
AD AOD L 626 CARPtGIE—N€LLON UNIV PITTSBURGH PA DEPT OF COMPUTER —ETC FIG 912
MULTIDIICNSIONAL BINARY SEARCH TREES IN DATABASE APPLICATIONS . (U)
SEP 78 .J L BENTLEY N00014—76—C—O3 70

UNCLASSIFIED CMIfrCS 7G I39 NI.

• 0!_I!!
n ull

I

/

i a” ~ VlII2~ H2~I .V L~~~~~~ ’~~
_ _ _ _

2.2
I-

I I.’ IIII~
IIIII~1110 1

~ IIIH~•~. m~
MILRI~~uPY RESOLUTION T EST HAq~

~~‘ BU~(4II S ’ A N L ~~ L~~~~~

—

CI4U—CS-78-139

~ ~~~~~~~

MULTIDIMENSIONAL BINARY SEARCH TREES IN DATABASE APPLICATIONS

Jon Louis BsntIsy
Dapartm.nt. of Comput.r Scienc. and Math.m.tlcs

Carn.gi.-M.I Ion University
Pittsburgh, P.nnsylv.nia 15213

S S.pt.mb.r 197$

DEP ARTME NT
of
COMPUTER SCIENCE

I. ~~~~~~ N I
Carnegie-Mellon Universit y

Oi~
)

- _ _

/ cMu—CS-78-139

i
i

—

ffiULTIDIMENSIONAL BINARY .$EARCH TREES IN ~ ATA8ASE APPLICATIO~~J/

o Jon Louis/Bentleyj
_ _ _Depart men of Computer Science a~d Mathematics

Carnegie— Mellon University
Pittsburgh, Pennsylvania 15213

f J ,. S $ e p ~L ~~7 /

- -: - ,

/

/ : / ~
‘

~~~

Abstract

The multidimensional binary search tree (abbreviated k-d tree) is a data structure for
storing multi-key records. This structure has been used to solve a number of problems in
geometric data bases arising in statistics and data analysis. The purposes of this paper are
to cast lc-d trees in a database framework, to collect the results on k-d trees which have
appeared since the structure was introduced, and to show how the basic data structure can
be modified to facilitate implementation in large (and very large) databases.

The research in this paper was supported in part by the office of Naval Research under
contract N00014-76-C-0370.

~/);~ ~~ c__~

/ /



- ~~~~~j j ~~~~~~~
—-  ~~~~~~~~~~~

8 September 1978 k-d Trees - i -

Table of Contents

1 Introduction 1
2 One-dimensional Binary Search Trees 1
3 Multidimensional Binary Search Trees 5
4 Searching in k-d Trees 7

4.1 Exact Match Queries 7
4.2 Partial Match Queries 7
4.3 Range Queries 8
4.4 Best Match Queries 9
4.5 Other Queries 9

5 Maintaining k-d Trees 9
6 Implementing k-d Trees 11
7 Further Work 12
8 Conclusions 13

54* P~xs ’..~d~~
~~~~~

~~~~~~ ~~~~~~~~~~~~~~~~~~~~

—1 —— -__---_ —



8 September 1978 k-d Trees - 1 -

1 Introduction
It is no secret that the designer of a database system faces many difficult problems and is

armed with only a few tools for solving them. Among those problems are reliability,
protection, integrity, implementation, and choice of query languages. In this paper we wit)
examine a solution to yet another problem which the database designer must face (while
keep ing the above problems in mind): the design of a database system which facilitates rapid
search time in response to a number of different kinds of queries. We will confine our
attention to databases of fixed length records without pointer?; specifically we assume that
we must organize a file F of N records, each of which contains Ic keys. Much previous research
has been done on problems cast in this framework; the interested reader is referred to Lin,
Lee and Ou (19763, Pivest (19761 and Wiederhold (1977, Chapters 3-43 for discussions of
many different approaches.

In this paper we will examine a particular data structure, the muit/4imensioao.L buiary
search tree, for its suitability as a tool in database implementation. The multidimensional
binary search tree (abbreviated k-d tree when the records contain k keys) was introduced by
Bentley [1975]. The k-d tree is a natural generalization of Che well-known binary search
tree to handle the case of a single record having multiple keys. It is a particularly interesting
structure from the viewpoint of database design because it is easy to implement and allows a
number of different kinds of queries to be answered quite efficiently. The original exposition
of k-d trees in Bentley (1975) was cast in geometric terms, and since that time the k-d tree
has been used to solve a number of problems in geometri? data bases arising in data
analysis and statistics. The purposes of this paper are to cast k-d trees in a database
framework , to collect the results on k-d trees which have appeared since the structure was
introduced, and to show how the basic data structure can be modified to facilitate
implementation in large (and very large) databases.

Since k-d trees are a natural generalization of the standard binary search trees we will
review that well-known data structure in Section 2. In Section 3 we develop the
k-dimensional binary search tree (k-d tree). We describe how different types of searches
can be performed in Section 4 and discuss the maintenance of k-d trees in Section 5. Section
6 faces the problems of implementing k-d trees on different storage media, and directions for
further work and conclusions are offered in Sections 7 and &

2 One—dimensional Binary Search Trees

In this section we will briefly review binary search trees; a more thorough exposition of
this data structure can be found in Knuth (1973, Section 6.23, Figure 2.1. is an illustration of



~
-1

8 September 1978 tc-d Trees - 2 -
a binary search tree representing the numerically-valued keys 31, 41, 15, and 92 (which
were inserted in that order). In Figure 2.1.b the additional key 28 has been inserted. The
defining proper ty of a binary search tree is that for any node x the key values in the left
subtree of x are all less than the key value of x and likewise the key values in the right son
are greater than x’s. To search to see if a particular value y is currently stored in a tree
one starts at the root and compares y to the value of the key stored at the root, which we
can call z. If y equals a then we have found it, if y is less than a then our search continues in
the left son, and if y is greater than z then we continue in the right son. To insert an
element we apply the searching process until it f ails out of the tree and then change the
last null pointer observed to point to the new element.

31 31

15 

a.) 

15 

b.)

Figure 2.1. Two abstract binary search trees.

The abstract binary search tree can be implemented on a computer in many different ways.
The most popular representation of a node in a tree is what we will call the homogeneous. In
this representation a node consists of a KEY field (which holds the single key defining the
record), LEFT and RIGHT son pointers, and additional fields which hold the rest of the data
associated with the record. Note that in this approach a node in the tree serves two distinct
purposes: representation of a record and direction of a search. These two functions are
separated in a nonhomogeneous binary search tree, in which there are two kinds of nodes:
internal and external. An internal node contains a KEY field and LEFT and RIGHT son point.rs,
but no data; all records are held in external nodes which represent sets of records (or
perhaps individual records). In nonhomogeneous trees it is important to make the convention
that if a search key is equal to the value of an internal node, then the search continues in the
right subtree. Homgeneous trees are superior to nonhomgeneous trees when the slements of
the tree are inserted succesively. If the elements are to be built once-for-all into a p.rf.ctly

- a’. ’- I ~~~~~~~



8 September 1978 lc-d Trees - 3 -
balanced tree then the nonhomogeneous tree is usually preferred. Figure 2.2 depicts a set of
records stored in the tw o kinds of trees. Another situation in which the nonhomgenous tree
is superior to the homgeneous tree is when the records are to be stored on a secondary
storage device. In that case the nonhomgeneous tree offers the advantage that entire
records do not have to be read into main memory to make a branching decision when Only
the key is required; we will cover this point in detail in Section 6. 

-- ~~~~~~~~~~~~~~~~~ -~~



8 September 1978 k-d Trees - 4 -
Root 

_ —Other data

Adams L/”J Richards L~’1

[~~arles L,1,’l [Smith l/”1~,/’j I
a.) Homogeneous

Root

Richards

LAdams 

Oth~r~~~a~~~~~~~~~ 

I Rich~~~~~~~1 Smith

b~) Nonhomogeneous

Fi gure 2.2. Binary search tree implernentations.

In the abov• discussion we have alluded to a number of algorithms for performing
operations on binary searc h trees. Algorithm SEARCH tells if a record containing a given key
is stored in the tree; Knuth has shown that this algorithm takes OOg N) expected time if N 



- . - .. 
~~~~~ 

8 September 1978 k-d Trees - 5 -

elements are currently stored in the tree. Algorithm INSERT inserts a new node into a
(homogeneous) tree. Its average running time is also logarithmic; if one builds a tree of N
elements by using INSERT N times the expected cost of that procedure is O(N Ig N~. An
alternative approach is to build a perfectly balanced tree (for every node, the number of
right descendants equals the number of left descendants) by algorithm BUILD; this can be
accomplished in O(N Ig N) worst -case time. Note that while a homogenous tree may be
balanced by BUILD, it is imperative that a nonhomogeneous tree be built by this algorithm.

Before we generalize this one-dirnensional binary search tree to become
Mmultidimensionai (that is, deal with several keys per record instead of just one) it is
important that we stop for a moment and examine the 0philosophy of binary search trees.
These structures perform three tasks at once. Firstly, they store the records of a given set.
Secondly, they impose a partition on the data space (that is, they divide the line into
segments>. Thirdly, binary search trees provide a d~rector~ which allows us to locate rapidly
the position of a new point in the partition by making a logarithmic number of comparisons.
In the next section we will see how these essential features of binary search trees can be
captured by a structure which allows a single record to be retrieved by many different
se arch keys.

3 Multidimensional Binary Search Trees
The binary search trees of Section 2 can be used to organize a file of data in which all

records contain just one key field and other data fields. If there are many key fields in each
record, however, binary search trees are inappropriate because they use only one of the key

fields to organize the tree.1 We will now see how standard binary search trees can be
generalized to make use of all the key fields in a file F of N records of Ic keys each. A
standard binary search tree “discriminates during an insertion (that is, tells the insertion to
proceed right or left) on the basis of one key field. In a multidimensional binary search tree
(k-d tree) this discrimination is done on different keys. Specifically, assume that each record
in the file has Ic keys, K1,

~2’ _, Kk. On the first level of the tree we choose to go right or
left when inserting a new record by comparing the first key (K1) of the new record with the
first key of the record stored at the root of the k-d tree (assume a homogenous
representation). At the second level of the tree we use the second key as the discriminator)
and so on to the k-th level. Finally at the (k+1)-st level of the tree we wrap around and
i~~ the first Key as the discriminator again. We illustrate this concept in Figure 3.1. Records
in that tree each contain two keys: name (K1) and age

~~~ 
Note how every record in the

W. say tha t a f isi d is a key V*Id if a qusry can refer to it. For .xsmpl., a iii of record s mi~kt each contain
employ., numbir , dspartm.nt numb.,, and ealary bslds; if quoriss can refer only to d.psrtm.nt numb., and salary than
thou, two fmld, are keys wIul. .mploy.. numb., is dat&



• ~~~~~~
— i .—. ..

8 September 1978 k-d Trees - 6 -

left subtree of the root has a name field less than the root’s, and likewise every record in the
right subtree has a greater name field. On the second level right subtrees have greater age
values.

Jones J 29 J~ 
Other data

~~~~~nes

ICha1
~
es j 27 L.~

•1 I Smith J 43

\27
\ç3

Adams
~~ I ~~~ [hards

~
52) [,/1~/1

Figure 3.1. A homogeneous 2-d tree: K1 is name and K2 is age.

We can now give a more formal definition of k-d trees. A homogeneous k-d tree is a
binary tree in which each record contains K keys, some data fields (possibly), right and left
son pointers, and a discriminator which is an integer between 1 and k, inclusive. In the most
straightforward version of k-d trees all nodes on level i have the same discriminator, namely
(i mod K). The defining property of k-d trees is that for any node x which is a j—discriminator,
all nodes in the left subtree of x have KJ values less than x’s K~ value, and likewise all nodes
in the right subtree have greater K~ value. To insert a new record into a k-d tree we start
at the root and search down the tree for its position by comparing at each node visited one
of the new record’s keys with one of the keys of that node, namely the one specified by the
discriminator. Bentley (1975] has shown that if a set of N random records are inserted into
a k-d tree then it will require approximately 1.386 Ig N comparisons to insert the N-th
record, on the average; the expected cost of performing all N insertions is O(N lg N).

As there are many implementations of one-dimensional binary search trees, so there are
many implementations of k-d trees. The K-d trees which we have described above
correspond to the homogenous binary search trees; it is also possible to define
nonhomogeneous k-d trees. Internal nodes in such k-d trees contain only a discriminator (an
integer between 1 and k), one key value (chosen by the discriminator), and left and right son
pointers. All records in nonhomogeneous k-d trees are stored in external nodes or “buckets .

8 September 1978 k-d Trees - 7 -

(This version of k-d trees was originally proposed by Friedman, Bentley and Finkel [1977).) A
file F of N records can be built into a perfectly balanced homogenous k-d tree in O(kN Ig N)

time; an algorithm for accomp lishing this is given in Bentley [1975). We w i l l see that
homogenous trees speed up many types of searches because records in the tree do not have
to be examined “on the way down” in a search; only records in well chosen buckets must be
inspected in their entirety. We will also see that nonhomogeneous trees offer some
substantial advantages in implementations on secondary storage devices. Another variation
among k-d trees is the choice of discriminators; this is appropriate for both homogoneous and
nonhomogeneous trees. We originally described a “cyclic” method f or choosing
discriminators--we cycle in turn through all K keys. For many kinds of searches one might do
better by choosing as discriminator (say) a key in which the data values are particularly well
“spread”, or by choosing a Key which is often specified in queries. We will examine these
issues in detail in the next section.

4 Searching in k-d Trees

In the last section we defined k-d trees and mentioned two algorithms for constructing
them: by repeated insertion and a “once-for-all ” algorithm that produces a perfectly
balanced tree. In this section we will examine a number of different algorithms for searching
k—d trees, each appropriate in answering a certain kind of query. We will discuss four
particular types of searches in detail, and then briefly mention other types of searching
possible in k-d trees.

4.1 Exact Match Queries

The simplest type of query in a file of k-key records is the exac t match query: is a
specif ic record (defined by the Ic Keys) in the file? To answer this query we proceed down
the tree, going right or left by comparing the desired record’s key to the discriminator in the
node, just as in the insertion algorithm. In the homogeneous version of k-d trees we will
either find the record in a node on the way down or “fall out” of the tree if the record is not
present. In the nonhomogeneous version we will be directed to a bucket and can then
examine the records in that bucket to see if any are the desired. The number of comparisons
to accomplish an exact match search is O(lg N) in the worst case if the tree is perfectly
balanced; it is also O(lg N) on the average for randomly built trees.

4.2 Partial Match Queries

A more complicated type of query in a multikey file is a “partial match query with t keys
specified”. An example of such a query might occur in a personnel file: report all employees

.
.

-
~~~

. - -

~~~~

- . .
~~

.

8 September 1978 k-d Trees - 8 -

wi th Length-of-Service — 5 and Classification — Manager , ignoring all other keys in the
rec ords. In general we specify values for t of the K keys and ask for all records which have
those t values, independent of the other k-t values. Bentley (1975] describes an algorithm
f or searching a k-d tree to answer such queries, whic h we will now sketch. We start the
searc h by visiting the root of the k-d tree. Whenever we visit a node of the lc-d tree which
discriminates by j—va lue we check to see if the value of the j-th key is spec ified in the query;
if it is, then we need only visit one of the node’s sons (which son is determined by comparing
the desired K1 wi th that node’s K~ value). If K~ is not one of the t keys specified, then we
must recursively search both Sons. Bentley (1975) shows that if t of K keys are specified
then the time to do a partial match search in a file of N records is O(tN1 - t/k)~1 As an
example, if 4 of 6 keys are specif ied in a partial match search of one million records, then
only approximately 400 records will be examined during the partial match search.

4.3 Range Queries

In a range query we specify a range of values for each of the K keys, and all records
w hich have every value in the proper ranges are then reported as the answer. For example,
we might be interested in querying a student data base to find all students with Grade Point
Average between 3.0 and 3.5, Parent’s Income between $12,000 and $20,000, and Age
between 19 and 21. This problem arises in many applications; Bentley and Friedman (1978]
mention some of those applicatione and survey the different data structures currently used
for solving the problem.

It is easy to answer a range query in a k-d tree; the algorithm to do so is similar to the
partial—ma tch searching algorithm. As we visit a node which is a j—discr iminator we compare
the j—va lue of that node to the i-range of the query. If the range is entirely below the value
then the searc h continues on the left son, if it is entirely above then the search visits the
right son, otherwise both sons are recursively searched. Lee and Wong (1977] have
analyzed the worst-case performance of that algorithm and have established that the time
required to perform a range search is never more than O(N1 - 1/K + F), where F is the
number of points found in the range. Although it is nice to know that things can never get
really bad, the average case of searching is much better. Bentley and Stanat (1975) reported
results for a data structure very similar to k-d trees which imply that the expected time for
range searching in k-d trees is O(lg N + F). It is difficult to analyze the exact performance of
range search ing because it is so dependent on the “shape” of the particular query, but
empirical evidence strongly suggests that k-d trees are very efficient.

1For f K If t — Ii than this a en .ssct match search, and O(l~ N> tim. is r.quii.d.

_ _ _ _ _ _ _

— .-- .

8 September 1978 lc-d trees - 9 -

4.4 Best Match Queries

In some database app lications we would like to query the database and find that it contains
exactly what we are looking for; a builder might hope to find that ~e has in his warehouse
exact l y the kind of steel beams he needs for the current project. But often the database will
not contain the exact item, and the user will have to settle for a similar item. The most
similar item to the desired is usually called the “best match” or the “nearest neighbor ” to the
desired. In information retrieval systems we hope for a book that discusses all ten topics in
our list, but we must settle for one (say) that mentions only eight. Friedman, Bentley and
Finkel [1977] showed how k-d trees can be used to answer such best match queries (where
“best” can be defined by many differ ent kinds of “distance functions ”). Their algorithm
depends on choosing the discriminators in a sophisticated fashion. They showed that the
expected amount of work to find the M best matches to a given record is proportional to
Ig N • M ir any fixed dimension. Their algorithm was implemented in FORTRAN for
applicati ons in geometric data bases and empirical tests showed that their algori thm is orders
of magnitude faster than the previous algorithms, for practical problem sizes. Since that time
Zolnowsky [1978] has analyzed the worst case of nearest neighbor searching in k-d tr~e~
and has shown that although any particular search can be rather expensive , if a search for
the nearest neighbor of every point in some fixed set is performed then the worst-case COS t

of searching will average to O((lg N)1’).

4.5 Other Queries

The four types of queries we have already investigated are the most common queries in
f ixed—format database applications. Other query types do arise, however , and K-d trees can
often be used to answer them. Bentley (1975) gives a procedure which allows ~.-d trees to
answer “intersection” queries which call for all records satisfying properties which can be
tested on a record-by-record basis. The best match algorithm of Section 4.4 finds the best
match to a particular record; that can be modified to find the best match to ~ more general
descript ion (such as a range, for example). An interesting modification to the basic idea of
k-d trees was made by Eastman (1977), who developed a binary tree data structure
appropria te for nearest neighbor searching in document retrieval systems.

5 Maintaining k-d Trees

In Section 3 we defined the k-d tree and in Section 4 we described different algorithms for
searching Ic-d trees; in t his section we will investigate the problems of maintaining k-d trees.
Specifically we will discuss the problems of buLZdu~g a set of records into a k-d tree,

_ _
-.. .. .

.~

8 September 197 8 k-d Trees - 10 -

inserti ng a new element into an existing tree , and deleting an existing elemen t from a tree.
We will discuss these problems in the tw o cases of homogeneous and nonhomogeneous trees.

We have already seen the insertion algorithm for homogeneous trees in Section 3. We

mentioned that a perfectly balanced tree can be built in O(kN Ig N) time; an algorithm to do so
is given by Bentley (1975], which we will now sketch for the case of cycl ic homogeneous
trees. The first step of the algorithm finds the median K1 value of the entire set (that
element grea ter than one half of the K1 values and less than the other half). We then let the
rec ord corresponding to that element be the root of the entire tree and put the N/2 elements
with lesser K 1 value in the left subtree and the other N/ 2 elements in the right subtree. At
the next level we find for each of those two subfiles of N/2 points their K2 medians, and use
those two records as the roots of the two subtrees. This process continues, finding the
medians at each level and partitioning around them. If a fast algorithm is used to find
medians, then this can be accomplished in O(kN lg N) time. Deletion of a node in a
homogeneous lc-d tree seems to be a fairly difficult problem. Bentley [1975] gives an
algorithm which can delete a node in O(N1 - 1/k) worst-case time. Fortunately, the average
running time of that deletion algorithm is much less: O(lg N).

The problems of maintaining a nonhomogeneous k-d tree (compared to a homogeneous)
seem to be much easier on the average but more difficult when considering the worst case.
Recall that there are two types of nodes in a nonhomogeneous lc-d tree: internal nodes
which contain only discriminators and pointers, and ex ternal nodes (or buckets) which contain
se ts of records. Friedman, Bentley and Finkel [1975] report that in best match searching the
optimal number of records per buckets is about a dozen; this will probably be a reasonable
number for many applications. The algorithm that we sketched above for building a
homogeneous tree can be applied almost immediately to build a nonhomogeneous tree; its
worst—case running time is also O(KN Ig N). A good average-case strategy for insertion and
deletion in a nonhomogeneous k-d tree is merely to insert the record into or delete the
rec ord from the bucket in which it resides; both of these operations can be accomplished in
logarithmic time. If the insertions and deletions are scattered almost equally throughout the
file then this method will produce very good behavior. If the resulting tree ever becomes too
unbalanced for a particular application, then the optimization algorithm could be run again to
produce a new optimal tree. (This is especially appealing if there are periods of inactivity in
the database , such as at night in a banking system.) Another benefit of nonhomogeneous
tree s is that if “multiple writers ” are used to perform insertions and deletions then they will
have to “lock” only the bucket containing the current record (and no nodes higher in the
tree).

_ _ _ _ _ _ _ _ _ _ _ _ _ _ ~~~~~~~~~~~~~~~

8 September 1978 lc-d Trees - 11 -

6 Imp lementing k-d Trees

Our discussion of k-d trees so far in this paper has assumed that the cost of going from a
node to its son is constant for all nodes, but this is not true in fl implementations of k-d
trees. In this section we will investigate the problems of implementing k-d trees on various
st orage devices. If k-d trees are to be implemented in the main memory of a computer then
either the homogeneous or nonhomogeneous versions will serve wel l, wit h links between sons
implemeted as pointers to records.

If ic-d trees are to implemented on a secondary storage device such as disk then one would
probably use nonhomogeneous trees.’ As an example, assume that we had a file F of ten
million records , each of five keys. If we allocate ten records in each bucket then there will
be one million buckets in the system; this implies that the height of t he “internal” part of the
tree is twenty, since log2 1,000,000 — 20. Because there are too many internal nodes in the
tree to store in the main memory, we must store both internal and external nodes on the disk.
We will accomplish this by grouping together on the same disk pages internal nodes which
are “close” in the tree (see Knuth (1973, Section 6.2.4) for the app lication of this technique
to one—dimensional trees). This process is illustrated in Figure 6.1. If the discriminators are
of reasonable length then compression techniques can be used to store .an internal node in
(say) ten bytes of storage; this implies that we can store one thousand internal nodes (or ten
levels of the tree) on a ten-thousand-byte disk page. Thus there is a distance of only two
pages between the root of the tree and any external node, so lithe page containing the root
is kept in main memory at all times, any record can be accessed in only two page transfers
from disk.

— — — S
~~

Figure 6.1. Disk pages denoted by dashed lines.

There are a few minor observations which can significantly improve the performance of
k-d trees implemented on secondary storage devices. We saw above how it is crucial for the

For a descript ion of an mphm.nt.ti on of homo%.Mous tr ees en disk stors %. i.e Willism s e~ aI ~,1975).

F’~ ‘T -
-.-

— - -——

~~~

. ------——--

~~~~

-- --- -

8 September 1978 k-d Trees - 12 -
internal nodes to require as little space as possible. One means of achieving this space
reduction is through key compression. Instead of storing the entire discriminating key in a
node, we need only store enough of its first bits to allow us to later test whether to go right
or left. For examp le, if the discriminator in a name field is “Jefferson” it might be sufficient to
store only Jef Ic”. Likewise, lower in the tree it is probably not necessary to store some of
the leading bits of a discriminator. Another device which can be used to save space on the
pages holding internal nodes is the “implicit” binary tree scheme which obviates the need for
pointers in defining a binary tree (this is often called a heap). The root of the tree is stored
in position 1 of an array and the left and right sons of node i are found in locations 2i and
2i + 1, respectively. It might be that finding the exact median in building a k-d tree is very
expensive. If this is so, then an approximation to the exact median would probably serve just
as well as the the exact discr iminator. Weide [1978] has given an algorithm which finds
approximate medians of large data sets very efficiently; his algorithm should probably be
used in such an application. During a search in a k-d tree implemented on secondary storage
only a relatively few pages will be kept in main memory at a time; a least recently used”
page replacement algorithm should probably be used to decide which old page to release
when reading in a new page.

The above scheme appears very promising for many different applications of k-d trees on
secondary storage devices. Though we analyzed the scheme only for exact match searching,
it should also work very well for all of the other search algorithms described in Section
4. Note the important role that nonhomogeneous k-d trees play in this secondary storage
scheme: because the internal nodes are very small compared to the size of the entire
records, many of them can reside on one disk page, drastically reducing the required number
of Oisk accesses.

7 Further Work
Although much research has been done on k-d trees since they were introduced in 1975,

there are still many further areas which need work. On the practical side it is important that
k-d trees be implemented in real database systems to see how the theory relates to practice.
Another fascinating problem that needs investigation is methods for choosing discriminator
values. Naive k-d trees chose discriminators cyclically, and the k-d trees of Friedman,
Bentley and Finkel (1977] chose as the discriminating key that key with the largest spread in
its subspace of the key space. For many database applications, however, ‘~ is important to
choose as discriminator a key which is used often in queries. Some heuristics proposed by
Bentley and Burkhard [1976) for “partial match tries” mi ght be useful in the context of k—d
trees.

L .- —~~~-- --.- -~~~ ~~~~~~~~
. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

8 September 1978 k-d Trees - 13 -
Perhaps the most outstanding open theoretical problem on k-d t rees is the question of

whether they can be “balanced”. For one-dimensional binary search trees there are a
number of balancing schemes (such as the AVL trees described by Knuth (1973]) which allow
insertions and deletions in logartihmic worst-case time while ensuring that the tree never
becomes unbalanced. It is not known whether or not there exist appropriate “balancing acts ”
for k-d trees.

8 Conclusir~rts

In this paper we have investigated multidimensional binary search trees from the viewpoint
of the database designer. The structure was defined in Section 3, and in Section 4 we saw
tha t it supports a number of different kinds of queries. This is an especially important
feature for data base applications; it is essential that different query types be handled and it
is most unattractive to have to store different data structures representing the same file. In
Section 5 we saw a number of different maintenance algorithms for k-d trees. The
maintenance algor ithms for nonhomogeneous k-d trees are particularly simple to code and are
very efficient on the average. In Section 6 we investigated the implementation of k—d trees
on secondary storage devices and saw that they can indeed be implemented very efficiently.
This implies that k-d trees can be used effectively in large and very large databases. Some
areas for further research were described in Section 7.

This paper represents the one of the first attempts to apply k-d trees to the problems
which database designers must face. Although we have only scratched the surface of the
application of this data structure in this problem domain, it appears that multidimensional
binary search trees w ill be an important addition to the practicing database designer ’s tool
bag.

8 September 1978 k-d Trees - 14 -

References

Bentley, J. L. (1975]. “Multidimensional binary search trees used for associative searching,”
Communications of the ACM 18, 9, September 1975, pp. 509-517.

Bentley, J. L. and W. A. Burkhard (1976]. “Heuristics for partial match retrieval data base
design,” Information Processing Letters 4, 5, February 1976, pp. 132-135.

Bentley, I L and J. H. Friedman (19781 “Algorithms and data structures for range queries,
Procee d~ags of the Computer Science o.nd Statistics: Eleventh Annual S7mp osiuvn on th.

Interface , March 1978, pp. 297-307.

Bentley, J. L and 0. F. Stanat (19751 “Analysis of range searches in quad trees,”
Information Processing Letters 3, 6, .July 1975, pp. 170-173.

Eastman, C. M. [1977]. A tree algorithm for nearest neighbor search in document retrieval
systems. Unpublished Ph.D. thesis, University of North Carolina, Chapel Hill, North Carolina.
111 pp.

Friedman, .1. H., J. L Bentley, and R. A. Fink.el (1977). “An algorithm for finding best
mat ches in logarithmic expected time,” ACM Transact ions on Mathematical Software 3, 3,
September 1977, pp. 209-226.

Knuth, D. E. (1973]. The art of computer program ming, volwne 3: Sorting and searching,
Addison-Wesley, Reading, Mass.

Lee, C. T. and C. K. Wong [1977]. “Worst-case analysis for region and partial region
searches in multidimensional binary search trees and balanced quad trees,” Acto Informatica
9, 1, pp. 23-29.

Un, W. C., R. ~~. T. Lee, and 14. C. Cu (1976]. Towards a unifying theory for multi-key file
systems. Report , National Tsing-Hua University, Taiwan, Republic of China, 67 pp.

Rivest, R. L. (1976). “Partial match retrieval algorithms,” SIAM Journal on Computing S, 1,
March 1976, pp. 19-50.

Weide, 8. W. (1978]. “Space-efficient on-line selection algorithms,” Proceedings of the
Comp uter Science end Statist ic:: Eleventh Annual S7mposium on the Interface , March 1978,
pp. 308-311.

W iederhold, G. (1977]. Database design, McGraw-Hill, New York.

-

~
— - -

~~~~~~~~~~~~~~~~~~~~~~~ 
-.rw 

8 September 1978 tc-d Tree, - 15 -
Williams, E. H. Jr., A. Vaughn, B. McLaughlin, and M. Buchanan [1975]. PABST program logic

manual. Unpublished class project , University of North Carolina, Chapel Hill , North Carolina.

Zolnowsky, I E. (1978]. Topics in computational geometry. Unpublished Ph.D. thesis,
Stanford University, Stanford, California. 53 pp.



______  
.1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

p.-. — “
~~~~

UNC1ASSIFTID
S ECURITY C L A b S I T c A r I O N Of ~~~.IS P A G E (N~~.n O.,• Ent.’.4)

DcDr~o1~ ~~~~~~~ Iii ~~ JT A~~~II~~J 0 A READ t NSTRUCTIONS
I~~JI~~ W%J¼.UM ~~ I~ #~~I I~~I I ~ U ~~~ B EFORE COMPLE TI?~G FORM

I. REPORT NUMSER 5. GOVT ACCESSION NO 3. RECIPIENrS C A T A L O G NUMIER

~~U-CS-78- 139 _____________________________

C. TIT%. E (.id S..*Itfl.) 5. 1YP(OF REPORT C PER,00 CO~.EREO

MtJLTID~1ZNSIONAL BINARY SEARCH TREE S IN DATABASE Interim

APPLICATIONS
S. PERFORMING ORG. REPORT NUMCE R

7. AUTsOR(s) S. CONT RACT OR G R A N T NUMSER(.)

Jon Louis Bentley N000l4—76-C-0370

I. P~~~ F~~RMING ORGANIZA TION N A14 E AND A DDRESS 10. PROGRAM ELEMENt PROJE CT . TAS K
A REA C W ORK UNIT P4UMSC*S

Carnegie-Mellon University
Computer Science Dept.
Schen ley P ark , PA 15213

II. CDNTROI.LING OFFICE NAME ANO ADORESI ~2. REPORT D AT E
-

Office of Na’ual Research ‘ Sept. 8, 1978
• Arlington , VA 22217 . *3. MUMSER O F PAG ES

19

LA~ MONITORING AGENCY NAME C AOORCSS(II dill .,.,: Ire., C..i~roIIM5 Offie.) *5. SECURITY Cl ASS. (.1 Ala rspSl (J

S~~e as above UNCLASSIFTID
11.. DECL.ASSIF,CA1ION/DOWN GRAO ING

SCNEOULE

•
-

II. DISTRICUTION STATEMENT (.1 (hi. R.po,1)

Approved , for Public Rellease; Distributioü Unltmitsd

• 17. DIST RICuT ION STATEMENT (.1 IA. ab.Ir~cl .Wl.,. d I,, lIe.h 20. II dUh. ,.,I I,.,, R.p.tf)

IC. SUPPL EMENTARY NOTES

IS. KEY WORDS (C.illnu. .0 ~~~~~~ aid. II n.c.. ..,~ aid i4a,IS~ . by bi.ch ni .b.,)

So. ASST RACT (C.,IMs.. a, ret.? .. aid. U n•Cø•~~~7 aid i4.,WIv by b1.ch asaib ..)

The multidimensional binary search tree (abbreviated k—d tree) is a data structui~• for storing multi-key records. This structure has been used to solve a number oi
problems in geometric data bate. arising in statistics and data analysis. The

• . purposes of this paper are to cast k-d trees in a database fr amework, to collect
the results on k-d treea which have appeared since the structure was ‘introduced ,
and to show hov the basic data structure can be modified to facilitate imp lemen-
tation in large (and very large) databases.

DD , ~~ 1473 £D~TiO: Or ’ NOV SS IS OSSOI.E+E UNClASSIFIED
SECURITY CI.ASSIFICATION OF THIS PAGE (SR., Dasa to(...d)

‘ S .

.. L U W I T Y C L A S S I F I C A T I O N OF THIS PAGE ’WI, a, 0.1. Ens.i.d)

SECURITY CLASS IFICATION OF THIS PAGE(W ~ .o D~~. *a*iai~~

L ___
_ _

_ _ _ _ _ _ _

