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recovers in finite time in the sense of prcviding routing paths
between all physically connected nodes. Ccrmdlete rigorous proofs
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1. INTRODUCTION

Reliability and the ability to recover from topnlogical changes are
properties of utmost importance for smooth operation of data-communication
networks. in today's data networks it happens occasicnally, more or less
often depending on the quality of the individual devices, that nodes and
cormunication links fall and reccver; also new nodes or links become opera-
tional and huve to be added to an already operating network. The reliability
of a computer-communication network, in the eyes of iﬁs users, depends on its
ability to cope with these changes, meaning that no breaskdown of the entire
network or of large portions of it will be triggered by such changes\and that
in fipite -~ and hopefully short - time after their occurrence, the remaining

‘nétwork will be able to operate ncrmally. Unfortunately, recovery of the
network under arbitrar& number, timing, and location of topological changes

is hard to insure and little successful analytical work has been done in

this direction so feax,
~-i®

The above reliability and rgcofery vroblems are difficult whether
one 1ses centralized or distributed rout , control. With centralized rout-
ing, one uas the problem of central node failure plus the chicken and‘egg
problem of needing routes to obtain the network informaticn required to
establish routes. Our primary concern nere is with distributed routing that
recovers from topological changes; here one has the prcbiems of asynchronous
computation of distributed statué information and of designing algcrithms

which adapt to arbitrafy changes in network topology in the sbsence of global
knowledge of topology.

The paper presents a distributed protocel that maintains a route
from any source to any deatinutidn in & network. The protocol is distridbuted
in the sense that no central tables are required and there is no global
knowledge of the routes, i.e, eaca node knows only who is the next node

tcalled phe'"preterred rneighbor") on the route to a given destiiation. Each
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node is responsible for updatiﬁg its own tables {e.g. choosing & new pre-
ferred neighbor) and these updates are coordinated by the protocol via
control messages sent retween adjacent nodes. For a given destination, the
set of routes maintained by the protocol are locoz-Ffree gt all times, and
whenever no failures occur, they form a spannirgz tree reccted at the destina-

tion {(i.e. a tree that covers all nodes),.

To each link in the network, a strictly rositive "distance" (or
"weight") is assigned which represents the cost of using the link. Accord-
ing to utilization and possibly other factors, tzis distance may vary with
time following long-term trends. The length of =z=y rath is the sum of the
distances on the links of this path. Destinaticns 22y asynchronously trigger
the protocol and start update cycles to change recuutes according to new dis-
tances. Such a cyecle first propagates uptree while radifying the distance
estimates from nodes to the destination and then proragates downtree while
updating the preferred neighbors. Each cycle texds to find routes with
short paths from each node to the destination, azni assuming time-invariance

of link weights, the strict minimum (i.e. shortess teths) will be reached

within & finite number of update iterations.

The proposed protocol aiso provides for recovery of routes after
failures and for additions of links or nodes to tze network. When a link
fails, appropriate information is propegated backwards in the network and,
in addition, a "request" message 1is generated ard fcrwarded towards the
destination. ¥New links are brought up via é sirilar protocol. The request
message triggers an update cycle and it is guarazteed that within finite
time, a1l nodes physically connected tc each destizezion will have a loop-~
free route to it. This holds also for multiple ts»ological changes, and
even if such changes occur vhile the protocol is =2tive and the update is
in progress. The recoverability of the protocol Is achieved without employ-
ing any time-out in its cperation, a feature whic: greatly enhances its .

amenability to analysis and facilitates structured irplementation.

BEaX
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The protocol is mainly intended for quesi-static routing in communi-
cation networks and the routes provided by the protocol can be used in a
variety of ways for actual routing of Znformation. Although specification of
information routing algorithms is outside the scope of the present paper,
ve indicate here a few applications. In a (physical or virtual) line-
switched network, it is often impractical to reroute already established
conversations, except in case of disrupticn caused by failure or priority
preemption. In this case, the routes provided by the present protocol msy
be used for assigning paths to new or disrupted calls. For example, in a
virtual line-switched network the link weights may represent link delays,
and then the path provided by our protocol in steady state will give the
minimum delay route for the new call. If the weights represent incremental
delay, then the path will minimize network average delay (see [1, eq. (25)]).
Other criteria like probability of blocking, can slso be taken into con-
sideration in the link weight. Observe ihat if the link weights change
drastically, the above strategy may =zllow new conversations to follow paths
go different from the old ones that together they form a loop, but this is

still the best one can do under the constraint that established conversa-

tions cannot be rerouted.

Similar strategies can be used in networks using message switchirng,
where the preferred neighbor indicates the first hop of the present best
estimated route towards the SINK and the node may for example increase the
fraction of messages routed over this path while reducing the fraction
sent over other routes. More sophisticated failsafe routing and update
precedures, where exact amount of increase and reduction of traffic
fractions are indicated so that optimality and routing loop-freedom are
achieved, have been obtained using ideas similar to the protocol of this

paper and are presented in a subsequent report [2].




Finally, we may mention that the presexzt protocol can replace the
simple-minded saturation routing that is presently used in several networks
to locate mobile subscribers and to s ‘lect routing paths [3]. The protocol
of this paper has all the advantages indicated iz [3, Sec. II] for satura-
tion routing, but requires no time-out and rrovides a route selected not

only on the basis of the instantanecus congestisz out on averaged quantities.

This work was inspired by [Lt] end [5], w2ere minimum delay routing

algorithms using distributed computation were doveloped. These algorithms

mein contributions of the protocol given in Zhe present paper is to intro-
duce features insurin,- recovery of the routes frcocx arbitrary topological
changes of the network. As a result, the prciocol of the present paper is,
to our knowledge, the first one that is distrituzed and for which all the

following properties are rigorously proved:
(a) Loop-freedom for routes to each destinatior at all times.

(b) Independently of the seguence, locaticz zrd gquantity of topolog ~al

changes, the routes recover in finite tine,

(¢) Under stationary conditions, the routes converge to paths with

minimal weighted length.

Several routing algoritims possessing sc=e of the propert ed
above have been previousiy indicated in the iizersture. In [6], a routing
algorithm similar to the one used in the ARPA zezwork [7] but with unity
link weights, is presented. It is shown thers, tzet at the time the algerithm
terminates, the resulting routing procedure is loor-free and provides the
shortest paths t¢ each destination. As with the ARPA routing, however, the
algorithm allows temporary lcops to be formed during the evolution of the
algorithm. The algorithm proposed in {8] ersures locop-free routing for
individual messages. This property is echieved o5y requesting ;ach node to

send a probing message to the destination before each individual rerouting;
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the node is allowed to indeed perform the rerouting only after having received
an acknowledgement from the destination. * The extra load on the network by
sending probing messages from each node to each destination for each rerouting
is clearly extremely large. Also loop freedom for individual messages is a
weaker property than loop freedom for each destination. For example, in a
three-noée network, sending traffic from noede 3 to node 1 via node 2 and send-
ing traffic from node 2 to node 1 via node 3 would be loopfree for individual
messages, but not loopfree for each destination. See [9] for a more complete

discussion of loop freedom.

In addition to the introduction of this particular protocol and the
proofs of its main properties, the paper provides contribtutions in the
direction of modeling, analysis and validation of distributed algorithms.
The operations required by the algorithm at each node are summarized as a
finite-state machine, with transitions between states triggered by the
errivael of special control messages from the neighbors, and the execution
of a transition may result in the transmission of such messages. Methods
for modeling and validation of various communication protocols were proposed
in {10] - [13]. These methods are designed however to handle protocols in-
volving either only two communicating entities or nodes connected by a fixed
topology. The model we use to describe our algorithm is a combination of
these known models, but is extended to allow us to study a fairly comple:xn
distrihuted protocol. Th- analysis and validation of the algorithm is per-
formed by using a special type of induction that allows us to prove global

properties while essentially looking at local events.

-- Before proceeding, we may mention two other distributed protocols
that were recently developed. In {14}, an algorithm for retwork resynchroni-
zation is presented and its recovery properties are proved under arbitrary
topological changes. A similar goal is obtained by R.G. Gallazger in en

unpublished work [15], while also determining the paths with minimum number
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of links . between each pair of nodes in the network. though there i3 a

great similarity between the ways in which the updating information .propa-.

gates and the distributed computation is performed by the algorithms of
{14], [15] and of the present paper, the exact relstionship between these

protocols is a subject for future research.

-~




2., THE PROTOCOL

To facilitate understanding, we describe the protocol in several

steps. We first rresent the "basic protocol”, i.e. assuming that no topo-
logical changes occur. Then we describe the additions to the protozol in
case of link ocutage and finally the additions for links becoming operational.
A node outage can be represented as the outage of all of its links and
similarly, a node becoming operationel can be represented as links becoming
operational. Therefore, we do not pay special attention to topologlcal

changes caused by nodes. ‘ ,
The following corments apply to the rest of the paper:

l. Since we are not concerned with data transfer, we use the term
"message' to mean the special control messages employed by the -
protocol.

2. We assume that messages sent by a node to a neighbor are received
in the same order thet they are sent, i.e. FIFO is preserved in the

.links (and locsl protocols).

3. The protocol proceeds independently for each destination. Conse-

quently, for the rest of the paper we fix the destination and

present and analyse the protocol for that given dest}nation, which

i3 denoted by SINX.

2.l The Basic Protocol

As already mentioned, each node 1 in the network has at any time

a preferred neignhbor. Thus, we agsume that each node has a variable pi

which points to thet neighbor. For the basic protocol, we assume that after
initialization, the directed graph defined by the nodes @ and arcs (i,P;)
form a tree directed towards (and therefore rooted at) the SINK, as exempli-~

fied by the network ¢f Fig. 1 where directed arcs denote the preferred

neighbors {pi}. Subsequent seations describing the protocol which handles

[ [ —. - T— B——— b i S T

e N . . o
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topological changes will show that this assumptic. is ,ustified by the
-~
initialization procedurc. Each ncde i "has also a positive variable di

maintained by the proteocol,dencting an estil'ﬁpd distance from i to the

NK is by definitic~ equal to 0). During ar update, the proctocol
reevaluates the distances {di} and accordingly‘%he ncdc s choose preferred

'r
STV (dSI

neighbors (pi} in such a way the® the directed graph given by the ares

(i,p;) remalns at all times a tree rooted at the SINK.

As already mentioned in Section 1, to each link {i,2) a strictly
positive "distance", denoted by dil’ is assigned. We assume =1l 1links to
be full duplex and allow a link to have a different distence in each direc-
tion. The distance d12 is allowed to vary with time and needs to be
known (measured or estimated) only by node 1, The protocol tends to mini-
mize the distance di from each node 1 to the SINK, where this distance
is given by the sum of the weights dtm on the directed path from a8 node

to the SINK.

As described below, the SINK may asynchronously start update cycles
to change routes eccording to new distances. Such a cycle first modifies
distance estimates {d;} uptree and then modifies preferred neighbors {pi}
downtree. An update cycle is started by the SINK by sending a message

IVBG(dSI ) to each of its neighbors (notice that Msc-(dsm) = MSG(0) by

NK
definition). When a node, say 1, receives a message from its pi, it
reevaluates its estimated distance di and transmits MSG(di) to each of
its neighbours except pi. Notice that the spanning tree structure mentioned
before (Fig. 1) guaruntees thet after the SINK has started the updating
cycle, each of the network nodea will eventually perform this step. Further-
more, this is done in the order given by the tree from the SINK towards the

leaves.




Whenever a node i receives a message MSG(d) from a neighbor L,
it estimates and stores its disténce through this neighbor to the SINK.
This distance is estimated as d-#dil. As sald before, the reevaluation of
the estimated distance di is performed when receiving MSG from the pre-~
ferred neighbor pi. Node 1 calculates then the minimum of the estimated

distances to the SITK through all. those neighbors from which it has already

received MSG (during the present uvdate cycie). The node sets then di as

this minimum. (Notice that di i3 only an "estimate" of the minimal dist-
ance to the SINK because it is scmetimes calculated based upon part of the

neighbors of 1i.)

When a node, say i, has received MSG(d) from all of its neighbors,
it transmits MSG(di) to its P end then determipes its new preferred
neighbor pi. This is done by choosing Py as the neighbor which provides
minimal estimated distance from i to the SINK. This choice is made among
all neighbors of 1 and as such it may pick a neighbor different from the
one which provided di (the calculation of the estimated distance di is
usually based upon part of the neighbors). Since, as previously shown, each
node 'i vill eventually send MSG(di) to all its neightors except Py»
the leaves of the directed tree will eventuslly receive MSG from all their
neighbors. Thus they will send MSG to their preferred neighbor Py and
reevaluate a new Py It can be easily seen by induction, that each node

will perform this step. This happens in the ordexr given by the original

directed tree, from the leaves towards the SINK.

Since the SINK denotes the destinetion, the SINK has no preferred
neighbor, and therefore the SINK does not update PSINK when it receives
MSG(d) from all its neighbors. Instead, this event notifies the SINK that

the update cycle has been properly completed. The SINK is not allowed to

start a new update cycle until the previous cycle has been properly completed.
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A node 1 always updates its preferred neighbor Py to point
tovards a node J having estimated distance dJ < di. As proved in
Section 3, this fact insures that the updated directed graph will remain

8 tree at any time.

The basic protocol can be formally defined by the basic algorithm
performed by each node i. The latter is shown in Table 1 with the aid of
a Finite State Machine. Node i1 can be in either of two states. It will
be in state S2 after having received MSG from its preferred neighbor Py
and until it receives messages from all its neighbors. OQOtherwise node i
will be in S1. The variables Di(l), one for each neighbor & gf i,
store the values of the estimated distance through link § to the SINK.
The variables Ni(ﬁ), one for each neighbor 2 of i, denote flags which
can take the value "RCVD" to mean that MSG(d) wes received from link (i,%)
during the current cycle, or the value "nil" otherwise. (T is a contrel

flag which can take over the values 0 or 1. We assume that when MSG(4)

arrives from link &, it is given to the algoriiim in the format MSG(d,R).

When MSG(d,2) 1s processed, the flag Ni(d) is set to RCVD,
Di(i) is calcuii:ed, CT is set to 0, and then the Finite State Machine

executes transitiom uﬁﬁ*} no more transitions ere possidtle. Transition T12

can be executed if node 1 i; gp Stgte S1 and Condition 12 is satisfied,

i.e. the algorithm is processing a MSG(d,1)<i® wnich £ = p; end CT = 0.

If T12 is executed, then node 1 goes to state S2 and,AgEion 12 is performed,
i.e. the estimated distence d;, is reevaluated and b:SG(di) i: transmitted to

each neighbor of 1 except the preferred neighbor pi. In a sirilafway,

T21 {s executed when node 1 is in state S2 and Condition 21 is satisfiel, *®
in which case node 1 gues to state S1 and Actlion 21 1is pertormed. The role
of CT is *o insure that T12 cannot be executed imrediatly after T21 {for

example, suppose node 1 13 In state S1 and MSG(d,t = pi) arrives after

messages have arrived ror all other links of 1. In this case, without CT,

e 1 e A
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the sequence of transitions T12, T21, T12 will be verformed in contradiction

wvith the protocol). Notice that the sequence 712, T21 is permitted.

The use of the Finite State Machine for describing the relatively
simple basic algorithm may appear superfluous. Its importance will become
apparent when describing the more crmplex protocols and the proofs of their

proverties.

2.2 Handling Falilures of Links

At our level of abstraction, the outage of a link is celled "link
failure". Transient (or transmission) failures can be masked out by the
link protocol, and we are not concerned with thex. If a link of the
directed tree fails, then all the nodes which are pfedecessoré of this
link on the directed tree lose their route to the SINK, Sut they are unaware
of this fact at the time of the failure. For exasmple, if link (7,8) of
Fig. 1 fails, nodes 6, 7 and 9 lose their route. Furthermore, if an update
cycle is started, node T will not be able to receive MSG(d,L=8) and there-
fore node 7, as well as nodes 6 and 9 will not te eble to perform T12. In
such a case we would like fo recover by findirg en alternative route (e.g.
through node 5), but since the basic protocol ellows changing estimated
distahcp di and preferred neighbor pi only efter performing lef ﬁhere
is rieed to provide an extension to handle this situation. Two actions must
be taken by the extended protocol. First to iaform nodes T, 6 and 9 not to
wait for triggering messages from the tree (eand 2lso that the existing tree
has no meaning for them anymore) and secoad, tc¢ ellow those nodes to choose

their pi whenever con<rol messages from new cycles arrive. These features
are in the sequel,

Whenever a nocde i discovers a failure of its link to the preferred

neighbour pj, it sets P, = nil and di = OO to nmean that its estimated

distance to the SINK has beccme infinite., Then node i generates a special
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message MSG(») which propasgates backwards through the tree to the nodes

that lost their route, causing them alsc to set their best link to nil

and the estimated distance to infinite. é;é éropagation backwards is done
as follows. Node i sends MSG(=) to all its neighbors except Pys it
a node ] receives MSG(e) from a link other than pd, it stores it but
no other action is taken; if & node J receives MSG(x) from Py then
it transmits MSG(») to all its neighbors except pJ and sets pJ =nil.
d, = », When a node establishes P, = nil, di ==, Jt i3 said to enter

J
state S3 {see Table 3).

The se¢~ond part of the recovery, called "reattachment™, consists of
cheosing + new be: t link by those nodes 1 having pi = nil, The reattach-
ment takes place if one of the following two situations cccurs. One pecssi-
bility is that a node with p; = nil receives on one of its links, & say,

a message MSG(d#«) and the node is assured that this message was generated by

an update cycle that started after the failure that caused Py = nil. A

second possibility is that at the time P is set to nil, such a message
has already been received at node 1. The reattachment consists of setting
p, = 2, going to state S2 and effecting the same operations as in Tl2.
This, together with other mechanisms to be described, guarantees that if a
failure (or multiple failures) occurs, and if indeed a new update cycle is
started, all nodes physically connected to the SINK will eventually belong

to a non-disrupted directed tree rooted at the SINK.

As mentioned above, there is need to guarantee that reattachment
is performed only as a result of receiving a message generated by an up-
date cycle which started after the fallure. This can be achieved by number-
ing the update cycles with nondecreasing pumbeis as described below. Each
node 1 will have a counter number ny which dernotes the cycle number
currently haandled by this node, and all messages transeitted by 1 will

carry n, in addition to d,, 1i.e. they will be MBG(ni’di)' The SINK

may increase its nSTNK_betore starting a newv update ¢ycle, as explained later.

et
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A node 1 receiving MSG(m,d) on its Py updates its B, to equal m.
Now, reattachment is done by & node i with p; = nil if en MSG{m,d) with

m > ni is received (or was previcusly received).

When an M5G(m,d) is received from link & by node 1, in addition
¢f storing 4 1in Di(z), there is need to remerber also the value of m.

This can be saved in Ni(z), which can now taxe the values nil,0,1,2,3,...;

instead of nll and RCVD as in the tasic algorithm.

If a failure occurs in a link not belonging to the directed tree,
no route is disrupted. However, if this link is connected to & node in
state 52, it 1s convenient to prevent T2l from happening at this node for
this update cycle. This will avoid nodes to update routes based upon
information which is invalidated by the failure and, more important, will
preclude proper completion from happening. Thus, proper completion will
indicate to the SINK that the update cycle was completed without failures
interfering with the process. Prevention of T2l is accomplished by intro-
ducing an additional,state, Sé, into vwhich a node enters 1f a nonpreferred
link fails while the node is in S2. A node i will leave S2 whenever new

information is received on p, (see Table 3).

The described protocol allows the SINK to behave as follows. If .
an update cycle started with nSINK = m completes properly, the SINK is
allowed to start the next update cycle with the same nSINK' On the other
hand, the SINK may at any time increase DSINK and start a new update cycle
with an nSINK larger than those used beforﬁ, even if previous cycles have
not been properly completed. {(Rotice that‘in any case the values of nSIEK
are non-decreasiﬂé with time.) As proved later, if a new update cycle is
started while increasing DTNk it will eventually "cover" all previous

cvcles. Also, if failures do not occur for a long enough time, the new cycle

will be properly completed, and =211 failures will be recovered, i.e. for all
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nodes 1 physically connected to the SINK, the directed graph of (1,pi)

will form a tree rooted at the SINK.

Table 2 surnmarizes the variables used by the algorithm performed by

an arbitrary node 1 as its part of the protocol. Fi(z) denotes the status

of link & as considered by node i, 1i.e. Fi(z) = UP if ¢ 1is considered

operationzl and Fi(z) = DOWN if 2 1is considered unoperational. F_ () can

i
take also the value "READY" whose use will be described when dealing with the

Y
problem of links becoming operational. At that time, the role of zi(z) will
also bhecome clear. The variable mx, sStores the value of the largest update

i
eycle number m of all the messages MSG(m,d,2) received by node i. The

rest of the variables and their use were already described. The local link
protocols controlling the operations of the links connected to node i may
relay to the algorithm parformed by node i <rour types of messages, and they
are als . sumnarized in Table 2. MSG denotes an updeting message, FAIL(L)
denotes the detection of the failure of link &, and the remaining two will
be described later. The exact properties required feom the local protocol

+0 insure proper cperation of the network protocol will be discussed in

Section 2.7.

Teble 3 describes the generalized algorithm of node 1 for the proto-
col which handles topological changes. The protocol as described up to now
is implemented by the slgorithm of Table 3 if ignoring steps I.1, T.2.4, I.3.1,
I.k, II.1.5, IT.2.5 and I1.7.7. These steps relate mainly to links becoming
operational and will be discussed in subsequent sections. Table 3 uses a
notation similer to the one of Teble 1. States S1, S2 and transitions T12 a
and T21 are similar to those described in Table 1 for the basic algorithm.
State 53 denotes the situation where the node has Py = nil, which results
from receiving a FAIL or a MSG with d = « from py- State S2 denotes a
state similar to S2. but from which & transition T2l is precluded. @As

previvusly described, the algorithm goes to such a state Sé if while at S2
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a failure is detected from a link other than p,. The "Facts" given in the

slgorithm are displayed for helping in its understanding and are proven in

Theorem 2 of Section 3. A Fact holds if the transition under which it

o

appears is performed.

2.3 Starting a New Update Cycle

There exist several procedures for starting a new update cycle and

setting the torresponding n in a way which satisfy the required behaviour

SINK
from the SINK as descxribed in Section 2.2. Two of these procedures are des-

cribed next.

Version 1l: At given intervals of time, or as a result of the detection of
a change in ﬁhe traffic pettern, the SINK increments nSINK and starts a
new update cycle. The sbove version may make use of a time-out to trigger
a new update cycle if the previous one is not properly completed within
certain time. 1If a failure occurs after proper completion, there 1s no

! direct triggering of a new update cycle, and thus recovery can be achieved
only waenever the SINK'decides to starct a new update cycle. In addition,
this version unnecessarily iacrements nSINK for every update; hence an
unnecessarily large number of bits to represent NgrNk is required. These

two disadvantages are overcome by the pext version,

Version 2: In order to cope with changes in traffic patterns, after proper

! completion of the previous update cycle, the SINK may start a new update
cycle with the same NgryK In addition, whenever a node i detects a
failure of & link attached to it, the node generates a special message
REQ(ni) which is forwarded through the directed path of preferred links

to the SINK. If such a REQ(m) arrives at a node 1 baving p, = nil, the
REQ is discarded. In Section 3 it is shown that if & REQ(ml) is generated
and forwerded a&s mentioned above, then some REQ(m2), m2 > ml will actually

arrive at the SINK, within finite time. Whenever a REQ(m) arrives at the SINK,
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nSINK’ then nSINK is incremented and a new update cycle is

started. This cycle will take care of recovery from the failwe that

and if m =

generated the REQ(m). If m < Noryk  SUCH & cycle was already started and
the REQ(m) can simply be ignored. (Notice that m cannoct be larger than
nSINK') This version guarantees that if an update cycle with DerNK = m

is started, the cycle will be properly completed in finite time or else, a
failure has occurred and a REQG(m) will arrive at the SINK. {This is proved---
in Section 3.) Thus, there is no need for a time-out to make sure that the
SINK will not wait indefinitely for the proper completion of an update

cycle., The additions to the algorithm for implementing this version are
given in I.1 and.I.E.h of Table 3. In the rest of the paper, we assume

that this version is implemented, although most of the results are also

applicable to Version 1.

2.4 Handling Links Pecoming Operational

If link (i,2) is down, 1i.e. Fi(&) = Fl(i) = DOWN, and it becomes
operational, nodes i and 2 should coordinate the operations necessary
to bring the link up. Otherwise, a deadlock could occur, for instance, if
i sets Fi(l) = UP while at S2 and 1 sets Fz(i) = UP after performing
T21 of the same update cycle. In this case; 1 will not perform T21 until
receiving a message from ¢, and such a message will not be sent because

2 already completed this update cycle, i.e. deadlock.

The coordination is achieved by having both nodes bring the link wup
Just before starting to perform their part of the same new cycle. This
is dona in two steps. First, i» and £ compare o, and n, via the local
protocol and decide tc bring up the link when starting to process the first
cycle with number strictly higher thaen max(ni,nl). This fact is remembered
at the nodes by setting zi(l) and zz(i) to max(ni,nz), as well as

Fi(l) and Fl(i) to "READY". 1In additionm, Ni(z) and Nz(i) are set to
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nil and REQ(zi(z)) is generated by nodes i and £ and forwarded to the

SINK in the same way as described in Section 2.3 (Version 2) for failures.

This will guarantee that an update cycle with n larger then zi(l)

SINK
(and zz(i)) will be started. This first step of the coordination at node
i 1s done by message WAKE(%) given by the local protocol to the algorithm.
The actions performed by the algorithm when receiving such a message are
described in Ik of Table 3. The synchronization assumes that the exécution
of WAKE(%) and WAKE(i) are simultaneously started at nodes i and &
respectively, in order to guarantee that zi(l) = zz(i). However, it may
happen that a failure occurs agein iz the link and one of the nodes succeeds
to complete tne synchronization while the other node dves not:. The protocol
ellows for such & situation and only requires thet the 1link protocol ends
the synchronization (successfully or unsuccessfully) within finite tiﬁz. ir
the synchronization is unsuccesaful, no action is taker by the node, and the
link will remain DOWN from this node's point of view. Section 2.7 gives a

more formal and complete list of the requirements that the link protocol
should satisfy.

The second step of bringing the link (i,2) up is done by node 1
(1.e. Fi(z) is set from READY to UP) when node 1 receives MSG from link
£ or vhen the node counter mber ni becomes larger than zi(z). This

is represented respectively by I.3.1 end II.l1.5, IX.2.5, II.7.7, of Table 3.

2.5 The Algorithm for the B8INK

The algerithm for the SINK, assuming that Veraion 2 of Section 2.3
is chosen, appears in Table 4. Most of the algorithm was already informally
discussed in previous eection@. The nain difference between the algorithm
for the SINK and that for an arbitrary node 1. is that the first does not

need to keep the following variables:
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- Py (which 1is not defined for the SINK)
- 4 {(which is always 0 for the SINK)

- Di(z) (which is only needed to update d, and pi)

i

— 1 !
mx, (nSINK is always the largest update number)
- zi(l) {during WAKE synchronization, ZSINK(Q) is always set to
g = PeX(ngpyceny)

In addition, the algoritum may receive & "START" message from the "cutside
world" which will cause it to start a new cycle, provided that the lagt one
was properly completed. WAKE and REQ call also for the execution of the

Finite-State-Machine, and as a result WAKE as well as REQ(m==nSINK) will

cause an increment of n and a new update cycle will be started. States

SINK
S1 and S2 are similar to the corresponding states of the algorithm for an
arbitrary node 1. Hovevér, S1 means for tne SINK that the last update
cycle was properly eompleted, and S2 means that the current update cycle is
not yet completed. T;Q and T2z represent the starting of a new update c¢ycle

and T21 the proper completion. For the SINK there is no need for statea

equivalent to S3 and 82,

2.6 Initialization of the Protocol

Any arbitrary node 1 comes into operation in state S3, with node
counter number n, = 0, preferred neighbor P = nil, and Fi(k) = DOWN
®or all k, The value of the remaining veriables is.immateriul. From this
initial condition, the local protocol may try to wake the links and it
proceeds operating es defined by the algorithm (Table 3). The SINK comes
into operation in state S1, with ngpn = 0 and Fi(k) = DOWN for all k,

and proceeds in the same way but according to the algorithm of Table U,

i — st o

A
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2.7 Properties Required from the Local Protocol

On each link of the network there is a local protocol that is in

charge of exchanging messages between neighbors. Our main algorithm assumes

that the following properties hold for the local protocol:

2.7.1
2.7.2

2'7‘3

2.7.5

2.7.6

2¢7-7

All links are bidirectional (duplex).

d,, > 0 for all links (i,2) at all times.

If a message is sent by node 1 to a neighbor £, then in finite
time, either the message will be received correctly at £ or

F,(2) = F (1) = DOWN. Observe that this ussumption does not preclude
transmission errors that are reccvered by the local protocol (e.g.

"resend and acknowledgement").

Failure of a node is considered as failure of all links connected

to it.

A ncde 1 comes up in sté%e 53, with ni,= 0, Py = nil, and

Fi(ﬁ) = DOWN for all links (i,2).

The processor at node i receives messages from link (1,2) on a

first-in~first-served (FIFO) basis.

A link (1,2) 4is said to have become operational as socon as the

local protocol discovers that the link can be used. Links (1,%)
end (%,1) become operational et the same time and subject to the
following restrictions, a WAKE "message'" is delivered in this case

to each of the processors 1 and 1.

WAKE(%) can be received at ncde 1 only if
(a) node & receives WAKE(i) at the same (virtual) time;
(p) +there are nc other cutstanding messages on link (:,8) and on (2;1)5

(e) Fi(l) = Fl(i) = DOWN.
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2.7.8 1If Fi(l) = DOWN, the only message that the processor at 1 can

receive from & 1s WAKE(R).

2.7.9 (a) If F, () # DOWN and F (1) # DOWN and F,(%) goes to DOWN,

then Fl(i) goes to DOWN in finite time.

(v) 1If Fi(l) = FQ(i) = DOWN and Fi(l) goes to READY, then in

finite time, either Fl(i) goes to READY or Fi(l) = Fﬁ(i) = DOWN,

2.7.10 When two nodes i and & receive WAKE as described in 2.7.7, =2
"synchronization" between i and ¢ is attempted. At either end the
synchronization way or may not be successful (the latter because of
a new failure). If it is successful, the node proceeds as in Step I.4

of Table 3. If not, then no action is taken,




3. [PROPERTIES AND VALIDATION OF THE ALGORITHM

Some of the properties of the elgorithm have already been indicated
.

in previous sections. Here we state them explicitly alung with some of the
others. We start with properties that hold throughout the operation o%.the
network, some of them referring to the entire network at a given in;tant of
time and some to a given node or link as time progresses. Then recovery of
the network after topologicsal changes is proved through a series of theorems,
and finelly we state and prove the fect that the algorithm achieve-: shegrtest
wveighted routes. We may point out, that the most important features of the

-

algorithm are given in Theorems 1, 4, 5 and 6.

Before stating the main properties of the algorithm, we need several

definitions and notations:

Si, S2, S2, S3 = states of the Finite-State Machine.

PC(m) = time of proper completion with cycle counter number m.

S1{n] = state S1 with node countef nuzber n, = n, and similarly for
s2[al, s3(a], S3(n]..

Whenever we want to refer to a quantity at a given time t. we add the tine in
in parentheses (e.g. pi(t) means preferred neighvor p, of node i at

time ¢, Ni(z)(t) means variable Ni(z) at time t, etc.)

si(t) = gtate and possibly node counter number ng of node 1 at time t.
Therefore we sometimes write si(t) = S3 for instance, and sometimes
si(t) = S3[n]. ‘

We use a compact nctation to describe changes accompanying & transi-
tion, as follows:
Txy[t,1,M5G{ml,d1,21),SEND(m2,d2,22),(nl,n2),(d1,d42),(pl,p2),(mx1,mx2)] (1la)
will mean that transition from state Sx *o state Sy takes place at time

t at node 1 caused by receiving MSG(ml,d1) from neighbor £1; in this

transition 1 sends MSG(m2,82) to 42, changes its node counter number




- 21 -

n from nl to n2, its estimated distance to destination di from 4l

i
to d2, 1its preferred neighbor Py from pl to p2 and the largest up-

date counter number received up to now mxi from mxl to mx2. Similarly,

Txy[t,i,FAIL(2),SEND(mR,d42,22),(nl,n2)(d2,d42),(pl,p2),(nxl ,mx2) ] (1)

denotes the same trensition as above, except that it is caused by receiv-
ing FAIL(%) from neighﬁor £. For sinmplicity, we delete all arguments that
are of no interest in a given description, and if for example nl is
arbitrary we write (¢,n2) instead of (nl,n2). Similarly, if one of the

stateg is arbitrery, ¢ will replece this state. In particular observe

that
T¢2(t,SINK,{(d,n2)] (2)

means that an updating cycle with number n2 1s started at time t and
T21(t,SINK, (n2,n2) ] (3}

means that proper completion of the cycle occurs at time ¢. If Txy(t],

then we use the notations:

t- = time Just before the transition,

t+ = time just after the tramsition.

We also use

[t,1,M5G(m,d,2)] (%)

to denote the fact that a message MSG(m,d) 1is received at time t at i

from £, whather or not the receipt of the message causes a transition.

Finally, at a given instant t, we define the Routing Graph RG(t)
as the directed graph whose nodes are the network nodes and whose arcs are
glven by the preferred neighbors pi’ namely there is an arc from node 1
to node L if and only if pi(t) = g, PFor example, the routing graph of
the network in Fig. la is given in Fig. 1b. In order to describs properties

of the RG(t), we alsoc define an order for the states by S3>82 = 82 > S1.
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Also, if Sx and 8y are states, then the notation Sx > Sy means Sx > Sy
or Sx = Sy. For conceptual purposes, we regard all the actions associsasted
with a transition of the Finite-State Machine tc take place at the time of

the transition.

Theorem 1

At any instent of time, RG(t) consists of a set of disjoint trees

wi 1 the following ordering properties:

i) the roots of the trees are the SINK and all nodes in S3;

ii) ir pi(t) =%, then nl(t)ini(t);

[

. ) S .
11i) 1irf pi(t) £ and nl(t, ni(t), then si(t) :_si(t/,

]
ft -~

iv) if pi(t) % and nl(t) (¢t) ana si(t) = si(t) = S1, then

?
d,(t) < a,(¢).

The procf of Theorem 1 is given in Appendix A. According to it, the
RG consists at any time of 8 set of disjoint trees, i.e. it contains no loops.
Observe that a tree consisting of a single isolated node is possible. The
algorithm maintains a certain ordering in a tree, namely that concatenation
of (ni,si) is nondecreasing when moving from the leaves to the root of a
tree end in addition, for nodes in S1 and with the 3ane node counter number,

the estimated distances d1 to the SINK are strictly decreasing.

In addition to properties of the entire network at each instant of

time, we can look at local properties as time progresses. Some of the most

important are given in the following theorem whose proof appears in Appendix A

(see ¢) and d) in Theorem A.l).
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Theorem 2

i) For a given node i, the node counter number ni is nondecreasing

and the messages WMSG(m,d) received from a given neighbor have non-

decreasing numbers m.

ii) Between two successive proper completions PC(m) and PC(m), for each

given m with m < m <m, each node sends to each of its neighbors

at most one message MS5G(m,d) with d < =,

11i) Between two successive proper completions PC(m) and PC(;), for each

given m with m <m :_;, & rode enters each of the sets of states

{s1(m]}, {52(m], Sé[m]}, {s3[{m]} at most once.

iv) All "Facts" in the formal description of the algorithm in Section II

are correct.
A third theorem describes the situation in the network at the time

proper completion occurs:

Theorem 3

At PC(m), the following hold for each node 1i:

1) If n, = m, then 8, = 81 or s, = S3.

i i

11) If a messege MSG(m,d) with d $ = is on its way to 1, then

si = 53 and oy = m,

i1, If either (ui = m and s, = S1) or o, < m, then for all k such

that Fi(k) = UP, it cannot happen that {Ni(k) -n, Di(k) < w},

A combined proof is necessary to show that the properties appearing
in Theorems 1, 2, 3 hold. The proof uses a two-level induction, first assum-
ing properties at PC to hold, then showing that the other properties hold

betwveen thia and the next PC and finally proving that the necessary proper-
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ties hold at the next PC. The second induction level proves the properties

between succesnive proper completions by assuming that the property holds

until just befors the current time t and then showing that any possible

change at time * preserves the property. The entire rigorous procedure

appears in Appendix A.

In order to introduce properties of the algorithm regarding normal

activity and recovery of the network, we need several definitions.

Definition

We say that a 1ink (1,2) 4s potentially werking if Fi(z) # DOWN

and Fg(i) # DOWN, and a ink (i,2) is working if Fi(z) = Fz(i) = UP,

Two nodes in the network are said to be potentially connected at time ¢t

if there is a sequence of links that are gotengially working at time ¢t
connecting the two nodes. A set of nodes 1s said to be strongly connected

to the SINK if all unodes in the set are potentially connected to the SINK
and for all links (i,%) connecting those nodes, we have either

?i(z) = Fz(i) = UP or F,(2)=F,(1) = DOWK.

Definition

Conslder a given time t, and let ml te the highest counter

number of ¢cles started before t. We say that a pertinent topological

change happens at time t if the algorithm at a node i with ni(tn) = ml

receives at time t a message WAKE(Z) resulting in successfyl WAKE syn-

chronizaiion or & message FAIL(g). Observe from steps 1.2 end I.k of
Table 3 tﬁat REQ(m1l) is gepnerated and sent if and only if a pertinent
topological change happens at & node 1 with Py # nil. Also note, that a
pertinent topological change happens if and only if node 1 has ; 1ink
(£,k) such that et time t, Fiz;) changes from DOWN to READY or from

2ither UP or READY to DOWN (see Fig. 2).
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Theorem 4 (Normal activity)

Let
L(t) = {rcdes potentislly connscted to SINK at time t} ,

H(t) = {nodes strongly connmected to SINK at time t} .

Suppose
T¢2[t1,SINK,(ml,ml)], (5)

narely a cycle is started at tl with a number that was previously used.
Suppose also that no pertinent topological changes have happened while
nSINK = m]l Dbefore tl and no such changes happen for long enocugh time

afcer tl, Then there exist tO0, t2, t3 with 0 < tl < t2 < £3 < » guch
that a), b), ¢), d4) hold:
a) T21{t0,SINK, ml,ml)]; (6)
b) ¥t in the intervai [to,£3], we have H{t) = L(t) = L(t0);
c¢) for all ieL(t0), we havé
T42(t2, 1, (=,m)) (1)
tor some time 12, in the interval (t1,t2];

a) i) T2i[t3,9INK,(ml,m1)]; (8)

11} RG(t3) for all nodes in L(t0) is a single tree rooted at SINK.

In word- . Theorem 4 says that under the given conditions, if a new
cycle starts with a number that was previously used, then Proper Completion
with the same pumber has previously ocowred and the new cycle will be
properly uompleted in finite time while connecting all nodes of interest (i.e.

in L(t0)) to the SINK, buth strongly and routingwise. The proof of Theo-

rem b is given in Appenﬂix b.

l.ae recovery properties of the algorithm are described in Proposi-

tions 1, 2 and in Theorem 5. The proofs of the propositions appear in

Appendix B.
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Proposition 1

Let L{(t), H(t) be as in Theorem 4. Suppose
T¢2[t1,SINK,(ml,m2)] ; m2 >ml , (9)

namely a cycle starts at time tl with a number that was not pfeviously
used. Suppose also that no pertinent topological chenges happen for a

long enough period after tl. Then

a) there exists a time t2, with tl % t2 < =, such that
1) - for all. ie L(t2)

T¢2[t2191,(¢,m2)] | . (10)
happen at some time tzi with t1 < t2i hd t2.
ii) H{t2) = L(t2) .
b) There exists a time t3 < = such that
1) T21(t3,SINK, (m2,m2) ] 3 ' ‘ (11)
11) ¥t 1in the interval [t2,t3], we have H(t) = L(t) = H(t2);

111) RG(t3) for all nodes ip L(t3) is a single tres roofed at
SINK. .
Part a) of Proposition 1 says that under the stated.conditicns,.éll nodes
in L(t) will eventually enter state S5S2(m2]. Part b) says thaﬁ the cyecle

will be properly completed and all nodes potentially connected to the SINK

ot time PC(m2) will actually be strongly connected to the SINK and will &lso

have a routing path to the SINK.

Finally, we observe that reattachment of a node loosing its path to

the SINK or bringing a link up requires a cycle with a counter number higher

than the one the node currently has. Proposition 2 ensures that such a cycle

hag been or will be started in finite time dy the SINK.




Proposition 2

Suppose a node 1 receives FAIL(2) while n, = ml or a successful - 1

WAKE( %) synchronization occurs at node i while zi(l) = mi. Then the )

i SINK has received before t a message REQ(ml) or will receive such a message

in finite time after t.
Propozitions 1 and 2 are combined in:

Theorem 5 (Recovery theorem)

Let L(t), H(t) be as in Theorem 4. Suppose there is a time tl

after which no pertinent topological changes hapven in the network for long 1
encugh time. Then there exists a time t3 with tl < t3 < = such that i
all nodes in L(t3) are strongly connected to the SINK and are on a Qingle 4
tree rooted at SINK. : 1
Proof 1
Let tO < tl Ybe the time of the last pertinent topological change ;

. |

befcre tl. Let 1 be the node detecting it and let m = ni(tO-)u Then :
!

ﬁf" Proposition 2 assures that s message REQ(m) arrives at some finite time at
SINK. Let t2 < o be the time the first REQ(rm) message arrives at SINK.
Condition 12 or 22 in Table 4 dictates that SINK will start at time t2 a :

new cycle, with number mi = m+1. Since by the defipnition of pertinent

chaenge, m is the lsrgest number at time <10, we have that t0 < t2. By
assumption, no pertinent topological changes happen after time ¢0 for
. a long enough period, so thet no such changes happen after time t2. Con-

sequently Propositicn 1 holds after this time and the assertions of the )

Theorem follows.

Theorem 6 (Shortest paths)

¥With the notations of Theorem 5, suppose the conditions of Theorem 5 1
hold end in addition, suppose that the weights ., of the 1inks are time in-

variant for a long enough pericd after tl. Then, after completion of a

A v e r— S e S ’
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finite number of cycles after +3, the routing grapk RG will provide the

shortest route in terms of the weights di£. from each node in L{t2) to

the SINK. Let SR be the graph providing the shcrtest routes in terms of

d Then the necessary number of cycles 1s bounded from above by the

i’
largest distance from SINK in terms of number of hops on SR.

Proo?

Observe from steps II.l.3 and II.3.T in Table 3, that during the

first cycle after t3 all nodes closest to SINK on SR will have p; = SIRK

and will never change p, afterwards.

Next, consider any connected subgraph A of SR that includes the
SINK. Suppose that at the time of a cycle completion SR and RG coincide
for nodes in A. Then these nodes will never change their preferred neighbors
Py aftervards. Also during tpe next cycle at least the nodes neighboring A

on SR will change their pi such that RG and SR will coineide for them too,

and this proves the assertion.
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IV. DISCUSSION AND CONCLUSIONS

The paper presents an Algoritpm for constructing and maintaining'
loop~free routing tables in a data-network, when arbitrary fajilures and
additions happen in the network. Clearly,'the properties that are rigorcusly
provéd in Section 3 and thé Appendices hold also for several other ' rsions
of the algorithm; sone of them simpler and some of them more involved than
the present one., We have decided on the present form of the algorithm as a
compromise between simplicity ahd 8till keeping some propert;es that are
intuitively appealing. For example, ovne possibility is to increase the up-
date cycle number every time a new cycle is started. This will not simplify,
the algorithm, but will greatly siﬁﬁlify the proofs. On the other hanmd, it
will require many more bits for the_ppdate cyéle and node numbers m and n,

than the algorithm given in the paper. Another versiorn of the algorithm

previously considered by us was to require that every time a node

receives & number higher than n, from some neighbor, It will "forget" all
its previous inrbrﬁntion and will "reattach" to that node immediately, by a
similar operation to transition T32. This change in the ealgorithm would
considerably simélity,both thé algorithm and the proofs, but every topologi-
cal cha#ge will effect the enﬁirg network, since after any topological change,
all nodes will act aa‘it they had no previous information. On the other
hand, the version given in the paper "}pcalizes" feilures in the senss that
only those nodes whose best path to SINK was destroyed will have to forget
all their previous informatiocn. This is performed in the algprithm by re-
quiring that nodes not in 83 will wait for a sigasl from the preferred neigh-
bor pi before they proceed, even if they receive a number higher than n,
from other neighbors. The signel may be either =, in which case the node
enters 83 (and eientually reattaches) or less than =, in which case the

node proceeds as usual.
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A rinal remark regarding the amount of control .information required

by the protocol. Observe that since for each update and for each destina-

tion each node sends over each link the distance di and the node counter -

number. ni’ the emount of information sent over each link i3 of the same
order of magnitude as the ARPA routing protocol [T7]. The difference is
that the latter allows informstion for all destlinations to he sent‘in one
- " message, whereas our protocol requires in principle separate messages for
different destinations (although sometimes several messages may be packed

together)., If the overhead for control messages is not too large however,

the extra load will not be significant.

BiwaiTT =
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Appendix A

We organize the proofs as follows: We start with the statements of

a few properties that follow immediately from the formal description of the
algorithm in Table 3. Lemmas A.l - A.4 and Theorem A.lL contain the proofs
of Theorems 1, 2 and 3, together with some other propertiea needed in the

proofs themselves. Theorem 4 and Propositions 1 and 2 will be proved in

Appendix B.

Properties of the Algorithm

Rl Any change in ni, 8 pi, or sending any message (n,d) can happen 1

only while 1 performs a transition.

R2 Txy[t,1,SEND(m,d),(4,n2),(¢,d2),(¢,mx2)] implies d = 2.

If 4 #e, then

1) Txy = T12 or T2l or T22 or T32 or T22

1i) n2 = mx2 = m
If 4 = o, then

11i) Txy = T13 or T23 or T23

iv) n2=m ,
R3 T132(t,1,(n1,n2)] =» n2 > ni

RL si(t) = 83 <= pi(t) = nil <= di(t) “ o

RS Txylt,i,(pl,p2)], pl # nil, p2 # pl == Txy = T13 or T2l or T23 or T23.

R6 mxi(t) is nondecreasing in time for any 1{.
R7 In the Finite-State-Machine, no two conditions can hold at the same time.
This implies that the order of checking the conditions of the transitions

is irrelevant.

R For all t and all nodes i in the network, ngp.(t) >n (t) and

nSIRK(t) Z_mxi(t).

7 T
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The Finite-State Machine has two types of transitions. The first type
is effected directly by the incoming message, while the % .cond type is
caused by the situation in the memary of the node. Transitions T23

and T21 are of the second type, all others are of the first type. ﬁach
message can trigger only one transition of the-first type, and this
transition comes ‘always before transitions of the second type. This

is controlled by the variable CT in Table 3,

The possible changes of Fi(z) are given in Fig. 2. The types of
messages causing them are alscv shown. A pertinent topological change
happens iff Fi(l) + DOWN or Fi(z) changes from DOWN to READY at a

node 1 with ni(t-) = ml, where ml 1s the highest counter number of

cycles started before t.

The following lemma says that the ncde number n, canbe changed

only whgn recelving a message from the preferred neighbor pi and then, the

nev number is exactly the cycle number m received in that message. gt also

gives conditions fur leaving state $3.

Lenma A.l

ir

TW[t,i, MSG(m,d,E), (nl!nz)' (PJS¢)]
r Txyl[t,1i, FAIL(%),(nl,n2),(pl,¢)]
then

a) pl #nii, n2 ¥nl = ¢ «pl and n2 *n ;

(A.1)

b) pl = nil = n2>nl, and also 3k s.t. F(k) (=) = UP, N (k)(t-) = n2.
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Proof
a) From the algorithm we see that T21, 722, T22 do not apply here since
they imply n2 = nl. Also T32 does not apply, since ther pl = nil.
If T13, T23 or T23 1is caused by FAIL(Z) then n2 = nl, so this
case does not apply either. In all other éaaes, n2 =m and pl = ¢

(see II.1.4, IX.2.1, II1.2.4 in Table 3).

b) pl = nil implies Txy * T32 and the assertion follows from steps

I¥.7.1 and IX.7.5 in Table 3.

The next lemma proves statement 1) of Theorem 2 aad shows the role of
the node counter number ni. Here we see for the first time that several

properties have to be proved in a cémmon induction.

Lemma A.2
a) [i,tl,MSkal,dl,E)], [1,t2,MSG(m2,d2,2)], | t2 > tl =5 m2 > wml.
b) Téé[e,1,(nl,n2)] => n2 > nl .
¢) Let Mi(t,pi(t)) denote the counter number m of the last message

MSG(m,d) received at i before or at time t from the preferred

neighbor pi(t). Then

a,(t) < M, (t,p,(t)) (A.2)

Proof
The proof proceeds by induction. We essume that a), b), ¢) hold up

to, but not including, time t for all nodes in the networ&,' We then prove

below that any poszible event at time t preserves the properties. This,
combined with the fact that a), b), c¢) hold trivially at the time any

node comes up for the first time,completes the proof.
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a) Suppose t = t2. Then by FIFO and property RC, Jt3,th with

t3 < th < t such that nl(t3) = ml and nl(th) = m2. By induction

hypothesis on b), n, was nondecreasing up to (but not including)

time t, so ml < m2.
b) Cbserve first from steps II.2.4 and II.5.1 in Table 3,
T¢¢lt,1,FAIL(L),(nl,n2)]

implies n2 = nl, so that the statement is true in this case. We
therefore have to check only thp case when the transition ia caused

by MSG. Suppose
T¢s[t, 1, MSG{m,d,2),(n1,n2),(pl,p2)] (A.3)
happens. If n2 = nl, q.e.d. If n2 # nl, then Lemma A.1l implies

that either pl = nil or (pl =2, n2 =m). If pl =nil, gq.e.d.

from Lemma A.1. If (pl =%, n2 =m),

then
§ nl _<_Mi(t—,p1) = Mi(t—,f.) _<_Mi(t.2-) =p = n2 (A.4)

where the irequalities follow respectively from induction hypothesis

on ¢) and from applying &) at time t.

¢) We have to show that if
{1, t, MsG(m,d,2),(n1,n2),{p,p2)] (a.5)

then '

1) & = pl =p2 dimplies n2 < m, and

ii1) p2 # pl, p2 # nil implies n2 < Mi(t'*.P?) .

To do this we check all possible transitions and also the case vhen the recsived

message causes no transition. Ti3, T23 and T23 do not apply here bacause

then pl # nil, p2 = mil. If T22 or no transition, then p2 = pl and

nZ2 = ni, and ve have

n2 = nl j_ui(t-.pl) _f_Mi(t-f,pl) - Mi(t+,p2) =mn ,(A.6)

RS E
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where the inequalities follow from the inducticn hypothesis and from

a) respectively. For the other transitioas we have

T12, T22 and 122 imply £ = plL = p2, n2 = m (see II.1.1 and II.1l.h

in Table 3).

T2l implies p2 # nil, and then the counter number of the last
megsage received from any neighbor before t+ is

nl = n2 = m,

T32 implies p2 # pl, p2 # nil and then from steps II.7.k4, II.7.5
1I.7.1 in Table 3, n2 = mxi(t-), p2 = k*, Mi(t-»,x*) =

» -) = -
Ni(k )(t-) mxi(t ).
The ne.: lemma shows what are messages that cau travel on a line after

a failure or after a niessage with d4d = =,

Lemma A.3

a) If
(1,t1,MSG(ml,a1,2)]}, [i,t2,MSG(m2,d2,2)] (A.Ta)

where t2 > i1, dl = », then m2 > ml.

b)) If
[1,t1,FATL(2)], [i,t2,MSG(m2,d2,2)] (A.7Y)

vhere t2 > tl, then m2 > ni(tl) and also m2 > nl(tl).

Proof

a) Jt3 <tl such that

T¢3{%,t3,SEND(ml,dl,1).(4,n2)] (A.8)

and from property R2 we have ml = n2. The next transition of 2 must

be
732(2,(n2,n3)]}, n3 > n2

so that by Lemma A.2 b) and R2, node £ will never gsend after t3 any

message MSG(m,d) with m < ml. FIFO at node i completes the proof.
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b) After failure, a link (i,2) can be brought up ¢nly with numbers
strictly higher than zi(x) as defined in step L.k of Table 3.

Since ny is non-decreasing by Lerma A.2. b), the proof is ccmplete.

Lemma A.L
Ir Fi(z)(t) = READY and
[t,i,MSG(m,d,Z)] . (Aog)

then m > zi(l)(t). Observe that this is Fact I.3.1 in Table 3.

v

Proof

' From steps I.1-I.4 in Table3 and property 2.7.7 inSec. 2.7, F,(2) can
go to READY only from DOWN and only when successful synchronization of
WAKE(2) occurs at 1. Let %l <t be the time this occurs. By property
2.7.7, at time t)l there are no outstanding messages on (4,8) or (2,1)
and z,(2) 1is established as max{ni,nz} (see I.4 in Table 3). Therefore
the message in (A,§) must have been sent at time t2 > t1 end since 2
sends messages only to nodes k for which Fz(k) = UP it follows that
Fl(l)(t2+) = UP, But Fz(i) could have gone to UP from READY only because
of IT.1.5, II.2.5, 1I.k.2, I1.6.2, II.7.7, II.8.2 or I1.9.2 in Table 3, and
not because of I.3 and in all the above we have n, > zz(i) - z‘(l). Sinae
n. 1is nondecreasing and % sends MSG(m,d) only with m = Bys the assore-

2
tion follows.

Lemma A.

It
T¢2£tl|i|(¢om)] ' (A.10)

then Yt > tl+, wve have Vi s.¢. F,(x)(t) » READY that :ﬁk)(t) > .
Therefore, no link can be brought up by node 1 with number m after the

node entered B82[m] (brought up means ?1(2) « UP),
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Proof

If we have Fi(k)(tl—) = READY and zi(k)(tl-) < m, then at time
t1, we have F,(k) + UP. If it is not, then ¥k > t1, ve have n (t)>m
by Lemma A.2, so that only for nodes k with zi(k) >m it can happen that

Fi(k) + READY after t1,

The next theorem completes the proof of Theorems 1, 2 and 3.

Theorem A.1

Let PC(m), PC(;) be the instants of occurrence of two successive

proper completions. Then
a) Theorem 3.

b) Consider any numter ml < m. Let m be the highest number m <m
such that PC(m) occurs. Let LPC(m,ml) be the time of occurrence
of the last PC(m) such that PC(m) < PC(m). If for any 4i,k,

t < PC(m), we have either

N, (k) (¢) = m1 = m, D, {k)(t) # =, s,(t) # 83, ny(t) = o (A.1la)

or

N (k)(t) =ml >m , (A.11b)
then Jtle [LPC(m,ml),t) and r(2¢ (Tl.t) such that
(t1,k,SEND(ml,d1,1)] (A,12a)
(r2,1,MSG(m1,d2,k)] (A.12b)
vith dl = D (k)(t) - a,, (r2), 42 = D, (k)(t).
(Mg_: In words, the above insures that the message (ml,dl) was
sent and received no earlier than LPC(li.ml)).

c) Consider any number ml < m. Let m be the highest number m < ml
such that PC(m) occurs. Let LPC(m,ml) be the time of occurrencs

of the last PC(m) such that PC(m) < PC(m). Then

R - e e ——
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1) [+1,1,M5G6(m1,d1,2)], {t2,i,M36(m2,d2,2)] where
LPC(m,ml) < t1 < t2 < PC(m) and d2 # = imply m2 > ml.

ii) If
T21(t1,1,(n),nl)] (A.13)

{t2,1,M56(m,4,2)], 4 # = {A.1L)

where LPC{m,nl) < tl < t2 g_PC(z), thea n > nl.

iii) A node i enters, betwesen LPC(&,m) and PC(m), vach of

the following sets of states at most once

{s1[mj}, (s2[m], s2[m]}, {S3(m]} .

All "Facts" in Table 3 are correct.

i) The possible transitions at a node are the follcwing, where
n2 >nl and n3 > nl: T12{(nl,n2)], T13{(al,n2)], 721[(n1,n1)],
122{(n1,n3)], T22[(nl,n1)], T23{(nl,n2)]1, T23({(nl,n2)],

$32{(n1,n3)], T22{(n1,n2)].

11) T21{t,i,(nl,n1)], p (t) = 1 dimplies sk(t) = S1[nl].

- Theorem 1.

1) Suppose T2l[t,i,(nl,n1)] with nl =m and let Tl be the
last time before t such that T¢2{t1,i,(¢,nl)]. Then we
have Fi(k)(fl) = UP if and only if Fi(k)(r) = UP,

-\y'r e[r1,t] .

11) 1If for some te [PC{m), PC(m)] we have

T¢2(t,i,(¢,n2)], n2 = m, (A.15)
then ‘
31l e (t.PC(m)) s.t. T21[71,1,(n2,n2)]

and

’z’rac(t,m(;)) s.t. T23[12,1] ov T22[12,1]-
(A.16)

L
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h) If #i,k, te (PC(m),PC(m); such that for some te (PC(m),t] we
have
[t,k,SEND(m,d,1)], d # =
and if i either has not recaived this message by time t or has

N, ) (8) - m, D (k)(t) # =, then ''tle [t,PC(m)] such that

s, (t1) = s2lm] or s,(t1) = s3[a] . (A.17)

Proof

As suid before, the pruvof proceeds using a two-level induction. We
first notice that a) holds at the time the network comes up for the first
time. We call this PC(J). Then we assume that a) - h) hold at every time
up and ineluding PC(m). Next we prove that b)-h) hold until PC(m) and

then show that a) holds at FC(m).

b) Observe that from Lemma A.2 b) and Property R8, by time LPC(&,ml)
no node in the network has ever heard of a number > m. Therefore
if (A.11b) holds, an appropriate message must have been sent and

received after LPC(m,ml) and hence (A.12) holds.

On the other hand, observe that (A.lls) and Property R3 imply

thet si(LPC(ﬂ,ml)) # S3(m]. Also note that the induction hypo-
thesis assumes that a), namely Theorem 3, holds at time LPC(m,ml)
and therefore at thls time, first,no message MSG(m,d) with 4 # =
is on its way to 1 and second, it csnnot happen that {Ni(k) = m,
Dl(k) # »}, But (A.lla) says that the latter occurs at time t
and therefore, by step I.3 in Teble 3, 1 mst have received

a message MSG(m,d) with d # = after LPC(m) and hence (A.1l2b).

Since no such message was on its way to 1 at Lpc{m), A(12a) holds

also.
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Suppose ¢) i), ii) and iii) are true for all nodes in the network

up to time t-. We prove c) i) and c) 1i) for t2 =t and then

prove c¢) iii) for t.

i) If 4l = », then m2 > ml from Lemma A.3. It remains to prove
the assertion for dl < =, From Lemma A.2, we have m2 > ml.
Suppose dl # » and m2 = ml, Then Lermas A.3a) and A.22a)
respectively, imply thet Z{tSe {tl,t) such that
[1,t3,M5G(d3 = =,2)] or such that [1,t3,MSG(m3,43,2)],
m3 # m2 = ml. Therefore the two messages received at tl and
t2 = t, can be taken as consecutive. So using b),

Jthe [LPC(m,ml),t1l), t5€ (th,t) such that
Txy(th,2,SEND(m1,d1,i)], 4l # = , (A.18)

TaB[t5,2,SEND(ml,d2,1)], 42 # = . (A.19)

By R2, Txy = T2L or Tl2 or T32 or T22 or TZ2 and same
for Taf. .But by induction hypothesis on ¢) iii), ncde £ cannot
.enterlfhe set of states {S2(m1], s2[ml]} twice between LPC(m,ml)
and %, 8o that the only possibilities are

{T12[tk,2] OR T32[th,2] OR T22{th,2] OR T22[th,2]} AND

{T21[t5,2]} and no other transition happens between th and t5.

But in T¢2[th,£], node £ sends a message to every neighbor

except pz(th+) and in T21[t5,4] it sends a message only to

pl(tS-) end since no other transition happens between th and

t5 we have pz(tlH-) = pz(tS-). This contradicts (A.18), (A.19).

i1) If Fi(!.)(t.ll.-) = DOWN or READY, then Lemme A.L together with the
facts that n, is nondecreasing (by Lemma A.2b) and that zi(z)
is established as in step I.4 of Table 3 show that the first
message MSG(ml,dl,%) that cen be received by i from £ after

t1 must have ml > nl. Then the assertion follows from Lemna A.2s).

. " " R T D Sae——
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it Fi(l)(tl«) a UP, then step II.3.1 in Table 3 requires
Ni(z)(tl-) = nl (A.20)
and by the definition of LPC(m,nl) we have nl > m.

Ir D (2)(t1-) = =, then [t3 < tl (possidly 3 < LpC(m,n1))
such that

(t3,1,M5G(n1,d1,2)], 41 = =, (A.21)

which together with (A.lhk) implies by Lemma A.3a) that

m > nl,

If Di(l)(tl-) # @, then from b) follows Jt3 e[]}PC('xiT,nl),tl),
such that

(t3,i,MSG(n1,d1,8)], 4l < = (A.22)
and the assertion follows from ¢) 1i).

From Lemma A.2, ng is nondecreasing, so that once n, is

increased, it cannot return to the 0ld value.

Frcm the slgorithm, & node can leave {S2[m], S2[m]} and not
change n; =m only vi# P21 or T23 or T23. If T23 or Tﬁ%,

then R3 shows that it will strictly increase n, when leaving
S3(m]. If T21[(m,m)], then c) ii) shows that it cannot subse-
quently receive a message MSG(m,d) with d' # «, and in order to
enter S2[m], such a message must be received. Therefore; the

statement holds for {S2[m], S2[m]}.

To Sl(m] one enters only from S2[m], so that a node cannot
enter S1[m] twice unless it enters {s2(m], s2(m]} twice, so

that the s.atement holds for Slm].

If a node enters S3[{m], by R3 it leaves it only with a higher

]-e

n 80 that it caannot come back with tne same ni.

19
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d) The Fact in I.3 was proved in Lemma A.4. The Fact in I.4 follows from
property 2.7.7 in Sec. 2.7. Next, observe from II.2.3, I1X.2.7, II.6.3

and 1I.9.3 in Table 3 that

T¢3{1,(a1,d2),(p1,p2)] (a.23)

implies 42 = o, p2 = nil, so Fact 32 is correct. Facts 13, 12, 23
and 53 follow from Lemma A.2a) and A.2c), since 1f MSG is received at

i at time t and T13 or T12 or T23 or T23 happen, then

m & number received by i at t on pi(t-) 3_Mi(t-,pi(t—)).
(A.24)
Fact 21 is correct, since if T¢2[1,(d1,d2)], then d2 <= and

since p; = nil 1irf s; = s3.

e) 1) The ass+rtion follcws immediately from Lemma A.2 b) and from

checking changes on ny in Table 3.

1i) Recall that we are alvays considering times until PC(m).

S AT VE . -

Observe from 11.3.1 in Table 3 that
721{t,i,(nl,nl)] (A.25)

implies that N,(2)(t-) = nl for all o witk F,(1) = UP, and

since from IX.3.7 in Table 3 pk(t) = { implies Fi(k) = UP,

we have Ni(k)(t-) = nl. Note further that 'Di(k)(tu) oo,

since otherwise k was some time before t in 83[{nl] and

e PR~

couid set P * i only if 1 sent to k a messege MSG with
number strictly higher than nl. But Ni(k)(t-) = nl,

g Dy (k)(t-) # = implies from b) that 3te [LPC(m,nl),t) such
that

TW[T vkosm(nl'dni) ]’ a # . . (A~26)

How if pk(r-) # 1, then Txy = T12, but in order for

pk(t) w i g pk(r»). k must have performed T21[tl,k] at some
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“tle(t,t). On the other hand, if pk(r-) =1, then Txy = T2l,

Therefore k performed
T21[n,k,(nl,nl),(pl,p2)], p2 = & (A.27)
at some time ne [LPC(m,nl),t). So sk(n+) = Si[nl].

From e) i), the fact that until t node X receives no number
higher than nl and pk(t) = i, one can easily see that Xk

remains in S1(nl] until time t.

We refer to the properties to be proven here as tree properties. If

pi = k, we say that 1 1is a predecessor of k and k the successor

'

of 1. Also,.ﬁe look at the concstenation (ni.si) and write

(ngo8.) 2 (n,8,) 3f n 2n and if o =n  ioplies &, > & .

Using this notation ohserve from e) i), that
Txy[i,(nl,n2)]
implies (n2,y) > (nl,x) except when Txy = T21.

Ls before, we prove the tree properties by induction, assuming that
they holdup to time t- and showing that any possible change at

time t opreserves the properties. The changes of interest here are

v

in the quertities ni..si, pi, di.
Let us consider all possible transitions:

T22(t,1]; only s, changes, éi(t+) - si(t—). so "trees" properties

i

are preserved.
T13[t,i]. T23{t,1], T23[t,1}; then pi(:+) = nil, &0 nO successor at t+.

Also by Lemma A.2 and induction hypothesis follows that 1f pk(t) = 1,

then ‘
(n,,8,)(t9) > (n ,8,)(t=) 2 (o ,8)(t) , (A.28)

8¢ properties ars preserved for all predecdssors.
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, 8 and possibly n no

11 % 1}
change in pi). Regarding predecessors, the proof evolves zs for

T12[€,1], T22(t,1], T22[t,1] (change d

Tl3. Regarding p» Ve see that
Txy[t,1i,M5G(m,d, L), (nl,n2), (pl,pl)] , (A.29)

where Txy = T12 or T22 or T22, implies from steps II.l.l, II.4.1,
I1.8.1 in Table 3 that £ = pl, d # » and from steps IX.1l.4, II.4.2,
I1.8.2 that m = n2, From b) and R2, this implies that
31‘€[LPC(ﬁ,m),t) such that spl(t) = S2{n2}. Now, 1f on (t,t), pl
stayed in S2[n2] or performed any transition except T21{pl,(n2,n2)],
ghen T12{1] or T22[i] or TiZ[i] preserve the tree proper:i;s.

We want to show by contradiction that p4 could not have performed
T21 on (T,t). Suppose
T21{1,pl,(n2,02)}, Tt <7tl <t , (A.30)

then by step II.3.1 of Table 3 we have Npl(i)(rl) = n2, Now we

distinguish between two cases:
If Dpl(tl) $ o, _then by b), Jt2¢ (LPC(m,n2),Tl) such that
[x2,1,SEND(n2,d,pl)} , d ¥ =  (A.31)

which by R2 impliés that s (12-) = §2[n2] or s, (:2#) = S2[n2].
But Tl2[t,1,(nl,n2)] or T22[t,1,(nl,n2)] or 122[¢,1, (nl,n2) ]
says that 1 enters 82[nZ] at time t which contridicfo e) 1i1).
If Dpl(i) (tl) = -,”‘then for some 12 < tl (not nscesssrily

12 > LPC(m,n2))

[v2,1,SEND(n2,d,pl)], d ==

which implies that s, (v2+) = 83[n2]. But si(t+) » 52(n2] snd

12 < t, vhich is impossible by R3 and Lemma A.2.
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- T32[t,i,(n1,n2),(nil,pl)]. Regarding predecessors the tree proper-
ties are preserved since n? > nl. Regarding successor, the

above implies that Jte (LPC(m,n2),t)
{t,pl,SEND(n2,d,1)] .

Now, from Lemma A.2, npl(t) 3_npl(r). From R2, npl(r) = n2,

Now, if npl(t) > n2, then
(npl’spl)(t) > (ni’si)(t+) .

If on the other hand npl(t) = n2, then the same argument as
for T12, T22 shows that pi was in S2[n] sometime before t

end could mot return to S1[n2] in the meantime, so that

(n Pl)(t)' > (ni.si)(t+) .

pl’s
In addifion to the above, since here there is a chenge in pi
from nil to #nil, we have to check that this change does not
close a loop. This is seen from the fact that every node k

upstream from 1 at time t has
(nk’sk)(t) 5_(ni.ai)(tf) = (n1,3) < (n2,2) = (ni,si)(t+)
and every node £ downstream from pl has
(ng,8,)(t) > (nplgspl)(t) 2 (n2,2)
T21[t;i£n1,nl),(pl,p2),(dl,dl)]{‘ If pk(t) = i, then from e) ii)
follows that sk(t) = 81[nl], so
(n;,8,)(t+) = (ny,8,)(¢)
Regarding successor, steps II.3.1 and II.3.7 of Table 3 show that
N, (p2)(t-) = nl, D (p2)(t-) # =, so that fromb), Jre [LPC(m,m), t)

such that




- 46 -

[t,p2,SEND(m,d,1) ]

vith m = nl =n ,(t+), @ =d,(s+) = D (p2)(t-) - A, (7).

Therefore from Lemma A.Z2,

Y(t+) .

(n

p2r85) (1) 2 (mL,) = (n

1*54
Now suppose that the change in Py closes a loop at t+,
>Then the last expression and the induction hypothesis show that

at time t+

(nPg’ng)'; (nz’sz)

for all nodes £ around the loop, so that (n,s) must be con-

~ stant around the loop, neamely
(_n,s) = (nl;l)

around the loop. Therefore spz(t) = S1{n1]. ,But by R2, spz(t-) =
sp2(1+) = S2[nl] where t is defined above, so by c) 1iii), nocde

p2 could not enter aguin S2[nl] bhetween <1+ and t, so

dpz(t) = dpa(u-) = Di(p2)(t-)v - di.pz(f)-

But from steps II.3.2 and II.3.7 of Table 3
1 > D, (p2)(t~) = dpz(t) va o

which from Assumption 2.7.2 implies that
a1 = di(t+)'> ape(t) .

On the other hand, the induction hypothesis implies that since

(“z";) s (nl,1) around the lcop, ve have

a,(t) > szm

for all - £ # 1 around the loop and this provides a contradiction,

therefore no loop is closed by the change in Py
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g) 1) During (tl,t), no link is brought up by i because of Lemma A.L.

If there are failures, let T3 be the first time on (t1,t)

such that
[T3,i,FAIL(k)] .

Then T23[t3,4,(nl,n1)] or T22(v3,1,(nl,n1)] happen with nl = &.
In eithe‘r case, e) i) shows that to exit S§3[nl] or Si[nl]. one
has to increase ﬁi, so that it is not possible that

T21(t,1, (nl,nl)] .

So no failure can occur..

ii) Consider the sequences of nodes and instents

i-= io,il,ie, .

t°>t1>t2>'”>ts

..,is = SINK

ct
i

such that

T¢2[tu.iu.(¢.n2).(plu.pzu)]

where n2 = ; and pzu s iu+l' There must have existed such

sequences if ‘I‘¢2[i°]. Supposejr € [tO.PC(;)] such that
T21(7,4 ,(n2,n2)] .

We want to show that )?rl € [tl,PC(;)] such that

T21[1’l.il,(n2.n2)] .

If there existed such & tl, it follows from g) i) that

Fil(io) (tl) = vp.

We want to show now that 32 < Tl such that
[‘»‘2.10.SEND(n2.d.il)]. 4=,

and #r:;c (PC(m),T1) such that such a message with d p = is

sent. For 12 < to }thia follovs respectively from R2, R3 and
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R2, ¢) iii). For 12 = t,» it follows from the fact that
pio(to-*) -1, .

Tor t2¢ (to,PC(;Z), the only pdssibili;ies for io if T21 does
not happen, are to stay in s2[m) or Téé[(nZ,nZ)}, or
T23[(n2,né)], ox T§3[(n2,n2)]. fn all cases io will not send
any mnessage to il.'

The above show that Ni (io)(Tl—) #m=n2 so that
1 .
T21[Tl,il_,(n2,n2) ]

iﬁ imposqible. Repeating the proof, it follows that ;ais such ‘
that

T21(t, ,SINK,(n2,02)], m2 = m ,
which éontradicts the assumption that there-is a proper comple-
tion at time PC(m). This proves the first part of g) ii). The
second part follows because 7T21[71,i,(n2,n2)], n = m is not

possible if T23[i,(n2,n2)] or Tzé[i,(né,nZ)] happen.

B) If [7,k,SEND(m,d#=,1)], then F (1)({) = UP and by B2 either

mx2[t,k,(¢,02)], n2 =m, x=21,2,3
or .
r21[1,k,(n2,u2)}, n2 = n .

If Tx2 then g) 11) implies Jt2¢ {t,PC(R)) such that
T21(12,k,(n2,n2)], n2 = m

and Fk(i)(rl) = P, Therefore T21 happens at node k at some time
(11 or t2). Call this time n. We have then Nk(i)(n) = n. By

b) either Jr3c [Pc(ij,n) such that
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[x3,1,SEND(E,d # = k) ]
or E;Th < n such that
[<k,i,SEND(R,a==,k)]. -

But by R2, this means that Jj 1s at some time before n in 83[;]
or is at some time betwesn PC(m) eand PC(;) in S$2[m]. If the
first holds, node i will stay in s3(m] at least until PC(;).
If the letter holds, them by g) ii) it must perform T21[1,(n2,n2)]
before PC(m). But since itjstill has Ni(k)(t) =, Di(k)(t) o
or has not received Yet the message by time tﬁ property c) i)
implies tha£ node 1 could not perform T21[i,(n2,r2)] before

time t. Therefore it will-péffbrm later, so q.e.d.

Proof that a) holds at time PC(m)

i)

ii)

i11)

Node 1 cannot be in S2[z] because of g) 11) and c) i11). It
cannot be in S2[{m] because it must have been in 82[;] before

and because of g) ii).
Take ¢ = PC(n) 4in h). Then h) says that
s, (PC(m)) = 82[m] or s3(z].
But g) 1) and c) iii) imply that si(pc(ﬁ)) $ s2[m].
Follows by contradiction, because if we had
N, (k)(PC(m)) = m, D,(k)(PC(m)) # -
1t follows by taking t = PC{m) 4n h) that

si(PC(;)) = s2[m] or S3[m] .

This completes the proof of Theorem A.1l.
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Appendix B

In Appendix A we have proved Theorems 1, 2 aﬁd 3. This appendix is
devoted to proofs of the femaining statements, namely Theorem L (normal
activity) and Propositions 1 and 2 that lead to the recovery theorem, Theorem 5.
The proofs are organized as follows: Lerma B.0 i3 preliminary and shows
that on any link (i,2) the oﬁly two ''stable" situations are

{F.(2) = F (1) = DOWN} or (F,(¢) # DOWN, F (i) # DOWN}. Lemmas B.l and B.2
prove Proposition 1, Lemma B.3 proves Theofem L, and the Proposition 2 is

proved by the series of four lemmas B.4 to B.T.

Lemma B.O

If Fi(l)(tl) = DOWN, Fl(i)(tl) # DOWX, then in finite time after tl

we have either Fi(z) = Fl(i) = DOWN or {Fi(z) # DOWN and Fl(i) # DOWN}.

Proof
It Fl(i)(tl) = READY, then i and & arrived to this situation

from {Fz(i) = Fi(z) = DOWN} or {Fz(i) = Fi(z) = READY} or

{Fz(i) = READY, rt(z) = UP}. ‘Then assumptions 2.T7.9 imply the assertion.

.~ If F,(1)(t1) = UP, then i snd & earrived to this situation from
{Fz(i) = READY, Fi(l) = DOWN} or (F (1) = Fi(t) = UP}, or

{Fz(i) = UP, Fi(z) = READY}. 1In the first case, the discussion reduces to

the first part of the proof, whereas for the second and third case, asser-

tion 2.7.9 a) in Sec. 2.7 proves the assertion.
Lemms B.l

Proposition 1(a).

Clearly, ni(tl-) <m2 for all 1. Therefore (10) may happen only

at or after tl.
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Let
A(t) = {i: 1eL(t) and 1 effected (10) with t2, < t} .

If fit2 such that A(t2) = L{¢2), then the proof is complete. Otherwise,
for a given t3, we will show (by contradiction) that Jt, t3 <t <w

such that

A(t) DA(t3) and A(t) # a(t3) . (B.1)
Hence by induction, the set A(t) keeps growing until it equals L(t).

Since there are no pertinent topological changes and all i€ A(t)
have ni(t) = m2, property R10 implies that the set A(t) is nondecreasing
as t increases. Therefcre to prove part i) of Proposition 1(a) it is

sufficient to show that the following cannot hold:

W > €3, A() = A(t3) # L(t) (B.2)

Let

B(t) = {1]ieL(t) and 1¢A(t)} ,

A'(t) = {1|1eA(t) and 1 has a potentially working link to a node of B(t)},

B'(4) = (1|1 e B(t}) and i hes a potentially working link to a node of A(t)}.

(%

The followirg three claima will contradict (B,2).

Claim 1

It (B.2) holds, then the (t3,=) such that ‘f/gsn'(th),gthd' < th
such that [th‘,J,MSG(mE)], (i.e. al) nodes of B'(tld) receive m2 in
finite time).

Proof of Claim 1

At time t21 < t3, node 1nA'(t2i) performs transition (10). Now

observe that since no pertinent topological changes occur, property R10

{implies that for all g, Fi(.!.) canno. be changed from or to DOWN after t2i.

Therefore if ¥, (1)(t2,-) = DOWN then F,(1){(t) = DOWN for t 2 t2, and

i St e [ S e e




- 52 -

if Fi'(ﬁ.)(tzi—) = RFADY or UP, then F,(2)(t) = UP for t > t2y (see 11.1.5,
I1.4.2, 11.7.7, 11.8.2 in Table 3). For links (1,2), where i.eAf(tZi),
Eé.B'(tZi) and Fi(l)(t21+) = P, observe from II.1l.6 in Table 3 that if
pi(tzi) # £, then

[tZi,i,SEND(mz,E)] .

Since by Lemma A.2¢c) we have
Pi(tZi) F B(t2)

and since property 2.7.9 Sec. 2.7 insures that the above message will arrive,
there is a time t4 for which all nodes Jj that wure in B'(:Zi) for some 1,
either are not in B'(t4) anymore or have received MSG(m2). Also observe

that B'(t4) cannot Le empty, since then B.2 is coatradicted.

Let chk_ denote the ¢ime at which j € B'(t4) receivesMSG(m2,k), where

keA'(t4). If J43eB'(t4) such that pj(tS mw k for some keA'(td) then

. 3%
from II.1.1, II.4.1, IX.8.1 in Table 3, the transition T¢2[3j,(¢,m2)] occurs,

contradicting (B.2), q.e.d. Otherwise,

Claim 2
It JeB'(ch) such that p(t5,) Ak then e > t5y0 Py(t) F k.

Proof of Claim 2

Suppose

Txy[t,d,(pl,p2 = k)], t > tSJk .

If x#$#3, by RS Txy = T3 or T2l or T23 or T23,

But TEB, T13, T23 => p2 = nil # k, therefore this cannot happen.

T21 "’Vq, NJ(q)(t) = n, < m2, but NJ(k)(t) = n2 , hence T21

J

annot happen.

If x =3 then T32{t, j, MSG(m2)] happens, contradicting (B.2), gq.e.d. Claim 2.
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Claim 3

In finite time, all nodes ieB(t4) will effect Té3[4,(¢,m)],

.m < ml without effecting T3¢ thereafer.

Proof of Claim 3

n, is updated in T12, T13, T22, T23 and T3z only. For ell
ie32(t4), Té2[i,(4,m2)] does not occur because of (B.2), and T¢3{i,(* m2)]

does not oacur because there‘are no pertinent topological changes. Hence,
/
"rieB(tl&) and ‘V% > th, ni(t) <ml .

Since after t4 no update cycles with m < ml are started by Theorem 2(ii),
the numbef of mesgéges with 4 < » generated by the nodes of B(t4) isvfinite.
Similarly, since the number of arcs is finite, the number of messages

FAIL is also finite. Consider 1(t4) after all these messages are
generated and ;eceived. Then ‘fé.cB(tA), T3¢[1i] cannot occur and

. Txy(i,(pl,p2 # pl)] implies p2 = nil. Then
y 1. if *ﬁ:eﬁ(t4), Py = nil, then q.e.d. Clainm 3;

2. othervise, after a sufficiently long period of time tmx’ by Claim 2

and Theorem Al, there exist k «nd 1 such that:

:i...kcB(t3). pk(tm) = { and pi(tmx) = nil .

When P, vas set to nil, Txy[i,8END(m,d = »,k)] occurs. At tmx
Q this message is not yet received by x’ because pk(tmx) = i, After
d this message is receiVeE’node k affects T¢3, enters S3 and does
) not leave it aaymore. 3y induction, q.e.d. Claim 3.

The proof of Proposition )(a) (1) 18 compleced as follows. Consider =

node jeB'(t4). Define r.3J to be the time at which T¢3[t3j,j] occurs by

Claim 3. But
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if t31 < tS then T3é[t53k'J] happens, -

Jk

ir €3, > tsjk then TBQ[tBJ,J] occurs, and  t3, # tSJk’

which contradicts (E5.2), a.e.d.

To prove part (1i) of Proposition 1l(a), we investigate further the
situation in L(t2) at time t2, Observe that since all nodes in L{t2) have
n, = m2, and no pertinent topblogical changes happen, it follows from R10 énd
Lemma B.C that for anmy link (i,2) such that {ieL(t2), 2eL(t2), it canmot
happen that at time t2 we have Fi(z) = DOWN, cmi) ¥ DOWN. Also
Fi(z) = READY 1s not possible, because lack of pertinernt topological changes
imply that Fi(z)(t21-) = READY as well, and then II.1.5 in Table 3 shows thkat,
for example Fi(l)(t21+) = UP and therefore Fi(z)(:Z) = UP. Therefore, for
links (1,2) .counacting nodes in L(t2), the only posaibilities at tﬁn; t2
are {Fi(z) - Fz(i) = DOWN}, {Fi(l) - Fz(i) = UP}, hence Proposition 1(a)(11)

is proved.

Next, ansﬁming Proposition 1(a) which was proved by Lemma B.l, wa now
prove Proposition 1(b).

Lerma B.2 .

Let L(t) be as in Lesma B.1, and suppose that a new cycle
T¢2(+t1,5INK,($,m1)] is started. Suppose also that no pertinent topological
changes have happened before tl whi}e Bs 1Nk = gl and {hat nc such changes
will take place after t1 for & sufficisntly loang peried of time. Defin:

tzi to be the smallest time t+ such that

T@QEt.i,(mml)], t > tl
occurs. Suppose alsc there exists &2, t1 < t2 < = puch thet for sli

i e L(t2)
79212, ,1,(¢,n1)]

occurs with tl1 §.t2i £ %2, and t2 * nex (t2i) .

t21<'
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1) There exists a time t3 < » gsuch that t2 < t3 and that

T21[t3,SINK,(ml,m1)] occurs;
1i) yte [t2,t3], we have H(t) = L(t) = H{tZ);

11i) RG(t3) for ‘the nodes in L(t3) is a siugle tree rooted at SINK.

Proof
We prove first that there is PC(ml) after tl, then we show that

there is no PC(ml) between tl1 and t2.

Since there. are no pertinent topological changes, after entering S2{m1])
at téi each node ieL(t2) can only perform transitions between states
Sl and S2. Furthermore, by fheorem 1(i), after t2, these nodes form a
single tree rooted at SINK. Consider a time t', t' > t2, Since there are
no pertinent topological caanges, L(t') = L(t2). Also, by Theorem 2(1ii),

if & node 1ier(t2) enters S2[{ml) after t2, PC/ml) has occurred after tl.

1. If tﬁiel&t'), si(t') = 81 then there exists t3, tl < t3 < t*

such that T21({t3,SINK,(ml,ml)] occurred;

2. otherwise, consider a node Xk such that sk(t') = 82)
-V‘J it pJ(t') = k, then sJ(t') = S1 (B.3)

such & node k always exists. (lassity tke neighbors of k into:

A= {i: F,(k)(t’) = WP and s (t') = S1}

B= {{: Fi(k)(t') = Uf and si(t') = 52} ..
At some time in the interval [tl,t'}, the nodes in A have sent
nessages MS5G(ml,d #») to all their neighbors. At some time in the

same interval, those in B have sent such messages to all their

neighbors except pj(:'). Hence by (B.3), k will receive messages

MSG(ml,d # =) from all its neighbors, at a finite time, say t4., Then
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2.1 it sk(th+) = §2 means that 31 with Fk(i)(tlo) = UP such that Nk(i) (th) =

which implies that T21[k,(ml,ml)] occurred in the interval [t1,th],

hence by Theorem 2(iii), PC(mi) occcourred between tl and th;

2.2 if sk(tlw) = S1, by induction, PC(ml) will occur in finite time

after tl.

We show next that PC(ml) cannot Lappen in [t1l,t2]. Suppose that
at t5, the first PC(ml) after tl occurs. Let Xk be a node such that
t2, < t5 and ke L{t2), hence since there are no pertinent failures, there
exists a JeL(t2) such that F (k)(t2,) = F (k)(t5) = UP. But }

3 3 3
a message MSG(ml,d#=) in the interval [t2,,t5]; on the other hand by

sent. to k

Theorem 3 such a ncde k does not exist.

Since there are no pertinent topologicel chenges, we have

L(t2) = L(t3}), and according to Theorem 1(i) these podes have preferred links
forming a single tree rooted at SINK and hence iii).

Finally, looking at the situation in the network at time t2 ae described

in Lemma B.l, and for all te [t2,t3], we ohserve that for all (1,2) for which

Fj(l)(CZ) = UP we must have E’i(l)(c) = UP and 1f Fi(z)(tZ) » DOWN, we must

have Fi(!.) (t) = DOWN. This completes the proof of 1i).

Lemna B.3

Theorem. L,

 Procf

By the Algorithm, a new cycle T12[tl,SINK,(ml,ml)] csn start only
if all previous cycles with the same counter number mnl were properly come

pleted. Since cycle counter numbers are non-decreasing, the first cycle with

ml was started at a time, say t', by

r12{t',8INK,(m0,mi)], ml > m0 .

- e
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This transition satisfies the condition of Proposition 1. Hence in & finite
time, say t", the cycle is properly completed, L(t") forms a tree rooted

at SINK, all 1eL{t") have n, = ml, and since there are no pertinent

topological chenges, for all t > t':
1. H(t) = L(t) = L(t") q.e.d. Theorem 4(b), and

2. by Theorem 1(i) all nodes ie¢L(t) form a single tree rooted at

SINK, q.e.d. Theorem 4(d,ii).

Define Ak to be the set of nodes that are oa the tree at time tl,
at & distance of k nodes from the SINK. Ab = SINK and it is assumed by

Theorem 4 that T12{e2 = t1,SINK,(ml,ml)] occurs. Suppose all 4 Ak

SINK
effect TlZ[tZi,i,(ml,ml)}, sending messages MSG(ml) to all JeA‘ld-l
through their pj(tl). But since there are no pertinent topological changes
ps can only change by T21, and since sj(cl) = S1, only after
T12, Then, all je:Ak+1 will receive messages MSG(ml) at a finite time

after tl,

tZJ from pj(tzj

by induction on k, q.e.d. Theorem 4c).

), which trigger the occurrence of TlZ[cZJ,j,(ml,ml) and

Theorem 4/N@) follows directly from Lemma B.2 bty assuming Theorem h(c).

Theorem lL(a) follows directly from the algorithm for SINK. This completes

the proof.
- Proposition 2 will be proved by Lemmas B.4 and B.7. Vhen an RZQ(ml)

is generated, it is pleced in the queue for processing. If, vhen the

REQ(ml) is processed, the node is at §2, 83 or S1, then an REQ(ml) is sent

by this node to its current preferred link. 'The proof of Proposition 2 for

these cases is given in Lemma B.5 (for 82 or 52) and Lemma B.7 (for §1).

Lemma B.6 proves the proposition for the case wher: there iz a node in state

S3(ml]. Lemma B.k is used to simplify proofs.
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Lemma B.4

If a REQ(ml) is generated, then either:

1. REQ(ml) is processed only by nodes having B, = ml, and all nodes

J have n, <ml, or

J

2. a REQ(ml) arrived at BSINK.

Proof
By Theorem 1{(ii) and by the Algorithm, REQ(ml) 4is not received

(1.e. processed) by & node i with- ni < ml. On the other hand, if there

exists a node 1 with n, > ml, - the SINK started a cycle with m > ml; |

this.can nappen only following the arrival of REQ(ml) to SINK, q.e.d.

Lemma B.5
If & node 1 sends REQ(ml) while s, = S2[m1] or Sé[ml]. then

a REQ(ml) arrived or will arrive at SINK in finite tige.’

:
1t

Proof ‘ﬁf"
Consider the strings of nodes and inaéﬁnts
i = io’il.iz’noo'im = sm
t°>t1>t2> ...>1’.m
such that

T¢2[tu,iﬁo(¢,n2).(plu,p2u)] R

where n2 = 1, p2u = 1 .. There must exist such a string if s, = 82(m1]

u+l
or S3(ml]. The string has no loops, otherwise Lemma B.4, Theorems 1, 2 or &

will be contradicted.

Suppose that at ti@e t2, = node i~ sends REQ(ml) to 14®
Suppose also that in the interval [tu,t2u}, node iu effects no transition

except possidbly T2é. After tu#l’ the first transition executed by 1u+1

could be
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T22[iu+l]; q.e¢.4. by Theorem 3 and Lerms B.4.

T22[iu+l]’ in which case a failure is detectec by i,+; 9od REQ(ml)

sent to iu+2'

T2l[iu+l]; this transition is executed only after receiving a message
from i . Such a messége is sent by i = when T21[1u] heppens,

i.e. after i has sent REQ(ml). Since FIFO is preserved, 1

u+l
will receive and therefore send REQ(ml) to i,.o before T21[iu+l]
happens, i.e, while s, = §2.
_ utl -
T23[iu+l]; in this case there exist 1., T >1+1 such thet ng[ir]

and ir 'sends REQ(ml) to ir*l'

Thus by induction) REQ(ml) arrived or will arrive at SINK ia finite time,

Lemma B.6

G, A ST ST

If there exists a node that effects T¢3[(¢,ml)], then a REQ(ml) -

arrived or will arrive at SINK in finite time.

Proof
Let PCJ. (§ = 0,1,2,...) denote the j-th cccurrence of PC[ml].

Given a node 1 and a time t such that T¢2(1,(4,ml)] has oecurred

B

before t, if PC, is the last PC[ml] before t after which

. T¢2[1,(¢,m1)] occurred, then define Ei(t) = j+l.

By Lemma B.l4, we have to prove only the case in which n, <ml for
all i. Thus, if a node 1 418 in state S3[ml), this node will not execute

any further transitions.
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Property
Given a time t, suppose pi(t) = k ard ni(t) = nk(t) = ml, then

E;(t) < E (£} .
This cen be proved as follows:

Suppose that prior to t and after Pca’ p; was last gset to be k.
This can be done only by T21(i] or T32[i]. Since at PCa,

sy # S2[ml] (by Theorem 3} this implies that T¢2[i] ecccurred

after PCa and T¢2{i] cannot occur again before t because this
will set again p;. Hence 'Ei(t) = a+1. The occurrence of TZi[il
or T32(i] implies that a message from k with‘ d < » arrived at

i after PCa. By Theorem 3, this message was sent after Pc&; this
being possible only if k effected '‘T¢2[k] after PCa. Since Lk

is non-decreasing then E, (t) > a+1,

Since after & node effected T¢3((¢,ml)] the same node cannot per-
form any further transitions, only a finite number of transitions T¢3[(é,m1)]
zan be executed in the network. If T¢3[(¢,ml)] happens, there exists a
node which detects a failure in its best link and executes T43{(ml,ml)].

Define Bl as the set of nodes for which T¢3[(ml,ml)] happens, this is

Bl = {i: T93(t,,1,(ml,ml)] happens} .

Define B2 as the subset of Bl for which T¢3[(ml,ml)] heppens with the

highest E i.e.

i’ .
B2 = {J: Bl and (E (ta) = mEi(ti)} .

J 1€A
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Suppose there exists 1eB2 that effects T23{i,(mi,m1)].

Tet max E {t,) = a+.i. Then at PC , by Theorem 3,
ieA i1 &

8, # S2{ml]. Thus the first ie B2 that effects 723{ml,m1)] has

& path tc SINK at t, (by Theorem 1). From all ieB2 that

i
effect T23[ti,i,(ml,m.l)] while heving a path to SINK, let a

denote the node having the shortest path. Suppose the path ia

Q= Q> q * 00 g > (SIVK = qkﬂ) .

By Theorem 1 all qe&Q have sq(tq ) = S2[ml]. But q can only
, - o]

effect T21 or T22, and ql cannot effect T2l unless raceiv-

ing a message from 4, which cannot be sent because q_o does not

effect T21l, Hence -9y Will detect a failure of link (qo,ql)

‘and by Lemma B.5 the proof is complete.

Suppose there is no 1ieB2 that effects T23(1,(ml,m1)].

Let q_€PE2 denote a node such that d_ (¢ =) = min 4, (t,-),
° | 1ep2 1

and suppose pqc(tqo-) =q,. Ncde q, cannot effect T23
(definition of Case 2) and cannot effect T13 (violates the defini-
tion of qo). Thus, q, detects a failurs of link (qb,ql) and

& REQ(ul) is generated.

If at eny time this REQ(ml) enters a node st 82 or S2, then
Q.s.d. by Lemﬁs B.5. Otherwise the REQ(ml) keeps moving through
nodes &t Sl having decreasing di' The REQ(ml) cannot be re-
ceived by a node at S3 because this violates Case 2 or the defini-
tion of q,- 8ince for all 1, di >0, di is an integral

number and the only node with d; = 0 is the SINK, the REQ(ml)

will arrive at SINK after a finite number of steps. Q.e.d.

ey
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Lemea B.

If a node i sends & REQ(ml) while s, = S1, then a REQ(ml)
' )

arrived or will arrive at SINK in finite time.

Proof

By Lemma B.L4, we have to prove only the case in which for all 1,
a, < ml, and by Theorem 1, the REQ(ml) sent by io may encounter only

nodes having n, = ml.

_If there exists & node 1 such that s, = §3{mil], then gq.e.d. by
Lemma B.6. Hence we may assume that for all 1, 8; # S3[ml] =and there-
fore by Theorem 1 the REQ(ml) is in a tree rcoted at SINK. Thus as in the
proof of Lemma B.6, the REQ(ml) either arrives at a node in S2 or 52
(q.e.d. by Lemma B.5) or travels through nodes at S1, with décreasing d,

until it arrives at SINK, q.e.d.
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Footnote

1. The FACTS given in the algorithm are displayed for helping in its

v understanding and are proved in Theorem 2.
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Table 1 - The Basic Algorithm

For MSG(d.f)

Ni(l) + RCVD

+ -
Di(l) « d du,
CT « 0

‘ Execute FINITE-STATE~MACHINE

BASIC-FINITE-STATE-MACHINE

Py 4 @

2 102, K, Tx T24
D, (%)

i .
"o (s2)

State S1

T12: Condition 12 MSG(d,£==pi), CT = 0,

Action 12 di + min Di(k)
R:Ni(k)=RCVD

transmit MSG(di) to 211 k s.t. k # P, -

State S2

T21: Condition 21 ¥k then N, (k) = RCVD,

Action 21 transmit NSG(di) to p;

p, + k* that achieves mnin D (k);
i X i
Y, set N (k) + n1l;

CT - 1.




B:

Table 2e. -~ Variables of the Algorithm of Table 3.

Nete: It is assumed that the network is composed by K nodes.

‘Variable Name Meaning Domain of Vaiues
P, preferred neighbor nil,l,2,...,K.
dj estimated distance from SINK ® 12,3500
d, estimated distance of link (i,2) 1,2,35...
ni current counter number 01,2500
e, largest number m received by node 1 0,1,2,...
CT control flag 0,1
. last number m received from £ after .
Ni(z) i completed last update cycle nil,0,1,2,...
Di(z) d-rdiz for last 4 received from 2 @ 1.2 0.
Fi(z) status ot link (1,2) DOWN ,READY ,UP
: synchronization number used by 1 to 0
z;,(2) bring link (i,%) UP +1.25...
Table 2b - Messages received by the algorithm of Table 3.
Message Format Meaning Domain of Values
MSG(m,d,%) | updating messaege from & m=0,1,2,...
d B“.O'l,z,.ec
l = 1’2’#O.’K
FAIL(R) fajlure detected on link (i,%) £ =1,2,...,K
WAKE( %) link (i,2) becomes operational £ =1,2,...,K
- £ with
REQ(m) request for new update cycle m=0,1,2,...
“srRk T ®

TR,
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Table 3 Algorithm for an Arbitrary Node i
I.1 For REQ(m)

if P, # nil, then send REG(m) to Py -

I.2 For FAIL(%)

I.2.1 Fi(z) < DOWN;

I.2.2 CT « 03

I.2.3 Execute FINITE-STATE MACHINE;

I.2.4 if p, # nil, then send REQ(ni) to p,-

I.3 For MSG(m,d,4)

I.3.1 if F,(2) = READY, then F, () « UP
(Fact!: m > zi(l));

I.3.2 Ni(z) + m;

1.3.3 D,(2) +d+d,, ;

I.3.k mx, + max{m,mxi};

I.3.5 CT « 03

I.3.6 Execute FINITE-STATE MACEINE.

I.b  For WAKE(%)

(Fact : Fi(L) = DOWN)

wait for end of WAKE synchronization (see Section 2.7T):

if WAKE synchronization is successful, then
zi(i) - max{ni,nﬂ};
F {2} + READY;
N, () + il

ir p, # nil, then send REQ(zi(l)) to p,.

(continued)
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Table 3 (cont'd)

IT.  EINITE STATE MACHINE

State S1
Ir.1.1 712 Ccndition 12 MSG(m = mx, s d#F=, L= pi), CT =0,
) II.1.2 Fact 12 m>n
. I1.1.3 Action 12 a, + min D, (k)3
' k:F, (k) = UP
Ni(k) = @
II.1.h n, + m;
I11.1.5 ¥« s.t. F, (k) = BEADY if n, > z,(k}, then
Fi(k) « UP, Ni(z) « nil;
I1.1.6 trapsmit (ni,di) to all k s.t. F. (k) = UP
and k # P,
ﬁ 11.1.7 T « 1.
E II.2.1 7?13 Condition 13 (MSG (& = p;»d = @ m) or FAIL(Z = pi))» CT = 0,
I1.2.2 Faect 13 If MSG, then m 2> n,.
11.2.3 Action 13 a + =5 ‘
IT1.2.4 if M5G, then n, + m;
II.2.5 ¥k s.t. F (k) = READY, i n, > z,(k), then
Fi(k) + UP, “1(1‘) + nil;
11.2.6 '~ transmit (ni,di) to all k s.t. Fi(k) = U’P
' end k # p,;
’ 11.2.7 op v odly
11.2.8 cT « 1. 1

(continued)
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Table 3 (cont'd)

" State 82
II.3.1 T21 Condition 21 ¥k s.t, F (k) = UP, then Ni(k) =n; = mx;;
II1.3.2 dx s.t. F(k) = UP  and  Dy(x) < d;
II.3.3 1 CT = 6, then MSG;
II.3.4 ’ # o,
I.3 Di\pi) #
II.3.5 Fact 21 di # o, P; # nil.
I1I1.3.6 Action 21 Transmit (ni,di) to b
I1.3.7 Py * k*® that achieves min Di(k);

k:Fi(k)=UP

I1.3.8 "Vlk s.%. F'i(k) = UP, aset Ni(k) + nil;
T1.3.9 cT + 1,

TI.4.1 T22 Conditicn 22 MSG(m = mk, > Ny, d #>°,L= pi), cr = 0.

II.h.2 Action 22 Same es Action 12,

II.5.1 T22 Condition 22 FAIL(L # Pi)’ CT‘SvO.

11.5.2 Action 22 CT « 1,

I1.6.1 T23 Condition 23 Same as Condition 13.

11.6.2 Fagt 23 Seme as Fact 13,
11.6.3 Action 23 Same as Action 13,
State S
I1.7.1 732 Cerdition 32 Jk s.t. Fi(k) = UP,mx, = Ii?(k) > ni',Di(k) fo,
I1.7.2 Fact 32 p; = nil, & ==
1X.7.3 Action 32 et k* achievek min Di(k).
:Fi(k)'UP

”Ni(k)-mxi

(continued)




Table 3

II.7.4
IT.7.5
II.7.6

IT.7.7

11.7.8

II.7.9

11.8.1

I1.8.2

II.9.1
I1.9.2

I1.9.3

(cont'd)

State S2

722 Condition 22

AAction 52

T23 Condition 33
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Then p, * k*;

n, + nx,;

4; * Di(k“);

Vi s.t. F (k) = READY, if n > z,(k), then

Fi(k) + UP, Ni(k.) + nil;

transmit (ni,di) to all k s.t. Fi(k) = UP

end k # P53

CT « 1.

MSG{m = mx, > ni,d #F o, 2= Pi)’ CT = 0.

Same as Action 12

Same as Condition 13
Seme as Fact 13

Same as Acticn 13 .

——————— e ———— —
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Table b

The Algorithm for the SINK

For REQQmZ
CT + 0
execute FINITE-~-STATE-MACHINE.

For FAIL(R)
Fi(z) + DOWN ;
CT « 0

execute FINITE-STATE-MACEINE .

For MSG(m,d,%)

Ni(z) “m;
CT « 03
execute FINITE-STATE-MACHINE .

For WAKE(L
(Fact: Fi(z) = DOWN)

wait for end of WAKE synchronization;

1f WAKE synchronization is successful, then

Fi(r.) + READY;
CT+ 0

execute FINITE-STATE-MACHINE.

For START
CT « 0,
execute FINITE-STATE-MACHINE .

(continued)




Table 4 (cont’d)
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FINITE-STATE MACHINE FOR SINK

State Sl

T12 Condition 12

Action 12

State S2

i

N
.,
N

9

721

T2z

(CT = 0) and (REQ(m = nSINK) or FAIL or WAKE or START)

if (REQ or FAIL or WAKE))theu Norak ¢ PsINK +

Yk s.t. F. (k) = READY, then F, (k) « UP, N (k) + nil;

1;

transmit (“SINK’O) to all k s.t. Fi(k)'= UP;

CT « 1.

4
T21 Condition 21 'k s.t. Fi(k) = UP, then Ni(k) = Dermc’

Action 21

T22 Condition 22

Action 22

MSG or START.

7k s.t. F, (k) = UP, then N, (k) + NIL;

CT « 1,

(CT = 0) and (REQ(m = HSINK) or FAIL or WAKE)

Same as Action 12.

e A 1 e s s, 5
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SINK
(a) | (b)

Fig. 1: (a) Network example
(b) Corresponding directed tree

N
\ . .
A it -7 —
v Ve
//-. -7\\ — £

Fig. 2: Possible changes of Fi(l)
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