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INTRODUCTION

Theoretical models of the D-region have increasingly relied upon com-
plicated computer code simulations of the chemical kinetics and photo-
chemistry of the region. Recent progress in developing D-region models
and some of the problems inherent in verification of the existing
models have been outlined by Sechrist [1] and Aikin [2]. As both
authors point out, progression of the complexity of D-region models
from the traditional lumped parameter models (which require only single
positive and negative fonic species plus electrons) to the multispecies
codes places an almost impossible task upon the experimenter who seeks
to verify such codes. Nevertheless, the failure of lumped parameter
models to adequately describe the behavior of the D-region under even
the most controlled conditions imposes the requirement for development
and verification of more physically realistic kinetic chemistry models.

This report presents the results of a studv which was undertaken to
partfally verify the D-region chemistry code known as DAIRCHEM (acronym
for D-region air chermistry) which models the effects of time-varying,
naturally occurring icnization sources on the chemistry of a parcel of
air in the middle atmosphere. The emphasis is on the ion chemistry
with sufficient neutral chemistry to make a self-consistent model.

Alkin (2] has pointed out that verification of D-region models requires
data on not only the spatial and temporal distributions of the ambient
ion and neutral species, but also on the ionizing scurce functions as
well. The data base used in this study consists of an assembly of
ionizing source data and models and D-region data obtained from a wide
variety of experimental measurements made during the 12 November 1966
eclipse. A preliminarv study which gathered these data, placed them

in a common coordinate system, and defined the {onizing source func-
tions, was conducted by Sears (3].

Comparisons with experimental data provide a means of validating the
basic modeling computer codes which are used as input for Army communi-
cation svstems and in the Army nuclear weapons effect community. In
addition, such comparisons are a means of assessing what further ex-
perimental measurements must be made to provide data to {improve already
existing computer codes.

The organization of this report is as follows: "lIonospheric Measure-
ments' describes in detail the 1966 solar eclipse experimental measure-
ments of positive and negative ion densities versus altitude and time.
"D-Region lonizing Sources'" defines the ionizing source functions
appropriate to the circumstances of the eclipse, and "Description of
the DAIRCHEM Computer Code" briefly describes the DAIRCHEM computer
code. Under "Comparisons of DAIRCHEM with the 1966 Eclipse Data
Base...," the ionizing source functions are incorporated into the
DAIRCHE!N code and the predicted ion and electron densities are com-
pared with the experimental data.




LTONOSPHERIC MEASUREMENTS
Data Sources

Many ionospheric measurements were made in Brazil and in other South
American countries on the path of totality ot the 1966 eclipse. The
larger portion of these measurements, however, were made individually
and not in coordination with other ground, aircratt, or rocket

launched experiments, and hence are of only nominal value to the pres-
ent analysis. The Defense Nuclear Agency (DNA) (tormerly Detense
Atomic Support Agency) supported experiments, plus those of National
Aeronautics and Space Administration (NASA) and local Brazilian experi-
menters which were carried out in the vicinity of the Rio Grande rocket
launch complex, were closely coordinated with cne another and will pro-
vide the major fraction of the data which will be described and
summarized in this section., The experiments which are considered in
detail here are summarized in tables 1 and 2.

Three classes of data exist: ground-based and aircratt-based measurce-
ments of electron density versus altitude which are derived trom
analyses of propagation effects; in-situ measurements of electron
density, positive ion density and species composition, and electron
temperature which were carried on rocket=launched probes; and rocket-
to-ground propagation experiments which vielded altitude protiles ot
electron density. In this portion, the authors take advantage ot the
redundancy available in the electron density data to attempt to provide
a best-fit to the time and altitude variations of electron density
during the eclipse. Because different measurement techniques have
different analyvtical and empirical sources of error, a combination ot
two or more sources of data should in principle vield results which
are more truly representative ot the D-region during the cclipse.

Eclipse Coordinate Svstem

The principal difficulty in combining data from ground, aircraft, and
rocket-based measurement platforms is the accurate specitfication ot
their location with respect to a common eclipse oriented coordinate
system. To provide the common coordinate system required, a svstem
utilizing the fewest number of independent variables possible was
chosen. The significant variables are altitude, eclipse time, and the
duration of totality at the chosen altitude. Eclipse time is specitied
as seconds before second contact or seconds after third contact tor
measurements outside totality, or as seconds after second contact and
duration of totality for measurements within totality.

The locations of the trajectories of several DNA and NASA sponsored
rockets within the altitude-time coordinate system are plotted in

fig. 1. Trajectory information for the NASA rockets in this coordi-
nate system was taken from Mechtly et al. [4]. This coordinate svstem
allows one to avoid the problem of location of the data in horizontal
coordinates at a given altitude within the eclipse totality because the
pertinent coordinates are time after second contact and the duration of

4
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totality. Sears [3] gives a more detailed account of placing the tra-
jectories within the eclipse coordinate system.

Rocket Probe Electron Density Measurements

Measurements ot electron density were made by a wide variety of rocket-
borne, in-situ probes throughout the eclipse. In addition, two certi-
fication firings were conducted on 5 November 1966, a week before the
eclipse, which obtained background data at the same time of day as the
eclipse. In all, 12 successful firings were made during the eclipse
period. The electron density instrumentation capabilities of these
rockets and their launch times are summarized in table 1. In this
section, the measurements ot electron density are summarized and placed
into the eclipse coordinate system previously described so that tem-
poral comparisons may be made of electron density at a given altitude.

The different experimental techniques used to measure electron density
from a rocket vehicle during the 1906 eclipse include: Langmuir probes,
subsonic blunt probes, and rocket-to-ground propagation measurements

to calibrate the Langmuir probe measurements [4)]. COther experimenters
used absolute laboratory calibrations for probe measurements [S5]. In
each case, conditions mayv exist wherein the calibrations adopted for

the Langmuir probes during the eclipse may be errcneous. In addition,
propagation experiments which are analvzed on the basis of a strictly
horizontally stratified ionosphere, ignoring horizental or temporal
variations in electron densitv, may also be in error. In the case of
noneclipse conditions, most of the measurement techniques produced
closely similar measurements of electron density versus altictude with-
in the probable errors in their respective calibrations. Figure 2
illustrates the background electron density versus altitude curves
obtained by the variety of rocketborne preobes summarized in table 1.
As shown in the figure, most measurements above about 70 km agree
within 20 percent or so for the background conditions. Below 70 km,
blunt probe data appear to diverge from the other results. This dis-
crepancy has not been investigated in detail. To emphasize the posi-
tive aspects of this comparison of various experimental techniques,
the NASA Langmuir probe data (calibrated by propagation data), the
Ballistic Research Laboratories (BRL) low frequency (LF) propagation
experiment, and the BRL Langmuir probe measurements of electron den-
sity all agree above about 65 km within their experimental errors.
Below 65 km, where the electron density is smaller than 100 cm°3, the
individual experimental errors are as large as a factor of 3 or so,
thus estimates of the absclute electron density curves below this
level may possess relatively large experimental error.

The most significant data which were derived by this study, after
putting all of the rocket probe data on a common eclipse coordinate
system, are illustrated in fig. 3. The electron density versus time
measurements at selected altitudes between 70 and 90 km are depicted,
utilizing all of the available rocket probe and rocket-to-ground
propagation data. Three significant features are to be noted in this
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tigure: the relative rate of change and magnftude of change in elec-
tron density between t{rst and near second contact {s small, the rate
of decrease fn electron density fmmedi{ately tollowing second contact is
very large, and the absolute electron densfty is reduced within 20

)

seconds to minutes by roughly a tactor of 4 to 10 in contrast to the
aradual decrease exhibited duving the inftial stages of the eclipse.

To bring out this strong totalfty related teature, which was sugpested
by the NASA rocket data published by Mechtly et al. [4], all of the
rocket probe data were used, and the clectron density values were taken
as the principal experimenters results indicated.

The fmportant fonospheric behavior which has been explicitly demonstrated
in this section {s the strong reduction in electron densfty inmediatelvy
around the rvepgfon of totalfty, bven {t the intercomparisons ot the
varfous rocket probe results illustrated by tig. 3 are de-emphasized by
assigning a large probable errvor to each probe data point, the charvac:
teristic rapid decrease in clectron density at second contact is pre-
served.  lonospheric data tvom other eclipses have alsoe supgpested this
effect [6,7] in the 70 to 90 km altitude regime. The {mplications of
these data with respect to atmospheric defonization medeling are dis-
cussed under "Comparisons of DAIRCHEM with the 1966 Belipse Data..."

Positive lon Density Data

Positive fon density and species wore weasured by in-situ rocket probes
over the altftude range of S0 to 100 km.  Three tvpes of probes were
uged: a parachute deploved blunt probe to measure total positive ion
density below about 80 km [8], a retarding potentfal analvzer [9], and
a positive fon mass spectrometer to measure total positive fon density
and fonic species mass distribution above about 70 km (10,11]. A

amall common altitude vange (about 70 to 80 km) was available to both
the blunt probe and the fon mass spectrometer,

As described by Baker [8], the positive conductivity ot the fonosphere
fs determined trom the current to the negatively charged blunt probe.

The posttive iton number density s velated to the measured conductivity
o bv:

whete
N is the positive fton density
¢ 18 the electron charge
pods the reduced mobility of the posftive fon.

The mobil{ty value chosen tor interpretation of the data was ¢ = 1.8

rm“\'_lsx“l. which fs typical of values previously measured torv the \“*
| 1 .

10

o m ot e




ion,  However, as Narcisi's mass spectrometer measurements showed, the

: 4
princtpal posttive fon is N W W), or higher hyvdrates, bolow R0 km oy

S0, the mobitity of which is taken as 2.8, When this increased mobil
ttyv value s ured, the positive ion densities veported for the hlunt
probe experiment are somewhat reduced. A summary of the adjusted blunt
probe data and the combined retavding potentfal analvzev (RPA) and ion
Mmass spectrometer total fon density data is contained in tipg. . Above
{5% km, the positive fon mass spoctrometer results were normalized
against the RPA total fon density data; hence only a single curve i«
piven for these combined data tor cach rocket shot,  Attempts to nor-
malfze the fon mass spectrometer data against the hlunt probe ion
density data at comparable times during the eclipse were ansuccesstul,
his Tack of success is to be expected insotar as the negative ton

densities and the negative fon to elecivon density vatio do not vemain
constant during the eclipse at a piven altitude.

the positive fon gpecies fn the D= and E-regions were measured hy
Narcist et at. [10,11]. These data are {llustrated in figs. 5a and 5h,
AMthough tt i ditticult tor the authors to assess the phvsical veality
of the very yapid composition charges versus altitude, these data ave
A usetul tnput to veritication of the DAIRCHEM code.  In the D=vepfon,
tocket velocity mav have been lavge enoupgh to cause breakup of compli-
cated hvdrated species in the nosetip shockwave; howvever, the rvelative
changes i composition botween simple and hvdrated species arve fnstruc
tive. The total positive fon density data fn tig. 4 ave the result of
smoothing and fitting the three sources of data,

Ground -Based Tonospheric Measurement s

Duting the 19060 solar eclipse, a wide variety of pround-bhased iono-
sphervic experiments were conducted in South Amervica,  The measuvements
which are of principal fntevest to this study ave propagat fon measutre-
ments trom which the electron density versus attitude and time varia-
Cron can be detived ditect v, Other measurement s provided indivect
measurement s of Darvegion electron density variations,  The data used in
the present study ave from measuroment 8 sunmavized in table 2.

The temporal and spatial variation of electron density in the D=rvepion
over the altitude vange tvom about 70 to 100 km was obtatned by von
Biel [ trom analvsig of parvtial veflection data, The partial ve-
tlectfon data provide a cont fnucis tecord of the electron density
throughout the oclipse, which complement s the vocket probe data ob
tained at discrete intevvals, The principal disadvantape ot the pa
tial vetlection sounder technigue is the temporal avevapging of the
ctpnal which s vequitved to obtain reasonable accuracy in the eclectren
denstity value,  Por the eclipse, the averaging time consgtant was a
minutes, which ettectively procludes procise, time-tosaolved, electron
density measurement s tmmediately around totality where the electron
dongity changes stgnititcantly within the averaging interval, Thus,
these data are nsed to detine the long=term behavior ot electvon
density in the Devepgion to cross=calibrate the vocket probe data,

1
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Figure 6 shows a comparison of the partial reflection electron density
data with in-situ rocket probe measurements at several times during
the eclipse. These curves show that the partial reflection results
agree closely with the rocketborne Langmuir probe data obtafned by
BRL, Alr Force Geophysics Laboratory (formerly Afr Force Cambridpe
Research Laboratory), and NASA {nstruments.

The good quantitative agreement of partial reflection sounder and
vrocket probes utilizing a variety of experimental techniques must be
considered as verification of the accuracv of each technique.

Examination ot the ground-based electron density data indicates that
such experiments have two valuable roles: cross-calibration and en-
hancement of rocket-based N, profiles versus altitude and time by

direct sounder measurements; and provision of a basis for comparison
of eclipse D-region qualitative phenomenology with prior efforts using
indirect techniques for inferring D-regfon electron densities, e.p.,
riometers and VLF/LF sounders.

D=REGION TONLIZING SOURCES

Maintenance of the ionization in the dayvlit D-region between about 50
and 90 km requires several sources of {fonization. The intensity of
each source has its particular dependence upon temporal, geographical,
solar cvele, altitude, and other varfables each of which must be quan-
titatively specified for the circumstances of the 1966 eclipse. Addi-
tionally, the eclipse obscuration function for each source must be de-
fined as appropriate. The obscuration tunctions may differ for each
source, and none of them mav be well-represented by the visible ob-
scuration tunction.

Sources of fonfratfon for the 1966 eclipsed D-region are: galactic
cosmic ravs, solar Lvman-alpha and Lvman-beta, solar x-rays, and
energetic electrons precipitated trom the radlation belts., The effects

of photoionization of 0,(1Ag\ by solar ultraviolet (UV) radiation were

also considered, but this source {s negligible. The fonizing sources
for the 1966 eclipse utilized in this report were obtained from measure-
ments, for example, of solar x-rav and Lvman-alpha fluxes, and from
models. The sources and their related data are summarized {n table 3.

Cosmic Ray lonfzation

Galactic cosmic ravse (GCR) are an almost constant temporal source of
fonfzation in the upper atmosphere. Their intensity at the earth
varies with geomagnetic latitude and has a small temporal modulation
fmposed by the average value of solar wind intensity, which is con-
trolled by solar activity, Because of their very high energy, their
stopping range in the atmosphere is in the lower stratosphere, and
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TABLE 3. TONIZATION SOURCE FUNCTTON EXPERIMENTAL DATA

Tontfein Experinentet
_Fadiatien Hoasurerent [rv(.-r\nrr!

Lyman alpha Rocket photoneter Blaront and Malique
(25]

Lyman alpha Rocket photemeter Accardo (0]

X-ravs Recket spectrometet Argo et al., [14)

X=ravs Rocket photopraphs Underwood et al.
[34)

X=ravs Satellite photometet Solar Geophysical

Data (47]

X=ravs Rocket phetemeter Accardo [J6)
Calactic cosmic ravs No direct measurement
Solar Lyman beta No direct measurement

Solar UV (photo- No direct weasurement
detachment)

Energetic electrons No direct measurerent Indirect estimate

from Pfitzer ana
Winckler (J0]

—
wn




hence their ionization profile is proportional to atmospheric neutral
particle density at higher altitudes. Heaps [13] outlines the deriva-
tion of the ionospheric ionization rate due to GCR and presents an
empirical formula which describes the geomagnetic latitude and altitude
variation of the ionization source strength.

The GCR ionization source intensities below 60 degrees magnetic lati-
tude at solar maximum and at solar minimum are described by:

Q(GCR:  S.MAX) = (174 + 1930 sin® &) x 10720 N

/ <2
Q(GCR: S.MIN) = (174 + 2840 sin A) x 10 20 N

where A is the geomagnetic latitude, and N is the number density (cm-3)

of neutral particles in the atmosphere. To find the GCR ionization

source for the circumstances of the 1966 solar eclipse, an interpola-

tion between these bounding values was made as described in Heaps [13].

For 1966, at a geomagnetic latitude of 24 degrees,

Q(GCR) = K N

where K = 2.32 x 10718 fons s”1. The altitude profile of the cosmic
ray ionization source is illustrated in fig. 7.

Precipitating Electrons

A number of experimental observations and theoretical factors suggest
that precipitating electrons introduced a temporally constant source of
ionization in the D-region during the eclipse. Evidence of trapped or
precipitating electrons was obtained by rocketborne x-ray counters
which observed anomalously high counting rates from about 160 km alti-
tude to near apogee both before and during the eclipse [14]. Absorp-
tion measurements made during totality suggest that the D-region elec-
tron density is anomalously high at this time, which could only result
from either an unknown source of detachment of electrons from negative
ions or from an added ionization source [15]. Balloonborne x-ray de-
tectors flown in this region have detected bremsstrahlung from pre-
cipitated energetic electrons [16]. In addition, Potemra and Zmuda
[17] showed that electron precipitation at midlatitudes could contrib=
ute a significant nighttime {fonization source to the D=region, In
view of the eclipse experiment location on the western portion of the
South Atlantic geomagnetic anomaly, the possibility of electron pre-
cipitation from the lower trapped radiation belt must be accounted for.

Eather and O'Brien [18] attempted to detect electron precipitation in
this geographical region in 1967 by photometric methods but did not
detect any 4278-angstrom band emission enhancements caused by electron

ifonization and excitation, N2 + e + N;* + 2e, within their instrumen-

tation sensitivity limits of 0.2 Rayleighs. From these observations,
they concluded that the particle precipitation over the region
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accessible to their view was less than 7 x 107% ergs cm—“s-l, or about

10“ electrons cm"zs_l of 50 keV energy. As Potemra and Zmuda point out,

electron fluxes much lower than this energy limit are capable of
creating D-region ionization which is measurable in the absence of
normal daytime ionization processes.

In the absence of any evidence of a temporally unique particle precipi-
tation event occurring during the eclipse period, the precipitating
electron flux was computed from the measured trapped electron population
on the L-shell which intersects the 100 km altitude level in the geco-
graphical location of the eclipse measurements. The L-value at this
location is about 1.2 which corresponds to an invariant geomagnetic
latitude of 24 degrees. The average electron lifetime for this L-shell,
which is independent of energy, is 250 days [19].

The trapped electron flux in several energy ranges from 50 keV to 1.7
MeV was measured by Pfitzer and Winckler [20] on 30 September 1966.
Given the average loss rate from this time to the eclipse date, with no
additional replenishment, about 88 percent of the observed flux would

remain and about 4.1 x 10'8 of this flux would be lost each second.
This fraction represents the minimum average precipitated flux over the
entire longitude range of the L-shell and hence represents a minimum
value for the South Atlantic anomaly region,

Gassman and Pike [21] showed that the eclipse location, on the westward
side of the anomaly, can receive precipitating electrons from over 300
longitudinal degrees of the trapping volume. Because the mirror point
altitudes for a given magnetic moment of the trapped electrons are
lovest and are descending in altitude in the western portion of the
anomaly, the entire average electron loss rate may be attributable to
loss in this region in the southern hemisphere; hence, the precipitating
particle fluxes may be an order of magnitude greater than the average
value would indicate. The measured trapped fluxes and the two limiting
cases for precipitating fluxes are summarized in table 4.

The altitude distribution of the ionization depends to a large extent
upon the energy spectrum of the precipitating particles. The energy
spectrum as measured by Pfitzer and Winckler is considerably harder
than those sample spectra adopted by Potemra and Zmuda for midlatitudes.
For example, the integral energy spectrum derived from the measurements

is approximately F = E_ E-1; whereas Potemra and Zmuda adopt energy

dependences of h‘3 and E”S. However, the trapped radiation belts do
exhibit harder spectra for the electron flux at lower L values [22];
therefore, the measured spectrum is used to compute the ionization
profile.

Ionization profiles for both cases, uniform loss averaged over longi-
tude and loss averaged within the westernmost 60 degrees of the South
Atlantic anomaly, are presented in fig. 7. These curves were computed
following the method of Rees [23].
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Solar Lyman=Alpha and Lyvman-Beta

The solar Lvman-alpha emission intensity is a tunction ot solar activity
(24]. Measurements ot the solar Lyvman-alpha energy flux at times near
the eclipse range from 1,35 crg/cn\: sec to 5.7 crgs/\'m" sec [25,26].

IFhe upper value is more consistent with that expected tor the solar
activity level at the time of the eclipse. The lower value may have
been produced by ionization chamber window degradation betore or during

Al
the measurement [25]. For purposes of this work, the 5.7 erg/cm™ sec
value is adopted, which corresponds to a photon tlux ot 3.0 x 10”

) o=l

photons cm™= s7°,

Fhe solar Lvman-beta flux is also dependent upon the level of solar
activity., Swider [27] adopts a value of 100 for the ratio of Lyman-
alpha to Lvman-beta photon fluxes, whereas Tousev [28] reports a ratio
of 85 for the respective energy fluxes. No direct measurements of
Lyvman=-beta were made during the eclipse period. In addition to direct
Lyvman-beta, the continuum near the line also produces a small depree ot
ionization. Theretore, the equivalent Lvman-beta flux is taken as

) -
3.0 x 107 photons ¢m™= s L,

The ionization produced by solar Lyvman-alpha and Lyman-beta radiation
depends upon the altitude distribution of the NO and 0, which are the

ionized species, respectively., Lyvman-alpha is strongly absorbed by 0,3
hence the distributions of both neutral species affect the ionizing
source strength tor Lyman-alpha.

Measurements and theoretical estimates of NO density versus altitude
have varied bv more than a factor of 10. QOriginal computations of the
ionospheric response to the 1966 solar eclipse [3] utilized NO profiles
derived trom Meira [29]. Measurements by Baker et al. [30] made at
White Sands, which is at a corresponding latitude in the northern hemi-
sphere, indicate an overall lower NO density protile with a more pro-
nounced minimum in density near 85 km. A comparison of the ionizing
source strength vtilizing these two NO profiles is presented in fig. 7,
for preeclipse conditions. The tigure shows that tor the tirst source
strength protile (high NO content) the Lvman-alpha ionization predomi-
nates over a much larger altitude range than tor the low NO content
computation.

Because of the wide ditferences in empirical and theoretical NO pro-
tiles, and their potential etfects upon D=region ionization protiles,

the single "proper" or optimum protile as an a priori input to our

study cannot be arbitrarily selected. Rather, the available data on
electron and ion density protiles have been used and an attempt has

been made to select the optimum NO profiles based upon an empirical

best fit to the ionization data. This procedure is outlined in the
section on comparison of the DAIRCHEM code with the 1966 eclipse data base.




he solar Lyman-beta fonfration profile is computed in a straightforward
manfer {n the DAIRCHEM code and depends only upon the O, neutral density
protile and the overall Lvman-beta flux. The ionization source strength

-

versus altitude from solar Lvman-beta {s illustrated in fig. 7.
Solar X-Rays

Measurements of the unobscured solar x-rav flux were made from satel-
lites and from rockets launched trom the Brazilian eclipse site. These
measuretents may be divided into twe spectral groups according to the
region of the ionosphere which thevy ionize: the hard x-ravs between

1 and 10 angstroms are capable ot {foniring the D-region below Q0 km;
the soft Xx-rays between about 30 and 100 angstroms contribute ioniza-
tion mainly to the F-region above 90 km. Both groups are important
around 90 to 100 km.

The measured unobscured x-ray fluxes in both groups are summarized in
table 5. Note that the experimental techniques for determining these
tluxes depend upon the x-ray absorption edges of the photometer windows
which genevally do not coincide with the twe bands specified. There-

fore, the spectral distribution and total intensitv within these bands
must be inferved from the data.

The spectral distributions in the two x-ray spectral regions derived

3 by Swider [27] were adopted tor the present studyv. These spectral
distributions were normalized to correspond with the more limited band-
pass X-rav tluxes nmeasured. In general, details ot the spectra derived W
by Swider and the measurements for the eclipse period were in good
agreement, and normalization of the two derived spectra to the wmeasured
x-ray fluxes should be accurate to within about 20 percent. Figure 8
compares the observed fluxes and the x-rav spectra in the two wave-
length regions adopted for this studv.

The fonization profile resulting trom absorption of the twoe sclar x-rav
enfssfon bands, 1 to 10 angstroms and 31 to 100 angstroms, was computed
for the unobscured sun. After normalization for the incident inteprated
uncbscured solar tlux in the two bands of interest, the ionization pro-
files computed were not significantly difterent from those computed by
Swider for a solar zenith angle of 25 degrees. The computed x-rav

~

fonization source strength profiles are illustrated in tig. 7.
Detinition of the Eclipse Obscuration Functions

[he temporal varfation, in addition to the absolute magnitude versus
altitude, of the fonizing radiations must be defined duving the
eclipse. Solar radiation eclipse obscuration functions were defined
tor solar Lyman-alpha and Lyvman-beta, visible and near UV radiation,
and both the hard and soft solar x-ray emissions.

Visible and near UV obscurations functions are computed in DAIRCHEM by
using the geometrical tormula of Rvdbeck [31) and the UV limb darkening
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Wavelength .
(angstroms) Flux (ergs/cm” gec)
0-8 2.3 % 107N
8 = 20 1.0 x 1077
-1
s4 - 00 1.85 = 10
3. 7% 1.4 x 10 °
18.97 2.6 x 1072
18.83 0.5 x 107
16.01 0.24 x 1077

TABLE 5. UNOBSCURED X-RAY

FLUXES

Experiment

Solrad data from Solar Geophysical Data [«7)

Sandias data from Argo et al, [1l4]

Scirad 8
Solrad 8
Solrad 8
Sandia rocket
Sandia rocket
Sandia rocket

Sandia rocket
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model of Pierce and Waddell (32]. These obscuration functions are
illustrated in fig. 9.

Lyman-alpha and Lyman-beta obscuration functions are somewhat more com-
plex. Before 1958, the flux of Lyman-alpha radiation incident upon the
atmosphere within the region of totality was believed to be negligible.
Durinyg the 1966 solar eclipse, two independent measurements of Lyman-
alpha tlux within the umbra were made and both showed a residual flux.
Measurements made by Blamont and Malique [25] showed solar limb
brightening in L, which extended above the photesphere or optical 1imb

to altitudes preater than 2500 km. A residual L“ flux of 0.14 percent

was reported tor totality., Bowhill* estimated a residual flux of about
0.5 percent, based upon difterent data.

Two possible mechanisms may account for residual L flux observed at

totality: resonant scattering in the uneclipsed and penumbral portions
of the terrestrial hydrogen peocorona, and failure to achieve complete
totality over the L disk. Sears [3] estimated the magnitudes of these
respective components as beiny less than 0.5 percent and about 0.1 per-
cent, respectively. For this study, the residual Ly flux at totality

as 0.5 percent was used. The temporal behavior of the Lu ionizing

source strength during the eclipse is summarized in tig. 9.

Treatment of the Lvman-beta obscuration function is considerably simpler
than tor Lyman-alpha because the hydrogen peocorona is much less opti-
cally thick., Meier [33] has shown that tor near zero solar zenith
angle and tor exospheric temperatures above about 200 °K, the optical
thickness through the geocorona to an altitude of 100 km is less than
two. Hence, the requirements for a rvadiation transport model are con-
siderably lessened. The radiation transport considerations for this
obscuratfon function are neglected and a visible obscuratien function
as indicated in fig. 4 will provide results of adequate accuracy.

X-Ray Obscuration Function

The x-ray obscuration function depends stronglyv upon the localized dis-
tribution of x-ray sources on the solar disc. An analytical function
cannot be derived in general, and experimental data must be sought.
Photographs of the solar disc in x-ray wavelengths were obtained by
Underwood et al. [Y] for the unobscured sun at the time o! the solar
eclipse. Although it is well-known and strongly evident in the x-ray
photopraphs that the harder portions of the x-ray spectrum are more
local tzed than the soft emissfon spectrum, thus producing a larger
temperal gradient in fonization source strength, this analysis shows
that such temporal gradients cannot be resolved adequately by the D-
region measurement techniques and the available data. lence, although

*Comments made at the 1966 Solar Eclipse Symposium, Sao Jose dos
Campos, Brazil, February 1968.
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not justified in detail, the soft x-ray obscuration function derived
from the 27- to 40-angstrom photograph is used for the entire soft
x~ray flux.

Measurements of solar x-rays during the 1970 eclipse by Accardo et al.
[35] give residual values of 16 percent during totality for the x-ray
band from 44 to 60 angstroms, which is in very good agreement with the
obscuration function used here. Measurements in the 2- to 8-angstrom
band showed a residual value of 5 percent during totality. Subse-
quently, the hard x-ray obscuration function used here follows the
soft x-ray function down to about 5 minutes before totality and then
descends to the lower 5 percent value during totality.

Summary of lonizing Source Strength and
Obscuration Function Calculations

One may conclude from the results of the definition of the ionizing
sources, their altitude variations, and eclipse obscuration functions
that an adequate description of the ionizing source input to the D-
region under eclipse conditions entails a complicated superposition of
time and altitude-varying functions. It is instructive to compare the
altitude profiles of ionizing source strength during totality in a for-
mat equivalent to that used in fig. 7 for preeclipse conditions.

Figure 10 illustrates these results. The figure illustrates the im-
portance of the precipitating electron flux over the entire lower D-
region compared with the eclipsed solar ionizing sources such as Lu

and x-rays. As will be shown later, a significant precipitating elec-
tron flux is required to model the ionization profile in preeclipse
conditions. As in the preeclipse condition, the galactic cosmic ray
ionization is negligible over the altitude range of interest to this
study.

DESCRIPTION OF THE DAIRCHEM COMPUTER CODE

DAIRCHEM determines the number density as a function of time at a
specified altitude for each of several charged and neutral species. A
large set of time-dependent, coupled chemical reaction equations is
solved, of the form

dy
b qq + X (rates forming yi) - Y (rates removing yi)
dt

th

where y, 1is the time-dependent number density of the 1 species; qg

is the nonchemical, nonphoton source term; and the last two terms
represent formation and removal terms due to chemical and photon re-
actions. The current reaction set contains 493 reactions, involving
64 neutral, positive, and negative species.

Basic routines for solving these stiff, coupled differential equations
have been taken from the existing AIRCHEM atmospheric chemistry code

25
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[36]. The latest version of the numerical integration routine is based
on a predictor-corrector algorithm called the K-method [37,38]. Its
fmproved speed can now simulate a 24-hour period at any mesospheric
altitude in less than 2 minutes CPU time on a CDC 7600 computer.

The solar flux arriving at the altitude of interest is determined by
taking i{nto account absorption by N,, 0,, CUZ' and 03. The column den-

sity ot each absorbing species is calculated along the geometric
straight-line path traveled. Solar zenith angles near and greater than
90 degrees are readily accommodated. Scattering into the volume of
fnterest and away from the line of sight are not presently incorporated.
The absorption of solar radiation and dissociation of 05 in the 175 to

210 nm spectral region dominated by the Schumann-Runge bands are
handled by using the semiempirical method of Kockarts [39]. When a
solar eclipse {s {n progress, the incident solar flux is first reduced
by the appropriate obscuration functions for the visible, UV, Lyman-
alpha, and soft and hard x-ray portions of the spectrum.

Photodetachment of electrons from negative ions, and also photo-
dissociation of ions and neutrals are considered, and the appropriate
cross sections have been taken ftrom the literature and sponsored re-
search work (e.g., Vanderhott [40], Vanderhoft and Bever [41], Cosby et
al. [42]) and references contained therein). 1In practice, chemical
means of detaching electrons from negative ions are tound to dominate
the photodetachment processes [43].

A more detailed description of the DAIRCHEM computer code as it is used
in the current set of runs may be found in Hoock and Heaps [44].

COMPARISONS OF DAIRCHEM WITH THE 1966 ECLIPSE
DATA BASE PREECLIPSE CONDITICONS

DAIRCHEM runs were made at altitudes between 60 and 90 km to develop
profiles of electron and total positive ion densities to compare with
experimental measurements. To accurately simulate the altitude pro-
files of electron densities during uneclipsed conditions, the precipi-
tating electron fonization source previously described had to be in-
cluded. The magnitude ot this source of fonization was determined by
comparing code results at 60 and 66 km with measured electron densities.
The results of this procedure showed that the magnitude of the precipi-
tating electron ionization source was the maximum value modeled (fig. 7).
Above 66 km, the solar Lyman-alpha {onizing source becomes increasingly
fmportant, depending in magnitude and profile upon the NO model chosen.
The effects of varving the NO density profile modes were illustrated in
fig. 7. Best fit of the code predictions to the measured electron
densities over the 70 to 80 km altitude range occurred when the Baker

et al. [29)]) profile was chosen, although a fairly wide variation of NO
densities in this region can be accommodated. Figure 11 {llustrates

the simulated and experimentally determined electron and total positive
fon altitude profiles for preeclipse conditions.
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While the electron density profiles are in reasonable agreement over the
entire altitude range, the code predicts substantially lower values of
total positive ion density than were observed over the 60 and 85 km
interval. The figure shows that significant negative fon densities may
be inferred as high as 90 km from the data, whereas the code predicts
very low negative ion densities above about 70 km. A somewhat different
pilcture emerges if the total positive ion density curves of Narcisi et
al. [10] are used (figs. 5a and 5b). The figures show that the
uneclipsed positive ion density remains almost constant at about 1 x 103

cm™3 between 72 and 84 km and follows the electron density curve above
82 km. These data imply a negative ion cutoff at 82 km; however, the
accuracy of the total positive ion profile below about 90 km, which is
inferred from the ion mass spectrometer measurements, is subject to

some uncertainty. Hence, a quantitative discrepancy between code simu-
lation and observational data remains with respect to total positive ion
density and inferred negative ion density in the 60 to 85 km region.

Identification of Positive Ion Species

The positive ion species measured by mass spectrometer probes [10] be-
fore and during the eclipse may be compared with DAIRCHEM predictioms.
Figures 5a and 5b illustrate the measured positive ion species profiles
for a certification round, several days prior to the eclipse and at
totality. The figures show that, without regard to the magnitude of

the total positive ion density, at higher altitudes the NOt and 02+

species predominate throughout the eclipse, whereas below about 82 to
84 km, hydrated species predominate.

DAIRCHEM simulations of positive ion densities for preeclipse and total-
ity conditions, shown in figs. 12a and 12b, correctly give the observed

Not and 09+ predominance at higher altitudes. The simulated 02+ compo-

nent is somewhat suppressed, indicating that the hard x-ray flux or
flux of precipitating electrons of approximately 40 keV energy may have
been underestimated. DAIRCHEM predicts that the first hydrate of Not
is a major ion in the 80 to 86 km region, particularly during totality,

but N0+'H20 was detected on only one flight made at 80 percent obscura-

tion (not shown). Two possibilities for the discrepancy are that the -
rate along the hydration chain is too high (temperature and water vapor
content were not measured), and that the hydrated ions were broken up

by passage through the probe shock wave or by wall effects, thus

appearing as Not. Better qualitative agreement is obtained between

measured and simulated Not profiles if the simulated Not and N0+°H20

are added together.
At altitudes below the Not region, hydronium hydrates, H30+'(H20)n,

predominate both before and during the eclipse. The data show that
masses 37 and 55 (n = 1 and 2) predominate, whereas DAIRCHEM predicts
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that higher hydrates are relatively more important. Morecver, a: total-
ity is approached, the lower hydrates tend to grow into the PFigher hy-
drates; the total {fon concentration remains reasonably constant. Tl

authors believe that the DAIRCHEM predictions are consistent witl, the

data insofar as the rapid passape of the ion mass spectrometer pavicad .
through the lower D-region, at supersonic velocities, will tend t¢ is- |
sociate the weakly bound multiple hydrated species. Hence, hyvdrated |

ions of mass 55, 73, or greater mav be observed as lower hvdrates, 595,

37, or 19,

[ The major ditfcerences then between the simulated and measured positive
| ion densities are the quantitative failure ot the code to vield the

i large total positive ion densities which were inferred from rocket
probe measurements and the tendency of the code to predict higher hv-

drates of NOY and H‘U+ than were measured.,
Temporal Variations of Flectron Density

One of the major reasons for undertaking the detailed comparison ot
DAIRCHEM with the 1966 solar eclipse experiment is to model the very
rapid changes of electron density observed to occur imnediately at
second contact. Previous ground-based measurements reported by Sears
[7,45] had indicated that there were rapid and large changes in D-
region electron density associated with the totality region which
appeared to be greater in magnitude than could be easily explained by
lumped parameter reaction rate codes.

The temporal changes in electron density measured by the several rocket ﬂ
flights within a few hundred seconds of totality were illustrated in

fig. 3. The figure shows a reduction of electron densitv ot a factor
of 3 to 10 within a few tens of seconds or less at second contact. The
figure also shows a clear-cut and rapid decline in electron density at
second contact based not only upon the combined data but also upon com- 1
parison of measurements made within individual groups. Further, the
cross-calibration of rocket probe results with each other, and with
ground-based electron density measurements, shows that the observed
density decrease is much greater than the experimental errors inherent
in the individual measurement technique.

The attempt of the DAIRCHEM code to adequately simulate the rapidity
and magnitude of the electron density decrease at second contact {is
illustrated in fig. 13. The inability of the code to produce any rapid
drop in electron density above 70 km during totality is apparent.

To determine the reason for the computer code's failure to simulate the
rapid changes in electron density about totality, a closer look at the
negative ion chemistry must be taken., A schematic chart of the flow of
charge between electrons and negative ions is illustrated in fig. 14,
with a more detailed listing of pertinent reactions given in table 6.

The most rapid electron loss process is the three-body attachment to 0y
After 02“ is formed, further reactions carry the negative charge down
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Figure 13.

Figure 14.
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TABLE 6. IMPORTANT ELECTRON ATTACHMENT/DETACHMENT
AND CHARGE TRANSFER REACTIONS

Critical
Reaction Minor Species Rate Constant
0,+e=0 +0, 0y 9.0 (-12)(T/300)1:5*
0, + 0, +e+0," +0, % 1.4 (=29)(T/300) ™" exp(-600/T)
0, + Nz + e+ 02‘ + N, - 1.0 (-31)
o; +0+0 + 0, 0 1.5 (-10)
0" +0, 40" +0 0, 5.3 (-10)
o2 + 0, + o3 +0, o3 6.3 (-10)
037 + €0, + €Oy + 0, - 5.5 (-10)
COy + 0+ o2 + co2 0 1.1 (-10)
0T+ 00, +e 0 2.0 (-10)
00+0 (}4)+0,+e 0. *a) 3.0 (-10)
- S 3 2" g ;

02’+o* 03+e 0 1.5 (-10)
6=+ 0. ("4 +30 + o. ta) 2.0 (-10)

2 2% 2 2 "%

*Read as 9.0 x 10.'12 (T/300)1'5; general form A ('1'/300)B exp (C/T)
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the chain (principally through the intermediate ion 0, to col') to the
more stable negative ion N03-, its hydrates and clusters. No rapid,

direct attachment processes of electrons to the more stable negative
ions are currently known.

The rate of electron three-body attachment is rapid enough to explain
the type of electron density fluctuations shown in fig. 13, but the
rate of electron detachment is equally as fast. The species responsible

for detaching electrons from 0,  and 0 are O and oq(lAg)_ 1f there

were rapid decreases in these latter densities at totality, then per-
haps the electrons could stay attached to the 0,” and 0~ , thus account-

ing for the rapid decrease in the free electron density. Similarly,
the crucial minor neutral species responsible for transfer of charge

from 0, to C03' is 03. If Oy were to rapidly increase during totality,

then charge could rapidly pass down the negative ion chain and no longer
be affected by the rapid detachment processes. However, the time con-
stants for the minor neutral constituents are generally longer than

those for ionic species, so that the changes in the O, 02(1Ag)' and 04

densities, shown in fig. 15, are relatively smooth and only amount to
factors of 2 or 3. The variations needed to explain the observed elec-
tron density fluctuations would have to be order of magnitude changes
on a time scale of 100 seconds.

Variations in the known reaction rates to simulate a rapid equivalent
two-body attachment process involving known species have also been tried
[46], but with unsatisfactory results in simulating both the rapidity
and magnitude of the electron density decreases.

Therefore, no appeal can be made to the known gas-phase chemistry,
which controls the electron attachment and detachment processes, to
adequately explain the rapid changes in electron density in the 65 to
85 km region.

SUMMARY AND CONCLUSION
The results of comparing the predictive capabilities of the DAIRCHEM
code with the data obtained on the 1966 solar eclipse are summarized as

follows:

1. The code provides a good fit to the electron density versus
altitude for preeclipse undisturbed conditions.

2. The code prediction of the total positive ion density in the
altitude range from about 60 to 85 km at all times is too low by a
factor of 2 to 5.

3. The dynamical reduction of the electron density at second con-

tact at altitudes below about 85 km i{s not predicted by the code.
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4. There are physical limitations on adjusting the reaction rates
and processes within the code such that the eclipse data can be fit,
especially near second contact. Since the current gas phase chemistry
cannot model the actual events, the potential surface chemistry effects
of ambient mesospheric aerosols may have to be included.

At this point it is not clear whether the discrepancy between prediction
and measurement with respect to positive ion densities or of temporal
electron density behavior in the 60 to 90 km altitude range is a failure
in the reaction chemistry contained in the code, or is caused by other
physical processes in the ionosphere which are not modeled at all. The
very rapid fall in electron demsity at second contact could be explained
by attachment to 05, but only if the subsequent detachment processes are

ignored. Another possibility for such rapid changes is by loss to
another species, for example, by surface attachment to an aerosol spe-
cies. The large difference between the observed electron and positive
ion density in the 60 to 90 km region, coupled with the fact that the
current gas phase chemistry predicts very few negative ions above 70 km,
would indicate that negatively charged aerosols are a distinct possibili-
ity.

The inclusion of aerosols would require the introduction of a major new
set of physical and chemical processes into the conventional mesospheric
physics and chemistry, and verification by both field and laboratory
experiments.
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