CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER --ETC F/6 9/2

DECOMPOSABLE SEARCHING PROBLEMS. (U)

OCT 78 J L BENTLEY 0001“-76*‘2-0370
CMU=CS=78=145

10

= ENT

| 8

\
.
Y

—

ADAQ61 627

FILE COR

e

@
DECOMPOSABLE SEARCHING PROBLEMS
@M/ﬁyl%— 76-C ‘/Jyl
DEPARTMENT
of
D D C

COMPUTER SCIENCE nr" r

szl

A~

Am od for public relecsey
Distribution Unlimited

Carnegie-Mellon Urlversuy
78 1?@41 017 %

CMU-CS-78-145

DECOMPOSABLE SEARCHING PROBLEMS

Jon Louis Bentley
Departments of Computer Science and Mathematics
Carnegie-Meilon University
Pittsburgh, Pennsylvania 15213

ABSTRACT

' Although searching is one of the most important problems in computer science and many
particular results are known for searching problems, there really is no satisfactory “theory of
searching”. In this paper we propose a first step toward such a theory by defining the class
of decomposable searching problems and then proving three theorems about problems in this
class. These theorems are all of the form "given a data structure D for a decomposable
searching problem we can transform D into a new data structure D’ for a related problem"”.
The correctness and complexity analysis of D are then used to establish the correctness and
‘complexity of D'. We present transforms for converting a static structure into a dynamic
structure, for adding “"range variables” to queries, and for making preprocessing/query time
tradeoffs. These transforms have already been used to develop a number of best known
“theoretical® algorithms, and promise to be an important tool in software engineering. [\

This research was supported in part by the Office of Navali Research under Contract
NO0O014-76-C-0370.

11 October 1978 Decomposable Problems -|-

Table of Contents

1. Introduction

2. Decomposable Problems

3. Dynamic Structures

4. Adding Range Varisbles

5. Preprocessing/Query Time Tradeoffs
6. Conclusions

OCOODLN -

| o i e
! ope LEU P

-0 Sty aQ i
i

M RtaATIOR

11 October 1978 Decomposable Problems -1-

1. Introduction

_The young field of "Concrete Computational Complexity™ has given birth to a large number
of interesting and useful results in the past decade. These resulls have allowed us to apply
the toois of mathematics to the problems of describing real-world costs of computations.
Unfortunately, however, most of these results have been of a fairly limited scope; the
literature is rich with theorems of the form “this probism is of thic complexity” but has few
statements such as “all problems in this class have this complexity®. In this paper we define
such a class of problems and prove three theorems about the complexity of problems in that
class.

We investigate the problem of algorithms and data structures for searching and focus our
attention on a class of searching problems we call decomposable. We give an ilgobraic
definition of decomposable searching problems that allows one to test whether a given
problem is in fact decomposable. We then give three constructions that allow one to
transform a data structure for a "common® decomposable problem into a structure that solves
a more "exotic” problem. We make no assumptlions about the underlying "common” structure;
we use only the fact that the problem is decomposable.

We see this work as one of the first steps towards Tarjan's [1978] goai of a “calculus of
data structures”. Although new results are presented, we see the main contributions of this
paper more in its systematization of a broad class of resuits. We characterize the class by
the algebraic structure of the problem statement, which is a fundamentally different kind of
characterization than those used to identify other well-known complexity classes. The
NP-Complete problems are dafined by reducibilities, as are many diverse problems that are
known to be equivalent in complexity to matrix multiplication. Lipton and Tarjan [1977] solve
@ diverse class of problems by giving a method applicable for many problems in a specific
domain. (planar graphs).

This paper describes the research on decomposable problems that was done up to the end
of 1977. Since that time the author and James B. Saxe have found a number of further
resuits in this area. This paper can therefore be viewed as an introduction; a more complete
description of decomposable searching problems will appear in Bentley and Saxe [1978] In
Section 2 of this paper we present our model of searching and define the class of
decomposable problems within that framework. The three main constructions are sketched in
Sections 3, 4, and 5. In Section 6 we present conclusions.

11 October 1978 Oecomposable Problems -2-

2. Decomposable Problems

A static searching problem is usually given as follows: preprocess a set (or “file”) F of N
objects into a data structure D such that certain kinds of queries about F can be answered
Mculy. (In some contexts F is a multiset; we refer to it here ss a set for brevity.) To
analyze the structure D we give three functions of N: Sp(N), the amount of storage required
by D; Pp(N), the preprocessing time required to build D; and Qp(N), the time required to
answer a query. Unless explicitly stated otherwise, throughout this paper we will sssume
that we are measuring the "worst-case™ complexity of these quantities.

The most well known example of a searching problem is usually called the Member problem,
given as follows: preprocess N elements from a totally ordered set such that queries of the
form "is x in set F?" can be answered quickly. A common solution to this problem is to store
the elements of F in a vector sorted into increasing order and then answer qi.mon by binary
search. Analyzing this vector scheme shows that P\y(N) = O(N Ig N), Sy(N) = O(N), and
Qv(N) = O(lg N). A more difficult kind of searching problem is the Nearest Neighbor or Post
Office problem which calls for preprocessing a set F of N points in the plane to facilitate
queries of the form “what is the nesrest neighbor in F to point x!* (where x is not
necessarily in F). A data structure recently given by Lipton and Tarjan [1977) has
PL(N) = O(N Ig N), S (N) = O(N), and QL(N) = O(ig N).

Both Member and Neasrest Neighbor are decomposable problems. Before formally
describing the class of decomposable problems, we will illustrate certain features of the class
with examples from these two problems. The first point to be made is that it is the Member
and Nearest Neighbor problems themselves that are decomposable, and not the particular data
structures or algorithms used to solve the problems. An informal definition of
decomposability is that a search problem is decomposable if one can answer a query about
set F by combining the answers to the query asked of sets A and B, where A and B are an
(arbitrary) partition of F into two subsets. Member is decomposable because x is a member
of F if and only if x is a member of A or x is a member of B, for any partitioning of F into A
and B. Likewise Nearest Neighbor is decomposable because the distance from x to its nearest
neighbor in F is the minimum of the distances from x to its nearest neighbors in A and B, once
again for any partition. (We deal here with distance to nearest neighbor for tractability;
extra bookkeeping will tell which point realizes that distance.)

We can now give a more formal definition of decomposability. We say that a t_urchin;
problem is decomposable if the response to a query asking the relation of a new object x to
set F can be written as

11 October 1978 Decomposable Problems -3-

Q(x,F) = O qlx,f).

f<F
" We assume that [J is the repealed application of the binary operator (3 over all elements
in its domain. For ([0 to be well defined mathematically [must be associative,
commutative, and have an identity; for computational efficiency we require that (O be
! computable in constant time. We can cast Member in this framework as

Member(x,F) = OR equal(x,f)
feF

and Nearest Neighbor as

NN(x,F) = MIN distance(x,f).
feF

It is clear 'thal the queries that can be cast in this schema obey the informal definition of
decomposability we gave above; for any partition of F into A and B, we know by the
.associativity and commutativity of [that

Q(x,F) = ' l'? qlx,f)
€
= 0 (Q alxg) O alx,h)
g¢A heB

» O (QxA)Qx,B)) .

More than twenty decomposable searching problems have been identified; we now mention
s few of these. From problems on linearly ordered sets (where the file to be preprocessed
contains elements from such a set) we have already seen the example of Member. Further

examples are Successor (what is the least element in F greater than x?), Rank (how many
elements in F are less than x?), and Count (how many elements in F have value x?). In Data
Base problems, all of the problems that Rivest [1974) calls intersection queries are
decomposable; these include secondary key retrieval, partial match searching, and range
searching. Computational Geometry abounds with examples of decomposable problems. We
have already mentioned Nearest Neighbor; related docompoublol problems are Farthest
Neighbor (which point is most distant from x?) and Fixed Radius Near Neighbors (which points
are within some fixed distance d of x?). Queries dealing with more complicated geometric
structures can also be decomposable; examples of such problems are given by Dobkin and
Lipton [1976]

Although many searching problems are decomposable, some others are not. An example of
a probiem that is not decomposable is convex hull inclusion (preprocess N points in the plane;
a query asks if a new point is within their convex hulll. For any given point x within the
convex hull of F it is not hard to find a partition of F into A and B such that x is not within

11 October 1978 Decomposable Problems -4 -

the convex hull of either A or B. We can use this to prove thal convex hull inclusion is not
decomposable.

3. Dynamic Structures

In this section we turn our attention from static problems to dynamic problems. In static
probiems the data is organized once-and-for-sll before any searches are done. In: dynamic
problems the set F (and the data structure D) are initially empty and elements ere then added
to F one-by-one. (The term dynamic somelimes implies that elements can also be deleted
from F; we do not use it in that sense.) The most well known example of a dynamic data
structure is the AVL tree described by Knuth [1973]1 An AVL tree allows N elements to be
inserted at a total cost of O(N Ig N) at any point one can answer Member queries in O(ig N)
time. In this section we will first develop & dynamic structure for the Nearest Neighbor
problem, and then show how the techniques we employ can be used to convert any static
structure for a decomposable problem into a dynamic structure.

There are two naive approaches o this problem. The first stores the points in the plane
in & linked list, inserts a new point by sppending it to the front of the list, and answers a
query by examining svery point in the list. Calling this structure 8 (for “brute force”) we
have

Pg(N) = Sg(N) = Qg(N) = O(N).
A second naive solution calls for using the Lipton/Tarjan structure and rebuilding it after
each insertion. This “rebuilding” scheme yields PR(N) = O(N2 Ig N), Sg(N) = O(N), and
Qr(N) = X(ig N). In choosing between these schemes one could achieve very good insertion
time or very good query time, but not both. We will now develop a structure that has both.

Our faster structure will consist of a set of Lipton/Tarjan structures (which we abbreviate
as LTS), each of a distinct size which is a power of two. Our structure is initially empty.
When the first point is inserted, we build an LTS of size one. When the second point is
inserted, we build the two points into an LTS of size two, discarding our previous LTS of size
one. When the third point is inserted we have two LTSs (of sizes one and two), and after the
fourth point is inserted we have one LTS of size four. Insertions proceed in a way analogous
to binary counting: after the N-th element is inserted we have an LTS of size 2l it and only
if the j~th bit of the binary integer N is one. (This structure is similar to the binomial queues
of Vuillemin [1978]) To answer a Nearest Neighbor query for a new point x we perform a
nearest neighbor search for x in ell the LTSs in our structure, then return the minimum of
those as the:snswer to the query.

To analyze our structure (which we call L', because it is a transtormation of the LTS L) we

11 October 1978 Decomposable Problems -5 -

note that if L' contains N elements then we are using at most Ilg N LTSs. Since each of those
is of size less than N we know that we can perform a nearest neighbor search on any of
them in O(lg N) time. Therefore the time required to search is QL (N) = O(Ig2 N). Since each
of the LTSs requires space linear in the number of elements it contains, the total space
requirement of L' is Sy {N) = O(N). To count the total cost of having inserted N elements into
L’ is a bit more difficult. The total cost of building LTSs of size m = 2l is the cost of building
one LTS of size m multiplied by the number of times the j-th bit in a binary word turns from
zero to one in counting from zero to N. If we assume that N is a power of two then a simple
sum shows that P «(N) =)N l;z N), and we can use this fact to show that P «N) is of the
same order for N not a power of two.

The structure that we have used for dynamic Nearest Neighbor searching can be used to
convert any static structure for a decomposable problem into a dynamic structure for that
problem. We will assume that we are given a static structure D with performances Po(N),
SD(N), and Qp(N). Our dynamic structure D’ will consist of a set of static structures, each of
distinct size a power of two, built as before in a manner analogous to binary counting.
Analyzing D’ shows

Ppo«N) = O[P(N) Ig N},
QpN) = O[Qp(N) ig N} and
Sp«N) = O[Sp(N)}

The above analysis shows that we can convert a static structure to a dynamic structure
with only a logarithmic increase in query and insertion times, We can achieve even better
.results for some structures. If the static query time Qp(N) grows as QUNE) for some € > 0,
then we can show that QD-(N) is bounded above by some constant times Qp(N). Likewise if
Pp(N) grows faster than Nl“, then we will not incur the additional logarithmic factor in
Pp«N). For certain structures we do not have to build the static structures over again from
scratch--we can merge existing structures. In that case too we can avoid the extra
logarithmic term in Pp«(N). (We can give at least five examples of such structures.) We can
also show that for some problems the increase of the logarithmic factor is not incurred if we
measure average instead of worst-case query times. :

This static-to-dynamic transformation has already been used to yield a number of new
algorithms. Bentley, Detig, Guibas and Saxe [1978] describe “binomial lists”, which were
obtained by applying the transtormation to sorted arrays. They show that with proper
implementation the storage used by binomial lists is absolutely minimal and that their
structure is optimal over the class of all structures using only minimal storage. In addition to
theoretical interest, their structure is efficiently implemented and experiments show that it is
competitive with other dynamic member structures in many applications. Another use of this

L- , e —— — T *J

11 October 1978 Decomposable Problems i -

transform has been given by Yao, Yao and Bentley [1978) They reduced the complexity of
calculating the “rank function® in a veclor set from barely sub-quadratic to N times a
polynomial in ig N by transforming a static maxima searching structure to dynamic.

Many other aspects of converting static search structures to dynamic will be described by
Bentley and Saxe [1978] In this section we have seen a transform that increases both query
and processing costs by a factor ot O(lg Nl Bentley and Saxe display a whole set of
; transformations which add a fector of k to query time and a factor of kNl/" to processing
; 4 time, for any fixed integer k. (For example, it is possible to convert a static structure to
! dynamic by adding a factor of 5 to query time and 5N /3 1o processing time; this might be
useful if many queries were anticipated.) Further, they show that using only the properties of
decomposability, these transformations are optimal to second-order terms. They then
demonstrate “dual” transtormations that add a factor ot k to processing times at the cost of
increasing query times by a factor of (u2/2)Nl/". They investigate the question of dynamic
structures in which elements can be deleted as well as insarted and show that although
delation is provably infeasible in general, if (O is invertible then deletion can be achieved at

D

e DA T I

a cost of only a constant factor. They also show how the processing time between insertions
can be bounded; this is usetul in on-line systems. In related work, Bentley and Shaw [1978)
have formally proved the correctness of the static-to-dynamic conversion discussed in this
chapter by writing it as an Alphard form and proving its correctness in that context. Similar
methods can be used to prove formally the correctness of all the transforms of Bentley and
o Saxe.

4. Adding Range Variables

In the last section we showed how to transform a siatic structure into a dynamic structure;
in this section we will show how to transform a static structure for a particular query into a

static structure for a related query. We will illustrate the construction by first applying it to
the planar Nearest Neighbor probiem, and then considering the general case. The related
searching problem that we will solve is most easily stated if the points in the plane are
viewed as cities, each of which has an associated population. We are to preprocess the N
cities and their populations. A query will give a point x in the plane and a population range
(described by upper and lower bounds), and the search must determine which of the cities in
the desired population range is the closast to point x} (So a query might ask “of all the cities
with population between 60,000 and 120,000, which is the closest to point x?*.)

1TNe search in of 1he same form ae ene described by Knuth (1973, p 550) oe “more complicated then thooe airesdy
quite difticuit and \herefore vsuelly nel considered”.

|
|
rv
|

11 October 1978 Decomposable Problems -7-

The data structure we use to solve this problem is a tree that has LTSs in all its nodes.
The root of our tree contains an LTS representing all the cities in F. The left son of the root
will represent all cilio's with population less than the median population, and the right son will
represent the cities with populations greater than the median. In each of those nodes there
will be an LTS representing haif of the cities. This partitioning continues so that on the i-th
level of the tree there are 2| LTSs, each representing cities contiguous in the population
dimension. To answer a query for the nearest neighbor to point x in population range R we
will search for the nearest neighbor to x in a subset of the LTSs (the union of which is all of
the cities in the range), and then return the minimum of the reported distances. Specifically
we search all the the LTSs that represent a population range contained in R and having
fathers with range not contained in R. We can easily describe exactly which LTSs will be
searched by a recursive algorithm which visits the nodes in the tree containing the relevant
LTSs.

The first step in analyzing our structure is to note that the tree we build is Ig n levels
deep. The time required for building the LTSs on each level is bounded above by O(N ig N),
s0 we have P «{N) = O(N lgz N) (L' now represents the LTS with range restriction capability
added). Likewise the storage required on any level is O(N), so S| {N) = O(N Ig N). Since at
most two LTSs are searched on any level (at cost bounded above by O(ig N)), we have
QL¥N) = O(lgz N). Thus we see that our new structure adds a factor of Ig N to each of the
cost functions we measure.

We consider now the general case in which each element f of the set F contains an
additional population dimension written p(f). The modified query we want to answer (for
object x and range R) is

Q'(l'RnF) . D q(x,f).
feF
p(IXR

The structure we use is the tree structure described above in which each node of the tree
contains one of the original structures D. Analyzing the resulting structure D' as before
shows that a factor of Ig N is added to each of the cost functions giving

Pp«N) = O[Pp(N) 1g N},

Sp«N) = OfSp(N) Ig N}, and

Qp«N) = O[Qp(N) Ig N}

This transformation can be used to solve the “"range searching” problem defined by Knuth
[1973, p. 554] In this problem we preprocess N points in k-space and answer subsequent
queries asking for all points that have every key value in some specified range (that is, for all

11 October 1978 Decomposable Problems -8 -

points lying in some rectilinearly-oriented hyperrectangle). Range searching in one dimension
can be accomplished by use of a sorted vector. We can use this structure as a "base” and
add k-1 additional range variables by the transform of this section. We then apply the
“speedup” of merging structures to yield the "range tree” structure R with performances

PRINK) = O(N (ig Mk™D),

SR(NK) = O(N (Ig N*"1), and

Qr(NK) = Ol(lg N)* + F)
where F is the number of points found in response to the query. This structure is the best
known structure for range searching, and was discovered through the use of this
decomposable transform. This transformation can also be used to derive the data structures
for "Maxima Searching” and "ECDF Searching” described by Bentley and Shamos [1977]

Further aspects of adding range variables will be described by Bentley and Saxe [1978]
Just as in the static-to-dynamic transformation there were a set of conversions, so there are
in this transformation also. We have seen in this section a transformation which increases the
preprocessing, storage, and query costs by a factor of O(ig N). Bentley and Saxe show a set
af transformations that increase preprocessing and storage costs by a factor of k and query
costs by a factor of O(N!/®). The dual transform adds a factor of k to query costs and
increases preprocessing and storage requrements by O(Nll k), They also show that these
increases are not always ircurred. They can be avoided in exactly the same way as in the
static-to-dynamic conversion: if the underlying structures can be merged quickly, if the
underlying functions are fast growing, or if average query times are considered. The
transformations that we have described in this section add a range variable to a static
structure, yielding a new static structure. Lueker [1978] has described a new transformation
that is applied to a dynamic sructure and yields a new dynamic structure in which range
variables can be specified. He has used this transform to produce best-known structures for
dynamic range searching, ECOF searching, and maxima searching.

S. Preprocessing/Query Time Tradeoffs

In tﬁis section we examine the final construction for decomposable problems. Unlike the
two other constructions, this construction is not due to the author. It has been used
previously in a number of algorithms, and it is included here because its scope of applicability
is precisely the decomposable problems. The construction is appropriate for a structure that
has very high preprocessing time or storage; it allows us to develop a class of structures
with decreased preprocessing and storage requirements at the cost of increased search time.

The data structure makes use of clusters. The preprocessing partitions the N elements of F
(at random) into N/c clusters of ¢ elements each, then applies the preprocessing algorithm of

11 October 1978 Decomposable Problems -9 -

D to each of the clusters to build N/c structures. To answer a query we search each of the
clusters and then combine those answers (by decomposability) to torm an answer to the
original query. Analyzing the resuiting structure 0' shows

Qp(N) = (N/c) Qple),
SpN) = (N/c) Spfc), and
Pp(N) = (N/c) Pp(c).

Notice that a continuum of performances is achievable.

This transform has been used by A. Yao [1977] to achieve a number of new resuits. He
used as "underlying” structures those presented by Dobkin and Lipton [1976] that had
logarithmic search times but preprocessing and storage that were (a large) polynomial in

N. By ~hoosing ¢ appropriately (as a function of N) Yao was able to achieve the best known
algorithms for many multidimersional problems. Yao's methods can be applied to many other
problems that do not prima facie appear lo be searching problems. These are problems
which ask a "decomposable function® to be computed over every element in a set. Naive
algorithms for performing this task require quadratic time, but the problem can be reduces to
performing N decomposable searches. Yao's methods can then be applied to yield
sub-quadratic algorithms. There are cther applications of this transformation of structures in
more typical searching contexts. In many applications the available storage is bounded, so
we can use these methods to design a structure that will use exactly as much storage as is
available. If we know in a certain application exactly how many searches will be made, then
we can choose the cluster size to minimize the total cost of preprocessing and searching.

6. Conclusions

To summarize this paper we have seen at least two types of resuits. On a higher level we
have seen three transforms that can be applied to searching structures for decomposable
probiems: converting a static structure to dynamic, adding “"range variables” to a structure,
and making preprocessing/query time tradeoffs. These transforms have already been used to
yield results on a more concrete level. These include the currently best known "theoreticai®
algorithms for such problems as the rank function, member searching, range searching, and
minimal spanning trees. These transforms can also be used as software engineering tools:
each transform is easily coded and would be a valuable entry in a "software engineering
handbook”.

Throughout this paper we have mentioned other work on decomposable problems that has
already been done and will be reported by Bentley and Saxe [1978] Much further work,
however, remains to be done. Open problems inciude identifying additional decomposable
problems, showing more efficient transforms than those we discussed, giving new types of

11 October 1978 Decomposable Problems - 10 -

transforms, sho'wing the optimality of transforms, performing exact (Knuthian) analysis of
transforms, and developing software to implement these transforms. Perhaps the most
obvious open problem, though, is to identify other classes of problems and prove general
results concerning problems in the class.

In conclusion, this paper contains three kinds of -results. The first kind of result that we
have seen is a set of particular algorithms; the framework of decomposable problems has
been useful in both the discovery and the presentation of these algorithms. The second kind
of result we have seen is the three particular transforms, and the different tradeoffs
available within each transform. The final kind of result in this paper is the definition of the
class of decomposable problems. To the author’s knowledge, this is the first example of a
class of problems that is defined algebraically and for which a general set of conversions is
known. This kind of result promises to be valuable both in proving theorems about the
asymptotic complexity of computational problems and in providing software engineers with
more powerful tools.

Acknowledgements

The author gratefully acknowledges helpful conversations with David Jefferson and Andrew
and Frances Yao. The contributions of James Saxe to the author's understanding of
decomposable problems (and thereby to the presentation of this introductory paper) are too
numerous to mention; a simple "thanks" will have to suffice.

References

Bentley, J. L., D. Detig, L. Guibas, and J. B. Saxe [1978] An optimal data structure for
minimal-storage dynamic member searching, in preparation.

Bentley, J. L. and J. B. Saxe. Decomposable searching problems, in preparation.

Bentley, J. L. and M. Shaw [1978] A class of correct and efficient transformations for
converting data structures from static to dynamic, in preparation.

Bentley, J. L. and M. I. Shamos [1977] "A problem in multivariate statistics: algorithm, data
structure, and applications”, Proceedings of the Fifteenth Allerton Conference on
Communication, Control and Computing, pp. 193-201.

Dobkin, D. and R. J. Lipton [1976] “Multidimensional searching problems”, SIAM Journal of
Computing 5, pp. 181-186.

Knuth, D. E. (1973] The Art of Computer Programming, volume 3: Sorting and Searching,

11 October 1978 Decomposable Problems -11 -

Addison-Wesley, Reading, Mass.

Lipton, R. J and R.E. Tarjan [1977] “Applications of a planar separator theorem",
Eighteenth Symposium on the Foundations of Computer Science, pp. 162-170,

Lueker, G. S. [1978]) A transformation for adding range restriction capability to dynamic
data structures for decomposable searching problems, UC Irvine Technical Report. '

Rivest, R L (1974] Analysis of associative relrieval algorithms, Stanford Computer
Science Department Report STAN-CS-74-418, 102 pp.

Tarjan, R E. [1978) “Complexity of combinatorial algorithms®, SIAM Review 20, 3, pp.
457-491 (July 1978).

Vuillemin, J. (1978] "A data structure for manipulating priority queues,” Comm. of the
ACM, 21, 4, pp. 309-315 (April 1978).

Yao, A. C. (1977} “Fast algorithms for finding minimum spanning trees in k dimensions”,
Proceedings of the Fifteenth Allerton Conference on Communication, Control and Computing,
pp. 553-556.

Yao, A. C, F. F. Yao, and J. L. Bentley [1978) On computing the rank function of a set of
vectors, to appear.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE ("hen Dete Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

[T REPORT NUMBER 2. GOVY ACCESSION NO.
CMU-CS-78-145

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subdtitle)

| B Tyrg QF REPORY & PERIOD COVERED

Interim

DECOMPOSABLE SEARCHING PROBLEMS

6. PERFORMING ORG. REPORT NUMBER

0. CONTRACT OR GRANT NUMBER(e)

Carnegie=Mellon University
Computer Science Dept
Schenley Park, PA 15213

. AUTHOR(s)
Jon Louis Bentley N00014-76-C-0370
[B PIIFORM‘INO ORGANIZATION NAME AND ADORESS 0. ::gg.C‘.'.O‘ILK':::‘T?.N’U.MOOJI‘S:. TASK

1. CONTROLLING OFFICE NAME AND ADORESS

Office of Naval Research
Arlington, VA 22217

12. REPOART DATEK

October 1978

13. NUMBER OF PAGES

2. IONI'; RING AGENCY NAME & AOORESS(I(different lrem Contrelling Oftice)

SAME AS ABOVE

18. SECURITY CLASS. (of tAie repert)

a. ASSIFICATION/ DOWN IN
SCHEOULE

16. OISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unl 1m1‘t:ed

17. DISTRIBUTION STATEMENT (of the abetract entered In Bleck 20, If ditferent fremn Repeort)

18. SUPPLEMENTARY NOTES

19. XEY WORDS (Continue en reverse oide Il necescary and identily by dleck number)

fy by bleck ber)

20, ABSTRACT (Centinue en reverse side If y and !4

€OITION OF | NOV 68 1S OBSOLETE
$/N 0102014+ 6601 |

DD ,on'ss 1473

UNCLASSIFIED

c———————— e et e e e .
SECURITY CLASSIFICATION OF THIS PAGE ("hen Dote Bntered)

-

L

