
AD—AUbi 620 AIR FORCE HUMAN RESOURCES LAB BROOKS AFB TEX F/G 9/2
PROGRAMMING LANGUAGE CAMIL II. IMPLEMENTATION AND EVALUATION .(U)
AUG 78 E 6ARONER

UNCLA SSIFIED AFHRL TR 7B”45 ML

A06102

I

.

WJBI3
_ _

PU!!!
_ _

_ DEIBLI_ .Hflfl~__ 2~~~~

~7

Iii~ ~~
~~~~

~ :~4~ 1llJI~0

QI~, ‘ 
.25 IIiIIi~. ~~~

MICROCOPY RESOLUTION TEST CHAqI
~~~~~~~ ~l)R~ AI~ AN { J~l~



~~~~~~~~ 

r

AFHRL-TR.78-45 iJ~VEL ~AIR FORCE B
PROGRAMMING LANGUAGE CAMII

IMPLEMENTAT ION AND EVALUATIO~

U By

Edward GardnerM
A

~
) N TECHNICAL TRAINING DIVISION

Lowry Air Force Base, Colorado 80230

R
-

~~~~ E August 1978
Final Report for Period F~ ,ruary 1977 — May 1978

n
A pproved for public release ; distribution unlimited .

R
C
_ _ _ _ _E

S LABORATOR ~

A~R FORCE SYSTEMS COMMA
BRO OKS AIR FORCE BASE ,TEXA S 782~

NOTIC E

W hen U.S. Government drawings, speci fications, or ot her data are used
for any purpose ot her than a definitely telated Government
procurement o p e r a t i o n , the Gove rnment thereby incurs no
responsibility nor any obligation whatsoever , and the fact that the
Government may hav e formulated , furnished , or in any way supplied
the said drawings , specifications , or other data is not to be regarded by
imp lication or otherwise, as in any manner licensin g the holder or any
other person or corporation , or conveying any rights or perm ission to
manufacture , use , or sell any patented invention that may in any way
be related thereto.

This fInal report was submitted by Technical Training Division , Air
Force Human Resources Laboratory , Lowry Air Force Base, Colorado
80230. under project 23 13 , with HQ Air Force Human Resources
Laboratory (AFSC), Brooks Air Force Base, Texas 78235.

This report has been reviewed and cleared for open publication and/or
publi c release by the appropriate Office of Info rmation (01) in
accordance with AFR ~90-17 and DoDD 5230.9. There is rio objection
to unlimited distribution of this report to the public at large , or by
DDC to the National Technical Information Service (NTIS).

This technical report has been reviewed and is approved for publication.

MARTY R. ROCKWAY , Technical Director
Technical Training Division

RONALD W. TERRY , Colonel , USAF
Commander

Unclassi fied
S E C U R IT Y C L A S S I F I C A T I O N OF T H I S P A G E (When Data Enlared)

7 ~ \ REPORT DOCUMENTATION PAGE HEFORE COMPLETING FORM
“ I~~~~&BoaI.J~UMBEB ~~~~~~~~~~~~~~~ 2. G OVT A C C E S S I O N NO. 3 R E C I P I E N T S C A T A L O G N U M B E R

\~
4. T I —.----— — - - — —- . T~~-~~fP-~~-e-F RfPOR! a-PERioD Co’IEREO((~ ~~ I’ / /~inai t-~~.AND EVALUATION S (February W7’7 - May ~~7S~~

-- - .
P€R~ GRM444 -ORG~~~€~~**T M~~+~ &M

- A IJTHOR(.2 — B. C O N T R A C T OR GRANT NUMB E R(EI

~~~~~
)

~ dward~~ardner 

_9. PERFORMING O R G A N I Z A T I O N  NAME AND ADDRESS IC.  P R O G R A M  E L E M E N T . P R O J E C T . T A S K

- - .- - - A R E A  A W O R K  UNIT  NUM BE RSTechnical Training Division __________

Air Force Human Resources Laboratory . . 

~...~JiO2F
F Lowry Air Force Base . Colorado 80230 (~ ~~~~~ F4O7

I I . C O N T R O L L I N G  O E F IC E  N A M E  A N D  A D D R E S S  12
HQ Air Force Hum an Resources Laborat ory (AFSC) 

~\ August 1978
Brooks Air Force Base , Texas 78235 Te~~~wor P A G E S

66

14 . MONITORING A G E N C Y  NAME & ADDRESS( I I  differe,t t fm ,,, Con ~rollind Of f j cC )  IS.  S E C U R I T Y  CLASS.  (of th i. repo rt)

Unclassified

15a. D E C L A S S I F I C A T I O N  DOWNGRADING
SCHEOULE

IA. D ISTRIBUT ION S T A T E M E N T  (of thin Repo rt )

Approve d for public release ; distribution unlimited.

17. DIST I T J - ~°~ . L 41. -dLjtm.ct entered Ifl Block 20 . If different (moo, RepomI)

lB. S U P P L E M E N T A R Y  NOTES

.

IS. KEY WORDS (Cont i nue on ,ev et .e aide if nece...my ~ ,d IdentIIy by block nu,eber)

languages computer workload high.Ievel language
CA MIL lan guage computer pro grams computer software
PASCAL language program perfo rmance structured progra mming
computer services computer assisted instruct ion programming language conpilers

- 
com pu ters com puter manage d instruction

20. ST R A C T  (ConIlno. on meter.. aid. if nece...ry and identify by block nomb.r)

A reimplementation of Computer assisted/managed instruction language (CAMIL) for qualitative and
quanti tative improvements in the software is presented. The reformatted language is described narrativel y, and major
components o’f the system software are indicated and discussed. Author ing aids and imbedded support facilit ies are
also describe d , and key CAMIL programs used in the development are discussed. The resulting system offers a
method for future improvement of the Air Force Advanced Inst ructional Syste m (AIS) computer support system
without expenditu re of additional funds for computer support .

~~~~~ ~~~~~
DD ‘~~ 1473 EDITION OF I NOV &S IS OB sOL ETE Unclassified

SECU RITY C L A S S I F I C A T I O N OF IMIS P A G E (Whe n D.~. Fnteredl

ii

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

.

~

. ~~~~~~~~~ ~~~~~~
- . ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - --

SECURITY CLASSIF ICAT ION OF TI4I5 PAGE(I4 ~,.n bat. Ent.r.d)

SECURITY CL A S S I F I C A T I O N OF T I-Its DA G E (W S e n 0.r. FntO~~.d)

- —-~~~~~~-
-~~~- - - ~~~~~~~~~~~~~~~~~~~ - .-— -- --

_

SUMMARY

Object ive

The system software in the Air Force Advanced Instructiona l System (AIS), while providin gnecessary classroom support for courses at Lowry AFB , did not meet original design performanceobjectives. In addition , due to cost and other impacts , full features of the Computer assisted/managedinstruction language (CAMIL) implementation were not realized in the initial implem entation . Theobjective of this work unit was to determ ine whether a different approach to the im plementation ofCAMIL could meet original perform ance objectives and also implement the full language and author ing aidsystem while simultaneousl y offering improve d maintainability.

Approach

The CAMIL language was slightly modified to improve compilabiity and program readabil ity. A newcompiler for the language was implemented , based upon top-down recursive analysis rather than thetable-driven approach used in the original compiler. The system support program was rewritte n in a highlevel language and the system was configure d to run with a reduced level of interaction with the operatingsystem. Sevo~.al service functions were transferred to peripheral processor routine s to allow for greaterparallel processing, and key CAMIL programs were rewritten using the new system. The resulting systemwas to be performance compare d with the original system in detail , but thi s has been deferred due to achange in operational requirements.

Results

Over 95% of the system has been implemented in the high level language PASCAL for ease ofmaintenance of the system software. The new compiler runs approximately 10 times faster than theoriginal , and several possibilities remain for fu rther speed enhancement. The new system provides for anelaborate group of authoring aid functions while imposing no additional burden upon the author , andnumerous fu rther programming aids could be added to the new configuration. The resulting CAMILprograms appear to run fro m S to 20 times faster than their predecessors , but this relationship has not beenrigorously tested as was originally intended.

Conclusions

A path for considerable qualitative and quantitative improvement in the AIS system soft ware isavailable if and when system loading increases due to demand for AIS computer services.

~Y

I

-
I

_ _ _ _ - _ _ _ _ _ _ _ _ _ _

PREFACE

We would like to ackn owledge the support of the AIS computer operators whohelped us during the long nights when this work had to be done. We would also like tothan k Harold Montgomer y of the McDonnell Douglas Corporation for his help inunderst anding the internal operation of the existing AIS computer operating system. Wespecially thank Lt Col Roger Grossel for his support in initiating this work unit and forhis faith in our abilities to improve a highly complex system with the limited manpowerand resources available in our organization.

2

—- -- - -

~~

--

~~~

-—-. .

~~~~

--.—

~~

-.
--‘

~~~~~~~~~~

- - ry

TABLE OF CONTENTS

PageI. Introduction

Report Organization 7Language Description -
~

II. CAMIL Language Overview 8
[II. CAMIL Language Description 9

Progra~m Structure 9Data Declarations 
12Data Definitions 13Expressions 
16Executable Statements 18

Old Favorites 
18Modified or Improved Statement Forms 19File Operations 21

Sentence Library 26
IV. CAMIL Compiler Program 32

,‘ Implementation Factors 32Narrative Description of the CAMIL Compiler 32

Data Base Interface 33Compilation Driver 34LeXial Scanner 
34Declaration Complier 35Statement Compiler 
36Expression Compiler 37

V. CAMIL Execution Support System 39

Terminal Driver 
39

Initialization Section 39Key Input Section 40Communication Section
Framing Section 

40Job Scheduler 
40Batch File Manager Section 41



rp,
~ 

-~—-q ’
~

’ 
~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 

,----,-----i-.----- -~~-- -~~~~~~~~~~ ‘
——-

~~~~~~~~~~~~~~~~~~~~
— — - 

~~~~~~~~
- - -

~~~~~~~~
--

~
-----

Table of Contents (Continued)

PageExecuter 
41

System Mode 
41User Mode 
42

File Manager 
43Operatin g System Interface 45Peripheral Processor Routines 45

INO 
45DAB 
46TMM 
46

VI. CAMIL Authoring Support Features and Aids 46

LOGON Program 
47Program Editor 
47

Automat ic Error Mode 49

The User Editor SoFile Editor 
50Auto psy Program 
51Print Program 
51

VI I. Conclualons 
52

Re ferences 
52

Appendix A: Program Excerpts 
53

Appendix B: CAMIL Il Language Syntax Chart s 59

LIST OF ILLUSTRATIONS

Figure 
Page1 Examp le Syntax Chart 

8

L - . .
~~~~~~ ~~~~~~~~


PROGRAMMING LANGUAGE CAMIL II:
IMPLEMENTAT ION AND EVALUATION

I. INTRODUCFION

The languag e descri bed in this document has been imp le m ented in support of a large scale effort
within the United States Air Force training community to apply computer technology to improve technical
training efficiency. The major effort in this program has been to app ly individually assigned self-paced
learning methods to four high.student4oad training courses at an Air Force technical training center . Within
this environment , a large scale computer has been programmed to manage the instructional programs of
approximately 2,400 students by tracking their performance and capabilities and assigning appropriate
instructional package s based upon their past and pre dicted performance . The computer also performs man y
of the administrative tasks created in such an environment , keeping all student records necessary to
properl y manage each student individually. One of the available instructional media will be interac tive
computer assisted instruction (CAl), also supported by the central computer.

In order to implement the above software, the implementat ion of a contemporary progra mming
language capable of servicing both student management and student instructional term ir~L. as well as
software development , was deemed necessary. Before the decision was made to develop a new language
and/or implementation , current languages supporting similar activities were reviewed. After detemi ining
tha t such an integrated attempt at computer assisted/managed instruction had never be fore been attempted
on the scale of this effort , it was also determined that suitable software had not been previousl y developed
in support of such an application. The most closely related efforts were a large scale computer manage d
instruction (CMI) system at the Naval Air Station in Memphis, Tennessee , and the Plato IV effort at the
Compute r Based Education Research Laboratory of the University of Illinois in Cham paign-Urbana.
Although both were outstanding examples of their respective types of programs. it was felt that neither
offe red software capable of supporting the type of integrated CAL’CMI environment being s’~ught . For
these reasons, it was decided that a contemporary programming language supporting the best current
programming practices would be specified and implemented to support the number of students anticipated
in the projected Air Force training environment. This language was identified as CAMIL , a mnemonic for
Computer Assisted/Manage d Instruction Language.

Because both the original implementatio n and the one described in this report are referred to as
CAMIL , the two language s have been referred to as CAMIL I and CAMIL U . This report will for purposes of
brevity use the term CAMIL for the second implementation since our purpose is primarily to describe it
rather than to compare the two implementations. In the few places in which the two are being compared.
suitable discrimination will be made.

CAMIL can be described in customary terms as a high level , general purpose . inter activeI~
implemented , ALGOL-like , extensible programming language. The syntactic format of the language is
generally like that of ALGOL . while the semantic features of the language generally represent extension and
generalization of the facilities of current PASCAL. A major addition to its capability is the inclusion of an
English.like statement called a “sentence ” composed from “words ” such as “verbs. ” “prepositions. ” and
“adverbs.” New words may be defined wi t hi n the progra m , effectively allowing new statements to be added
to the language , ~tithin a predefined flexible syntactic format. Another tn aIOT facility added , which also
supports sentences , is the support of multi .element expressions or groups of values. Such t r ip les may appear
as lists of verb objects in sentences , or as values which may be assigned to multi-element , user declared
types such as arrays or records . The user may also declare new prefix, inf ix , or postfix operators for existing
or user defined types , or may extend existing operators to new user defined types. The language also
includes a large standar d library of defined sentence words allowing highly self-documenting programs to he
implemented by relatively unskilled programmers.

5

CAM I L is compiled in to absolute binary code for the (ontr o l Data Corpor ation ((1)() (‘YBE R 70
series comli puters . The compiler is written in PASCAL and implements a process called intel l igent partial
compil ation. All CAMEL programs are interactivel y edited by an on-line modular editor wri t ten in CAM EL ,
which cooperative ly structures CAMIL programs for modular compilatio n and (eaves information for the
compiler to use in avoiding unnecessary compilat ion of unchanged modules. Ukewis e , the compiler
generates and store s cross-refe rence information which it uses to determine ripplin g effects of editing
chan ges in order to cause reco m pilation of affected modules. Using this technique , it is not unusual to
recompile a 5000-line progra m in several central processing unit (CPU) and real-time seconds since much
input / ou t p u t (I/O) and processing can be avoided in a typical comp ilation s i tuat ion.

In order to facilitate analysis of stu dent data and generation of periodic reports in batch mod e,
CAMIL has been imp lemented using the same addressing conventions as PASCAL , thus allowing compatible
descriptions of data collected on line to be analyzed with PASCAL programs even thoug h packed records or
arrays may exist in the CAM I L dat a base . An interface package allows any hatch program to call out the
same disk I/O services available in CAMIL. to access ~he student data base accumulated by CAMIL programs
running in real time. In addition the CAMIL system allows programs to be detached from their initia ting
termina l and run in a Thackground” mode at a service limited priority this provides for data analysis and
processing in CAM IL without necessari ly re serving a computer terminal. To facilitate general usability of
the system , the CAM IL compiler and PASCAL compiler both interface directly to the CAMIL data base so
that rapid turnarounds of compilations can be achieved without using the system printer , thus allowing any
termin al in the system network to be used for software development. This authoring environment
constitutes a very important part of the CAMIL authoring system and has a direct impact on the
productivity of the CAMEL programmer

In order to keep the compiler and language description closely related , the flow chart descriptive
method developed by Wirth in reference I w ill be used to describe the CAM I L gr ammar . CAM IL has been
designed for rapi d compilation with as few fo rw ard re ferences required as possible. Procedures need not be
forward declared , and labels need not be declared at all. The simple (although sem antically powerful)
syntax results in raw compile speeds of about 250—300 lines/sec within declarations and about 100
lines/sec within executable statements on the CYBER 173-16 (Control Dat a 6400). With the partial
compilation techni que mentioned above , this often results in effective compilation rates greater than 1000
lines/ second. Error recovery is particularly good since the compiler can abort compilation in almost any
module if it gets “lost ” and continue to other modules without the sometimes devastating effect caused by
mismatched symbols such as parentheses or BEG IN-END pairs.

To clarif y some of the examples included in this paper we must briefly vxp lain the hardware
environment in which CAMIL executes. CAM 1L is implemented in a %K central memory (‘YBER 73-16
processor and services a current network of 50 Magnavox Plasma Display terminals throug h a digital
television communications network originally designed at the Computer Based Education Researach
Laboratory of the University of Illinois (Refe rence 2). The network also includes ten “intelligent ” student
management terminal s (optical forms reader , printer , PDP-l 1/05) which use a compatible protocol on the
same communications hardware. The network is expandible to over 1000 term inals withi n this basic
hardware. All displays presented at these terminals must be produce d by CAMIL programs. Two CYBER
control points (i.e., partitions , jobs , etc.) are serviced at high system priority to provide synchronous data
transfe r (program DR IV L. R, executed each 1/60 of a second) and interactive execution of CAM1L programs
(program EXECUTER , voluntarily releasing the CPU only when CAMIL requests are satisfied). The initial
CAMIL implementation current ly services approximately 2 200 mi l itary students , primarily through CMI
services at student management terminal s, while interactive termina l s are currently used primarily for data
base management, software development , and materials authoring. The language described in this document
represents a more advanced version of the Language based upon the earlier experience and was intended to
improve the language qualitatively while offering major improvements in implementat ion efficiency and
authoring turnaround time.

6

Report Organ ization
l’his repo rt has two major subjects: the IIrst encompass ing the language and the second encompassing

the software elements needed to implement the language upon the CYB ER computer. We have tried to
present a narrative description of the language and implementation , rather than a formal language reference
man ual , in order to impa~, :o the reader an understand ing of the effort required to implement this type of
software and of how the language and implementation relate to several other contempora ry languages and
implementations. What we have found most difficult to place into words has been the impact of the
interactive and dynamic authoring environment implemented by this system upon ourselves as
programmers. We have viewed this project from the beg inning as the construction of a motivating and
enabling tool for programmers and course developers which would allow the rapid development and
evaluation of interactive computer assisted instruction and management. Although the potential of such an
environment has not yet been demonst r ated , we now have the ability to make such an environment
available.

Language Description
This section of the report will provide a general description of the CAM IL language . It is intended for

a reader who has a working familiarity with contemporary high level programming languages , such as
ALGOL, PASCAL, or JOVIAL. This reader shoul d easily recognize the purpose for including most of the
described features in a language such as CAMIL: therefore , very familiar data types or statements are not
described in great detail. Constructs uniqu e to CAMIL are described narratively in greater detai l so that th e
reader will be able to relate these to facilities which might be represented by other constructs in other
languages or which might not be available in other languages.

The CAMIL syntax is described by a set of grammar charts using the basic style used by Wirth
(Refe rence 1) to describe the syntax of PASCAL. No fo rm al production or redu ction grammar exists for
the CAMIL II implementation , reflecting the fact that a top .down , recursive descent compiler is used to
impl ement the language . A reduction grammar for the orig inal CAMIL imp lementation contained about
400 productions some of which correspond to features which have not yet been implemented in the
original system ; this indicates the comp lexity which may be anticipated when a table-d riven , bottom-up
compiler is used to implement a comp lex language , such as CAMIL. In comparison , the syntax chart
description for the current CAMIL is very compact and is readil y related to the compiler s t ructure for
maintenance purposes, although it does not have the guaranteed relationsh ip that a reduction grammar has
with respect to the compiler. In the case of CAMIL 11, the grammar does correspond to a language in which
ambiguity can be resolved by looking ahead one token at most.

Within this nota tion , an oval box CD is always used to surround a reserved word in the language : such
words are built from upper case letters and are intercepted by a bottom-u p lexical scanner and classified as
single symbols . Reserved words and punctuation are also occasionally surrounded by a smal l pointed box
p~ , which is pointed in the direction of production flow of the gr ammar and which is identical in meaning
to the symbol CD— ~. . A strictly rectang u lar box is used to contain the name of another chart , wit h t he
implication that some compiler routine will be recursively called to collect the item impi led by the name of
the box. ~~ The lines with arrowheads indicate the direction of production flow of the charts. To relate
this notation to a more familiar form , the examples below indicate equivalent Backus- Na ur Form and
syntax chart examples.

Backus -Naur Form:

ccons tar~t lec l $$ ~ C3N STANT ctyoe soec l i s t >
‘tyQ esp ec li s t > II~ cty p e sp ec l i s t > ; cty oes p ec ~a~~~>tyoe soec oa ir>
< type sp ec pair > ~~~ t ty D e sp e c > ‘deci oa lr l i s t >
‘deck oajr Ij st > 8 $ = dec l oair list > , -dec i p a i r >

< de c l oal r>
‘deci pair> $ * ~ <ic1er ~t i f j e r > .- (constant exor e sslon ,

—.—.---— ~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~ 

.

~~~~~~~~


Equivalent Syntax Chart

~I(~~~~AN3 H_~~P[1YPesPee

t~~i
_ _ _ _ _ _ _

Figur e 1. Example Syntax Chart .

The full syntax chart for CAM IL has been redu ced to two page s and this repre sents a considerably
inure compact and understand able description than an equiv alent reduction grammar . Since the subtleties
of language semantics are more dif fi cult to present in an organized and pictorial manner than language
syntax , examples will be included in certain sections of this teoort to indicate how language structures have
been used to implement buil t- in facilities , many of which are actually coded in CAMIL .

II. CAMIL LANGUAGE OVERVI EW

Most languages require that a prograni be described syntactically such that key or reserved words
indicate the major divisions of the pro gram structure. In CAMIL , a progr am is always ent~ic~ ~dited . and
executed on-line. All programs are stored in a direct access file system with a set of directoiy elements
describing the modules representing th e CAM IL program. Major sections of the program are represented by
separate directory chains. A program directory entry is used to link to the sets of mod ules which comprise
the CAMIL program; all directory entries are automaticall y created and deleted as the user adds modules to
or deletes modules from the program . Any CAMIL program consists of one or m ore of the following types
of modules.

SHARED data ---data global in scope but addres sable by every executing copy of this program
PRIVATE data —-global insscope but a separate allocation is kept for each executing copy of this prog r am
PROCEDURES ---recursively callable subroutines
SEGMENTS ‘—Sections of code which can be branc l~ed to/ from any segmen t or procedure and which

normally const i tute major parts or sections of the CAMIL program
C A % I I L contains only three definitional levels : one level for predeclar ed , built-in data and sub-

routines . a global level of data accessible from any segm en t or procedure , and a local level of data within
any procedure or segment. Only one segment may be executing at any time , but there is rio specific limit to
the number of procedures which may be recursively activated at any time. While t his is m ore restricted than
PASCAL . it substantiall y simp lifies many author and user problems which might otherwise arise when
asynchronous features of the langu age are used. (These are explained later.)

SHARED and PRIV ATE modules are used onl y to contain type and storage declarations and cannot
be executed. Execution of a CAMIL program begins at the first line of the first segm ent in the program
directory : after the last line of a segment is executed , control transfe rs to the first line of the following
segment: the pr ogra ii~ ends when it is specifically exited by an exit function or when the last line of the last
segment is executed . Control may also be transferred to any segment by a “GOTO” to the name of the
chose n segment .

Procedures are not executed unless specifically called and will return control to the statement fol-
lowing their ca ll unless a “GOTO” to some segment is executed within the pro cedure . An escape to any
segment results in an escape from all procedures currentl y activated and a return of all local storage
allocated for the current ly active procedures and segusent. CAM(L allows the progr am author to also define
asynchronousl y active “ lun c t ion keys ” in the program which will transfe r control at the user ’s initiative to
places designated by the author. Thus , while the execution sequence of a program is determined by strict
rules of the langu age , the actual path taken through a program can he as flexible as the progra m author
wishes to allow.

8

— - - - - - - — -
~~~ 

-- —
~~~ 

—

~~~~

-

~

- - - .—



_______________ -
~~

CAMIL progra m s can communicate with each other through several possible means. Two different
executions of the same program can transfer data through SFIARED data m odules or throug h the CAM II_
data base which is a record oriented , direct access file system. Several different CAMIL progr ams can also
communicate throug h another type of SHARED data module called SYSTEM SE ARED which mus t be
defined at the system level as part of a special CAME L program containing the shared data modules . Any
two authors can also commwiicate in real time throug h ~ direct message facility between terminals . Other
facilities allow a program author to execute a program in small steps , interactively autopsy a program on
request . m~nitor the display of a student who is executing his program , and trap execution errors , along
with the complete data situation at the point of failure.

III . CAMIL LANG UAGE DESC RIPt iON

Pro~~~~ Structure

CAMIL consists of two distinct but merge d pa rts , the core language and the extensible language . The
core language is generally compiled directl y into machine code which implements its m eaning; the
extensible part is mainly implemented through built-in or user defined procedures , which supply semantics
to sentences and extended operators . All syntax is fixed , but within the extensibl e part of the language , it is
rather flexible . The core language supports basic types such as intege r , number , character , logical , stri ng ,
and textual displays. From these basic types , more complex types , possibly containing multip le
components , may be defined by the user.

CAM IL makes a distinction between INTEGER , which may be used as numeric or as bit information ,
and NUMBER , which is assumed to be a real number and subject to the usual side-e ffects of truncated
precision machine arithmetic. CAMIL is tolerant in its conversions between these types and also when it
compares internal numbers to responses entered by humans , who are generally less precise than floating
point arithmetic units. CAMIL supports a 252-character set; 126 of which are permanently fonted on the
term inals and system line printer and 126 of which can be fonted within the interactive terminals within an
8 by 16 dot raster pattern as the author desires. Stri n~ are allowed over the full 252-character set , and a
special construct called a “wordstr ing ” can be two-dimensional , allowing a complete screen of data to be
written with a single write sentence.

CAMIL supports RECORD and ARRA Y structured types and also allows the author to specify that
they be PACKE D insofa r as reasonable for data space conservation . Arrrys are normall y indexe d by
INTEGER expressions or user defined ranges of mnemonic values as in PASCAL. In CAM EL , h owever , the
CASE variant of PASCAL is generalized; any field may be a variant field , and the case selector field is
automatically set by generated code whenever a record is composed as a multi -element expression . This
important distinction allows the compiler to pass type data to the executing CAMIL program and will be
exp lained in conjunction with the sentence extensibility feature which it supports. Unlike PASCAL ,
CAMIL allows multi -element literals to be composed . thus allowing ARRAY and RECORD expressions
rather than forcing the user to explicitly assign each field of a record or an array. This is particularly
important when combined with other aspects such as OPTIONAL fields in a record: it allows a user to
define sentences comp letely in CAMIL which are substantially more comp lex than the typical read or write
statement and which may be written with an arbitrary number of parameters and modi fIers. CAMIL also
maintain s definitional identity between composed expressions and the actual parameter lists of procedures
and also between procedures , formal parameter lists , and record definitions. Thus a procedure can be
considere d as an operator defined upon a record definition , and a procedure call can be considere d as a
prefix operator acting on a compose d expression . Infix and postfIx operators are an immediate extension of
this idea which provides a uniform basis for operator extensibility implementation.

CAMIL support s a direct access data base through several simple file operators. All files are shared
among all CAMIL programs and may be opened simultaneousl y by any CAMIL programs permitted access
by a file security system . Program s are by name p ermitted to perform specific file operations on designated

L _  _ __ _ _ _ _ _ _



files. Operations supported allow individual records to be read , w ritte n , deleted , or ip dated. Records are
automatically reserved while being updated to avoid the problem of two different executions or programs
up dating the same record. Files may be accessed b y index or sequentially or by direct address. All files are
structured as files of some specified type. File identifiers can refe r to either the current data contained in
the central memory file buffer or to the associated file sequence stored on the disk , depending upon
whether the context in which the identifier appears implies a reference to data or a file operation. A single
statement similar to the PASC AL WITH statement allows a particular record to be reserved , readup,
dereferenced as in the PASCAL WIT H, updated , rewritten , and released. All file operation statements allow
an ELSE clause which is processed instead of the file operation in the event that the file operation cannot
be successfully completed. Although maximum file size is specified when a file is defined , the actual
number of records in the file is dynamic and the presence or absence of a particular record can be
determined.

The familiar lF-THEN .ELSE statement is supported by CAMIL , and an additional statement is added
to support asynch ronous interruption of the normal program flow by the user if programmed by the
author. The author can use IF-DO statements to provide an asynchronous transfer of control to the “DO”
statement in the event that the user presses one of the function keys listed in the “IF” clause. This feature
allows the author to make a great number of options available to a user without having to check explicitly
for them at any time. Certain “built-in ” condition s may also be handle d using this feature , such as file
errors , system termination by the operator , and processing errors.

The WITH statement from PASCAL is implemented , as is the ubiquitous GOTO statement . A form of
the GOTO statement is provided which combines the GOTO and CASE statemen t functions . In this GOTO
CAS E form , the selector expression transfers control to a selected tagge d statement , but branch instructions
are not generated at the end of each case. This results in a behavior similar to the computed GOTO
statement while retaining the structural form of the CASE statement and achieves the semantic efficiency
which in certain situations the computed GOTO provided. CAMEL also extends the CASE statement to
include an ELSE clause which allows a closure to the set of possible values of the selector. The familiar
FOR , REPEAT , and WHILE statements of PASCAL are combined into a single iterative statement allowing
optional selection of any or all of the above possibilities and also the BY increment , somehow lost in the
transition from ALGOL to PASCAL. An iterativ e case-like statement , called the JUDGE statement , is
allowed and provides for the collection of an input from the user , the comparison of that input with
possible matching anticipated answers, execution of a consequent in the event of a match , or execution of
an optional ELSE closure condition if no match is found , followed by-resolicitation of the response when
no match is found . Many different possibilities of action are easily specified by the author due to the
flexibility of the response accepting sentence. The JUDGE statement is highly usable in many situations in
which responses are solicited from student users and was derived from the TUTOR langua ge (Reference 3).
The RETURN statement has also returned and provides a needed alternative to the labels which otherwise
crop up on the last statement of a procedure in those cases where structure d programming does not quite
suffice to express an algorithm.

An important feature of the CAM IL design is based upon a type of CAMEL statement called a
sentence. The syntax for the sentence is built on several parts of speech commonly used in simpl e Engl i sh
imperative sentences. The syntax allows the author to rearrange the parts of a sentence in a m anner which
make s semantic sense in English . In this format , verbs , adverbs , prepositions , and objects (ex pressions) can
be rearrange d in the manner most convenient to the user without affecting the meaning of the sentence.
Thus a sentence such as

-w rlte x on s i ne 1O ,co~ 5 for ’ 5 sec

would execute exactly the same if it were written

~f0~ 5 sec wri te x on line LO,c ol 5

10

L - - -~~~~~~
_

~~~~~. 
. - .~~~~ --~-.---- ~~~ - --

just as ct would have the same appa r ent meaning to a human observer reading both forms . The user can add
new verbs , adverbs , prepositions, and also operat ors , which function as adjectives in appearance . by adding
procedures which imp lement the imme an ing of these words and define acceptable combinat ions of verh and
prepositional phrases. In the CAM IL imp lementation. terminal hardw are dependent I/O is prede fln ed
within this facility during compiler initiali zation , thus removing I/ O from the cor language and providing
highl y readable I/O statements. It is hoped that this type of facility may offer a workable solution to the
proble m of authoring readable programs in languages which must be tailored to meet the needs of parti cu l ar
equipment.

Procedures and functions may also be called using conventional parameter lists. No restr ict ions are
placed on the size of the objects returned by functions in order to allow support of arbi trary user defined
types as function results. Operators defined by the user are treated as functions of one (prefix , post fix) or
two (infix) operands and produce a value usable in any context in which a computable expression is
allowed. The execution of a sentence is an activation of the procedure of definition for the verb of the
sentence and executes as efficiently as any normal orocedure .

The operation of assignment is fully implemented since it has been extended to include literals of any
type. Additionally, the user may explicitly “cheat ” between size conipatible types by “casti n g” an
expression as another type. This usually machine dependent , sometimes regr e t tab ly necessary operat ion.
can thus be clearly indicated in the CAMIL progr am and imp lemented with m inimal overhead. The result ing
expression provides explic it notice of what must be reexamined if the program is moved to a different
CAMIL implementation.

The notio n of a NAME as an attribute of a variable or record field allows a unifo rm treatment of th i s
concept within the language . A NAME field within a record or parameter list is conceptually ident ical to a
NAME variable in a norm al data area. The normal assi~~

’ment operator is made tran r ~areru when NAME
identifiers are used , since the assumption is always made th at the referent of an iden -

~~ is always intended
when an identifier is used , unless otherwise specified. Thus names need not be dereterence d exp li c itly as in
PASCAL. An additional arrow operator “ -p ” is implemented with the meaning “ x— - ’, make x point to
what y is pointing to ”. In this manner , a NAME parameter to a procedure is tre ated exactly as a NAM E
global variable or as a NAME field within a record. Storage may be dyn amically allocated wit hin a program
execution through the use of a MAKE operator which allocates data in an area with a l ifetim e
corresponding to the lifetime of the pointer with which it is affiliated.

CA.MJL imp lements compile time resolution of constant expressions which reduces the size ot
program code and allows computations to be introduced into constant initializations. Thic has hidden
benefits in that constants such as “2/3” or l .5x 10t5 may be stated accurately at compile t ime yet appear
in familiar notation to the user. It also allows PACKED constant composed expressions used for initializa-
tions to be packed at compile time , thus avoiding generation of the codes necessary to do this which are
usually larger th an the resulting expression. The following operators are available in general between the
indicated types of operands :
Arithmetic: Addition , subtraction , real division , integer division , integer remainder. exponentiation . and

negation; these are defined between INTEGER and NUMBER operands and returning
ENTEGER and NUMBER results.

L.ogical: Union, intersection , difference , wor d shift s in the left and right direction with zero pad and
end around car ry forms , and bitwise complement of words: these are defined between
INTEGERS and produce an INTEGER result.

Set: Union , intersection , difference, and complement : these are defined between compatible sets.
String: Concatenation and infix search between STRING operands and between STRING and

CHAR operands.
Relational: Equality and inequality between compatible types and relational operators between pa irs of

most types and set membership. Pointer identity between NAME operands, as well as normal
equality between their ref erents.

11

L ~~~~~~

__ .~.~~
_ 1 .~~~~~~-~~~~~- - — — -~~~~~- -“.- .- — --~~~

Conversions : U pon assignment between all reasonable com binations of basi c types.
User defined: Any operators definable between any kind of operands if the relationshi p is definable using

the above operators upon the co mmm po n ents of the user defined type s.

Data Declara tions

All data accessed in (‘AMIL must be named and typed. These declarations fall into four basic classes:
TYPE , CONSTANT , VARIABLE , and NAME .

A TYPE declaration is merely a convenient way of associating a complicated data descri ption wit h an
identifier so that the identifier may be substi tuted for the more complicated definition without typ o-
graphical error . Either a TYPE identifier or an explicit data description may be used whenever a “typespec ”
is indicated by the CAMEL grammar . A typespec must be associated with any data used by the pro gram ,
and the compiler will check to insure that only semanticall y meaningfu l operations are attempted between
data items according to their type .

A CONSTANT declaration associates an identifier with a typespec and with an initialized , unchanging
value. Con stant identifi ers may be used anywhere in place of the value with which they are associated , but
their value cannot be change d during the execut ion of the program. Their permanent , unchanging value
must be stated in their declaration .

A VARIAB LE declaration also associates an identifier with a typespec and a storage allocation which
can contain an object of the indicated type. An initial val i~e may be indicated for the variable as part of the
declaration . The time of allocation of the storage is the time at which the variable is initialized , thus the
following initialization times hold for the indicated class of variables:
SHARED When the first program referring to the shared module is loaded
PRIVATE Each time a new user begins to execute the program (even though someone else may already

be executing the same program)
PROCEDURE At each activat ion of the procedure
SEGMENT Whenever the segment is activated

If no initial value is specified for a variable , the associated storage will be cleared (zeroed) at the time
of activation.

A NAME declaration associates an identifier with a typespec and a pointer which can onl y point to an
object of the indicated type. An occurrence of a name variable in any context causes the name to be
dereferenced to the corresponding object. Storage is al located for the pointer when a declaration is
encountered , but not for an object of the indicated type (these are created dynamically) and no initial
values are allowed for names. Name variables are initialize d to NiL refe rences at the times indicated above
for variables .

Declaration syntax is independent of the type of module in which the declaration occurs and is
indicated in the CAM 1L syntax diagrams included in the Appendix. The following examples were excerpted
from the CAMIL program editor and are offered without semantic explanation at this time as sam ples of
data declarations.

Examples:

CONSTAN T
INTEG:R b u f f e r size..-255, ma xm o~1s.-237;A R R A y (O :1 01 OF STt~ING (j 1J modtyoe.-(
~~~o mmen ts ’,•Share d Qa ta ’,’Prjv3te Da ta ,p roc e dur~ s .,‘Seq’~enfs ’,’Jt,~ Cards ’,’Maj~ Block ,’Inç,~~ Oats ’,Tex t Macro s • F inc tAo rs

12

______ 
-~~~~~~~

- -



TYPE
O l b u f f e r _ s i z e  BUFF E~ RA NGE ;
Ot m a x n o d s  M OD RANGE
0 *6 3 IOCHARS;
0*2 , 15—1 DISKA DO RESS ;
0*2 , 1~~— i JULI AN TV ~ E
0 *2 t16— 1 ADDRRA MG E ;
PACKED ARt(AY (10I OF IDCHARS PACKEDN A ME;
PACKED R~ COt(D

BEGIN
PACKE ONAME m orlu len amtt e;
DISKAOOR ESS s r c , o b j ,j v
MO O~ ANG E head ingend
JULI ANTYPE uod t date
11240 c e l l n u m h e r
AOD R RANGE srcsjze,o b ts j ze,ivsj ze ,baseaddr ,ewna ddr

E ND ~DRECO~ D;

VARIABL E
INTEGER
g ri d _ start s-i , gri d sDacinga-5 , nbr _ gr jd _ Ilne s;

LOGICAL
lnser ’t,re contoll e,
inspect _ on I v ’-TRUE

PACKED A R RA Y ( 321 OF 0 * 3 3  s c ree n l i ne s .- l 1,2 ,3 ,~.,5,  2~~~0)

N A ME
MORECORO cur”ren t_ t~or1ule_ d i rect ory ;

Data Definitions

Language Tokens

The tokens from which a program can be composed fall into traditional categories. These basi c
elements are : reserved words , identifiers , literals , and punctuation .

Reserved Words

The following list of upper case spelled reserved identifiers are identi fied by the CAM IL compiler as
built-in delimiter tokens in the langua ge . They cannot be redefined by the author , thus they will always
have the same meaning in any CAMIL program. The role of these words is to clari ty the structure of the
program to the compiler and to the original and subsequent authors of the program . The list is presented at
this time for reference. The words are reserved in UPPER CASE only, but some of them also appear in the
language as predefined identifiers in lower case.

IF DO OF BY
TO END FOR SET
OWN THEN ELSE CAS E
FROM WITH GOT O TYPE
NAME VERB PREP FILE
BEGIN ARRAY WHILE UNTIL
JUDG E REPEAT PACKED RECORD
RETURN SWAPPED VARIABLE CONSTANT
OI’TIONAL PROCEDURE

13



_ _ _ _ _  
-

Identifiers

An identifier is defined as a gr oup ut upper or lower case letters , digits , or underscores. The first
character numst be an upper or lower case letter.  The compiler only attaches significance to the first ID of
these characters and ignores any additional ones. An identif Ier must appear on a single line , i.e., an end of
line signals an end of identifier to the compiler. Identifiers are used to nam e data items , modules , and
locations (labels ) within modules.

P uncrtwr ion
Punctuations are used in CAM IL as separators for the purpose of program clarity and as operators or

grouping symbols. The following general uses are described for punctuations :
C} Braces en c los ing  comments ignored DY como il er
(I Paren theses used to  grou p e l e m e n t s  o f  exo r ess l ons
C )  Sq uare brac $~et s  used to  enc lose  i n d ex ex or ess l o ns

and l i t e r a l  s e t s

~e m j C o 4 o n  used to sep arate state me n ts
1 C o l o n  use d to v i s u a l l y  se para te  i t e m s  suc h as

l .a o e l s  and s t a t e m e n t s , or t o denote an ont io na l
d a t a  i t e m  in ce r t a i n  sentences

Sh ort l*ana ve rs ions  o f  the reserve d words
‘Be . G I N  and ~~N3’ . These char ac te rs  l i s o l ay
on the ter m ina l  screen as corner s r and L
and a re au tomat i c a l l y  connecte d bi t he o ro g ram —

ed i to r  w i t ’ s  a vertica l l i n e  which serves to
em p has i ze  the nesting st ructure 01 the progr am
wh i l e  en coura g ing neatl y  p a ired i n de ntat i on

s- ‘• ~l ssi gn m e n t opera tors
•~~~~~~~~~~ >~~~~ W~~~. € Lo g i c al operators

4 - ~~/+t /1 M a th op erat ors
Set op erators

Ik. String op erators
Quotes use d to d e l i m i t  screen messages
Quotes u sed to d e i L m i t  :har’acter str inq s

• Operat or use d to denote reference to
f i e l d s  o f records

iT Synonymous w i t h  the constant 3 ,jkiS3265t.
An o perator  usea irs m u l t i v a l u e d  ex or es s lo ns  to

den ote  tha t  a pa r t i cu la r  va lue  is to be
repea ted within the exoress ion

• Decimal Point used in exp ression of d ecima l
f r a c t ion

$ U se d to i d e n t i f y  a hexadeci m al constant
Used t o i d e n t i f y  an oc ta l  co nstant
Sever al o ther  o l eces  of p unctuat ion commonly

u sed in Eng Lis h, but not ass iq ied any s p ec ia l
syn t ac t i c  meaning In t ne ~AM IL language

Detailed uses of punctuations are shown in the CAMIL syntax charts included in the appendix.

~~~~ 

_

14

- —,.. - - .~~ .

- . : :v r flr ‘i. - r r t ~~~~~~~~~~
—

—
~~~~~~~~~~~~ —~~~~~~ .----~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-—-.-. ~~~~~~~~

..

Lit erals

The CAMIL language provides for the representation of literals , i. e ., self-defining constants of all basic
data types supported by time language . The types and formats of these items are :

L O GICA , . . $ TRU E.  FALSE
INTEGL ~~I ddd ddd d (d ig i ts  0 . .9)

~ddd ddddd (octa l  d ig i ts  0 . . ? )
Od d ddd d d d d (hexade c i m a l  d ig i t s  0 . . 9 , A . . F }

MUMBc. R1 •ddd lddd l
d dd .d ld d d d (d ig i t s  0 . .i  max of 10 s A g  d ig i t s)
ddddd dd.

C HAR 2 C s Ca s i ng le  cha’~ac t er  in q uotes )
S TRINGI • CCCCCCCC~ CO ~o 120 char ac ters in ou ote s )
?CINTE~~z NIL C means an undefined refera -i t)
WO RD SIR! NGS I

“ The rain in Soa i n f a l l s
~a 1 n Iy  On t~*e
o l a i n ~ (Used to d i s p l a y  data on t e r m i n a i t

The above const ants are limited in accuracy correspond ing to the accuracy 01 the ,us coIlIpu~er ny
the following rules:
I .  No intege r may be defined with a precision of information denoting more than 60 bits of b inary data.

The compiler limits octal constants to 20 digits and right justifies fewer than 20 digits in a field of
zeroes. The compiler limits hex constants to 4 5 digits and ri gh t jus tifies fewer than 1 5 digits in a field
of zeroes. The compiler limits decimal integers to the largest value which will fit within 45 bits of
information since this is the precision of the AIS conmputer multi plier ; the value of th is larges t integer
is 2 1 4 5 - I .

2. No number may be defined with more than 10 digits of decimal precision. Whil e this is less than the
AIS computer provides , it is consistent with the accuracy obtainable after repeated arithmetic
operations of functions. No numbe r expression may appear as a constant or be computed to exceed
approximately lOt 295. Numbe rs may be expressed in scientific notation as constant expressions in
the formats used to describe expressions as exp lained in later sections ,e.g., 2 5 .4x IOt lS .

3. Wordstrings are two-dimensional chunks of character information used to place information on the
display screen of an AIS terminal. Any characters except the double quote “ may be used in the
wordstring. If a wordstring is broken across more than one line , the firs t word of the next line will be
left justified against the left margin in effect for the terminal when the message is written (leading
blanks are ignored in lines of a wordstri ng). There is no specific limit to the size of a words t ring.

P 
CAMIL support s data types of the above litera l s throug h operators and through fa cilitie s for

compounding the above types into aggregates or indexable groups. On simple scalar types it also allows the
limitation of attention to subranges of these types . The operations between these types will be explained in
the section on expressions; the grouping mechanisms will now be explained.

Record Grouping

CAM IL allows certai n values to be grouped together and optionally compressed for minimum storage
utilization. This grouping of heterogeneous item types is called a record or packed record. The definition of
a recor d must inlcude names for all of the fields within the record and indicate the type of each field.
Var iat ions within a portion of a record are allowed when the contents of the record might be used to
represent more tha n one kind of thing through a type of field called a vaij ant. A variant selector field is
associated with a variant field to designate which alternative is in effect at any time. The record definition is
often associated with a type identifier in a type declaration to avoid the possibility of erroneously repeating
the definition and to save space within compiler tables. The syntax chart is shown in the appe n dix , but an
example is included here to clari fy the intent of the record declaration.

Is

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _  

4
- —- - --— .,~~~~~_--— --‘- -- ~~~



— ----.,
~ 

.—. — -.-- -..—- .- - - --- --~~
- —

~
- - - --- --—— - — _ - - -- —.—

Examp le:
PACKED RECOR D

BEGIN
Q 199~~999~~99 ss an ;
0* 9 9 9 9  s q uadron _numb~ .’ , s tu d ent _ dorm , student _ room ;
Z A B ,A 1 C ,A 2 C , S S G T , T S G T , M S G T J  stul ent _ ransc ;
15165 stude n t _ age
(MALt ,FEMALE ,l student _ sex
CAS E L O G IC A L  t r a n s i e n t

BEG I N
TRuE 1 r O I 999 nex t _ base; DATE _ TYPE out _o roces s _ laTe ’
FAL SE Ir ST~~ING (3o1 oerm ene ri t _ o~ ga nLza tion ’

E~ D;
EN D STUD ENT _ RECORD

Array Grouping
CAM IL also allows homogeneous types of data to be grouped into an indexable array structure . The

array may also be compressed for minimum storage utilization by including the word PACKED in the array
definition. An array definition must include the range of indexes allowed for each dimension of the array
and must also designate the typ e of elements which are being grouped together. The range is denoted by
including a subrange of the indexing type in the definition or by denoting the largest index and allowin g the
compiler to generate a default minimum index of “I “. Syntax for the definition is include d in the
appendi x , and several examples are included below:

Examples:
A R R A Y C I Q I  OF iNTEGE R ;
PACKED A RR A Y (1 0s2 01 OF NUMBER;
PACKED A R R AYC1 * 1O , 1U5, 1:20) OF LObI~ A L :
PACI ’Z~.t~ AR PAY [ 15 ) OF

PACKED AR RAYI4 ) OF
~ 4 C K E C  ~ECORC nLNT EG ER i,j,~~; 

.
~UMB E~ n’

File Grouping

A file may be declared in a CAMIL program in order to gain access to data in the CAM IL data base.
The purpose of the file definition is to associate some specific data file by name with a variable in the
program which is capable of holding an element of the file. The file identifier thus defined is regarded by
CAMIL as both the name of the variable and the name used to refe r to the data base file during som e file
operation . The file declaration must name the data base file , the type of item which the program considers
to be in the file, and the program name of the variable which contains a record from the file. References to
the dat a contained within the file variable are obtained by simply mentionin g the name of the file variable
as explained in the description of the file statement. The syntax for the file definition is included in the
appendix but an example is indicated below.

Example:
FILE ‘stu dent d at a ’ OF STuOEN T _ R~.CORC

Expressions

The CAM IL expression mechanism provides for all of the normal types of expressions and operators
found in most high-level languages , such as PASCAL , but also provides many extended features which other
languages do not have. Some of the extended features include special set operators , multi-element
expressions (composed expressions) , a type casting mechanism , and user defined operators .

16 

~~~~ - - - ~~~~~~~ - - ~~~~ . - ---—~~~~~~~~~~~~~~ .- -- -— —  --


- —

The lowest level of precedence encompasses the relational operators “=“,
“

~~~
“
. 
“<‘j

,”>”, “~~~
“
. 
“

~~“ ,

“e”. The meanings of the firs t six operators are similar to other programming languages. The “s”
Operator is used in two different ways within CAMIL . The most common use is to determ ine whether two
pointers have the same referent (i.e., the addresses denoted by the pointers are equal). The other use , while
similar in appearance , is to determine whether an optional record field or procedure parameter is present in
a record or procedure call . This is tested by comparing the name of the parameter to a NIL pointer. The
form of this test is “parmname NIL” and it returns a true value when the parameter does not exist. The
“€“ operator is the “contained in ” operator used to test set membership. The test “5 € s” would be true if 5
is a membe r of the set s.

The next highest precedence level contain s the “+“ and “.“ prefix operators and also the “4” , “-“,

‘ v ”, “u ”, “ s ” , “II ” , “-*--‘~---“, 
— --p”

, “—~.f” , “t~-” infix operators. The “4” and “-“ w ill not be discussed ,
since their meaning should be clear. The “v” operator is the logical “or ” operator. This operator has two
logical operands and returns a logical result , which is the inclusive-or of the operands . The “u ” operat or is
the set union ope rator. This operator computes the union of two set operands . The exclusive-or operator

is also a set operator which com putes the logi cal difference of two operands . The operators “ —‘—“

“ -“-p ” “-pt ”  “1’— ” are used to shift intege r operan ds . The ‘~ —‘~—“ and “-÷—“ operators are left and right end
off shifts , respectively, with zero padding. The “-~t” is a right circular shift , and “t~— ” is a left circular
shift. The “II ” s the string concatenation operator. This operator merges two string operands producing a
single string as a result.

At the next precedence level , the “x”, “/“ , “—“
, “A” , “n ”, “/f ’ operators are found. The ‘ x ” and “/“

are the normal multiply and divide operators , “+“ and “If ’ are integer divide and remainder operators. The
logical “and” operator is “A” , and “n ” is the set intersection operator.

The next precedence level contains the “1” operator and user defined postf i x and infix operators.
The “t” operator is the power operator , which can have intege r or number operands . To express 2 to the
n thl power “2 1 n ” would be used. The user defined postfix and infix operators which are referenced by an
identifier are also found at this precedence level, An example of this type of operator is the postf i x “sec”
operator , which looks like “5 sec” when used.

The highest precedence level includes the operators ‘“ i” and “N” and also parenthesized expressions .
cast expressions , user define d prefix operators , and composed expressions. The “—i” operator is the logical
“not ” operator , and “N” is the set complement operator. Parenthesized expressions have the standard
meaning that the expression inside the parenthesis is evaluated prior to using the entire parenthesized
expression as a result. Cast expressions allow one type of expression to be considere d (or cast) as another
type of expression by placing a “type id :“ in front of it. This is a very useful feature to have in a typed
lan guage such as CAMIL because there are many times it is desirable to override the typing conventions of
the language (especially in system progTams). A simple exampl e (assume c to be of type character)
“INTEGER : c” allows the internal value of c to be used as an integer. Records and arrays can also be type
cast , allowing multi-access methods to the same stora ge area. User defined prefix operators which are
recognized by identifiers , such as “line ” and “col” , are also at this precedence level.

Composed expressions are also at the highest precedence level. When a composed expression is
encountered , the composing routine is passed the type of the object to be composed so that  each element
in the expressi on list can be added to the stack in the proper location. The resulting multi -elem ent item in
the stack can then be used as the object of a verb , the parameter of a procedure call , as a value to store into
some variable , or as some value which is part of another composed expression . Because the type of the
object being composed is known , full syntactic and semantic error checking occurs as the expression is
scanned. The following is an example of a simple composed expression which assigns a value to the write
cursor AT , which is a record with two intege r fiel ds “AT ~~- (5 ,8);”. Values can be repeated in a composed
expression by using the “*“ repeat operator. This is especiall y usefu l when initializing an array and man y of
the elements are to have the same values. For example , i fa  is a 1 0-element array of integers , the following
will initialize the first element to 1 , the second element to 5, the last clement to 84, and the rest of the
elements to 15 “a ‘— (1 ,5,7*15,84);”.

17 

—- — - - -~~~~~-- -~~~~~~~~~~~~~~~—-~~—--—--—.., 
~~~~~~~ -


— _____—~-.-_--.-

The extensible features of the CAMIL language allow a user to declare prefix , infix , ~iid posifix
operators. There are two methods available to the user for declaring operators . One method is to decl a re an
operator which is to be identified in the program by an ident ifier (the “line ”, “col ”, and “sec” operators
are defined in this way) . Whe n an operator is declared in this manner , the operator takes o~ a precedence
depending on whether it is a prefix , postflx , or infix operator. The prefix operators “line ” and “col” are in
the highest precedence level while “sec”, a post fi x operator , is at the next precedence level. The other typ e
of operator declaration is one in which an existing operator is extended to new operan d types. The user
extended operator acquires the precedence of the operator symbol it is extending. A familiar example is the
extension of the common arithmetic operato rs to include complex operand types. The “4” operator will be
extended in the following exam ple. The definition of the type COMPLEX is:

I~ECO RD
3E GIN

NU M B E R real ,im ag inar y

CO, 1PL~.x ;

The following is a procedure heading which defines addition (using the + symbol) of two complex numbers:

CO?IPLc. X .‘ (CO4I Pt..i X a) + (C O M P L E X ~~~

Assuming the name of the module is plus , the procedure body for the above procedure heading is:

Bj GI N
o t~~s,real .- a , r ea l + b,r ea l
olu s,im ag ina r y .- a,imag lnary + b,imag ln a ry ;

END;

Whenever two complex numbers are to be added in the program , me -~- operator will invoke the
defining operator procedure. If a ,b,c are all declared as complex numbers, then the statement “c ~ — a + (b +
c) + b” would be possible. An entire set of such operators can be defined over complex numbers and stored
in a library, which a user could reference whenever he wished to perform computations using complex
numbers . A new number system could also easily be implemented by extending existing operators to
operan ds in the new system. The extensibility which CAMIL offers is quite adequate for man y different
and interestin g app lications

Constant expressions , including packed composed expressions , are evaluated at compile time and the
resulting values are store d in the program. The use of constant expressions reduces the program object size
because the expression is not computed aj run time. This feature also allows the progr ammer to change
storage allocations throughout a program by chang ing a few simple constants used in other constant
expressions. l’his enhances the maintaina bility of programs by allowing objects , such as tables , arrays , and
lists to be rapi dly and unifo rmly modified throughout a pro gram.

Executable Statements

CAMIL provides a large group of permanentl y defined statement type s for the construction of
al gorithms. Most of these statements are define d with reserved words as delimiters and several include one
or more other inibedd ed statements. Many also represent verbatim equivalents of standard statements from
ALGOL and PASCAL , as would be expected. Several others represent generality extensions of existing
types of statements , and several are somewhat new as far as we kitow .

Old Favori tes
Compound Statement
CAMIL provides for the grouping of several statements to produce one single apparent statement

through the familiar BEG IN END pair of delimiters. It also provides sing le character equivalents of these

18

- - -~~~~~~~~~

through two characters “r” and “n”. These often reduce pr ogr am text size making it possible to place
more program on a disp lay screen by allowing several statements to be placed on a single line. CAM IL also
frequentl y uses BEGIN END pairs as grouping elements in data declarations and in CASE and JUDG E
statements. All BEGIN END pairs are fully matched , unlike in PASCAL where END sometimes appears
without a correspond ing BEGIN.

Labeled Statement

CAMIL allows identifier labels to precede statements for purposes of bran ching to the st atement with
a GOTO statement. Labels need not be declared and may be forward referenced within a module. The
scope of definition of a label is the module in which it appears. The name of any segment type mod ule is
also considered to be a label to which control m a y be transferred by a GOTO statement.

RETURN Statement
A RETURN statement , meaningful only in a procedure type module , is provided and is equivalent to

a GOTO to a label following the las t executable statement in the module.
IF-THEN-ELSE Statement
A traditional branching statement is provided with the usual meaning of executing the statement

following Th EN , if the expression following IF is evaluated true , and executing the statemen t followin g
ELS E (if present) if the expression following IF is false.

GOTO Statement

The familiar but wisely avoided GOTO statement is also provided for use in escaping to segment type
modules or for transferring to local labels within a module. Transfer is allowed to any point withi n a
module which can be labeled , so the GOTO may be fully exploited and abused .

WITH Statement

The PASCAL WITH statement has also been implemented to allow local dereferencing of record
names. The effect is to make any field of the dereferenced record usanle as a simp le identifier within the
statement to which the WITH prefix is attached , just as in PASCAL. A variation which allows a file record
to be read up, dereferenced , up dated , and replaced is also implemented and explained in a later section .

The other statements in CAMIL have either been developed or originated , and they will he explained
more fully in the following sections.

Modified or improved Statement Forms
Assignment Statement

The assignment statement is present in its familiar form for left assignment. Compared to PASCAL .
this statement has been extended by extending the types of expressions which are allowed in the language.
Since CAMIL allows the user to structure multi-element data types through ARRA Y ari d RECORD
declarations , it also allows the user to compose expressions for this type of operand. The resulting
“composed expression” can be assigned as a value to a variable of the record or array typ e . Exatiip les would
be:

PACKED A RR A Y (IZ I OJ O F INT EG ER 1
j ’..(3, 1~~, 5, 27, j +S , 9, 1(3) , 3~~22)

RECORD
BEG I N

INTEGER k~NUMBER ~,n, 0,
CHAR c

END “ec
rec .-(29, 30 .5 , ~~~~~ 27 + k—10 i’27 , w)

19

~

- - - -

~

-—

~

- ~~~~~~~ -- - - - - —~~~~~ -—-—

CAM IL also provides a form of assignment which allows NAME variables(pointers) to be assigned the
value of other pointers. The normal meaning of left assignment in CAMIL is “copy the storage associated
with the righ t operand int ’- the storage associated with the left operand” . Normal variables will have their
address assigned at compile time and the compiler will generate code to copy the required amount of
storage using these known addresses. If eithe r or both of the variables are NAME type variables , the address
of the storage to be copied wil l h .~ taken from the po inter whose address is known at compile time. Thus
normal left assignment always involves the REFERENT of the indicated identifier or expression . The
address held by a pointer may be copied into a compatible pointer by using a right arrow “x-~y” operator
with the associated mean ing ~mn ake x point to the same address in storage that y is pointing to ”. Since the
attr ibute of being a NAME belongs to an identifier rather than to a type as in PASCAL , pointers always
dereference to things rather than to other pointers , thus the up arrow used in PASCAL to denote whether a
pointer is being dereferenced is not needed. The nicest part of this definition is that it m akes the meaning
of the left assignment uniform across constants , variables , and names while still allowing pointers to be used
in the more unusual cases in which they must be dealt with as addresses to be copied. We feel tha t the
resulting syntax is more concise than the syntax in PASCAL , as is shown in the following example:

PASC A L :
V a l u e cOOY * xi
Pointer COPY * x I~ y

CAMIL *
V a l u e c o Dy t X I- V

Pointer co pyt x -. y

The comparison becomes more significant as the expression becomes more complicated , as in the
following four-step pointer deferences where the pointers are fields within records :

PA,SCAi., Isot. l d t y oet , f- s t f i e l d ? . jd typ e ?.sjze.wds Z wds
l s p ? . i d t y oe ?. f s t t t e l d ? . L d t y o e ? . s 1 z e . D i t S 1= bA t s ;

CAH ILl I so 1L d t y p e f s t t i e l d ,l d t yp e ,s l z e - (w d s , b 1t ~~
)

The PASCAL statements in the above examp les accomp lish the same result as the CA~~ L ~ta k ements
beneath them but are more prone to errors since sonic fields require dereference with arrows and some do
not. The composed expression used in the CAMIL assignment further points out the desirability of
assign ing values to multi-element data items. The example is taken from the CAMIL compiler.

Function Key Statement (IF-DO State ment)

The CAM IL language provides for the support of a set of keys and conditions which may occur
asynchronously during the execution of a CAM IL program. The author of a CAMIL program frequently
wishes to provide for the whims of the person executing the program in case he wants to change his mind ,
to back out of a situatio n he has entered into inadv isab ly, or to seek at vaguely predictable times the help
of the program author. In effect he needs to provide standing offers to process such requests and to link
them to tangible things which the user can do to request the actions. Some systems provide for this with a
command mode or control key escape. CAM IL provides this through suppo rt of a set of 36 function keys
on the user key board and several pseudo “keys” which can be “pressed” by the system when some
situation the author may wish to process has occurred.

The author denotes a set of conditions , which he is willing to proce~~, at a place in the program where
he wishes to process the conditions. If one of the activated conditions is encountered , control will be
transferre d to the “statement ” to which the activated set of conditions is attached and continue therea fter
to the following statements appearing after the IF-DO stat ement. The author may redefine the place and
the conditions by inserting a new IF-DO statement in th e program in the execution path. The format of the
s ta tement is:

20

-~~~ ~~~~~~~~~~~~~~ ~~~~— —

IF s e t o f c o n d j ? j o n s DO s ta tement
The set of conditions is an expression and is calculated and activated when the lF-l)O statement is

encountered in normal program execution sequence . At the time of nonna l en counter , the “sta teme nt ”
following DO is not executed. It will only be execute d if one of the con d it ions in the conditi on set occurs.
The statement following DO is often a CASE statement with tags I~ r each of the activated conditions. Th~
following exam ple shows how the (F-DO statement is used to provide hel p to the user , a way out to the
previous module , and the time left to answer the questi on:

Example:
IF (H E L P ,BA C I(,F 1 , G O I I 4 G Q O W N J DO
CASE SYS Ø FKE Y CA system var i a b l e t e l l s wh icri key Dressed)

HE.~. P I w r i te ‘At this ~o1r~, iou ~a y only answer tP~eq uesti on as asked, o ress BACK to retur n
to the p rev iou s exam p le , or p ress t~~eFl. key t o see how much t i me you hav e
l e f t to answer the question ” f o r 5 sec
on l ine 27, cot 5;

BA~ K $ GOlD mo du le27;
GO INGO OW NI GOTO syst em _ c ras h
Fl I ~ t Lm e Ief t . . . ~5—S YS .T IMER—5TA RTTIME;

END; ~cntte t i m e t e f t on l ine 30 GOl D redo _ q ues t ion 1:

erase; S T A~~TT Ii1E.-sys ,TIM El~; t i r n e l e f t . - k 5
on l in e 10, co l 5 w r I t e
“What Is the moment o f the f o r c e y ou have s p e c i f i e d

when it is ao p4 ied on a 20 It mom ent arm”

redo_ queg lion *
accept ~.Ith (digits) for tim’-’-’? .‘~c

etc.

In the above example the GOINGDOWN condition is one which is asserted after the operator requests
CAMIL to term inate its operations 30 seconds prior to its actually stopping all CAMIL program activity.
This author has decided to use the condition to transfe r control to a module which might store the
student ’s current status on disk so that he can be restarted after the system resumes operation . Since the
condition might occur at any time , even while the program is waiting on the user to answer the question.
the program must be asynchronously primed to deal with this eventuality.

IF-DO condition sets are “stacked” in a nested manner when procedures are called and conditions
app ly at the most recent level at which they are active. Thus a HELP key might be active in a seguient and
in a procedure currently being called by the segment. If the HELP key is pressed in this situation , the HEI P
condition in the procedure woul d be processed rather than the one in the segment. If the BACK key was
defined in the segment but not defined in the proce dure and was pressed while the procedure was active.
control would be transferred back to the segment to the statement following the DO of the IF-nO
activating the BACK key. The program stack would of course be adjusted so that it corresponded to the
state in which the segment was active but the procedure had not been called.

File Operations
File operations have been integrated into CAMIL syntax to provide for file requests to manipulate

data on the file and to also use the file name as the name of a buffer containing one element of the file. All

21

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- ~‘ - - ~~~~~~~~~
-

-

tIles ai e declared in t h e pr o gra ili as a t i le of a certain type of e le t i t e t i t . The tile ident i f ie r is then a variable of
t he type of the ele m ent . The (‘A M I L tile iiian a ge r allows t h ree basic kinds of files: indexing, direct , and
variab le. The ii i eani n g of these l e t imi s will now be def ined as they perta i n to CAM I L t iles.

Indexing files are tiles accessed by a til e key. i.e . , a piece ot data which is used to discriminate
betwee n di ffe rent records. iii the desi gn of th e (‘AM I L system , it is intended tha t indexing files will be used
as con tro l a n d d i rector y function s and not used to store large records of data. In the implementat ion of the
tile manage r , indexing tI les are locked into the executive control system (ECS) of the CYB ER but protected
on disk whenev er they are wr i t t en . The r esult of this approach is t h at READ access to indexing files may
always he accomplished without physical I/O delay or lime slicing of the progr am. The cost is that re cords
cannot he very large without w ast ing a large quantity of [CS.

Direct access tiles ar e files of fixed record size accessed by a speci fic record address. Records nay be
buffered (more than one Ioglca l record within a physical record) , and ness records may be wri t t en into
empty records automat i cal ly allocated by the file manage r . This access method is implemented so that the
dis h address ~f each record may be computed trom the record address , so that only one physical tile
operatio n is re quired to obtain the desired record. Di rect access addresses range from I to the number of
records which may occur in the tile.

Va riable size tIles are imp lemented so that there is no limit on the size of records other than the l imit
stated in the tile detinition. Also , with variable size tiles , ti r i t y a sin gle phy sical access is required to obtai n
t he desired j ecord. Space is allocated or these records so that the min imu m number ot disk sectors needed
to contain the size of record wri t ten are al l oc ated. Actual record size is maintai n ed by the tile ni~a1age r and
any record update which chatige s the s u e ot the record wri t ten results in au tomat ic re it ilocation of disk
spa ce to accommodate the additional si/c. All disk space is autom :t~ical lv recovered when records are
del eted , and “ch ec kerboardi n g” o f available sectors is prevented by conso li dation of ad~aee r it sectors.

The following var iations of four basic commands handle all fIle operations permitted on CAMIL tiles
unde r control of a CAMIL or batch progr am attached to the CAMIL data base .

~x amiip l ’s
r~~A 0 f L t e (1 CRese t to fir st record)
READ V i l e CSe -iu e n t l a l read)
READ f i l e t i n d e x) CRe ad p a r t i c u l a r record)
READ t j l e (i n d e g j l s j z e CR ea d var i - n o l e size record)
WRITE f i l e CSe q u e n t l a l wr ite)
WRITE f i t e C i r t de xl C W r l t e n ew(Iri de x =D)or old rec)
WRIT E f i l e (j n d e x l t s j z e l4 r l te v a r i a b l e size record)
D E L E T E f i l e CSe~~~e n t l a l d e l e t e)
D~ L~~T~ f i l e t i n d e x) C O e l e t e o a r tt cu i ar record)
C EL ET E f i l e (A L L] (Purge contents of f i l e)
WITH FILE f il e C - i n d e x) DL) CRes ?rve and read denoted f i l e)p Crecord, de ”efe rence f i e l d s If)

CRECOR O ty oe . re p lace uodet ed)
(record, release reserv at ion)

A tile index is optional with the meaning of sequentia l access to the next e c u t u in inc tile i i i t
omitted. The record si/ c iden t i f i e r is only used t’or variable sized records and is automatic ally set to record
size when reading and controls the size of the record being wri t ten. The ELSE statement is optiona l and is
only executed when the file operation cannot he fully completed . A built-in system variable contains the
actual file error whi ch has occurred and may be interrogated for use in deciding h~ w to process the error.
Any tile s t a temen t whi ch does not return ful ly successfu l caused NO al tera t ion to the t fl~’ on disk. A tile
may he r eset to the fi rst record tor sequential processing by reading with an empty index.

The nani e of a tile type variabl e has a dual role iii (‘AM I L. Wh eim the tile name is preceded b y a f ile
~l e r a t o r . such as “READ” , an operation upon the disk tile associated w i th the tile name in t ime Imie
dec la r at i o tm is performed. Wit hin any oth er usage con text , t he f i le flame is a vu r iabl e of tIm e t y pe of d~ ma
ir dicated in the tile declar ation . 1t the tile i sa NAME type variable . . pointer is associated w i th the tile
name. Like an~ other pointer , t his pointer is the address of storage allocated to contain an object of t iw
type of the tile. In this manner , a si ngle disk fife name can he used to read into several buffers, some of
which n a y he dynamically created and only used locall y in a proc edure for example.

The operations suppo rted by the file manage r include specitlc functions for each type of fi le request ,
which is in turn dependent upon what fields are included or omit ted in time file s ta tement and the type of
tile the action is performed upo n . The user sees a much simpler in te r t ace . si nce he is only presented the
operators READ , WRITE , DELETE , and PURGE and a record-updating construct based on the WITH
statement . The READ func t ion only reads records into the file buffer. The DELETE function deletes the
designated record from the file. Tb . PURGE fun ction deletes every record from time file. The WRITE
function repl aces the designated record on time tile if it is found or adds it .to t he (lIe if it is not present. A
const ruct is provided with the syn tax :

~J I T H FiLE m y f i l e (i n de x j üJ <state rnent ~ ELSE <s t a t e m e nt >

Wltent the above construct is executed , t he designated record is checked to insure that it is not
rese rved by some other program. Time record is then rese rved for this pro gram , read into the file buffe r , the
sta tement following ti m e DO is executed , the record is rewri t ten onto disk , a nd the reservation is removed .
The reservation st e s assures that two pro gr ams do not r ead the same record , up date its con tents , and then
rewrite it oblivious ~o :ne fact t h at each has up date d t im e sa me record . Ti me ELSE clause is executed only if
t h e record cannot be reserved and/ or read. Several at tem pts to reserv e time record are au tomat ica l ly i n i t i a t e d
by t he file manage r to el imi n ate the need for the progran umm er to handle the rare case when anoiher program
nmigh t hit the sant e record. The WITH F I L E form also accomplishes the same funct ion as time norma l WITH
st atement as it derefere n ce s the designated record in the same manner described above for the WIT h
St a t e m en t .

File securit y is performed h~ time file manager. When a file is defined in the CAM I L data hasc , it is
pote ntially available to every CAM IL pro gram . Access is controlled in the def in i t ion process (an inter-
act ively run CAM IL pro gr am) by allowing the file definer to enable specific file n iariager func t ions for any
CAMIL program by name. Since these names are uni que , time file manager can thus au t h orize specifi c
pro grams to perhaps read a file , but not add to it or al ter any records in the file. Pro visions are also made to
contro l hatch job file secruity by associating permitted file operations with the CAMIL prog r am from
which they are submit ted . By confi guring the system so that requests can onl y come through the CAM IL
system and its associated peri pheral processor routine, time CAM IL data base is fully protected from direct

• invasion , and access must come throu gh the file security process of time file manager. The file editor can also
define default security entries to allow files to be accessed by progra m s wi thout specific security access if it
so desires.

Iterative Statement
The CAM IL i tera t ive s t a te imment com bines in a single statement all of the fun ctions of all three

PASCAL/ALGOL iterative statements. Time statement is based on the following reserved words , all of which
are optional :
FOR Followed by a variable which is initialized when the loop is s tarted and incremented by the value

L

of the BY expression as the loop repeats
FROM if present , denotes the s tar t ing value of the FOR variabl e : defaul ts to I
TO If present . denotes the stopping value beyond which the FOR variable will not con t inue : defau l t s

to the largest integer
BY If present , denotes time increment t o he added to time FOR variable each t ime throug h the loop:

de f au l t s to I

-: 23

- - - --

~

- --
~~~~~~~~

-
~~~~~ 

. - -
~~~

-— ----
~~~~~~~~~~~~~~~~~~~

-
~~~~~~

- - ,- -.- - -



R E P E AT If presen t , dem otes t ime imm a xi inu n mm n u mmi b e r of times the loop will repeat , rega r dl ess of oil ier
control mmmec in anisms :  de faul ts  to a large implem entation dependent n u m mm h er

l ’ N T I L  It pres ent , is followed by a logical expression which will be evaluated at tine end of each loo p and
which will terminate the loop if time value is TRUE:  defaults to FALSE

WHIL E It present , is followed by a logical expression whic bm will be evaluated at time be ginning of each
ioop and wh mic h m will terimm i n mate tine loo p if time value is FALSE; defau lts to TRUE

If none of time optio tmal words are present , the loop will be terminated only by intentional exit or by
reaching the i immp l e i mmentat i on dependent defaul t  value of time REPEAT phrase . All repeat computation s
immvo i ving the phrases FOR , FROM , TO , BY , and REPEAT are resolved by the compiler or generated code
prior to loop in m i t iat ion amid result in a m ax i im m um iteration l imit .  This computed value controls iteration
al otmg wit h the UNTIL and WH ILE expressions. For this reason , assignments to the FORvatiabte within the
loop will a ffect time values it assuimmes , but will not affect the n umber of iterations in the loop.

Time following sim -nple examp le shows the advantage of combining loop functions into a singl e
Stat e inn e m m

C A I ILS
FO~ A F~~Or1 10  10 1 3 Y  — 2  uNTIL FM.ERR EOF 03
r

~~~~A O  r~yf il e a r r a ( i J . - my f i l e ~

Pi~S C A i ~ I
i := i~ ;
FQ,~ l- ~1 10 5 00

~c~~~D m y ’ f i I e ~
IF t O F (n t y f i l e) THE’~l G O T O 15

BEG IN r ray(i].-m~ f I Ie~~ k~~~1— 2 END :
ENO

151

Time CAM IL form is not only an improvement in flexibility for the programmer , but the routine used
to coot pile it is simma ller t iman the t lmree routines used to compile the three PASCAL iterative statements.

C’ase Statement and (,OTO C’ase Statement
The CAMIL case statement is a simp le extension of the ALGOL/PASCAL case statement . The

extension adds an ELSE clause for log~cal completion of the set of possibilities. In the event that one of the
designated tags is not found to imi at ch the CASE selector expression , the ELSE clause will be executed if
present. This ability eliminates the frequent need in PASCAL to imbed the CASE statemen t in an IF-
THEN-ELSE statement which can be particularly awkward if the chosen ta~ cannot be expressed as a set.
It also results in a more efficient imp lementation of this rather frequent concept while clarif ying the intent
of such a combination.

A new form of CASF. called the GOTO CASE , is added , In this form , which appears identical to the
nornma l case statement , the com piler avoids generation of the branch instructions which normally follow the
code for eac im tagged statement. The re sult is that if control is transferred to one of the tagge d statements
rather than to tine ELSE state ni ent . it and all of the following tagge d statements will be executed in turn .
The i LSE state m ent will , h owever , be avoided. Tlmis fo rm of the case provides a direct equivalent for the
FORTRAN conmpu t ed GOTO while giving it the structured appearance of the case statement and avoiding
time nmanu t ac ture of nuniero us labels to capture this type of logic. While we do not expect to see this fo rm
frequently used , it does provide a translation al equivalent for time FORTRAN /ALGOL form of computed
(,O h O and the imp l e immen t a t i on cost is very sn mm all . This statement is represented by preceding a norm al
(‘A Si st~n ten m e n t with t u e reserved word “GOlf)”.

24

L ___
.- .

~~~~
..-. . . -  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

~~~~~~~~
• 

~~
-
~~~~~~~~~~~~~

- ---
~~~

-—



~~~~~~~~~~~~~ - • -~~~~~ . - ..~~~~ - . ~~~~~~~~~~~~~~~~~~~~~ •

Judge Stat etnen t
Since the prim mmary im m mp l em mi e i mt a t i on cont ext of (‘AMIL includes time operation of in terac t ive te n m i ina i s .

we felt a strong need to include a specific statement fo r the acceptance and evaluation of responses. After
observing the imp l emmmentat io m ms of man y syste m mms . it was deter nnni n c d t l m a t one of the most power fu l res ponse
acceptance nmi echanisimms was iimm p lemcnted in t i me TUTOR langua oe (Reference 3) . Time essence of timis
mechan isimm in CAMIL is a combination of an accepting. pr ocess mng. evaluatin g , and looping function
connbined into a single statement. The statement is called the JUDGE st a teimment and is so nanm ied after the
JUDG E contingency structure imp leimmented in TUTOR. In (‘AMIL , the JUDG E stat e m ile nt has the following
syntactic forimm:

JUDGE
< re sp o nse ac ce ot lri g sentence >

8EGIM
cexore ssion t i s t > I < action statement > ;
.ce xt ression li s t > I < action statement >;

S . .

‘c exor e ss i o n l i s t > I <ac t i on s t a t e m e n t > ;
END
ELSE <no mat ch s t a t e m e n t >

The response accepting statement is usually an accept sentence acquiring input from the keyboard
into a built-in variable called the jud ge buffer. It can of course be a compound statement which “niassages”
the content of the jud ge buffer after accepting the input from the student. Since the normal accept
sentence allows many options restricting the input , this statement is not normally imeeded but it is available.

The expression tag list s are normally anticipated responses or ra n ges of responses separated by
F commas. In this way, more than one answer can be associated with each action. Range s of numbe rs .

integers , sets, strings , characters , and expressions are allowed as tags. The compiler generates logic to
convert the contents of the judge buffe r to all of the types of things on the included tags . and fries to
match each of the tag expressions to the converted content of the judge buffer . If a match is found , the
corresponding action statement is executed , and further matching is terminated. 11 no match is found , the
ELSE statement is executed if present.

After the above has occured , a semantic flag is next tested. This flag will have been set true if any
match were found and false if no match occurred. If the flag is true when tested , the JUDGE statement will
term inate and the following statement will be executed. If the flag is false , control will be transferred back
to the accepting staten t ent if a maximum count has not been exceeded. Since some tags might correspond
to antici pated “wrong ” answers which would require fur ther input , the semantic flag can he reset in the
action statement to cause fu rther looping. In the same sense, the flag can be set in the ELSE statement if no
further processin g is desired, the loop count is also a buil t- in variable and defaults to no lint it if not set by
the author. The actual number of times that the JUDGE loops is stored in another built-in loop counter and
is available to the author for his use if he needs it. An example follows:

e rase
on l ine 5, col 5 write
“ Pre ss the i nd i c a ted key s to choose a game o r ogr am .
Some of the games may not De wo rking y e t . You may
typ e in qu i t ’ if y ou want to leave now

a The Hangman Game
b The Spelling Game
c The Race Game

25

d The Start r ek Game
e The Spirogram Machine
f The Empire Game”;

JUOG .
acce pt on line 5, col 15 wi th [nocaps ,erase _ eC hO)

3 r G I ’ 4
GO lD H AN G ~4 A N ;
GO T O j PE~LLGAMc:

‘c ’I ’l’l ‘ for S sec w ri te fIashin ~ “not work in g yet ’

J, FL A G..F A L Sc. ~ ;
c2 u it ’ l KILLPGM;

~J4D

f or 3 se c on l ine 30, ca l 7’ wr i te
“No , en ter ~ne o f t~~e letters in the menu or typ e ‘qu i t ’
to leave this orogram ”;

Sentence Library

Several standard sentences are available in the CAMIL language. These sentences allow the user to
perforn m several needed functions , and some elaborate special purpose functions. Most of the standard
sentences are implemented in CAMIL , but a few are implemented in PASCAL to avoid the swapping
overhead of frequently used sentences. Before describing the sentences , we shall explore some of the
standard prepositions which can be used with the sentences. Prepositions can fall anywhere within the
sentence and in any order , as long as they do not interfere with the verb-object phrase of the sentence.

The until preposition has a function key set as its argument and can be used with several verbs. Its
function is to provide a set of function keys which act as an until condition of the sentence. When the until
condition is reached , the sentence completes execution and program control continues. All of the function
keys in the until set are considered as next conditions , and will not be considered as asynchTonous function
keypresses if pressed when the sentence is in execution. Some examples of the until preposition follow.

The first example is a simple accept sentence in which the programmer wants the user input to be
accepted when either a NEXT . BLUE_NEXT , or a HELP key is pressed. When one of the until condition
keys is pressed, whatever input the use r has entered will be accepted and the program will continue
execution after the accept sentence.

acceot unt il (NLXT,BL U E _M EXT ,HE L P)

The second exampl e is one in which the until preposition is use d with the write sentence. In this case
the write sentence will output the information to the terminal and then pause until the until condition is
met (the NEXT or BLUE NEXT key pressed). When the until condition is met , the write sentence will
then erase the displayed information and the program will resume control following the write sentence

unt il (NEXT,BLUL _NEXr)
wr i te “NEXT to cont inue

BLUE.,,Nt X T for more Infor m at i o n ”;

Once control returns from the sentence using an until preposition , the programmer can find which of
the until keys was pressed; in the same manner he can query which fun mction key is pressed in an IF DO
statement. In the above example one m i g ht want to branch , depending on which key the user pressed
(NEXT or BLUE_NEXT) . The SYS.FKEY variable contains time desired information so that the program
can perform the desired function , depending on the key pressed.

26

l~m all of the sentences in which the unt il preposition is defined , there is also a tin me limit which may
be mmposed using the b r preposition. When a tim e li m it is inmposed , the sentence will pause for the desired
amount 0 t i m m i e . and ml another action has not restarted the sentence when the time limit is reached , the
sentence will continue. If both the until and for prepositions are used in the san e sentence , the sentence
Lontinues ex ecution when either one of the until keys is pressed or the time limi t is reached. To indicate
units of time in seconds, the post fix operator “see” is a”ailable to m ake readable time caluses.

A tew exam ples of the for pr eposition follow. They are similar to the examp les for the until
preposition except that execution of the program is now resumed after the desired time limit is reached.

acce pt fo r 5 se c-

w r i t e “ he l l o ” ~or 3 sec ;

There are two prepositions which can be used to indicate screen , positions : at and on. The at
preposition has two integer parameters whcih indicate actual x and y dot co-ordinates on the screen. The on
preposition alio indicates a screen location , but on a character lev el usin g the line and column operators.
Several simple uses of the at and on prepositions follow:

acce pt at 5 ,10;
acce pt on t i ne 25, col e ;
w r i t e “N e x t t o c o n t i nue ” at 26,15
wr i te “ Next to continue ” o n l ine 28 , c ol 15;

Other special purpose prepositions are available and will be discussed with their associated verb
phrases.

The standard sentence to request input from the user is the accept sentence. There are many
variations upon the basic facility for response input. The basic accept sentence automaticall y places the
prompting arrow at the accept cursor , awaits a user response , and erases the prompting arrow when the
accepting state is completed. An elaborate sentence example could be one which sets the accept cursor .
displays the prompting arrow , limits the input length to three characters , only accepts octal digits , converts
the input and stores it into an intege r variable i, and places a 5-second time limit on the user’s response
time. The following example would perform the functions described:

accept (13 O~ T for 5 sec on l ine 2’., cot ‘.51

To describe the functions of the accept sentence the possible prepositions and defaults will be
described. The accept verb has four preposition types; an until set (the until preposition), a time type (for),
a screen position (at or on), and a with set (with).

The until preposition temporarily removes the asynchronous nature of the function keys contained in
the until set , replacing their meaning with that of an end-of-input term inator, This allows the program to
accept inputs and perform di fferent functions on the input , depending on which key was used to terminate
the input stream . If no until clause is present in the accept sentence , the NEXT key along with any keys in
the system defined variable SYS.UNTIL set are assumed to be the end-of-input keys.

An accept statement may also be terminated by a time limit which is specified in the “for” clause, If
a for clause is present , the accept period will be terminated at the end of the specified tim e limit , assuming
the user has not pressed one of the defined until keys. If no for clause is present , the accept period will only
terminate when one of the until keys or an active function key is pressed by the user.

-The screen location clauses at and on are used to designate where on the screen the accept prompt ing
arrow is to appear. If no screen locatIon is given , the accept will occur just to the right of the last item
written onto the screen.

27

_ _ _ _ _ _ _ _ _ _ _ _ _
,.

The with clause contains a set which allows several special functions to be performed during the
accept state. The functions which can be present in the with set are :

noarr ow acc eot wi th o ut d is p lay inci t h~ proept ii’i~ arrow.

noec h o b not echo user input .

nook lo not di so l ey the ok/no in a j udge state ment.

under line dr ew a under line d ispl ayi ng the lonqtii of the
ac ce pt l im i t .

eras e_echo erase the p revious i nput In a j udgin g s t a t e .

al i ca ps t rans la te ai i alph abetic i eys into ca~ L t a l iz e
.t~ode ,

noc eos trans l at e a l l alph ab et ic characte r’ s Int o l o w er
case mode.

touch ac t i v a t e the t i uch oane l j nd acce Pt data from
it.

digits only echo/accept dig its ~— g and Symbo ls
‘.‘, ‘+‘~~ and — ‘ .

o~ f~~l dig i t s on f -y echo/ acce pt octa l d Lg L t ~ 0—7 end ‘+‘,

The accept verb also has an optional object which may be the subject of the accept. If an object is
present , the accept verb will convert the input to the type of the object and store the results into the accept
object. For exam ple , if “s” is of type STRING , then “accept s” will place the user input into the variable

When using an accept object , the accepting limit and accepting action limit can also be specified. The
accepting limi t indicates the m aximum number of characters which will be echoed/accepted. Any
characters which are pressed after the accept limit is reached (also available through J .LIMfl) are ignored.
The accept action limit (3 .ACTION) causes the NEXT key to be pressed when the indicated number of
characters have been input. Thus an accept with the accept limit set to I will immediately continue
execution after one character is imput by the user. The method of indicating the accepting limits is by
placing a “ accept limit : action limit ” after the object. Thus accept 1:5 places an accept limit of 5
characters on the accept , and accept 1:5:5 places an accept and action limit of 5 on the accept.

The accept sentence also performs the necessary conversions to the type of the accept object. For
example , if accepting into a type Boolean , the accept sentence will convert the input string TRUE into the
internal representation for the Boolean value of TRUE . As an added feature , when accepting into an integer
or numbe r , the accept sentence will automatically specify an all digits accept condition so that only digits

• are echoed. It is also possible to signify an octaldigi ts condition by placing ”: OCT” after the accept object ,
or just OCT after an accept or action limit.

The accept sentence also has two alternate forms: accept more and accept rep. The accept more
sentence is used to continue accepting starting where the last accept took place. For instance , if the
characters abc were accepted and an accept more was executed , the accept cursor would fall after the c of
abc , and the abc would be part of the current accept. That means all of the editing keys and erase keys

L . .. •. ±~~~

could be used on the abc just as if it had been typed during the current accept. The accept m ore sentence
does not have a clause for settin g where the irccept is to occur (obviousl y since the previous accept is being
continued), and it does not have an object for the accept either.

The accept rep sentence is for accepting and representativel y echoing user responses. When an accept
rep is executed , the “J .REPECHO” flag is set. This informs the driver to return control to the program after
one keypress has been received (so the program can provide a response) and also that the keypress should
not be echoed. All of the prepositions available with the accept verb are optional items to the accept rep,
but no object can be meaningfully accepted into.

The pause sentence.
To temporaril y pause program execution , the pause sentence can be used. The pause verb has two

optional clauses and no object. There is an optional until clause which signifies which keys can end the
pause condi tion and an optional for clause which can place a time limi t on the pausing. If no until clause is
present, the NEXT key and any keys defined in “SYS.UNTILSET” are used as the continuation keys. If no
tim e limit is placed on the pause , program execution will be suspended until a continuation key or an active
function key, is pressed. Some examples follow:

pause (Pause until NEX T is Dresses)
pause u nt il (N ~ XT .BACKI ;CPau se unt i l NE X T or BACK p resse d)
pau se for 5 sec (Pause for 5 seconds or until NEXT)

The write sentence.
The standard sentence to display textual info rmation on the screen is the write sentence. There are

several forms of the write verb , but the discussion will start first with the simple form which displays text
on the screen. The object of the write verb can have any of the standard types (INTEGER , NUMBER .
CHAR , STRING , and LOGICAL) or any string contained inside double quotes (“ “). The write verb
will convert any of these types into the proper form to be displayed on the screen. More than one object
can be listed with each verb by simply listing them after the verb , i.e.,

wr ite “T he an swer i s “ ,an s, ’ and the aver oa m is , a v q ;

Formatting is accomplished by following the items to be displayed with ” : integer”, where the intege r
is the desired length of the item being displayed. This makes it easy to generate lines of data with column
alignment , even when numeric items of different magnitudes are involved. For INTEGER values, if the
length specified is not long enough to display the entire value , the lengt h is increased so that the entire
value can be displayed. To display an integer or numeric value in octal , an OCT can follow the ”: intege r”
or “: OCT” can be used and the value will be displayed in octal digits. When OCT is used , the displayed
number will be displayed with leading zeros as blanks . If , however , leading zeros are prefecred (as in
memory dumps), they can be specified by using ZOCT instead of OCT in the sentence. The following
example uses a length limit , OCT, and ZOCT:

wri te 11 3)CT ,t.e,n ory (iJ lle ZOCI on li ru A, col 5;

~

The precision of NUMBER values is controlled by specifing the entire character length of the number
to be displayed , and also the number of digits to display on the right-hand side of the decimal point. The
form is similar to PASCAL and looks like “ : : p” where I is the total number of characters to display
(including the decimal point) and p is the numbe r of digits to the right of the decimal point. If the ” : p” is
left out , the number will be displayed without any fractional part . To display a number (n) with nine places
to the righ t of the decimal point and five places to the left “n : 9 : 5” would be used. Numeric values are
disp layed in scientific notation (i.e. 5.6 x 10t8) when there is not a precision specified.

Several prepositions are option ally available to augment the capabilities of the write verb. The at and
on prepositions are used to direct where the information is to be disnlayed on the screen. When using one

29

-~~~- - •— - -

of these prep ositions, the start ing position of the message is specifled , and the left write margi n is set to the
specified column position so that any line overflow is aligned below the fIrs t line.

The “fo r” a n d “until” prepositions are both available with the write verb and since they perform
similar functions , they will be discussed together. The function of these prepositions is to determine how
long a message remains on the screen , by waiting on a keypress or time limit . When one of the specified
conditions is reached , the information displayed by the write sentence will be erased , and the program
execution will continue.

The write verb performs all of its textual displaying in the write mode of the terminal . To perform
writing in the erase and rewrite modes of the termina l , the unwrite and rewrite verbs are used , respectively.
These verbs are used jus t as the write verb , since the only difference is that they place the plasm a panel into
different modes.

When the flashin g adverb is used with the write verb , the message is flashed on the screen until a
NEXT key or one of the until or for conditions is met. The write flashing clause has the same parameters as
the write verb , and the only actual difference is that the message will flash on the screen until some
condition is met. A simple examp le follows:

wr i te f l ash ing “You have won ” ttw 5 sec

Other adverbs which are used with the write verb are “large” and “unlarge” . They perform the
write/unwrite functions except that the text is drawn with vectors instead of with dot patterns. This allows
the size and rotation of the text to be controlled by the program , providing a means to write out large
headings or to label graphs with vertical titles , etc.

Two optional prepositions can be used with the h ’rge/unlarge adverbs: rotated and sized. The rotated
preposition is used to control the angle at which the data is displayed with a default in the norm al
horizontal position. The sized preposition provides the means of stating the size of the data compared to
normal size. By indicating two sizes (i.e~., “sized 5,4”), the x and y sizes can be stated separately, allowing
either tall and narrow or short and wide characters. If no size is stated , the characters are norm al size
characters.

An example of using the write verb follows:

wr i te large ‘DEMO PROG RAM sL:i ed ~ on t ine 5, Co-I - to ;

Graphic sentences.
There are several available sentences to produce graphi c displays on the terminal . Lines , dots , and

circles can be drawn , using the “draw”, “connect” , “dots” , and “circle ” sentences . A brief description of
each verb follows:

The “draw” sentence can either draw a line or plot a dot . Two prepositions can be used with the draw
verb: to and from. Both of the prepositions require two arguments which stand for x ,y co-ordinates on the
screen. To draw a line, the from clause signifies the starting point , and the to clause signifies tl- e ending
point. The sentence “draw from x ,y to x+5 ,y+5” will draw a line from the point on the screen representing
x ,y to the point x+5 ,y+5. If the starting point of the line to be drawn is the current write cursor , the from
preposition can be left out. The sentence “draw to x+3 ,y4” will draw a line from the current write cursor
location (x+5 ,y+5 if the previous sentence was just executed) to the x+3 ,y-4 screen location .

To draw a sequence of connected lines , the connect verb can be used. The connect sentence draws a
sequence of lines, starting at the first pair of points and connecting all of the listed pairs of points
following. Thus the sentence “connect x ,y, x+5,y+5, x+3 ,y.4” would produce the same results as the two
draw sentences in the previous examples.

30

Dots can be drawn using the draw verb by leaving out the to clause. The sentence “draw from x ,y ”
will turn on the dot at the x ,y location of the screen. A dot can also be turned on by the sentence “draw ”
which wili turn the dot on at the current write cursor. In a similar manner as for the connect verb , a group
of dots coul d be plotted using the dots verb. The dots verb simply plots all of the points listed in its object
list. The sentence “dots x ,y, x+6 ,y+4 , x+I ,Y.lO” would plot the thre e points liste d on the screen.

To draw circles on the screen , the “circle” verb is used. Several optional prepositions are available to
modi fy the type of circle which is drawn , but the onl y require d object is the circle radius. A precision
parameter is optional. If no precision is present , the circle routine will choose an adequate number of line
segments to use in drawing the circl e to produce a smooth circle.

Several optional prepositions are available with the circle verb to control the type and place the circle
is drawn. The firs t optional preposition is one of type “screen location” used to denote the center of the
circle. Either of the two screen location preposition(” at ” or “on ”) can be used to position the circle . If no
position is given, the circle will be centered at the current write cursor.

There are two possible clauses to control the period of time the circle remains on the screen by using
the “for” or “tintil ” prepositions. These prepositions work in a similar manner as with the write verb.

Other prepositions include the ability to control the eccentricity of the circle by using the
“eccentricity ” preposition. This pre position allows circles to be elongated along the horizontal or vertical
axis, form in g eliptica l figures. Arcs of circles can be drawn using the “st art a ngl e ” and “stopangl e” pre-
positions. By specifying these angles , just portions of a circle can be drawn. Zero and 360 degrees are the
default values for the start and stop angles , respectivel y. The last optional preposition provides for drawing
dashed circles.

An exam ple of how to use the prepositions follows. The circle is to be of diameter 50 (in dots).
precision of 25 line segments , to he erased after 5 seconds or unt i l a next ke~ is pressed , and with
eccentricity of 2.5 (elongated vertically) .

~o r 5 sec i~nt i l (N~~XT ~ c i r c l e 5 0 ,2~ ec c e n t r Ic i t y 2 .5 ;

A simpler example draws a dashed half circle of radius 1 00. wh ich will look like the letter C. on ly
dashed.

dashed c i rc le 100 s t a r t a n g l e ~0 s t o oar ig l e 27O~

The uncirc le verb is identical to the circle verb except that the uncirc le verb erases when the circle
verb draws , and it writes when the circle verb erases.

Other sentences.

Some other standard sentences fo llow:
The echo verb is use d in representative echo modes , that is one key is interpreted by the program as a

string and placed on the screen in the proper position using the echo verb. The echoe’~ output is also placed
in the “J.BIJFF” variable so that it can actually be erased or edited using the erase and edit keys if an
accept more is executed by the program . -

The erase verb is used to erase individual lines or to erase the entire screen. It has only one optional
object , a line number which indicates that only one line is to be erased. The default if no line is specified is
to erase the entire screen. When onl y one line is to be erased , the current left and right margins are used in
the erase operation so that if the desired line to be erased contains a graph or figure it will not be erased.

To load special characters into the terminal ’s random access memory (RAM) , the LOADRAM
procedure is used. LOADRAM has two parameters : (a) a description of the character to load as a Boolean
array and (b) the character position at which the character is desired to be loaded. When loading several

31

characters into the terminal’s RAM , care should be taken not to do a full screen erase before all of the
characters have been loade d , since a full screen erase ends all output going to the terminal (see the catchup
verb).

To operate the slide projector , the slide verb is used. This verb onl y requires one parameter: the slide
position desired. A negative slide position turns the slide projector lamp off , and any positive intege r will
position the slide projector and turn the slide on.

The external verb is used to place data on the tenninal’s external output jack. The verb’s object is an
inte ger value which is to be exported to the terminal ’s jack. U p to 50 values can be placed with an external
verb.

The catchup verb has no parameters of any kind and is used to pause the program unti l all output to
the termin al has been completed. l’his is a useful verb when sending data to the terminal’s external jack or
when loading special characters into the terminal’s RAM since a full screen erase would end all output going
to the terminal (inclu ding the types mentioned), and the output lines to the terminal are relatively slow .

IV. CAMIL COMPILER PROGRAM
—

Implementation Factors

The implementation of CAM1L consists of a compiler to trans late CAMIL programs into executable
code , a terminal driver to schedule and interfa ce the system to actual computer terminals, an executer to
manage the program swapping and provide implici t language services, and a large group of capabilities
written in CAMIL and available as built-in language features or as system level CAM IL programs. Each of
these major areas will be described in a separate section of this report for ease of avoidance by the reader
who is not interested in all of these aspects.

Narrative Description of the CAMIL Compiler

The CAM IL compiler is a top-down , recursive descent , single-pass , optimizing, m~~hine-code
generating, partial compiler. The major sections of the compiler program are:

1. Interface Section
2. Compilation Driver
3. Lexical Scanner
4. Declaration Section
5. Expression Section
6. Statement Section
The interface section of the compiler includes the attachment to the CAMIL data base, the compiler

uiitiahzation logic , the request reception logic , reini t ia l izat ion logic to compile more than one program , and
logic to perform initial processing of source modules.

The compiler drive r includes logic to read up and process all of the necessary modules to determme
whether partial compilation is suitable and then to determine whic h of the source modules must be
recompiled. It selectivel y directs compilation of affected modules and stores the resulting machine code and
initialization data as needed.

The lexical scanner consolidates character strings into identif lers , numbers , and string s, and
categorizes these elements as to type , returning one element each time it is called.

The declaration section of the compiler scans data and procedure declarations within the source code
and builds intern al symbol and structure tables for use by the expression and statement sections. It also
stoTes the initialization values for constan t and variable data types produced by the expTession section.

The expre ssion section of the compiler provides for the evaluation of constant expressions and the
generation of code for the computation of computable expressions. It also computes the parameter lists for
procedure calls and lists of expressions used as the objects in sentences .

32

— .. -~~~ -—-- - --- —- --,

‘l’he s ta tement section of the compiler scans -md generates code fur the execut ion of (M I l L
statements. It calls the expression routine as needed to compile expressions embedded within the
executable statements.

Data Base Interface

The compiler interface section is necessary because CAM IL programs are stored in a s t ruc tu red direct
access data base. Ra ther than appe a ring as a stream of characters as is often done , CAMIL pr ograms appear
as blocks of lines of characters. These blocks , or modules , are created by an on-line editing program in
which the structure of the progra m is built incrementally as the modules are entered. The program is
structured from a program directory which contains the disk address of module directories. Each of these
directories contains the addresses of source , initial values for data, and machine code modules for up to 30
modules of the program . The compiler reads the actual lines of the program by using the address of the
source modules to read the source modules from disk. After the module has been compiled , the resulting
machine code , if any, is stored on disk , along with an initialization module for any locally declared variables
if needed. The addresses of these created modules are then recorded in the module directory page which is
rewritten to disk after all entries on the page are compiled. There is also a record containing all interm odule
cross-reference sets , and an error module containing the location and type of any syntax errors . Any active
autopsy records are also attached to the program directory.

Since the compiler is written in the PASCAL langu a ge which provides no interface to CAMIL . the
PASCAL compiler has been modified to accept CAMIL file declarations and file access statements. This
allows the compiler to read and write records on the data base whenever CAMIL is running on the system.
even though the compiler is running at a separate batch control point. Separate CAM II files are defined as
rollows:

P01 The f i l e of a l l p rogra m address and s ta tus i n f o
PODA 1At ‘The f i f e containing detailed info ab out orograms
101 The f i l e of a l l m o d u l e and post iort em dir e ctor ies
ERROR I The f i f e of a l l error modu l es
S0u RC~~z The f i l e of a l l sourc e and Post t~o r t em da ta
O8J~ Cfl The f i l e f a l l code and i n i t i a l v alues m odules
Cot The f i l e of a l l o a r tia l c o m p i l e data records

The PASCAL file interface automatically opens defined files upon firs t access and closes them upon
compiler completion. The compiler synchronizes actions with the program editor (from which compilation
requests are made) by inspecting and changing progr am status in the PD file. File accesses are made throug h
a group of procedures which centralize all data base access for maintenance purposes and process any I/O
errors which may have occurre d while accessing the dat base.

Since the CAMIL compiler was designed as a resident compiler , it was intended to be initia lized once
and then would compile programs upon request indefinitely. Also, since the language definition includes
many “built-in ” routine libraries and variables for interfacing to the interactive terminal , these must be in
the compiler symbol table at the outermost lexical level . The interface routines accomplish this by first
creating a request to compile a program which contains these definitions and then establishing the resultant
symbol tables at a point where the rein itialization logic will not remove them as it prepares to compile the
next requested program. The compiler is returned to this configuration prior to compiling each program.

Because of the modularity of the program , the usual overhead items such as code buffers, line and
column counters , etc . must be reset as each module is entered. The interface logic performs each of these
tasks and reads source data into the input buffer and initializes the lexical scanner. Due to the partial
compilation logic , only modules which have been change d or affected by changes need to he processed ,

thus saving 1/0 as well as processing time.

33

- --4

Compilation Diiver

The compilation driver activates the major sections of the compiler and decides which modules must
be recompiled. The process begins by accepting a comp ilation request and r e ini t ia l iLi ng the comp iler , which
is a very simp le step. It then looks at informatio n stored w ith the program to see if anything has been
changed since the last compilation which would fo rce the progra m to he totally recompiled. Such
conditions migh t be a new version of the compiler or executer , changes to the definitions of built-in data ,
or compiler failu re during the last compilation. If this is not the case, a partial comp ile is instituted.

The compiler decides what to com pile by keeping cross-reference sets for each module of the
program. It uses set logic to determine whether editorial changes to definitions of data or procedures will
ripp le to the executable code modules. This is done by considering direct change s to definitions , changes to
de fInitions used in subsequent module definitions , and changes which a ffect the addressing of variables in
subsequent modules. The program editor assists in t his by keeping procedure heading s actually separate
from procedure bodies , although the editor and listing program disguise this fact from the user . In this
manner , it can be noted when the user has change d the heading, thus causing modules which refer to the
edited module to also be recompiled. Internal changes do not of course req uire this and they are by far the
most freque’~t type of change .

By perform ing quick set union and intersection operations , a comp ile set of modules is constructed
which is then used by the driver as it reads module directories to determine when it should activate the
module compiler. During actual module compilation , the symbol table lookup routine enters the number of
the module which contains any identifier it has found into a “refers to ” set for the module it is compiling.
This set will be saved for the partial compilation decision in the next compilation . Naturally, any module
which contained errors in the previous compilation must be recompiled , and this is reflected in an error set
generated during each compilation , which is also factored into the set logic. Actual compilation steps are
activated by calling a module compiler which first comp iles declarations and then executable code as
appropriate for the module . These are activated as the declaration and statement sections , both of which
call the expression section.

Upon completion of compilation of all modules , the compiler then calls appropriate parts of the
interface section to store the error and cross-reference data and releases the program for execution or for
repair of syntax errors throug h further editing.

Lexical Scanner

Since the CAM IL compiler is single-pass in design , the lexical scanner is designed to be called by t he
parsing routines and will return a single token at each call or identif y that there are no fu rther tokens in the
module. Scanning results are stored in global variables , one of which is available for each primitive type of
literal or token that can be built from characters. The token encountered is categorized into a major symbol
class which denotes the fundamental type of the token , i.e., particular reserved word , comma, parentheses
etc. Some of these fundamental kinds are fu rther classified to provide more detail . For example, a RELOP
or relational operator would be further classified into EQUAL , NOTEQUAL , LTHAN , GTUAN , etc. This
dual classification allows all major syntactic delimiters to be placed into a singl e PASCAL set , which is quite
import an t in the error recovery process .

The scanner is designed to work with the information format of the CAMIL editor. The editor
removes any leading blanks on source lines and packs the string length in characters and the number of
leading blanks into the last two characters positions of the last word of the string. The word size of the
string is packed into the rightmost four hits of the first word and last word of the string, which enables
both the compiler and editor to identify the size and last word of the string. The strings of source are
otherwise treated as part of a large packed array of seven-bit characters and thus the leftm ost 56 bits of
each word contai n eigh t seven .bit character fields . A single word can thus contain up to a sb -character
string, while the largest string can contain up to 120 characters. The four-bit word size field contains 0. .15

34

denoUng .i strin g length of from I . .16 words . Since the CAMIL cha racte r set can denote up to 25(~
ch aracte r posit io ns. an escape code (the LANG keyboard l~ey) is used to switch from the permanen t l 2 ~~

characters to the user-tuadab le I 2~ charac ters. The in frequen cy of this a l ternation results in good packing
for data wi thin the CYBER 60-bit word size .

The scanner is also responsible fbr constructing the intern al represen tation for tex tua l disp l a y s used in
screen display sentences. In this ease , t he text is compressed into a special six-bit fon n a t essentiall y ready
for immediate release to time disp lay terminal. In this mode , each line of the t ex t ual display will he
left -justified against the margins in effect at the time of display, thus achieving a very close r el at i on sh ip
between the appearance of the text within the CAMIL . program and its appearance on the screen when the
program is executed.

The scanner will enforce lexical rules for the composition of litera ls , such as identifiers , numbers , and
strings , and will also enforce semantic restrictions such as the size of numbers , limits on numeri c precision.
or bit size f~ r oct al and hexadecimal constants. Although a character pointer is not maintained expl ic i t ly
for speed purposes , the current scan position within the source buffer is maintained by the scanner amid is
used by the error reporting routine to construct the exact column position at which an error was detected.
Upon reaching an end-of-module condition , the scanner will retu rn an end-o f-module token , and if wi thin a
quoted string or similar token , it will produce an appropriate error message. This is needed to handl e the
oc ‘onal erro r of mismatche d quotat ions or failure to close a comment and allows the compiler to limit
the problem to the module in which the error was introduced.

Dedaration Compiler

The declaration section of the compiler is activated when procedure declarations are scanned , when
private and shared data definition modules are scanned , and at the beg inning of each executable module if
declarations are present. The results of any of these activations are the creation of tree s t ructured
descriptions of any types declared in the progra m , the construction of the symbol table for identifIers
defined in the declarations , and allocation of storage to contain program variables. Because CAM IL
constants and variables may be initialized, the declaration section must also Construct the run time
representation of initialize d storage and provi de for saving this information.

CAMIL provides no forward procedure declaration. All procedure modules defined on an editor
directory page have their headings located together in a single module of sourc e text . The program editor
provides a function key to allow the author to edit the heading of a procedure whil e editing the body
module and keeps track of the location of each procedure ’s heading within the single source module. The
declaration processor reads this one source record for every page of procedure delcarations and enters all
procedure declarations into symbol tables prior to compiling the body of any procedure. Thus all Proc dure
definitions are processed prior to comp iling any procedure references , el iminating the need for forward
procedure declaration while perfo rm ing minimal I/O to obtain this information . Module directories contair,
the names of segment type modules , and these are also entered into the symbol tables as available labels to
which control may be transferred.

The declaration section is next applied to all global level (private .shared) modules. Since the basic
format of CAM IL declarations is <ty pe specification> <name list> for any class of storage (constant .
variable , nam e), a common TYPESPEC rout ine is provided for processing all type definitions while separate
routines (VARDEC , CONSTDEC , and NAMEDEC) are provided for processing the differing requirements
for each of these storage classes. Because of the limited number of base registers available on the CYBE R .
all addressing is absolute for global storage in CAMIL. As a consequence , if the size of preceding modules is
changed by internal editing or redefinition of data within a preceding module , subsequent modules and any
modules which refer to them will have to be recompiled also to obtain proper addressing. The declaration
section must thus record the starting address assigned to each module because this affects the part i al
compilation decision.

35

I

As eac h de claratio n is processed . the 1 YPE SI ’l (’ ro u t m e is called to build the s t ruc tu ra l descri pti on
ot ’ the ind icated type. II expl icit TYPE identif iers are encountered , this rout ine merel y references the
ex isting def lni t ion . If compound types are s t ructured , such as ARRAY s , RL(ORDS, or FIL E s , a t ree mus t
be st ru ctured contain ing each of the imbedd ed types. A special rou t ine , (‘OMPSPE C. is provided for reco rd
and pr ocedure headings s’nce these ar e ver y complex in (‘AM IL . Simple types such as subranges . tspe
identifiers , amid use r lctlned classes are handled by a routine named PRIM TY PL . meaning pr imi t ive type ,
whereas most other compound typ es are han dled directly by 1’YPESPEC . The call to TYPE SPEC re turn s a
pointer to the type de fIn ition , which will be merel y the head of the tree structure for con ipound ty pe
definitions. A rout ine called COMI’I’YPF is available to determine whether two types are compatible and is
used ext ensively dur in g executable code compilation to deter mit ine wh ether the types of two operands are
agreeable or whether the type of an expression encountered is the type anticipated . This routine is also used
d un t ig declaration compilation to compare the typ e s ot constant expressions used for initialization with the
types of identifiers they are being used to initial i ze .

A side function of the TYPESPEC routine is to determine the size in words and bits needed to
represent the indicated type of ent i ty . When a type definiti on requests that storage be packed . TYPESPEC
will use knowledge of addressing rules to detert n ine t h e most efficient way of packing data to ge t he r to
minimal size without sacrificing accessibility. TYPESP LI, will r e turn , in the resultin g Ispe information , the
size of the total defini tion encountered . This information is used by the allocation routines in VARDEC ,
CONSTDE (’, and NAMEDEC to determine storage allocation for the indicated defined identifiers. If an
ini t ia l izat ion expression is encountered . EXPRESS I ON is call ed wi th t h e TYPE SPI (‘ of the identif ier to he
init ial ized and told to a t te u i p t to accept a constant expressi on of th e indicated type . If’ this attempt is

• successful. INPRESSION wi ll have computed the value of the expression at compile tim e and placed the
resulting value a! the addres s in the object code buffer correlated with v ariable being declared. If no
initialization is found , t he com piler will “zero” the associated size of storage in the object buffe r . In this
manner , va lues for all constants and init ial ized variables are gener ated as the declarations are compiled. If
upon completion -o all declarations , a ll in i t ia l values are i.ero (a verb common situati on s . the cot iipi ler will
note this fac t in the module direct ory , ra ther th an saving the initial values so the program loader may use
this info rmation to ini t ia l ize the module data are as to zero . Recau se resulting initial values are built in to the
code buffer , data areas are current ly l imited to the size of the code buffe r . hut minor modifications could
move this buffe r to ECS. allowing it to expand considerably in size .

Declarations local to a procedui c or segment are located at the beg inning of the body and are
compiled by calling DECLARATION tot every modu le. The same process described abov e takes place with
the exception that the PASCAL heap is marked prior to activ ating DECLARATION. Since any i tems
defined locally are unknown outside of the bod y. any type data or symbol table entri es created inside
DL(LARAT ION are not needed after it has been compiled. Thus space allocated for this purpose can be
returned after the module has been compiled , reducing the total space requ irement for compilation.

Statement Compiler

The executable s ta tement section consists of a manager rou t ine . S T A T I M F N T . that identifies ~hich
ty pe of state m en t is bei n g comp i l ed , and a set of procedures which each r eeogn i ie and compile one type of
CAM I L s ta tement . Each of these routines recursivel y calls the I XPR E SSION or ST.~Ti- \ 1h-\T routine to
compile embedded expr c ssion ’~ or statements. lac h rout i ne is responsible for cori srmnrirur an eni i re s ta tement
of the type in which it specializes and recover ing f ron i a ny errors which are found in the s ta tem en t it
compiles. In order to prevent any- s ta tement rou t ine it calls recursivel y fron t running aw ~ts and consuming
part of the s tateme nt handled by the c a l l ing rout ine , a set of stop tokens is passed r ecursively dos~n through
the calls. Each routine called at ~ds i ts os~n s t op symbo ls to the set it receives and passes the result to any
routine it calls. No called rout inc may cross i r i s token in this stop set while recovering from ss nt ax errors
unless the token could l eg i t imate ly belon g to the St a t e t i i e n t compiled by the called r out ine . In this n iat iner ,
mul t ip le errors which r i i e h t he .ai i sed by “e at i n g~ important res erved words, such as ‘‘I - N D” , “1)0” . and

arc sign i f l c a n t l v reduc e d - S~’eer ii I ‘cr c to t r e a t common ly encountered errors has been eas . ~ -led to

_ 2 (~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- —~~~~~~—~~~~~~—~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
—-—,--.. 

th e s t a t e ment recogn i zing rout ines  since each may be individual ly  tailored without al tering the compiler as ‘
I

a whole.

Each s ta temen t  in (‘AM IL may provide unique opportunities for  local optim ization of the machine
cod e. For example , in the IF statement , a f ter  executing the selector expression , rir ac hine reg i sters with
contain the sa m e i i i l o rma t ion  regardless of whether  the THEN or ELSE statement is selected . The IF
statement r ou t in e takes advantage of this fact by compiling code fur both statements as though the
variab les used in the selector expression are available in registers. This requires the IF statemen t routine to
save the reg i ster stat us after I -XP RESS ION is called to compile the selector and to assert this information as
STATEMENT is called for both the THEN and ELSE statements.  Thus unnecessary reloading of registers
may be avoided for both imbedded statements. In a similar manner, all other routines which compile
statements per form various de grees of optimization as possible to improve the size and execution speed of
code . Since this optitn izat ion is accomp lished as the code is being generated , no subsequent optimization
pass is needed and inf ’ormatj ori about the expressions nee d not be saved for long periods of time.

The instruction set for the CYBER computer does not provide a relocat able cond itional j u m p
state ment . The et ’fect of this shortcoming is that branch instructions generated to imp lemen t statements
such  as I F - T H E N - E L S E , CASE-DO-ELSE , FOR- FROM -TO-BY -WIIILE.UNT IL-REPEAT .DO , fihe-
operation-ELSE , and JUDGE-ELSE must be generated with knowled ge of the absolute address where the
code will reside at run t ime , or a relocating loader mus t be use d to modif y t he code prior to execution . The
CAMIL compiler uses absolute addressing, thus eliminating the need for code modification b y a loader but
cr eating the potential problem of mapping code into the proper location . This prob l em is solved by
generating code as though all segments and all procedures execute iii the same area of central memory -

Since only one segment is ever execu t ing at a time , this causes no probhe m with segments. However several
procedures can be executing simultaneously, so a solution is reached b y adding a swapp ing action each t ime
a procedure is called or returns . When one procedure calls another , the called proced u r e i s sna pped in from
ECS onto the code for the calling procedure. Simi l ar l y ,  when it returns , t he calling procedure will he
swapped back in. Since the CYBER can swap memory approximatel y h O times faster than it can execute
code , the resulting overhead is quite low and is often necessary to perform anyway since the program is
constantly being swapped into central memory for time-sharing purposes

Expression Compiler

The expression section of the compiler is responsible for the con iputat ion of all cons tan t  expressions
and for the generation of machine code f~ “II computable expressions . The implementation of procedure
calls in CAMIL fu rther requires that the expression routine generate all procedure calls , sentence ~aII s.
function calls , and all user declared prefix , infix , and postfix operators.

CAMIL resolves all expressions or subexpressions involving constants at compile time. This means
that any time the expression routine finds two constant operands and an operator , it will mere ly replace
these with the res ult obtained front e secuting the operator on the operands. Since the  compiler runs on the
same machine as CAMIL , the result is identical  to executing the code at run t ime. This means that complex
expressions involving constants may be used to define other constants or to assign values to variables, Since
CAMEL allows multj valued data types, such as arrays and records, it also provides multi valued constants to
use as values for these data types. To reduce the character size of these expressions , a repeat operator is
available to denote the repetition of a part icular record field or array cell value. When these expres sions are
Constants used for init ial ization , the resulting multiple words of memory are defined by the compiler and
an assignment becomes merel y a multiword copy rather than code to pack all of these fields , thus saving a
large quantity of code space.

The expression routine als’- generates the machine code to create multivalued expressions such as are
used as the values of records or arrays. The CAM EL declaratio n section generates identical stru ctual
definitions for procedure parameter lists and record field lists with the result that  any type of procedure
call. i.e., operator , function call , sentence . regular call, is effectively an operator acting on a single record of

37

— —~ 
.— - — - . _._ffl_ -

~~~~~~~~~


~Iit ~~~
— -

~~~~~~rip—-- -Y

the ts-pe of the parameter list , The m anufacture  of such items on the stack is perfurmed by a routine called
coit ipo sed expression (“COMPFXPR” ). This routine is the heart of all procedure call activity and is the
m m c m comp lex routin e in the (‘AM IL compiler . Because a record etc. may contain OPTIONAL fiel ds which
may or may not be present , COMP EXPR imi us t repeatedly try to match the types of expression it i”
encountering with the allowable types of expression which may appear in any field position. It is this
t aci l i t y which provides the flexibili ty which allows the high ly complex “write ” and “accept ” sentences of
(‘AM IL to he defined in CAMI I .  ra ther  than being hand-code d into the compiler as is commonly done for
I/O st ateme n ts.  Doing it this  way also m akes this powe m- available to users for performin g their own
extensions of the language .

The com posed expr ession rout ine also perfort ns another very important funct ion needed to support
t he sentence extensibility feature.  When a procedure or record definition includes a variant definition such
-as :

CASE Pj c IMTY PE o
3 . G i N I

iNr s n I N TEG ~~~ i~~;
MUM: r

~~U.1bL ( 
~~

‘
~~;

; t lK:  r L H ~~R c ” ;

where PRIMTYP E is a class containing INT , N I JM , and CHR , then whenever COMPEXPR composes an
expression such as:

C.... , 37 . 5b ,  . .. .)

in which the number 37 .56 falls into correspondence with the variant field , not only will the value of 37.56
be assigned to the variant , but the value of the corresponding tag “NUM” will be assigned to field “p”.
When such a variant definition is used to define the parameters of a procedure call or sentence object , the
resulting routine m a y  he called with any of the allowable types such as INTEGER , NUMBER , or CHAR ,
and the procedure can identif y what type of parameter was passed to it by exami nin g the field “p”. Using a
definition like this , the object of a sentence such as “write” is defined as an array of records each
containing one optional variant field of the general type included above. Thus users of “write” may call ‘he
routine with any of the allowable variants and th e compiler tells the write routine the type of each of the
arguments passed throug h the CASE variant selector variable “p ”. The routine can of course branch
appropriately on this type to CAM IL code to convert and print  each of the allowable types. Since the
elements of this array are optional , the CAMEL program can also test to see how many of the array
elements have actually been composed and thus onl y process the elements which hav e actually been passed.
COMPEXPR supports this by sett ing a field in the record which can be tested with the CAMIL “s”
operator to see if the corresponding optional field is NIL.

The EXPRESSION routine is h igh ly dependent on three other routines , LOAD , STORE , and
SELECTOR , for obtaining and returning the operands it computes. For compatibili ty with PASCAL for
data analysis purposes , these routines were obtained by modif ying the corresponding routines in the
PASCAL compiler (re ference 2) to be compatible with CAMIL absolute addressing requirements. In th~ismanner , it is possible to write CAMIL and PASCAL record definitions which exactly match in addressing
field for field. This makes it possible to writ e CAMEL programs for interact ive execution which record data
for analysis by batch PASCAL p rograms . This is exactly the method used by the CAMIL program editor
when it creates program directories which are in turn used b y the CAM IL compiler and print programs.
EXPRESS ON is actually composed of five levels of recursively activated procedure s which each implement
the operators which occur on five different precedence ~ vels. SELECTOR is used to generate the code
necessary to calculate array, record , or name references , while LOAD and STORE generate code to actually
place the selected operand into a reg ister or insert it into memory . Since CAM IL provides that existing
operators may be extended to new user defined types while retaining their normal precedence , each level of
opetator must also check for the presence of user redefinitions of the operator before rejecting an

38

L - ---- --~~~ - -~~~--— --~~~~~~~~~~~~~~~~~ ----— --- ~~~- 



- -—

expreEsion. These operators imp lement the numerous CAMIL built-in operators such as “line ”, “co l ”,
“mm ”, “see ” which are used to produce the highly readable CAMIL sentences .

V. CAMIL EXECU TION SUPPORT SYSTEM

The CAMIL run time environment consist s of a collection of progr ams and ioutines written in
PASCAL , COMPASS , PPU COMPASS , and CAMEL. While executing, the system occupies three batch
contro l points (including the compiler control point), three peripheral processors , and SCOPE operating
system modifications. Each of the six basic programs (three batch programs and three perip heral programs)
are separate processes, and communication between the processes is accomplished through ECS and

-s cetiteral memory buffers . The basic components of the system (excluding the compiler) are:
1. The term inal driver program: “DRIVER”
2. The CAM EL execution program: “EXECUTER ”

3. The CAM EL File Manager.
4. The peripheral routines :

a. The terminal communications program: “INO”
h. The CAMIL program timer: “TMM”
c. The CAMIL disk interface program: “DAB”

5. SCOPE operating system modifications.

Terminal Driver

The basic function of the terminal driver progra m is to provide the capability of cummunicatin g with
the terminals . The central memory driver program is needed to analyze the keypresses and perform the high
level asynchronous interface between the terminals and the CAMEL programs. However , the central
memory program is incapable of direct communication with t he I/O channels connected to the terminals.
so another process is requited. The driver program communicates with a peripheral routine (INO) through
central memory buffers so that all terminal communications are taken for granted in the central memory
program. The peripheral routine , in turn , performs the actual data link between the central memory buffers
and the terminals through the proper I/O channels.

The terminal driver , “DRIVER” occupies one of the batch control points and is written mainly in
PASCAL with a few COMPASS packing routines. It is broken into the following sections:

I .  Initialization section.
2. Key input section.
3. Communication section .
4. Framing section.
5. Job scheduler .
6. Batch file manager section.

Each section is basically a separate section , bu t  somne interaction doe s occur between the job scheduler and
other sections. The sections are implemented as single procedure calls for each section , so the main block of
the driver calls each of the different sections.

- ‘ Initialization Section
The initialization section performs the initializations of the variables used by DRIVER and also

initialize s ECS which is shared with EXECUTOR. The initializations are accomplished by havin g the driver
call a peripheral routine to initiate another job at the executer control point which shares the driver ECS
area. The job then initializes ECS and also places all of the variable initializations into ECS and the driver
just does one ECS read to initialize all of its variables. Once all of the required initializations are completed ,

39 

--



DRIVER again calls a peripheral routine to initiate EXECUTER at its prope r control point and then waits
until  1-XECUTER completes its own initializations, at which time the system is active.

Key Input Section

The key input section of DRIVER interrogates the incomin g keys from the terminals. DRIVER will
echo ,buffer , or ignore the incoming keys depending on the state of the program for the corresponding
term inal . The key section supports features in the accept sentence which:

I .  Allow the user to limit the number of keys which may be accepted.
2. Process the response when a specified number of keys have been accepted.
3. Li mi t the keys to upp er or lower case letters or to digi ts.
4. Prohibit keys from automati c echo.
5. Inhibit the automatic response input arrow.
6. 

- Accept input from the touch panel (a rectangular ring of infrared light emitting diodes along the
top and one side of the panel face with corresponding sensors on the opposite sides, which can detect a
finge r touching the screen at 256 discrete areas formed by the intersection of 16 vertical and. 16 horizontal
light beams).

7. Schedule input automatically upon each keypress to support repres cntative echoing of keys
pressed in a manner selected by the program author. The key section also intercepts active function keys
and processes the synchronous or asynchronous meanin g of these keys if they are currently defined.

Communication Section
The communication section of DRIVER receives messages from the CAMIL program s executing in

EXECUTER. The typical messages sent to DRIVER indicate some type of action the job is waiting on:
such as user input , a pause , a file operation , or just another time slice. DRIVER will decide what the job is
waiting on arid will perform actions requested by the job . A job which is requesting a new time slice will be
sent to the scheduler , where it will be assigned a priority according to its utilization rate .

Framing Section

The framing section of DRIVER is a synchronous routine which must emit output for the terminal
interface program INO every 1/60th of a second. Each terminal can receive at mc~t one 20-bit parcel every
1/60th of a second , so the framer must break down the output going to the terminal s into these 20-bit
parcels. It must also keep track of what parcels have been sent and to which terminal each parcel is to go.
When a terminal det- -ts a parity error in a parcel it receives , it rejects the parcel and begins transmitting
data to the central interface unit that it has done so. The framer recognizes this condition and requests that

~ the terminal tell him the numbe r of the last frame correctly received. DRIVER then resumes transmission
with this parcel , thus insuring that no data are lost at the term in al .

Job Scheduler

The scheduling section of DRIVER contains three separate queues for scheduling CAMIL jobs. Ajob
is placed in one of the queues , first depending on the reason the job is being scheduled (keypresses being a
top priority) and secondly depending on the utilization rate of the job in processing milliseconds per
real-time seconds, Jobs with low utilization rates (~~~ 

S ms/sec) are placed into the top priority queue ,jobs
whose rate is ~ 10 ms/sec go into the next queue , and the rest of the jobs are placed into the fmal queue. If
a job utilization rate is > I S ms/sec , it is placed into a wait queue for as long as it takes to lower the
utilization rate to ~ I S ms/sec. This hel ps keep CAMIL program response times consistent with each
execution and less dependent on the system load.

Jobs are removed from these queues by DRIVER and placed into an execution array which is
monitored by EXECUTER as space is made available in the array through the execution of jobs already in 

~~~~~~~~~~~~~~~~~~~~ ~~~~~ - - -- --~~-~~~~-~~~ ~~~~~~~~~~ 
4

the array by EXECUTER. Highest priority jobs (the first queue) are given three slots in this array because
of their low utilization rates. The next two slots are for jobs from the second queue (only two slots due to a
higher utilization rate), and the last queue gets only one exec u tion slot. A simulation of this queueing
system (Reference 5) shows that the response times do not deteriorate sign ificantl y as system load increases
because utilization rates are limited and priority is given to jobs using reduced CPU time.

Having the scheduler within the driver program allows the driver to schedule CAMIL programs when
their accept or pause criteria have been met , and to allow a fast response to user key inputs by giving them
a high priority. The imbedded scheduler also allows the driver program to initiate a new CAMIL jo b (known
when a keypress arrives from a termina l not yet defined to the system) and to schedule the CAM IL batch
file manage r program (when I/O requests from a batch job are requested).

Batch File Manager Section
Requests for CAM IL file manager operations are placed into a central memory buffe r in the driver by

the SCOPE file manage r modifications. There is a CAMIL job associated with each batch control point ,
which the driver schedules each time a file manager request is received from its associated control point.
The CAMIL job then calls on the file manage r to complete the batch job tIle manage r request. When the
reques t has been satisfied , the CAMIL program notifies the driver that it has completed the file operation ,
and the dirver then suspends the CAMIL job until another request is made. A simple modification to the
SCOPE scheduler prevents the batch requesting program from further execution until the I/O request has
been accomplished by CAM IL.

Executer

The “EXECUTER ” program occupies the other control point of the CAM IL run time environment.
EXE CUTER operates in two modes: system and user. The system m ode of EXECUTER performs the
system initializations and swapping of the CAMIL programs. CAMEL programs execute in the user mode ,
after the system mode swaps in the job.

The EXECUTER is written mainly in PASCAL, with some routines and CAMIL primitives wri t ten in
COMPASS. The CAM EL program area is also declared in COMPASS to guarantee tha t the CAM IL program
area is always in the same absolute memory space even though the relative addresses of EXECUTER
variables may change . EXECUTER occupies 55 ,000 octal words of central memory space , which includes
all static memory requirements for 60 CAM IL jobs .

System Mode

The system mode of EXECUTER has its own memory space allocated for the run time stack of the

k system. System tables and variables which are stored in central memory are directly accessible to the system
mode . Also contained in this area are the address tables of system information which is stored in ECS , such
as program control blocks , system routines , and system shared variables. The system mode of EXECUTER
is broken into three procedures: swapin procedure , swapout procedure , function key processing procedwe.
and one main program block.

The swapm and swapout procedures perform the swapping of CAMIL programs. Once a CAMIL job is
scheduled , the swapping procedures are. called to perform any necessary swapping to execute the CAMIL
job.

Before control is passed to the CAMIL program , the function key procedure is called if the job is
being scheduled due to a function key press. The function key procedure will search through the program
run time stack to find the latest activation of the pressed function key . Once the activation of the function
key is found , the function key processor will unwind the stack (if necessary) to the function key activation
level , and set the return address to the function key definition address. Thus when control is passed to the
CAM IL program , the function key processing code is executed.

L
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~

_

4~



- ,

The main program section of EXECUTER searches the execution array (which the DRIVER fills) for
CAMIL jobs to execute. When EXECUTER finds a job to execute , the proper procedures are called to
swapou t the previous job (if necessary), swapin the new job (if necessary), and perform any function key
processin g (if necessary). Control is then passed to the CAMIL program , and the EXECUTER enters the
user mode. When the CAMIL program re-enters the system mode , EXECUTER searches for m~~e jobs to
swapin .

After searching the execution array, EXECUTER will chec k the file operation pointers to see if any
physical I/O operations have been completed. If there have been , EXECUTER will swapin the jobs that
have had any I/O operations completed. When the EXECUTER has no more jobs to execute and no I/O
operations have been completed , it relinquishes the processor to allow the compiler and batch jobs to have
chances for the processor .

User Mode
The user mode of the EXECUTER uses the CAMIL program run time stack for variable storage. The

CAM IL program is swapped into a section of EXECUTER central memory space and given control of the
processor. When the CAMIL program is swapped into central memory , the timing routine is notified to
begin timing the processor usage of the CAMEL program. The CAMIL program is then allowed full control
of the processor and must voluntarily relinquish the processor back to the EXECUTER. If the CAMIL
program does not release the processor before its time slice ends , the timing routine notifies the CAM IL
program to release control of the processor by setting a flag which the CAMIL program automatically
queries through code generated at points where the program might otherwise enter an endless loop.

The CAMEL language has many built-in primitives which need to be accessible to the user program .
Most of the primitives could be coded in CAM IL itself , and many are , but for effi ciency sake , there are also
some coded in COMPASS and PASCAL.

The CAMIL primitives which are code d in COMPASS include the arithmetic functions (SIN ,COS ,
etc.), file manager linkage , procedure calling linkage, string operators (concatenate , search , etc.), and
conversion routines (string to intege r , integer to string, etc.). Linkage is made to these COMPASS primitives
through special handling in the compiler which places the parameters in special registers. The JUDGING
primitives , reprieve logic , and control transfers (system-’user mode) are also written in COMPASS. The
total set of COMPASS primitives occupies 2 ,316 octal words.

Some of CAMIL primitives are programmed in the PASCAL language and are physically located
within the EXECUTER support program. The linka ge to these procedures is similar to normal CAMIL
procedure linkage so that the compiler need only make a minor change in the norm al procedure calling
sequence to call a PASCAL primitive . The local variables of the PASCAL primitive s are placed onto the user
run time stack in the same manner that local variables of CAMIL procedure s are added to the stack.
Because PASCAL procedures do not have code compi led in to check the CAMIL time slice flag, those
critical rotitines which may use resources common to all programs will not be interrupted until they have
completed an entire logical process , although their execution time will be allocated to the CAMIL program
calling them. The file manage r , write sentence , accept sentence , and procedure and segment swapping are all
implemented as PASCAL procedures.

Most of the CAM IL primitives are written in CAMIL itself. These procedures are stored in a section of
ECS which is reserved for system procedures. When a system procedure is called , the procedure swapping
mechanism sees that the called procedure is a system procedure and swaps it in from the system procedure
area. The system procedures also have a special central mm mory are a which they are swapped into. This is to
allow the system procedures to reside in central memory longe r and reduce swapping. Some of the
primitives which are implemented as CAMIL procedures are write large , circle , draw , erase , slide , echo , ok ,
no , size d , pause , connect , dots , external , and all of the system functions available with the AUTHOR key
(monitor, talk , autopsy, etc.). The write sentence has not been made a CAMIL procedure due to the many
procedures used by the write sentence. Because the write sentence is used quite frequently , and many
procedure swaps would be necessary for each call of the write sentence , it is resident in central mem ory as a
PASCAL procedure.

42 

- --- -.. -~~~~~~ --~~~



Secause the CAMIL code is machine code, mode errors become possib le due to iril proper arithmetic
operands. The reprieve logic of EXECUTER performs an interrogat ion of any mode errors. If EXE CUTER
was in the user mode (a CAMIL program was running) when the error occurred , the autopsy routine would
be called to store dat a for an autopsy of the program. The CAMEL code also provides run time error
checkin g of pointer values , array subscripts, and subrange values . The reprieve logic nius t also check for a
mode error caused by run time arithmetic errors and properly report the cause of the error when it can be
determined (the CYBER compiter does not detect certain intege r overflow errors). The compiler assists in
the detection of logical errors by compiling code to check for the condit ions mentioned above by compiling
a jump conditional on the checked for condition . Rather than generating a jump to a specific error
processing routine , the compiler creates an address fiel d in the jump instruction to a nonexistent address ,
consisting of a high order address bit (to force nonexistence) followed by the line number in the program
and the logical error numbe r , all of which will fit into the 18-bit address field used in the CYBER
computer. The resulting pseudo address causes the processor to halt and the CAMIL reprieve processor can
then decode the “faulty ” instruction into its actual meaning. Encoding the test in this manner sav es more
than 30-bits each time this type of test is performed and allows error messages to be related to the line in
~he CAMIL source program at which the error occurred.

File Manager

The CAMIL File Manager System is a completely closed file system (only accessible through the
CAMEL system) and capable of handling many different file operations. The basic concepts of the file
system are : to allow multiple access to files (any file can be accessed by more than one user): to provide a
stru ctured file concept (the compiler knows the form al definition of all the files in the system , so file use in — __—.-.---~~

programs must be consistent with the formal defInition of the file);to provide indexing, direct access, and
variable lengt h flies in an efficient manner; to allow batch programs to communicate with the CAMIL file
system; and to provide a simpl e and uncompromisable file security system. All of the goals of the file
system have been met , providing a powerful , e fIcient , and secure file system .

l’h.. basic logic of the file system is contained in one procedure (with nested inner procedures), and it
resides in the CAM EL executer progr am . Other components of the file system are: th~ peripheral routine to
communicate with the 844 disk controller , and CP monitor modifications and driver program linkage (to
schedule the special CAMEL batch file manager interface program) to allow batch programs to communicate
with the CAMIL data base.

The basic design of the CAMIL fIl e system is such that it provides a powerful file concept in the most
efficient manner possible. Some of the file constructs were limited from the original imp lementation in
order to keep the file system efficient , but sufficient flexibility was insured to perform all of the desired
operations. ‘l’his type of implementation strategy led to a highly successful and easy to maintain file system.

All but an insignificant portion of the file manager logic is programmed in PASCAL and is resident in
the EXECUTER program. The logic is broken into small procedures to perform each of the different file
operations (READ, WRITE , DELETE , etc). These procedures in turn share other common procedures to
perform operations such as record number verification , physical buffer allocation , and physical disk I/O.
Each job which requests a file operation enters the re-entrant file manager code, and since the file man age r
code execu tes in user mode, all of the needed local file variables are placed onto the CAMIL run time stack.
Because the PASCAL file manager code cannot be interrupted by another CAMIL job (the PASCAL code
decides when to reli n quish control), no synchronization is necessary between jobs requesting file
operations.

Because the file system is shared , all current information about system files is kept in ECS. This
allows all of the jobs requesting file operations access to the information without the need to reserve
storage space in the run time stack of each job . The system file definitions for each file defined in the
CAM EL system are stored in ECS, so that a file request can easily be verified without a disk request. Also
while a file is open, all of the extra information which is needed for an open tile (buffers . b it m aps. etc) is
contained in ECS and referenced throug h the resi dent fi le information.

43 

:~ r W - • - - - 
-



—

There are three types of files: direct access, indexed, and variable length files (though direct access
and indexed files can be accessed- sequentiall y). The most common type of fil es are the direct access files.
Direct access files provide the capability of accessing tb ed length records at very hi gh speeds . Thi s is
accomplished by being able to compute the physical disk address from any given file address , so that the
only physical I/O required (sometimes none is if the recor d happens to be in a buffer) is the actua l data
transfe r (note: The record bit maps must also be backed up to disk when writing a new record , but the
backup operation is part of a single I/ O request). Because direct access files allow packing of records (more
than one record per physical block), two physical operation s could occur for a write file operation on a
packed direct access file (one to read the physical block, insert the new data , and then write the ph ysical
block back out).

The indexed flie s are designed to provide a high speed indexing method to structured fil es. They are
fixe d length records (preferably small records), and the entire file resides in ECS. Therefore no ph ysical
request s are necessary for read operations , and only one request (to back up the file on disk) is required for
write operations. The typical use of an indexing file is for indexing purposes. The record associated with the
desired index may contain access flags , status sets , and direct access file addresses. The direct access Ilk
addresses are used to associate data located in dir ect access files with the specific index. The direct acce~
address can then be used during the processing of data associated with the current index so that all further
file operations are as efficient as possible using computable disk addresses. This approach eliminates the
need for index searches and index bloc ks (which consume time , space , and ‘fisk accesses) without imposing
any real burden on the programmer.

Variable length files provide a means of storing records of variable lengths. They are similar to di rect
access files in that disk addresses are directly computed from the addresses of the records . The main
difference is that one cannot direct where a record is to be stu’ed when writing out a record; instead the fIle
manager assign s a new record number each time a record is written ; Also, it will delete the old record (if
rewriting a record). This is necessary because it may not be possible to fit a record back into the same
record position it came from (the record could become larger), so the file m~ iager will automatically delete
the old record and insert a new one, returning the new record’s address. The number of necessary physical
I/O requests per record access is at must one per reques t (none if the record is already in a buffer), since all
disk addresses are computable and the disk driver routine will read in only the needed num ber of sectors far
variable record reads. As with the direct access write operations, backup of record bit maps is also part ofa
write request; thus, only one pause for physical I/O is necessa ry per operation , although more t han one
transfe r may take place.

The file manager has its own peripheral routine to handle all of the CAMIL data base requests ;
therefore, the disk addresses computed by the file manager are directly handled by this routine. It is the use
of this special routine which also allows the record bit maps to be stored in the same request as a write
request, thus cutting down on swapping and waiting time overhead of producing two physical requests. The
data path between the peripheral routine and the file manager is also minimized since the peripheral routine
transfers the data directly to or trom the file ECS buffer.

Requests fro m a batch ~ob requesting a file manager operation are processed identically to CAMIL file
manager requests except for the data transfer portion. When data are to be transferred to or from the batch
program , the CP monitor modifications are called to perform the transfer. In CP monitor, the data are
simply transferred directly to or from the file ECS buffer from or to the batch program central memory
buffer, Thus the data are transferred in a most efficient n~anner between file ECS buffer and batch central
memory buffer without any need of transfer buffers or extra movement of data.

For each file manager request that a program makes, the file manager checks to see i f the program has
permission to perform the requested operation. If the program does not have the proper authorization , a
file security error is generated and the operation does not occur. File security is accomplished by
associating a program name with a set of permissible file operations. Each program which is to have its own
set of access privileges to a file must be placed in the file security list by the FILEED IT program . A default

44



~~~~-~~
----~~~~

set of permissible file operations can also be specified, in which case any program without specia l I) r i vi le ~e’~
to a file would assume. In this way a file can have a nondestructive set of default privileges So that other
programs can be allowed to inspect the file without giving specific read permission to each individual
program. Because the file manager operations are defined in the PASCAL compiler as well as in the (‘AMII.
compiler, the tIle security by program name also holds for batch tile manage r requests. Because of this, and
the fact that only CAMIL and PASCAL pro grams can access the data base , the securit y of the CAMIL data
base cannot be compromised by any method, since only specified programs can be authorized to access
data base files, and there are no passwords which can be stolen.

Operating System Interface

The most extensive modifications to the SCOPE central memory monitor program hav e been made to
allow batch jobs to communicate with the CAMIL file manage r system. These modifications are
incorporated into the RA+ I section of the (‘p monitor because of the expected frequency of use of the file
manager requests.

A batch job issues a request to the CAMIL file manager by calling DIO (resident in RA+l) which
passes pertinent file inform ation to a batch tile buffe r in the driver. (The batch job is suspended until the
file manager completes the request, at which time the job is resumed.) The driver then schedules a CAMIL
job which calls the file manage r routine to perform the relevant file operations.

The file manager handles batch and CAMIL file manage r op erat io~rs in a similar manner , except when
transferrin g the actual data to or from the program ’s buffer. In the CAMIL case, the file m anager can
simply read or write from the file ECS buffer into the program central memory buffer. The batch case
however requires a call to “ITO” (RA ÷ I resident) to perform the transfe r between ECS and central
memory (the central memory space belongs to the batch job). In both the batch and CAMEL case, however ,
the data are transferred between ECS and central memory only once.

The CAMIL system also requires special scheduling of the driver, EXECUTER, and the compiler. The
uriver must always have the top priority of any job in the computer because of its synchronous nature. The
EXECUTER is next on the list of special priorities, since an interactiv e job requires a faster response than a
batch job. The compiler must also be given a priority over batch jobs , since an interactive user is waiting for
the results of the compilation. Modifications to the SCOPE scheduler were made to accomplish the special
scheduling requirements with minimum interference with the normal scheduling of batch jobs.

Peripheral Processor Routines

INO

To communicate with the terminals, two channels are dedicated to the system terminal hardware
interface units. The “INO” PPU routine communicates between the driver and terminal hardware interface
units through central memory and the data channels , respectively.

One channel is dedicated as an input ch annel. The INO routine queries the channel for incoming ke ys .
When a key is received fro m a terminal, the hardware will place the key (along with the terminal number
the key cam e from) on the channel. IN() will then place the incoming information (assuming no parity
errors occur) into a circular central memory key buffer in the d river. The driver properl y responds to the
key strokes, either echoing or buffering, etc., depending on the state of the program ru nn ing at that
particular terminal.

The output channel operates in a synchronous mode , since the termi n al hardware requires output for
the terminals every 1/60t h of a second. The output channel can send each terminal only one 20~bit parcel
each 1/60th of a second. INO awakens the driver to prepare a stream of these parcels, encoded with
terminal number and data, to meet the terminal hardware demands. Even if no data are to be sent to a
terminal, the hardware demands at least one parcel to be sent to an undefined terminal every 1/60th of a
secona.

45

~~~~~~~~~~~~~~ -~~~~~~- ~~~
. 



—-- .  -. U ~~~~~~~~~ - ~~~~~~~~~~~~~ — 

Once the driver has created a stream of parcels to be sent to the tennina ls , INO reads the information
h our centra l merno.y and then transfers the information ovem the output channel to the term inal hardware
interlace unit .  The interface unit  breaks down the information and sends the data to the proper terminals.

I )AB

The CAMIL data base is totally separated from the SCOPE file system. Thi s separation was
acc om plished by developing a new I/O routine which processe s all CAMIL data base requests. Thi s routine
communicates with the CAMIL executer through a request buffe r which is prepare d and monitored by
exe cuter.  Th e  new routine transfers data from the CAM IL data base on disk directly into a data bu ffer in
ECS where it is retrieved by the requesting program as soon as it can he re scheduled. This eliminated much
of the overhead and unneeded data shuffling incurred with the (‘DC’ supp lied software . It also provided
greater isolation between the two systems (CAMIL and SCOPE). The drives used for the CAMIL data base
are not known to the SCOPE system , and the two systems are thus mutually inaccessible , except through —

programs capable of attaching to both data bases.
Data base I/O requests are handled on a first in. first out basis. File manager (FM) determines when a

physical i/O request will he needed to satisfy a CAMIL request fo~ data. File manager constructs thi s
request and places it into the DAB request buffer.  Essential items in the request are the logical pack
number , cylinder number , initial sector numbe r, the source/destination ECS address , and the number of
sectors requested (fo r fixed length records ).

The CAMIL data base consists of up to eigh t 844 disk packs. Each “ack has a logical pack number  (0
to 7) and a pack name. Each pack is considered b y FM to be error free. FM sees a pack as 4l~~0 to 409)
cylinders of usable space . Each cylinder is a logical set of 45~~0 to 45 1) sectors . A physical cy linder has 456
sectors, the last four of which are used by DAB to rep lac e up to four defective sectors per cylinder , thus
maintainin g the illusion to FM t h at every pack is flawless.

The sector substitution table is initialized by a pack initiali zer PPU routine , IPK. IPK writes and
subsequentl y reads each allocatable sector on the pack and manu factures a subs t i tu t ion  entry for every
sector which is incapable of being reread. IPK also blank labels the pack , so that it can be per m anetl y
labeled by the FILEEDIT program which is used to define the content  and structure of the CAMIL data
base .

TMM
The per ipheral routine which times the CAMIL jobs is TMM. The FXE CI TER tells 1MM when t~

begin timing its use of the processor and the time slice to be allowed. T MM will time the use af the
processor , continuall y placing the number of time units  used by the job into central menior~ - In thi s way,
when the CAMEL job is swapped out , the processor usage is immediately available to the swapping routine .
and no special call is required to get it .  If the job uses more CP time than the time slice allowed , a flag in
central memory is set , which all CAM IL programs periodically check , and the job will voluntarily relinquish
control of the processor.

TMM also updates the current date and time in the CAMIL date and time areas when it is not tinung a
CAMIL job. This allows CAMIL programs to directl y access date and t ime  informati on through system
defined variables instead of special procedure calls usually found in other programming langu ages.

VI. CAMH.. AUTHORING SUPPORT FEATURFS AND AIDS

Because CAMIL is a highly flexible language. it was desirable to implemen t sonic system functions in
CAMIL itself . All system level operations controlling access to the CAMIL system are perfo rmed by CAM IL
pro dams. User LOGON passwords , system file definitions (including security access privileges ). program

‘liting, and even CAM IL program loading are all performed by CAMIL programs. Because these pr ograms

46

________________ ___
*



are wt itten in (‘AMIL . they provide an “intelli ge n t ” interface between the user and the CAM IL syst enm and
can be easily up dated to reflect system changes. ( ‘AMIL programs provide the user wi th  menus , help when
requested , and interrogation of illegal requests.

One important  faci l i ty  is not a separate program but is imbedded in th~ EXECUTER progr am. This
facility allows the author of a program to interrupt execution of the program by pressing an “AUTHOR”
function key on the keyboard. The author key allows him to immediately autopsy the program , look into
the data stack of the program , restart the prograni , communi cate with other termirals , or monitor the
activities of another terminal in the system. The monitor function provides for future access to a number  of
interactive breakpointing and analysis facilities which may be added to the system.

The function of each of the major programs used to implement the system will now be exp lained.

LOGON Program

When the system is running under CAM IL , every terminal is established as ei ther  unused or running a
CAMIL program . When a terminal is powered up, it emits data to the computer  indicating this condition.
The CAM IL ‘system establishes a data area for the terminal and begins executing a program called LOGON .
In anything further done at that termina l , it will merel y be jumping from one CAMIL program to another .
i .e . ,  LOG ON-~LOADE R-” E DITOR -*LOAD ER -,USERPROG -*LOADER etc. The LOGON program
initializes the ter~ninaI and identifies the user by associating him with his user privileges through his
LOGON ID and security password and information. His status in the system and everything he is permitted
to accomplish are controlled by this info rmation. As additional security is needed , it is provided by the
concerned programs , which protect the data base , and app ly restrictions based on security data in his user
records. As an example , certain funct ions migh t only be allowed to be performed by certain progra ms run
by certain people at certain term inals in certain buildings during certain times of the day . In this manner ,
multiple restrictions are placed on critical data areas so that  penetration of a single person ’s personal data is
inadequate to compromise system security. Final control is retain ed by restricting data base access to
program s by name (each program name is unique) so that if a p iogram could be copied and modi fIed io
remove some security checks , it would still be denie d data access by virtue of being a different program.

The role of the LOGON program, in this process is to identify the person trying to log on , determine
whether he is permitted access from the log-on site , and apply restrictions as recorded in his user records.
Since the user will always be running some CAMIL program or submit t ing a batch prog r am from some
CAMIL program through the program editor , security is retained by the CAMIL system.

The LOGON program also has such peripheral functions as to display run time error information if a
CAMIL program must be suspended , disp lay resource utilization factors and display lists of programs
permitted to the user. The successful operation of the LOGON prograni depends upon a user data base
generated by another program called the user editor which establishes user permissions.

Program Editor

All CAMIL programs are created and reside in the AIS computer.  Programs are intended to he
authored on-line and updated interactively. For this reason , a powerfu l but easy to use editor is an essential
part of the programmin g system. The CAMIL editor was inspired by the PLATO IV edit progra mir and was
initially written in the original CAM IL lan guage imp lementation. It has now been rewritten in CAMIL II .
resulting in an approximately 50-percent reduction in source progr am size . aL.iou gh t h e  orig inal editor is
retained for use when the old system is executing.

The editor is intended to allow modular program construction for ease of access without  causing
annoying specific actions to he performed to link the resulting program modules. To support thi s , the
CAMIL system , local PASCAL compiler , and a print program have been wri t ten  to use or disguise this
modularity as appropriate , thus allowing tire user to create m odules correspond ing to CAMIL or PASC -\ L
routines or blocks of text . The editor has four primary level s of operat ion : program , director y . m odule, and
textual .

47 

_ _



Pr ogram level opem ations are those such a c  reating, copying, de leting,  compi ling, cata log ing , pr int ing,
or checking the s ta tus  of a progra mr m . These are ac cu mm ip lished on an en t ry  page as options available through
si ngle keypresses. lime most frequently per tu rmm r ed  step t r u m mm thi s page is to enter time direct or y level of
operati on. All programs are divided into major director y areas , in time case of (‘AMIL programrr s . these areas
are correlated with speci fic divisions of time program ri and given the na mli es : Shared , Private . Pro cedures ,
Segments , I rr ors , and Autopsies. Each of these is m m me r el y an en t ry  point to a chai n of directory page s , airy
one of which can contain up to 30 entries and is linked to the subsequent and preceding directory pages.
The director y is Presented to time user as a im i enu of module n amm r es , eac h wit h a nu m ber that ca n be used to
e nter  t i m e m io du l e  fu r  editing. I n addi t io n , directo ry level functions , suci r as adding. delet ing .  rear rang i ng.
remr amu i nrz . amid copying entire m odules . are pe rf o r m mred at this level . Also m r r odu l e  level pr int  fl ags can be set
for each module so tirat selectiv e p r in tou ts  can he a c co m imp lis hed by the print  program. New dire ctories rn -a\
he added followi ng or preceding mime current  page at this level. Time user will nonnally select a module fur
edi ting by entering tire module nu m ber on this page. w hich moves h u n  to the module level of edit ing.

At the module level , t he user is automaticall y provided a displayed set of lines repre senting the
current  location in the module. The user can set the number  of lines that is seen by default to any number
of lines that will fit on the screen: tire sy stem will initially display fIve lines. As the user moves forward or
backward through the module, the lines that  are displayed are numbered with small numbers from 1 to 31.
and the user refers to lines by these numbers. Since the numbers are completely relative , lines may be added
or removed , amid the system will constantly display the up dated text with familiar numbers that  always
appear on the same lines of tire screen. Since these nun r hcr s are kept as small as possible, typ ing is kept to a
m inim irun i . If the user wants  to see m mrore lines than are displayed at any moment , thi s can be done by
pressin g t he space bar , and the editor s~ilI double the number of lines current ly  on the screen and add this
mr i any m ore lines to the disp lay.  Lines alread y on the sc reen do nut  scroll or move as in some term inals so
they can be easily read as new lines are being added to tire screen. The user can move forward throug h the
Text by simply pressing the “NEXT” key. whiclr will move the current  location to the line following the
line currentl y displayed at the bottom of the screen , and then redraw the screen to display the default
number of lines ,

Commands available at the mriod u l e level allow entry  to a tex tua l  level of editing in which lines mri av be
inserted or rep laced. In each of these modes , the user denotes insertion to begin after or replacement to
begin with some line wh ich is on the screen. Tire screen is redrawn with the referenced line near the top of
the screen , and with the user cursor under the line of entry . In insert mode , tire line inserted after is p l aced
in to  a special copy buffer. Edit ing keys on tire CAM I L keyboard allow ti n s line to be copied wholl y, wor d
b y word , ~:r letter by letter into the user input  buffe r , along with any new characters to be added to the Fline , Other keys allow thing s copied or entered to he erased whol l y, wo rd h~ word , or a let ter  at a time.
Still other keys allow the line , words or le t te rs  to he removed rig h t to left from th e input  buffer as though
they were being erased , but then returned to the screen and to the user input buffe r at the press of another
key. The com bination of thse keys allows existing lines in the nrodule to be copied quickly to the point of a
mistake front ei ther the left or right direction , a correction to be inserted into the line, and the rest of the
line to be copied without  error. In replace mode the copy buffe r is merel y loaded with  the line to be
rep l aced so rapi d up dating of errors , without introducing new typing errors caused b y reentering characters
whic h are alread y correctly entered into the line, is possible. In ei ther  mode the user can ski p over lines he
does not want to change thus allowing I r im i r to easily mr iove through an area containing errors and update or
insert after each line as needed without having to redesignate with numbers which line he in tends  to al ter
next .  Because these keys allow the user fir  directly edit tire characters in lines, these keys perfor m the
function of nu m erous s t r in g orie nr ted edi t ing  commands found in more conventional editors. As a result .
the only string oriented command is one with wh ich a module may he searched for occurrence s of a
particu lar string, with option al rep lacement by another  s t r ing by pressing a function key.

The comr imands availab le at t im e module level allow the use r to move forward or ba ckward by the
number of lines disp l ayed , to the beg inning or end of a nr o du le.  to the lines followin g the lines current ly  on 

- -- . .-~~-~~~~~~~ - - -  .— — - -- -
~~~

-., - ~~—~~
- - - ~~~*—-— —-

the screen , or to the t’oll owing or preceding module b y the press of a single key . Lines may he deleted by
entering tire starting and ending tine number , or ma y be saved into a “save buf fer ” and carried to some
other place in the module or into a dif ’ferent module , pro gram or editor . I n add ition , gro ups of lines nra ~- he
moved left or righ t a designated number of spaces to align them with other lines in the tex t ; this is very
useful in the editing of s t ructured programs where indent ing is often used to display progr am s t ruc tu re . In
all comni n r ands referring to more tI t an one line , t ire designated lines are encircled by the editor to confirm
that the prop er lines have been denoted before tire operation is com pleted , thus g iving the user a chance to
change his min d before ir r aking a major error .

To simp l ify progra irr storage , changes nrade to a m odule are not recorded on disk until the user leaves
the module , at which ti m e they are automatical ly recorded by tire editor without any explicit action being
performed by the user. A special escape is provided which allows the user to leave the module without
storing the changes that have been made. This is normally used only when some major blunder has been
mrrade , such as deleting a large bloc k of nrateria i by accident , which the user does not wan t to become a
permanent change . If a modu le is emptied , it is automaticall y removed fromri the program directory , and if a
new module is being created , it will be automaticall y entered in to the prog ram directory at the place it is
.lesignated to be added .

Another useful function supported by the editor is the automatic tab function , In automatic mode ,
the tab key will indent to the line which is being inserted after or rep laced: this is usefu l for indent ing
structured programs or for entering indented textual m aterial , A ir ianual mr iode is also available where fixed
columns specified by the user can he used when tab is pressed: this is usefu l fur editing programs wr i t t en in
assembly lan guage or for entering column sensitive data.

To assist in the development of structured pmogrants , the editor searches for leading BEGIN and ENI)
synrbo is and the special CAMIL beg in-end characters . When vertically paired synrbo ls are found , t ire edito r
will automaticall y connect them with vertical lines each time the screen is redrawn. (Thi s may be seen in
tire CAMIL examples included in the appendix.) An automatic grid function is also available which will
draw vertical lines at designatab le character intervals each time the screen is redrawn , to assist in placing
column critical data at predetermined positions when the terminal is used as a pseudo key punch machine
for card fo rmat oriented data entry.

Automati c Erro r Mode
When a CAM IL or PASCAL program is submitted for compilation , the editor generates a request for

the compilation by routing the request into the system input queue. Tire request includes only the name of
the program to be compiled and any unusual parameters which are to he applied. The corresponding
compiler obtains the program source by reading tire progra m level directory. then the module direct o ry
pages. and in turn the source m odules from the data base . No pirysica l mediu mnm other than disk storage is
used to retain the source information , To be consistent with this philosophy , the compilers do not generate
program listin gr as the programs are compiled , but rather , if an error is encountered during compilation , an
entry is made in an error record , indicating the module number , line number, column number , and error
numbe r of the encountered problem. At the end of the conrpi lation this error record is recorded on disk for
use by the program editor. When the user requests to see the error modu le directory , the error mrskl e is
used to read up the module containing the first error , set the current line position to the line containing the
error , draw a pointer to the place in the line where the error was discovered , and display the error number
and an English description of the nr eaning of the error message at the bottom of the screen. (A hard copy
of this display is included in the appendix.) In thi s manner , the author need not be at tire central site with
the printer to use the syste nm m. The resulting environment is mr iuch faster to use titan a paper or screerr
equivalent of a listing with error rriessages em bedded in the program text . This is particularly true as
programs grow in size. (The AIS adaptiv e model used for s tudent lesson nr amn ag em cnt takes approximate ly
45 minutes to list). Function keys allow the user to request the display of the next error as needed and then
to go to another module to fix the problem , such as an undeclared identif ier . without causing proh lems.
This facility combined with rapid partial co t rm p i l at ion can reduce comp lete turnaround cycles to less ti t an a
minute.

49

-‘4

_ _ _ _ _ _ _ _ _ _ _ _ ~~~~~~~ - - -~

l ime e d i t or a lso pr ovides aLcess to a1Iiop s~ mep orts ge m mcm at ed w he m r a pr ug r a n m tails in operat i on. As
exp lammi ed or amio t hm er s e cm l omt . t ime e i r t i re data c ommt e xl of a pr ogr ani is saved iii the event of such a f a i l u r e .
Tine autopsy pr ogr amt r mm r n emn oni cal ly dumps these data , and a source module is constructed for each local
am rd obal data area amid for the b uil t - m r s vst emmn variables for time progran r . It also builds a directory for th ese
source mir odu les so that the user can select which data area to observe in the sam e way tha t a niodu le is
se lected to edit whem i edi t ing t r o r mir al pr o gra mr r Sources . These dir e ctories are also s t rung t o gether so that tire
use r can hook at all of tire autops ies which h ave occurred , irrd epende r r i l y of w m ere the progra nmr may h ave
heemi mun mIn r g wi t l r rm r the AI S mmcm work. In thi s m mr .nnncr . field prob lems are re turned to the progranr au thor .
who then has a descr iption of wh at was h a p p e n i n g at ti r e momulcm rt of ’ failure , even though tire author was
not ph ysica ll y present at the time . All nor mm ra l edi t i m rg functions are available so the author may search for
desired identifiers or values or mri a~ scroll t i rroug h ti r e auto p sy lookim ig for somnet h i rr g which seenrs
abnorntah . The commrbination of tires. tv. o in t e r ac t i ve debugg ing aids greatly enhances the usability of the
syste nr , particularl y for re nm rote progra imi deveh op ~m me nt .

Tire editor progran r . wlric lr was w n m m e n in o m n g i nah (‘MIlL . was tra nslated into CAMIL in about two
work weeks , and reduced in size about 50 - Time resu l t ing progra r r r is approxinratel y 8.000 words of source
code (2600 lines), compared wit h 32. 00 ff v~ords of so urce code (.S400 lines) for the program wr i t t en in
original (‘AMiL . Tire resu lting decrease mr li t re si,.’ is due p rimmm a ri l~ to time mr r or e efficient synta x and
sentences of CA M IL II , a nd time addi t i o m i a l redu cmi o m r in code size is due to a 35% improvement in source
code storage density in CAM IL II editor for m mram.

The User Editor

The file of inform ation used by tine LO(;oN program is created by another progr am called the user
editor. This progran r allows an authorized person to create amid r rr o di fv records for other people. Na tu ra l ly .
administrative controls must he app l ied , controll ing who has tire abi l i ty to extend this privi lege to other
persons , hut Otis is enforced by tire user editor whic i r is tire sole progranr tha t can edit the user tile.

The user editor will not be explained iii deptir , h ut it con tai m r s the mrecessar y displa ys to establish.
survey, de l ete . arrd modif y user records.

File Editor

The CAM IL file system is managed interactively throug h the prngranr FI LEEDIT . W it l r ti n s program .
file definitions are interactively created , edited , and deleted. The resultant file definit ion file is used at
s~ stern initialization ti r rre to load syste m file imrf on r ration in t o h CS.

Wiren creatin g a new file defini t i i r mr . tire file editor solicits info n rr ation (file typ e . record size , bu ffer
size , numbe r of buffe rs , security privileg es . nu m ber of records. etc.) required to define a file. From the
obtained infor n rva tio mr . the file edit program computes the total disk storage space required to hol d the file.
which is t iren used by tire program when allocating plrysica l disk space for the file.

Whren the user is satisfied wit lr the file definit ion . pirysical disk space for the file n mrust be allocated.
The user m a y optionally direct wirere it will he plrysically located (b y disk pack and cy linders) or may
allow the i ILEE D I T programr i to find tire required disk space.

The file edit program also provides for general disk mmr ainte n ance and disk allocation up dates . Disk
packs which h ave been initialize d by the IPK routine can he labeled by the file edit progra mr r .makin g them
read y for use in the CAM IL file system . Also allocation m iraps for each disk pack can he imrsp ecte d and
changed by the FILEEI) IT program. This allows tire s ta tus of eacir disk pack to he exam ri ined prio r to
allocation of a rrew file.

50

_ _ _ _ _ _ _ _ _ .~~~~~~~~~~~~~~~~~~

Autopsy Program

A CAMIL program in execution presents a pattern of infor nra t ion on a termrrimr al screen wh ich tire
author can observe to partially determine whether his program is executing correctly. Simultaneous ly.
variables internal to the program , but not visible to the author , are undergoin g continuous change . It is
often very desirable for the author to observe this internal state , but this is quite difficult to accomplish ,
since norm ally the program would have to be temporaril y modified to display these data , along with the
desired screen output of the program. It would be iri ghly desirable to have a tool which would display this
information at the request of tire user , without requiring modi fication of the program. It would also be very
timely to app ly this tool in the event of an unantici pated failure of the progranr during execution.

The dump is such a tool but has until recently been as crude in fomr as the programming langua ges it
has served. The post mortenr dump imp lemr iented by Sand mr r ayr (Reference 6) has provided dump -like
information in a mnenronic fo rm for the sinrple data types supported by’ PASCAL, The CAMIL autopsy
report extençis the basic notions of the PASCAL PMD to include all user structure d data types . such as
packed records arrays , flies , sets , and classes. Tire CAM IL autopsy can also be taken any time durin g norm al
execution of a CAMIL program by pressing the AUTHOR key and requesting an autopsy.

When an autopsy is requested , the state of the program in central memory is written onto the data
base for presentation to the autopsy dumper. The dumper wifi use compiler generated descriptions of the
address space of the program to produce a mnemonic dump of the data area of all routines active at the
time of the autopsy. It also generates the calling sequence of active routines and attaches all of this
information to the program directory. The author can use the program editor to examine this information
at will . The default autopsy covers all variables in the program, but compiler directives allow the autopsy to
be selectively omitted for items in which the programmer has no interest.

Print Program

Because the character set for the CAMIL system includes 124 hard printable characters , a special
printer chain is neede d to print all of the character graphics used by the system. This special chain
relinquishes some redundancy of frequently used characters in order to make positions available for the
nonstandard graphics (print slugs) used for CAMIL. The absence of these slugs causes the pr in ter to run
more slowly , especially when CAMIL programs , including characters which appear onl y once on the chain.
are listed. To counteract t his factor , a prin t program was written which is capable of reading CAM IL
directories and source modules, and printing the full character set on the printer in a unique two-page
format.

Lines in CAMIL modules are never more than 60 characters in length since the MS terminal screemr
allows only 64 characters total , and four of these are used by the editor at the left margin for line numbers
and spacing. The line printer is capable of printing 136 character lines across a 1 5-inch-wide continuous
paper form . To make the most of this combination , the print program prints Iwo images side by side on
each sheet of line printer paper. Because the print timrre for each line is determined pri m arily by the time
waiting for all needed slugs to pass over positions where they are to be p rinted , printing a wider line lras
little effect on the printer speed compare d to the need to wait for the full printer chain to cycle by each
line. The resulting printout is thus twice as wide and ira l f as long as the norm al format and has the further
unique property that it can be burs t and each page folded upon itself , producing a book-like format which
is much more convenient for program documentation. The major operational benefit of this fo rmat is t hrat
the printer runs almost twice as fast on these norm ally slow listings and uses half as much paper.

The print program also prints a program ir sunrmary at the end of the listing which cross-references
modules to the page of the listing where the module was printed. Pages are automaticall y numbered at the
bottom and module line numbe rs and headings can be printed or deleted at the request of the user . The
print program is written in PASCAL and attaches to the CAMIL data base through the batch progranr
interface described in the rile manage r section.

51

_ _ _ _ _ _ _ _

VIL CONCLUSIONS

The language described in this paper is a workable usably implemented language . It reflects qualitative
improvements in CAMIL derived from experience with the current operational implementation of the
language. These improvements were sufficient to allow a more than 50% reduction in the size of the
program editor which has been t ranslated into the new fo rmat as a test case program . In addition , the
resulting programrr appears to run both interactivel y, faster (subjective observation) and consume less
computer time durin g execution. The program is also significan tly more readable due to the extensive use
of the CAMIL user sentences and impr oved file structures. We feel that this saving is typical of savings
which could be realize d if the current system was converted to the new language format and that the
greatly inrproved cotirpiler performance would facilitate such an effort and future applications of AIS to
new instructional areas.

A pivotal question which arises when such an effort of this type is contemplated is whethe r tht
benefits of such a conversion outweigh the costs in time , effort , and interference with the operational
environment. If the AIS loa d should increase , major improvements would be needed to handle the
additional load inrposed upo n the computer , deman ding either additional hardware or improvements in

• software . If such an increase was to occur , an alternative to an increase in hardware performance now
exists , along with qual itative improvements in development facilities.

In the event that demand for AIS computer services does not expand , or if it assumes a different
direction away from the central , research oriented form that is currently implemented , we have nevertheless
gained signifIcan t knowledge of the implementation approaches to use in future developments and of the
types of interactiv e aids which should be included in future systems.

REFERENCES

i. Wirth , N. The programming language PASCAL. Acta l~rfcrmatica, 1971 , 1, 35—63.
2. Ammann , U . PASCAL-6000 compiler.
3. Sherwood , B. The TUTOR language. Computer Based Education Research Laboratory , University of

I llinois , Urban a, I llinois.
4. Stifle , J. The PLA TO IV architecture . CERL Report X.20. Com?uter Based Education Research

Laboratory, University of Illinois , Urbana , Illinois, April 1972

5. Krivacic , R . Refinement and implementation of simulation system. Masters Thesis , University of
Colorado , Boulder , Colorado , April 1978 .

6. Sandmayr , H . PASCAL post mortem dump program .

52

—-U---— ~~~~~~~~~~~~~~~ .-~~~ ~~~ --~~~~~ -

I

APPENDIX A: PROGRAM EXCERPT S

Several program excerpts are included in this appendix to display something of the CAM IL
environment to the reader. Unfortunatel y, the extreme resnonsiveness cannot be capture d on pap er nor b y
a sequence of frames showing progress through a program .

1. Display of a syntax error as produced by CAMIL editor automatic error display mode. The editor
user presses a single key which causes the editor to read up the module contai ning the next error and show
him an English description of the error , whi ch he can then correct.

Ht grri erits: pic±ur - €~ ~ p.ac~~: ;3 E: 8
- -—

1 ‘th-~~w fr :::’m 100 , 4.t f Ø t’c~ 4~~10 , :300 ;
-

2 ~:fr-a t.tm -i~~. 200, 100 ;
.3 PLAN (270 , 400 . :3~~~fj)

4 ~:n l i i e :3 1, .:::’:::. l 5 w r i t e lar e Ert r-~o.m_~te d1E.~:1ay E i L ~~-:~ 3 . . E 1 , 2 .

5 ‘on l i i e 1 , .:::.: :. 1 40 w r i t e

104: i derit i f i ~~r not dec’I ar-ed

53

2. A sim ple typin g drill program which places randomly selected words on the screen which the
typist must correctly copy.

~~1:r,ient :E, : T’ ,’Pf.’ —p.El .::e ~47
______ - —

1 c : r- ~ETANT INTEC~ER 1 ii- v~-=.~-~ ~~~~~~~~~~ ~
.,,- , -

~~~ -~--44

2 AF~FA’~ [.iit:’.,.’’;::..-:at:.j ! I ~ ~ fRIt’- P-I~ [a;] i-i+-- ~1:.m _i~
:.
~::~ , enri:h ,

• .-: larri , 
_
~:--T - -:~1e , :E.l.~R~: •

4 ‘ c 1 _ i~ , ter . ‘ ‘~ r .~ n ::: 1 .:i • 
‘ .era:~,e . ZLtl I .J~~ .clI_ i r - l1 , .E~~~’ _ I~~~- ’ ’ E.

S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~:.ar,~ 111r, ’ .~~~
i_ :,~~ , ’ ,

I E . l i . r - 1 . • E . l L I r l :  • 
‘ dff,.: .CL:.,R , ai : .i l - :- r i ’~ , ~~ lr ’  B

’
, z~~i-o ’ ,

7 :E.’_ m : : r ’:::.:~.e ’ , .::r .~in ~~m_I r p j ’ , z .~t:. . ‘ z i l c } i ’ , -~~~~~~:~~~~
‘ , ‘ l i t T , j ’ _ ’r i m ’ ,

‘ :EerI _ I rr, . ~:i - o t : r i . 5 1 1 1 - : :n ’ . ‘t r i l : .L . l e  , ‘ : 1:- r . ’~ ’ , c ut ’ ,
‘ i i i , .::~::. , t i i i i~ r- , t i r r , i .::~~, ~:e r-’.i~io~--_ ’ , ‘ ri: ’ .:J i : t ~~~ _ I

10 ‘ .“ARIAb LE Ir -J TE~ EF i , } .  ~=‘r-t ~~ .. -:}-i .~ir  ~. , -f .t. r t ;  ~T~-I~-1’I’ 11F~] i :

11 F’ACE-~ED RRF~Fi ’ i ’ [1 i r e B , ~ :‘ . : r . J B — 1 ) C ’ F  ~ : v :~~:- ‘ - J u i - • ; CHi i ~ - :H~~~r

12
1 3 IF [~ AC~-c] [‘0 : :atart*-S’i’E CPLITII1E; er- r -E.*-~~ : -:h.~r ~~

.-
~ ‘ ;  -~~a’~~:

14 FOR i TO line:a [0 .
i s F::R F ROM ~ RE. PEAT .~o’r.::~E, D’ .’
l b  ~~~~~~~~~~~~~~ ~‘.m’c~ir,::.~ [i ,

17 L~-~rite i’jcl U-ij ‘c r, I i r,e~~:3~- -~i — 2 j  ,.c:c:.I ~j x 1 $ i 1 + 2~ ;
1 :3 FOR i TO l inea.  DC.’

FOR FROI-i •t3 REPEIIT ~-~I.T r-d a DO
‘- ‘ + - ‘ id [‘~‘.d i ri. j i ]  —} ii - -=.~— - —} r•~~+LEN ’~TH i : i

2 1 FOR k UNTIL k=LEt- .JGTH ‘:~ ‘i:’ DO
22  accept reF:. W i  t h {n :.~irr ~:, , r,’c..c:apa] cha.r i— i..’..i El:]
2:3 IF L k..E’ i ’ = .:::har THEN
2 4  u.~r i t e  -char - on  I i n e ( i : < 3 — 1  , ccl (j x l g + 1+ k : : t
2 5 ELSE

[mj ni.~i rj t e  ‘~ ‘c- n I ine P3 >~i — 1 )  ,‘:::o l ( j x l ~~+ 2 )  
~~~~~~~~~~

2 7 UNTIL I ~ KE~’ = DC:’ ac:’:ept rep. ‘- . .‘ i th tnoar-r-’o’w]

29 on line 31, c — ,I S ’ i_,ntil ft.JEXT] t~irite
“ i~O:.I_1 t ’ ’~:-.e’::~

“ , :hc rc. : :3 . ‘-::har:~, m -~,i t} i ‘ , er r -f .: 3 , “

31 CPUTI ME = ” . CFLITIt-1E-at.ar-t :i -‘4 . ~9~~- --c har- -a: 6 : 2 . ‘ ma.- Ice p.reaa. ”

54


~~~~~-~~~~~~~~~~
-

‘I

3. Original CAMIL code for a simple math drill program which randomly generates math problems
and checks any wrong answer against the possibility of having performed the wrong operation on the
displayed operands.

F . - ‘..~ •
.•~~~~

- - .~~- ‘ ‘ - I :  _.- .—:

i L -  - . r  1~~I~ .~ F ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
S I I- I r -~~F- ,i 4 _~ : — ‘ ‘ . — , ‘ ‘ — -

4 E, o~ e 5- r . . . , ; Fit ~~- 1 u’ , Li re  ~ - W r it ’ :

~ ‘ I ~~~1 - - r , ~~ t:. MMT H [‘FILL , Fr’~-t~~ JE~~T t-: ~t~~r t - 1 . -  —~
t . ~ LI - HT 10 TIMES [‘
7 ~‘-~~T .II -J ~‘N HELP ~~ (Hr i~~~ .~,e.; F~~~~~ -~ ; t ’
F Er&~ue ~ - :r’,er ; ~~ ~-: I 2i’ . Line ::~~ I - I r j t ~~ Hel~: - , . ‘~

12;  ,-~ 1 JE’ (~~~I2 ;  eI~~- : t .F - ~ ,’I[ U - 2 , 1 ;
Ia :r~

-
~-E -: nIC-: 1 LE

1 1 U ~~~ ‘— 1  ~r 7 ~r’_ - .- — r :  3 ~ r~t..- I .~ 
.± .- -

2 JuE”f.E
13 ‘Ec.IN Er~~e~ Li r e  10;
14 At Cot 5 , Lire 12 Wr i te  1 W i t h  fl~.tni tud~ 2;
15 W r i t e  op [’f t-e I~~-c t ]  ; Wr i te r W i t h  I~~~~ri tudc 

~~; 2 J r i k e
16 A-~cept At Ccl 14 , L i n e  is; tr~,.-tr~’- I ;
17 ND W ITH
18 Ef.IN
19 er~~- I  (W r i t e  -) For I Secor,d~~:IF t ry~~1 THEN .:~
22 - 1.rl (W r ite  ‘ t-~ . did ~~~~~ ~dd’~ F~’r 1 Sec-~~ii t ;

J~~FLAG.-F1IL5E)
1-ri  (W r i te  ‘ no did ~ ‘~~~ i ~- uL- t ,~~ct Fc.~ I

23 
• 

.1,FLA G.EALSEI
24  1”r I ~W r i t e  r,-:- did .‘)U rniit t l~ ly ’ F’ :,r I ~-c -I r~~~ ;
25 - J~ FLEi~~~~~~~Ei
2 6 i — r I (W r i t e  - 

~-: d1d ‘ ‘c..i . 1 i - - ’i - :ie E-:- ’- i~~:
27 j ,FLFic..-r,~~sE)
28 ND
29 ELSE
32 ~EGIN
3 1  IF  t r~ 5Z THEN (Write Ant -~er ujc~~ ’
I Wr i t e  ert  W ith  Me~ n,tude 4;  P-~ u r c  F-u - I E~- : - r- •~ r~

I ELSE L i r i t e  ‘ n-: Tr -~- ~~~~in ’ F.~r 1 5- ’-
~~JD;

4

S E’ -~ :e O:recn ;  At C:- 1 ~ , L i r e  2~ H’ ‘&-n L-e’- -:‘ ‘- ‘ —~~~~

~ L-r~~te  
~~~~~~ At ‘~~.1 S . Line 3 1 IIr it~~ N- - - l cr r~ ir :eJ

7 l Irite 1 0 — c - i - i ; F- c ;

4. CAMIL II code for the sant e math drill program .

T~ISP~~~~
15B

~~j~WTo DDC — ‘
~~~

1I~M OO1~ 1UR~1

55

L _

~~~~~~~~

•

~~~~~~

•

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

•~~~~~~ • • . •


~~~~
— . -- ---

~~
--- -- - -  -- --

~~~~~~~~~~~
- - . ..

~~~~~~~
-.-.-- -

Pr~c . : ~L,reE.,: MATHDRILL2 space : 812  
_ _ _ _ _ _ _ _ _

1 i2ONSTANT FiRRA’i’ [4] OF CHAR o p# -( ’ + ’
, 

‘ — ‘
, ‘ x ’ , ‘ # ‘ ) ;

2 \ ‘ARIA~LE INTEGER 1 . r’ , ar,s , c~ ac 1 cot

4 er-aae ; or, line 5 ,col 1.@ u n t i l  [NEXT] -‘r- ite
S “Welc ome to MATH DRILL , F’re:E~a NE :-~T to sta~-L’

REPEAT 10 DO
7 - 

IF [HELP, e’LUE~~AcK] DO wr 1 te ar,s unt i I [NE:;’::T]
erase; 1 4—RAr’-JDOM> : 1 2 ; r÷RANDONx 1 2 

; c-.r. e lect4-RAr’-,j[ iOt’l>. 3 . + 1;
9 CASE .o.paele.tt
10 [ i i  ans.-l+r; 2 1  ans4-1—r; 3 t  ans4-lxr- ; 4 1  ans*
11 wri te  “ —HELP— ava i lable ” .:::.r, line :30 , ccl 7~~~

12 ‘:::‘n line 1O ,..::’c:.l 5 wr i te 1 : 2 , op [.o’pa.e le’-c:t ] :l , r :l , ‘ = ‘
;

13 J~LOOPLIMIT.-3;
14 JLIDGE accept on line 10 , ccl 14
1 5 ari:E, I [ok; pause for 1 :ae ::; IF J ~ COUNT= 1 THEN c’k54-cks+ 1 ]

l÷r’I[ri.c.; wr i te ‘ did you. a d d ?”  for- 1 Eec];
1 7 1 — r- l[no ; ‘.-‘~‘r 1 te “ did ~..-‘C:’ I_( sLtbtract ? “ for  1 sec
18 1 :<rI[r ,o ; w r i t e  “ did y.::’Ij riiul±ip l’/? ” for 1 Eec:];
19 l— r  I[nc:.; ~‘-.‘rite did ‘ - ‘O’U diV ide ’.’ ” f~~r- 1 5cc];
20 ELSE
2 1 r IF J COUNT= 3 THEN uir- 1 te “ Answer- ,.‘ .,a :E, “ 

, anE :  4 for 2 sec
LELEE [no’ ; [‘-‘r i te “ Tr~’ a~ a iri ” for 1 sec

24 er a ae ; or, lin€ 2k1 , ‘::.o.l S ‘.-‘~r- 1 te “Number correct = “ , oks ,
25 t’ -i’_ ’rr l:’er- ~~~~~~~~~~~ = “

, lU- . -c:.ka until [NEXT]

5. LAsting for a simple “HANGMAN” game program which requires that the player guess letters used
to spell a hidden word. Each letter guessed which does not appear in the word results in parts of the m~ i
being drawn until he is “hung.”

.~~ ~~~~~~~~ £r- .~’.=: c s3  :~ -
I ~~~~ . I ~~- - - HriNLI1~iN ,~~~~~. ~u.-~ c the iette r5 i , ,  -~

I -~ L- ’ rlNT
4 II-I1 E’ ER nur,,.~fword.~.-25 , ‘~~200 , ~,“.I25;
5 ,,~~.,:j tO ; ru~r,c.fwcr-d~ ) ‘.‘F ~TWING (8) words.-

I ‘ Si ri, i or,’ , ‘ car ce ’ , co puter ’ , ‘~~eogu I I
v i r ~~r- :- - /e ’ , ‘ elo1uent ’ , ‘ ceme l , ‘torto ise ’ ,

I: j , I - .f i r ~~~ , - -F.~-:i. ’ , ‘a i r c r a f t ’ , ‘
~~ur,~ hine ,

‘ v i o len t ’ , ‘ erudite ’ , ‘ si~, i It ,
IL’ ‘~e1p t .~t~~’ , ‘di ligent , ‘ Superlcr ’ , ‘ beest i’ ’ ,

I 3 Vr~PI~tiLE
14 INIEC~EP i ,r ig ht ,nii~~oed,ae lect ;

~ ‘r,E I (‘frn 9~ ~~~~~ ‘ o - : - ,  -1 t  u~.ed;
Io SET OF ‘ e ’ : ‘ z ’ ;)-,,,rsanwd, usedchar,;

7 srr.’Ir-~’; (8]

56

-

~

-—- - -- - . .
~~~~~~~~~~~~ ~~~~

-- - - - -

- - - ~~~~~~~~~~~~~~~~~~~~~~~~~ - -- .-.- - .-
~~
--—- -- -—-

~~~~~~~
. -

~~~~~

Id

~~~

i ,~ ,i ,t . - ’;  n , i 5~ ed.0; ch,~ r5i r,t’i-J.- () ; ,~~~‘-‘ : j - I - -~,~~~’ I ]
1~’LPL riT r , ’r , - t ~~~ - , - 3 - -  3 Jt’O IL ~~‘ , I e-:t t- ‘~~~~ -j ’  Lu .’

.- ~‘FiI-i C~~i .u r,&,mof’e’r ’J~~;
• (~ - ‘~Ie..t 1 ; mord ~i rd~~(~ e1~~~t ]

14 i 1 ’  i TO LEN’ ,T I l ’ - - _ r j i  DO ~ha rairu-,-J- : I .  ~~i r - - .I • I d l i ) ] ;
l i-r e 4 ,.:c- i 5 s i d  3 .0  ‘~r i t e  1or ~~ ‘The H , ,i,

7 : [r - ~~u th e Ga I
:-h,,cct .‘ S(I ,’,’, -.,~i, ~ ,y-1 U0 , ~~0 ,- - - Riu .

:9 . S , y .30~I, ~u .55 , y. 3d(J , ~.S - 5 . - - . .~ - I - ;
J L,C,GE c,c-:e 1-t r.rp ,,ith1no~ rrom ,r-:-ca~-=)

~I
IF .J , I .E Y  u -J-: I c r 5  II-CN
[org I i i ,e  25 , -:. - ]  Is fc r  I se-: ,.,it.~ :u u t - - i tI-,~ t i o r ” ;
LJ .FLH’:.FAI ~ L ;

4 - ‘  ELSE

- 
u c , - ~ -:h-, i ‘ : -‘- I : I o r ~~. (J , I - L ’ ~

- IF J , I Er :l- , r~~i n,uid THEI -J
- F ’P  I ‘ LLI 0 FH -~:-r J) DI)

-: - IF .1 , 1 E l . - - ,  U i ]  THEN
5 ~~.r i te 3 . 1 £ c-n I i ra  20 , co l (i . 10’ ;  , a ~~~~~ ~-ht . I
Ii) iF  r I t I 1, HI  ‘,orj ., I
II [ - ~i- it . .  “ ,‘.:-‘.j --i ,- t -:-r 3 sec nnt i l  ihL - I ]

L-: n I i’ ’. ,S , -:o l 10; G(’TO s- _ -~ & r
- J ,rL,-,-:. rAL ’E

-, ELSE
- [r i  ~~i.- r i : :1.

- 
I CASE mi ~~‘- J (‘F

[ 1 r  .Jra,.’ f r - i  v ,5 ,5~.5 to ~
.S5 ,~~

.SO; :J.— t ~ I’~.-(
‘ -~ - . I J r , -  frc.ffl x .  105 ,’,’’ 5 to ‘ *SS , ~- ‘ . S i~; Ir i~~ht 1ec~

3 1  -:Ir~~ - Ir :- ,  ~ .55 ,’ ,’ .52 to . . - , ‘ , ‘ . i . -C~ ~r~~ - 1
- ‘ 4 ,  -J r ~~~‘ I r  : ~ .55 , H• 155 tc,~~~.5 ,‘. I  (r~ ; I e f t  ~rr, )

I 
I Jrt Ii - : 1 ,  )c.,5 ,y * I 5L’ to 125 , -. I ~‘t ;  -

‘ I I t  a~I i - f  c i r - :  I.., l 0 at ~<.5~~, -,.I80 eccent, i c i t - -  2 . ;  Ihe~ J)
13 I I  71 - .1 - L a  • .S i i ,~~+ I90 , ~ .(- 0 ,~~.I90;  (e- - .~~
- 4 ‘ e :  ! : - t r  •55 ,y.1135 , v .54 ,-~.164 ,

- - - . .S- ’- ,~ ’ . IS4 , ~u.5~~,>- ’ . 184 ;
3 uc- ’ ’~ - t  ~.5! ,5~. 17O , ..53 ,~~.155 , . . 5 7 , - - . I 6 8 ,

..59 ,y .170 ;  (mouth)
-~~ 

- 1 8 1
- 

- , [dr.7 u ir-:’rd - 5 5 ,’,’ .275 to .~~S~~,r - ’20 ’ ) ;
- n I i r,.’ 7’) , Co 1 I 1 b r  i t e u’.~r d ;

I i n., 75 • cc I I U u r —  i t c ‘‘c-u hu ‘-,~~ - - :-u I t --
I (-:.r 3 ccc u r’t i 1 (ND(TJ

LG~ r J  9g,,in;
3 ’  L
4 J~~FLAG..FisL5E;
c

0

8 ELSE
wri te ‘No t a 1ett er ~ f or I sac on l ine 25 , cc l 10;

THIS PAG~E IS BEST QU AlITY P CTICAaII~
FROM OO&’L FJ~~~1S}~~~

) TO DD,Q ...,,. -

57

-- - - - ---—- 



‘ - ~~~~ —--- .~~~~~~~~~~ -,.- -,- -

6. A single fram e taken during the execution of the game. The user is try in g to guess the word
“beastly” but is very close to being “hung.”

~~ ~~~~~~~ H -

~~~~~~
. . in

~~~~~~~ 

rn a. n C ~ m ~

c-:i 3. 1’ 

~~~~~ -- -~~~~~~~~~~~~~~~~~~~~~~~~~_  

——~~~~~~ —- - — - - - --

58


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~~~~~~~~~~~~~~~~~~~~~

,IPPEND IX B; CAMIL II LANGUAGE SYNTAX CHARTS

The following charts represent the syntax of the CAM IL II language graphically. The explanation of
chart notation is included in the Language Description section of this report . The following charts do not
necessarily explain semantic restrictions of the language, which are explained more full y throughout the
report .

- -- 

~~—-~~ 

‘

~~~&~~

,

-- ---
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~ ~~
j  1

— 

~~~ 

- J

-

59

--~~~~~~~~- --- --- -- - - - ---~~~~- - - .~~~~~~~~ - - - - -- -~~~~ —- -. -~~~~~~~~~~ -- - - -- -~~~

_ _ _ w --~~
- - - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I II!,,., set 

F

60

- — - -- -.- --

~

-—--

~

-- -

~

- -----

~ 

---- - -



r~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 

- --

~~~~~~

- -

THIS PAOZ IS B~S’T QtJAItTY PRkCTI CA.BI1

FROM OOPY FlJBiUSli~~ TO DDC .~~~~~
--

L~ j

~—- -
~~ ~~~~~1—i-i - ‘ I

I ~~ _J
~~~~~~~~- (-Ik

61 

--- - -~~------ - —~~~~
-- — ---~~--~~- --- ~~~~~~~-- -  -~~~~ ~— - —~~~ - - - -  -- —- -- — -



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

THIS PAGE IS ~~ST QUAL I TY P ACI’ICA.8LE
IBOM OO?Y FJRNISHED 1~O DDC

fl~, rn
- ~~-/ :

I H H 9

- I (~ ~~~~~- r — - - - ,-
~ ~~~~~~~

- p

- . - - - I
i,.,— — ... ; -

,— - ‘~f~
>-— -----1 --

- -
- - -

~~~~
>----

~~ 
—~~~~>

-—-

- -- - ~~~~
.- - 

~ 
— 5- 

—--(
~~~~

-----‘
-~ - I —

:
-‘ -cc’--~

-

- c~o~— —.G>—-—--~
I

—

~

-H ~~~Y

-
I

-
-

— - ~ Li : T -
- - - -

L1~ ~~~~~

— — .- - I I J -

i _i . - - -- • - - - - f —- , -- _
~ l___ ~~ ____ ~ —-

62

L - - - -- - - ~
— -

~~~~~~~~~~~~~ -- 
-- -

~~~~~~~~~~
- -

THIS PAaE IS BEST QUALITY PEACTICA~L~
-

FROM C~OPy FIJB2fl S1-f}I TO DDC

rt~~
-

H- . ..,
_ - — 1_

- - - -j
I • .

~~~~~ J

—

I t~~~~~~~ 
~~~~~~~~~~~~~~ H 

- - -~00
I - — -~

Lç~ (f . ~~~~

I ~~~~~~~

1 J

— - _ - - — .:. ‘
~~~~~~~~~ 

•
~ _. 

—

- - - - - -

H ••
~~~~~ 

-

1
~~~~ •• .- ,

~~~~~ u i J _
[

, , _ , ,.
I

~~~

1 

-

- - 

1 -‘ -
- r I J - - .’’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~I
‘ ‘ ‘ ‘ ‘

H
j -

‘
~~~h~~.- ’HJ~ ~~~ 

~~~~~~~~~~~~~~~ 

~~ ~~

- j

*u S GOvrR~ urN1 PRIN1IN~~ OfFI C E I~~~~- - 63

_________________ - - -4

