

Before proceeding, we may mention two other distributed protocols

that were recently developed. In (14], an algorithm for network resynchroni-

zation is presented and its recovery properties are proved under arbitrary

topological changes. A similar goal is obtained by R.G. Gallager in an

unpublished work (151, while also determining the paths with minimum number

of links.betveen each pair of nodes in the network. Although there is a

great similarity between the ways in which the updating information.prpna-.

gates and the distributed computation is performed by the algorithms of

[14], [15] and of the present paper, the exact relationship between these

protocols is a subject for future research.

-6-

2. THE PROTOCOL

To facilitate understanding, we describe the protocol in several

steps. We first Iresent the "basic protocol", i.e. assuming that no topo-

logical changes occur. Then we describe the additions to the protocol in

case of link outage and finally the additions for links becoming operational.

A node outage can be represented as the outage of all of its links and

similarly, a node becoming operational can be represented as links becoming

operational. Therefore, we do not pay special attention to topological

changes caused by nodes.

The following comments apply to the rest of the paper:

1. Since we are not concerned with data transfer, we use the term

"message" to mean the special control messages employed by the

protocol.

2. We assume that messages sent by a node to a neighbor are received

in the same order that they are sent, i.e. FIFO is preserved in the

blinks (and local protocols).

3. The protocol proceeds independently for each destination. Conse-

quently, for the rest of the paper we fix the destination and

present and analyse the protocol for that given destination, which

is denoted by SINK.

2.1 The Basic Protocol

As already mentioned, each node i in the network has at any time

a preferred neighbor. Thus, we assume that each node has a variable p

which points to that neighbor. For the basic protocol, wir assume that after

initialization, the directed graph defined by the nodes *, and arcs (iPi)

form a tree directed towards (and therefore rooted at) the SINK, as exempli-

fied by the network c.f Fig. 1 where directed arcs denorte the preferred

neighbors .p 1. Subseq.ent sections describing the protocol rhich handles

-7-

topological changes will show that this assumptio- is itstified by the

initialization procedure. Each node i 'has also a positive variable d.

maintained by the protocol,denoting an e ted distance from i to the

SITc (dSINK is by deft nitio- equal to 0). During an update, the protocol

reevaluates the distances {d. } and accordingly the mod3s choose preferred
1

neighbors (piI in such a way that the directed graph given by the arcs

(i,pi) remains at all times a tree rooted at the SIMK.

As already mentioned in Section 1, to each link (i,l) a strictly

positive "distance", denoted by di,, is assigned. We assume all links to

be full duplex and allow a link to have a different distance in each direc-

tion. The distance d is allowed to vary with time and needs to be

known (measured or estimated) only by node i. The protocol tends to mini-

mize the distance di from each node i to the SINK, where this distance

is given by the sum of the weights d on the directed path from a node

to the SINK.

As described below, the SINK may asynchronously start update cycles

to change routes according to new distances. Such a cycle first modifies

distance estimates [di) uptree and then modifies preferred neighbors (p }

downtree. An update cycle is started by the SINK by sending a message

MSG(d SINK) to each of its neighbors (notice that MSG(d SINK) - MSG(O) by

definition). When a node, say i, receives a message from its pi it

reevaluates its estimated distance d and transmits MSG(d) to each of
ii

its neighbours except pi" Notice that the spanning tree structure mentioned

before (Fig. 1) guarantees that after the SINK has started the updating

cycle, each of the network nodes will eventually perform this step. Further-

more, this is dune in the order given by the tree from the SINK towards the

leaves.

-8-

Whenever a node i receives a message MSG(d) from a neighbor 9,

it estimates and stores its distance through this neighbor to the SINK.

This distance is estimated as d +d it' As said before, the reevaluation of

the estimated distance di is performed when receiving MSG from the pre-

ferred neighbor pi" Node i calculates then the minimum of the estimated

distances to the SI17K through al.: those neighbors from which it has already

received MLSG (during the present update cycle). The node sets then d as

this minimum. (Notice that di is only an "estimate" of the minimal dist-

ance to the SINK because it is sometimes calculated based upon part of the

neighbors of i.)

When a node, say i, has received MSG(d) from all of its neighbors,

it transmits MSG(d i) to its pi and then determipes its new preferred

neighbor PDi This is done by choosing pi as the neighbor which provides

minimal estimated distance from i to the SINK. This choice is made among

all neighbors of i and as such it may pick a neighbor different from the

one which provided di (the calculation of the estimated distance di is

usually based upon part of the neighbors). Since, as previously shown, each

node i will eventually send MSG(di) to all its neighbors except pis

the leaves of the directed tree will eventually receive MSG from all their

neighbors. Thus they will send MSG to their preferred neighbor pi and

reevaluate a new pi. It can be easily seen by induction, that each node

will perform this step. This happens in the order given by the original

directed tree, from the leaves towards the SINK.

Since the SINK denotes the destination, the SINK has no preferred

neighbor, and therefore the SINK does not update pSINK when it receives

MSG(d) from all its neighbors. Instead, this event notifies the SINK that

the update cycle has been properly completed. The SINK is not allowed to

start a new update cycle until the previous cycle has been properly completed.

-9-

A node i always updates its preferred neighbor pi to point

towards a node J having estimated distance d < d . As proved in

Section 3, this fact insures that the updated directed graph will remain

a tree at any time.

The basic protocol can be formally defined by the basic algorithm

performed by each node i. The latter is shown in Table 1 with the aid of

a Finite State Machine. Node i can be in either of two states. it will

be in state S2 after having received MSG from its preferred neighbor pi

and until it receives messages from all its neighbors. Otherwise node i

will be in Sl. The variables Di (Z), one for each neighbor Z of i,

store the values of the estimated distance through link Z to the SIlCK.

The variables Ni (), one for each neighbor k of i, denote flags which

can take the value "RCVD" to mean that MSG(d) was received from link (i,Z)

during the current cycle, or the value "nil" other.wise. CT is a control

flag which can take over the values 0 or 1. We assume that when MSG(I)

arrives from link X, it is given to the algorithm in the format MSG(d,t).

When MSG(d,t) is processed, the flag N.(d) is set to RCVD,

Di () is calculed, CT is set to 0, and then the Finite State Machine

executes transitioi# utkX no more transitions are possible. Transition T12

can be executed if node i is V atee S1 and Condition 12 is satisfied,

i.e. the algorithm is processing a MSG(d,&)'i.4 which L - p. and CT - 0.

If T12 is executed, then node i goes to state S2 and.,Action 12 is performed,

i.e. the estimated distpance d is reevaluated and !tG(d1) i transmitted to

each neighbor of i except the preferred neighbor pi" In a slixla~ay,

T21 is executed when node i is in state S2 and Condition 21 is satisfiel,

in which case node i goes to state Sl and Action 21 is performed. The role

of CT is to insure that T12 cannot be executed imediatly after T21 (for

example, suppose node I is in state S1 ind MSG(d, - pi) arrives after

messages have arrived for all other links of 1. In this case, without CT,

- 10 -

the sequence of transitions T12, T21, T12 wilI be performed in contradiction

with the protocol). Notice that the sequence T12, T21 is permitted.

The use of' the Finite State Machine for describing the relatively

simple basic algorithm may appear superfluous. Its importance will become

apparent when describing the more crmplex protocols and the proofs of their

properties.

2.2 Handling Failures of Links

At our level of abstraction, the outage of a link is called "link

failure". Transient (or transmission) failures can be masked out by the

link protocol, and we are not concerned with the-. If a link of the

directed tree fails, then all the nodes which are predecessors of this

link on the directed tree lose their route to the SINK, but they are unaware

of this fact at the time of the failure. For exa--mle, if link (7,8) of

Fig. 1 fails, nodes 6, 7 and 9 lose their route. Furthermore, if an update

cycle is started, node 7 will not be able to receive MSG(d,X = 8) and there-

fore node 7, as well as nodes 6 and 9 will not be able to perform T12. In

such a case wp would like to recover by finding an alternative route (e.g.

through node 5), but since the basic protocol allows changing estimated

distance di and preferred neighbor pi only after performing T12, there

is need to provide an extension to handle this situation. Two actions must

be taken by the extended protocol. First to info.r- nodes 7, 6 and 9 not to

wait for triggering messages from the tree (and also that the existing tree

has no meaning for them anymore) anc second, tc allow those nodes to choose

their pi whhnever control messages from new cycles arrive. These features

are in the sequel.

Whenever a node i discovers a failure of its link to the preferred

neighbour piI it sets pi = oil and di U C0 to mean that its estimated

distance to the SINK has become infinite. Then node i generates a special

-~I l - '" , I -In I •Ir I l l I

message MSG(-) which propagates backwards through the tree to the nodes

that lost their route, causing them also to set their best link to nil

and the estimated distance to infinite. The propagation backwa~rds is done

as follows. Node i sends MSG(-) to all its neighbors except pp; if

a node j receives MTSG(-) from a link other than p , it stores it but

no ocher action is taken; if a node J receives MSG(-) from pj, then

it transmits MSG(-) to all its neighbors except p and sets pj = nil,

dj = C. When a node establishes pi = nil, d. = -, it is said to enter

state S3 (see Table 3).

The sxoAd part of the recovery, called "reattachment', consists of

choosing -. new be: t link by those nodes i having pi = nil. The reattach-

ment takes place if one of the following two situations occurs. One pcssi-

bility is that a node with pi = nil receives on one of its links, I say,

a message MSG(d#-) and the node is assured that this message was generated by

an update cycle that started after the failure that caused p. = nil. A

second possibility is that at the time pi is set to nil, such a message

has already been received at node i. The reattachment consists of setting

Pi 1, going to state S2 and effecting the same operations as in T12.

This, together with other mechanisms to be described, guarantees that if a

failure (or multiple failures) occurs, and if indeed a new update cycle is

started, all nodes physically connected to the SINK will eventually belong

to a non-disrupted directed tree rooted at the SINK.

"As mentioned above, there is need to guarantee that reattachment

is performed only as a result of receiving a message generated by an up-

date cycle which started after the failure. This can be achieved by number-

ing the update cycles with nondecreasing numbe's as described below. Each

node i will have a counter number nI which denotes the cycle number

currently handled by this node, aid all messages transmitted by i will

carry ni in addition to di, i.e. they will be MSG(n 1,di). The SINK

may increase its n before starting a new update qycle, as explained later.

,E- -

- 12 -

A node i receiving MSG(m,d) on its pi updates its ni to equal m.

Now, reattachment is done by a node i with pi = nil if an NG(m,d) with

m > n. is received (or was previously received).1

When an NSG(m,d) is received from link Z by node i, in addition

of storing d in Di (Z), there is need to remember also thE value of m.
i!

This can be saved in N. (Z), which can now take the values nil,0,1,2,3, .. ,

instead of nil and RCVD as in the basic algorithm.

If a failure occurs in a link not belonging to the directed tree,

no route is disrupted. However, if this link is connected to a node in

state S2, it is convenient to prevent T21 from happening at this node for

this update cycle. This will avoid nodes to update routes based upon

information which is invalidated by the failure and, more important, will

preclude proper completion from happening. Thus, proper completion will

indicate to the SINK that the update cycle was completed without failures

interfering with the process. Prevention of T21 is accomplished by intro-

ducing an additionaliscate, S2, into which a node enters if a nonpreferred

link fails while the node is in S2. A node i will leave Si whenever new

information is received on p (see Table 3).

The described protocol allows the SINK to behave as follows. If

an update cycle started with nSINK ' m completes properly, the SINK is

allowed to start the next update cycle with the same nSINK* On the other

hand, the SINK may at any time increase nSINK and start a new update cycle

with an nSINK larger than those used before, even if previous cycles have

not been properly completed. (Notice that in any case the values of slrK

are non-decreasing with time.) As proved later, if a new update cycle is

started while increasing nSIK, it will eventually "cover" all previous

cycles. Also, if failures do not occur for a long enough time, the new cycle

will be properly completed, and all failures will be recovered, i.e. for all

- 13 -

nodes i physically connected to the SINK, the directed graph of (i,p.)

will form a tree rooted at the SINK.

Table 2 summarizes the variables used by the algorithm performed by

an arbitrary node i as its part of the protocol. F i() denotes the status

of link X as considered by node i, i.e. Fo(Z) = UP if Z is considered
1

operational and F.(Z) = DOAIT if Z is considered unoperational. F (9) can

take also the value "READY". whose use will be described when dealing with the

problem of links becomin6 operational. At that time, the role of zi (2) will

also become clear. The variable mxi stores the value of the largest update

cycle number m of all the messages MSG(m,d,k) received by node i. The

rest of the variables and their use were already described. The local link

protocols controlling the operations of the links connected to node i may

relay to the algorithm performed by node i four types of messages, and they

are als summarized in Table 2. MSG denotes an updating message, FAIL(L)

denotes the detection of the failure of link Z, and the remaining two will

be described later. The exact properties requircd fooui 'Whe local protocol

to insure proper operation of the network protocol will be discussed in

Section 2.7.

Table 3 describes the generalized algorithm of node i for the proto-

col which handles topological changes. The protocol as described up to now

is implemented by the algorithm of Table 3 if ignoring steps 1.1, 1.2.4, 1.3.1,

1.4, 1I.1.5, I.2.5 and 11.7.7. These steps relate mainly to links becoming

operational and will be discussed in subsequent sections. Table 3 uses a

notation similar to the one of Table 1. States S1, S2 and transitions T12 a

and T21 are similar to those described in Table 1 for the basic algorithm.

State S3 denotes the situation where the node has p, o nil, which results

from receiving a FAIL or a MSG with d - - from Pi* State S2 denotes a

state similar to S2. but from which a transition T21 is precluded. -As

previjusly described, the algorithm goes to such a state S2 if while at S2

14 -

a failure is detected from a link other than p.. The "Facts" given in the

algorithm are displayed for helping in its understanding and are proven in

Theorem 2 of Section 3. A Fact holds if the transition under which it

appears is performed.

2.3 Starting a New Update Cycle

'There exist several procedures for starting a new update cycle and

setting the torresponding nSINK in a way which satisfy the required behaviour

from the SINK as descriibed in Section 2.2. TVo of these procedures are des-

cribed next.

Version 1: At given intervals of time, or as a result of the detection of

a change in the traffic pattern, the SINK increments nSINK and starts a

new update cycle. The above version may make use of a time-out to trigger

a new update cycle if the previous one is not properly completed within

certa:in time. If a failure occurs after proper completion, there is no

direct triggering of a new update cycle, and thus recovery can be achieved

only whenever the SINK decides to starz a new update cycle. In addition,

this version unnecessarily increments n:SINK for every update; hence an

unnecessarily large number of bits to represent nSINK is required. These

two disadvantages are overcome by the next version.

Version 2: In order to cope with changes in traffic patterns, after proper

completion of the previous update cycle, the SINK may start a new update

cycle with the same nSINK. In addition, whenever a node i detects a

failure of a link attached to it, the node generates a special message

REQ(n i) which is forwarded through the directed path of preferred links

to the SINK. If such a REQ(m) arrives at a node i having pi - nil, the

REQ is discarded. In Section 3 it is shown that if a REQ(ml) is generated

and forwarded as mentioned above, then some REQ(m2), m2 > ml will actually

arrive at the SINK, within finite time. Whenever a REQ(M) arrives at the SINK,

- 15 -

and if m = nSINK, then nSINK is incremented and a new update cycle is

started. This cycle will take care of recovery from the failure that

generated the REQ(m). If m < n SMN such a cycle was already started and

the REQ(m) can simply be ignored. (Notice that m cannot be larger than

nSINK.) This version guarantees that if an update cycle with nSINK ' m

is started, the cycle will be properly completed in finite time or else, a

failure has occurred and a REQ(m) will arrive at the SINK. (This is proved-

in Section 3.) Thus, there is no need for a time-out to make sure that the

SINK will not wait indefinitely for the proper completion of an update

cycle. The additions to the algorithm for implementing this version are

given in I.1 and 1.2.4 of Table 3. In the rest of the paper, we assume

that this version is implemented, although most of the results are also

applicable to Version 1.

2.4 Handling Links Becoming Operational

If link (i,t) is down, i.e. F (:) = F i) = DOWN, and it becomes

i

operational, nodes i and I should coordinate the operations necessary

to bring the link up. Otherwise, a deadlock could occur, for instance, if

i sets F i() - UP while at S2 and L sets F (i) - UP after performing

T21 of the same update cycle. In this case, i will not perform T21 until

receiving a message from 1, and such a message will not be sent because

Z already completed this update cycle, i.e. deadlock.

The coordination is achieved by having both nodes bring the link up

just before starting to perform their part of the same new cycle. This

is done in two steps. First, i and L compare ni and n£ via the local

protocol and decide to bring up the link when starting to process the first

cycle with number strictly higher than max(n~n z). This fact is remembered

at, the nodes by setting z i(t) azd z Pi) to max(ni,n), as well as

F (Z) and F (i) to "READY". In addition, N W() and N (i) are dot to

- 16 -

nil and REQ(z I(9)) is generated by nodes i and I and forwarded to the

SINK in the same way as described in Section 2.3 (Version 2) for failures.

This will guarantee that an update cycle with nSINK larger than z i(k)

(and zZ(i)) will be started. This first step of the coordination at node

i is done by message WAKE(Z) given by the local protocol to the algorithm.

The actions performed by the algorithm when receiving such a message are

aescribed in 1.4 of Table 3. The synchronization assumes that the execution

of WAKE(A.) and WAKE(i) are simultaneously started at nodes i and t

respectively, in order to guarantee that z (9) W z (i). However, it may

happen that a failure occurs again in the link and one of the nodes succeeds

to complete the synchronization while the other node does not. The protocol

allows fcr such a situation and only requires that the link protocol ends

the synchronization (successfully or unsuccessfully) within finite time. If

the synchronization is unsuccessful, no action is taken by the node, and the

link will remain DOWN from this node's point of view. Section 2.T gives a

more formal and complete list of the requirements that the link protocol

should satisfy.

The second step of bringing the link (i,L) up is done by node i

(i.e. Fi(Z) is set from READY to UP) when node i receives MG from link

I or when the node counter =1mber ni becomes larger than zi (L). This

is represented respectively by 1.3.1 and 11.1.5, 11.2.5, 11.7.7, of Table 3.

2.5 The Algorithm for the SINK

The algorithm for the SINK, assuming that Veraion 2 of Section 2.3

is chosen, appears in Table 4. Most of the algorithm was already informa.ly

discussed in previous sections. The main difference between the algorithm

for the SINK and that for an arbitrary node i is that the first does not

need to keep the following variables:

- 17 -

- Pi (which is not defined for the SINK)

- di %which is always 0 for the SINK)

- D(t) (which is only needed to update di and pi

- mxi (nsiNK is always the largest update number)

- z.(t) (during WAKE synchronization, z SIK(0) is always set to

nSINK = max(nSINK,nL)

In addition, the algorithm may receive a "START" message from the "outside

world" which will cause it to start a new cycle, provided that the last one

was properly completed. WAKE and REQ call also for the execution of the

Finite-State-Machine, and as a result WAKE as well as REQ(m= nSINK) will

cause an increment of nSINK and a new update cycle will be started. States

Si and S2 are similar to the corresponding states of the algorithm for an

arbitrary node i. However, Sl means for the SINK that the last update

cycle was properly completed, and S2 means that the current update cycle is

not yet completed. T12 and T22 represienL the starting of a new update cycle

and T21 the proper completion. For the SINK there is no need for states

equivalent to S3 and 82.

2.6 Initialization of the Protocol

Any arbitrary node i comes into operation in state S3, wvith node

counter number ni = 0, preferred neiGhbor pi = nil, and Fi(k) - DOWN

for all k. The value of the remaining variables is immateriUl. From this

initial condition, the local protocol may try to wake the links and it

proceeds operating as defined by the algorithm (Table 3). The SINK comes

into operation in state SI, with nSINK ' 0 and Fi(k) = DOWN for all k,

and proceeds in the same way but according to the algorithm of Table 4,

- 18 -

2.7 Properties Required from the Local Protocol

On each link of the network there is a local protocol that is in

charge of exchanging messages between neighbors. Our main algorithm assumes

that the following properties hold for the local protocol:

2.7.1 All links are bidirectional (duplex).

2.7ý2 d > 0 for all links (i,J) at all times.

2.7.3 If a message is sent by bode i to a neighbor ., then in finite

tine, either the message will be received correctly at I or

Fi(9) = F£(i) = DOWN. Observe that this assumption does not preclude

transmission errors that are recovered by the local protocol (e.g.

"resend and acknowledgement").

2.7.4 Failure of a node is considered as failuire of all links connected

to it.

S2.7.5 A node i comes up in state S3, with ni = 0, = nil, and

Si(W = DOWN for all links (i,Z).

2.7.6 The processor at node i receives messages from link (i,t) on a

first-in-first-served (FIFO) basis.

2.7.7 A link (i,t) is said to have become operational as soon as the

local protocol discovers that the link can be used. Links (i,l)

and (9,i) become operational at the same time and subject to the

following restrictions, a WAKE "message" is delivered in this case

to each of the processors i and 1.

WAKEW can be received at node i only if

(a) node L receives WAKE(i) at the same (virtual) time;

(b) there are no other outstanding messages on link (±,Z) and on 4510

(c) F 1 (1) -F IW DOWN.

S19 -

2.7.8 If F iM) = DOWN, the only message that the processor at i can

receive from I is WAKE(Z).

2.7.9 (a) If F (2) W DOWN and F (i) # DOWN and F.(2() goes to DOWN,i 2. 1

then F (i) goes to DOWN in finite time.

(b) If Fi (2) = F (i) - DOWN and F.(L) goes to READY, then in

finite time, either F2I(i) goes to READY or F.(k) = F2L(i) = DOWN.

2.7.10 When two nodes i and X receive WAKE as described in 2.7.7, a

"synchronization" between i and I is attempted. At either end the

synchronization way or may not be successful (the latter because of

a new' failure). If it is successful, the node proceeds as in Step 1.4

of Table 3. If not, then no action is taken.

3. PROPERTIES AND VALIDATION OF THE ALGORITHM

Some of the properties of the algorithm have already been indicated

in previous sections. Here we state them explicitly a2.ung with some of the

others. We start with properties that hold throughout the operation c. the

network, some of them referring to the entire network at a given instant of

time and some to a given node or link as time progresses. Then recovery of

the network after topological changes is proved through a series of theoirems,

and finally we state and prove the fact that the algorithm achieve- shortest

weighted routes. We may point out, that the most important features of the

algorithm are given in Theorems 1, 4, 5 and 6.

Before stating the main properties of the algorithm, we need several

definitions and notations:

SI, S2, S2, S3 = states of the Finite-Ssate Machine.

PC(m) = time of proper completion with cycle counter number m.

Sl[n] = state S1 with node counter number n. = n, and similarly for1

S2[n], S3[n], Sý(nJ..

Whenever we want to refer to a quantity at a given time t we add the timae in

in parentheses (e.g. pi(t) means preferred neighbor pi of node i at

time t, Ni ()(t) means variable Ni () at time t, etc.)

s i(t) - state and possibly node counter number ni of node i at time t.

Therefore we sometimes write si(t) = S3 for instance, and sometimes

(iWt) - S3[n].

We use a compact notation to describe changes accompanying a transi-

tion, as follows:

Txy[t,i,MSG(mldl,Ql),SEND(m2,d2,t2),(nl,n2),(di,d2),(pl,p2),(mxl,mx2)J (Ia)

will mean that transition from state Sx to state Sy takes place at time

t at node i caused by receiving MSG(ml,dl) from neighbor Ui; in this

transition i sends MSG(m2,d2) to L2, changes its node counter number

-21-

ni from nl to n2, its estimated distance to destination di from dl

to d2, its preferred neighbor pi from pl to p2 ane the largest up-

date counter number received up to now mxi from mxl to mx2. Similarly,

Txy(t,i,FAIL(L),SEND(m2,d2, Z2),(nl,n2)(dl,d2),(pl,p2),(mxl.,mx2)] (lb)

denotes the same transition as above, except that it is caused by receiv-

ing FAIL(L) from neighbor k. For simplicity, we delete all arguments that

are of no interest in a given description, and if for example ml is

arbitrary we write (O,n2) instead of (nl,n2). Similarly, if one of the

states is arbitrary, 0 will replace this state. In particular observe

that

T02[t,SInK, (,n2)] (2)

means that an updating cycle with number n2 is started at time t and

T21It ,SINK, (n2,n2)] (3)

means that proper completion of the cycle occurs at time t. If Txy[t],

then we use the notations:

t- = time just before the transition,

t+ = time Just after the transition.

We also use

[t, iMSG(m, d,2 1 (4)

to denote the fact that a message MSG(m,d) is received at time t at i

from Z, whether or not the receipt of the message causes a transition.

Finally, at a given instant t, we define the Routing Graph RG(t)

as the directed graph whose nodes are the network nodes and whose arcs are

given by the preferred neighbors pi' namely there is an arc from node i

to node I if and only if Pi(t) - 1. For example, the routing graph of

the network in Fig. la is given in Fig. lb. In order to describe properties

of the RG(t), we also define an order for the states by S3 > 82 2> SI.

- 22 -

Also, if Sx and Sy are states, then the notation Sx > Sy means Sx > Sy

or Sx = Sy. For conceptual purposes, we regard all the actions associated

with a transition of the Finite-State Machine to take place at the time of

the transition.

Theorem 1

At any instant of time, RG(t) consists of a set of disjoint trees

wi , the follow-ing ordering properties:

i) the roots of the trees are the SINK and all nodes in S3;

ii) if pi(t) = 2, then n (t) > n i(t);

iii) if pi(t)= L and na(t) ni(t), then s 2L(t) > s.(t);

iv) if pi(t) = L and n (t) = n it) and s Wt) = s i(t)= Sl, then

dW(t) < d i(t).

The proof of Theorem 1 is given in Appendix A. According to it, the

RG consists at any time of a set of disjoint trees, i.e. it contains no loops.

Observe that a tree consisting of a single isolated node is possible. The

algorithm maintains a certain ordering in a tree, namely that concatenation

of (nisi) is nondecreasing when moving from the leaves to the root of a

tree and in addition, for qodes in S1 and with the sane node counter number,

the estimated distances di to the SINK are strictly decreasing.

In addition to properties of the entire network at each instant of

time, we can look at local properties as time progresses. Some of the most

important are given in the following theorem whose proof appears in Appendix A

(see c) and d) in Theorem A.1).

- 23 -

Theorem 2

i) For a given node i, the node counter number ni is nondecroasing

and the messages MSG(m,d) received from a given neighbor have non-

decreasing numbers m.

ii) Between two successive proper completions PC(M) and PC(!), for each

given m with m < m < m, each node sends to each of its neighbors

at most one message ýSG(m,d) with d < -.

iii) Between two successive proper completions PC(i) and PC(;), for each

given m with m m < m, a node enters each of the sets of states

{Si.[mj}, {S2[m], Si(m]}, {S3[m]) at most once.

iv) All "Facts" in the formal description of the algorithm in Section II

are correct.

A third theorem describes the situation in the network at the time

proper completion occurs:

Theorem 3

At PC(Mr), the following hold for each node i:

i) If ni a m, then Si = S1 or si S3.

ii) If a message MSG(m,d) with d # is on its way to i, then

si = S3 and n - M.

iii, If either (ni M m and si W Sl) or ni < m, then for all k such
that F (k) - UP, it cannot happen that {N i(k) - m, D i(k) < e}.

A combined proof is necessary to show that the properties appearing

in Theorems 1, 2, 3 hold. The proof uses a two-level induction, first assum-

ing properties at PC to hold, then showing that the other properties hold

between this and the next PC and fLnally proving that the necessary proper-

- 24 -

ties hold at the next PC. The second induction level proves the properties

between succesvive proper completions by assuming that the property holds

until Just before the current time t and then showing that any possible

Qhange at time t preserves the property, The entire rigorous procedure

appears in Appendix A.

In order to introduce properties of the algorithm regarding normal

activity and recovery of the network, we need several definitions.

Definition

We say that a link (i,l) is potentially wcrking if Fi(t) # DOWN

and F (i) # DOWN, and a link (i1,) is working if FL(Z) = F (U) = UP.

Two nodes in the network are said to be potentially connected at time t
if there is a sequence of links that are potentially working at time t
connecting the two nodes. A set of nodes is said to be strongly connected

to the SINK If all nodes in the set are potentially connected to the SINK

and for all linrks Ci,f,) connecting those nodes, we have either

Fi(Z) = FA (i) = UP or Fi(L) = F I(i) = DOWN.

Definition

Consider a fiiven time t, and let ml le the highest counter

number of cyzles started before t. We say that a pertinent topological

change happens at time t if the algorithm at a node i with ni(t-) - ml

receives at time t a message WAKE(A) resulting in successf't WAKE syn-

chronizat.ion or a message FAIL(l). Observe from steps 1.2 and 1.4 of

Table 3 that nEQ(ml) in generated and sent if and only if a pertinent

topological change happens at a node i with Pi 0 nil. Also note, that a

pertinent topological change happens if and only if node i has a link
U

(i,k) such that at time t, Fi(k) charges from DOWN to READY or from

either UP or READY tq DOWN (see Fig. 2).

- 25 -

Theorem 4 (Normal activity)

Let

L(t) = (Lodes potentially connected to SINK at time t}

H(t) = (nodes strongly connected to SI•K at time t)

Suppose
Tý2[tl,SINK,(ml,l)]3 (5)

namely a cycle is started at tl with a number that w8as previously used.

Suppose also that no pertinent topological changes have happened while

nSINK = ml before tl and no such changes happen for long enough time

afcer tl. Then there exist tO, t2, t3 with tO < tl < t2 < t3 < - such

that a), b), c), d) hold:

a) T21[tO,SINK,(ml,ml)]; (6)

b) At in the interval [tO,t3], we have H(t) = L(t) L(tO);

c) for all i e L(tO), we have

Tý2[t2i1,i,(ml,) 1 (7)

ior some time t2i in the interval [tl,t2];

d) i) T21[t3,S1K,(mlm)]i (8)

ii) RG(t3) for all nodes in L~tO) is a single tree rooted at SINK.

In word-, Theorem 4 says that under the given conditions, if a new

cycle starts with a number that was previously used, then Proper Completion

with the same number has previcoas-jz occurred and the new cycle will be

properly eompletid in finite time while connecting all nodes of interest (i.e.

in L(tO)) to the SINK, both strongly and routingwise. The proof of Theo-

rem 4 is given in Appendix B.

rlae recovery p-operties of the algorithm are described in Proposi-

tions 1, 2 and in Theorem 5. The proofs of the propositions appear in

Appendix B.

-26

[
Pro'position 1

Let L(t), H(t) be as in Theorem 4. Suppose

Tc2[tlSIN,(mlm2)] ; m2 > ml, (9)

namely a cycle starts at time tl with p. number that was not previously

used. Suppose also that no pertinent topological changes happen for a

long enough period after tl. Then

a) there exists a time t2, with tl < t2 < , such that

i) for all. i L(t2)

T0[t2i ,i, (O]) (10)

happen at some time t2 with tl < t2 < t2.

ii) H(t2) = L(t2)

b) There exists a time t3 < such that

i) T21[t3,SINK,(m2,m2)] ;(

ii) • in the interval [t2,t3], we have H(t) - L(t) a H(t2);

iii) RG(t3) for all no,ýes in L(ti) is a single tree rooted at

SINK.

Part a) of Proposition 1 says that under the stated conditions, all nodes

in L(t) will eventually enter state S2[m2]. Part b) says that the cycle

will be properly completed and all nodes potentially connected to the SINK

at time PC(m2) will actually be strongly connected to the SINK and will also

have a routing path to the SINK.

Finally, we observe that reattachment of a node loosing its path to

the SINK or bringing a link up requires a cycle with a counter number higher

than the one the node currently has. Proposition 2 ensures that such a cycle

has been or will be started in finite time by the PINK.

-27-

Proposition 2

Suppose a node i receives FAIL(L) while n. ml or a successful

WAKE(£) synchronization occurs at node i while z.(£) =mi. Then the

SINK has received before t a message REQ(ml) or will receive such a message

in finite time after t.

Propositions 1 and 2 are combined in:

Theorem 5 (Recovery theorem)

Let L(t), H(t) be as in Theorem 4. Suppose there is a time ti

after which no pertinent topological changes happen in the network for long

enough time. Then there exists a time t3 with tl _ t3 < - such that

all nodes in L(t3) are strongly connected to the SINK and are on a single

tree rooted at SINK.

Proof

Let tO < tl be the time of the last pertinent topological change

befcre tl. Let i be the node detecting it and let m = n (tO-). Then

Proposition 2 assures that a message REQ(m) arrives at some finite time at

SINK. Let t2 < - be the time the first REQ(m) message arrives at SnrK.

Condition 12 or 22 in Table 4 dictates that SINK will start at time t2 a

new cycle, with number ml - m+l. Since by the definition of pertinent

change, m is the largest number at time tO, we have that tO < t2. By

assumption, no pertinent topological changes happen after time tO for

a long enough period, so that no such changes happen after time t2. Con-

sequently Proposition 1 holds after this time and the assertions of the

Theorem follows.

Theorem 6 (Shortest paths)

With the notations of Theorem 5, suppose the conditions of Theorem 5

hold and in addition, suppose that the weights dit of thi are time in-

variant for a long enough period after tl. Then, after completion of a

- 28 -

finite number of cycles after t3, the routing graph RG will provide the

shortest route in terms of the weights dit from each node in L(t3) to

the SINK. Let SR be the graph providing the shortest routes in terms of

d it Then the necessary number of cycles is bounded from above by the

largest distance from SINK in terms of number of hops on SR.

Proof.

Observe from steps 11.1.3 and II.3.7 in Table 3, that during the

f_'rst cycle after t3 all nodes closest to SINK on SR -All have p = SINK

and will never change p. afterwards.

Next, consider any connected subgraph A of SR that includes the

SINK. Suppose that at the time of a cycle completion SR and RG coincide

for nodes in A. Then these nodes will never change their preferred neighbors

Pi afterwards. Also during the next cycle at least the nodes neighboring A

on SR will change their such that RG and SR will coincide for them too,

I and this proves the assertion.

- 29 -

IV. ýISCUS~iON AND CONCLUSIONS

The paper presents an algorithm for constructing and maintaining

loop-free routing tables in a data-network, when arbitrary failures and

additions happen in the network. Clearly, the properties that are rigorously

proved in Section 3 and the Appendices hold also for several other . rsions

of the algorithm, some of them simpler and some of them more involved than

the present one. We have decided on the present form of the algorithm as a

compromise between simplicity and still keeping some properties that are

intuitively appealing. For example, *ne possibility is to increase the up-

date cycle number every time a new cycle is started. This will not simplify,

the algorithm, but will greatly simplify the proofs. On the other hand, it

will require many more bits for the update cycle and node numbers m and n

than the algorithm given in the paper. Another version of the algorithm

previously considered by us was to require that every time a node

receives a number higher than ni from some neighbor, it will "forget" all

its previous information and will "reattach" to that node immediately, by a

similar operation to transition T32. This change in the algorithm would

considerably simplify both the algorithm and the proofs, but every topologi-

cal change will affect the entire network, since after any topological change,

all nodes will act as if they had no previous information. On the other

hand, the version given in the paper "localizes" failures in the sense that

only those nodes whose best path to SINK was destroyed will have to forget

all their previous information. This is performed in the algorithm by re-

quiring that nodes not in 63 will wait for a signal from the preferred neigh-

bor p before they proceed, even if they receive a number higher than n

from other neighbors. The signal may be either -, in which case the node

enters S3 (and eventually reattaches) or less than -, in which case the

node proceeds as usual.

- 30 -

A final remark regarding the amount of control ,information required

by the protocol. Observe that since for each update and for each destina-

tion each node sends over each link the distance di and the node counter

number ni, the amount of information sent over each link is of the same

order of magnitude as the ARPA routing protocol 7I]. The difference is

that the latter allows information for all destinations to be sent in one

message, whereas our protocol requires in principle separate messages for

different destinations (although sometimes several messages may be packed

together). If the overhead for control messages is not too large however,

the extra load will not be significant.

- 31 -

Appendix A

We organize the proofs as follows: We start with the statements of

a few properties that follow immediately from the formal description of the

algorithm in Table 3. Lemmas A.1 - A.4 and Theorem A.1 contain the proofs

of Theorems 1, 2 and 3, together with some other properties needed in the

proofs themselves. Theorem 4 and Propositions 1 and 2 will be proved in

Appendix B.

Properties of the Algorit•m

R1 Any change in ni, si, pi. or send~ing any message (m,d) can happen

only while i performs a transition.

R2 Txy[t,i,SE D(m,d),(O,n2),(O,d2),i(,mx2)] implies d d2.

If d #-, then

i) Txy = T12 or T21 or T22 or T32 or T•2

ii) n==2 = m

If d= , then

iii) Txy = T13 or T23 or T23

iv) n2 = m

R3 T32(t,i,(nl,n2)] = n2 > ni

R4' si (t) - S3 <'- pi(t) - nil <'-- di(t) -

0 R5 Txy(t,i,(pl,p2)], p1 # nil, p2 # p1 l Txy T13 or T21 or T23 or T23.

R6 mxi(t) is nondecreasing in time for any i.

R7 In the Finite-State-Machine, no two conditions can hold at the same time.

This implies that the order of checking the conditions of the transitions

is irrelevant.

R8 For all t and all nodes i in the network, nSINK(t) > n i(t) and

n SINK(t) >_ mxi(t).

- 32 -

R9 The Finite-State Machine haa two types of transitions. The first type

is effected directly by the incoming message, while the & •ond type is

caused by the situation in the memory of the node. Transitions T23
and T21 are of the second type, all others are of the first type. Each

message can trigger only one transition of the first type, and this

transition comes always before transitions of the second type. This

is controlled by the variable CT in Table 3.

RIO The possible changes of Fi (2) are given in Fig. 2. The types of

messages causing them are also shown. A pertinent topological change

happens iff F± (X) - DOWN or F1 (£) changes from DOWN to READY at a

node i with h (t-) - ml, where ml is the highest cotnter number of

cycles started before t.

The following lemma says that the node number ni can be changed

only when receiving a message from the preferred neighbor p and then, the

new number is exactly the cycle number m received in that message. it also

gives conditions for leaving state S3.

Lemma A.1

If

TV Ct . , MS G(m, d,£) (nl, n), (pl,•) AI
or

Ticy[t,i, FAIL(k), (nl,n2), (pl,#)]

then

a) pl #nil, n2 nl -I- p1 and n2 m

b) pl - nil n2> nl, and also .1k s.t. Fi(k)(t-) - UP. Ni(k)(t-) - n2.

~~g

- 33 -

Proof

a) From the algorithm we see that T21, T22, T22 do not apply here since

they imply n2 - nl. Also T32 does not apply, since then pl - nil.

If T13, T23 or T23 is caused by FAIL(L) then n2 - nl, so this

case does not apply either. In all other cases, n2 - m and pl - £

(see 11.1.4, 11.2.1, 11.2.4 in Table 3).

b) pl - nil implies Txy - T32 and the assertion follows from steps

11.7.1 and 11.7.5 in Table 3.

The next lemma proves statement i) of Theorem 2 a id shows the role of

the node counter number ni. Here we see for the first time that sevexal

properties have to be proved in a common induction.

Lemma A.2

a) [i,tl,MSG(ml,dl,1)], [i,t2,MSG(m2,d2,z)], t2 > t! - m2 > ml.

ii ~b) TOO[t,i,(nl,n2)] -> n2 >_ nl.

c) Let Mi(tp (t)) denote the counter number m of the last message

MSG(m,d) received at i before or at time t from the preferred

neighbor p (t). Then

ni t) <_Mi(t,p i~t)) (A.2)

Proof

The proof proceeds by induction. We assume that a), b), c) hold up

to, but not including, time t for all nodes in the network. We then prove

below that any possible event at time t preserves the properties. This,

combined with the fact that a), b), c) hold trivially at the time any

node comes up for the first time completes the proof.

- 34 -

a) Suppose t = t2. Then by FIFO and property R2, 3t3,t4 with

t3 < t4 < t such that n (t3) ml and n (t4) = m2. By induction

hypothesis on b), ni was nondecreasing up. to (but not including)

time t, so ml < m2.

b) Observe first from steps 11.2.4 and 11.5.1 in Table 3,

T0[t, i, FAiL(;i), (el-,n2)]

implies n2 - ni, so that the statement is true in this case. We

therefore have to check only the case when the transition is caused

by MSG. Suppose

TO[t, i, MSG(m,d,z),(nl~n2), (pl,p2)] (A.3)

happens. If n2 = nl, q.e.d. If n2 $ nl, then Lerma A.1 implies

that either pl = nil or (pl = Z, n2 im). If p1 * nil, q.e.d.

from Lemma A.I. If (p1 a I, n2 - m),

then

ni < M 49(t-,pl) - Mi(t-,t) - Mi(tZ) m= = n2 (A.4)

where the inequalities follow respectively from induction hypothesis

on c) and from applying a) at time t.

c) We have to show that if

[i, t, MSG (m,dL), (nl,n2), (p2,p2)J (A.5)

then

i) I pl"p2 implies n2<i m, and

ii) p2 $ pl, p2 0 nil implies n2 Mi (t+,p2)

To do this we check all possible transitions and also the case when the received

message causes no transition. T13, T23 and T23 do not apply here because

then pl 0 nil, p2 - nil. If T22 or no transition, then p2 - pl and

n2 a nl, and we have

n2 - al < Mi(t-,pl) < Mi4 Y,(t+,p2) - m ,(A.6)-ih 1

- 35 -

where the inequalities follow from the induction hypothesis and from

a) respectively. For the other transitions we have

T12, T22 and T22 imply I = pl = p2, n2 = m (see I1.1.1 and IIl.h

in Table 3).

T21 implies p2 $ nil, and then the counter number of the last

message received from any neighbor before t+ is

n1 = n2 = m.

T32 implies p2 # pl, p2 # nil and then from steps i. .4, II.7.5

II.7.1 in Table 3, n2 - mxi(t-), p2 = k*, Mi(t+,k*)

N i(k*)(t-) = mx i(t-).

The nejz lemma shows what are messages that ca,. travel on a line after

a failure or after a message with d

Lemma A.3

a) If

[i,tl,MSG(ml,dl, X) , [i,t2,M•SG(m2,d2,£)] (A.T a)

where t2 > tl, dl -, then m2 > ml.

b) If

[i,tl,FAIL(X)], [i,t2,MSG(m2,d2,Z)] (A.Tb)

where t2 > tl, then m2 > ni(tl) and also m2 > nL(tl).

"Proof

a) 3t3 < tl such that

TW3[,t3,SEND(ml,dl,i),C(,n2)1 (A.8)

and from property R2 we have ml - n2. The next transition of I must

be

T32[t,(n2,n3)], n3 > n2

so that by Lemma A.2 b) and R2, node £ will never send after t3 any

message MSG(m,d) with m < ml. FIFO at node i completes the proof.

- 36 -

b) After failure, a link (i,l) can be brought up only with numbers

strictly higher than z1 (1) as defined in step 1.4 of Table 3.

Since ni is non-decreasing by Lemma A.2. b), the proof is complete.

Lemma A. 4

If Fi ()(t) = READY and

[t,i ,MSG(m,d,I)) (A.9)

then m > zi (k)(t). Observe that this is Fact 1.3.1 in Table 3.

Proof

From steps 1.1-1. 4 in Table 3 and property 2.7. TinSee. 2s7, P1 (L) can

go to READY only from DOWN and only when successful synchronization of

WAKEW() occurs at i. Let tl < t be the time this occurs. By property

2.7.7, at time tl there are no outstanding messages on (i,X) or (1,i)

and zi(1) is established as max{ni,nL) (see 1.4 in Table 3). Therefore

the message in (A,9) must have been sent at time t2 > tI and since I

sends messages only to nodes k for which F (k) - UP it follows that

F£L(1)(t2+) w UP. But F9t(i) could have gone to UP from READY only because

of 11.1.5, 11.2.5, II.4.2, 11.6.2, II.7.7, 11.8.2 or 11.9.2 in Table 3, and

not because of 1.3 and in all the above we have n L > z(i) L) Sinoe

n is nondeoreauing and I sends MSO(m,d) only with m n fl, the asser-

tion follows.

Len=a A.5

If
i(] , (A.10)

then * > tl+, we have yk 8.t. Fi(k)(t) 0 READY that & (k)(t) !.a.

Therefore, no link oan be brought up by node i with• number m after the

node entered 82(m) (brought up means UP(k) 1 U).

- 37 -

Proof

If we have F. (k)(tl-) = READY and z i(k)(tl-) < m, then at time

tl, we have F ik) W-- UP. If it is not, then V > tl, we have n i(t) > m

by Lemna A.2, so that only for nodes k with z i(k) > m it can happen that

F i(k)W - READY after tl.

The next theorem completes the proof of Theorems 1, 2 and 3.

Theorem A.1

Let PC(M,), PC(M) be the instants of occurrence of two successive

proper completions. Then

a) Theorem 3.

b) Consider any number ml < m. Let m be the highest number m < ml

such that PC(m) occurs. Let LPC(m,ml) be the time of occurrence

of the last PC(m) such that PC(m) < PC(m). If for any i,k,

t < PC(•), we have either

N i(k)(t) = ml = i, Di(k)(t) # •, si(t) # S3, nh(t) M (A.lla)

or

Ni(k)(t) =ml > m (A.1b)

then 3Tli (LPC(;,,Ml),t) and t2c (Tlt) such that

[Tl,k,SEND(mld,id)]) (A,12a)

[T2,i,MSG(ml,d2,k)1 (A.12b)

with dl - D1 I(k)(t) - d ik(T2), d2 Di (k)(t).

(Note: ITn words, ttie above insures that the message (mldl) was

sent and received no earlier than LPC(m,ml)).

c) Consider any number ml < ;. Let m- be the highest number m < ml

such that PC(m) occurs. Let LPC(mml) be the time of occurrence

of the last PC(i) such that PC(m) < PC(m). Then

- 38

i) [tl,i,MSG(ml,d1.,0.j, [t2,i,MSG(m2,d2,1)] where

LPC(rn,ml) < ti < t2 < PC(G) and d2 # imply m2 > ml.

ii) if

T21[tl,i,(nJ.,rl)] (A-2-3)

(t2,i,MSG(m,d,9-)1, d #(A.,14.)

where LPC(ani) < tl < t2 < PCCM2), then m > ni.

iii) A node i enters,, between LPC(m,m) and FC(M), ieach at

the foilowipg sets of states at most once

{Sl~mi}, {S2[m], S2R)}l, IS3(ml)

d) All "Facts" in Table 3 are correct.

e) i) The possible transitions at a node are the following, where

n2 > n1 and n3 > nl: T12[(nl,n.2)], T13[(n~l,n2)], T21((nl~nl)1,

T22[(ni,n3)1, T22[(nl,,nl)], T23[(nl,n2)1, Tb3[nl,n2)],

V32[(nl,n3HL, T22[(nl,n3)J.

ii) T21[t,i,(nl,n1)], p.k(t') = S. implies sk(t) -Sl~nli.

f)- Theorem 1.

g) i) Suppose T21(t,i,(nl,nl)l with ni l and let T1 be the

last time before t such that T*2(Tl,i,(*,nl)]. Then we

have F i (k)(Tl) =UP if and only if F i(k)('r) - UP,

t!£ [tl,t I

ii) If for some t £ (PC%'F), PC(;)] we have

Tf2(t~i,(On2)], n2 - m (A-15)

then

B-tj. e (tPC(;)) s.t. T21[Tl,i,(n2,n2)]

and

~T2 e (t,PC(;)) s.t, T2311r2,i] or T2iLr2,il.!-

(A .16)

- 39 -

h) If •i,k,, te (PC(M),PC(m)j such that for some re (PC(m),t] we

have
[TjkSMN(m=,dvi)]j, d #

and if i either has not received this message by time t or has

N. j k) (t) Dm i O(k)(t) t , then " tl- [t,PC(m)] such that

s (tl) - S2[m] or s i(tl) - S3(]m . (A.17)

Proof

As said before, the proof proceeds using a two-level induction. We

first notice that a) holds at the time the network comes up for the first

time. We call this PCCJ). Then we assume that a)- h) hold at every time

up and including PC(fr). Next we prove that b)- h) hold until PC(m) and

then show that a) holds at PC,).

b) Observe that from Lemma A.2 b) and Property R8, by time LPC(mml)

no node in the network has ever heard of a number > m. Therefore

if (A.11b) holds, an appropriate message must have been sent and

received after LPC(m,ml) and hence (A.12) holds.

On the other hand, observe that (A.Jla) and Property R3 imply

that s i(LPC(a,ml)) 0 S3[m]. Also note that the induction hypo-

thesis assumes that a), namely Theorem 3, holds at time LPC(rn,ml)

and therefore at this time, first,no message MSG(m,d) with d #

is on its way to i and second, it caniot happen that (N (k) n

D (k) # -}. But (A.lla) says that the latter occurs at time t

and therefore, by step 1.3 in Table 3, i musý have received

a message MSG(m,d) wi.th d $ - after LPC(i) and hence (A.12b).

Since no such message was on its way to i at LPC(m), A(12a) holds

also.

- 4o -

c) Suppose c) i), ii) and iii) are true for all nodes in the network

up to time t-. We prove c) i) and a) ii) for t2 = t and then

prove c) iii) for t.

i) If dl = -, then m2 > ml from Le-a A.3. It remains to prove

the assertion for dl < -. From Lemma A.2, we have m2 > ml.

Suppose dl # and m2 = ml. Then Lemmas A.3a) and A.2a)

respectively, imply that 't3 g (tlt) such that

[i,t3,MSG(d3 = -,I)] or such that [i,t3,MSG(m3,d3,1)],

m3 $ m2 = ml. Therefore the two messages received at tl and

t2 = t, can be taken as consecutive. So using b),

3t4e [LPC(m,m]),tl), t5c (t4,t) such that

Txy[t4,£,SEND(ml,dl,i)], dl # - (A.18)

TaO[t5,1,SEND(ml,d2,i1), d2 0 - (A.19)

By R2, Txy = T21 or T12 or T32 or T22 or Tk2 and same

for Ta8. But by induction hypothesis on c) iii), node I cannot

enter the set of states {S2(ml], S2(ml]} twice between LPC(i,ml)

and t, so that the only possibilities are

{Tl2[t4,,l] oR T32[tI4,1] OR T22(t,zl] oR T2[(t4,l} AND

{T21[t5,t]1 and no oLher transition happens between t4 and t5.

But in T02[t4,£], node £ sends a message to every neighbor
except p (t4+) and in T21[t5,L] it sends a message only to

pt(t5-) and since no other transition happens between t4 and

t5 we have p,(t4+) = p (t5-). This contradicts (A.18), (A.19).

ii) If Fi ()(tl-) DOWN or READY, then Le~ma A.4 together with the

facts that ni is nondecreasing (by Lema A.2b) and that z (A)

is established as in step 1.h of Table 3 show that the first

message MSG(ml,dl,k) that can be received by i from £ after

ti must have ml > nl. Then the assertion follovs from Lm A,2a).

mom-- - . -- . - - - - -- - - -,

- 41 -

if F (z)(ti.-) = UP, then sttp 11.3.1 in Table 3 requires

Ni (t)(t-) - nl (A.20)

and by the definition of LPC(m,nl) we have nl > mn.

If Di ()(tl-) = ", then ;.t3 < tl (possibly t3 < LPC(r,nli))

such that

(t3,i,MSG(nl,d.l,1)], dl , (A.21)

which together with (A. 1 4) implies by Lemma A.3a) that

m > nl.

If D (C)(tl-) # •, then from b) follows 3t3c[rCC•,nl),tl),
i

such that

[t3,i,MSG(nl,dl,L)], dl < - (A.22)

and the assertion follows from a) i).

iii) From Lemma A.2, ni is nondecreasing, so that once ni is

increased, it cannot return to the old value.

From the algorithm, a node can leave {S2[m], S2-[m]} and not

change ni - m only via T21 or T23 or T23. If T23 or TT3,

then R3 shows that it will strictly increase ni when leaving

S3[m]. If Tnl[(m,m)], then a) ii) shows that it cannot subse-

quently receive a message MSG(m,d) with d- -, and in.order to

enter S2[m], such a message must be received. Therefore, the

statement holds for (S2i[m], S2[m] }.

To Sl[w] one enters only from S2[m], so that a node cannot

enter Slim] twice unless it enters S2([m], S2[m]} twice, so

that the s;atement holds for Sl[m].

If a node enters S3[m], by R3 it leaves it only with a higher

nis so that it cannot come back with tne Same ni.

d) The Fact in 1.3 was proved in Lemma A.4. The Fact in i.4 follows from

property 2.7.7 in Sec. 2.7. Next, observe from 11.2.3, 11.2.7, 11.6.3

and 11.9.3 in Table 3 that

T03[i,(dl,d2), (pl,p2)] (A.23)

implies d2 = -, p2 = nil, so Fact 32 is correct. Facts 13, 12, 23

and 23 follow from Lemma A.2a) and A.2c), since if MSG is received at

i at time t and T13 or T12 or T23 or T23 happen, then

m A number received by i at t on pi(t-) > Mi(t-.pi(t-)).

(A.24)

Fact 21 is correct, since if Tý2[i,(dl,d2)], then d2 < • and

since p -- nil iff si = S3.

e) i) The aossrtion follcws immediately from Lemmna A.2 b) and from

checking changes on ni in Table 3.

ii) Recall that we are always considering times until PC(;).

Observe from 11.3.1 in Table 3 that

T21[t,i,(nl,nl)] (A.25)

implies that Ni(t)(t-) n.l for all t with Fi(L) - UP, and

since from II3.7 in Table 3 Pk(t) - i implies Fi(k) - UP,

we have N (k)(t-) - nl. Note further that Di(k)(t-)

since otherwise k was some time before t in S3[nl] and

could set Pk - i only if i sent to k a message MSG with

number strictly higher than -l. But N (k)(t-) - n1,
i

D i(k)(t-) & - implies from b) that 3 -tc [LPC(i,nI),t) such

that

TXY[-r,k,SEND(nl,d,i)], d # - . (A.26)

Now if pk(T-) 0 i, then Txy n T12, but in order for

Pk(t) - i , pk(r-), k must have performed T21[(¶],k] at some

43 -

TiC(r,t). On the other hand, if pk(r-) = i, then Txy - T21.

Therefore k performed

T21Cn,k,(nlnl),(plp2)], p2 = i (A.27)

at some time ne (LPC(x,nl),t). So sk((n+) - Sl(nl].

From e) i)., the fact that until t node k receives no number

higher than nl and pk(t) 1 i, one can easily see that k

remains in Sl~nl] until time t.

f) We refer to the properties to be proven here as tree properties. If

Pi = k, we say that i is a predecessor of k and k 'the successor

of i. Also, we look at the conc&tenation (ni,si) and write

(nisi) > (nk,sk) if n, >. nk and if n, = nk implies ai > sk.

Using this notation observe from e) i), that

Txyti,(ni,n2))

implies (n2,y) > (nl,x) except when Txy = T21.

As before, we prove the tree properties by induction, assuming that

they holdup to time t- and shoving that any possible change at

time t preserves the properties. The changes of interest here are

in the quantities ni' s pi di"

Let us consider all possible transitions:

T22[t,i]; only a chan-ges, ss(t+) = a (t-), so "trees" properties

are preserved.

T13(t,i]h T23[t,i], T23[ht,i; then p1 (t+) - nil, so no successor at t+.

Also by Lemma A.2 and induction hypothesis follows that if pk(t)

then

(nsilpo e)(t+) > (npivai)(t-)_e (lkrsk)(t) ,(A.28)

so properties are preserved for all predecessors.

- 44 -

T12[ti], T22[t,i], T22[t,ij (change di, a, and possibly nh; no

change in pi). Regarding predecessors, the proof evolves ns for

T13. Regarding pi, we see that

Txy[t~iMSG(m~d,L), (nl,n2), (pi.pl)] (A.29)

where Txy - T12 or T22 or T22, implies from steps 11.1.1, 11.4.1.

11.8.1 in Table 3 that Z - pl, d # and from steps 11.1.4, 11.4.2,

11.8.2 that m - n2. From b) and R2, this implies that

BT C [LPC(m,M),t) such that Sa(T) - S2[n2]. Now, if on (rt), pl

stayed in S2[n 2] or performed any transition except T2l[pl,(n2,n2)],

then T12[i] or T22(i] or T22[i] preserve the tree properties.

We want to show by contradiction that pi could not have performed

T21 on (T,t). Suppose

T21[Tl,pl,(n2,n2)], T < Ti < t, (A.30)

then by step 11.3.1 of Table 3 we have Np1 (i)(Tl) - n2. Now we

distinguish between two cases:

If Dp(T) ,then by b), 3T2c (LPC(,n2),¶T) such that

['f-2,i,SEND(n2,d,pl)] d • -(A.31)

which by R2 implies that a i(2-) - S2[n2] or se(-2+) - S2[n2].

But T12[t,i,(nl,n2)] or T22[ti,(nl,n2)] or T22[t,i,(nl,n2)j

says that i enters S2[nZ] at time t which contradicts c) iii).

If D i(i)(Tl) - *, then for some T2 < Ti (not necessarily

,2 > LPC(,nM2))

[T2,i,SEND(n2,d,pl)]1 --

which implies that s5 (T2+) - 83[n2]. But a i(t+) -2(n2] and

T2 < t, which is impossible by R3 and Lea. A.2.

4- 5 -

T32[t,i,(nl.,n2),(nil,pl)]. Regaxcdtng predecessors the tree proper-

ties are preserved since n2 > nl. Regarding successor, the

above implies that .T (LPC(m,n2),t)

[T,p1,SEND(n2,d,i)]
Now, from Lem A.2, nCp(t) >_ n P) Frrom R2, n.(-) - n"

Now, if pi (t) > n2, then

(npissPl)(t) > (ni si)t+)

If on the other hand npl(t.) = n2, then the same argument as

for T12, T22 shows that pl was in S2[n] sometime before t

and could not return to Sl[n2] in the meantime, so that

(n PiS P1)(t). >_ (ni~ss)(t+)•

In addition to the above, since here there is a change in p1

from nil to Onil, we have to check that this change does not

close a loop. This is seen from the fact that every node k

upstream from i at time t has

(nk~ak)(t) < (nis 1)(t-) - (nl,3) < (n2,2) - (n 1,s 1)(t+)

and every node I downstream from pl has

(n£,s13)(t) > (n p1 a p1)(t) > (n2,2).

T21[t,1,nl,nl),(plp2),(dl,dl)].. If pk(t) = i, then from e) ii)

follows that s k(t) - 81[nl, so

(n i-si)(t+) - (ak,,k(t)

Regarding successor, steps 11.3.1 and 11.3.7 of Table 3 show that

Ni(p2)(t-) - nl, Di(p2)(t-) # ,, so that from b), 3 E [ILPC(m),t)

such that

_ _ -- -

-46

[T,p2,SE9D(m,dqi)]

with m = nl = np2(T+), d = dp2 (T+) = Di(p2)(t-) - dip 2 (T).

Therefore from Lemma A.2,

(n 2 Sp2)(t) > (J.".l) = (,-i)(t+)

Now suppose that the change in Pi closes a loop at t+.

Then the last expression and the induction hypothesis show that

at time t+

(n ,sp) >_ (n,%
Pi PI I

for all nodes X around the loop, so that (n,s) must be con-

stant around the loop, namely

(n,s) = (nl,i)

around the loop. Therefore s3p2(t) m Sl[nl]. jut by R2, sp2 (I-) u

ap2(T+) - S2[nl] where T is defined above, so by c) iii), node

p2 could not enter again S2[nl] between T+ and t, so

d 2 (t) = dp 2 (T+) - Di(p2)(t-) - d ipC(T).

But from steps 1103.2 and 11.3.7 of Table 3

dl > D (P2)(t-) - d (t) + dp(T)
Sp2 i,p2(?

which from Assumption 2.7.2 implies that

dl d di t+. >ap2(t)

On the other hand, the induction hypothesis implies that since

(n Vats (nl,l) around the loop, we have

d (t) > d (t)

for all 1 0 i around the loop and tWs provides a contradiction,

therefore no loop is closed by the change in Pi"

- 47 -

g) i) During (Tl,t), no link is brought up by i because of Lema A.4.

If there are failures, let T3 be the first time on (Tl,t)

such that

[T3,i,FAIL(k)]

Then T23[(3,i,(nl,nl)] or T22[T3,i,(nl,nl)J happen with al-

In either case, e) i) shows that to exit S3[nl] or S2[nl], one

has to increase h so that it is not possible that

T21[t,i,(nlnl)]

So no failure can occur..

ii) Consider the sequences of nodes aud instants

i i,il, 2,.. .,i 5 s SINK

to i 2 s

such that

i •~T2[tu iu,(On2) ,(plup2u
U U U U

where n2=m and p2 = • There must have existed such

sequences if T*2[i SuPPoseprT E toPC(;)] such that

T21[T,io, (n2,n2)].

We want to show that ýTIc C tl,PC(;)] such that

T21(Tlil,(n2,n2)]

If there existed Such a Tl, it follows from g) i) that

Fi (io)(T-) - UP.

We want to show now that A2 < Tl such that

[-,2,1 0 SEND(n2,d,i),d

and /TE3 (PC(a),Tl) such that such a wessage with d -is

sent. For T2 < t this follows respectively from R2, R3 and0)

- 48 -

R2, a) iii). For T2 to, it follows from the fact that

pi (to* 0 +)
0

For T2 E(t ,PC(m)), the only pdssibilities for i if T2 does
0 0

not happen, are to stay in S2[m] or T22[(n2,n2)], or

T23[(n2,n2)], or T23[(n2,n2)I. In all cases i will not send0

any message to i.

The above show that N (i)(Ti-) # m n2 s0 that
i 0m,-n sota

1
T.l ,'rl,±1 (n2,n2)]

is impossible. Repeating the proof, it follows that YT. such

that

T21[Ts ,SINK,(n2,n2)], n2 - m

whicb contradicts the assumption thaj there is a proper comple-

tion at time PC(;). This proves the first part of g) ii). The
a

second part follows because T21[l,i,(n2,n2)], n a m is not

possible if T23[i,(n2,n2)J or T22[i,(n2,n2)] happen.

h) If [TkSEND(M.,dO.-,i)j, then Fk(i)(-) - UP and by R2 either

Tzx2Tk,(*,n2)], n2 m, x a 1.2.3

or

T21[Tl,k,(n2,n2)], n2 m

If Tx2 then g) ii) implies jr2e (T,PC(r)) such that

T2l•[2,k,(n2,n2)J, n2 - m

and Fk(i)(rl) - UP. Therefore T21 happens at node k at some time

(ri or T2). Call this time n. We have then Nk(i)(,) - By

b) either 3r3c (PC(i),n) such that

- - .- ---

- 49 -

or 3T4 < n such that

[,4,i ,sFMG(, d=-,k)].

But by R2, this means that J, is at some time before vi in S3(;]

or is at some time between PC(i) and PC() in S2[(o. If the

first holds, node i will stay in S3[;] at least until PC(;).

If the latter holds, then by g) ii) it must perform T21[i,(n2,n2)]

before PC(G). But since it still has N i(k)(t) =, Di(k)(t) •.

or has not received yet the message by time t, property c) i)

implies that node i could not perform T21[i,(n2,n2)] before

time t. Therefore it will peirform later, so q.e.d.

Proof that a) holds at time PC(M)

i) Node i cannot be in $2[(.] because of g) ii) and c) iii). It

cannot be in S2i[] because it must have been in S2[;] before

and because of g) ii).

ii) Take t - PC(G) in h). Then h) says that

, (PC(;)) = S2[(] or S3[6].

But g) ii) and c) iii) imply that , (PC(;)) # S2[;].
i

iii) Follows by contradiction, because if we had

N i(k)(PC(m)) - m, Di(k)(PC(;)) -

it follows by taking t - PC(;) in h) that

6 i(Pc(;)) - S2[(] or S3E[;]

This completes the proof of Theorem A.l.

_____--____________ -- w0-

- 50 -

A~pendix B

In Appendix A we have proved Theorems 1, 2 and 3. This appendix is

devoted to proofs of the remaining statements, namely Theorem 4 (normal

activity) and Propositions 1 and 2 that lead to the recovery theorem, Theorem 5.

The proofs are organized as follows: Lemma B.0 is preliminary and shows

that on any link (i,t) the only two "stable" situations are

{F.(1) = F Ii) = DOWN} or {F (1) # DOWN, F Li) W DOWN). Lemmas B.1 and B.2

prove Proposition 1, Le-na B.3 proves Theorem 4, and the Proposition 2 is

proved by the series of four lemmas B.4 to B.7.

Lemma B.0

If Fi ()(tl) = DOWN, F (i)(tl) 0 DOWN, then in finite time after tl

we have either Fi(9() = F i) = DOWN or {Fi (Z) # DOWNi and F9I(i) 0 DOWN).

Proof

If F (i)(tl) - READY, then i and 9 arrived to this situation

from (F (i) = Fi(AL) .- DOWN) or {FZ(i) = Fi(Z) = READY) or

{F (i) * READY, Fi(Z) = UP). Then assumptions 2.7.9 imply the assertion.

If FI(i)(tl) - UP, then i and t arrived to this situation from

{F(i) - READY, F 1() - DOWN) or {F L) - F i(L) - UP), or

{F£(i) = UP, Fi(W - READY). In the first case, the discussion reduce& to

the first part of the proof, whereas for the second and third case, asser-

tion 2.7.9 a) in Sec. 2.7 proves the assertion.

Lenma B.I

Proposition 1(a).

Proof

Clearly, ni(tl-) < m2 for all i. Therefore (10) may happen only

at or after t1.

S- - - - - - • J u _ _ ,n -~- - - - - .

- 51-

Let

A(t) =i: icL(t) and i effected (10) with t2i < t}

If -kt2 such that A(t2) = L(t2), then the proof is complete. Otherwise,

for a given t3, we will show (by contradiction) that 3t, t3 < t <

such that

A(t) _DA(t3) and A(t) 0 A(t3) . (B.1)

Hence by induction, the set A(t) keeps growing until it equals L(t).

Since there are no pertinent topological changes and all i A(t)

have n i(t) = m2, property RIO implies that the set A(t) is nondecreasing

as t increases. Therefore to prove part i) of Proposition l(a) it is

sufficient to show that the following cannot hold:

V > t3, A(t) =A(t3) #L(t) (B.2)

Let

B(t) - li c L(t) and i A(t)}

A'(t) = {i icA(t) and i has a potentially working link to a node of B(t)},

B'(t) = (il cB(t) and i has a potentially working link to a node of A(t)).

The following three claims will contradict (B.2).

Claim 1

If (B.2) holds, then).thc(t3,-) such that Vj B'(t4),t4i < t4

such that [t4 IJ,MSG(m2)], (i.e. all nodes of B'(t4) receive m2 in

finite ttme).

Proof of Claim 1

At time t2i < t3, node ir A'(t2i) performs transition (10). Nov

observe that since no pertinent topological changes occur, property RIO

implies that for all t, Fi(W) canno; be changed from or to DOWN after t2i.

Therefore if Fi (L)(t2 -) - DOWN then F,(L)(t) - DOWN for t _ t2i and

i iIi - I -

- 52 -

if Fi(')(t21 -) - READY or UP, then FCOW)(t) - UP for t > t2$ (see 11.1.5,

11.4.2, 11.7.7, 11.8.2 in Table 3). For links (iil), where icA'(t2Q),

P B'(t2i) and Fi(i)(t21 +) - UP, obsewe from 11.1.6 in Table 3 that if

pi(t 2 1) A k, then

[ti,i,SEND(m2,M)]

Since by Lemma A.2c) we have

Pi (t2) ÷ B(t2i)

and since property 2.7.9 Sec. 2.7 insures that the above message will arrive,

there is a time t4 for which all nodes j that wire in B'(t2i) for some i,

either are not in B'(t4) anymore or have received MSG(m2). Also observe

that B'(t4) cannot be empty, since then B.2 is contradicted.

Let t5 jk denote the time at which j cB'(t4) receivesMSG(m2,k), where

kcA'(t4). If 3j ceB'(t4) such that pj(t5jk) 6 k for some keA'(t4) then

from 11.1.1, 11.4.1, 11.8.1 in Table 3, the transition T02[J,(O,m2)] occurs,

contradicting (B.2), q.e.d. Otherwise,

Claim 2

If J eB'(t4) such that pj(t5jk) # k then lit t5,jk. p(t) k.

Proof of Claim 2

Suppose

If x 3, by R5 Txy - T13 or T21 or T23 or T23,

But T23, T13, T23 -> p2 - nil 0 k, therefore this cannot happen.

T21 -°'0fq, N (q)(t) - nj < m2, but N (k)(t) - m2 , hence T21

2annot happen;

If x 3 then T32[t,J, MSG(m2)] happens, contradicting (B.2), q.e.d. Claim 2.

- 53 -

Claim 3

In finite time, sal nodes i E B(t4) will effect T*3(i,(O,m)],

m < ml without effecting T30 thereafer.

Proof of Claim 3

n is updated in T12, T13, T22, T23 and T32 only. For all

icB(t4), T02([,(*,m2)J does not occur because of (B.2), and T*3[i,(,' m2)]

does not occur because there are no pertinent topological changes. Hence,

rieB(t4) and) > t4, ni(t) < ml

Since after t4 no update cycles with m < ml are started by Theorem 2(1i),

the number of messages with d < - generated by the nodes of B(t4) is finite.

Similarly, since the number of arcs is finite, the number of messages

FAIL is also finite. Consider '9(t4) after all these messages are

generated and received. Then 'i CB(t4), T3ý[i] cannot occur and

Txy(i,(pi,p2 A pl)] implies p2 = nil. Then

1. if VkcB(t4), pk nil, then q.e.d. Claim 3;

2. otherwise, after a sufficiently long period of time t m, by Claim 2

and Theorem Al, there exist k and i such that:

i,kcB(t3), pk(tmx) and Pi(tmx) - nil

When pi was set to nil, Txy(i,SEND(m,d - -,k)] occurs. At tMX

this message is not yet received by k/ because pk(t) - i. After

this message is received node k effects T43, enters 83 and does

not leave it anymore. 3y induction, q.e.d. Claim 3.

The proof of Proposition .(a)(i) Is completed as follows. Consider a

node J WB'(t4). Define t3 to be the time at which T03[t3jJ] occurs by

Claim 3. But

it. .. ._4.. . ,... . .

- 54 -

if t3 < t5jk then T32(t5 jkJ) happens,

if t3 > t 5 jk then T32[t3jOJ] occurs, and t3j t5jk,

which contradicts (B.2), c.e.d.

To prove part (ii) of Proposition l(a), we investigate further the

situation in L(t2) at time t2. Observe that since all nodes in L(t2) have

ni - m2, and no pertinent topological changes happen, it follows from RIO and

Lemma B.O that for any link (i,X) such that icL(t2), teL(t2), it cannot

happen that at time t2 we have F (2) - DOWN, F (1) 0 DOWN. Also

F i(2) - READY is not possible, because lack of pertinent topological changes

imply that Fi(z)(t2i-) - READY as well, and then 11.1.5 in Table 3 shows that,

for example Fi(i)(t21+) - UP and therefore Fi(z)(t2) - UP. Therefore, for

links (i,Z) connicting nodes in L(t2), the only possibilities at time t2

are {F (1) - FI(i) - DOWN), (Fi(F) - F(1) - UP}, hence Propos:ýtion l(a)(ii)

is proved.

Next, arsuming Proposition l(a) which was proved by Lemma B.I, we now

prove Proposition 1(b).

Lemma B3.2

Let L(t) be as in Lemma B.1, and suppose that a new !ycle

T¢2[tI,SINX,(4,m1)i is started. Suppose also that no pertinent topolo6ical

changes have happened before t1 while 'SINK , ml and that no such chauges

will take place after tl for a sufficiently long period of time. Defi.v

t2i to be the smallest time t such that

T2ti4mI1 t > tl
L

occurs. Suppose also there exists t2, tl U. t2 < such that for all

i e L(t2)

occurs with tl c t2 -- t?, eand t2 max (t2)
t2:'

taNMI ,
-' -,-----------

- 55 -

i) There exists a time t3 < • such that t2 < t3 and that

T21[t3,SINK,(ml,mi)j occurs;

ii) Vte [t2,t3], we have H(t) - L(t) - Htt2);

iii) RG(t3) for the nodes in L(t3) is a single tree rooted at SINK.

Proof

We prove first that there is PC(ml) after tl, then we show that

there is no PC(ml) between tl and t2.

Since there. are no pertinent topological changes, after entering S2(ml]

at t2i each node ie L(t2) can only perform transitions between states

S! and S2. Furthermore, by Theorem l(i), after t2, these nodes form a

single tree rooted at SINK. Consider a time V', t' > t2. Since dere are

no pertinent topological caanges, L(t') - L(t2). Also, by Theorem 2(ii),

if a node i e L(t2) enters S2[mlJ after t2, ?C(ml) has occurred after tl.

1. If licL(t'), i(t') = Si then there exists t3, tl < t3 < t'

such that T21[t3,SINK,(mlml)) occurred;

2. otherwise, consider a node k such that s k(t') - S2

if pW(t') = k, then a (tB) , (3.3)

such a node k always exists. Classify the nelghbors of k into:

A - U: FW(k)(t) - UP and s (t') slY

B a {i: Fi(k)(t') - UP and sict') - S2}..

At some time in the interval [tl,t'], the nodes in A have sent

massages MSG(ml,d -) to all their neighbors. At some time in the

same interval, those in B have sent such messages to all their

neighbors except pj (t'). Hence by (B.3), k will receive messaeges

MG(ml,d i-) from all its neighbors, at a finite time, say t4. Then

S,,,; ---: Ti .., |,m r n'a 1! -,_n______________________

-56-

.2.1 if sk(th+) = S2 means that 3i with Fk(i)(t4) - UP such that Nk(i)(t 4) -

which implies that T21(k,(ml,ml)] occurred in the interval (ti,t4l],

hence by Theorem 2(111), PC(ml) occurred between tl and t14;

2.2 if s (t4e) - S1, by induction, PC(ml) vill oc-cur in finite time
k

after tl.

We show next that PC(e!) cannot happen in [tl,t2]. Suppose that

at t5, the first PC(ml) after tl occurs. Let k be a node such that

t2k < t5 and ke L(t2), hence since there are no pertinent failures, there

exists a JcL(t2) such that F (k)(t2) - F (k)(t5) * UP. But J sent to k

a message MSG(ml,dAs) in the interval [t2P,t5I; on the other hand by

Theorem 3 such a ncde k does not exist.

Since there are no pertinent topological changes, we have

L(t2)l L(t3), and according to Theorem l(i) these nodes have preferred links

forming a single tree rooted at SINK and hence iii).

Finally, looking at the situation In the uetwork at time t2 as described

in Lemma B.1, and for all te [t2,t3], we observe that for all (i,.) for which

F .(Z)(t2) - UP we must have FI(()(t) - UP and if Fi(t)(t2) m DOWN, we must

have F (t) (t) - DOWN. This completes the proof of ii).

Lenmia

Theorem, 4.

Procf

By the Algorithm, a new cycle Tl2tl,SIll,(ml,.in)] can start only

if all previous cyclex with the same counter number ml were properly com-

pleted. Since cycle counter numbers are non-decreasing, the first cycle with

ml was started at a time, say t', by

T12(t',SIfN,(0,iml)], ml > .0

-n -- -.

- 57 -

This transition satisfies the condition of Proposition i. Hence in a finite

time, say t", the cycle is properly completed, L(t") forms a tree rooted

at SINK, all ic L(t") have na * ml, and since there are no pertinent

topological changes, for all t >t":

1. H(t) - L(t) - L(t") q.e.d. Theorem 4(b), and

2. by Theorem l(i) all nodes i , L(t) form a single tree roote4 at

SINK, q.e.d. Theorem 4(d,ii).

Define A. to be the set of nodes that are oa the tree at time l,

at a distance of k nodes from the SINK. A - SINK and it is assumed by
0

Theorem 4 that T12(t2SINK - tl,SINK,(ml,ml)] occurs. Suppose all i Ak

effect Tl2[t2i,1i,(m1,ml)], sending messages MSG(ml) to all j cA k 1

through their p3 (tl). But since there are no pertinent topological changes

after tl, pj can only change by T21, and since a (tl) - SI, only after

T12. Then, all j e Ak,£ will receive messages NSG(ml) at a finite time

t2 from p9(t2), which trigger the occurrence of "212[t2j,j,(ml,ml) and

by induction on Ik, q.e.d. Theorem 4c).

Theorem 4.4)(L) follows directly from Lezma B.2 by assuming Theorem 4(c).

Theorem 4(a) follows directly from the algorithm for SINK. This completes

the proof.

Proposition 2 will be proved by Lemmas B.4 and B.7. When an RZQ(ml)

is generated, it is placed in the queue for processing. If, when the

REQ(ml) is processed, the node is at S2, Sý or Sl, then an RZ(ml) is sent

by this node to its current preferred link. The proof of Proposition 2 for

these cases is given in Lemma B.5 (for 52 or Si) and Lemma B.7 (for Sl).

Lemma B.6 proves the proposition for the case whert there is a node in state

S3[ml]. Lemma B.A is used to simplify proofs.

,j . • •"m • m •6

-58-

Lenma B.4

If a REQ(ml) is generated, then either:

1. REQ(ml) is processed only by nodes having ni ml, and all nodes

J have n, < ml, or

2. a REQ(ml) arrived at SINK.

Proof

By Theorem l(ii) and by the Algorithm, REQ(ml) is not received

(i.e. processed) by a node i with- n. < ml. On the other hand, if there1

exists a node i with n. > ml, the SINK started a cycle with m > ml;1

this can happen only following the arrival of REQ(ml) to SINK, q.e.d.

Lemma B.2

If a node i sends REQ(ml) while si = S2[ml] or S2[ml], then

a REQ(ml) arrived or will arrive at SINK in finite tiz."

Proof. .

Consider the strings of nodes and ins-tnts

i o,il,i2 ± IN
i 0 i ' m,...,

> t > t > ... >t

such that
, i ~~~T#2[tu u('2' pl'2u]

U U U u

*1 where n2 = 1, p2 - iu. There must exist such a string if si - S2[ml]
uUu+l'

or S2[4l1. The string has no loops, otherwise Lemma B.4, 'Theorems 1, 2 or 4

wi01i be contradicte4.

Suppose that at time t2u, a node i sends REQ(ml) to iu+IU

Suppose also that in the interval [t ,t2], node i effects no transition
except possibly T22. After tu+I, the first transition executed by ±u+1

could be

-59-

T22[iu 1; q.e.d. by Theorem 3 and Lemma- B.4.u+l

T22[iu+l], in which case a failure is detected by iu+I and REQ(ml)

sent to iu÷2.

T21i u+] J; this transition is executed only after receiving a message

from iu. Such a message is sent by iu when T21(iuI happens,

i.e. after iu has sent REQ(ml). Since FIFO is preserved, iu+1

will receive and therefore send REQ(ml) to iu+2 before T21i u+l]

happens, i.e. while s. = S2.•u+1

T23[iuJ] in this case there exist irD r > i+ 1 such that T22[i Iu+1 r r

and ir sends REQ(ml) to ir÷I.

Thus by induction REQ(ml) arrived or will arrive at SINK in finite time./

Lemma B.6

If there exists a node that effects T3[((,ml)], then a REQ(ml)

arrived or will arrive at SINK in finite time.

Proof

Let PCJ, (. - 0,1,2,...) denote the J-th occurrence of PC[=li.

Given a node i and a time t such that T#2(i,(4,ml)] has occurred

before t, if PC is the last PCiml] before t after which

T#2[i,(,m.1)] occurred, then define Ei(t) a J+l.

By Le-a BA, we have to prove only the case in which ni !_ ml for

all i. Thus, if a node i is in state S3[ml], this aode will not execute

any further transitions.

- 60 -

Property

Given a time t, suppose pi(t) = k and ni(t) nh(t) m ml, then

Ei(t) < E k(t)

This can be proved as follows:

Suppose that prior to t and after PCas Pi was last set to be k.

This can be done only by T21[i] or T32(i]. Since at PC ,

s # S2[ml] (by Theorem 31 this implies that T#2[il occurred

after PC and T02(i) cannot occur again before t because thisa

will set again pi" Hence El(t) = a+l. The occurrence of T21(i]

or T32[i] implies that a message from k with d < - arrived at

± after PC By Theorem 3, this message was sent after PC this

being possible only if k effected T02[k] after PCa. Since

is non-decreasing then E (t) > a+1.
k

Since after a node effected T3[((,ml)] the same node cannot per-

form any further transitions, only a finite number of transitions T03[((,ml)]

-an be executed in the network. If T#3[((,ml)] happens, there exists a

node which detects a failure in its best link and executes TM3((mlml)J.

Define BI as the set of nodes for which TW3(ml,ml)] happens, this is

BE - Ui: T#3[ti,i,(ml,ml)] happens)

Define B2 as the subset of BI for which T43[(ml,ml)] happens with the

highest Ei, i*e.

B2 Q {J: j c •l and (E (t) -max E (ti)) ,
~~ iEA±

61-

Case 1: Suppose there exists ic B2 that effects T23(i,(ml,ml)].

Let maxi E i(t) = a+ .. Then at PCa, by Theorem 3,

s S2[mlI. Thus the first i eB2 that effects T23[ml,ml)] has

a path tc SINK at ti (by Theorem 1). From all icB2 that

effect T23[tii,(ml,ml)] while having a path to SINK, let qo

denote the node having the shortest path. Suppose the path is

q -a % q÷,. q,. -I (SUIX - qk+,).

By Theorem 1 all qc Q have s q(-c = S2[ml]. But qi can onlyqo
effect T21 or T22, and q, cannot effect T21 unless receiv-

ing a message from qo which cannot be sent because qo does not

effect T21. Hence ql will detect a failure of link (qo,ql)

and by Lemma B.5 the proof is complete.

Case 2: Suppose there is no icB2 that effects T23[i,(ml,ml)].

Let £Bc E2 denote a node such that d (t mi d (tu qo qo icB2
and suppose P q(t-) = q1 , Node q, cannot effect T23

(definition of Case 2) and cannot etfect T13 (violates the defini-

tion of qo). Thus, ql detects a failure of link (qo,ql) and

a REQ(mI) is generated.

If at any time this REQ(m2. enters a node at 82 or S2, then

q.e.d. by Lemma B.5. Othsrwise the REQ(ml) keeps moving through

nodes at Sl having decreasing d The REQ(ml) cannot be re-

ceived by a node at S3 because this violatev Case 2 or the defini-

tion of qo. S1nce for all 1, d, > 0, di is an integral

number and the only node with di = 0 is •he SINK, the REQ(ml)

will arrive at SINK after a finite iiumber of steps. Q.e.d.

- 62 -

Lemmoa B.7

if a node i sends a REQ(ml) while si = Sl, then a REQ(ml)
00

arrived or will arrive at SINK in finite time.

Proof

By Lemma B.4, we have to prove only the case in which for all i,

n. < ml, and by Theorem 1, the REQ(ml) sent by i may encounter only1 -- 0

nodes having ni = ml,

If there exists a node i such that si = S3(ml], then q.e.d. by

Lemma B.6. Hence we may assume that for all i, a.i 0 S3[ml] and there-

fore by Theorem 1 the REQ(ml) is in a tree rooted at SINK. Thus as in the

proof of Lemza B.6, the REQ(ml) either arrives at a node in S2 or S2

(q.e.d. by Lemna B.5) or travels through nodes at SI, with decreasing di

until it arrives at SINK, q.e.d.

Acknowledgement

The first stages of this work were perfirmed when A. Segall Vws

with the Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, and with the Codex Corporation,

Newton, Mass., where he benefited from close collaboration with R.G. Gallager,

G.D. Forney and S.G. Finn. Thanks are also due to Mr. M. Sidi for useful

suggestions.

- 63 -

References

[1] A. Segall, The modeling of adaptive routing in data-communication networks,
IEEE Trans. on Comm., Vol. COM-25, pp. 85-95, Jan. 1977.

[2] A. Segall and M. Sidi, Optimal failsafe distributed routing in data-
communication networks, in preparation.

(3] G. Ludwig and R. Roy, Saturation routing network limits, Proc. IEEE,
Vol. 65, No. 9, pp. 1353-1362, Sept. 1977.

[4) R.G. Gallager, A minimum delay routing algorithm using distributed
computation, IEEE Trans. on Comm., Vol. COM-25, pp. 73-85,
Jan. 1977.

(51 A. Segall, Optimal distributed routing for line-switched data net-
works, submitted to IEE Trans. on Comm.

[6] W.D. TaJibnapis, A correctness proof of a topology information
maintenance protocol for a distributed computer network,
Communications ACM, Vol. 20, No. 7, pp. 477-485, July 197?.

[7] M. Schwartz, Computer-Communication Networks: Analysis and Design,
Prentice-Hall, 1977.

[8] W.E. Naylor, A loop-free adaptive routing algorithm for packet switched
netvorks, Proc. 4th Data Communication Symposilum, Quebec City,
pp. 7.9-7.14, Oct. 1975.

[9] R.G. Gallager, Loops in multicommodity flows, Paper ESL-P-772, M.I.T.,
Sept. 1977.

[10] G.V. Bochmann and J. Gecsei, "A unified method for the specification
and verification of protocols", Publication #247, Departement
d'Informatique, University of Montreal, Nov. 1976. To be pre-
sented at the IFIP-Congress 1977, Toronto.

[11(P.M. Merlin, A methodology for the design and implementation of com-
munication protocols, IEEE Trans. on Communications, Vol. COM-24,

No. 6, pp. 614-621, June' 1976.

(12] C.A. Sunshine, Survey of communication protocol verification tech-
niques, Trends and Applications 1976: Computer Networks,
(Symposium sponsored by IFXE Computer Society; National Bureau
of Standards), Gaithersburg, Maryland, Nov. 1976.

(131 M.G. Gouda and E.G. Manning, protocol machines: A concise formal
model and its automatic implementation. Proceedings of the
Third Internationai Conference on Computer Communication,
pp. 346-345, Toronto, Aug. 1976.

(14] S.G. Finn, Resynch network protocols, Proc. of ICC, 1977.

[15] R.G. Gallager, personal communication.

- 64 -

Footnote

1. The FACTS given in the algorithm are displayed for helping in its

understanding and are proved in Theorem 2.

- 65 -

Table 1 - The Basic Algorithm

For MSGd)

N.(W - RCVD1

D.(W) d+ it

CT 0-

Execute FINITE-STATE-MACHINE

BASIC-FINITE-STATE-MACHINE

.
1 1

Acio 12d(t) mn D k

, ~N. (L)

k.-N iCV

1, _ i to ,,

State S2

T12: Condition 12 MSG(d,=pi), CT = 0.

Action 12 di ÷ i Di(k)
k:Ni (k) =RCVD±

transmit MSG(d) to all k s~t. kc # i

State S2

T21: Condition 21 Ytk,then Ni(k) - RCVD.

Action 21 transmit MSG(d) toi Pi;

Pi k* that achieves min D i(k);
k

0k, set N (k) - nil;

CT 1.

Table 2L - Variables of the Algorithm of Table 3.

Note: It is assumed that the network is composed by K nodes.

Variable Name Meaning Domain of Values

p. preferred neighbor nili,2,...

d. estimated distance from SINK -,1,2,3,...

d iz estimated distance of link (i,L) 1,2,3,...

n. current counter number 0,1,2,..%

M:. largest number m received by node i 0,1,2,...

CT control flag 0,1

Ni() last number m received from Z after
i completed last update cycle

D i(1) d+d+ i for last d received from t -,1,2,...

F (1) status of link (i,0) DOWN,READY,UP
i

synchronization nunber used by i to
bring link (i,l) UP

Table 2b - Messages received by the algorithm of Table 3.

IMessage Format Meaning Domain of Values

MS$(m,d,t) updating message from I a = 0,M,2,...
"d =

1 =1,26 9K

FAIL(Z) failure detected on link (i,t) 0 12...,K

WAKE(L) link (i,t) becomes operational 12 1 ... ,K

request for new update cycle with
REQ(m) nSI NK > M0,2,...

67 -

Table 3 - Algorithm for an Arbitrary Node i

I.1 For REQ(m)

if pi 1 nil, then send REQWm) to pi"

1.2 For FAIL(Z)

1.2.1 F (1) - DOWN;

1.2.2 CT -4- 0;

1.2.3 Execute FINITE-STATE MACHINE;

1.2.4 if P # nil, then send Raq(ni) to pi"

1.3 For MSG(m,d,L)

1.3.1 if Fi (Z) = READY, then Fi(L) - UP

(Factl: m > z1 (£));

1.3.2 Ni (x) M4-

1.3.3 DO(£) W d+dip;

1.3.4 mxj 4 max{mmxj};

1.3.5 CT 4- 0;

1.3.6 Exec4ute FINITE-STATE MACHINE.

1.4 For WAKE(L)

.(Fact F (t) = DOWN)

wait for end of WAKE synchronizsxtion (see Section 2.7);

if WAKE synchronization is successful, then

z (9) 4 max{n ,n L

F (t) ,- READY;
2I

N4 (t) al

if P4 # nil, then send REQ(zi ()) to pi"

(continued)

- 68 -

Table 3 (cont'd) 94

II. FINITE STAE MACHINE

State S1

2.

II.1.1 T12 Ccndition 12 MSG(m =mxi, d # ,), CT 0

11.1.2 Fact 12 m > n.

11.1.3 Action 12 d. - min D (k);• k:F. (k) ='UP
1

1N.(k) nm

1.1.5 9k s.t. Fi(k) = READY if ni > z i(k), then

F i(k)j -- UP, N jLM 4- nil;

11.1.6 traismit (ni,d) to all k s.t. Fi(k) = UP

and k # Pi;

11.1.7 4÷ 1.

11.2.1 T13 Condition 13 (MSG(t = Pi,d = -,m) or FAIL(1 pi)), CT Ow

11.2.2 Fact 13 If MSG., then m > na.

11.2.3 Action 13 di 4--;

11.2.h if MSG, then ni i m;

11.2.5 Vk s.t. Fi(k) - READY, if n i > zi(k), then

Fi(k) - UP. Ni(k) 4- nil;

11.2.6 transmit (ni, i) to all k s.t. F i(k) - UP

and k 0 Ppi;

11.2.7 4- nil;

11.2.8 CT ÷ 1.

(continued)

- 69

Table 3 (cont'd)

State S2

11,3.1 T21 Condition 21 Vk s.t. Fi(k) = UP, then Ni(k) = n mi Mxi;

11.3.2 3k s.t. Fi(k) = UP and Di(k) < di;

11.3.3 if CT 0, then MSG;

11-.4• D i(P i) -.

11.3.5 Fact 21 da #1 ' pi p nil.

11.3.6 Action 21 Transmit (nid i) to pip

11.3.7 Pi 4- k* that achieves min D i(k)
k:F. (k)=UP

1

11.3.8 *Ik s.t. F(il) = UP, 3et Ni(k) ÷ nil;

11.3.9 CT + 1i,

II.4.1 T22 Condition 22 MSG(m = mxi > ni, d p), CT = 0.

11.4.2 Action 22 Same as Action 12.

11.5.1 T22 Condition 22 FAIL(# p CT- 0.

11.5.2 Action 22 CT -1I,

11.6.1 T23 Condition 23 Same as Condition 13.

11.6.2 a Same gs Fact 13.

11.6.3 Action 23 Same as Action 13,

State S3

11.7.1 T32 Condition2 _4k s.t. F (k) UP,mxi N i(k) > ni,DW(k) .

11.7.2 Fat P3 - nil, d i ft.

11.7.3 Action 32 Let k* achieve min D (k).
k:F (k)-Up

(n u

(contuinued)

-70-

Table 3 (cont'd)

II7.T4 Then Pi 4- k*;

11.7.5 ni rax i

11.7.6 d,

11.7.7 Vk s.t. F (k) READY, if ni > z (k). then

FI(k) 4- UP, N (k) -4- il;
± £

11.7.8 transmit (ni,di) to all k s.t. F.(k) * UP

and k # p

11.7.9 CT 4- 1.

State S2

11.8.1 T22 Condition 22 MSG(m = mxi > n1 ,d -,L Pi), CT 0.

11.8.2 Action 22 Same as Action 12

11.9.1 T23 Condition 23 Same as Condition 13

11.9.2 Fact 23 Same as Fact 13

11.9.3 Action-23 Same as Acti(.n 13

-71-

Table 4

The Algorithm for the SINK

For REQ m.

CT -0;

execute FINITE-STATE-MACHMNE.

For FAIL(1)

F * DOWN;

CT÷ 0

execute FINITE-STATE-MACHRITE.

For MSG(md,t)

CT *-0;

execute FINITE-STATE-MACHINE.

For WAKE(L)

(Fact: FI (Z) - DOWN)

wait for end of WAKE synchronization;

if WAKE synchronization is successful, then

F i(L) + READY;

CT - 0;

execute FINITE-STATE-MACHINE.

For START

CT - 0;

execute FINITE-STATE-MACHINE.

(continued)

7-2-

Table h (cont'd)

FINITE-STATE MACHINE FOR SINK

State SI

T12 Condition 12 (CT = 0) and (REQ(m = nsNK) or FAIL or WAKE or START)

Action 12 if (REQ or FAIL or WAKE) then nSINK 1 n +;

'/k s.t. Fi(k) = READY) then F.(k) - UP, Ni(k) * nil;

transmit (nsINK, 0) to a&3- k s.t. Fi(k)= UP;

CT 4-.

State S2

T21 Condition 21 !k s.t. F (k) = UP, then N i(k) nSim;

MSG or START.

Action 21 'k s.t. F (k) = UP, then N (k) 4- NIL;

CT 4- 1

T22 Condition 22 (CT = 0) and (REQ(m = SINK) or FAIL or WAKE)

Action 22 Same as Action 12.

......... __

-73-

9AT
7 0- /• 0¢

7 5 V

744

8
3 8 2

SINK
SI14K

(a) (b)

Fig. 1: (a) Network example

(b) Corresponding directed tree

FA G-

Fig. 2: Possible changes of F iL)

Distribution List

Defense Documentation Center 12 Copies

Cameron Station
Alexandria, Virginia 22314

:isistant Chief for Technology 1 Copy

C fice of .Taval Research, Code 200

Ari-ing - i, Virginia 22217

.)ffice ol Naval Rese, rch 2 Copies
Information Sy -.ers P,-ogram
Cod(437
Arlington, Virgini. 22217

Office o." N., --1 ,-se, 1h 1 Copy
Branch Of-ice, Bus)n
495 Stunner S '-eet
13oston, Ma_:sa, .t s 02;A0

Office of NavCl Rese,_ 1 Copy
Brax 7h 0: t ice, Ci icago
536 Soutri C§ ar. . et
Chicago, Illil, i,605

Office of Na, a EIesearci 1 Copy
B. irch officel . adena
i1 30 7e " Gi e,ýt Street
Pasadt-k. Ca.1ii rnia 91106

Nt Yo- Area)t ie (ONR) I Copy
71, L ra wray - 5th Floor

New f , NE' fork 10003

i .val tsea, ch Laboratory 6 Copies

Techn'.ý_ 1. __ormation Division, Code 2627
Washington, D.C. 20375

Slafkosky 1 Copy
,';'Iepti c Advisor

commandant of the M.ri ,e Corps (Code RD-I)
Washington, D.C. 20380

4

Office of Naval Research 1 Copy
Code 455
Arlington, Virginia 22217

Office of Naval Research 1 Copy
Code 458
Arlington, Virginia 22217

Naval Electronics Laboratory Center 1 copy
Advanced Software Technology Division
Code 5200
San Diego, California 92152

Mr. E. H. Gleissner 1 Copy
Naval Ship Research & Development Center
Computation and Mathematics Department
Bethesda, Maryland 20084

Captain Grace M. Hopper 1 Copy
NAICOM/MIS Planning Branch (OP-916D)
Office of Chief of Naval Operations
Washington, D.C. 20350

Mr. Kin B. Thompson 1 Copy
Technical Director
Information Systems Division (OP-91T)
Office of Chief of Naval Operations
Washington, D.C. 20350

Advanced Research Projects Agency 1 Copy
Information Processing Techniques
1400 Wilson Boulevard
Arlington, Virginia 22209

Dr. Stuart L. Brodsky 1 Copy
Office of Naval Research
Code 432
Arlington, Virginia 22217

Captain Richaxd L. Martin, USN 1 Copy
Commanding Officer
USS Francis Marion (LPA-249)
FPO New York 09501

