= AD=AD61 620

UNCLASSIFIED

AIR FORCE HUMAN RESOURCES LAB BROOKS AFB TEX F/G6 9/2

PROGRAMMING LANGUAGE CAMIL II.
AUG 78 E GARDNER
AFHRL=TR=78=45

IMPLEMENTATION AND EVALUATION. (U)

END

DATE
FILMED

"" 10 e ke

22
12 122

n = 2g

T

22 et e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAL) OF STANDARDS -1963-3

oy

|
|
|
|

B :
AFHRL-TR-7845 . &
L’"/ f !‘//

AIR FORCE ®

PROGRAMMING LANGUAGE CAMII
IMPLEMENTATION AND EVALUATIO!

By
Edward Gardner f

TECHNICAL TRAINING DIVISION
Lowry Air Force Base, Colorado 80230

August 1978
Final Report for Period February 1977 — May 1978

Approved for public release; distribution unlimited.

PNMOOVC ONM =3>>CXT

LABORATORY

[

AIR FORCE SYSTEMS COMMA
BROOKS AIR FORCE BASE,TEXAS 782!

NOTICE

When U.S. Government drawings, specifications, or other data are used
for any purpose other than a definitely related Government
procurement operation, the Government thereby incurs no
responsibility nor any obligation whatsoever, and the fact that the
Government may have formulated, furnished, or in any way supplied
the said drawings, specifications, or other data is not to be regarded by
implication or otherwise, as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to
manufacture, use, or sell any patented invention that may in any way
be related thereto.

This final report was submitted by Technical Training Division, Air
Force Human Resources Laboratory, Lowry Air Force Base, Colorado
80230, under project 2313, with HQ Air Force Human Resources
Laboratory (AFSC), Brooks Air Force Base, Texas 78235.

This report has been reviewed and cleared for open publication and/or
public release by the appropriate Office of Information (OI) in
accordance with AFR 190-17 and DoDD 5230.9. There is no objection
to unlimited distribution of this report to the public at large, or by
DDC to the National Technical Information Service (NTIS).

This technical report has been reviewed and is approved for publication.
MARTY R. ROCKWAY, Technical Director

Technical Training Division

RONALD W. TERRY, Colonel, USAF
Commander

o

e AL ﬂ

/1

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

&

o

% REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1 RAERQRT.NUMBER —ra 2. GOVYT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
%FHRLTR-'ISAS
TIT = SRR oy ¥PE-OF REPORT & PERIOD COVERED
; ROGRAMMING LANGUAGE CAMIL l_l_?:IMPLLMLNTATION i " Final M+ '1' {
ND E_VALUATI — 2 February 1977 — May #978 | \
S s g E 3 2 - [PERFORMING-ORG-REPORT NUMBER
_AUTHOR(3) -~/ 8. CONTRACT OR GRANT NUMBER(S)
EdwardFardner {
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAAM ERLEMENT. PROJECT, TASK
Technical Training Division il \ ARESE MO SN NINEER
Air Force Human Resources Laboratory _61102F | {
Lowry Air Force Base, Colorado 80230 [0 23 ljl 407 T {
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPQRI.DAIE- wio)
HQ Air Force Human Resources Laboratory (AFSC) DAugust 1978
Brooks Air Force Base, Texas 78235 9; ~ROWBER GF PAGES

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)
Unclassified

15a. DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; dnstnbunon unlimited.

() Lbp |

17. DlSTWd&-&Wrucl entered in Block 20, if-different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

languages computer workload high-level language

CAMIL language computer programs computer software

PASCAL language program performance structured programming

computer services computer assisted instruction programming language conpilers
_ computers computer managed instruction

204\§TRACT (Continue on reverse side If necessary and identify by block number)

A reimplementation of Computer assisted/managed instruction language (CAMIL) for qualitative and
quantitative improvements in the software is presented. The reformatted language is described narratively. and major
components of the system software are indicated and discussed. Authoring aids and imbedded support facilities are
also described, and key CAMIL programs used in the development are discussed. The resulting system offers a
method for future improvement of the Air Force Advanced Instructional System (AIS) computer support system
without expenditure of additional funds for computer support. \

)

Yoy 4uk

DD ,755'5; 1473 EOITION OF 1 NOV 65 1S OBSOLETE Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Dara Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

w

SUMMARY

Objective

The system software in the Air Force Advanced Instructional System (AIS), while providing
necessary classroom support for courses at Lowry AFB, did not meet original design performance
objectives. In addition, due to cost and other impacts, full features of the Computer assisted/managed
instruction language (CAMIL) implementation were not realized in the initial implementation. The
objective of this work unit was to determine whether a different approach to the implementation of
CAMIL could meet original performance objectives and also implement the full language and authoring aid
system while simultaneously offering improved maintainability,

Approach

The CAMIL language was slightly modified to improve compilability and program readability. A new
compiler for the language was implemented, based upon top-down recursive analysis rather than the
table-driven approach used in the original compiler. The system support program was rewritten in a high
level language, and the system was configured to run with a reduced level of interaction with the operating
system. Seveial service functions were transferred to peripheral processor routines to allow for greater
parallel processing, and key CAMIL programs were rewritten using the new system. The resulting system
was to be performance compared with the original system in detail, but this has been deferred due to a
change in operational requirements.

Results

Over 95% of the system has been implemented in the high level language PASCAL for ease of
maintenance of the system software. The new compiler runs approximately 10 times faster than the
original, and several possibilities remain for further speed enhancement. The new system provides for an
elaborate group of authoring aid functions while imposing no additional burden upon the author, and
numerous further programming aids could be added to the new configuration. The resulting CAMIL
programs appear to run from S to 20 times faster than their predecessors, but this relationship has not been
rigorously tested as was originally intended.

Conclusions

A path for considerable qualitative and quantitative improvement in the AIS system software is
available if and when system loading increases due to demand for AIS computer services.

ACGESS
p— | &
TS e ‘
oo |
pRReo |
TR 1
Y e gty N
iy :
l. .
= \
\
1 .'—’-'-'-‘_—’.

PREFACE

We would like to acknowledge the support of the AIS computer operators who
helped us during the long nights when this work had to be done. We would also like to
thank Harold Montgomery of the McDonnell Douglas Corporation for his help in
understanding the intemal operation of the existing AIS computer operating system. We
specially thank Lt Col Roger Grossel for his support in initiating this work unit and for
his faith in our abilities to improve a highly complex system with the limited manpower
and resources available in our organization.

PRI

TABLE OF CONTENTS

K InbEetion 5 LG Lk e e e b vl b et e
Report Organization
Language Description

II. CAMIL Language Overview

...............................

lI. CAMIL Language Description _
Program Structure
Data Declarations
Data Definitions

Expressions

....................................

..................

Data Base Interface
Compilation Driver
LexialSeanmer0.0.0.
Declaration Compiler
Statement Compiler

Expression Compiler

..................................
..................................

....................................

Initialization Section
KeylnputSectionc.000ucuee.
Communication Section
Framing Section
Job Scheduler

...................................

..............................

Page

12
13
16
18

18
19
21

26

Figure
1

Executer

System Mode
User Mode . .

File Manager . .

Operating System Interface

Peripheral Processor

LOGON Program

Program Editor . .

The User Editor . .
File Editor

Example Syntax Chart

........

Table of Contents (Continued)

...................................

....................................

...................................

..............................

Routines

..................................
..................................
..................................
..................................

Page
41

41
42

43
45
45
45
46
46
46

47
47

49
50
50
51
51
52
52
53

59

PROGRAMMING LANGUAGE CAMIL II:
IMPLEMENTATION AND EVALUATION

1. INTRODUCTION

The language described in this document has been implemented in support of a large scale effort
within the United States Air Force training community to apply computer technology to improve technical
training efficiency. The major effort in this program has been to apply individually assigned self-paced
learning methods to four high-student-load training courses at an Air Force technical training center. Within
this environment, a large scale computer has been programmed to manage the instructional programs of
approximately 2,400 students by tracking their performance and capabilities and assigning appropriate
instructional packages based upon their past and predicted performance. The computer also performs many
of the administrative tasks created in such an environment, keeping all student records necessary to
properly manage each student individually. One of the available instructional media will be interactive
computer assisted instruction (CAl), also supported by the central computer.

In order to implement the above software, the implementation of a contemporary programming
language capable of servicing both student management and student instructional termin=is, as well as
software development, was deemed necessary. Before the decision was made to develop a new language
and/or implementation, current languages supporting similar activities were reviewed. After determining
that such an integrated attempt at computer assisted/managed instruction had never before been attempted
on the scale of this effort, it was also determined that suitable software had not been previously developed
in support of such an application. The most closely related efforts were a large scale computer managed
instruction (CMI) system at the Naval Air Station in Memphis, Tennessee, and the Plato IV effort at the
Computer Based Education Research Laboratory of the University of Iilinois in Champaign-Urbana.
Although both were outstanding examples of their respective types of programs, it was felt that neither
offered software capable of supporting the type of integrated CAI/CMI environment being sought. For
these reasons, it was decided that a contemporary programming language supporting the best current
programming practices would be specified and implemented to support the number of students anticipated
in the projected Air Force training environment. This language was identified as CAMIL, a mnemonic for
Computer Assisted/Managed Insiruction Language.

Because both the original implementation and the one described in this report are referred to as
CAMIL, the two languages have been referred to as CAMIL I and CAMIL 1. This report will for purposes of
brevity use the term CAMIL for the second implementation since our purpose is primarily to describe it
rather than to compare the two implementations. In the few places in which the two are being compared,
suitable discrimination will be made.

CAMIL can be described in customary terms as a high level, general purpose, interactively
implemented, ALGOL-like, extensible programming language. The syntactic format of the language is
generally like that of ALGOL, while the semantic features of the language generally represent extension and
generalization of the facilities of current PASCAL. A major addition to its capability is the inclusion of an
English-like statement called a “sentence” composed from “words” such as “verbs,” “prepositions,” and
“adverbs.” New words may be defined within the program, effectively allowing new statements to be added
to the language, within a predefined flexible syntactic format. Another major facility added, which also
supports sentences, is the support of multi-element expressions or groups of values. Such tuples may appear
as lists of verb objects in sentences, or as values which may be assigned to multi-element, user declared
types such as arrays or records. The user may also declare new prefix, infix, or postfix operators for existing
or user defined types, or may extend existing operators to new user defined types. The language also
includes a large standard library of defined sentence words allowing highly self-documenting programs to be
implemented by relatively unskilled programmers.

CAMIL is compiled into absolute binary code for the Control Data Corporation (CDC) CYBER 70
series computers. The compiler is written in PASCAL and implements a process called intelligent partial
compilation. All CAMIL programs are interactively edited by an on-line modular editor written in CAMIL,
which cooperatively structures CAMIL programs for modular compilation and leaves information for the
compiler to use in avoiding unnecessary compilation of unchanged modules. Likewise, the compiler
generates and stores cross-reference information which it uses to determine rippling effects of editing
changes in order to cause recompilation of affected modules. Using this technique, it is not unusual to
recompile a 5000-line program in several central processing unit (CPU) and real-time seconds since much
input/output (I/0) and processing can be avoided in a typical compilation situation.

In order to facilitate analysis of student data and generation of periodic reports in batch mode,
CAMIL has been implemented using the same addressing conventions as PASCAL, thus allowing compatible
descriptions of data collected on line to be analyzed with PASCAL programs even though packed records or
arrays may exist in the CAMIL data base. An interface package allows any batch program to call out the
same disk 1/O services available in CAMIL to access the student data base accumulated by CAMIL programs
running in real time. In addition the CAMIL system allows programs to be detached from their initiating
terminal and run in a “*background’ mode at a service limited priority; this provides for data analysis and
processing in CAMIL without necessarily reserving a computer terminal. To facilitate general usability of
the system, the CAMIL compiler and PASCAL compiler both interface directly to the CAMIL data base so
that rapid turnarounds of compilations can be achieved without using the system printer, thus allowing any
terminal in the system network to be used for software development. This authoring environment
constitutes a very important part of the CAMIL authoring system and has a direct impact on the
productivity of the CAMIL programmer

In order to keep the compiler and language description closely related, the flow chart descriptive
method developed by Wirth in reference 1 will be used to describe the CAMIL grammar. CAMIL has been
designed for rapid compilation with as few forward references required as possible. Procedures need not be
forward declared, and labels need not be declared at ail. The simple (although semantically powerful)
syntax results in raw compile speeds of about 250—300 lines/sec within declarations and about 100
lines/sec within executable statements on the CYBER 173-16 (Control Data 6400). With the partial
compilation technique mentioned above, this often results in effective compilation rates greater than 1000
lines/second. Error recovery is particularly good since the compiler can abort compilation in almost any
module if it gets “lost” and continue to other modules without the sometimes devastating effect caused by
mismatched symbols such as parentheses or BEGIN-END pairs.

To clarify some of the examples included in this paper we must briefly explain the hardware
environment in which CAMIL executes. CAMIL is implemented in a 96K central memory CYBER 73-16
processor and services a current network of 50 Magnavox Plasma Display terminals through a digital
television communications network originally designed at the Computer Based Education Researach
Laboratory of the University of Illinois (Reference 2). The network also includes ten “intelligent™ student
management terminals (optical forms reader, printer, PDP-11/05) which use a compatible protocol on the
same communications hardware. The network is expandible to over 1000 terminals within this basic
hardware. All displays presented at these terminals must be produced by CAMIL programs. Two CYBER
control points (i.e., partitions, jobs, etc.) are serviced at high system priority to provide synchronous data
transfer (program DRIVER, executed each 1/60 of a second) and interactive execution of CAMIL programs
(program EXECUTER, voluntarily releasing the CPU only when CAMIL requests are satisfied). The initial
CAMIL implementation currently services approximately 2200 military students, primarily through CMI
services at student management terminals, while interactive terminals are currently used primarily for data
base management, software development, and materials authoring. The language described in this document
represents a more advanced version of the language based upon the earlier experience and was intended to

improve the language qualitatively while offering major improvements in implementation efficiency and
authoring turnaround time,

6

Report Organization

This report has two major subjects: the first encompassing the language and the second encompassing
the software elements needed to implement the language upon the CYBER computer. We have tried to
present a narrative description of the language and implementation, rather than a formal language reference
manual, in order to impai. to the reader an understanding of the effort required to implement this type of
software and of how the language and implementation relate to several other contemporary languages and
implementations. What we have found most difficult to place into words has been the impact of the
interactive and dynamic authoring environment implemented by this system upon ourselves as
programmers. We have viewed this project from the beginning as the construction of a motivating and
enabling tool for programmers and course developers which would allow the rapid development and
evaluation of interactive computer assisted instruction and management. Although the potential of such an
environment has not yet been demonstrated, we now have the ability to make such an environment
available.

Language Description

This section of the report will provide a general description of the CAMIL language. It is intended for
a reader who has a working familiarity with contemporary high level programming languages, such as
ALGOL, PASCAL, or JOVIAL. This reader should easily recognize the purpose for including most of the
described features in a language such as CAMIL; therefore, very familiar data types or statements are not
described in great detail. Constructs unique to CAMIL are described narratively in greater detail so that the
reader will be able to relate these to facilities which might be represented by other constructs in other
languages or which might not be available in other languages.

The CAMIL syntax is described by a set of grammar charts using the basic style used by Wirth
(Reference 1) to describe the syntax of PASCAL. No formal production or reduction grammar exists for
the CAMIL I implementation, reflecting the fact that a top-down, recursive descent compiler is used to
implement the language. A reduction grammar for the original CAMIL implementation contained about
400 productions, some of which correspond to features which have not yet been implemented in the
original system; this indicates the complexity which may be anticipated when a table-driven, bottom-up
compiler is used to implement a complex language, such as CAMIL. In comparison, the syntax chart
description for the current CAMIL is very compact and is readily related to the compiler structure for
maintenance purposes, although it does not have the guaranteed relationship that a reduction grammar has
with respect to the compiler. In the case of CAMIL 11, the grammar does correspond to a language in which
ambiguity can be resolved by looking ahead one token at most.

Within this notation, an oval box CD is always used to surround a reserved word in the language: such
words are built from upper case letters and are intercepted by a bottom-up lexical scanner and classified as
single symbols. Reserved words and punctuation are also occasionally surrounded by a small pointed box
>, which is pointed in the direction of production flow of the grammar and which is identical in meaning
to the symbol CO—> . A strictly rectangular box is used to contain the name of another chart, with the
implication that some compiler routine will be recursively called to collect the item impiled by the name of
the box. [The lines with arrowheads indicate the direction of production flow of the charts. To relate
this notation to a more familiar form, the examples below indicate equivalent Backus-Naur Form and
syntax chart examples.

Backus-Naur Form:

<constant decl> $8= CONSTANT <typespec list>
<tyoespec llst> $t1= <typespec llst> } <typespec pair>
<typespec pair> :
<typespec palr> t31= <typespec> <decl pair llst>
«decl pair 1ist> $1= <dec! palr llst> , <decl pair>
<dec!| pair>
<decl palr> 33= <jdentifler> « <constant expression>

Equivalent Syntax Chart:

———> (CONSTAN1 }——pp| 1ypespec fr—ipp] "fdw > — c%r;s;;m!

‘ L 55

Figure 1. Example Syntax Chart.

The full syntax chart for CAMIL has been reduced to two pages and this represents a considerably
more compact and understandable description than an equivalent reduction grammar. Since the subtleties
of language semantics are more difficult to present in an organized and pictorial manner than language
syntax, examples will be included in certain sections of this report to indicate how language structures have
been used to implement built-in facilities, many of which are actually coded in CAMIL.

II. CAMIL LANGUAGE OVERVIEW

Most languages require that a program be described syntactically such that key or reserved words
indicate the major divisions of the program structure. In CAMIL, a program is always entcicd «dited, and
executed on-line. All programs are stored in a direct access file system with a set of directory elements
describing the modules representing the CAMIL program. Major sections of the program are represented by
separate directory chains. A program directory entry is used to link to the sets of modules which comprise
the CAMIL program; all directory entries are automatically created and deleted as the user adds modules to

or deletes modules from the program. Any CAMIL program consists of one or more of the following types
of modules.

SHARED data ---data global in scope but addressable by every executing copy of this program

PRIVATE data ~-global insscope but a separate alocation is kept for each executing copy of this program

PROCEDURES --recursively callable subroutines

SEGMENTS --sections of code which can be branched to/from any segment or procedure and which
normally constitute major parts or sections of the CAMIL program

CAMIL contains only three definitional levels: one level for predeclared, built-in data and sub-
routines, a global level of data accessible from any segment or procedure, and a local level of data within
any procedure or segment. Only one segment may be executing at any time, but there is no specific limit to
the number of procedures which may be recursively activated at any time. While this is more restricted than
PASCAL, it substantially simplifies many author and user problems which might otherwise arise when
asynchronous features of the language are used. (These are explained later.)

SHARED and PRIVATE modules are used only to contain type and storage declarations and cannot
be executed. Execution of a CAMIL program begins at the first line of the first segment in the program
directory; after the last line of a segment is executed, control transfers to the first line of the following
segment; the program ends when it is specifically exited by an exit function or when the last line of the last

segment is executed. Control may also be transferred to any segment by a “GOTO" to the name of the
chosen segment.

Procedures are not executed unless specifically called and will return control to the statement fol-
lowing their call unless a “GOTO” to some segment is executed within the procedure. An escape to any
segment results in an escape from all procedures currently activated and a réturn of all Jocal storage
allocated for the currently active procedures and segment. CAMIL allows the program author to also define
asynchronously active “function keys” in the program which will transfer control at the user’s initiative to
places designated by the author. Thus, while the execution sequence of a program is determined by strict
rules of the language. the actual path taken through a program can be as flexible as the program author
wishes to allow.

8

e

CAMIL programs can communicate with each other through several possible means. Two different
executions of the same program can transfer data through SHARED data modules or through the CAMIL
data base which is a record oriented, direct access file system. Several different CAMIL programs can also
communicate through another type of SHARED data module called SYSTEM SF ARED which must be
defined at the system level as part of a special CAMIL program containing the shared data modules. Any
two authors can also communicate in real time through a direct message facility between terminals. Other
facilities allow a program author to execute a program in small steps, interactively autopsy a program on
request, mounitor the display of a student who is executing his program, and trap execution errors, along
with the complete data situation at the point of failure.

Il. CAMIL LANGUAGE DESCRIPTION

Program Structure

CAMIL consists of two distinct but merged parts, the core language and the extensible language. The
core language is generally compiled directly into machine code which implements its meaning; the
extensible part is mainly implemented through built-in or user defined procedures, which supply semantics
to sentences and extended operators. All syntax is fixed, but within the extensible part of the language, it is
rather flexible. The core language supports basic types such as integer, number, character, logical, string,
and textual displays. From these basic types, more complex types, possibly containing multiple
components, may be defined by the user.

CAMIL makes a distinction between INTEGER, which may be used as numeric or as bit information,
and NUMBER, which is assumed to be a real number and subject to the usual side-effects of truncated
precision machine arithmetic. CAMIL is tolerant in its conversions between these types and also when it
compares internal numbers to responses entered by humans, who are generally less precise than floating
point arithmetic units. CAMIL supports a 252-character set; 126 of which are permanently fonted on the
terminals and system line printer and 126 of which can be fonted within the interactive terminals within an
8 by 16 dot raster pattern as the author desires. Strings are allowed over the full 252-character set, and a
special construct called a “wordstring” can be two-dimensional, allowing a complete screen of data to be
written with a single write sentence.

CAMIL supports RECORD and ARRAY structured types and also allows the author to specify that
they be PACKED insofar as reasonable for data space conservation. Arreys are normally indexed by
INTEGER expressions or user defined ranges of mnemonic values as in PASCAL. In CAMIL, however, the
CASE variant of PASCAL is generalized; any field may be a variant field, and the case selector field is
automatically set by generated code whenever a record is composed as a multi-element expression. This
important distinction allows the compiler to pass type data to the executing CAMIL program and will be
explained in conjunction with the sentence extensibility feature which it supports. Unlike PASCAL,
CAMIL allows multi-element literals to be composed, thus allowing ARRAY and RECORD expressions
rather than forcing the user to explicitly assign each field of a record or an array. This is particularly
important when combined with other aspects such as OPTIONAL fields in a record: it allows a user to
define sentences completely in CAMIL which are substantially more complex than the typical read or write
statement and which may be written with an arbitrary number of parameters and modifiers. CAMIL also
maintains definitional identity between composed expressions and the actual parameter lists of procedures
and also between procedures, formal parameter lists, and record definitions. Thus a procedure can be
considered as an operator defined upon a record definition, and a procedure call can be considered as a
prefix operator acting on a composed expression. Infix and postfix operators are an immediate extension of
this idea which provides a uniform basis for operator extensibility implementation.

CAMIL supports a direct access data base through several simple file operators. All files are shared
among all CAMIL programs and may be opened simultaneously by any CAMIL programs permitted access
by a file security system. Programs are by name permitted to perform specific file operations on designated

SRR ————————————— e

e et - vy

r—-—-wmw S

files. Operations supported allow individual records to be read, written, deleted, or updated. Records are
automatically reserved while being updated to avoid the problem of two different executions or programs
updating the same record. Files may be accessed by index or sequentially or by direct address. All files are
structured as files of some specified type. File identifiers can refer to either the current data contained in
the central memory file buffer or to the associated file sequence stored on the disk, depending upon
whether the context in which the identifier appears implies a reference to data or a file operation. A single
statement similar to the PASCAL WITH statement aliows a particular record to be reserved, readup,
dereferenced as in the PASCAL WITH, updated, rewritten, and released. All file operation statements allow
an ELSE clause which is processed instead of the file operation in the event that the file operation cannot
be successfully completed. Although maximum file size is specified when a file is defined, the actual
number of records in the file is dynamic and the presence or absence of a particular record can be
determined.

The familiar IF-THEN-ELSE statement is supported by CAMIL, and an additional statement is added
to support asynchronous interruption of the normal program flow by the user if programmed by the
author. The author can use IF-DO statements to provide an asynchronous transfer of control to the “DQO”
statement in the event that the user presses one of the function keys listed in the “IF”’ clause. This feature
allows the author to make a great number of options available to a user without having to check explicitly
for them at any time. Certain ‘‘built-in” conditions may also be handled using this feature, such as file
errors, system termination by the operator, and processing errors.

The WITH statement from PASCAL is implemented, as is the ubiquitous GOTO statement. A form of
the GOTO statement is provided which combines the GOTO and CASE statement functions. In this GOTO
CASE form, the selector expression transfers control to a selected tagged statement, but branch instructions
are not generated at the end of each case. This results in a behavior similar to the computed GOTO
statement while retaining the structural form of the CASE statement and achieves the semantic efficiency
which in certain situations the computed GOTO provided. CAMIL also extends the CASE statement to
include an ELSE clause which allows a closure to the set of possible values of the selector. The familiar
FOR, REPEAT, and WHILE statements of PASCAL are combined into a single iterative statement allowing
optional selection of any or all of the above possibilities and also the BY increment, somehow lost in the
transition from ALGOL to PASCAL. An iterative case-like statement, called the JUDGE statement, is
allowed and provides for the collection of an input from the user, the comparison of that input with
possible matching anticipated answers, execution of a consequent in the event of a match, or execution of
an optional ELSE closure condition if no match is found, foliowed by-resolicitation of the response when
no match is found. Many different possibilities of action are easily specified by the author due to the
flexibility of the response accepting sentence. The JUDGE statement is highly usable in many situations in
which responses are solicited from student users and was derived from the TUTOR language (Reference 3).
The RETURN statement has also returned and provides a needed alternative to the labels which otherwise
crop up on the last statement of a procedure in those cases where structured programming does not quite
suffice to express an algorithm.

An important feature of the CAMIL design is based upon a type of CAMIL statement called a
sentence. The syntax for the sentence is built on several parts of speech commonly used in simple English
imperative sentences. The syntax allows the author to rearrange the parts of a sentence in a manner which
makes semantic sense in English. In this format, verbs, adverbs, prepositions, and objects (expressions) can
be rearranged in the manner most convenient to the user without affecting the meaning of the sentence.
Thus a sentence such as

“write x on tine 10y4col 5 for 5 sec®

would execute exactly the same if it were written

“for 5 sec write x on tlne 10ycol 5°

10

just as it would have the same apparent meaning to a human observer reading both forms. The user can add
new verbs, adverbs, prepositions, and also operators, which function as adjectives in appearance, by adding
procedures which implement the meaning of these words and define acceptable combinations of verb. and
prepositional phrases. In the CAMIL implementation, terminal hardware dependent I/O is predefined
within this facility during compiler initialization, thus removing 1/0 from the cor language and providing
highly readable 1/0 statements. It is hoped that this type of facility may offer a workable solution to the
problem of authoring readable programs in languages which must be tailored to meet the needs of particular
equipment.

Procedures and functions may also be called using conventional parameter lists. No restrictions are
placed on the size of the objects returned by functions in order to allow support of arbitrary user defined
types as function results. Operators defined by the user are ireated as functions of one (prefix, postfix) or
two (infix) operands and produce a value usable in any context in which a computable expression is
allowed. The execution of a sentence is an activation of the procedure of definition for the verb of the
sentence and executes as efficiently as any normal procedure.

The operation of assignment is fully implemented since it has been extended to include literals of any
type. Additionally, the user may explicitly ‘“‘cheat” between size compatible types by “casting” an
expression as another type. This usually machine dependent, sometimes regrettably necessary operation,
can thus be clearly indicated in the CAMIL program and implemented with riinimal overhead. The resulting
expression provides explicit notice of what must be reexamined if the program is moved to a different
CAMIL implementation.

The notion of a NAME as an attribute of a variable or record field allows a uniform treatment of this
concept within the language. A NAME field within a record or parameter list is conceptually identical to a
NAME variable in a normal data area. The normal assignment operator is made transnarerii when NAME
identifiers are used, since the assumption is always made that the referent of an iden:+ o1 is always intended
when an identifier is used, unless otherwise specified. Thus names need not be dereterenced #xplicitly as in
PASCAL. An additional arrow operator “>” is implemented with the meaning *‘ x—y: make x point to
what y is pointing to”. In this manner, a NAME parameter to a procedure is treated exactly as a NAME
global variable or as a NAME field within a record. Storage may be dynamically allocated within a program
execution through the use of a MAKE operator which allocates data in an area with a lifetime
corresponding to the lifetime of the pointer with which it is affiliated.

CAMIL implements compile time resolution of constant expressions which reduces the size of
program code and allows computations to be introduced into constant initializations. This has hidden
benefits in that constants such as “2/3™ or 1.5x1015 may be stated accurately at compile time yet appear
in familiar notation to the user. It also allows PACKED constant composed expressions used for initializa-
tions to be packed at compile time, thus avoiding generation of the codes necessary to do this which are
usually larger than the resulting expression. The following operators are available in general between the
indicated types of operands:

Arithmetic: ~ Addition, subtraction, real division, integer division, integer remainder, exponentiation, and
negation; these are defined between INTEGER and NUMBER operands and returning
INTEGER and NUMBER resuits.

Logical: Union, intersection, difference, word shifts in the left and right direction with zero pad and
end around carry forms, and bitwise complement of words: these are defined between
INTEGERS and produce an INTEGER result.

Sét: Union, intersection, difference, and complement; these are defined between compatible sets.
String: Concatenation and infix search between STRING operands and between STRING and
CHAR operands.

Relational: Equality and inequality between compatible types and relational operators between pairs of
most types and set membership. Pointer identity between NAME operands, as well as normal
equality between their referents.

Conversions: Upon assignment between all reasonable combinations of basic types.

User defined: Any operators definable between any kind of operands if the relationship is definable using
the above operators upon the components of the user defined types.

Data Declarations

All data accessed in CAMIL must be named and typed. These declarations fall into four basic classes:
TYPE, CONSTANT, VARIABLE, and NAME.

A TYPE declaration is merely a convenient way of associating a complicated data description with an
identifier so that the identifier may be substituted for the more complicated definition without typo-
graphical error. Either a TYPE identifier or an explicit data description may be used whenever a “typespec”
is indicated by the CAMIL grammar. A typespec must be associated with any data used by the program,
and the compiler will check to insure that only semantically meaningful operations are attempted between
data items according to their type.

A CONSTANT declaration associates an identifier with a typespec and with an initialized, unchanging
value. Constant identifiers may be used anywhere in place of the value with which they are associated, but
their value cannot be changed during the execution of the program. Their permanent, unchanging value
must be stated in their declaration.

A VARIABLE declaration also associates an identifier with a typespec and a storage allocation which
can contain an object of the indicated type. An initial value may be indicated for the variable as part of the
declaration. The time of allocation of the storage is the time at which the variable is initialized, thus the
following initialization times hold for the indicated class of variables:

SHARED When the first program referring to the shared module is loaded

PRIVATE Each time a new user begins to execute the program (even though someone else may already
be executing the same program)

PROCEDURE At each activation of the procedure
SEGMENT Whenever the segment is activated

If no initial value is specified for a variable, the associated storage will be cleared (zeroed) at the time
of activation.

A NAME declaration associates an identifier with a typespec and a pointer which can only point to an
object of the indicated type. An occurrence of a name variable in any context causes the name to be
dereferenced to the corresponding object. Storage is allocated for the pointer when a declaration is
encountered, but not for an object of the indicated type (these are created dynamically) and no initial
values are allowed for names. Name variables are initialized to NIL references at the times indicated above
for variables.

Declaration syntax is independent of the type of module in which the declaration occurs and is
indicated in the CAMIL syntax diagrams included in the Appendix. The following examples were excerpted
from the CAMIL program editor and are offered without semantic explanation at this time as samples of
data declarations.

Examples:

CONSTANT

INTEG:ZR buffer_sizes255, maxmodse237;

ARRAY (03103 OF STRING{11] modtypae

(*Comments®, *Shared Data*,*Private Data®, *Procedures*,
*Segments®, * Job Cards®y*Main Block*y*Input Oata®,
'Text'.'Hacros‘.'FuncNons'):

RS- ——————————

m—-M- et

TYPE
Dtbuffer_size BYFFERRANGE$
0tmaxmods MODRANGE?
0863 IDCHARS?S
0t2¢15-1 DISKADODRESS S
032+13-1 JULIANTYPES
0t2¢+16-1 ADDRRANGES
PACKED ARRAY(101 OF IDCHARS PACKEDNAMES
PACKED RECORD
3EGIN
PACKEONAME modulename;
DISKAQDRESS srcyobjyivs
MODRANGE head ingend;
JULIANTYPE updtdate;
13240 cellnumher;
ACDKRANGE srcsizeyobjsizeyivsize,baseaddr,ownaddr
END MDRECORD:

VARIABLE
INTEGER
grld_startel, grld_spacinge5, nbr_grid_I|Ines;
LOGICAL
Insertyrecomplile,
fnspcect_onlye«TRUE
PACKED ARRAY([32) OF 0t33 screenlinese(1,2939495¢ 27%0) 3

NAME
MORECORD current_module_directory}

Data Definitions

Language Tokens

The tokens from which a program can be composed fall into traditional categories. These basic
elements are: reserved words, identifiers, literals, and punctuation.

Reserved Words

The following list of upper case spelled reserved identifiers are identified by the CAMIL compiler as
built-in delimiter tokens in the language. They cannot be redefined by the author, thus they will always
have the same meaning in any CAMIL program. The role of these words is to clari‘y the structure of the
program to the compiler and to the original and subsequent authors of the program. The list is presented at
this time for reference. The words are reserved in UPPER CASE only, but some of them also appear in the
language as predefined identifiers in lower case.

IF DO OF BY
TO END FOR SET
OWN THEN ELSE CASE
FROM WITH GOTO TYPE
NAME VERB PREP FILE
BEGIN ARRAY WHILE UNTIL
JUDGE REPEAT PACKED RECORD
RETURN SWAPPED VARIABLE CONSTANT
OPTIONAL PROCEDURE

13

Identifiers

An identifier is defined as a group of upper or lower case letters, digits, or underscores. The first
character must be an upper or lower case letter. The compiler only attaches significance to the first 10 of
these characters and ignores any additional ones. An identifier must appear on a single line, i.e., an end of
line signals an end of identifier to the compiler. Identifiers are used to name data items, modules, and
locations (labels) within modules.

Punctuation

Punctuations are used in CAMIL as separators for the purpose of program clarity and as operators or

grouping symbols. The following general uses are described for punctuations:

{1} Braces enclosing comments ignored by compiler
() Parentheses used to group elements of expressions
) SQuare brackets used to enclose Index exprassions

and 1l fteral sets

semicolon used to separate statements

H Colon used to visually separate ltens such as
taoels and statements, or to denote an ootional
data jitem In certain sentences

Shorthana versions of the reserved words
*BGIN® and *ZNJ*. These characters disolay
on the terminal screen as corners " and L

and are automatically connected by the program
editor with a vertical line which serves to
emphasize the nesting structure of the progran
while encouraging neatly pailred Indentation

- Assignment operators

Zagc2<>-vat _0Qgical operators

¢t=n/3t // Math operators

.o

wyne Set operators
LEN String operatfors
- e

Quotes used to defimit screen messages

L Quotes used to delimlt character strings

* Operator used Yo denote reference to
fields of records

" Synonymous with the constant 3.14153265%

» An operator usea in multtivatued expiesslons to
denote that 3 particutar value 1S to be
repeated within the expression

. Declmal polnt used In expression of decimal
tfraction

Used to identity a3 hexadecimal constant

B used to ldentify an octal constant

“?°1l/a Several other pleces of punctuation commonly

used in English, but not assiaoned any soecial
syntactic meaning In the CAMIL tanguage

Detailed uses of punctuations are shown in the CAMIL syntax charts included in the appendix.

14

Fpr"w"ﬂ”"'lliiii-n-n---r e e

Literals

The CAMIL language provides for the representation of literals, i.e., self-defining constants of all basic
data types supported by the language. The types and formats of these items are:

LOGICALS TRUE FALSE

INTEGER? ddddddd {digits (0..9)
ddddddddd Coctal diglits Qee7}
#d4dddddddd {hexadecimal diglits 0ee99AsF}
NUMBCEK? + dddddddd
ddd.dddddd Cdiglits O0eey max of 10 sig diglts})
ddddddd.
CHAR? e {a single character In quotes}
STRINGS *cecccccec” {0 to 120 characters In aquotes)
f PCINTER? NIL {means an undeflned referent}
E- WOROSTRINGSS

“The railn In Spaln talls
E mainly on the
i plain® {Used to display data on terminaty

The above constants are limited in accuracy corresponding to the accuracy of the A1> compucer by
the following rules:

1. No integer may be defined with a precision of information denoting more than 60 bits of binary data.
The compiler limits octal constants to 20 digits and right justifies fewer than 20 digits in a field of
zeroes. The compiler limits hex constants to 15 digits and right justifies fewer than 15 digits in a field
of zeroes. The compiler limits decimal integers to the largest value which will fit within 45 bits of
information since this is the precision of the AIS computer multiplier; the value of this largest integer
is 2145-1.

2. No number may be defined with more than 10 digits of decimal precision. While this is less than the
AIS computer provides, it is consistent with the accuracy obtainable after repeated arithmetic
operations of functions. No number expression may appear as a constant or be computed to exceed
approximately 101295. Numbers may be expressed in scientific notation as constant expressions in
the formats used to describe expressions as explained in later sections,e.g., 25.4x10115.

3. Wordstrings are two-dimensional chunks of character information used to place information on the
display screen of an AIS terminal. Any characters except the double quote " may be used in the
wordstring. If a wordstring is broken across more than one line, the first word of the next line will be
left justified against the left margin in effect for the terminal when the message is written (leading
blanks are ignored in lines of a wordstring). There is no specific limit to the size of a wordstring.

CAMIL supports data types of the above literals through operators and through facilities for
compounding the above types into aggregates or indexable groups. On simple scalar types it also allows the
limitation of attention to subranges of these types. The operations between these types will be explained in
the section on expressions; the grouping mechanisms will now be explained.

Record Grouping

CAMIL allows certain values to be grouped together and optionally compressed for minimum storage
utilization. This grouping of heterogeneous item types is called a record or packed record. The definition of
a record must inlcude names for all of the fields within the record and indicate the type of each field.
Variations within a portion of a record are allowed when the contents of the record might be used to
represent more than one kind of thing through a type of field called a variant. A variant selector field is
associated with a variant field to designate which alternative is in effect at any time. The record definition is
often associated with a type identifier in a type declaration to avoid the possibility of erroneously repeating
the definition and to save space within compiler tables. The syntax chart is shown in the appendix, but an
example is included here to clarify the intent of the record declaration.

15

Example:
PACKED RECORD
BEGIN
02999999999 ssan;
039999 squadron_numbe.y student_dorm, student_room;
{AByA1CyA2Cy SSGTyTSGT 4 MSGT) student_rank;
15865 student_age;
(MALE FEMALE] student_sex?$
CASE LOGICAL transient
BEGIN
TRUEIT01993 next_bases DATE_TYPE out_process_date™;
FALSE1"STRING(30) permenent_o~ganization™}
END S
END STUDENT_RECORD

Array Grouping

CAMIL also allows homogeneous types of data to be grouped into an indexable array structure. The
array may also be compressed for minimum storage utilization by including the word PACKED in the array
definition. An array definition must include the range of indexes allowed for each dimension of the array
and must also designate the type of elements which are being grouped together. The range is denoted by
including a subrange of the indexing type in the definition or by denoting the largest index and allowing the
compiler to generate a default minimum index of “1”. Syntax for the definition is included in the
appendix, and several examples are included below:

Examples:
ARRAY[10) OF INTEGER}S
PACKED ARRAY[10820) OF NUMBER!
PACKED ARRAYT1t10, 12315, 1320) OF LOGILAL?
PACKED ARRAY[1510F
PACKED ARRAYL4) OF
SACKEC RECORC "INTEGER lyj,k$ NUMBIR n™3

File Grouping

A file may be declared in a CAMIL program in order to gain access to data in the CAMIL data base.
The purpose of the file definition is to associate some specific data file by name with a variable in the
program which is capable of holding an element of the file. The file identifier thus defined is regarded by
CAMIL as both the name of the variable and the name used to refer to the data base file during some file
operation. The file declaration must name the data base file, the type of item which the program considers
to be in the file, and the program name of the variable which contains a record from the file. References to
the data contained within the file variable are obtained by simply mentioning the name of the file variable
as explained in the description of the file statement. The syntax for the file definition is included in the
appendix but an example is indicated below.

Example:
FILE *studentdata® OF STUDENT_RECORD

Expressions

The CAMIL expression mechanism provides for all of the normal types of expressions and operators
found in most high-level languages, such as PASCAL, but also provides many extended features which other
languages do not have. Some of the extended features include special set operators, multi-element
expressions (composed expressions), a type casting mechanism, and user defined operators.

16

The lowest level of precedence encompasses the relational operators ="' *“#7 “<* “>7 «7 “27
, “€”. The meanings of the first six operators are similar to other programming languages. The “="
operator is used in two different ways within CAMIL. The most common use is to determine whether two
pointers have the same referent (i.e., the addresses denoted by the pointers are equal). The other use, while
similar in appearance, is to determine whether an optional record field or procedure parameter is present in
a record or procedure call. This is tested by comparing the name of the parameter to a NIL pointer. The
form of this test is “parmname = NIL” and it returns a true value when the parameter does not exist. The
“€” operator is the “‘contained in” operator used to test set membership. The test *5 € s” would be true if §
is a member of the set s.

=1}

LE T]
s T s

The next highest precedence level contains the “+” and “-” prefix operators and also the “+
uvn‘ uun' “(«l)v, n”", . n’ _,_»\n, u__>1n’ “T“’“ inﬁx Operatofs. The u+n and n_n Wlll n()t be diSCUSSCd.

“or

since their meaning should be clear. The “v” operator is the logical “or” operator. This operator has two
logical operands and returns a logical result, which is the inclusive-or of the operands. The *“u’’ operator is
the set union operator. This operator computes the union of two set operands. The exclusive-or operator
“@” is also a set operator which computes the logical difference of two operands. The operators “«<"
to— Mo 1 are used to shift integer operands. The ‘<" and “~>—" operators are left and right end
off shifts, respectively, with zero padding. The “—1 is a right circular shift, and “1<” is a left circular
shift. The ““||” ‘s the string concatenation operator. This operator merges two string operands producing a
single string as a result.

LE YL LT ”» ¢

At the next precedence level, the “x”, */”, “+”, “A”, “n”, *“//” operators are found. The *x” and **/”
are the normal multiply and divide operators, “+” and **//” are integer divide and remainder operators. The
logical “and” operator is “A”, and *“n” is the set intersection operator.

The next precedence level contains the “1” operator and user defined postfix and infix operators.
The “1” operator is the power operator, which can have integer or number operands. To express 2 to the
nth power “2 1 n" would be used. The user defined postfix and infix operators which are referenced by an
identifier are also found at this precedence level. An example of this type of operator is the postfix “sec”
operator, which looks like ““S sec”” when used.

The highest precedence level includes the operators “"” and “N” and also parenthesized expressions,
cast expressions, user defined prefix operators, and composed expressions. The “—" operator is the logical
“not” operator, and “N” is the set complement operator. Parenthesized expressions have the standard
meaning that the expression inside the parenthesis is evaluated prior to using the entire parenthesized
expression as a result. Cast expressions allow one type of expression to be considered (or cast) as another
type cf expression by placing a “type id :” in front of it. This is a very useful feature to have in a typed
language such as CAMIL because there are many times it is desirable to override the typing conventions of
the language (especially in system programs). A simple example (assume c¢ to be of type character)
“INTEGER : c” allows the internal value of ¢ to be used as an integer. Records and arrays can also be type
cast, allowing multi-access methods to the same storage area. User defined prefix operators which are
recognized by identifiers, such as *“line”” and “col”, are also at this precedence level.

Composed expressions are also at the highest precedence level. When a composed expression is
encountered, the composing routine is passed the type of the object to be composed so that each element
in the expression list can be added to the stack in the proper location. The resulting multi-element item in
the stack can then be used as the object of a verb, the parameter of a procedure call, as a value to store into
some variable, or as some value which is part of another composed expression. Because the type of the
object being composed is known, full syntactic and semantic error checking occurs as the expression is
scanned. The following is an example of a simple composed expression which assigns a value to the write
cursor AT, which is a record with two integer fields “AT « (5,8);". Values can be repeated in a composed
expression by using the “#” repeat operator. This is especially useful when initializing an array and many of
the elements are to have the same values. For example, if a is a 10-lement array of integers, the following
will initialize the first element to 1, the second element to 5, the last element to 84, and the rest of the
elements to 15 “‘a < (1,5,7%15,84);”.

g

The extensible features of the CAMIL language allow a user to declare prefix, infix, «ud postfix
operators. There are two methods available to the user for declaring operators. One method is to declare an
operator which is to be identified in the program by an identifier (the “line”’, “‘col”, and “sec” operators
are defined in this way). When an operator is declared in this manner, the operator takes op a precedence
depending on whether it is a prefix, postfix, or infix operator, The prefix operators “line” and “col” are in
the highest precedence level while “sec”, a postfix operator, is at the next precedence level. The other type
of operator declaration is one in which an existing operator is extended to new operand types. The user
extended operator acquires the precedence of the operator symbol it is extending. A familiar example is the
extension of the common arithmetic operators to include complex operand types. The “+” operator will be
extended in the following example. The definition of the type COMPLEX is:

RcCOKD
3EGIN
NUMBER realyimaginary
cNJ
COMPLEXS
The following is a procedure heading which defines addition (using the + symbol) of two complex numbers:
COMPLEX ¢ (COMPLZX a3) + (COMPLEX D)}

Assuming the name of the module is plus, the procedure body for the above procedure heading is:

BZGIN

plus,real « a,real + b,real}s

plus, imaglnary + a,lmaglnary + b,imaglnary;
ENDS

Whenever two complex numbers are to be added in the program, the + operator will invoke the
defining operator procedure. If a,b,c are all declared as complex numbers, then the statement “c < a+ (b +
¢) + b” would be possible. An entire set of such operators can be defined over complex numbers and stored
in a library, which a user could reference whenever he wished to perform computations using complex
numbers. A new number system could also easily be implemented by extending existing operators to
operands in the new system. The extensibility which CAMIL offers is quite adequate for many different
and interesting applications.

Constant expressions, including packed composed expressions, are evaluated at compile time and the
resulting values are stored in the program. The use of constant expressions reduces the program object size
because the expression is not computed af run time. This feature also allows the programmer to change
storage allocations throughout a program by changing a few simple constants used in other constant
expressions. This enhances the maintainability of programs by allowing objects, such as tables, arrays, and
lists to be rapidly and uniformly modified throughout a program.

Executable Statements

CAMIL provides a large group of permanently defined statement types for the construction of
algorithms. Most of these statements are defined with reserved words as delimiters and several include one
or more other imbedded statements. Many also represent verbatim equivalents of standard statements from
ALGOL and PASCAL, as would be expected. Several others represent generality extensions of existing
types of statements, and several are somewhat new as far as we know.

Old Favorites
Compound Statement

CAMIL provides for the grouping of several statements to produce one single apparent statement
through the familiar BEGIN END pair of delimiters. It also provides single character equivalents of these

18

" - - g 2 v
VP s U 49,55 sV . v —— S s R B T e R (g VL S e = - . ‘

through two characters “r”” and “—”. These often reduce program text size making it possible to place
more program on a display screen by allowing several statements to be placed on a single line. CAMIL also
frequently uses BEGIN END pairs as grouping elements in data declarations and in CASE and JUDGE
statements. All BEGIN END pairs are fully matched, unlike in PASCAL where END sometimes appears
without a corresponding BEGIN. &

Labeled Statement

CAMIL allows identifier labels to precede statements for purposes of branching to the statement with
a GOTO statement. Labels need not be declared and may be forward referenced within a module. The
scope of definition of a label is the module in which it appears. The name of any segment type module is
also considered to be a label to which control may be transferred by a GOTO statement.

RETURN Statement

A RETURN statement, meaningful only in a procedure type module, is provided and is equivalent to
a GOTO to a label following the last executable statement in the module.

IF-THEN-ELSE Statement

A traditional branching statement is provided with the usual meaning of executing the statement
following THEN, if the expression following IF is evaluated true, and executing the statement following
ELSE (if present) if the expression following IF is false.

GOTO Statement

The familiar but wisely avoided GOTO statement is also provided for use in escaping to segment type
modules or for transferring to local labels within a module. Transfer is allowed to any point within a
module which can be labeled, so the GOTO may be fully exploited and abused.

WITH Statement

The PASCAL WITH statement has also been implemented to allow local dereferencing of record
names. The effect is to make any field of the dereferenced record usale as a simple identifier within the
statement to which the WITH prefix is attached, just as in PASCAL. A variation which allows a file record
to be read up, dereferenced, updated, and replaced is also implemented and explained in a later section.

The other statements in CAMIL have either been developed or originated, and they will be explained
more fully in the following sections.

Modified or Improved Statement Forms
Assignment Statement

The assignment statement is present in its familiar form for left assignment. Compared to PASCAL,
this statement has been extended by extending the types of expressions which are allowed in the language.
Since CAMIL allows the user to structure multi-element data types through ARRAY and RECORD
declarations, it also allows the user to compose expressions for this type of operand. The resulting
“composed expression” can be assigned as a value to a variable of the record or array type. Examples would
be:

PACKED ARRAY[1810)OF INTEGER i}
i~(3, 18, Sy 27, jJ*by 9y 103), 3%22)%

RECORD
BEGIN
INTEGER k3
NUMBER mynypj;
CHAR ¢}
END rec)
rece(29, 30.5y 4048y 27 ¢+ 4=10¢t27, *wm")

e ———E

CAMIL also provides a form of assignment which allows NAME variables (pointers) to be assigned the
value of other pointers. The normal meaning of left assignment in CAMIL is “copy the storage associated
with the right operand int«. the storage associated with the left operand”. Normal variables will have their
address assigned at compile time and the compiler will generate code to copy the required amount of
storage using these known addresses. If either or both of the variables are NAME type variables, the address
of the storage to be copied will be taken from the pointer whose address is known at compile time. Thus
normal left assignment always involves the REFERENT of the indicated identifier or expression. The
address held by a pointer may be copied into a compatible pointer by using a right arrow “x—y’” operator
with the associated meaning **“make x point to the same address in storage that y is pointing to”. Since the
attribute of being a NAME belongs to an identifier rather than to a type as in PASCAL, pointers always
dereference to things rather than to other pointers, thus the up arrow used in PASCAL to denote whether a
pointer is being dereferenced is not needed. The nicest part of this definition is that it makes the meaning
of the left assignment uniform across constants, variables, and names while still allowing pointers to be used
in the more unusual cases in which they must be dealt with as addresses to be copied. We feel that the
resulting syntax is more concise than the syntax in PASCAL, as is shown in the following example:

PASCAL?
Value copvytl xe 3= y¢
Pointer copy?! x ¢= vy

CAMIL?
Value copy? KLY
Polnter copy?l x = VY

The comparison becomes more significant as the expression becomes more complicated, as in the
following four-step pointer deferences where the pointers are fields within records:

PASCAL? ispteldtypetsfsttieldrteldtypeteSize.wds 3= wds:?
Ispreidtypet.fsttieldet,ldtypet.slze.nlts ¢= blts)

CAMIL S Isp,idtype,fstfield,idtype,Slze « (wdS,bits)?

The PASCAL statements in the above examples accomplish the same result as the CAL{sL staiements
beneath them but are more prone to errors since some fields require dereference with arrows and some do
not. The composed expression used in the CAMIL assignment further points out the desirability of
assigning values to multi-element data items. The example is taken from the CAMIL compiler.

Function Key Statement ([F-DO Statement)

The CAMIL language provides for the support of a set of keys and conditions which may occur
asynchronously during the execution of a CAMIL program. The author of a CAMIL program frequently
wishes to provide for the whims of the person executing the program in case he wants to change his mind,
to back out of a situation he has entered into inadvisably, or to seek at vaguely predictable times the help
of the program author. In effect he needs to provide standing offers to process such requests and to link
them to tangible things which the user can do to request the actions. Some systems provide for this with a
command mode or control key escape. CAMIL provides this through support of a set of 36 function keys

on the user keyboard and several pseudo “keys” which can be “pressed” by the system when some
situation the author may wish to process has occurred.

The author denotes a set of conditions, which he is willing to process, at a place in the program where
he wishes to process the conditions. If one of the activated conditions is encountered, control will be
transferred to the “statement’ to which the activated set of conditions is attached and continue thereafter
to the following statements appearing after the IF-DO statement. The author may redefine the place and

the conditions by inserting a new 1F-DO statement in the program in the execution path. The format of the
statement is:

IF setofconditlons (00 statement

The set of conditions is an expression and is calculated and activated when the IF-DO statement is
encountered in normal program execution sequence. At the time of normal encounter, the “statement”
following DO is not executed. It will only be executed if one of the conditions in the condition set occurs.
The statement following DO is often a CASE statement with tags for each of the activated conditions. The
following example shows how the IF-DO statement is used to provide help to the user, a way out to the
previous module, and the time left to answer the question:

Example:

IF CHELPyBACK,F1,GOINGOOWN] 0O

C;SEISYS.FKEY €A system variable tells which key pressed}
N

HELP! write “At this polf¢ you may only answer the
question as asked, press BACK to return
to the previous example, or press the
F1 key to see how much time you hawe
left to answer the question”™ for 5 sec

on {ine 274 cot 53
BACK! GOTO module27;

GOINGDOWN?! GOTO system_crashs
F1 1 “timelafte 45-SYS, TIMER-STARTTIMES
s write timeteft on tine 305 GOTO redo_question™}

cerase; STARTTIMEeSYS,TIMERS timelefte45s

on Iine 10y col 5 write

"What Is the moment of the force you have speciflead
when Lt (s applied on a 20 ft moment arm™}

redo_question?
accept with [diglts) for time*-~*¢

L€ 8

etce.

In the above example the GOINGDOWN condition is one which is asserted after the operator requests
CAMIL to terminate its operations 30 seconds prior to its actually stopping all CAMIL program activity.
This author has decided to use the condition to transfer control to a module which might store the
student’s current status on disk so that he can be restarted after the system resumes operation. Since the
condition might occur at any time, even while the program is waiting on the user to answer the question,
the program must be asynchronously primed to deal with this eventuality.

IF-DO condition sets are “stacked” in a nested manner when procedures are called and conditions
apply at the most recent level at which they are active. Thus a HELP key might be active in a segment and
in a procedure currently being called by the segment. If the HELP key is pressed in this situation, the HELP
condition in the procedure would be processed rather than the one in the segment. If the BACK key was
defined in the segment but not defined in the procedure and was pressed while the procedure was active,
control would be transferred back to the segment to the statement following the DO of the IF-DO
activating the BACK key. The program stack would of course be adjusted so that it corresponded to the
state in which the segment was active but the procedure had not been called.

File Operations

File operations have been integrated into CAMIL syntax to provide for file requests to manipulate
data on the file and to also use the file name as the name of a buffer containing one element of the file. All

21

“~

files are declared in the program as a file of a certain type of element. The file identifier is then a variable of
| the type of the element. The CAMIL file manager allows three basic kinds of files: indexing, direct, and
' variable. The meaning of these terms will now be defined as they pertain to CAMIL files.

Indexing files are files accessed by a file key, i.e., a piece of data which is used to discriminate
between different records. in the design of the CAMIL system, it is intended that indexing files will be used
as control and directory functions and not used to store large records of data. In the implementation of the
tile manager, indexing files are locked into the executive control system (ECS) of the CYBER but protected
on disk whenever they are written. The result of this approach is that READ access to indexing files may
always be accomplished without physical 1/O delay or time slicing of the program. The cost is that records
cannot be very large without wasting a large quantity of ECS,

Direct access files are files of fixed record size accessed by a specific record address. Records may be
B buffered (more than one logical record within a physical record), and new records may be written into
empty records automatically allocated by the file manager. This access method is implemented so that the
dish address of each record may be computed from the record address, so that only one physical file
operation is required to obtain the desired record. Direct access addresses range from 1 to the number of
records which may occur in the file.

Variable size files are implemented so that there is no limit on the size of records other than the limit
stated in the file definition. Also, with variable size files, only a single physical access is required to obtain
the desired record. Space is allocated for these records so that the minimum number of disk sectors needed
to contain the size of record written are allocated. Actual record size is maintained by the file manager and
any record update which changes the size of the record written results in automatic reallocation of disk
space to accommodate the additional size. Ali disk space is automatically recovered vhen records are
deleted, and “‘checkerboarding™ of available sectors is prevented by consolidation of adjacent sectors.

The following variations of four basic commands handle all file operations permitted on CAMIL files
under control of a CAMIL or batch program attached to the CAMIL data base.

Examples:

xcAD ftitel(l {Reset to first record}

READ file {Sequential read}

READ fltelindex) {Read particular record}
READ tllelindex])tsjze {Read variaole slze record}
WRITE fitle {Sequential wrjitel}

WRITE file(index) {Write newl(index=0)or old rec}
WRITE fitelindex)isize (Wrlite variable size record}
DELETE ftille {Sequential deletel}

DeLeT:E fitelindex) {Detete oarticular record}
CELETZ flileCALL] {Purge contents of fite)

WITH FILE fiielindex} Du {Reserve and read denoted file}
{record, dereference flelds 1t}
{(RECORD type, replace updated}
{recordy release reservationl}

A file index is optional with the meaning of sequential access to the next iecoru i te rile if 1t o
omitted. The record size identifier is only used for variable sized records and is automatically set to record
size when reading and controls the size of the record being written. The ELSE statement is optional and is
only executed when the file operation cannot be fully completed. A built-in system variable contains the
actual file error which has occurred and may be interrogated for use in deciding how to process the error.
Any file statement which does not return fully successful caused NO alteration to the fil= on disk. A file
may be reset to the first record for sequential processing by reading with an empty index.

o
ro

The name of a file type variable has a dual role in CAMIL. When the file name is preceded by a file
operator, such as “READ™, an operation upon the disk file associated with the file name in the file
declaration is performed. Within any other usage context, the file name is a variable of the type of data
indicated in the file declaration. If the file is a NAME type variable, a pointer is associated with the file
name. Like any other pointer, this pointer is the address of storage allocated to contain an object of the
type of the file. In this manner, a single disk file name can be used to read into several buffers, some of
which may be dynamically created and only used locally in a procedure for example.

The operations supported by the file manager include specific functions for each type of file request,
which is in turn dependent upon what fields are included or omitted in the file statement and the type of
file the action is performed upon. The user sees a much simpler interface, since he is only presented the
operators READ, WRITE, DELETE, and PURGE and a record-updating construct based on the WITH
statement. The READ function only reads records into the file buffer. The DELETE function deletes the
designated record from the file. The PURGE function deletes every record from the file. The WRITE
function replaces the designated record on the file if it is found or adds it,to the file if it is not present. A
construct is provided with the syntax:

WITH FILE myfile(index) 0O <statement> ELSE <statement>

When the above construct is executed, the designated record is checked to insure that it is not
reserved by some other program. The record is then reserved for this program, read into the file buffer. the
statement following the DO is executed, the record is rewritten onto disk, and the reservation is removed.
The reservation step assures that two programs do not read the same record, update its contents, and then
rewrite it oblivious to the fact that each has updated the same record. The ELSE clause is executed only if
the record cannot be reserved and/or read. Several attempts to reserve the record are automatically initiated
by the file manager to eliminate the need for the programmer to handle the rare case when another program
might hit the same record. The WITH FILE form also accomplishes the same function as the normal WITH

statement as it dereferences the designated record in the same manner described above for the WITH
statement.

File security is performed by the file manager. When a file is defined in the CAMIL data base. it is
potentially available to every CAMIL program. Access is controlled in the definition process (an inter-
actively run CAMIL program) by allowing the file definer to enable specific file manager functions for any
CAMIL program by name. Since these names are unique, the file manager can thus authorize specific
programs to perhaps read a file, but not add to it or alter any records in the file. Provisions are also made to
control batch job file secruity by associating permitted file operations with the CAMIL program from
which they are submitted. By coniiguring the system so that requests can only come through the CAMIL
system and its associated peripheral processor routine, the CAMIL data base is fully protected from direct
invasion, and access must come through the file security process of the file manager. The file editor can also

define default security entries to allow files to be accessed by programs without specific security access if it
so desires.

Iterative Statement

The CAMIL iterative statement combines in a single statement all of the functions of all three

PASCAL/ALGOL iterative statements. The statement is based on the following reserved words. all of which
are optional:

FOR Followed by a variable which is initialized when the loop is started and incremented by the value
of the BY expression as the loop repeats

FROM If present, denotes the starting value of the FOR variable; defaults to 1

TO If present, denotes the stopping value beyond which the FOR variable will not continue: defaults
to the largest integer

BY If present, denotes the increment to be added to the FOR variable each time through the loop:
defaults to 1

s a el an e i

i}

REPEAT If present, denotes the maximum number of times the loop will repeat, regardless of other
control mechanisms; defaults to a large implementation dependent number

UNTIL If present, is followed by a logical expression which will be evaluated at the end of each loop and
which will terminate the loop if the value is TRUE; defaults to FALSE

WHILE 1f present, is followed by a logical expression which will be evaluated at the beginning of each
loop and which will terminate the loop if the value is FALSE; defaults to TRUE

If none of the optional words are present, the loop will be terminated only by intentional exit or by
reaching the implementation dependent default value of the REPEAT phrase. All repeat computations
involving the phrases FOR, FROM, TO, BY, and REPEAT are resolved by the compiler or generated code
prior to loop initiation and result in a maximum iteration limit. This computed value controls iteration
along with the UNTIL and WHILE expressions. For this reason, assignments to the FOR variable within the
loop will affect the values it assumes, but will not affect the number of iterations in the loop.

The following simple example shows the advantage of combining loop functions into a single
statement:

CAMIL?

FOR i FROM 10 TO 1 8Y =2 UNTIL FM,ERR=EOQOF Q0
"READ myfiles arralilemyfjile™

PASCAL?
1t¢=103
FOR §8¢=1 TO S5 0O
BZGIN
xcAD myfliles
IF eOF(myfile) THEN GOTO 15
ELSE
BZGIN arraylilemyfilets [3=1-2 ENDS
ENDS
15¢

The CAMIL form is not only an improvement in flexibility for the programmer, but the routine used
to compile it is smaller than the three routines used to compile the three PASCAL iterative statements.

Case Statement and GOTO Case Statement

The CAMIL case statement is a simple extension of the ALGOL/PASCAL case statement. The
extension adds an ELSE clause for logical completion of the set of possibilities. In the event that one of the
designated tags is not found to match the CASE selector expression, the ELSE clause will be executed if
present. This ability eliminates the frequent need in PASCAL to imbed the CASE statement in an IF-
THEN-ELSE statement which can be particularly awkward if the chosen tags cannot be expressed as a set.

It also results in a more efficient implementation of this rather frequent concept while clarifying the intent
of such a combination.

A new form of CASF. called the GOTO CASE, is added. In this form, which appears identical to the
normal case statement, the compiler avoids generation of the branch instructions which normally foliow the
code for each tagged statement. The result is that if control is transferred to one of the tagged statements
rather than to the ELSE statement, it and all of the following tagged statements will be executed in turn.
The ELSE statement will, however, be avoided. This form of the case provides a direct equivalent for the
FORTRAN computed GOTO while giving it the structured appearance of the case statement and avoiding
the manufacture of numerous labels to capture this type of logic. While we do not expect to see this form
frequently used, it does provide a translational equivalent for the FORTRAN/ALGOL form of computed
GOTO and the implementation cost is very small. This statement is represented by preceding a normal
CASE statement with the reserved word “GOTO”,

i

Judge Statement

Since the primary implementation context of CAMIL includes the operation of interactive terminals,
we felt a strong need to include a specific statement for the acceptance and evaluation of responses. After
observing the implementations of many systems, it was determined that one of the most powerful response
acceptance mechanisms was implemented in the TUTOR language (Reference 3). The essence of this
mechanism in CAMIL is a combination of an accepting, processing, evaluating, and looping function
combined into a single statement. The statement is called the JUDGE statement and is so named after the
JUDGE contingency structure implemented in TUTOR. In CAMIL, the JUDGE statement has the following
syntactic form:

JuDGe

<response acceoting sentence>

BEGIN

<expression tist> | <action statement>}
<exoression list>» { <action statement>}

L N]

<exporession {ist> | <action statement>;
END
ZLSE <no match statement>

The response accepting statement is usually an accept sentence acquiring input from the keyboard
into a built-in variable called the judge buffer. It can of course be a compound statement which “massages”
the content of the judge buffer after accepting the input from the student. Since the normal accept
sentence allows many options restricting the input, this statement is not normally needed but it is available.

The expression tag lists are normally anticipated responses or ranges of responses separated by
commas. In this way, more than one answer can be associated with each action. Ranges of numbers.
integers, sets, strings, characters, and expressions are allowed as tags. The compiler generates logic to
convert the contents of the judge buffer to all of the types of things on the included tags. and tries to
match each of the tag expressions to the converted content of the judge buffer. If a match is found, the
corresponding action statement is executed, and further matching is terminated. If no match is found, the
ELSE statement is executed if present.

After the above has occured, a semantic flag is next tested. This flag will have been set true if any
match were found and false if no match occurred. If the flag is true when tested, the JUDGE statement will
terminate and the following statement will be executed. If the flag is false, control will be transferred back
to the accepting statement if a maximum count has not been exceeded. Since some tags might correspond
to anticipated “wrong” answers which wouid require further input, the semantic flag can be reset in the
action statement to cause further looping. In the same sense, the flag can be set in the ELSE statement if no
further processing is desired. the loop count is also a built-in variable and defaults to no limit if not set by
the author. The actual number of times that the JUDGE loops is stored in another built-in loop counter and
is available to the author for his use if he needs it. An example follows:

erase;)

on Iine 5, col 5 write

“press the Indicated keys to choose a game orogram.
Some of the games may not be working veft, You may
type in °*quit® if you want to leave now

a The Hangman Game
b The Spelling Game
(> The Race Game

25

T R o ——————

d The Startrek Game
e The Spirogram Machine
{ The Empire Game”;

JUbG:
accept on tine 5, col 15 with [nocapsyerase_echol
3eGIN
*a*t GOTO HANGMANS
‘b GOTO SPELLGAMcS
“c*s*f*y Tfor 5 sec mrite flashing “not working yet*;
JoFLAGeFALSE ™S
‘aquit*t KILLPGM;3
ZNC
ZLSE

for 3 sec on line 30y col 7 write
“No, enter one of the letters In the menu or type ‘quit”’

"

to leave this orogram®™;

Sentence Library

Several standard sentences are available in the CAMIL language. These sentences allow the user to
perform several needed functions, and some elaborate special purpose functions. Most of the standard
sentences are implemented in CAMIL, but a few are implemented in PASCAL to avoid the swapping
overhead of frequently used sentences. Before describing the sentences, we shall explore some of the
standard prepositions which can be used with the sentences. Prepositions can fall anywhere within the
sentence and in any order, as long as they do not interfere with the verb-object phrase of the sentence.

The until preposition has a function key set as its argument and can be used with several verbs. Its
function is to provide a set of function keys which act as an until condition of the sentence. When the until
condition is reached, the sentence completes execution and program control continues. All of the function
keys in the until set are considered as next conditions, and will not be considered as asynchronous function
keypresses if pressed when the sentence is in execution. Some examples of the until preposition follow.

The first example is a simple accept sentence in which the programmer wants the user input to be
accepted when either a NEXT, BLUE_NEXT, or a HELP key is pressed. When one of the until condition
keys is pressed, whatever input the user has entered will be accepted and the program will continue
execution after the accept sentence.

accept untl!l [NEXTBLUE_NEXT.HELP]S

The second example is one in which the until preposition is used with the write sentence. In this case
the write sentence will output the information to the terminal and then pause until the until condition is
met (the NEXT or BLUE_NEXT key pressed). When the until condition is met, the write sentence will
then erase the displayed information and the program will resume control following the write sentence

unt Ll (NEXT,BLUE_NEXT)
write “NEXT to contlinue
BLUE_NEXT for more Information®:!

Once control returns from the sentence using an until preposition, the programmer can find which of
the until keys was pressed; in the same manner he can query which function key is pressed in an IF DO
statement. In the above example one might want to branch, depending on which key the user pressed
(NEXT or BLUE_NEXT). The SYS.FKEY variable contains the desired information so that the program
can perform the desired function, depending on the key pressed.

26

ail

In all of the sentences in which the until preposition is defined, there is also a time limit which may
be imposed using the for preposition. When a time limit is imposed, the sentence will pause for the desired
amount of time, and if another action has not restarted the sentence when the time limit is reached, the
sentence will continue. If both the until and for prepositions are used in the san ¢ sentence, the sentence
continues execution when either one of the until keys is pressed or the time limit is reached. To indicate
units of time in seconds, the postfix operator “sec™ is available to make readable time caluses.

A few examples of the for preposition follow. They are similar to the examples for the until
preposition except that execution of the program is now resumed after the desired time limit is reached.

accept for 5 sec;
write “hello” ftor 3 sec)

There are two prepositions which can be used to indicate screen, positions: at and on. The at
preposition has two integer parameters whcih indicate actual x and y dot co-ordinates on the screen. The on
preposition alfo indicates a screen location, but on a character level using the line and column operators.
Several simple uses of the at and on prepositions follow:

accept at 5,109

accept on tine 25, col 23

mwrite “Next to continue® at 26,15}

write “Next to continue®™ on line 28, col 15}

Other special purpose prepositions are available and will be discussed with their associated verb
phrases.

The standard sentence to request input from the user is the accept sentence. There are many
variations upon the basic facility for response input. The basic accept sentence automatically places the
prompting arrow at the accept cursor, awaits a user response, and erases the prompting arrow when the
accepting state is completed. An elaborate sentence example could be one which sets the accept cursor,
displays the prompting arrow, limits the input length to three characters, only accepts octal digits, converts
the input and stores it into an integer variable i, and places a 5-second time limit on the user’s response
time. The following example would perform the functions described:

accept {13 OCT for 5 sec on {ine 24, cot 45%

To describe the functions of the accept sentence the possible prepositions and defaults will be
described. The accept verb has four preposition types; an until set (the until preposition), a time type (for),
a screen position (at or on), and a with set (with).

The until preposition temporarily removes the asynchronous nature of the function keys contained in
the until set, replacing their meaning with that of an end-of-input terminator. This allows the program to
accept inputs and perform different functions on the input, depending on which key was used to terminate
the input stream. If no until clause is present in the accept sentence, the NEXT key along with any keys in
the system defined variable SYS.UNTIL set are assumed to be the end-of-input keys.

An accept statement may also be terminated by a time limit which is specified in the “for” clause. If
a for clause is present, the accept period will be terminated at the end of the specified time limit, assuming
the user has not pressed one of the defined until keys. If no for clause is present, the accept period will only
terminate when one of the until keys or an active function key is pressed by the user.

The screen location clauses at and on are used to designate where on the screen the accept prompting
arrow is to appear. If no screen location is given, the accept will occur just to the right of the last item
written onto the screen.

27

————

i

The with clause contains a set which allows several special functions to be performed during the
accept state. The functions which can be present in the with set are:

noarrow accept without displaving the prompting arrow,.
noecho 10 not echo user input,
Nook 3o not display the ok/no In a judge statement,

underfine draw a undertine disptaying the tength of the
accept imit,

erase_echo erase the previous lnput In a judging state.

allcaps transiate ait1 alphabetic keys iInto capltallze
node,

NOCans treanslate altl alphabetic characters iInto lower
case mode,

touch ?ctlvate the fouch paneil und accept data from
te
digits only echo/accepnt digits 0-3 and symbols

sy "+°y and °-~°.

octaidigits onty echo/accent octal digits 0-7 and

s .‘,.’
L

The accept verb also has an optional object which may be the subject of the accept. If an object is
present, the accept verb will convert the input to the type of the object and store the results into the accept
object. For example, if ““s” is of type STRING, then “accept s” will place the user input into the variable

o

S .

When using an accept object, the accepting limit and accepting action limit can also be specified. The
accepting limit indicates the maximum number of characters which will be echoed/accepted. Any
characters which are pressed after the accept limit is reached (also available through J.LIMIT) are ignored.
The accept action limit (J.ACTION) causes the NEXT key to be pressed when the indicated number of
characters have been input. Thus an accept with the accept limit set to 1 will immediately continue
execution after one character is imput by the user. The method of indicating the accepting limits is by
placing a “* accept limit : action limit” after the object. Thus accept 1:5 placss an accept limit of 5
characters on the accept, and accept 1:5:5 places an accept and action limit of § on the accept.

The accept sentence also performs the necessary conversions to the type of the accept object. For
example, if accepting into a type Boolean, the accept sentence will convert the input string TRUE into the
internal representation for the Boolean value of TRUE. As an added feature, when accepting into an integer
or number, the accept sentence will automatically specify an all digits accept condition so that only digits
are echoed. It is also possible to signify an octaldigits condition by placing “: OCT” after the accept object,
or just OCT after an accept or action limit.

The accept sentence also has two alternate forms: accept more and accept rep. The accept more
sentence is used to continue accepting starting where the last accept took place. For instance, if the
characters abc were accepted and an accept more was executed, the accept cursor would fall after the ¢ of
abc, and the abc would be part of the current accept. That means all of the editing keys and erase keys

28

T T

could be used on the abc just as if it had been typed during the current accept. The accept more sentence
does not have a clause for setting where the accept is to occur (obviously since the previous accept is being
continued), and it does not have an object for the accept either.

The accept rep sentence is for accepting and representatively echoing user responses. When an accept
rep is executed, the *“J.REPECHO” flag is set. This informs the driver to return control to the program after
one keypress has been received (so the program can provide a response) and also that the keypress should
not be echoed. All of the prepositions available with the accept verb are optional items to the accept rep,
but no object can be meaningfully accepted into.

The pause sentence.

To temporarily pause program execution, the pause sentence can be used. The pause verb has two
optional clauses and no object. There is an optional until clause which signifies which keys can end the
pause condition and an optional for clause which can place a time limit on the pausing. If no until clause is
present, the NEXT key and any keys defined in “SYS.UNTILSET" are used as the continuation keys. If no
time limit is placed on the pause, program execution will be suspended until a continuation key or an active
function key, is pressed. Some examples follow:

pause; {Pause untii NZIXT is presses}
pause untll [(NEXT.BACK]3(Pause until NEXT or BACK pressed}

pause for 5 sec? {Pause ftor 5 seconds or until NEXT)}

The write sentence.

The standard sentence to display textual information on the screen is the write sentence. There are
several forms of the write verb, but the discussion will start first with the simple form which displays text
on the screen. The object of the write verb can have any of the standard types (INTEGER, NUMBER,
CHAR, STRING, and LOGICAL) or any string contained inside double quotes (*“. . .."). The write verb
will convert any of these types into the proper form to be displayed on the screen. More than one object
can be listed with each verb by simply listing them after the verb, i.e.,

write “The answer Is “,ans,” and the averaae Is "yavg 3}

Formatting is accomplished by following the items to be displayed with *: integer”, where the integer
is the desired length of the item being displayed. This makes it easy to generate lines of data with column
alignment, even when numeric items of different magnitudes are involved. For INTEGER values, if the
length specified is not long enough to display the entire value, the length is increased so that the entire
value can be displayed. To display an integer or numeric value in octal, an OCT can follow the *“: integer”
or “: OCT” can be used and the value will be displayed in octal digits. When OCT is used, the displayed
number will be displayed with leading zeros as blanks. If, however, leading zeros are prefeired (as in
memory dumps), they can be specified by using ZOCT instead of OCT in the sentence. The following
example uses a length limit, OCT, and ZOCT:

write 183 OCT, - ,memory(13810 ZOCT on linc iycol 53

" The precision of NUMBER values is controlled by specifing the entire character length of the number
to be displayed, and also the number of digits to display on the right-hand side of the decimal point. The
form is similar to PASCAL and looks like “: | : p”, where |is the total number of characters to display
(including the decimal point) and p is the number of digits to the right of the decimal point. If the *: pis
left out, the number will be displayed without any fractional part. To display a number (n) with nine places
to the right of the decimal point and five places to the left “n : 9 : 5> would be used. Numeric values are
displayed in scientific notation (i.e. 5.6 x 1018) when there is not a precision specified.

Several prepositions are optionally available to augment the capabilities of the write verb. The at and
on prepositions are used to direct where the information is to be disnlayed on the screen. When using one

29

— e

of these prepositions, the starting position of the message is specified, and the left write margin is set to the
specified column position so that any line overflow is aligned below the first line.

The “for” and “‘until” prepositions are both available with the write verb and since they perform
similar functions, they will be discussed together. The function of these prepositions is to determine how
long a message remains on the screen, by waiting on a keypress or time limit. When one of the specified
conditions is reached, the information displayed by the write sentence will be erased, and the program
execution will continue.

The write verb performs all of its textual displaying in the write mode of the terminal. To perform
writing in the erase and rewrite modes of the terminal, the unwrite and rewrite verbs are used, respectively.
These verbs are used just as the write verb, since the only difference is that they place the plasma panel into
different modes.

When the flashing adverb is used with the write verb, the message is flashed on the screen until a
NEXT key or one of the until or for conditions is met. The write flashing clause has the same parameters as
the write verb, and the only actual difference is that the message will flash on the screen until some
condition is met. A simple example follows:

write flashing "“You have won" faor S sec}

Other adverbs which are used with the write verb are “large” and ‘“‘unlasge”. They perform the
write/unwrite functions except that the text is drawn with vectors instead of with dot patterns. This allows
the size and rotation of the text to be controlled by the program, providing a means to write out large
headings or to label graphs with vertical titles, etc.

Two optional prepositions can be used with the l12rge/unlarge adverbs: rotated and sized. The rotated
preposition is used to control the angle at which the data is displayed with a default in the normal
horizontal position. The sized preposition provides the means of stating the size of the data compared to
normal size. By indicating two sizes (i.e., “sized 5,4”"), the x and y sizes can be stated separately, allowing
either tall and narrow or short and wide characters. If no size is stated, the characters are normal size
characters.

An example of using the write verb follows:

write targe °*DEMO PROGRAM® sized & on tine 5, col 18¢

Graphic sentences.

There are several available sentences to produce graphic displays on the terminal. Lines, dots, and
RS

circles can be drawn, using the “draw”, “connect”, “dots”, and “circle” sentences. A brief description of
each verb follows:

The “draw” sentence can either draw a line or plot a dot. Two prepositions can be used with the draw
verb: to and from. Both of the prepositions require two arguments which stand for x,y co-ordinates on the
screen. To draw a line, the from clause signifies the starting point, and the to clause signifies tte ending
point. The sentence “draw from x,y to x+5,y+5” will draw a line from the point on the screen representing
X,y to the point x+5,y+5. If the starting point of the line to be drawn is the current write cursor, the from
preposition can be left out. The sentence “‘draw to x+3,y4” will draw a line from the current write cursor
location (x+5,y+5 if the previous sentence was just executed) to the x+3,y<4 screen location.

To draw a sequence of connected lines, the connect verb can be used. The connect sentence draws a
sequence of lines, starting at the first pair of points and connecting all of the listed pairs of points
following. Thus the sentence “connect x,y, x+5,y+5, x+3,y4” would produce the same results as the two
draw sentences in the previous examples.

30

Dots can be drawn using the draw verb by leaving out the to clause. The sentence “draw from x,y”
will tum on the dot at the x,y location of the screen. A dot can also be turned on by the sentence “draw”
which will turn the dot on at the current write cursor. In a similar manner as for the connect verb, a group
of dots could be plotted using the dots verb. The dots verb simply plots all of the points listed in its object
list. The sentence “‘dots x,y, x+6,y+4, x+1,Y-10” would plot the three points listed on the screen.

To draw circles on the screen, the “circle” verb is used. Several optional prepositions are available to
modify the type of circle which is drawn, but the only required object is the circle radius. A precision
parameter is optional. If no precision is present, the circle routine will choose an adequate number of line
segments to use in drawing the circle to produce a smooth circle.

Several optional prepositions are available with the circle verb to control the type and place the circle
is drawn. The first optional preposition is one of type “screen location™ used to denote the center of the
circle. Either of the two screen location preposition(“‘at™ or “on’’) can be used to position the circle. If no
position is given, the circle will be centered at the current write cursor.

There are two possible clauses to control the period of time the circle remains on the screen by using
the “for” or “until” prepositions. These prepositions work in a similar manner as with the write verb.

Other prepositions include the ability to control the eccentricity of the circle by using the
“eccentricity” preposition. This preposition allows circles to be elongated along the horizontal or vertical
axis, forming eliptical figures. Arcs of circles can be drawn using the “startangle’ and “stopangle™ pre-
positions. By specifying these angles, just portions of a circle can be drawn. Zero and 360 degrees are the
default values for the start and stop angles, respectively. The last optional preposition provides for drawing
dashed circles.

An example of how to use the prepositions follows. The circle is to be of diameter 50 (in dots),
precision of 25 line segments, to be erased after 5 seconds or until a next key is pressed, and with
eccentricitv of 2.5 (elongated vertically).

for 5 sec wntil INEXT) clrcle 50,25 eccentriclity 2.5

A simpler example draws a dashed half circle of radius 100, which will look like the letter C, only
dashed.

dashed circle 100 startangie 30 stopangle 2703

The uncircle verb is identical to the circle verb except that the uncircle verb erases when the circle
verb draws, and it writes when the circle verb erases.

Other sentences.
Some other standard sentences follow:

The echo verb is used in representative echo modes, that is one key is interpreted by the program as a
string and placed on the screen in the proper position using the echo verb. The echoes output is also placed
in the “J.BUFF” variable so that it can actually be erased or edited using the erase and edit keys if an
accept more is executed by the program.

The erase verb is used to erase individual lines or to erase the entire screen. It has only one optional
object, a line number which indicates that only one line is to be erased. The default if no line is specified is
to erase the entire screen. When only one line is to be erased, the current left and right margins are used in
the erase operation so that if the desired line to be erased contains a graph or figure it will not be erased.

To load special characters into the terminal’s random access memory (RAM), the LOADRAM
procedure is used. LOADRAM has two parameters: (a) a description of the character to load as a Boolean
array and (b) the character position at' which the character is desired to be loaded. When loading several

uii

characters into the terminal’s RAM, care should be taken not to do a full screen erase before all of the

characters have been loaded, since a full screen erase ends all output going to the terminal (see the catchup
verb).

To operate the slide projector, the slide verb is used. This verb only requires one parameter: the slide
position desired. A negative slide position turns the slide projector lamp off, and any positive integer will
position the slide projector and turn the slide on.

The external verb is used to place data on the terminal’s external output jack. The verb’s object is an
integer value which is to be exported to the terminal’s jack. Up to 50 values can be placed with an external
verb.

The catchup verb has no parameters of any kind and is used to pause the program until all output to
the terminal has been completed. This is a useful verb when sending data to the terminal’s external jack or
when loading special characters into the terminal’s RAM since a full screen erase would end all output going
to the terminal (including the types mentioned), and the output lines to the terminal are relatively slow.

IV. CAMIL COMPILER PROGRAM

Implementation Factors

The implementation of CAMIL consists of a compiler to transiate CAMIL programs into executable
code, a terminal driver to schedule and interface the system to actual computer terminals, an executer to
manage the program swapping and provide implicit language services, and a large group of capabilities
written in CAMIL and available as built-in language features or as system level CAMIL programs. Each of
these major areas will be described in a separate section of this report for ease of avoidance by the reader
who is not interested in all of these aspects.

Narrative Description of the CAMIL Compiler

The CAMIL compiler is a top-down, recursive descent, single-pass, optimizing, machine-code
generating, partial compiler. The major sections of the compiler program are:

Interface Section
Compilation Driver
Lexical Scanner
Declaration Section
Expression Section
Statement Section

The interface section of the compiler includes the attachment to the CAMIL data base, the compiler
initialization logic, the request reception logic, reinitialization logic to compile more than one program, and
logic to perform initial processing of source modules.

SN S s g s

The compiler driver includes logic to read up and process all of the necessary modules to determine
whether partial compilation is suitable and then to determine which of the source modules must be
recompiled. it selectively directs compilation of affected modules and stores the resulting machine code and
initialization data as needed.

The lexical scanner consolidates character strings into identifiers, numbers, and strings, and
categorizes these elements as to type, returning one element each time it is called.

The declaration section of the compiler scans data and procedure declarations within the source code
and builds internal symbol and structure tables for use by the expression and statement sections. It also
stores the initialization values for constant and variable data types produced by the expression section.

The expression section of the compiler provides for the evaluation of constant expressions and the
generation of code for the computation of computable expressions. It also computes the parameter lists for
procedure calls and lists of expressions used as the objects in sentences.

32

The statement section of the compiler scans and generates code for the execution of CAMIL
statements. It calls the expression routine as needed to compile expressions embedded within the
executable statements.

Data Base Interface

The compiler interface section is necessary because CAMIL programs are stored in a structured direct
access data base. Rather than appearing as a stream of characters as is often done, CAMIL programs appear
as blocks of lines of characters. These blocks, or modules, are created by an on-line editing program in
which the structure of the program is built incrementally as the modules are entered. The program is
structured from a program directory which contains the disk address of module directories. Each of these
directories contains the addresses of source, initial values for data, and machine code modules for up to 30
modules of the program. The compiler reads the actual lines of the program by using the address of the
source modules to read the source modules from disk. After the module has been compiled, the resulting
machine code, if any, is stored on disk, along with an initialization module for any locally declared variables
if needed. The addresses of these created modules are then recorded in the module directory page which is
rewritten to disk after all entries on the page are compiled. There is also a record containing all intermodule
cross-reference sets, and an error module containing the location and type of any syntax errors. Any active
autopsy records are also attached to the program directory.

Since the compiler is written in the PASCAL language which provides no interface to CAMIL, the
PASCAL compiler has been modified to accept CAMIL file declarations and file access statements. This
allows the compiler to read and write records on the data base whenever CAMIL is running on the system,
even though the compiler is running at a separate batch control point. Separate CAMIL files are defined as
Follows:

PD1 The tile ot all program address and status info
PDDATAt The fite containing detailed info about programs
MD?3 The file of all module and post mortem directorlies
ERROR? The file of all error modules

SOURCzZ? The file of all squrce and post mortem data
O0BJECT: The flle of all code and inlitial values modules
COt The fite of all partial complle data records

The PASCAL file interface automatically opens defined files upon first access and closes them upon
compiler completion. The compiler synchronizes actions with the program editor (from which compilation
requests are made) by inspecting and changing program status in the PD file. File accesses are made through
a group of procedures which centralize all data base access for maintenance purposes and process any 1/O
errors which may have occurred while accessing the dat base.

Since the CAMIL compiler was designed as a resident compiler, it was intended to be initialized once
and then would compile programs upon request indefinitely. Also, since the language definition includes
many “built-in” routine libraries and variables for interfacing to the interactive terminal, these must be in
the compiler symbol table at the outermost lexical level. The interface routines accomplish this by first
creating a request to compile a program which contains these definitions and then establishing the resultant
symbol tables at a point where the reinitialization logic will not remove them as it prepares to compile the
next requested program. The compiler is returned to this configuration prior to compiling each program.

Because of the modularity of the program, the usual overhead items such as code buffers, line and
column counters, etc. must be reset as each module is entered. The interface logic performs each of these
tasks and reads source data into the input buffer and initializes the lexical scanner. Due to the partial
compilation logic, only modules which have been changed or affected by changes need to be processed,
thus saving 1/O as well as processing time.

Y

Compilation Driver

The compilation driver activates the major sections of the compiler and decides which modules must
be recompiled. The process begins by accepting a compilation request and reinitializing the compiler, which
is a very simple step. It then looks at information stored with the program to see if anything has been
changed since the last compilation which would force the program to be totally recompiled. Such
conditions might be a new version of the compiler or executer, changes to the definitions of built-in data,
or compiler failure during the last compilation. If this is not the case, a partial compile is instituted.

The compiler decides what to compile by keeping cross-reference sets for each module of the
program. It uses set logic to determine whether editorial changes to definitions of data or procedures will
ripple to the executable code modules. This is done by considering direct changes to definitions, changes to
definitions used in subsequent module definitions, and changes which affect the addressing of variables in
subsequent modules. The program editor assists in this by keeping procedure headings actually separate
from procedure bodies, although the editor and listing program disguise this fact from the user. In this
manner, it can be noted when the user has changed the heading, thus causing modules which refer to the
edited module to also be recompiled. Internal changes do not of course require this and they are by far the
most frequent type of change.

By performing quick set union and intersection operations, a compile set of modules is constructed
which is then used by the driver as it reads module directories to determine when it should activate the
module compiler. During actual module compilation, the symbol table lookup routine enters the number of
the module which contains any identifier it has found into a ‘‘refers to” set for the module it is compiling.
This set will be saved for the partial compilation decision in the next compilation. Naturally, any module
which contained errors in the previous compilation must be recompiled, and this is reflected in an error set
generated during each compilation, which is also factored into the set logic. Actual compilation steps are
activated by calling a module compiler which first compiles declarations and then executable code as
appropriate for the module. These are activated as the declaration and statement sections, both of which
call the expression section.

Upon completion of compilation of all modules, the compiler then calls appropriate parts of the
interface section to store the error and cross-reference data and releases the program for execution or for
repair of syntax errors through further editing.

Lexical Scanner

Since the CAMIL compiler is single-pass in design, the lexical scanner is designed to be called by the
parsing routines and will return a single token at each call or identify that there are no further tokens in the
module. Scanning results are stored in global variables, one of which is available for each primitive type of
literal or token that can be built from characters. The token encountered is categorized into a major symbol
class which denotes the fundamental type of the token, i.e., particular reserved word, comma, parentheses
etc. Some of these fundamental kinds are further classified to provide more detail. For example, a RELOP
or relational operator would be further classified into EQUAL, NOTEQUAL, LTHAN, GTHAN, etc. This
dual classification allows all major syntactic delimiters to be placed into a single PASCAL set, which is quite
important in the error recovery process.

The scanner is designed to work with the information format of the CAMIL editor. The editor
removes any leading blanks on source lines and packs the string length in characters and the number of
leading blanks into the last two characters positions of the last word of the string. The word size of the
string is packed into the rightmost four bits of the first word and last word of the string, which enables
both the compiler and editor to identify the size and last word of the string. The strings of source are
otherwise treated as part of a large packed array of seven-bit characters and thus the leftmost 56 bits of
each word contain eight seven-bit character fields. A single word can thus contain up to a six-character
string, while the largest string can contain up to 120 characters. The four-bit word size field contains 0. .15

B

denoting a string length of from 1..16 words. Since the CAMIL character set can denote up to 256
character positions, an escape code (the LANG keyboard key) is used to switch from the permanent 128
characters to the user-loadable 128 characters. The infrequency of this alternation results in good packing
for data within the CYBER 60-bit word size.

The scanner is also responsible for constructing the intemnal representation for textual displays used in
screen display sentences. In this case, the text is compressed into a special six-bit format essentially ready
for immediate release to the display terminal. In this mode, each line of the textual display will be
left-justified against the margins in effect at the time of display, thus achieving a very close relationship
between the appearance of the text within the CAMIL program and its appearance on the screen when the
program is executed.

The scanner will enforce lexical rules for the composition of literals, such as identifiers, numbers, and
strings, and will also enforce semantic restrictions such as the size of numbers, limits on numeric precision,
or bit size for octal and hexadecimal constants. Although a character pointer is not maintained explicitly
for speed purposes, the current scan position within the source buffer is maintained by the scanner and is
used by the efror reporting routine to construct the exact column position at which an error was detected.
Upon reaching an end-of-module condition, the scanner will return an end-of-module token, and if within a
quoted string or similar token, it will produce an approprate error message. This is needed to handle the
oc ‘onal error of mismatched quotations or failure to close a comment and allows the compiler to limit
the problem to the module in which the error was introduced.

Declaration Compiler

The declaration section of the compiler is activated when procedure declarations are scanned, when
private and shared data definition modules are scanned, and at the beginning of each executable module if
declarations are present. The results of any of these activations are the creation of tree structured
descriptions of any types declared in the program, the construction of the symbol table for identifiers
defined in the declarations, and allocation of storage to contain program variables. Because CAMIL
constants and variables may be initialized, the declaration section must also construct the run time
representation of initialized storage and provide for saving this information.

CAMIL provides no forward procedure declaration. All procedure modules defined on an editor
directory page have their headings located together in a single module of source text. The program editor
provides a function key to allow the author to edit the heading of a procedure while editing the body
module and keeps track of the location of each procedure’s heading within the single source module. The
declaration processor reads this one source record for every page of procedure delcarations and enters all
procedure declarations into symbol tables prior to compiling the body of any procedure. Thus all proc ~dure
definitions are processed prior to compiling any procedure references, eliminating the need for forward
procedure declaration while performing minimal I/O to obtain this information. Madule directories contair.
the names of segment type modules, and these are also entered into the symbol tables as available labels to
which control may be transferred.

The declaration section is next applied to all global level (private shared) modules. Since the basic
format of CAMIL declarations is <type specification> <name list> for any class of storage (constant,
variable, name), a common TYPESPEC routine is provided for processing all type definitions while separate
routines (VARDEC, CONSTDEC, and NAMEDEC) are provided for processing the differing requirements
for each of these storage classes. Because of the limited number of base registers available on the CYBER,
all addressing is absolute for global storage in CAMIL. As a consequence, if the size of preceding modules is
changed by internal editing or redefinition of data within a preceding module, subsequent modules and any
modules which refer to them will have to be recompiled also to obtain proper addressing. The declaration
section must thus record the starting address assigned to each module because this affects the partial
compilation decision.

35

As each declaration is processed, the TYPESPEC routine is called to build the structural description
of the indicated type. If explicit TYPE identifiers are encountered, this routine merely references the
existing definition. If compound types are structured, such as ARRAYs, RECORDS, or FILEs, a tree must
be structured containing each of the imbedded types. A special routine, COMPSPEC, is provided for record
and procedure headings since these are very complex in CAMIL. Simple types such as subranges, type
identifiers, and user defined classes are handled by a routine named PRIMTYPE, meaning primitive type,
whereas most other compound types are handled directly by TYPESPEC. The call to TYPESPEC returns a
pointer to the type definition, which will be merely the head of the tree structure for compound type
definitions. A routine called COMPTYPE is available to determine whether two types are compatible and is
used extensively during executable code compilation to determine whether the types of two operands are
agreeable or whether the type of an expression encountered is the type anticipated. This routine is also used
during declaration compilation to compare the types of constant expressions used for initialization with the
types of identifiers they are being used to initialize.

A side function of the TYPESPEC routine is to determine the size in words and bits needed to
represent the indicated type of entity. When a type definition requests that storage be packed, TYPESPEC
will use knowledge of addressing rules to determine the most efficient way of packing data together to
minimal size without sacrificing accessibility. TYPESPEC will return. in the resulting type information, the
size of the total definition encountered. This information is used by the allocation routines in VARDEC,
CONSTDEC, and NAMEDEC to determine storage allocation for the indicated defined identifiers. If an
initialization expression is encountered, EXPRESSION is called with the TYPESPEC of the identifier to be
initialized and told to attempt to accept a constant expression of the indicated type. If this attempt is
successful, EXPRESSION will have computed the value of the expression at compile time and placed the
resulting value at the address in the object code buffer correlated with variable being declared. If no
injtialization is found, the compiler will “zero™ the associated size of storage in the object buffer. In this
manner, values for all constants and nitialized variables are generated as the declarations are compiled. If
upon completion of all declarations, all initial values are zero (a very common situation), the compiler will
note this fact in the module directory, rather than saving the initial values so the program loader may use
this information to initialize the module data arezs to zero. Because resulting initial values are built into the
code buffer, data areas are currently limited to the size of the code buffer, but minor modifications could
move this buffer to ECS, allowing it to expand considerably in size.

Declarations local to a proceduie or segment are located at the beginning of the body and are
compiled by calling DECLARATION for every module. The same process described above takes place with
the exception that the PASCAL heap is marked prior to activating DECLARATION. Since any items
defined locally are unknown outside of the body, any type data or symbol table entries created inside
DECLARATION are not needed after it has been compiled. Thus space allocated for this purpose can be
returned after the module has been compiled, reducing the total space requirement for compilation.

Statement Compiler

The executable statement section consists of a manager routine, STATEMENT . that identifies which
type of statement is being compiled, and a set of procedures which each recognize and compile one type of
CAMIL statement. Each of these routines recursively calls the EXPRESSION or STATEMENT routine to
compile embedded expressions or statements. Each routine is responsible for consuming an entire statement
of the type in which it specializes and recovering from any errors which are found in the statement it
compiles. In order to prevent any statement routine it calls recursively from running away and consuming
part of the statement handled by the calling routine, a set of stop tokens is passed recursively down through
the calls. Each routine called adds its own stop symbols to the set it receives and passes the result to any
routine it calls. No called routine may cross any token in this stop set while recovering from syntax errors
unless the token could legitimately belong to the statement compiled by the called routine. In this manner,
multiple errors which might be caused by “eating™ important reserved words, such as “END™, “DO™, and
7 are significantly reduced. Special logic to treat commonly encountered errors has been easi 1dded to

the statement recognizing routines since each may be individually tailored without altering the compiler as
a whole.

Each statement in CAMIL may provide unique opportunities for local optimization of the machine
code. For example, in the IF statement, after executing the selector expression, machine registers will
contain the same information regardless of whether the THEN or ELSE statement is selected. The IF
statement routine takes advantage of this fact by compiling code for both statements as though the
variables used in the selector expression are available in registers. This requires the IF statement routine to
save the register status after EXPRESSION is called to compile the selector and to assert this information as
STATEMENT is called for both the THEN and ELSE statements. Thus unnecessary reloading of registers
may be avoided for both imbedded statements. In a similar manner, all other routines which compile
statements perform various degrees of optimization as possible to improve the size and execution speed of
code. Since this optimization is accomplished as the code is being generated, no subsequent optimization
pass is needed and information about the expressions need not be saved for long periods of time.

The instruction set for the CYBER computer does not provide a relocatable conditional jump
statement. The effect of this shortcoming is that branch instructions generated to implement statements
such as IF-THEN-ELSE, CASE-DO-ELSE, FOR-FROM-TO-BY-WHILE-UNTIL-REPEAT-DO, file-
operation-ELSE, and JUDGE-ELSE must be generated with knowledge of the absolute address where the
code will reside at run time, or a relocating loader must be used to modify the code prior to execution. The
CAMIL compiler uses absolute addressing, thus eliminating the need for code modification by a loader but
creating the potential problem of mapping code into the proper location. This problem is solved by
generating code as though all segments and all procedures execute in the same area of central memory.
Since only one segment is ever xecuting at a time, this causes no problem with segments. However several
procedures can be executing simultaneously, so a solution is reached by adding a swapping action each time
a procedure is called or returns. When one procedure calls another, the called procedure is swapped in from
ECS onto the code for the calling procedure. Similarly, when it returns, the calling procedure will be
swapped back in. Since the CYBER can swap memory approximately 10 times faster than it can execute
code, the resulting overhead is quite low and is often necessary to perform anyway since the program is
constantly being swapped into central memory for time-sharing purposes.

Expression Compiler

The expression section of the compiler is responsible for the computation of all constant expressions
and for the generation of machine code fu. 1l computable expressions. The implementation of procedure
calls in CAMIL further requires that the expression routine generate all procedure calls, sentence calls.
function calls, and all user declared prefix. infix, and postfix operators.

CAMIL resolves all expressions or subexpressions involving constants at compile time. This means
that any time the expression routine finds two constant operands and an operator, it will merely replace
these with the result obtained from executing the operator on the operands. Since the compiler runs on the
same machine as CAMIL, the result is identical to executing the code at run time. This means that complex
expressions involving constants may be used to define other constants or to assign values to variables. Since
CAMIL allows multivalued data types, such as arrays and records, it also provides multivalued constants to
use as values for these data types. To reduce the character size of these expressions, a repeat operator is
available to denote the repetition of a particular record field or array cell value. When these expressions are
constants used for initialization, the resulting multiple words of memory are defined by the compiler and
an assignment becomes merely a multiword copy rather than code to pack all of these fields, thus saving a
large quantity of code space.

The expression routine also generates the machine code to create multivalued expressions such as are
used as the values of records or arrays. The CAMIL declaration section generates identical structual
definitions for procedure parameter lists and record field lists with the result that any type of procedure
call, i.e., operator, function call, sentence, regular call, is effectively an operator acting on a single record of

37

the type of the parameter list. The manufacture of such items on the stack is performed by a routine calied
composed expression (“COMPEXPR™). This routine is the heart of all procedure call activity and is the
most complex routine in the CAMIL compiler. Because a record etc. may contain OPTIONAL fields which
may or may not be present, COMPEXPR must repeatedly try to match the types of expression it i~
encountering with the allowable types of expression which may appear in any field position. It is this
facility which provides the flexibility which allows the highly complex “write” and “accept™ sentences of
CAMIL to be defined in CAMIL rather than being hand-coded into the compiler as is commonly done for
1/0 statements. Doing it this way also makes this power available to users for performing their own
extensions of the language.

The composed expression routine also performs another very important function needed to support
the sentence extensibility feature. When a procedure or record definition includes a variant definition such
as:

CASE PRIMTYPE »o
8=GIN
INT® T INTEGER 17}
NUMS TNUMBLR nTS
CHK? TCHAR ¢35
ZND3§
where PRIMTYPE is a class containing INT,NUM, and CHR, then whenever COMPEXPR compuses an
expression such as:
('o-- ’ 37-56' oooo)

in which the number 37.56 falls into correspondence with the variant field, not only will the value of 37.56
be assigned to the variant, but the value of the corresponding tag “NUM” will be assigned to field “p”.
When such a variant definition is used to define the parameters of a procedure call or sentence object, the
resulting routine may be called with any of the allowable types such as INTEGER, NUMBER, or CHAR,
and the procedure can identify what type of parameter was passed to it by examining the field “‘p”. Using a
definition like this, the object of a sentence such as “write” is defined as an array of records each
containing one optional variant field of the general type included above. Thus users of “write” may call the
routine with any of the allowable variants and the compiler tells the write routine the type of each of the
arguments passed through the CASE variant selector variable “p”. The routine can of course branch
appropriately on this type to CAMIL code to convert and print each of the allowable types. Since the
elements of this array are optional, the CAMIL program can also test to see how many of the array
elements have actually been composed and thus only process the elements which have actually been passed.
COMPEXPR supports this by setting a field in the record which can be tested with the CAMIL “=”
operator to see if the corresponding optional field is NIL.

The EXPRESSION routine is highly dependent on three other routines, LOAD, STORE, and
SELECTOR, for obtaining and returning the operands it computes. For compatibility with PASCAL for
data analysis purposes, these routines were obtained by modifying the corresponding routines in the
PASCAL compiler (reference 2) to be compatible with CAMIL absolute addressing requirements. In this
manner, it is possible to write CAMIL and PASCAL record definitions which exactly match in addressing
field for field. This makes it possible to write CAMIL programs for interactive execution which record data
for analysis by batch PASCAL programs. This is exactly the method used by the CAMIL program editor
when it creates program directories which are in turn used by the CAMIL compiler and print programs.
EXPRESS:ON is actually composed of five levels of recursively activated procedures which each implement
the operators which occur on five different precedence i=vels. SELECTOR is used to generate the code
necessary to calculate array, record, or name references, while LOAD and STORE generate code to actually
place the selected operand into a register or insert it into memory. Since CAMIL provides that existing
operators may be extended to new user defined types while retaining their normal precedence, each level of
operator must also check for the presence of user redefinitions of the operator before rejecting an

38

expregsion. These operators implement the numerous CAMIL built-in operators such as “line”, “col”,

LYY

“min”, “sec” which are used to produce the highly readable CAMIL sentences.

V. CAMIL EXECUTION SUPPORT SYSTEM

The CAMIL run time environment consists of a collection of programs and routines written in
PASCAL, COMPASS, PPU COMPASS, and CAMIL. While executing, the system occupies three batch
control points (including the compiler control point), three peripheral processors, and SCOPE operating
system modifications. Each of the six basic programs (three batch programs and three peripheral programs)
are separate progesses, and communication between the processes is accomplished through ECS and
centeral memory buffers. The basic components of the system (excluding the compiler) are:

1. The terminal driver program: “DRIVER”

2. The CAMIL execution program: “EXECUTER”

3. The CAMIL File Manager.

4 The peripheral routines:
a. The terminal communications program: “INO”
b. The CAMIL program timer: “TMM”
¢. The CAMIL disk interface program: “DAB”

5. SCOPE operating system modifications.

Terminal Driver

The basic function of the terminal driver program is to provide the capability of cummunicating with
the terminals. The central memory driver program is needed to analyze the keypresses and perform the high
level asynchronous interface between the terminals and the CAMIL programs. However, the central
memory program is incapable of direct communication witht he 1/O channels connected to the terminals,
so another process is required. The driver program communicates with a peripheral routine (INO) through
central memory buffers so that all terminal communications are taken for granted in the central memory
program. The peripheral routine, in turn, performs the actual data link between the central memory buffers
and the terminals through the proper I/O channels.

The terminal driver, “DRIVER” occupies one of the batch control points and is written mainly in
PASCAL with a few COMPASS packing routines. It is broken into the following sections:

1. [Initialization section.

Key input section.
Communication section.
Framing section.

Job scheduler.

6. Batch file manager section.

U i)

Each section is basically a separate section, but some interaction does occur between the job scheduler and
other sections. The sections are implemented as single procedure calls for each section, so the main block of
the driver calls each of the different sections.

Initialization Section

The initialization section performs the initializations of the variables used by DRIVER and also
initializes ECS which is shared with EXECUTOR. The initializations are accomplished by having the driver
call a peripheral routine to initiate another job at the executer control point which shares the driver ECS
area. The job then initializes ECS and also places all of the variable initializations into ECS and the driver
just does one ECS read to initialize all of its variables. Once all of the required initializations are completed,

39

|

mE

—

|

DRIVER again calls a peripheral routine to initiate EXECUTER at its proper control point and then waits
until EXECUTER completes its own initializations, at which time the system is active.

Key Input Section

The key input section of DRIVER interrogates the incoming keys from the terminals. DRIVER will
echo,buffer, or ignore the incoming keys depending on the state of the program for the corresponding
terminal. The key section supports features in the accept sentence which:

1. Allow the user to limit the number of keys which may be accepted.

o

Process the response when a specified number of keys have been accepted.
3. Limit the keys to upper or lower case letters or to digits.

4. Prohibit keys from automatic echo.

S. Inhibit the automatic response input arrow.

6. Accept input from the touch panel (a rectangular ring of infrared light emitting diodes along the
top and one side of the panel face with corresponding sensors on the opposite sides, which can detect a
finger touching the screen at 256 discrete areas formed by the intersection of 16 vertical and 16 horizontal
light beams).

7. Schedule input automatically upon each keypress to support representative echoing of keys
pressed in a manner selected by the program author. The key section also intercepts active function keys
and processes the synchronous or asynchronous meaning of these keys if they are currently defined.

Communication Section

The communication section of DRIVER receives messages from the CAMIL programs executing in
EXECUTER. The typical messages sent to DRIVER indicate some type of action the job is waiting on:
such as user input, a pause, a file operation, or just another time slice. DRIVER will decide what the job is
waiting on and will pesform actions requested by the job. A job which is requesting a new time slice will be
sent to the scheduler, where it will be assigned a priority according to its utilization rate.

Framing Section

The framing section of DRIVER is a synchronous routine which must emit output for the terminal
interface program INO every 1/60th of a second. Each terminal can receive at most one 20-bit parcel every
1/60th of a second, so the framer must break down the output going to the terminals into these 20-bit
parcels. It must also keep track of what parcels have been sent and to which terminal each parcel is to go.
When a terminal detects a parity error in a parcel it receives, it rejects the parcel and begins transmitting
data to the central interface unit that it has done so. The framer recognizes this condition and requests that
the terminal tell him the number of the last frame correctly received. DRIVER then resumes transmission
with this parcel, thus insuring that no data are lost at the terminal.

Job Scheduler

The scheduling section of DRIVER contains three separate queues for scheduling CAMIL jobs. A job
is placed in one of the queues, first depending on the reason the job is being scheduled (keypresses being a
top priority) and secondly depending on the utilization rate of the job in processing milliseconds per
real-time seconds. Jobs with low utilization rates (< 5 ms/sec) are placed into the top priority queue, jobs
whose rate is < 10 ms/sec go into the next queue, and the rest of the jobs are placed into the final queue. If
a job utilization rate is > 15 ms/sec, it is placed into a wait queue for as long as it takes to lower the
utilization rate to < 15 ms/sec. This helps keep CAMIL program response times consistent with each
execution and less dependent on the system load.

Jobs are removed from these queues by DRIVER and placed into an execution array which is
monitored by EXECUTER as space is made available in the array through the execution of jobs already in

40

~y=

the array by EXECUTER. Highest priority jobs (the first queue) are given three slots in this array because
of their low utilization rates. The next two slots are for jobs from the second queue (only two slots due to a
higher utilization rate), and the last queue gets only one execution slot. A simulation of this queueing
system (Reference 5) shows that the response times do not deteriorate significantly as system load increases
because utilization rates are limited and priority is given to jobs using reduced CPU time.

Having the scheduler within the driver program allows the driver to schedule CAMIL programs when
their accept or pause criteria have been met, and to allow a fast response to user key inputs by giving them
a high priority. The imbedded scheduler also allows the driver program to initiate a new CAMIL joh (known
when a keypress arrives from a terminal not yet defined to the system) and to schedule the CAMIL batch
file manager program (when 1/O requests from a batch job are requested).

Batch File Manager Section

Requests for CAMIL file manager operations are placed into a central memory buffer in the driver by
the SCOPE file manager modifications. There is a CAMIL job associated with each batch control point,
which the driver schedules each time a file manager request is received from its associated control point.
The CAMIL job then calls on the file manager to complete the batch job file manager request. When the
request has been satisfied, the CAMIL program notifies the driver that it has completed the file operation,
and the dirver then suspends the CAMIL job until another request is made. A simple modification to the
SCOPE scheduler prevents the batch requesting program from further execution until the 1/O request has
been accomplished by CAMIL.

Executer

The “EXECUTER” program occupies the other control point of the CAMIL run time environment.
EXECUTER operates in two modes: system and user. The system mode of EXECUTER performs the
system initializations and swapping of the CAMIL programs. CAMIL programs execute in the user mode,
after the system mode swaps in the job.

The EXECUTER is written mainly in PASCAL, with some routines and CAMIL primitives written in
COMPASS. The CAMIL program area is also declared in COMPASS to guarantee that the CAMIL program
area is always in the same absolute memory space even though the relative addresses of EXECUTER
variables may change. EXECUTER occupies 55,000 octal words of central memory space, which includes
all static memory requirements for 60 CAMIL jobs.

System Mode

The system mode of EXECUTER has its own memory space allocated for the run time stack of the
system. System tables and variables which are stored in central memory are directly accessible to the system
mode. Also contained in this area are the address tables of system information which is stored in ECS, such
as program control blocks, system routines, and system shared variables. The system mode of EXECUTER
is broken into three procedures: swapin procedure, swapout procedure, function key processing procedure,
and one main program block.

The swapin and swapout procedures perform the swapping of CAMIL programs. Once a CAMIL job is
scheduled, the swapping procedures are.called to perform any necessary swapping to execute the CAMIL
job.

Before control is passed to the CAMIL program, the function key procedure is called if the job is
being scheduled due to a function key press. The function key procedure will search through the program
run time stack to find the latest activation of the pressed function key. Once the activation of the function
key is found, the function key processor will unwind the stack (if necessary) to the function key activation
level, and set the return address to the function key definition address. Thus when control is passed to the
CAMIL program, the function key processing code is executed.

4]

The main program section of EXECUTER searches the execution array (which the DRIVER fills) for
CAMIL jobs to execute. When EXECUTER finds a job to execute, the proper procedures are called to
swapout the previous job (if necessary), swapin the new job (if necessary), and perform any function key
processing (if necessary). Control is then passed to the CAMIL program, and the EXECUTER enters the
user mode. When the CAMIL program re-enters the system mode, EXECUTER searches for mare jobs to
swapin.

After searching the execution array, EXECUTER will check the file operation pointers to see if any
physical 1/O operations have been completed. If there have been, EXECUTER will swapin the jobs that
have had any 1/O operations completed. When the EXECUTER has no more jobs to execute and no I/O
operations have been completed, it relinquishes the processor to allow the compiler and batch jobs to have
chances for the processor.

User Mode

The user mode of the EXECUTER uses the CAMIL program run time stack for variable storage. The
CAMIL program is swapped into a section of EXECUTER central memory space and given control of the
processor. When the CAMIL program is swapped into central memory, the timing routine is notified to
begin timing the processor usage of the CAMIL program. The CAMIL program is then allowed full control
of the processor and must voluntarily relinquish the processor back to the EXECUTER. If the CAMIL
program does not release the processor before its time slice ends, the timing routine notifies the CAMIL
program to release control of the processor by setting a flag which the CAMIL program automatically
queries through code generated at points where the program might otherwise enter an endless loop.

The CAMIL language has many built-in primitives which need to be accessible to the user program.
Most of the primitives could be coded in CAMIL itself, and many are, but for efficiency sake, there are also
some coded in COMPASS and PASCAL.

The CAMIL primitives which are coded in COMPASS include the arithmetic functions (SIN,COS,
etc.), file manager linkage, procedure calling linkage, string operators (concatenate, search, etc.), and
conversion routines (string to integer, integer to string, etc.). Linkage is made to these COMPASS primitives
through special handling in the compiler which places the parameters in special registers. The JUDGING
primitives, reprieve logic, and control transfers (system—>user mode) are also written in COMPASS. The
total set of COMPASS primitives occupies 2,316 octal words.

Some of CAMIL primitives are programmed in the PASCAL language and are physically located
within the EXECUTER support program. The linkage to these procedures is similar to normal CAMIL
procedure linkage so that the compiler need only make a minor change in the normal procedure calling
sequence to call a PASCAL primitive. The local variables of the PASCAL primitives are placed onto the user
run time stack in the same manner that local variables of CAMIL procedures are added to the stack.
Because PASCAL procedures do not have code compiled in to check the CAMIL time slice flag, those
critical rouitines which may use resources common to all programs will not be interrupted until they have
completed an entire logical process, although their execution time will be allocated to the CAMIL program
calling them. The file manager, write sentence, accept sentence, and procedure and segment swapping are all
implemented as PASCAL procedures.

Most of the CAMIL primitives are written in CAMIL itself. These procedures are stored in a section of
ECS which is reserved for system procedures. When a system procedure is called, the procedure swapping
mechanism sees that the called procedure is a system procedure and swaps it in from the system procedure
area. The system procedures also have a special central m«mory area which they are swapped into. This is to
allow the system procedures to reside in central memory longer and reduce swapping. Some of the
primitives which are implemented as CAMIL procedures are write large, circle, draw, erase, slide, echo, ok,
no, sized, pause, connect, dots, external, and all of the system functions available with the AUTHOR key
(monitor, talk, autopsy, etc.). The write sentence has not been made a CAMIL procedure due to the many
procedures used by the write sentence. Because the write sentence is used quite frequently, and many
procedure swaps would be necessary for each call of the write sentence, it is resident in central memory as a
PASCAL procedure.

42

NP R s

uil

Because the CAMIL code is machine code, mode errors become possible due to improper arithmetic
operands. The reprieve logic of EXECUTER performs an interrogation of any mode errors. If EXECUTER
was in the user mode (a CAMIL program was running) when the error occurred, the autopsy routine would
be called to store data for an autopsy of the program. The CAMIL code also provides run time error
checking of pointer values, array subscripts, and subrange values. The reprieve logic must also check for a
mode error caused by run time arithmetic errors and properly report the cause of the error when it can be
determined (the CYBER computer does not detect certain integer overflow errors). The compiler assists in
the detection of logical errors by compiling code to check for the conditions mentioned above by compiling
a jump conditional on the checked for condition. Rather than generating a jump to a specific error
processing routine, the compiler creates an address field in the jump instruction to a nonexistent address,
consisting of a high order address bit (to force nonexistence) followed by the line number in the program
and the logical error number, all of which will fit into the 18-bit address field used in the CYBER
computer. The resulting pseudo address causes the processor to halt and the CAMIL reprieve processor can
then decode the “faulty” instruction into its actual meaning. Encoding the' test in this manner saves more
than 30-bits each time this type of test is performed and allows error messages to be related to the line in
the CAMIL source program at which the error occurred.

File Manager

The CAMIL File Manager System is a completely closed file system (only accessible through the
CAMIL system) and capable of handling many different file operations. The basic concepts of the file
system are: to allow multiple access to files (any file can be accessed by more than one user); to provide a
structured file concept (the compiler knows the formal definition of all the files in the system, so file use in
programs must be consistent with the formal definition of the file); to provide indexing, direct access, and
variable length files in an efficient manner; to allow batch programs to communicate with the CAMIL file
system; and to provide a simple and uncompromisable file security system. All of the goals of the file
system have been met, providing a powerful, € ficient, and secure file system.

The basic logic of the file system is contained in one procedure (with nested inner procedures), and it
resides in the CAMIL executer program. Other components of the file system are: the peripheral routine to
communicate with the 844 disk controller, and CP monitor modifications and driver program linkage (to

schedule the special CAMIL batch file manager interface program) to allow batch programs to communicate
with the CAMIL data base.

The basic design of the CAMIL file system is such that it provides a powerful file concept in the most
efficient manner possible. Some of the file constructs were limited from the original implementation in
order to keep the file system efficient, but sufficient flexibility was insured to perform all of the desired
operations. This type of implementation strategy led to a highly successful and easy to maintain file system.

All but an insignificant portion of the file manager logic is programmed in PASCAL and is resident in
the EXECUTER program. The logic is broken into small procedures to perform each of the different file
operations (READ, WRITE, DELETE, etc). These procedures in turn share other common procedures to
perform operations such as record number verification, physical buffer allocation, and physical disk 1/0.
Each job which requests a file operation enters the re-entrant file manager code, and since the file manager
code executes in user mode, all of the needed local file variables are placed onto the CAMIL run time stack.
Because the PASCAL file manager code cannot be interrupted by another CAMIL job (the PASCAL code

decides when to relinquish control), no synchronization is necessary between jobs requesting file
operations.

Because the file system is shared, all current information about system files is kept in ECS. This
allows all of the jobs requesting file operations access to the information without the need to reserve
storage space in the run time stack of each job. The system file definitions for each file defined in the
CAMIL system are stored in ECS, so that a file request can easily be verified without a disk request. Also
while a file is open, all of the extra information which is needed for an open file (buffers, bit maps, etc) is
contained in ECS and referenced through the resident file information.

43

s s

There are three types of files: direct access, indexed, and variable length files (though direct access
and indexed files can be accessed-sequentially). The most common type of files are the direct access files.
Direct access files provide the capability of accessing fixed length records at very high speeds. This is
accomplished by being able to compute the physical disk address from any given file address, so that the
only physical I/O required (sometimes none is if the record happens to be in a buffer) is the actual data
transfer (note: The record bit maps must also be backed up to disk when writing a new record, but the
backup operation is part of a single I/O request). Because direct access files allow packing of records (more
than one record per physical block), two physical opeérations could occur for a write file operation on a
packed direct access file (one to read the physical block, insert the new data, and then write the physical
block back out).

The indexed files are designed to provide a high speed indexing method to structured files. They are
fixed length records (preferably small records), and the entire file resides in ECS. Therefore no physical
requests are necessary for read operations, and only one request (to back up the file on disk) is required for
write operations. The typical use of an indexing file is for indexing purposes. The record associated with the
desired index may contain.access flags, status sets, and direct access file addresses. The direct access filc
addresses are used to associate data located in direct access files with the specific index. The direct access
address can then be used during the processing of data associated with the current index so that all further
file operations are as efficient as possible using computable disk addresses. This approach eliminates the
need for index searches and index blocks (which consume time, space, and disk accesses) without imposing
any real burden on the programmer.

Variable length files provide a means of storing records of variable lengths. They are similar to direct
access files in that disk addresses are directly computed from the addresses of the records. The main
difference is that one cannot direct where a record is to be stored when writing out a record; instead the file
manager assigns a new record number each time a record is written; Also, it will delete the old record (if
rewriting a record). This is necessary because it may not be possible to fit a record back into the same
record position it came from (the record could become larger), so the file manager will automatically delete
the old record and insert a new one, returning the new record’s address. The number of necessary physical
I/O requests per record access is at most one per request (none if the record is already in a buffer), since all
disk addresses are computable and the disk driver routine will read in only the needed number of sectors for
variable record reads. As with the direct access write operations, backup of record bit maps is also part of a
write request; thus, only one pause for physical 1/O is necessary per operation, although more than one
transfer may take place.

The file manager has its own peripheral routine to handle all of the CAMIL data base requests;
therefore, the disk addresses computed by the file manager are directly handled by this routine. It is the use
of this special routine which also allows the record bit maps to be stored in the same request as a wriie
request, thus cutting down on swapping and waiting time overhead of producing two physical requests. The
data path between the peripheral routine and the file manager is also minimized since the peripheral routine
transfers the data directly to or from the file ECS buffer.

Requests from a batch job requesting a file manager operation are processed identically to CAMIL file
manager requests except for the data transfer portion. When data are to be transferred to or from the batch
program, the CP monitor modifications are called to perform the transfer. In CP monitor, the data are
simply transferred directly to or from the file ECS buffer from or to the batch program central memory
buffer. Thus the data are transferred in a most efficient manner between file ECS buffer and batch central
memory buffer without any need of transfer buffers or extra movement of data.

For each file manager request that a program makes, the file manager checks to see if the program has
permission to perform the requested operation. If the program does not have the proper authorization, a
file security error is generated and the operation does not occur. File security is accomplished by
associating a program name with a set of permissible file operations. Each program which is to have its own
set of access privileges to a file must be placed in the file security list by the FILEEDIT program. A default

44

T

set of permissible file operations can also be specified, in which case any program without special privileges
to a file would assume. In this way a file can have a nondestructive set of default privileges so that other
programs can be allowed to inspect the file without giving specific read permission to each individual
program. Because the file manager operations are defined in the PASCAL compiler as well as in the CAMIL
compiler, the file security by program name also holds for batch file manager requests. Because of this, and
the fact that only CAMIL and PASCAL programs can access the data base, the security of the CAMIL data
base cannot be compromised by any method, since only specified programs can be authorized to access
data base files, and there are no passwords which can be stolen.

Operating System Interface

The most extensive modifications to the SCOPE central memory monitor program have been made to
allow batch jobs to communicate with the CAMIL file manager system. These modifications are
incorporated into the RA+1 section of the P monitor because of the expected frequency of use of the file
manager requests.

A batch job issues a request to the CAMIL file manager by calling DIO (resident in RA+1) which
passes pertinent file information to a batch file buffer in the driver. (The batch job is suspended until the
file manager completes the request, at which time the job is resumed.) The driver then schedules a CAMIL
job which calls the file manager routine to perform the relevant file operations.

The file manager handles batch and CAMIL file manager operations in a similar manner, except when
transferring the actual data to or from the program’s buffer. In the CAMIL case, the file manager can
simply read or write from the file ECS buffer into the program central memory buffer. The batch case
however requires a call to “ITO” (RA+1 resident) to perform the transfer between ECS and central
meémory (the central memory space belongs to the batch job). In both the batch and CAMIL case, however,
the data are transferred between ECS and central memory only once.

The CAMIL system also requires special scheduling of the driver, EXECUTER, and the compiler. The
uriver must always have the top priority of any job in the computer because of its synchronous nature. The
EXECUTER is next on the list of special priorities, since an interactive job requires a faster response than a
batch job. The compiler must also be given a priority over batch jobs, since an interactive user is waiting for
the results of the compilation. Modifications to the SCOPE scheduler were made to accomplish the special
scheduling requirements with minimum interference with the normal scheduling of batch jobs.

Peripheral Processor Routines

INO

To communicate with the terminals, two channels are dedicated to the system terminal hardware
interface units. The “INO’" PPU routine communicates between the driver and terminal hardware interface
units through central memory and the data channels, respectively.

One channel is dedicated as an input channel. The INO routine queries the channel for incoming keys.
When a key is received from a terminal, the hardware will place the key (along with the terminal number
the key came from) on the channel. INQ will then place the incoming information (assuming no parity
errors occur) into a circular central memory key buffer in the driver. The driver properly responds to the
key strokes, either echoing or buffering, etc., depending on the state of the program running at that
particular terminal.

The output channel operates in a synchronous mode, since the terminal hardware requires output for
the terminals every 1/60th of a second. The output channel can send each terminal only one 20-bit parcel
each 1/60th of a second. INO awakens the driver to prepare a stream of these parcels, encoded with
terminal number and data, to meet the terminal hardware demands. Even if no data are to be sent to a
terminal, the hardware demands at least one parcel to be sent to an undefined terminal every 1/60th of a
second.

45

—~—yy

——

-

Once the driver has created a stream of parcels to be sent to the terminals, INO reads the information
from central memo:y and then transfers the information over the output channel to the terminal hardware
interface unit. The interface unit breaks down the information and sends the data to the proper terminals.

DAB

The CAMIL data base is totally separated from the SCOPE file system. This separation was
accomplished by developing a new 1/O routine which processes all CAMIL data base requests. This routine
communicates with the CAMIL executer through a request buffer which is prepared and monitored by
executer. The new routine transfers data from the CAMIL data base on disk directly into a data buffer in
ECS where it is retrieved by the requesting program as soon as it can be rescheduled. This eliminated much
of the overhead and unneeded data shuffling incurred with the CDC supplied software. It also provided
greater isolation between the two systems (CAMIL and SCOPE). The drives used for the CAMIL data base
are not known to the SCOPE system, and the two systems are thus mutually inaccessible, except through
programs capable of attaching to both data bases.

Data base 1/O requests are handled on a first in, first out basis. File manager (FM) determines when a
physical 1/0 request will be needed to satisty a CAMIL request for data. File manager constructs this
request and places it into the DAB request buffer. Essential items in the request are the logical pack
number, cylinder number, initial sector number, the source/destination ECS address, and the number of
sectors requested (for fixed length records).

The CAMIL data base consists of up to eight 844 disk packs. Each »ack has a logical pack number (0
to 7) and a pack name. Each pack is considered by FM to be error free. FM sees a pack as 410(0 to 409)
cylinders of usable space. Each cylinder is a logical set of 452(0 to 451) sectors. A physical cylinder has 456
sectors, the last four of which are used by DAB to replace up to four defective sectors per cylinder, thus
maintaining the illusion to FM that every pack is flawless.

The sector substitution table is initialized by a pack initializer PPU routine, IPK. IPK writes and
subsequently reads each allocatable sector on the pack and manufactures a substitution entry for every
sector which is incapable of being reread. IPK also blank labels the pack, so that it can be permanetly
labeled by the FILEEDIT program which is used to define the content and structure of the CAMIL data
base.

TMM

The peitpheral routine which times the CAMIL jobs is TMM. The EXECUTER tells TMM when to
begin timing its use of the processor and the time slice to be allowed. TMM will time the use of the
processor, continually placing the number of time units used by the job into central memory. In this way,
when the CAMIL job is swapped out, the processor usage is immediately available to the swapping routine,
and no special call is required to get it. If the job uses more CP time than the time slice allowed, a flag in
central memory is set, which all CAMIL programs periodically check, and the job will voluntarily relinquish
control of the processor.

TMM also updates the current date and time in the CAMIL date and time areas when it is not timing a
CAMIL job. This allows CAMIL programs to directly access date and time information through system
defined variables instead of special procedure calls usually found in other programming languages.

V1. CAMIL AUTHORING SUPPORT FEATURES AND AIDS
Because CAMIL is a highly flexible language, it was desirable to implement some system functions in
CAMIL itself. All system level operations controlling access to the CAMIL system are performed by CAMIL

pro cams. User LOGON passwords, system file definitions (including security access privileges). program
diting, and even CAMIL program loading are all performed by CAMIL programs. Because these programs

46

are written in CAMIL, they provide an “intelligent” interface between the user and the CAMIL system and
can be easily updated to reflect system changes. CAMIL programs provide the user with menus, help when
requested, and interrogation of illegal requests.

One important facility is not a separate program but is imbedded in thc EXECUTER program. This
facility allows the author of a program to interrupt execution of the program by pressing an “AUTHOR”
function key on the keyboard. The author key allows him to immediately autopsy the program, look into
the data stack of the program, restart the program, communicate with other termirals, or monitor the
activities of another terminal in the system. The monitor function provides for future access to a number of
interactive breakpointing and analysis facilities which may be added to the system.

The function of each of the major programs used to implement the system will now be explained.
LOGON Program

When the system is running under CAMIL, every terminal is established as either unused or running a
CAMIL program. When a terminal is powered up, it emits data to the computer indicating this condition.
The CAMIL system establishes a data area for the terminal and begins executing a program called LOGON.
In anything further done at that terminal, it will merely be jumping from one CAMIL program to another,
i.e., LOGON-LOADER—~EDITOR~>LOADER~>USERPROG—~LOADER, etc. The LOGON program
initializes the terminal and identifies the user by associating him with his user privileges through his
LOGON ID and security password and information. His status in the system and everything he is permitted
to accomplish are controlled by this information. As additional security is needed, it is provided by the
concerned programs, which protect the data base, and apply restrictions based on security data in his user
records. As an example, certain functions might only be allowed to be performed by certain programs run
by certain people at certain terminals in certain buildings during certain times of the day. In this manner,
multiple restrictions are placed on critical data areas so that penetration of a single person’s personal data is
inadequate to compromise system security. Final control is retained by restricting data base access to
programs by name (each program name is unique) so that if a program could be copied and modified 10
remove some security checks, it would still be denied data access by virtue of being a different program.

The role of the LOGON program, in this process is to identify the person trying to log on, determine
whether he is permitted access from the log-on site, and apply restrictions as recorded in his user records.
Since the user will always be running some CAMIL program or submitting a batch program from some
CAMIL program through the program editor, security is retained by the CAMIL system.

The LOGON program also has such peripheral functions as to display run time error information if a
CAMIL program must be suspended, display resource utilization factors and display lists of programs
permitted to the user. The successful operation of the LOGON program depends upon a user data base
generated by another program called the user editor which establishes user permissions.

Program Editor

All CAMIL programs are created and reside in the AIS computer. Programs are intended to be
authored on-line and updated interactively. For this reason, a powerful but easy to use editor is an essential
part of the programming system. The CAMIL editor was inspired by the PLATO IV edit program and was
initially written in the original CAMIL language implementation. It has now been rewritten in CAMIL II,
resulting in an approximately 50-percent reduction in source program size, alinough the original editor is
retained for use when the old system is executing.

The editor is intended to allow modular program construction for ease of access without causing
annoying specific actions to be performed to link the resulting program modules. To support this, the
CAMIL system, local PASCAL compiler, and a print program have been written to use or disguise this
modularity as appropriate, thus allowing the user to create modules corresponding to CAMIL or PASCAL
routines or blocks of text. The editor has four primary levels of operation: program, directory, module. and
textual.

47

Program level operations are those such as creating, copying, deleting, compiling, cataloging, printing,
or checking the status of a program. These are accomplished on an entry page as options available through
single keypresses. The most frequently performed step from this page is to enter the directory level of
operation. All programs are divided into major directory areas;in the case of CAMIL programs, these areas
are correlated with specific divisions of the program and given the names: Shared, Private, Procedures,
Segments, Errors, and Autopsies. Each of these is merely an entry point to a chain of directory pages, any
one of which can contain up to 30 entries and is linked to the subsequent and preceding directory pages.
The directory is presented to the user as a menu of module names, each with a number that can be used to
enter the module for editing. In addition, directory level functions, such as adding, deleting, rearranging.
renaming, and copying entire modules, are performed at this level. Also module level print flags can be set
for each module so that selective printouts can be accomplished by the print program. New directories may
be added following or preceding the current page at this level. The user will normally select a module for
editing by entering the module number on this page. which moves him to the module level of editing.

At the module level, the user is automatically provided a displayed set of lines representing the
current location in the module. The user can set the number of lines that is seen by default to any number
of lines that will fit on the screen: the system will initially display five lines. As the user moves forward or
backward through the module, the lines that are displayed are numbered with small numbers from 1 to 31,
and the user refers to lines by these numbers. Since the numbers are completely relative, lines may be added
or removed, and the system will constantly display the updated text with familiar numbers that always
appear on the same lines of the screen. Since these numbers are kept as small as possible, typing is kept to a
minimum. If the user wants to see more lines than are displayed at any moment, this can be done by
pressing the space bar, and the editor will double the number of lines currently on the screen and add this
many more lines to the display. Lines already on the screen do not scroll or move as in some terminals so
they can be easily read as new lines are being added to the screen. The user can move forward through the
text by simply pressing the “NEXT" key, which will move the current location to the line following the
line currently displayed at the bottom of the screen, and then redraw the screen to display the default
number of lines.

Commands available at the module level allow entry to a textual level of editing in which lines may be
inserted or replaced. In each of these modes, the user denotes insertion to begin after or replacement to
begin with some line which is on the screen. The screen is redrawn with the referenced line near the top of
the screen, and with the user cursor under the line of entry. In insert mode, the line inserted after is placed
into a special copy buffer. Editing keys on the CAMIL keyboard allow this line to be copied wholly, word
by word, or letter by letter into the user input buffer, along with any new characters to be added to the
line. Other keys allow things copied or entered to be erased wholly, word by word, or a letter at a time.
Still other keys allow the line, words or letters to be removed right to left from the input buffer as though
they were being erased, but then returned to the screen and to the user input buffer at the press of another
key. The combination of thse keys allows existing lines in the module to be copied quickly to the point of a
mistake from either the left or right direction, a correction to be inserted into the line. and the rest of the
line to be copied without error. In replace mode the copy buffer is merely loaded with the line to be
replaced so rapid updating of errors, without introducing new typing errors caused by reentering characters
which are already correctly entered into the line, is possible. In either mode the user can skip over lines he
does not want to change thus allowing him to easily move through an area containing errors and update or
insert after each line as needed without having to redesignate with numbers which line he intends to alter
next. Because these keys allow the user to directly edit the characters in lines, these keys perform the
function of numerous string oriented editing commands found in more conventional editors. As a result,
the only string oriented command is one with which a module may be searched for occurrences of a
particular string, with optional replacement by another string by pressing a function key.

The commands available at the module level allow the user to move forward or backward by the
number of lines displayed, to the beginning or end of a module, to the lines following the lines currently on

48

the screen, or to the following or preceding module by the press of a single key. Lines may be deleted by
entering the starting and ending line number, or may be saved into a “save buffer’” and carried to some
other place in the module or into a different module, program or editor. In addition, groups of lines may be
moved left or right a designated number of spaces to align them with other lines in the text; this is very
useful in the editing of structured programs where indenting is often used to display program structure. In
all commands referring to more than one line, the designated lines are encircled by the editor to confirm
that the proper lines have been denoted before the operation is completed, thus giving the user a chance to
change his mind before making a major error.

To simplify program storage, changes made to a module are not recorded on disk until the user leaves
the module, at which time they are automatically recorded by the editor without any explicit action being
performed by the user. A special escape is provided which allows the user to leave the module without
storing the changes that have been made. This is normally used only when some major blunder has been
made, such as deleting a large block of material by accident, which the user does not want to become a
permanent change. If a module is emptied, it is automatically removed from the program directory, and if a
new module is being created, it will be automatically entered into the program directory at the place it is
designated to be added.

Another useful function supported by the editor is the automatic tab function. In automatic mode.
the tab key will indent to the line which is being inserted after or replaced: this is useful for indenting
structured programs or for entering indented textual material. A manual mode is also available where fixed
columns specified by the user can be used when tab is pressed: this is useful for editing programs written in
assembly language or for entering column sensitive data.

To assist in the development of structured programs, the editor searches for leading BEGIN and END
symbols and the special CAMIL begin-end characters. When vertically paired symbols are found, the editor
will automatically connect them with vertical lines each time the screen is redrawn. (This may be seen in
the CAMIL examples included in the appendix.) An automatic grid function is also available which will
draw vertical lines at designatable character intervals each time the screen is redrawn, to assist in placing
column critical data at predetermined positions when the terminal is used as a pseudo keypunch machine
for card format oriented data entry.

Automatic Error Mode

When a CAMIL or PASCAL program is submitted for compilation, the editor generates a request for
the compilation by routing the request into the system input queue. The request includes only the name of
the program to be compiled and any unusual parameters which are to be applied. The corresponding
compiler obtains the program source by reading the program level directory, then the module directory
pages, and in turn the source modules from the data base. No physical medium other than disk storage is
used to retain the source information. To be consistent with this philosophy, the compilers do not generate
program listing: as the programs are compiled, but rather, if an error is encountered during compilation, an
entry is made in an error record, indicating the module number, line number, column number, and error
number of the encountered problem. At the end of the compilation this error record is recorded on disk for
use by the program editor. When the user requests to see the error module directory, the error module is
used to read up the module containing the first error, set the current line position to the line containing the
error, draw a pointer to the place in the line where the error was discovered, and display the error number
and an English description of the meaning of the error message at the bottom of the screen. (A hard copy
of this display is included in the appendix.) In this manner, the author need not be at the central site with
the printer to use the system. The resulting environment is much faster to use than a paper or screen
equivalent of a listing with error messages embedded in the program text. This is particularly true as
programs grow in size. (The AIS adaptivc model used for student lesson management takes approximately
45 minutes to list). Function keys allow the user to request the display of the next error as needed and then
to go to another module to fix the problem, such as an undeclared identifier, without causing problems.
This facility combined with rapid partial compilation can reduce complete turnaround cycles to less than a
minute.

49

" o 0
e L A it e i e i 3 et L

The editor also provides access to autopsy reports generated when a program fails in operation. As
explained in another section, the entire data context of a program is saved in the event of such a failure.
The autopsy program mnemonically dumps these data, and a source module is constructed for each local
and global data area and for the built-in system variables for the program. It also builds a directory for these
source modules so that the user can select which data area to observe in the same way that a module is
selected to edit when editing normal program sources. These directories are also strung together so that the
user can look at all of the autopsies which have occurred, independently of where the program may have
been running within the AIS network. In this manner, field problems are returned to the program author,
who then has a description of what was happening at the moment of failure, even though the author was
not physically present at the time. All normal editing functions are available so the author may search for
desired identifiers or values or may scroll through the autopsy looking for something which seems
abnormal. The combination of these two interactive debugging aids greatly enhances the usability of the
system, particularly for remote program development.

The editor program, which was written in original CAMIL, was translated into CAMIL in about two
work weeks, and reduced in size about 507 . The resulting program is approximately 8,000 words of source
code (2600 lines), compared with 32,000 words of source code (5400 lines) for the program written in
original CAMIL. The resulting decrease in line size is due primarily to the more efficient syntax and
sentences of CAMIL II, and the additional reduction in code size is due to a 35% improvement in source
code storage density in CAMIL 11 editor format.

The User Editor

The file of information used by the LOGON program is created by another program called the user
editor. This program allows an authorized person to create and modify records for other people. Naturally,
administrative controls must be applied, controlling who has the ability to extend this privilege to other
persons, but this is enforced by the user editor which is the sole program that can edit the user file.

The user editor will not be explained in depth, but it contains the necessary displays to establish,
survey, delete, and modify user records.

L

The CAMIL file system is managed interactively through the program FILEEDIT. With this program,
file definitions are interactively created, edited, and deleted. The resultant file definition file is used at
system initialization time to load system file information into ECS.

When creating a new file definition, the file editor solicits information (file type, record size, buffer
size, number of buffers, security privileges, number of records, etc.) required to define a file. From the
obtained information, the file edit program computes the total disk storage space required to hold the file,
which is then used by the program when allocating physical disk space for the file.

When the user is satisfied with the file definition, physical disk space for the file must be allocated.
The user may optionally direct where it will be physically located (by disk pack and cylinders) or may
allow the FILEEDIT program to find the required disk space.

The file edit program also provides for general disk maintenance and disk allocation updates. Disk
packs which have been initialized by the IPK routine can be labeled by the file edit program, making them
ready for use in the CAMIL file system. Also allocation maps for each disk pack can be inspected and
changed by the FILEEDIT program. This allows the status of each disk pack to be examined prior to
allocation of a new file.

Autopsy Program

A CAMIL program in execution presents a pattern of information on a terminal screen which the
author can observe to partially determine whether his program is executing correctly. Simultaneously,
variables internal to the program, but not visible to the author, are undergoing continuous change. It is
often very desirable for the author to observe this internal state, but this is quite difficult to accomplish,
since normally the program would have to be temporarily modified to display these data, along with the
desired screen output of the program. It would be highly desirable to have a tool which would display this
information at the request of the user, without requiring modification of the program. It would also be very
timely to apply this tool in the event of an unanticipated failure of the program during execution.

The dump is such a tool but has until recently been as crude in form as the programming languages it
has served. The post mortem dump implemented by Sandmayr (Reference 6) has provided dump-like
information in a mnemonic form for the simple data types supported by’ PASCAL. The CAMIL autopsy
report extends the basic notions of the PASCAL PMD to include all user structured data types, such as
packed records arrays, files, sets, and classes. The CAMIL autopsy can also be taken any time during normal
execution of a CAMIL program by pressing the AUTHOR key and requesting an autopsy.

When an autopsy is requested, the state of the program in central memory is written onto the data
base for presentation to the autopsy dumper. The dumper will use compiler generated descriptions of the
address space of the program to produce a mnemonic dump of the data area of all routines active at the
time of the autopsy. It also generates the calling sequence of active routines and attaches all of this
information to the program directory. The author can use the program editor to examine this information
at will. The default autopsy covers all variables in the program, but compiler directives allow the autopsy to
be selectively omitted for items in which the programmer has no interest.

Print Program

Because the character set for the CAMIL system includes 124 hard printable characters, a special
printer chain is needed to print all of the character graphics used by the system. This special chain
relinquishes some redundancy of frequently used characters in order to make positions available for the
nonstandard graphics (print slugs) used for CAMIL. The absence of these slugs causes the printer to run
more slowly, especially when CAMIL programs, including characters which appear only once on the chain.
are listed. To counteract this factor, a print program was written which is capable of reading CAMIL
directories and source modules, and printing the full character set on the printer in a unique two-page
format.

Lines in CAMIL modules are never more than 60 characters in length since the AIS terminal screen
allows only 64 characters total, and four of these are used by the editor at the left margin for line numbers
and spacing. The line printer is capable of printing 136 character lines across a 15-inch-wide continuous
paper form. To make the most of this combination, the print program prints two images side by side on
each sheet of line printer paper. Because the print time for each line is determined primarily by the time
waiting for all needed slugs to pass over positions where they are to be printed, printing a wider line has
little effect on the printer speed compared to the need to wait for the full printer chain to cycle by each
line. The resulting printout is thus twice as wide and half as long as the normal format and has the further
unique property that it can be burst and each page folded upon itself, producing a book-like format which
is'much more convenient for program documentation. The major operational benefit of this format is that
the printer runs almost twice as fast on these normally slow listings and uses half as much paper.

The print program also prints a program summary at the end of the listing which cross-references
moduies to the page of the listing where the module was printed. Pages are automatically numbered at the
bottom and module line numbers and headings can be printed or deleted at the request of the user. The
print program is written in PASCAL and attaches to the CAMIL data base through the batch program
interface described in the file manager section.

51

—

VIL CONCLUSIONS

The language described in this paper is a workable usably implemented language. It reflects qualitative
improvements in CAMIL derived from experience with the current operational implementation of the
language. These improvements were sufficient to allow a more than 50% reduction in the size of the
program editor which has been translated into the new format as a test case program. In addition, the
resulting program appears to run both interactively. faster (subjective observation) and consume less
computer time during execution. The program is also significantly more readable due to the extensive use
of the CAMIL user sentences and improved file structures. We feel that this saving is typical of savings
which could be realized if the current system was converted to the new language format and that the
greatly improved compiler performance would facilitate such an effort and future applications of AIS to
new instructional areas.

A pivotal question which arises when such an effort of this type is contemplated is whether the
benefits of such a conversion outweigh the costs in time, effort, and interference with the operational
environment. If the AIS load should increase, major improvements would be needed to handle the
additional load imposed upon the computer, demanding either additional hardware or improvements in
software. If such an increase was to occur, an alternative to an increase in hardware performance now
exists, along with qualitative improvements in development facilities.

In the event that demand for AIS computer services does not expand, or if it assumes a different
direction away from the central, research oriented form that is currently implemented, we have nevertheless
gained significant knowledge of the implementation approaches to use in future developments and of the
types of interactive aids which should be included in future systems.

REFERENCES

t. Wirth, N. The programming language PASCAL. Acta Informatica, 1971, 1,35—63.
Ammann, U, PASCAL-6000 compiler.

Sherwood, B. The TUTOR language. Computer Based Education Research Laboratory, University of
[llinois, Urbana, Illinois.

4, Stifle, J. The PLATO IV architecture. CERL Report X-20. Computer Based Education Research
Laboratory, University of Illinois, Urbana, Illinois, April 1972.

5. Krivacic, R. Refinement and implementation of simulation system. Masters Thesis, University of
Colorado, Boulder, Colorado, April 1978.

6. Sandmayr, H. PASCAL post mortem dump program.

APPENDIX A: PROGRAM EXCERPTS

Several program excerpts are included in this appendix to display something of the CAMIL
environment to the reader. Unfortunately, the extreme resnonsiveness cannot be captured on paper nor by
a sequence of frames showing progress through a program.

1. Display of a syntax error as produced by CAMIL editor automatic error display mode. The editor
user presses a single key which causes the editor to read up the module containing the next error and show
him an English description of the error, which he can then correct.

22ments: picture

1 draw from 1EF, 488 to 406, 30F;

2 cdraw to ZRE, 1HE;

3 FLAME (278, 488, SEET ;

4 on line 31,c2l 5 write large 'Envoote display’ =sized i,
&

X :

om lipe 1, ool 48 write

184 1dentifier neot dedlared

53

st ———

18
2

e
27
2@
3

L
—

5

typist must correctly copy.

747

.,

&

e -

A simple typing drill program which places randomly selected words on the screen which the

)
1, i)
i
—f

L

=ter

1
i) e e

‘serum’ , prot

ARIABLE
FACKED ARREAY (1

FOR 1
FOR

[Writ? wed [k
FOR i
FOR j

FIR e

A

IF T

p RET

ELSE

on line 31, 5
" "'|"'I:-'"_|. tf;-.-“F::'&':j ' .

CPUTIME=", (CFUTIME-ztart) 74,896 chars: 6:

s ET
mddlet) el
lick', 'slurp', 'amoeka
. oramium’,
'silicon', "trikkle’,
Sl . S y "t f faimid', perecads
INTEGER 1,).k.errs,chars,sta
=-1]0F @:veo

= R
oY

T2 lines
FROM & FEFEAT words Do
_w+wd[wdinm[i,j]]; charsechars+LEMNETH (wl
LMTIL k=LERGTH (w]
":v:""-ipt Treaf with

| UNTIL T,KEY

(=L]

‘elam’ "

5

s, Hiworc

[,

o line (3

[

S until

char=s: 3

IMNTEGER lines+S, wordsen,
VE s vecak] OF STRIMNG [8]
Yy tmarke ',

s o A = TR =

Sl as . Erane
= ! S

[IF [BACK] DD; starteSvS,CPUTIME;
T lines

FEOM & EEFEAT words DO
EeRAMDOMvocake sy wadivm [1, 1] #kg

=g

O

[u,ru,-,_l'r* ite w oon lins(3x1-1)
D0 sccept rep with hoarrow]

[MEXT]

YE (=8 =]

o~
i
.

akilonet,

‘map', 'zilch’, "xerox’, " 11

o)]

roarrow, nocaps] |
zhar THERM
write char on lins(i1x3-1}1,

ool

wisake 44
‘errich', 'done

< Euln’, 'quirk’ ; tegueo

'y paraffin',

Ywalrust,
folore ',

STRIMNG (8]

k= BB i .

charse«#;

PR

char+w [k]

f=1@+1+k]

ks

{EE 4

HAF

char,

yool (j=1@+2) jerrseerrs+] kel

w1 te
wi1th

- "

Yy errs: 3,

2, "maskeypr

Srrors

s

3. Original CAMIL code for a simple math drill program which randomly generates math problems

) and checks any wrong answer against the possibility of having performed the wrong operation on the
displayed operands.
Froc=dures: (RTHURILL | Cpacer 247
1 DECLARE TIEGER I, r,ans,opseicct,obs, tr o
! ¢ DEFINE SIFING (1) ARRAV4 cp= (e’ t= 0t Py,

J
4 Eraze Scre=n; At Col 18, Lire S Write
s ‘lelcome to NMATH DRILL, Press NEAT to start'; Faose;

© PEFEAT 18 TINES DO

7 BEGIN CON HELFP DX (Write ans; Pause); true?:

8 Erase Screen; At Col 22, Line 38 lirite ‘Help Avariable’:
] 1ePAND O 2125 reFPAND () x125 opselecteRAlD () - 3. 41

18 CAZE cpselect OF

) (1} arselsr:y 21 arzel-r; 3] anselxrr; 41 ;ns*l—r»:

12 JUDGE

13 PEGIN Erase Line 18;

14 At Col 5, Lire 18 Wrate 1 With Magritude 2;

15 Write oplopsel=ct]; Write r With Magratude 2; Write "=':
16 Accept At Col 14,Lins 18; tryetryu-1;

12 END WITH

18 FEGIN

19 ’ ans | (Write ' ok' For 1 Second&:IF try=1 THEN clzezl=ze1l;
28 ' | l+er|(Write ' no did you add?’ For 1 Seconds;

21 | J,FLAG+FALSE) ;

22 \ l-r| Write ' no did you subtract’ For 1 Seconds;

23 J,FLAG«FALZE) ;

24 v Ixr| (Write ' no did wvou multiply' For 1 Seconds;

25 ! T, FLAGEFRLEE) 3

26 | [l-rlWrite ‘' no did vou divide' For | Sezonds;

27 J,FLAG«FALSE)

28 END

29 ELSE

k1 EGIN

31 IF try<@ THEN (Write FAnswer wss'; J,FLAGETRUE

1 ‘ Write ans With Magrutude 4; Fause For | Se

2 | | ELSE Write ' no Try again' For 2 Seconds

3 | Enp;

4 IND;

S Erazs Screen; At Col 5, Line 28 Write 'Number correct =
t birite cks; At Col S, Line 21 UWrite Number missed =°

? Whrite 18-cks; Fause;

4. CAMIL II code for the same math drill program.

CTICABLE
1S PAGE 15 BEST Qum?n?i-/
TH eor!:rugulsﬂll)ro !

Frocedures: MATHORILLZ Space: 812 >
1 CONSTANT AREAY (4] OF CHAR ope "+, "=, "' ")
2 VARIABLE INTEGER 1,r,ans,cpselect,cks;
4 [eraze; on line 5,c0l 1@ until [NEXT] write
= "Welcome to MATH DRILL, Press MWEXT to start"
3 FEFEAT 18 DO
? [IF [HELF,BLUE_BACK] 00 write ans until [NEXT];
l a erase; l«RANDOM=12; reRANDOM=x12; cp=elect«RANDOM=3. +1;
9 CASE copselect
1d Ell ans«l+r; 2| ansel-r; 3| anzelur; 4| ansel:r |;
101 wriite "-HELP- availakle" on line 3@, <ol 2465
12 on line 1@,ccl 5 write 1:2, oplopselect]:t, r:1, '=';
13 Ty LOOPLIMIT«S;
14 JUDGE accept on line 18, col 14
15 [ans |[ok; pause for 1 sec; IF J,COUNT=1 THEMN oksecks+1]
16 l+r|[n write " did vou add?" for 1 sec |;
¥ *FI[HU write " did vou subtract?" for 1 sec s
13 lxr |[no; write " did vou multiply?" for 1 sec;
i | 1+r([rne; write " did vou divide?" for 1 s_c];
2@ ELSE
21 rIF T, COUNT=3 THEM write " Answer was ",ans:4 for 2 sec
22 | ELSE [no; write " Try again" for 1 sec
24 erase; on line EM,:cl S write "MNumber correct =",oks,”
25 | Mumber missed 1F-oks urntil [NEXT]

5. Listing for a simple “HANGMAN” game program which requires that the player guess letters used
to spell a hidden word. Each letter guessed which does not appear in the word results in parts of the man
being drawn until he is “hung.”

Frocedures: HANGHSR Srace: 553 >
\ 1 (The clas:aia HANCGHIAN ¢3ne, guess the letters In a wod)
h. COMRTANT
4 IMTEGER numc fwordse28, x«200, ye125;
: FRRAT (81 rume fwords) OF STRING (8] wordse
© (‘simian’', ‘cance', 'computer', ‘seagull’,
? ‘margrove', 'eloquent’', 'camel', 'tortoise’,
g ‘building', 'duck', 'aircraft', ‘sunshine’,
) ‘punpkan', ‘violent', ‘erudite’, ‘sunft’,
1 ‘helplezz', 'diligent’', 'superior’, 'beastly’,
) ‘gross’') ;

13 VARIABLE

14 INIEGER 1,right,missed,select;

1S SET OF Sirumofwords used;

lo SET OF 'a':'z' charsinwd, usedchars;
1?7 STRIMNG (8] woerd;

56

L R
- v a

~Noe

~N O N LW e

o

N

W oty T I de f

T S S et

N W

N o

again:

eraze; righten; mizzseded; charsinwde []; ucedcharse [
REFEAT rumofword=-3 UNTIL -~iselect € used) D0

select « RANOOM < rumo fwords;

luzedrused + [zelect] ; wordewords (select])

iFuF-’ 1 TO LENGTH (word) DO charsirwdecharsived + [word[1]]
o hine 4,00l S sized 3.8 write larg= 'The Hangman Gamne'

{Oraw the Gallows)
i connect x+2%8,y, x,Y, %X,y-1080, x+258,y-144,
2+256, 4300, x+55,y+380, x+55,0¢27%;

JUDGE accept rep with [noar‘row.no:aps)
EERa
l! IF J,KEY ¢ usedchars THEN
it on line 25,co1 18 for 1 sec write"Vou usad that char®;
[[J,FLHG.rﬁISL;

[ELSE
f . [usedzhor seuz=dcharss [J,KEY) ;
I 11IF J,KEY € charsinwd THEN
Vit [FOR 1 [0 LEMGTH (word) 0O

IF J,hEV=mord (1] THEN

[\urxte JOHEY on laine 28, col (1+101; righterighter™;
IF right=s(ENoIH (word) THEN

[lul'l'tc "Vou win” for 3 sec until [NEXT]

on line 25, col 18; GOTO azain
| LT, FLAGFALSE
| ELSE
! [szedem 2sede1;
CASE m1zzed OF

[ll drav from x+5,9+5 to x+55,w+50; [(left ley)

I

|

|

! 21 draw from x+185,9¢5 to x+55,0+58; (right leg)

; 31 draw trom x+55,9458 o w+55,9+168; [trund)

(| 4] draw trom x+55,9+158 to x+S,u+ldu; {left arm)

’! Sl draw from x+55,9+156 to x+185,9+1088; [(rizht aom)
{ el circle 10 at x+55,9+188 eccenty 11ty 2. 4; (head)

” 71 duts weS@,90+4198, *x+6@,9+190; (e o]

: 8. Jdots »+55,9+4185, %x+54,94184,

| “+55,04184, %x+56,y+184; (roze<)

| ;9! cormect aeS1, Y+ 178, x+53,0+168, »+57,9+1683,

| x+59,9+178; {mouth)

! 18!

i I'draw tram <+455,04275 to x+55,u+204;

| on line 29, col 11 write word;

s line 25, col 10 write "You hung vourself”
‘ | for 3 sec until [NEXT];
] ' LGUTO agalin;
| t
J FLAG+FHLSE ;
L
ELSE

write "Not a letter" for 1| sec on line 25, col 18;

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM OOPY FURNISHED T0 DDC o

57

6. A single frame taken during the execution of the game. The user is trying to guess the word
“beastly” but is very close to being “hung.” :

The Hangman. Lame

e

(i

h
i
i
o

58

APPENDIX B; CAMIL I LANGUAGE SYNTAX CHARTS

The following charts represent the syntax of the CAMIL II language graphically. The explanation of
chart notation is included in the Language Description section of this report. The following charts do not
necessarily explain semantic restrictions of the language, which are explained more fully throughout the 1
report.

arcly

i }—[‘)
A K P s !

e L, __.___.@

bleck

59

typespec

——=(_PACKED)——a(_ ARRAY

scalar

constant

RECORD BEGIN

constant
or

subrange

T ety

SRR T

typespec

(OF >

subrange

compspec ‘

(>

constant

string
’_"@_J constant

>

scalar
constant

fe=

type 1d

literal set

—_—

THIS PAGE IS BEST QUALITY PRACTICABLE

FROM COPY FURNISHED TODDC e

T

THIS PAGE IS BEST QUALITY PRACTICABLE

FROM COPY FURNISHED TODDC ___

T §

e

]
N |

i s D e |
e U

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED roch

} W’[J T’L H‘L—jj T _;JJ e

n R R
! ’ (s '1 1".;-‘-*1 e S N i o B
l L
e " LI e f 7:“__?-”‘ "‘—J = - E
e O S IS TR L (L Iy Sy S SRR P e s P s b e SR T, T
=
;-(10} d e ﬁ'»-————-—-~ e e

5.(1}%“31014 31 j >{‘]‘1‘OJ*C‘_}TC‘ ATy

t L f.,_ AR |
t.(:,r_ncD_ o

L_

BN EEEEES

63
rUS GOVERNMENY PRINTING OFFICE 11 %.

| E

