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i ‘ A method is presented for modeling a transmission
| line for transient analysis study on the digital computer.
The line is modeled as a finite number of lumped parameter
sections. Each section is modeled in an equivalent section
of resistors and current sources developed from solving the
voltage and current equations by the trapezoidal rule for
integration. The integration takes place over a period of
time from a known state, t, to an unknown state, t+At. The
time step, At, is taken to be the lossless travel time for
the traveliﬂgiﬁavé to cross each section. The single phase
lossless case is handled first, then losses are accounted

for, and finally the three phase line is dealt with.
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I. INTRODUCTION

The need to study the transient phenomena on power
transmission lines results from the high voltages experi-
enced on the line due to normal but abrupt switching actions.
These high voltages that appear are on an order of magnitude
of two to three times the rated line voltage. Transients
can be caused by other factors, such as atmospheric dis-
turbance, but the majority is due to normal switching opera-
tions on the line. These transients usually last for only
a few milliseconds [l1], but insulators and other equipment
can be permanently damaged. The study of transients on
transmission lines has been underway for many years with
the classical equations being well known. With the advent
of the digital computer, methods are now available to solve
the classical equations numerically and with a high degree
of accuracy. This thesis deals with modeling the trans-
mission line for the digital computer in order to solve for
the transient voltages and currents that exist due to switch-
ing actions that can occur from energizing or deenergizing
the line.

The solution to the classical transmission line

equations is well known [1, 2, 3] and need not be presented
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here. The nature of the solutions results in the concept

of traveling waves on the transmission line. Since the
transmission line parameters of resistance, inductance,
capacitance, and conductance are distributed uniformly
throughout the line, this provides the line with its wave
carrying capability. It is much like any other physical
continua, such as air and water, in this respect [1].
These traveling waves on the line are of two types--
forward traveling and reverse traveling. The reverse
traveling wave 1is a scaled version of the forward travel-
ing wave. This scaling factor is called the reflection
coefficient. Solutions have been very complicated except
for the simplest cases and have typically dealt with a
lossless line, i.e., resistance and conductance are assumed
to be zero. One such solution utilizes the Bewley Lattice
diagram which requires that the reflection coefficients for
the sending and receiving ends be calculated [4].

Most all the work done in these solutions is for a
single phase line. When three phase lines are studied,
the concept of three phase is lost because of the transient
phenomena. The line can be viewed as three separate
phases by using a matrix transformation to decouple the
phases. This approach is used in this thesis. 1In modeling
the three phase line the earth return for the ground cur-
rents must be included, and in transient analysis this intro-

duces the complex situation of handling the frequency dependency
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of resistance and inductance of the ground mode [5]. This
topic will be discussed later.

It has been mentioned that the transmission line is
composed of uniformly distributed parameters. This thesis
models the line as a finite number of sections each having
lumped parameters, as shown in figure 1-1. The argu-
ment for this is that as the number of sections
approaches infinity as their lengths become smaller and
smaller, it approximates the distributed line. Initially,
the line will be considered lossless with the lossy case
being handled later.

In researching the literature a paper by Hermann
W. Dommell, "Digital Computer Solution of Electromagnetic
Transients in Single- and Multiphase Networks" [5], was
listed as a source by nearly everyone who was working on
the problem of digital solutions to transmission line tran-
sients. His method for solving transients is to handle the
distributed parameters with a method called characteristics
and the lumped parameters with the trapezoidal rule for
integration. The method of characteristics is described
more fully in a paper by F. H. Branin, Jr., “Transient
Analysis of Lossless Transmission Lines" [6]. The in-
clusion of frequency dependent parameters in the problem is
presented by Alan Budner in his paper, "Introduction of

Frequency-Dependent Line Parameters into an Electromagnetic
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Transient Program" [7]. This same problem is also discussed
by J. K. Snelson in "Propagation of Traveling Waves on
Transmission Lines--Frequency Dependent Parameters" ([8].
S. C. Tripathy and N. D. Roa present a method in "A-Stable
Numerical Integration Method for Transmission System Tran-~
sients" [9] for handling nonlinear elements with a non-
iterative technique.

The basis for this thesis is Dommell's work. A method
will be developed to handle the transmission line on a
digital computer for transient analysis. Lumped parameters
for the transmission line will be dealt with exclusively.
The lossless single-phase line will be developed first, then
losses will be accounted for, and finally the three phase

line will be analyzed.




II. THE SINGLE-PHASE LINE

Lossless Case

Figure 2-1 presents a typical section of the trans-
mission line presented in figure 1l-1. As the line is
divided into sections, it will have n sections and
n + 1 nodes. The development that follows will lend
itself to digital computer techniques. Since the digital
computer cannot give the entire listing of a transient on a
transmission line [5], the development will be one that
recognizes that it can give the results of computations at
some time t + At where the results at time t are known.
Referring to figure 2-1, the equation for the current through

the inductor can be written as,

I
et

Vi~ Vi b (2-1a)

oy it -
dli =i (vi vi+l) dt (2-1b)

Integrating from the known state, t, to an unknown state,

t + At, using the trapezoidal rule for integration [10], gives

Jt+At t+At
ey e
! dli = - . (vi Vi+l) dt (2-1c)
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//
i.(t+At) - 1i.(t) = 13 [v (é+At) - v (t+At)
i i s A | i+l
Vi at T s ok &
+ viv(t) - Vi (0)) (2-14)
1, (etat) = DE v (esbt) = v, .. (eebt)]
i 2L i i+l
At :
+ 3T [Vi(t) - vi+1(t)] + 1i(t) (2-1e)

In equation 2-le the current at the ith node at t+At is

dependent on the difference in voltage at the i and i+l nodes

2L
At®
The voltage and current in equation 2-le at time t can be

dividedbyenuequivalentrésistancebetweenthetwonodes,

viewed as the past voltage and current, and therefore are

known. Let,

L) = 3E Ivi(t) - vy (8] + i;(b) (2-1f)

These known values at time t will be viewed as a current
source, Ii(t).

Turning to the capacitor in the section, the current
through it is given by,

dav,
: - i+l -
‘e, T °*T® il

i

The current can also be expressed as,

(2-2b)
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Substituting equation 2-2b into 2-2a and rewriting,

A B
dvi+l = = (1i 1i+l)dt (2=-2c)

Using the trapezoidal rule and integrating from t to t+At,

t+At 1 t+AL 3
J dvi+1 = c [ (1i - li+1)dt (2-24)
€ t
V..o (E4AE) - v.. (&) = A% i (e+he) - i, (EFAE)
i+l i+l 2C i i+l
+i(8) - i (0] (2-2e)
Voo (EtaE) = BE (i (ease) - i, .. (EHAEY]
i+l 2C i i+l

At .. :
+ 56 [ (8) = i, ()]
+ Vi+1(t) (2-21)

The known values in equation 2-2f now appear as a voltage

source. Let,

At

Viay 6) 5 Lig(8) = i, 1 (8)] + v, (8) (2-29)

The equivalent circuit for the line section is shown in
figure 2-2. Since the network now lends itself to general
nodal analysis, it is desirable to transform the voltage

source to a current source. Using Norton's Theorem to

accomplish this, the resulting circuit is shown in figure 2-3.
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Figure 2-2.

Typical lossless transmission line equivalent
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.
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Starting with the typical section of the transmission line
composed of inductance and capacitance, the equivalent cir-
cuit is one composed of resistive elements and current
sources. This allows analysis of each section to be done by
nodal techniques and without solving differential equations.
The entire equivalent transmission line is shown in figure
2-4., For nodal analysis, it is more convenient to deal with

conductance than resistance. In figure 2-4.

_ At 5

Gs = 51 and, (2-3)
L 2 .

Gp = = (2-4)

Writing a matrix equation for the entire line using

conventional nodal analysis,

[Ylv = C (2-5a)
where, excluding the end nodes,
(
2Gs + Gp i L= 3= 258 o s e e B
Yij = -Gy i = j+l (2-5b)
0 - A= J¥3,34 » o » ¢ B

The general entry for v is vi(t+At) and for C, a current

vector, is given by,
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ci = Ii"l(t) +Gp'vi(t) —Ii(t), i= 2, s s = 4y R (Z-SC)

where, again excluding the end nodes,

Ii_l(t) = Gs[vi_l(t) - vi(t)] £ ii_l(t) (2-5d)
GpVi(t) = ii_l(t) — ii(t) + Gpvi(t) (2-5e)
Ii(t) = Gs[vi(t) = Vi+1(t)] + ii(t) (2-5f)
The solution to equation 2-5a is given by,
~ —l=
v = [¥1 "C (2-59)

A method for inverting the Y-matrix, which is a sparse
matrix, is given in Appendix A.

The source for the line was chosen to be a current
source with shunted inductance, capacitance, and resistance
as shown in figure 2-5. Each element of the source will be
handled separately in order to develop a model compatible
with the line model.

For the inductor,

(2-6a)

Using the trapezoidal rule and integrating from t to t+At,

1

t+At t+At
I ai. = EL I v.dt (2-6b)
t

t

] S
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Figure 2-5. Source model
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ip (E+0t) - i (t) = A5 (v (t+at) +v. (0) ] (2-6¢)
Lg Lg 3 T | 1
i . _ At At . 5
| i, (t+At) = 5T vl(t+At) + T vl(t)+1L (t) (2-64)
S S S S
let,
. (2-6e)
L 21, it L
s s s
then, .
in (e+at) = 25 G (esat) - I (b) (2-6F) :
L 2L 1 L
S S S
Similarly, for the capacitor,
dvl
ic =C 5% B
s
2Cs 2CS
1Cs(t+At) = vl(t+At) = S vl(t) - 1CS(t) (2=7b)
let,
2CS
1. () = — vl(t) + i, (t) (2-7c)
s s
then,
2CS
1Cs(t+At) = .y vl(t+At) - Ics(t) (2-74)

Since the resistor does not contribute a current source

in modeling, it remains unchanged. The equivalent source




model is shown in figure 2-6.
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In order to simplify the model

and make it more compatible with the line and also for

nodal analysis, the current sources are combined and

resistive elements are also combined but as conductances.

The final result is shown in figure 2-7, with,

Ig(t) =

and,

G

I (t) + I (t) + I (t)
S Ls Ls
=_4_t_+3c_s+_l_
g ZLS At RS

(2-8)

(2-9)

The receiving end termination can also be modeled

in a general circuit of shunt resistance, inductance and

capacitance.

Following the same argument as before in the

source, the receiving end circuit for a generalized load is

shown in figure 2-8.

where,

I~ (L)
I. (t)

Ly,

Returning to the nodal

As before,

equation,

(2-10)

(2-11a)

(2-11b)

(2-11c)
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+
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Ig(t) > %Gg v, (t+at)

Figure 2-7. Combined equivalent source model
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n+l

v, 4 (t44L) gaL Cb 1,(t)

Figure 2-8. Equivalent receiving-end model
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(Ylv = ¢

(2-5a)

the entries of the Y-matrix and C-vector can now be com-

pleted. For the Y-matrix,

yll = Gg + GS
where,
G=_é_t_+.2&+.l.
g LS At Rs
- A%
B = 2L
and,
yn+1,n+1==Gs + Gp % GL
where,
- 2
Gp T At

For the C-vector,
¢ = Ig(t) - Il(t)
where,

Ig(t) = Is(t) + I (t) + Ic (t)

LS S

I (t) = G lvy(t) - vy()] + iy (8)

and,

Chey = I,(t) + V41 (B) + Ip(¢)

(2-5h)

{2-9)

(2-3)

(2-51)

(2-4)

(2-53)

(2-8)

(2-5f)

(2-5k)
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where,

In(t) = Gs[vn(t) - Vn+1(t)] + in(t) (2-5f)

v +1(t) (2-5e)

Gan+l(t) = 1n(t) - 1n+l(t) + Gp s

IL(t) = X, (&) + IL (t) (2-11a)

S, L

Lossless Case Examples

An example problem was chosen to apply to the pre-
ceding development. Computer input data for the cases tested,
2, 10, and 40 section lines, areshown in figure 2-9, with
only the number of sections changing for each example.

Data were chosen to facilitate manual calculations. The
velocity of wave propagation on a lossless line is given by

(111,

velocity = e (2-12)

VIC

and the characteristic impedance is given by [11],

z_ = /% (2-13)

For the example chosen, both of these are one and the sending
and receiving ends are terminated in the characteristic
impedance. With this configuration, there should be no
reflected voltages along the line and with the one amp cur-
rent source, voltage and current should stabilize at the

same value, 0.5. The delta t chosen for the equations
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corresponds to the travel time for the line section. Results
for the three cases tested, 2, 10, and 40 sections, are
shown in figures 2-10, 2-11, and 2-12, respectively. The plots
show voltage as function of position at a time that corres-
ponds to the wave traveling halfway down the line. The
theoretical wave shapes are shown as dashed lines. As might
be expected, the 40 section line exhibited a waveform that
more closely approximated the theoretical, and is more
oscillatory in nature than the other cases. The calcula-
tions for the three cases were allowed to continue for a
time period until they stabilized and these results are
shown in figures 2-13, 2-14, and 2-15.

In order to see the effect of the size of delta t,
a smaller delta t than for any previous case was chosen,
At = .01, and the three cases run again. These results are
shown in figures 2-16, 2-17, and 2-18 for a travel time of halfway
down the line. When compared with figures 2-10, 2-11, and 2-12,
respectively, the wave shapes do not appear very different,
except that they are generally steeper at the leading edge.
To further check its effect, runs were made with the 40 sec-
tion line for varying delta t's, larger and smaller than the
travel time for each section. These results are shown in
figures 2-19, 2-20, and 2-21. The smallest delta t chosen was
0.001, figure 2-21, andresults do not vary appreciably from that
of 0.005 in figure 2-20. These results confirm Dommell's

results [5] that changing delta t tends to change the phase

< iyt
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position of the high frequency oscillations but not their
amplitudes. This does not make the choice of delta t cri-
tical and for the remainder of this thesis delta t will be
chosen to be the lossless travel time for the line section.
The length of the line section was determined from the fact
that most delta t's are in the neighborhood of 50 micro-
seconds. Since the velocity of a wave on a lossless line is
approximately the speed of light, the wave travels approxi-
mately 15 kilometers (9.3 miles) in 50 microseconds. This
figure of 15 kilometers is used to determine, to the nearest
whole number, the number of sections needed to represent

the line under consideration.

Lossy Case

In the lossless development, the series resistance
of the line was ignored. However, the same arguments can
be made with resistance included. The typical line section

is shown in figure 2-22. Writing a voltage equation for the

section,
dii
Vi = L = + Rli + vi+l (2-14a)
rewriting,
di, = &(v, = Ri, =~ V.) (2-14b)
L' 1 i i+l

Using the trapezoidal rule and integrating from t to t+At,
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i R L i+l
o> AN—— ) — >0
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+ C +
v] C T~ Vi+1
O —0

ith Section

Figure 2-22. Typical lossy transmission line section
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t+A Lt t+A t
k LR - . ¥ £5
[ di. = T J (vi Ri. vi+l)dt (2-14c)
t

i (640E) - i (¢) = %%{vi(t+At) +vi(£) - RIL (t4at)

+ ii(t)] - [Vi+1(t+At)

+ vy, (0)]) (2-144)
[+ §%§Jii(t+At) = %%[vi(t+At) - v, (E+AE)]
+ 35 vi(6) = v, (0)]
el e %%§]ii(t) (2-14e)
ig(tHat) = [ 21‘1 ] [vy (t48t) = v, (t+8t)]
L2 4R
At
+ [ gete— 1 [v,(8) = v, .. (£}3
I, i i+l
At
S
At
Let,
T 8) = [ gt } v, (€)= v, (&]]
i e i i+l
At
2L
s |BE i.(t) (2-14q)
2L, i :
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The model for the remainder of the section remains the same
as the lossless model. The lossy circuit model appears

now as in figure 2-23, where,
Vo () = 25 (i (e) - i, (8)] + v () (2-29)
i+l 2C T4 i+l i+l g

If resistance is set to zero in this model, then
it reduces to the 1lossless case. The same nodal
equations can be written as in the lossless case with the

appropriate changes made to the Y-matrix and C-vector.

Lossy Example

An example was chosen from Dommell's work [5] to

compare results of the two programs. The line data is listed

below.
line length = 320 miles
R = 0.0376 ohms/mi
L = 1.52 mH/mi
C = 0.0143 pF/mi
line termination = 0.1 H
source = 10 V. step

The data was scaled in order to input it to the computer.
The scalinj method is described in Appendix B. Since Dom-

mell's program used 32 sections to represent the line, the

same number was used in this example. The results are shown f

in figure 2-24. The agreement between the two program results F




i i1
O—>— >-
is(t+at) 1 SR i, (tHat)
At
+ +
2C A At
v, (tHat) 20y (8) C) § Ly (tent)

Figure 2-23. Typical lossy transmission line eguivalent
section
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is very good. Wave shape is almost identical with slight
variation in amplitudes. This possibly is due to the fact
that Dommell's method for handling resistance is different
from this thesis' method. Also, it is not precisely known
how Dommell handled end effects.

Modeling a Sinusoidal
Voltage Source

Modeling an ideal, non-time varying voltage source
as a current source, as in the previous example, proved to
be straight forward. Technically, the Norton Equiva-
lent of an ideal voltage source is an infinite current
source shunted by a zero resistance. For the computer pro-
gram developed for this analysis, the ideal voltage source
was modeled as a very large current source shunted by a
very small resistance. The values were chosen such that the
open circuit voltage equaled that of the voltage source.
This method also works for a sinusoidal source but it is
modified slightly.

When a sinusoidal source is used as a model for
energizing a transmission line it is usually modeled as a
generator with a series impedance made up of inductance and
and resistance. Choosing a model for the network that
energizes a transmission line is a non-trivial task, but it~
is not the subject of this thesis. 1In this thesis, a sinusoidal

voltage source with series impedance is modeled in the following

way. The source itself is always modeled as an ideal
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voltage source, while the series impedance is added as a
new section to the beginning of the line. This new sec-
tion is handled as was the lossy section handled earlier in
this chapter (Equations 2-14a-g). This method increases
the number of sections and nodes by one. This development
becomes more important when three phase lines are encoun-
tered. The equivalent model for a general sinusoidal volt-
age is shown in figure 2-25.

When this source model is used to energize the line,
the Y-matrix and C-vector are modified as follow. Refer-

ring to figure 2-25, let

GgS = l/[(ZLS/At) + RS] (2—;5)

Equation 2-9 now becomes
G_ =10 (2-9"')
Then

=G + G (2-54)

and,

-YO,l = yl,O = —GgS (2—5m,
Equation 2-5h now becomes

- - '

Y11 Ggs + G (2-5h"')
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and equation 2-5b becomes

r

26, +6, , i=3 , j=2,3 ...,n

Yo% | =6 S R LT PR

i s

o

-
»)
I

3¥2:3; ¢« 5 « & B

except as noted. Equation 2-5i remains unchanged. For the

C-vector changes, let

- 1 -
Io(t) = [ S ][vo(t) vl(t)]
/ _S + R
At s
2LS
—— - R
At S .
+ E'L—;—_—- lo(t) (2“'5n)
=3 + Rs
Equation 2-8 now becomes
= 10° e
Ig(t) = 10 [EmCos(wt + 0)] (2-8"')
then,
coy = Ig(t) - Iyt (2-5p)
Equation 2-5j now becomes
e, = Iglt) = I;(t) (2-53")

and equation 2-5c is valid except the subscript i now starts

at 3 instead of 2.
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III. THE THREE PHASE LINE

Three Phase Model

In dealing with the three phase line under transient
conditions, it is desirable to analyze each phase separately.
To accomplish this, the phases must be decoupled because of
the mutual inductances that exist between them. This can be
done with a similarity transformation matrix, known as a
modal transformation matrix, that diagonalizes the line
impedance and admittance matrices [|2]. In Dommell's paper
[6], he introduces a modal transformation matrix [T] for a

three phase line as,

1 1 1
[T] = 1 =2 1 (3-1)
1 1l =2
with
1 it 1

|
|_.|
N
w
—

|
=
o

-
o
|
—

This matrix is only valid for a completely transposed line.

There are other modal matrices which are used on all types

of lines but they will produce off-diagonal elements in the
47
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transformed matrices. These off-diagonal elements are

small when compared with the diagonal elements, and are

generally ignored. This is strictly true assuming a

totally transposed line, which will not produce off-

diagonal elements when transformed. In this work, off-

diagonal elements will be ignored. This allows the sequence

values to be substituted for the modal values since they

are equal. Specifically

RO = Re[zO] ohm/m
Im[zO]
Lo e H/m
Im[yol
Co T F/m
Ra = RB = Re[zll ohm/m
Im[zl]
La = LB = Nk T H/m
Im[y,]
Ca = CB e F/m

(3-2a)

(3-2b)

(3-2c)

(3-24)

(3-2e)

{3=2%)

—
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The phase voltages and currents are defined in

terms of the modal values as follows:

<
1]

[T]GO (3-3)

abc af

and,

~

i

[T]an (3-4)

abc R

With the line defined now with its modal values, the
problem reverts back to the single phase case as des-
cribed in Chapter 2. Each mode will be treated as the
equivalent 1line in figure 2-4, except with losses. After
each mode is solved, essentially three single phase
problems, equations 3-3 and 3-4 will be used to find
the phase values.

The end effects for the three phase 1line are
essentially handled as in the single phase case. The
three phase network energizing the line will be assumed
to be a three phase voltage source with series imped-
ance. The voltage source will be handled as described

in Chapter 2.
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Three Phase Example

A three phase example problem was chosen from work
done by Southern Company Services, Inc., with their tran-
sient program "Surge." The line and system data are listed

below.
System: 345 KV, 100 MVA, 50 Hz

Source data

positive sequence voltage (p.u.): 1.0011{0° (line to neu-
tral peak value)

impedance (p.u.): 0.0115 + j0.2206
71.8° (3.99 ms)

163.1° (9.06 ms)
32.0° (1.78 ms)

switching angles:

Qwy
nnn

(note: Switching angles are used to simulate assyn-
chronous switching.)

Line data
0.418 ohm/mi

5.198 mh/mi
0.01232 uf/mi

zero sequence:

0.0644 ohm/mi
1.629 mh/mi
0.01908 uf/mi

pos/neg sequence:

Qttmy QB9

length: 126 mi

Load data open circuit

The results from this example are shown in the com-
puter plot of the receiving end voltage in figure 3-1. The
waveforms and amplitudes are in excellent agreement with

"Surge" results. The "Surge" results have slightly lower
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voltage maximum but that is to be expected since it handles
the frequency-dependence of parameters which is discussed
in the next section.

Frequency-Dependence of
Line Parameters

This thesis has not attempted to include a method for
handling frequency-dependent line parameters. Other works
in this area have dealt with the problem, and since it
does have a bearing on the transients observed un the line
it will be mentioned here.

An overhead transmission line is composed of a cer-
tain number of phase conductors and neutrals. The phase
conductors are separated from each other but the neutrals
are connected through the towers and are thus grounded. The
modeling of this ground return for inclusion into a
model of the 1line is very complex due to the non-
uniformity of the earth. In an early paper by Carson on
this subject [14], he established the fact that for a single
conductor with ground return its resistance and inductance

perunit length are proportional to frequency (f in Hz). Another

author [8] has noted Carson's results as:
R « (£)K (3-5a)
where,

0.5 <k < 1.0 (3-5b)
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and,
L« (£)" (3-6a)
where,
0.5 < n < 0 (3-6b)

In three phase transient analysis using modal tech-
niques, the O-mode is often referred to as the ground mode.
In a study of frequency effects on modal values by Hedman
[5], it was found that the mode most affected by frequency is
the ground mode. His conclusions on earth affects are
listed below.

1. Carson's earth-correction terms produce the predomi-
nant earth-correction effects for a transmission
line over an imperfect earth.

2. Carson's earth-correction resistance terms are
proportional to frequency and to the square root
of frequency, respectively in the low- and high-
frequency regions.

3. Effects of the high relative-dielectric constant of
the earth are significant only for frequencies
higher than 0.5 MHz and when both earth resistivity
and dielectric constant are high. '

4. Earth correction for admittance terms appear to be
unimportant for frequencies lower than 1 MHz. |

5. Carson's earth correction terms significantly affect
the modal voltages and eigenvectors for frequencies
from 60 Hz to 1 MHz.

6. Modal analysis, using the perfect earth, should be
adequate for radio-noise propagation studies.

7. For carrier-current analysis, earth effects become
significant.
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The frequency dependent resistance and inductance have a
damping effect on transient voltages when compared to tran-
sients that do not consider frequency dependence.

In computer programs that deal with frequency
dependence a frequency domain technique is used to deter-
mine the values of parameters in the equations already
present. Methods such as the Fourier Transform [8, 15] and
the Modified Fourier Transform [9], are used to evaluate the
parameters over a range of frequencies at each time step in

the program. A typical range of frequencies would be

0-12.8 kHz [8].

41-----lIlIIIIII-I-Il--I-------------.‘
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IV. CONCLUSION

The method for modeling the transmission line that
results from the trapezoidal rule of integration is a very
straight forward way of solving transmission line transients.
In fact, at each time step the problem to be solved is that
of a d.c. circuits problem. The argument for this is that
the time step is selected small enough, i.e. the lossless
travel time for the traveling wave to cross the section,
that nothing changes during that span of time. Handling
the end effects of the line using the trapezoidal rule
proved to be very compatible with the rest of the line
model.

The argument was made that as the number of sections
increases while each section length decreases that this more
closely approximated the actual line performance. This
proved to be true in the sample lines of 2, 10, and 40 sec-
tions in the single phase case. The number of sections and
the time step chosen were related by selecting a time step
that would equal the lossless travel time for the section.

A smaller “ime step proved to be mcre accurate for the
smaller number of sectioned lines but about the same for

the larger number of sectioned lines.

55
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The modal technique used in the three phase case
proved to be very powerful in handling three phase tran-
sients. Its decoupling of the phases into the modal values
just presented the problem of solving three single phase
cases. Transformation back to the phase values presented
the desired results. Although frequency-dependence of line
parameters was not included, it did not present a serious
problem in the analysis. The analysis, as developed, pro-
duces slightly higher voltages than had frequency-dependence
been included. Since the maximum voltages are of prime
interest in transient analysis, this places this thesis'
results on the conservative side in determining them.

Finally, the examples cited and run on the program
developed present excellent agreement between this method

and the methods previously developed.
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INVERSION TECHNIQUE FOR A SPARSE MATRIX

The general form of the Y-matrix discussed in Chap-
ter 2 is shown in figure A-l. In a typical computer routine
for inverting a matrix, every entry would be used in deter-
mining the inverse. Since the Y-matrix is a tridiagonal
matrix, it would be advantageous to exploit its sparseness
for the computer.

The method chosen for inverting the matrix is the
Gauss-Jordon method [12]. This method uses an augmented
matrix composed of the matrix to be inverted and an idenfi-

cal sized identity matrix, as illustrated below.

(A} 1] (A-1la)

Row and/or column operations are performed on the matrix
to be inverted while the same operations are performed on
the identity matrix. When the A-matrix has been reduced
to the identity matrix, the right side of the augmented

matrix now contains Al as shown below.
2 58 (A-1b)

Since the typical row entry of the Y-matrix only

positions, see

contains elements in the ¥iq and Yi i+
Pt
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figure A-1, only these positions are dealt with in the com-
puter routine. Also, in the computer routine developed only
the Yii entries are changed, while all operations that
would normally be performed on the Y-matrix are done only

on the identity matrix. The new diagonal entry is given by,

Yia1, 503 " Yiad, 141 = Waa 3788 3075 gageittecssen-l  (2-2)

As these operations are performed, the Y-matrix is changed

to upper-triangular form as shown below.

Y11 Y12 0 0 g < <« o O
0 yéz Y3 0 g . - - 0
0 0 y33 Y34 0« « « 0

To further reduce Y to a diagonal matrix, row operations
are performed to eliminate the off diagonal entries. Again
operations are performed only on the identity matrix.
Realizing that only the diagonal elements o he Y-matrix
need to be changed, since all other elements are eliminated,
saves the programmer and computer time. Now that the Y-
matrix is in diagonal form, each row of the identity matrix
is divided by the apprcpriate yii element. The inverse of
the Y-matrix is now formed in the place of the identity

matrix and the Y-matrix is set equal to it.




o

Yn-2n3 Yn-2n2 Yn2ina
0 yn—l,n? % ,n-) yn-‘{.n

0 yn.n-'l Ynn

Figure A-1l. form of the Y-matrix

0
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SCALING OF DATA FOR COMPUTER INPUT

In order to avoid working with very small and very
large numbers associated with a transmission line, a
scaling method was devised to input data into the computer.
Starting with the transmission line equations (primes denote

per unit length),

Bva 5

— ' ' amm—— 1 -

Bxa (Ra + La at)l (B-1la)
91 v
B L. - | >
Bxa Ca ot (B-2a)

the bases for the individual values are chosen. The sub-

script a, denotes actual (SI) values. Let

b'4
% = & a (B-Ba)
base
with
Ry nan = line length = d (B=-3b)
Let
L!
Qi = i - &= 9 (B-4a)
base
where
1] -— ' -
Lbase i La (B-4b)
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Let
Cl
C=m—-=1 (B-5a)
base
where
' = ' —
Cbase Ca (B-5b)
3 ] ] -
In three phase analysis, Lbase and Cbase are chosen to be
the positive sequence Li andg Ci. Time is scaled as
t
t = —2 (B-6a)
base
where
tbase = lossless travel time for the line
tbase =/Lécé d (B-6b)
3 ; : ;
Again, in three phase analysis, Lbase and Ci)ase are chosen to be
the positive sequence Li and Ci. The voltage is scaled as
v
L 2 (B-7a)
base

where

vbase = VLN (llnetx>neutralratednmx1mum) (B=7b)

To more clearly illustrate Vpase! a@Ssume a 500 KV system.

Then, |

|

(S}
o
o
N

v =
base

Let

Zhase = lossless characteristic impedance
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where
V4 = La
base = (B-8)
C
a
Let
Thase ~ vbase/zbase (B-9)
Substituting these values into equation B-la and B-2a,
3 (vv )
base = - ' SDMIEIRE ii 2
3 (xd) (Ra i LLbase B(td/fTET)) base (B-1b)
aa
and,
8(iibase) = cC 3(vaase) (B-2b)
) (Xd) = base B(td/L_'—C_'_)
a“a

Clearing terms on each side of equations B-1lb and B-2b,

Rl
A4 a O o
— = ( + L —)1i (B-1c)
X zbase ot
and,
i _ o v ;
3; = C 3t (B-2c)
Letting,
L}
R = fa
%pase (B-1d)

equation B-lc becomes,

= = (R + L Ef)i (B-1le)
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The only parameter now left to scale is frequency.

quency is scaled by keeping

But time has already been scaled and

w_t
a a

= wt
wbasetbase

. U |

w =S =
base tbase /LéCéd

Fre-

(B-10a)

(B-10b)

(B-10c)

For scaling inductance (%) and capacitance (c) that are not

per unit length, the following method is used.

R, + jw_2
a aa=R+jw2’

z
base

Similarly,

(B-1la)

(B-11b)

(B-1lc)

(B-114)
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An example will help to clarify the scaling method. Using
the three phase example of Chapter 3, all values will be
scaled as follows:
Base data
xbase = 126 mi = d
' = :
Lbase 1.629 mh/mi
i i "
Cbase = 0.01908 pf/mi
— L} ] ——
tbase = ¢L1Cld = ,7024 ms
s 345/2 _ L85 v
V3
=
zbase = EI = 292 ohms
Maan ™ l/tbase = 1423.69 rad/s
= L =
gbase le 0.2053 H
cbase Cid = 2.4041 uf
Source data
Em = 1.0011 |
w= [27(50)]1/1423.69 = 0.2207
6 = Q° :
R = [0.0115(345)2/100]/292 = 0.0469 |

]

L [(0.2206(345)2/100)2 (50)1/0.2053 4.0710

]

(note: switching angles are converted to times)

T, = (71.8°/360°) (1/50)/.7024(1073) = 5.6789
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T, = (163.1°/360°) (1/50)/.7024(107°) = 12.9002
T, = (32°/360°) (1/50)/.7024(107°) = 2.5310

Line data

zero sequence: R = 0.418(126)/292 = 0.1804

L = 5.198(10°3)/1.629(1073) = 3.1909
: C = 0.01232(10%)/0.01908(107%) = 0.6457
pos/neg sequence: R = 0.0644(126)/292 = 0.0278
L = 1.629(10 °)/1.629(10°3) = 1.0
C = 0.01908(107%),/0.01908(107%) = 1.0

Load data

open circuit

The bases for scaling are summarized in Table B-1.
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Table B-1l. Summary of base values for scaling

Parameter Base

3¢

VLN(peak)

VLN/ L1 Ci




APPENDIX C

FORTRAN COMPUTER PROGRAM

7
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FORTRAN COMPUTER PROGRAM

User's Guide

In order to get data into the single and three phase
computer programs, TTL, it must be scaled as follows. (Note:

primes denote per unit length; a = actual value)

Vbase = VLN (system peak)

Ll

L) (L& for 3¢)

base

éase = Cé (Ci for 39¢)
Xbase = d (line length)
Zbase ik /E;7E;

i 1 =
t Rbase Zbase/d

' lbase T Léd

f

! ®base Céd

k Ibase e Vbase/zbase

[ tbase e “355: d
“base ~ 1//E:§; d

| To obtain scaled data, divide each individual para-

meter by its base. The data cards are as follows:
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1~ TMAYX , TPLOT ,DTRPLOT , X  , NP ,IPLOT (19 & 3¢)
(F10.4) (F10.4) (Fl0.4) (I10) (I10) (I1l0)

TMAX - maximum scaled problem time for program to
run; at least 2 cycles, scaled, for a
sinusoidal source

TPLOT - scaled problem time at which voltage versus
position is plotted. Cannot be zero.

DTPLOT - scaled problem time periods after TPLOT at
which subsequent plots are made. Cannot be
zexo.

LX - node at which voltage vs time is plotted;

1 < ILX < N=1.

NP - determines number of points plotted in volt-
age versus time, i.e., every NP points. The
calculating At is fixed internally at 1/N
(see Section 2). The plotting, and printing,
time increment is NPxAt.

IPLOT - plot option
1. voltage versus position
2. voltage versus time
3. both
2- Rz L o € 5 B (14)
(F10.4) (F10.4) (F10.4) (I10)
2- R.A ’ LA ’ CA 2 RB I3 LB ’ CB ? (3¢)
(F10.4) (F10.4) (F10.4) (Fl0.4) (Fl0.4) (Fl10.4)
N
(1I10)
R - scaled line resistance; RA and RB are scaled
zero and positive cequence values respectively
L - scaled line inductance; LA and LB are scaled
sequence values
C - scaled line capacitance; CA and CB are
scaled sequence values
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N - number of line sections; the line length
divided by 15 km (9.3 mi) to the nearest
whole number, maximum number is 48

EMAYX , OMEGA , THETA , RS ¢ LS (19)
(F10.4) (F10.4) (F10.4) (Fl10.4) (Fl10.4)

EMAX , OMEGA , RSA , LSA , RSB , RSC (39)
(F10.4) (F10.4) (F10.4) (F10.4) (F10.4) (Fl10.4)

EMAX - maximum, peak value (line to neutral for
3¢) of the voltage source, usually 1.0
OMEGA - 27f

THETA

phase shift in radians

RS - scaled source resistance; RSA and RSB are
scaled zero and positive sequence values
respectively

LS - scaled source inductance; LSA and LSA are

scaled sequence values

TA , TB i I . THETA (3¢)
(F10.4) (F10.4) (F10.4) (Fl0.4)
TA - scaled time delay for a-phase
TB - scaled time delay for b-phase

TC - scaled time delay for c-phase

THETA phase shift in radians

GLL. ', GaML , CL (1¢)
(F10.4) (F10.4) (Fl10.4)

GLLA , GAMLA , CLA , GLLB , GAMLB , CLB (39)
(F10.4) (F10.4) (F10.4) (F10.4) (Fl10.4) (F10.4)

GLL - scaled load conductance; GLLA and GLLB are
scaled zero and positive sequence values
respectively

S ——————————



L
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GAML - scaled load gamma (1/inductance); GAMLA and
GAMLB are scaled sequence values

CL - scaled load capacitance; CLA and CLB are
scaled sequence values

(Note: the load can be any parallel combination of
inductance, resistance, and capacitance.)
If a value is left blank on a data card it will be inter-
preted as zero in the computer. For programs that run for
long periods, the JCL cards controlling run time may have
to be changed. Always check the last data cards to insure

that they correspond to the plot options chosen, since they

label the plots.




-~

Program Listings

7308 JDB,PACLES=40,VIME=200
REAL L, IS, 18, 1L, ILL ICL +ILS,ICS,LS,I6
DIMENSTION XJ(50) o XLAB(5) e YLABIS ) «GLAB(S )Y 4BATLAB(S)
DIMENSION Y(50450) ¢V I(50)41IB(50)PVISO),PIBI%0),CM(50) B(50,50},CC
1U50) yCVISCY, TIME(900) ,VILT(Q00) 4 A4PS(900)
= _READ(S,320) THAX W TPLOYWOTPLOT, L X, NP, IPLODT «
READ(5,33C)2,L,CeN
READ(S4340)FHAX OMEGA,Z THETA,RS,LS
READI{5,4350)GLL,CL,GAML
WRITE(6,360)
WRITE(64370)
WRITE (6,380)
NRITE(64390) THAXy TPLOT 4DTPLOT(LXy NP IPLOT
e ____WRITE(6,400)
WRITE(6+410)
_ WRITE(64420)RyL4CyN _
WRITE(64,430)
WRITE(6,4440)
WRITE(64450) EMAXOMEGA, THETA,RS,LS
HRITE(6,460)
WRITE(64470)
WRITE(6¢4B0)GAML,CL,GLL
WRITE(6,4490)
NC=NP
1=0.
__DX=1./N _
N=N+¢1
DT=DXx __
L=L%0X
C=C*DX
_ R=R*DX
_LS=LS+.0000001 _
NN=N+1
NPTS=(THMAX®(N=-1))/NP+1
DO 10 I=1,NN
18(1)=0.
V(I)=0.
__Pv(1)=0.
PIBLI)=0.
_CM(I)=0.
CC(I)=0.
Cv(l]=0.
DO 10 J=1,NN
o Y(I,3=0.
10 B(I.J)=0.
GG=1000000. ] iTs
GGS=1./1(2.%LS/DT)+RS)
GL=DT*GAML/2.4(2.%CL/DT)+GLL
GS=1e/((2.%L/DT)#R)
e GP=2.%C/DT
Ct*2%BUILD THE Y-MATRIX&%%%
_Y(1l41)=GG+GGS
Y(le2)=-GGS
Y(2,1)=-GGS

D0 50 [=2,NN

DO S0 J=2,NN .
IF(J.NELTIGO TO 30
IF(I.NE.2)GD TO 20

Y(IyJ)=Y(14J)¢GGS+GS
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20

30

GO TO 50

IFLL.NELNNIGO TO 40 . L =)
YU1ed)=Y(1e3)+GS+CPGL

GO 10 S0 hcip ol S e
TF(JNEJT+L ANDGJNELTI=1)G0O TO S0

Y(laJ)=Y(1ed)-0S

—— 40
50
Cotnk

60

GO 10 50

YEEaJ)=Y 11 ed)+2.%GS+GP L T e
CONT INUE

INVERT Y-MATRIX® &«
DO 60 I=Y,;NN
B(l,1)=1,

D0 70 I=1,KR

RAT10=-Y(I+1,1)/Y(L,1) O e
YOI+l T41)=Y(I+1,T+1)+¢RATIO®Y(I,I+1)

DO 70 J=1+NN e
IF(ABS(RATIO*B(I,J)).LT.1E-10)GO TO 70
BlI¢l,J)=001+1,J}«RAV}O*B(1,J)

70

CONT INUE

.DO 80 I=1+N NCER
K=NN-1 s . )
D0 80 J=14NN . L DR R Wl o e e AN
RATIO==Y(K K+1)/Y(K+1,K+1)

JE(ABS(RATIO*B(K+1,3)) LT, 1F-10)GO TO 80

PR :1)

90

BIKyJ)=B(K¢J)+RATIO®B(K*1,4,J)
_ CONTINUE

DO 90 I=14sNN
_D0 90 J=1,.NN Ca e
BUI,J)=B(I+J)}/Y(I,4I)

DO 110 J=1,NN

DO 110 J=1,NN

o JF(ABS(B(I4J)).LT.1E-10)6G0_T0 100__

100
110

Y(lesgl=8(1eNN
GO0 TO 110
Y(I,J4)=0.0
CONT INUE

VMAX=0,
PILL=0.___
PICL=0.
Wk o e T
IF{IPLOT.EQ.0)GO 10 130
IF(1PLOT=-2)120,130,120

120

_ 130 CONTINUE

READ(5,310)XUAB, YLAB,GLAB +DATLAB

IF(T.GT.TMAX)GO TO 260

_CCL1)=COS*(PV(L)}-PVI2))4PIB(L)*((2.*%LS/DT)-RS)I/((2.#LS/DTI+RS)

140

DO 140 K=2,N

— 150

CCKI=GS*(PV(K)-PVI(K+1))+PIB(K)*((2.*%L/DT)-R)/((2,%L/0T)+¢R)
DO 150 J=3,NN g .
CVIJ)=PIB(JI=-11-PIB(I)+GP =PV (J)

CLL=(DT#GAML/2. ) ¢PV(NN)+PILL

CCL=-(2.%CL/DT) *PVINN)~-PICL

IL=CLL+CCL
ANG=0OMEGA*T4+THETA

160

I5=FEMAX«COS(ANG)
_I6=15%10000C0.
CMl1)=16-CC(1)
DO 160 J=2,N ey el
CMIJ)=CC(JI=L)+CVIII=-CC(J)

:
%
:
9
i
8
a
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CMINN)=CCINI+CVINNI-IL
DO 170 J=Ll4NN -
vV(J)=0.0

DO 170 K=1,HNN R e e N

IF(ALS(Y(JoK)®CM(K)).LT.1E-101G0 TO 170
V) Y DY (3 KIS CMK)

170 CONTINUE
e 1B =O0S VLNV (2))4CC( )Y L S
DO 180 J=2,N
180 IB(JY=GS*(VIJI)-V(J+1))+CCLI)
IBINN)=GL*V(NN) ¢[L
IFAABS(PY (8 X)) ) LT ABSIYMAX))IGO TO_190

VMAX=PVILX+1)
190 CONTINUE -
ILL=(DT&GAML/2.)#V(NN)+CLL
_ICL=(2.#CL/DT)#VINN) +CCL
IF(NP-NC)200,200,240
200 IF(V.LY.TPLOY)IGO YO 230

WRITE(64550)T
HRITE 164540)
DO 210 J=2,NN
JJ=J-1
XJ(JJ)=J4J
PV(JJ) =PV L)

PIB(JJ)=PIB(I)
210 WRITE(64560)1JJ4PVI(JJ),PIB(II)
WRITE(6,570)
e _IFLIPLOT.EQ.0)GO TO 230 _ _ _
IF(IPLOT-2)220,230,220
220 CALL GRAPH(N,XJ,PV,11,7,10.0:,8,0,0,0,1.0,0.0,-5.0,XLAB,YLAB,

. 1GLAB«DAYLAB)
_TPLOT=TPLOT40DTPLOT _ _

230 CONTINUE
e NC=0.0

VOLT (JX)=PVILX)
AMPS (JX) =P IB (LX)

TIME(JX)=T
o dX=dX4]

240 NC=NC+1
DO 250 J=14NN

PVIJ)=V ()
250 PIBLN)=1R(M)

PILL=TILL
__PICL=ICL __

T=T+0T7
_ . GO 10 130

260 CONTINUE
IF(IPLOT.EQ.0)GO TO 300

IF(IPLOT=2)300,270+270
270 WRITE(64500)VHAX
WRITE(6,510)LX
WRITE(6,520)
DO 280 I=14NPTS
280 WATTE(6,530)TIME({) VOLT(T),AMPS(IY

290 RIADISy310)XLAS,YLAB,GLAB, DATLAB
T IYLAB,GLAB.DATLAB)
__300 CONTINUE "
310 FORMAT(20A4%)

CALL GRAPHINPTS yTIME,WOLT y1147,124048.0,0.040.0,0.0y=5.0,XLABy _

o e
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320 FORMAT(3F10.4,2110)
330 FORMAT(2f10.4,2110) : ’ " PR . oy e N
340 FURMATI(5F10.%)
350 FORMAT(3F10.4) e,
360 FTORMAT (1] ¢, 06588300048t CicoUbkdaResitdtsstestottdtthretssetee NP
L] DATACSEC OGSt RETLAKELOCEOMEREIULESEDCOEEUBEOOLIBROCLORSEY , / /)
370 FORMAT(44X,"#2£%0QUTPUT CONTROLS#3%" _//)
- 380 FORMATI(ZTIXs ' THAX ' 16X ' TPLOT 44X 'DYPLOT 48X o*LX"yBXs*"NPYs6Xo'IPLOT
1ee2/)
390 FORMATI(22X,43F10.3,3110) o IS THU SEas
400 FORMAT(// 43Xyt *6x%SCALED LINE DATAt®R%%',//)
— 4]0 FORMAT(29X, *RESISTANCE 22X, ' INODUCTANCE® 22X, *CAPACIT : T
1'SECTIONS® ¢/ /)
oo 420 FORMAT(27XsF104392XsF10e343XsF10.342X4110) 3 T e s
430 FORMAT(// 441X, ¢36SCALED SOURCE DATA%®%%&v,//)
o . 440 FORMATI(31X¢*EMAX",5Xy 'OMEGA' y5X, 'THETA',2X, *RESISTANCE* 32Xy
1*INDUCTANCE",//)
450 FORMAT(25X,5F]0.3)
460 FORMAT(// 443X, ' #228SCALED LOAD CATAt%set,//)
. 470 FORMATI39X,*GAMMA 42X, " CAPACITANCE' 42X, *CONDUCTANCE"',//) NI
480 FORMAT{34XF10e341XsFl043+43%X,F10.3)
490 FORMAT(/// ' X5 oot aaad et aeobhdbtosbre bRyttt ssstsecsssscQUIPY
1T DATARR# S XS ke 0o bk bbbt bt 0bR0HAERLRLG0ELORUKSRELA0KET /)
S00 FORMAT(SX, *VMAX=',F10.3,//)
510 FORMAT(SX,*NODE="412,/)
520 FORMAT(/4SXy*TIME® ,4X, *VOLTAGE®,3X, *CURRENT?*, /) _
530 FORMAT(10F10.4)
540 FORMAY(/,6X,*NODE*y3X,*VOLTAGE®,3X, *CURRENT?,/)
550 FORMAT(///¢5Xs'TIME =',F643)
560 FORMAT(110,8F10.4) ;
ST0 FORMAT (/' #6500 06tk ke kU0 RGRUEE AR LR OGRS RRAREEASEEERAKEEET /)
SstTop.
END

/G0

/DATA

/DATA
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/308 GROSS,PAGES=100, YIME=300
REALIA IBeICoISA,ISB,ISCeIGA,IGB, IGC LA LB,LC,IMAX,IBA,IBB,IBC, o
LILA, TLB TLC, TLLA, ILLBILLC, ICLA,ICLB,ICLC,ILSA,ILSB,ILSCsICSA,
21CSB, ICSCLSALLSB,LSC CO—
DIMENSTON YA(S50,50),YB(50,50),YC(50,50),VA(50),VB(SC),VC(50]),
—_— 1IBA(50) JOR(SOLTBC(SD) 4 PVALSD)«PYRLS0)+PYC(H0)4PIRALSD),PIRR(SO),
ZPIBCI50) CMALSD)CHB IS+ CMLLS0)CCALS50),LCRIS0)CCC(S50)4CVALSO),
e .. 3CVB(50) s CVCLS0) 5 TIME(S00) , AVOLY (500 )+BVOLT(500),CVOLTIS500), AAKPS
4(500) 4BAMPS(S00)sCAMPS(500) ¢ XJ(50), XLAB(S) o YLAB(S) +GLAB(5)
e SDATLAB(S), DATLAALS) DATLAC(S) - - s
READ(S5,300) TMAX s TPLOT,DTPLOTLX, NP, IPLOT
— READI5:310)RA,1ACA,RB,IB,CB.N
READ(I54320)EMAX,OMEGA+RSA,LSA,RSB,LSB
e . _READ(54320)TA.TB, TC, THETA EoRl) TR S Pt G e b
READ(5,330)GLLA,GAMLA,CLA,GLLB,GAMLB,CLB
WRITE(6,340) o Lo FN e
WRITE(6,360)
WRITE(6,370)TMAX, TPLOT 4DTPLOT,LX,NP,IPLOT
_ WRITE(6,380) z -
WRITE(6+390)IN
WRITE(64400)
WRITE(6,410)
WRITC(6,420)RA,LA,CA
WRITE(6+4430)
WRITE(6,440)RB,LB,CB8
WRITE(64450)
_HRITE(64+460) e . prg =
WRITE(64470)EMAX,OMEGA,TA,TB,TC,THETA
WRITFE(6,480)
WRITE(645490)
____WRITE(6,500)RSA,LSA_
WRITE(6.510)
___NRITE(64520)RSB4LSB
WRITE(64530)
WRITE(6,540)
HRITE(6,4550)
v ___WRITE(64560)GLLAyGAMLA,CLA
NRITE(64570)
_ MRITE(6,580)GLLB,GANLB,CLB
I WRITE(64590)
| DX=1./H
‘ N=N+1
_ NN=Nel
! NPTS=(TMAX*(N-1))/NP+1
OT=0X
NC=NP
T=0.
LA=LA¥DX
 LB=LB*DX
. LC=L8
_CA=CA*DX_
CB=CB*DX
Ce=C
RA=RA%DX
e BRI e
RC=RO
; _ RSC=RSB
| LSA=LSA+.0000001
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LSB=LSB¢. 0000001
e e LSC=LSB =
GAMLC=GAMLB
. CLC=CELB
GGA=1000000.
GGR=GGA

GGC=GGA
oo GGSA=14/1(2.«LSAZ/DT ) +RSA)
GLA=(DT*GAMLA/2.)4(2.%CLA/DY)+GLLA
e GSA=1./((2.¢LA/DT}+RA)
GPA=2.%CA/DT

— Ceesxes QURROUTINE YO BUILD AND INVERT THE Y-MATRIX

CALL YINVRUUYA,GGA,GLA,GSA, GPA, NN, GGSA)
A O T GGSB=14/(12,*LSB/DT)+RSB)

GLB=(DT&CAMLB/2.)+(2.%CLB/OT)+5LLB
e GSB=14/((2.%LB/DT)+RB)

GPB=2.%CB/DT

GGSC=GGSB

GLC=GLB
— . G6GSC=G6SB __
GrPC=GPB
. CALL _YINVRT(YB,GGB,GLB,GSB,GPBysNN,GGSB)
DO 10 I=1,NN
IBA(I)=0.

1BB(1)=0.
—_— _IBCt))=0. _

VA(I)=0.

vBl1)=0.

vVCiI)=0.
PVA(I)=0.

PVB(I)=0.
—— s PYCCE}=0s

PIBALI)=0.
e PIBB(WYS0. .

rigc(I1=0.
CMA(I)=0.

CMB(1)=0.
CMC(1)=0. _

CCA{1)=0.
cce(l)=0.

CCC(Il=0.
CVA(I)=0.

CVE([)=0.
— . CvC(I1)=0._

DO 10 J=1,NN
10 _YCU143)=YB(1,3)

PILLA=0O.
PILLB=0,

PILLC=0.
PICLA=0.

PICLB=0. S -
. PICLC=0.

JX=1
VYAMAX=0.

VBM/ X=0.
_VCMAX=0D. s e e
IF(IPLOT.EQ.0)GO YO 30
= IF(IPLOT~2)20,30,20 e U
20 READ(5,640)XLAB,YLAB,GLAB DATLAA
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READ(S5 640 )DATLAB
_ READ(%,4401DATLAC . P g S S e el
30 CONTINUF
LE(1.GT.THAX)IGO TO 260 _ . Y]
CCALL):=GOSAS(PVA(L)~PVA(2))+PIBA(1)&((2.¢LSA/DT)-RSA)/
—  X{£2.%) SK/DFIERSA)
CCBIL)=GOSB% (PVBI1)-PVBI2))4PIBB(1)*((2.%LSE/DT)-RSB)/
002, 5LSE/7DYT)+RSB) e T
CCCI1)=6GSCE(PVC(LI=PVC(2))+PIBCIYL)®((2.¢LSC/DT)=RSC)/
C1((2.%LSC/DTI#RSC)
DO 40 K=2,N
3 CCA(K)=GSA®(PVAIK)=PVA(K+]1))+PIRA(K)*( (2. ¢ A/DT)-RA)/
1((2.5LA/D1)4RA)
_ CCBIK)=GSB&(PVB(K)-PVB(K+1))+PIBB(K)*((2.%LE/DT)-RB)/ SR e
L1({2.¢LB/DT)+RD)
40 CCCUKI=GSC*(PVCIK)=PVC(K+1))+PIBC(K)#((2.*LC/DTI-RC)/ L
1E(2.6LC/0T)¢RC)
DO 50 _J=3,NN
CVA(J)=PIBA(J=1)-PIBA(J)+GPASPVA(J)
. CVB(J)=PIBB(J-L1-PIBB(JI)+GPBEPYB () S
? . 50 CVC(J)=PIBC(J-1)-PISBC(J)+GPC*PVCIY)
CLLA=(DTGAMLA/Z 2. ) P VA(NN) 4P ILLA
CLLB=(DT*GAMLB/2.)#PVB (NN)«P[LLB
CLLC=(DTSGAMLE/2. ) $PVE (NN 4PILLE
CCLA=-(2.%CLA/DT) ¢PVA{NN)I-PICLA
_ CCLB=-(2.%CLB/DT)*PVB(NN)I-PICLB
CCLC=-(2.%CLC/DT)*PVC(NN)=PICLC
__ILA=CLLA+CCLA
ILB=CLLB+CCLB
ILC=CLLC+CCLC
IF(T-TA)60,70,70
_60_1A=0.
GO TO 80
70 ANGA=OMEGA*T+THETA
TA=EMAX*COS [ ANGA)
80 IF(T-TB)90,100,100
90 18=0.
60O TO 110 ) e e e e o I =
100 ANGB=OMEGA&T-2.0943951+THETA
_ IB=EMAX%COS(ANGB)
110 IF(T-TC)120,130,130
120 1C-0.
GO TO 140
130 ANGC=OMEGA®T¢2.09439514THETA
IC=EMAX®COS ( ANGC)
' 140 CONTINUE
ISA=(IA+IB+IC1/3.
1SB=(I1A-1B)/3.
1SC=(lA-IC)/3.
___ _IGA=ISA®1000000.
1GB=1SB#1000000.
’ o IGC=1S5C*1000000.
CMALL)=1GA=CCA(L)
CHMBL1)=168=-CCRB(1)

CMC(i)=16C-cCC(1)

DO 150 J=2,N :

CMALJ)=CCALJ-1)4CVALJI=CCA(J)

 CMBLJI=CCBIJ-1)4+CVB(JI-CCBII)
150 CMC(J)=CCCIJ=11+CVC(JI=CCC(J)
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CMA(NN) =CCA () $CVANRI-TLA
CMBINNI=CCBIN) +CVBIN)-1LB
CMCINN) =CCC () +CVE (NN =1L C
_ C#*#83¢SUSRUUTINE TO CALCULATE NODE VOLTAGES o - - e
CALL VXCM(VA,YA,CHANN)
CALL VXCH(VB,YHB, LMY NY)
CALL VXCMIVC,YCT,CMC,NN)
IBAC1)=GGSA® (VA(L)-VA(2))+CCA(L)
IBBI1)=GGSBe(VB(1)-VB(2))+CCB(1)
k. o _TBECLI=GGSCEINCLLI-NCI2II+CCCILY S me Me ot
- DO 160 K=2,N
IBA(K)=GSA®(VAIK)-VAIK+]1))I4CCA(K)
IBB(KI=GSB%(VBIK)-VB (K€1) )+CCB(K)
_ Y60 TBE (K T=BSCR Ve IR =V (R IIREEC I o v
IBAINNY=GLASVA (NN ¢ 11 A
o IDBINN)=GLB®VB(NN)+ILB T A e 5 5 ot e
IBC(NNI=GLC#VC (NN) +TLC
TLLA=(DT&GAMLA/ 2.4 ) #VA (NN) +CLLA
ILLB=(DT*GAMLA/2.)oVB (NV) $CLLB
ILLC=(DT#GAMLC/ 24 ) ¥VC (NN} +CLLC
ICLA=(2.4CLA/DT)#VA [NN) +CCLA
 ICLB=(2.€CLB/DTI*VBINN) +CCLB
ICLC=(2.¢CLC/DT ) 4VC (NN} +CCLC
CHes& st 4SUBROUT INE T0 CALCULATE PHASE VALUFS
CALL MOTOPH(PVA,PVB,PVC,PIBA,PLBO P ILC,NN)
. IF(ABS[PVA(LX+1)).LT,ABS(VAMAX))GO TO 170
: VAMAX=PVA(LX+1)
170 IF(ABS(PVB(LX+1)).LT.ABS(VBMAX))GO TO 180
VBMAX=PVB (LX+*1)
180 IF(ABSIPVC(LX+1)).LT.ABS{VCMAX))GO TQ 190
VCHAX=PVC(LX¢L]
190 CONTINUE r
IF(NP-NC)2004200,240
200 _IF(T.LT.TPLOTIGO TO 230
WRITE (6,600)T
WRITE (64610)
DO 210 J=2 4NN
JJ=J-1 _
XJJJI1=4J
' PVALJI)=PVALJ)
ﬁ PVB(JJ)=PVE(J)
. PYCLIII=PVCLY)
PIBA(JII=PIBA(I)
E PIBB(JI)=PIBE(J)
PIBC(JJ)=PIBC(J)
210 WRITE(6+620)JJ,PVA(JI)PVBIJI)PVCIJI),PIBALII) (PIBBLII)PIBCIII)
WRITE(64630)
. IF(1PLOT.FQ.0)GO TD 230
1F(IPLOT-212204230,220
220 CALL GRAPH(NN,XJyPVAy1LyT7,102078.090.07140,0.0,-%.0,XLAB,YLAB,
; 1GLAB, DATLAA)
_ CALL GRAPHINNyXJyPVBy11,7,10.048.0,0.0,140,0.0,~440,XLAB,YLAB,
1GLAB, DATLAB)
CALL URAPH(NNX)sPVCy11¢7410.048.040.! 41.0+40.0,-4.0,XLAB,YLAB,
1GLAB,DATLAC)
# _ TPLOT=TPLOT+DTPLOT
_ 230 CONTINUE
NC=0

AVOLT(JX)=PVA(LX)
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BVOLT(JX)=PVBI(LX)
- CVOLT(JX)=PVC (LX)
AAMPS (JUX) =PIBA(LX)
BAMPS (JX1=P1CB (LX) =
CAMPS (JX)=PIBCILX)
TIME(IX)=T
JX=JX+1
.~ 240 NC=NCel NS O L~ S S s ot pmm e TR dgls 2
DO 250 J=1,NN
PVA(LL)I=VA(J)
PVBIlJ)=VBILJ)
PYCLJ)=vC ()
PIBA(J)=1BA(Y)
LR o PIBB(JI=1BB(J) < e —a - - N
250 PIBClJ)I=1BCLY) X
PILLA=ILLA . = = e e . SN
prLuLB=1LLB
PILLC=ILLC
PICLA=ICLA
— . PLCUB=ICLE ] s B, it : N .
PICLC=ICLC
T=1+DT
G0 T2 30
260 CONTINUF
IF(IPLOT.EQ.O0)GO TQ 29C
b JF(IPLOT-2)290,270,270
270 WRITE(6,680)

_ WRITE(64650) S
HRITE(6+TO0)VAMAX s VBMAX, VCMAX
WRITE(6,650)LX
WRITC(64660) '

.00 280 1=1,NPTS > : . . ] =

280 HRITE(6,6T0)TIME(L), AVOLY (L) BVOLY(I),CVOLT(I),AAMPS(]),BAMPS(I),C

__LAMPS(1I)

READ(5+640)XLAB,YLAB,GLAB+DATLAB
CALL GRAPH(NPTS,TIME,AVOLT,4,107412.048.040.0,0.0,0.0,-5.0, XLAB,
1YLAB,GLAB,CATLAB)

___READ(5,640)DATLAB N L ) o
CALL GRAPH(NPTSTIME+BVOLT$94107y04048.0,0.040.040.0¢4-5.04XLAB¢
_1YLAB,GLAB,DATLAB)
READ(5,640)10DATLAS
CALL GRAPH(NPTSTIME,CVOLT¢48+107¢0.0¢8.040.0+0.0,0.0+-5.0,XLAR,

LYLAB,GLAB,DATLAB)

290 CONTINUE
300 FORMAT(3F10.4,3110)

_ 310 FORMATI(6F10.4,2110)
320 FORMAT(B8F10.4)

330 _FORMAT(6F10.4)
340 FORMAT (L', 4s¢ et v esst bttt 0ttt b bR dRensroskeetsns&]|NPU
Ny IT DATA*3% 5846000 saont oo tREt o0t btReaRt ettt aOEaRent [ /)
' 350 FORMAT (44x,'&&se0yUTPUT CONTROL®%%&',//)
_ 360 FORMATIZTX g *TMAX® 46X, " TPLOT ' 94X, 'DTPLOT 38Xy *LX"¢BXy"NP'y6X, ' IPLOT
LAV
370 FORMAT(22x,3F10.3,3110) .
380 FORMAT(// 443X, #¢ceSCALED LINE DATA®¢sxt' //)
390 FORMAT (49X *SECTIONS=%,12,/7)
400 FORMAT (37X, *RESISTANCE® 42Xy *INDUCTANCE® ¢2X, 'CAPACITANCE®,//)
410 FORMATI(23X,'ZERO-SEQ")
420 FORMAT( '+ " ¢36X9F10.442XeFl0e4e2X+F10.44//)
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430 FORMAT(23X,*POS/NEG-SEQ*)
440 FORMAT( Y+ 36XgF10.492XsF10.%12X4F10.4,7/)
450 FORMAT(// 041X ' *3%2SCALED SQURCE DATAszest 7/
460 FORMAT (28X "EMAX® 5X 9 'OMEGA 94Xy "A-TIME* 44X, "B-TIME" 44X, 'C-TIME"y _____
16X, *THEYA,/ /)
470 FORMAT (23X,8F10.4,/7)
480 FORMAT(//» 40Xo‘RE5lSTANCE'v9X-'lNOUCTANCE'n//)
. 490 FORMAT(23X,*ZERO-SEQ"}
500 FORMAT('+¢',38X41F10.4,10X¢1F10.44//)
$10 FORMATI(23X,'PDS/NEG-SEQ")
520 FORMAT('+'38BX¢ lF10.4+10X41FLQ.44//)
530 FORMAT(// 443X, ***%SCALED LOAD DATA®%%x*,//)
540 FORMAT(39X¢*CCNDUCTANCE® 42Xy *GAMMA® 42X, *CAPACITANCE',//)
____ 550 FORMAT(23X,*ZERO-SEQ"') e e B SR ST SR N R
560 FORMAT('+*,38X,3F1l0. 4,//)
—. 570 FURMAT (23X, 'POS/NEG-SEQ")
580 FORMAT(%+',38X43F10.4,//)
590 ;ORHAT(///,|gaatttgtcgtgg#ttt‘nOttt#t##‘tttttttttt.t‘ttttt#ttOUTPU
1T DATA“‘t#t#t#"##0#“##““0‘tt"t#t#t#"“tt“#‘.‘tt"/I)
600 FORMAT(/// 45X+ *TIME=*,F6.3) -
610 FORHAT(I.bX"NDDE'.SX.‘VA’.8X.'VB'.8X.'VC'|8X"lA"BXq'lB'nGX'
—— FEREY L) Erih, S
620 rORMAI(llOnBFIO 4)
630 FORMAT (/' %40k 2RSSR XRRAREEEEAAEAEEAXERRARERF SRR KR EEKEERERE
14 eELr XXX SRS G CO SRR, /)
640 FORMAT(20A4%) S
650 FORMAT(///+5Xy*NODE=*,12)
660 FORMATI/ ¢SXy*TIME® 36X, VA 48Xs VB 18X,y 'VC*'¢BXy "IA®18X,*IB?8X,__
101C*, /)
670 FORMAT(10F10.4)
680 FORMAT(//,19Xs *VOLTAGE MAXIMA',//)
690 _FORMAT(15K,"VA® 43X, '¥B*39X,'VCs7/7)
700 FORMAT(9X,3F10.4)
STOP
END

_SUBRDUTINE YINVRT(Y,GG,GL,GS¢GP,NNyGGS) _
DIMENSION Y(50,50),8(50,50)
N=NN=-L1
DO 10 I=1,NN
D0 _10 J=1,NN
Yil,J)=0.
10 B(1,J)=0._ _ _
Y(1,1)=GG+GGS
_.¥(1,2)==GGS
Y(241)=-GGS
D0 _SO0_1=2,NN

DO 50 J=2,NN

JF{J.NE.1)GO TO 30

IF(1.NE.2)GO TO 20

e Y3 J)=Y (14 J) +GGS+GS
GO 10 50

— 20 JF(I.NE.NNIGO TO &0 "

Y(l,J)=Y(1,J)¢GS+GP+GL
ee——._ GO TO 50 4
30 IF(J.NE.I+41.AND.J.NE.I-1)GO TO SO
. YULgJ)=YU14J) -GS

GO TO 50
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40
50

YUIod)=YU10J)42.¢GS+GP
CONTINUE s S U IR e

C**3&NVERT Y-MATRIX*G&s

60

DO 60 I=1.NN - e e e e e i
Bllsl)=1.
DD 70 _1=14N_

10

RATIO=~Y(I+},1)/Y(1,1)

YUI4Ll 142)=Y(I¢1014L)4RATIO®Y T 14Ly . .
DO 70 J=1.NN

IF(ABS(RAT10#%8(1,3)).LT.1E-10)GO TO 70 o
BlI+1,3)=BUI+14J)+RATIO®B([,J)

~LONY INUE

- RATI0==Y(KeK+1l)/Y(K¢+1,K¢1)

DO 80 I=14NR
K=NN-1I . PN TS
00 80 J=1,NN

IF(ABS(RATIO#B(K+1,3)).LT.1E~1D)1GO TO 80
B(KyJ)=B(KeJ)¢RATJO*B(K+),J)

..DO 90 I=1.NN T

CONT INVE

DO 90 J=1+NN
CBUI,3)=B(1,J)/7Y11,1)
DO 110 I=1.NN
DO 110 J=1.NN

—_— __X{1,Jd)=811,J)

——--100

1

10

1F(ABS(B(L+4)1-LT-1E-101G0 T0 100

G0 TO 110 e e
Y(1,J1=0.0
CONT INUE
RETURN

END

SUBROUTINE VXCM(V,Y,CM;N)
DIMENSION VI501,Y(50,50),CM{50)
00 19 J=1,N

10

V{J)=0.

DD 10 K=1,4N

IF(ABS(Y(JoK)#CM(K) ) LT.1E-101GD TO 10
VU=V 4Y LY, KIRCMIK)__
CONTINUE

RETURN

END

__SUBROUTINE MOTOPH(VA,vB,VC,IBA,18B,1BC,N)

REAL VA(50},VB{50),VC(50),1BA(50),IBC(50),IBB(S0)
DIMENS ION FVAISO)-PVB(SO!'PVC(5OI'PIBA(SOl.PlBB(SO).PIBC(sO)

DO 10 J=1,N
__ PVALJ)=VA(JI+VB(J14VC(I) Sty - s
PIBA(JI=IBA(J)+IBBIJ)+IBCIY) .

_PVBLJII=VAIJ)-2.%vB(J)+VC(J)

PIBB(J)=IBA(J)~2.*IBB(JI+IBCLI)
PVCIJ)=VA(JI4VB(J)=2.%VC(J)

10

PIB (JI=IBA(JI)+IBBLII-2.2IBC(J)
00 20 J=1,N
VALJ)I=PVA(J)
vB(J1=PvB(J)
VC(J)=PYL(J)
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IBALJ)=PIBALI)
.. IsBty)=P18B())
20 18C13)=PIBCLY)

RETURM . i e ————————n e

END




