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3 THESIS ABSTRACT

SOLID-PROPELLANT GENERAL DEFORMATIONS AND

I THEIR EFFECTS ON MOTOR PERFORMANCE

I David Franklin Smith

Master of Science, December 9, 1976
(B.A.E., Auburn University, 1975)

i 48 Typed Pages

Directed by Richard H. Sforzini

A simplified analysis of the propellant strains in solid-pro-

I pellant rocket motors with circular perforated grains is presented.

The analysis extends the work of Vandenkerckhove to include flexible

motor cases. Each of the propellant strains is assumed independent

of axial position along the propellant grain. Strains calculated from

this analysis are compared with the axially varying strains obtained

I from the finite element analysis of Brisbane. The axial and radial

i strain comparisons show poor agreement for the strains predicted by

this theory, however, the tangential strain correlation is excellent

-over a large portion of the propellant grain.

This analysis for tangential propellant strain is used to de-

I termine general propellant deformations and their effects on rocket

I motor internal ballistics performance predictions. Performance pre-

dictions with these deformation effects are compared with experimental

1v
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I
data on two rocket motors. In both cases, the performance predictions

with the propellant deformation effects are closer to actual motor

I performance than are the predictions without the deformation effects.
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At time interval required to burn a propellant increment Ay

AY propellant inc. nent normal to the burning surface

E strain

1 motor case thickness

P ratio of R. to R

V Poisson's ratio

i 3.1415927..., constant

p density

6 stress

I Subscripts

c case

e outside surface of the grain

i inside surface of the grain

o undeformed and unheated

I p propellant

r radial direction

I s rocket motor and payload

I z axial direction

6 tangential direction

1 I payload

2 forward portion of the rocket motor

3 aft portion of the rocket motor

,I
Superscripts

I ' deformed grain position
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I. INTRODUCTION

One of the problems in the prediction of solid propellant rocket

motor performance is the variation between the actual rocket motor and

laboratory propellant burning rates. In the laboratory, a sample of

the solid propellant to be used in a given full scale rocket motor is

burned to determine the "exact" burning rate. This is accomplished by

firing a small ballistic test motor loaded with propellant or by bura-

ing a thin strand of propellant under laboratory conditions. NeithEr

the ballistic test motor nor the strand burner technique gives consist-

ently reliable results. The apparent burning rate of the propellant in

the actual motor may be higher by 10% or more than that indicated by the

strand burner or ballistic test motor.

One explanation of a portion of this burning rate discrepancy lies

in the deformation of the solid propellant during motor operation. The

circular perforated portion of the propellant grain in a solid propellant

rocket motor (SRM) will deform due to the pressurization from the com-

l bustion chamber gases when the motor is fired. This deformation will re-

sult in a larger burning perimeter, and thus in a higher apparent burn-

Ing rate. The actual burning rate of the propellant referred to a given

pressure may not vary between the strand burner or ballistic test motor

and the actual SRM, but the increase in burning perimeter will result

in more propellant being burned in a given time interval than expected.

Thus, over the total burning time of the propellant, the burni'ng rate

- - 1I-!
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seems to be higher than predicted. This variation in the apparent burn-

I ing rate is directly proportional to the amount of propellant defor-

mation at the bore of the grain.

The burning rate discrepancy is especially important on new motor

designs where the "scale factor" on burning rate is unknown or un-

certain. Until one or more full scale motors are fired, actual motor

Iperformance is seldom accurately predicted based on laboratory burning

Irate information. Thus, it is important to isolate and determine the

factors that affect the burning rate determination.

In an SRM of the Space Shuttle type with a propellant web thick-

ness of 40 inches, the initial burning bore perimeter may increase by as

much as 4% due to propellant deformation, with a corresponding increase

in the apparent burning rate. This example is not a limiting case and

other rocket motors may show even greater deformations.

Most S14 performance prediction techniques utilize a software com-

puter program in the design stages. The ability to incorporate the pro-

Ipellant deformation effects in the design of a SRM can improve the per-
formance predictions on the new motor and perhaps point out some of the

prediction errors on older motors.

It is the objective of this investigation to present a simplified

analysis of the propellant deformation in SRM's. This investigation is

Iconfined to the deformations of circular perforated (c.p.) grains since

many propellant grains are all or mostly c.p. In addition, due to the

simplicity of the geometry, the c.p. grain is a good first test for

fthe hypothesis with possible future efforts aimed at a strain analysis

of the more complicated star or wagon wheel grain configurations.

- .'



I 3
The grain deformations predicted by this analysis are due to

I uniform pressure loading. Also, this analysis predicts the general def-

ormations of the grain, as opposed to local deformations along the axis

of the grain. Local deformations can be caused by end effects, pressure

Igradients in the combustion chamber or flight acceleration' 2 and are

not considered in this analysis.

I In the present analysis, the method of Vandenkerckhove 2 for rigid

motor cases has been modified to include the effects of flexible cases.

In addition, an existing SRM performance prediction program is utilized

I to show the effect of these propellant deformations on the performance

predictions for two motors. Experimental data on these two motors is

I compared with the performance predictions with and without the propel-

lant deformation effects. The increased accuracy of the prediction with

the deformation effects is evidence of the applicability of this inves-

I tigation.

I
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I
I
I
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III. ANALYSIS

A tubular grairn solid propellant rocket motor consists of a

cylindrical body of propellant which has a circular perforation along

Ithe centerline (See Figure 1) and is enclosed by a cylindrical case.

IThis type of solid propellant grain is usually referred to as a circu-

lar perforated or c.p. grain. When analyzing the stresses and strains

I in such a motor, it is convenient to model the motor as a body of pro-

pellant enclosed by a thin walled flexible case.

I A section of the c.p. grain is shown in Figure 2 with the deformed

and undeformed propellant surfaces as indicated. The deformation is

greatly exaggerated for clarity, but the burning perimeter (S) of the

I propellant is seen to increase by SE 6 where E6 is the tangential strain

in the propellant at the bore of the grain. The propellant deformation

I is symmetrical with respect to the axis along the bore of the c.p. grain

I and consists of a radial displacement of the grain that is constant

along the circumference of the cylinder but varies along the radius.

j That is, the deformation is a function of radial position in the grain

but at a given radius the tangential strain is a constant 3 . Also, each

I of the propellant strains is assumed to be indeperj l nt of the axial po-

I sition. The validity of this assumption will be tested when the com-

parison with the finite element theory of Brisbane is made.

4I,
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I 7
One may assume that the radial stress (dr) is essentially zero in

I the thin walled motor case and from the hoop stress formula the tangen-

tial stress in the motor case is given by

dG =RePe c  (1)
dI e e eAcM

where R is the radius of curvature of the motor case (i.e. the outside

radius of the c.p. grain), X c is the case thickness and Pe is the radial

1 stress in the propellant at the case wall.

For a non-rigid motor case, the tangential, radial and axial strains

are non-zero and are given by Hooke's Law as

I e = [60 - V(dr + oz)]/ "  / o, (2a)

E r = [dr - V(deo + d z)]/E Vt 0, (2b)

and 
[ dz - V(d 0 + d r)]/E ,' O. (2c)

i In Equations (2a) through (2c), the subscripts 0, r and z refer to

tangential, radial and axial directions, respectively. The strains are

denoted by E, the stresses by d, the elastic modulus by E and Poisson's

I ratio by v.

If the rocket motor were a closed pressure vessel, then the axial

I stress in the case would simply be one half of the hoop stress (See Fig-

ure 3), however, in a rocket motor the situation is not as simple.

There is a uniform pressure force on the head end of the motor and a

non-uniform pressure force on the case shoulders forward of the throat

and in the exit cone of the nozzle. For the purpose of a static anal-r .4

I
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I Figure 3. Half Section of a Closed Pressure Vesseli with a Uniform Internal Pressure (P).
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Figure 4. Free-Body Diagram of a Typical SRM.
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ysis, there are also reverse effective forces acting through the center

Iof gravity of the body equal in magnitude to the motor thrust (T) times

I the mass fraction (m f) of that portion of the body. In Figure 4, M in-

dicates mass and mf indicates the mass fraction which is the mass of a

portion of the body divided by the total mass of the body. The sub-

scripts 1, 2, 3 and s indicate the payload, forward portion of the body,

I aft portion of the body and the entire vehicle, respectively. For exam-

Iple, the reverse effective force acting on the thrust skirt is equal in

magnitude to the mass fraction of the payload (mf,) times the motor

thrust. It is obvious that a rigorous analysis of the axial stress in

the motor case becomes very complicated, since this stress is a function

I of both time and position along the axis of the motor (i.e. the mass

fraction of the free body will be different at every axial location,

and the pressure and thrust may both be functions of time).

j It is desirable to choose a constant axial case stress for the pur-

pose of simplifying this analysis while observing that the case strain

than most greatly affects the propellant bore strain will be the tan-

gential motor case strain. The propellant has essentially a constant

volume, since Poisson's ratio is close to 0.5 for most composite solid

propellants. Therefore, a tangential case strain that causes a small

change in case diameter, and thus a small change in the outside diam-

Ieter of the case-bonded grain, will produce a somewhat larger increase

in the grain bore diameter. The axial case strain not only has a small-

er effect on the grain bore deformation for a given strain, it is also

smaller in magnitude than the tangential case strain. Thus, the valid-

ity of any assumption on the axial case stress must be considered with

J 4
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respect to the effect on the tangential motor case strain. It is also

I important to note that the effect on the propellant deformation at the

bore of the grain from any of the motor case strains will be small com-

pared to the deformations due to the internal pressure loading.

I The minimum axial case stress (assuming that the motor case is al-

ways in tension) would be zero and a clear maximum would be one half of

I the hoop stress (since this corresponds to a closed pressure vessel).

i An application of Hooke's Law for the situation where the axial motor

case stress is zero and with a nominal value of 0.3 for V of the case

I yields (for d z = = 0)

E E -0.3 dc (3a)

and

i E0 Eec .= de (3b)

where the c subscript refers to the motor case. For a maximum axial

case stress of one half of the hoop stress, we have (for dc 0.5 doe

Sandd =0)

E c EZC - 0.5 do - 0.3(6) - 0.2 d (3c)

Eec . -o .d - )- 0.85 c" (3d)

I Comparing Equations (3b) and (3d), one sees that the tangential

I case strain changes only 15% between the maximum and minimum assumed

values for the axial case stress. We thus have a small change in a

quantity that has a small effect on the propellant deformation. In ad-

dition, the maximum axial case stress assumed in this argument is clearly

I
__ ------------------ .---- _., .
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greater than any real axial case stress. Thus, by assuming a zero axial

I motor case stress, one may expect an even smaller change in the tangen-

tial case strain and a resulting minor difference in the actual propel-

lant deformation at the bore of the grain. It should also be noted, as

I shown in Figure 4, that for high acceleration vehicles (i.e. high thrust

to weight ratio) the axial case stress may well be close to zero.

I For the thin walled case, with the radial and axial stresses asaum-

I ed to be zero, Equations (2a) through (2c) are rewritten as

IE(ec d O/E (4a)

IM E C OcVd 1:E, (4jb)

and

E zc "Vcd ec/Ec. (i40

I With Equation (1), one may further modify Equations (4) to become

E C R e Pe /Ec X C (5a)

E '= -VCRePe/(Ec), (5b)

and E - V R P e/(E X ). (5 )

I Assuming that the propellant is bonded to the case, the strains at

the outer radius of the propellant grain must be the same as the case

strains at that surface. So, combining Equations (2a), (2c), (4a) and

I (~c), we have

[dOP- 'p (d + dZP)]/EP Ep - E. - RePe/(Eo) (6a)
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and

I [d - Vp(d + dep)]/Ep E E =-vcRePe/(Ec),, (6b)

I where the p subscript refers to the propellant. Solving Equations (6a)

and (6b) for the axial propellant stress (dzp) at the propellant-case

interface, one obtains

I p [ rp -v EpRePe/(EcXc) /Vp (7a)

i anda zp - Vpd Vo cEpePe/(EcXc). 
(7b)

I Equating (7a) and (7b) yields

S[r -v d r-ER P I( X )d1 v = p( rp+dep)-vcEpRePelCEcXc  (8)
pp p ee pc pER

which reduces to

(-deP( v2) _ V d  (i + V) EpRePe(l - VcV )/(EX). (9)

Opp rp p pe p Cc

I The radial and tangential stresses in the propellant (5rp and (5p,

respectively) may also be determined from the Lame equations for a c.p.

I grain2 :

d p = [m2Pi - Pe + 2(p e- Pi)]/(I - m2) (lOa)

and

I d, o . [m2pi - Pe - 12(Pe - Pi)]/(i - M2), (10b)

1 where m is the ratio of the inside radius to the outside radius, p is

f the ratio of the inside radius to any other radius (See Figure 1), Pi

is the pressure at the bore of the grain and P is the radial stress

I at the outside radius of the grain.

I
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Evaluating Equations (lOa) and (lOb) at the outside radius of the

I grain (at the case wall where t = Ri/Re = m), one obtains

I rpe [m-Pi - Pe + m2(P e - Pi)]/(I - m2)

S-P 1  (Ila)

and

(Ope = [m2pi - Pe - m2e(Pe - Pi)]/ (I - m2)

- [2m2P i - Pe(I + m2)]/(1 - m2). (lib)

ISubstituting Equations (Ila) and (11b) into Equation (9) yields

[2m2Pi - Pe(I + m2)](1 _Vp2)/(l _ m2) + VpPe( + Vp)

SEpR ePe (I - VcVp )/(Ecc X), (12)

which may be written in terms of the radial stress (Pc) at the propel-

lant-case interface as

/ =(2m2)(1 - v 2)/(l - m2)

e/i E p Re(1-cv p )/(Ecc )-V P(1+V)(1-v P 2)(l+m2)/(l-m2) (13)

In Equation (13), Pe/P. is referred to as the pressure ratio, where

Pe may be considered as a fictitious pressure applied to the outside

I surface of the grain and equal in magnitude to the radial stress at

that surface. With an assumed uniform internal pressure, P will be uni-

form along the axis of the grain.

fTo determine the bore stresses of the propellant, Equations (10a)

and (lOb) are evaluated at the bore of the grain (where p= 1) to give

I !
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IcrPi = [m2P i - Pe + (Pe - Pi ) ]
/ ( l - m2)

and= -Pi (14a)

dep i = [m2pi - Pe -(Pe - Pi ) ] / ( I 
- m2)

I = i(I + M 2 ) - e]/(1 - m2). (14b)

i The external pressure on the grain (Pe) varies only slightly from

the internal pressure (Pi) and is constant along the length of the

I grain for an assumed uniform internal pressure. That is, the pressure

ratio defined by Equation (13) is approximately one and is not a func-

Ition of axial location in the grain. Neglecting end constraints, the

end loading will be approximately equal in magnitude to the internal

pressure. In the actual rocket motor, even without end constraints,

there will be shear stresses at the propellant-case interface and the

axial propellant stress will be a function of axial location. For the

Icurrent analysis, these shear stresses are not considered and the grain
is under an essentially uniform pressure loading as shown in Figure 5.

The axial propellant stress (c p) is then approximately equal to the in-

f ternal pressure and is assumed constant across the radius of the grain

and along the axis of the grain. For the case-bonded grain, the pro-

' ipellant and case strains were matched. For consistency, the axial pro-

pellant stress is evaluated at the propellant-case interface from Equa-

tion (7b):

d p V pd +e e - VERP/(EXc). (15)

I
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Equation (15) is a function of the geometry, physical properties of the

I propellant and motor case, and the pressure ratio. In addition, the ax-

i ial stress in the propellant is independent of axial position. Substi-

tuting the radial and tangential propellant stresses at the case wall

Igiven by Equations (I1a) and (l1b) into Equation (15) gives
d zp =Vp P  + V p[2m2p i- p e ( 1 + m2)]/(l - m2) - Vc E p P e/(Eckc ). (16)

The bore strains of the propellant can be determined from Hooke's

Law, Equations (2a) through (2c), in terms of the bore stresses and the

Iphysical properties of the propellant and are
EpEepi = cpi - Vp(drp), (2a)

EpErPi = drpi - Vp(C pi + dzp), (2b)
and

Szpi Czp - Vp(cl + Crpi ). (2c)

I Substituting Equations (14a) and (14b) into Fquation (2a) gives

E pE O1i = [PI (1+m ) - 2Pe]/(1 lm2 )+V p +v p 2p e -

V {p 2mPi -P e (+m2)]/(1- m 2)+v p c E R P /(E ckx). (17)

After grouping coefficients of P and Pe' Equation (17) may be written

as

E PE ep P i.(+M2)/(lm2)+V P_(2m2V p2)/(1..M2)] +

P pe -2/(10M2)+V p{1+(1+m2)/(1-m2)]+VPVEpRe/(Ec/c)X . (18)

e

-. - --
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Finally, the bore strain in terms of the pressure ratio, geometry and

1 physical properties is given by

E (Pi/E )[Ll+m2+v (1-m2-2mV 2)]/(-m2) +

Op i p p p

(Pe/Pi)[2(Vp 2 1)/(1-m2)V V E pR e/(E cx) ] . (19)

jThe radial and axial bore strains are determined in a similar

fashion. Substituting Equations (14a), (14b) and (16) into Equation

I(2b) yields

I E'E __-pi-Vp-Pi(1-+m2 )-Pe]/(1-m)+V p -Ep rpi  = - VP P ( M2 _pe] - M2 + p 2e

V p 22m2P.i-Pi e (i+m2)]/(1-m2)+(V p 0 p R e P e )/(Eo oC X), (20)

which reduces to

P = Pi[ -1-VP (1+m2)/(l-M2)-2m2Vp 2/(l-m2)] +

Pe[2Vp/(-m2)+Vp 2+Vp 2(1+m2)/(l-m2)+Vv cEpRe/(Ec c)]. (21)

In final form, the radial bore strain is

C = (Pi/Ep)-[V p(1+m2+2m2vp )/(1-IM2) + i] +

(P IPi)[2v (i+v )/(1-M2)+ V E R /(E Xc)Tl. (22)e p p poCp e coC

ISubstituting Equations (14a), (14b) and (16) into Equation (2c)

gives

E E - p + V,[2m2P p (1+m2)]/(1JM2) -t p p e pL i e
SvoR /(E X ) + V P - vp[pi(1+m2)-2Pel(1-M2). (23)

acpe e c c p1 P /

Idl
Ii

• -"-"%B- --
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After grouping coefficients of Pi and P in Equation (23), we haveI i

E pE5  = Pi[2m2Vp/(1m2) + V1-(1+m)/(1m2)]3 +

Pe[2Vp/(-m2)-V I1+(I+m)/(I-m2)]-V cEpRe/(EcXc)3 . (24)

Equation (24) then simplifies to yield the axial bore strain of the

propellant:

I zp = -EVc PiRe/(EckcYPe/Pi). (25)

Note that by expressing the axial strain in the above fashion, it

is not necessary to know the radial stress at the propellant-case inter-

I face (Pe). Instead, the internal pressure (combustion chamber pressure)

and the pressure ratio are required. The pressure ratio is a function

I only of the geometry and physical properties of the propellant and

motor case, so the axial propellant strain is independent of axial posi-

tion in the grain.

Equations (19), (22) and (25) give the tangential, radial and

axial strains, respectively, at the bore of the propellant grain sub-

Iject to the constraints and assumptions of this analysis. Each of these

three relations is independent of axial position and is a function only

of the geometry, physical properties of the propellant and motor case

and the chamber pressure of the rocket motor.

I

I
I
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I III. COMPARISON WITH THE FINITE ELEMENT ANALYSIS

j The results of this simplified analysis of propellant strains

are summarized in Figures 6 through 11. The strain of major impor-

I tance to propellant deformation is the tangential strain as was men-

tioned in the Analysis section of this paper, however, the radial and

axial strain results are also shown. It is necessary to examine each

of the three strain results so that a valid conclusion may be drawn

about the entire analysis.

IEach of the six plots is shown in non-dimensional form with the

strain plotted as a function of axial location along the propellant

grain. The solid lines indicate the theory developed in this paper and

the symbols represent the finite element solution of Brisbane . The

propellant grains used for these results are 140 inch diameter c.p.

Igrains with an axial length of 300 inches and initial web thicknesses

Iof 40, 34, 28, 22, 16 and 10 inches. The results shown are for these

configurations, but they may be applied to any motor with the same non-

jdimensional parameters. Each of the three strains has six plots asso-

ciated with it. Each of these six plots represents a differe74- initial

Iweb thickness (TAU) which is expressed in the non-dimensional form of
web thickness divided by the outside diameter of the grain (DO). The

independent variable for each plot is the ratio of axial location (Z)

' Ito the outside diameter of the grain. The axial location on the grain

19
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(9 FINITE ELEMENT THEORY (FLEXIBLE MOTOR CASE)

I SIMPLIFIED ANALYSIS
-FLEXIBLE MOTOR CASE

* --- RIGID MOTOR CASE
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Figure 6. Comparison of the Finite Element Theory and Simplified
Analysis Results for Tangential Bore Strains
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) FINITE ELEMENT THEORY(FLEXIBLE MOTOR CASE)

1SIMPLIFIED ANALYSIS
- FLEXIBLE MOTOR CASE

--- RIGID MOTOR CASE
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Figure 7. Continued Comparison of the Finite Element Theory and
Simplified Analysis Results for Tangential Bore Strain.
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D FINITE ELEMENT THEORY(FLEXIBLE MOTOR CASE)

I - SIMPLIFIED ANALYSIS(FLEXIBLE MOTOR CASE)
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Figure 8. Comparison of the Finite Element Theory and Simplified

Analysis Results for Radial Bore Strain.
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D FINIrE ELEMENT THEORY(FLEXIBLE MOTOR CASE)
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i Figure 9. Continued Comparison of the Finite Element Theory and
Simplified Analysis Results for Radial Bore Strain.[



I

1 24
0 FINITE ELEMENT THEORY(FLEXIBLE MOTOR CASE)

-SIMPLIFIED ANALYSIS(FLEXIBLE MOTOR CASE)

I RXIRL LOCRTION(Z/OO)Do0 0I.50 11.00 1..50 2..00 2.S0

CID 0
CI M M C9 I ,

I. TAU/0O = 28/140 M

I!

I
Oa no.00 O.So 1.o0 1.5O 2.00 2.50

, ,J ,, W I D ,,ID wLI

. TRU/O = 34/140 M

I C 3

C-I

0 0 .50 1.00 1.50 2.00 2.0

I 0

II

-w TRU/00 40/140 ca

f I

Figure 10. Comparison of the Finite Element Theory and Simplified
Analysis Results for Axial Bore Strain.I I
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may be measured from either the head or aft end of the grain since the

propellant deformation is symmetric about the midpoint of the axial

length of the grain. Each of the six figures shows the strains pre-

dicted by this theory to be independent of axial location, while the

results of Brisbane are definite functions of axial position.

The tangential strain plots (Figures 6 and 7) show results for

the six configurations used in this analysis. The worst comparison

occurs for the largest web to outside diameter ratio of 40/140. For

this example, the simplified strain analysis gives a tangential strain

I that is greater than, but within 10% of, the finite element results

over approximately one quarter of the length of the grain. The results

improve dramatically for the smaller web to outside diameter ratios.

I At the smallest web thickness (10 inches), the strain predicted by this

analysis is less than 0.5% lower than the results from the finite element

Isolution over 65% of the length of the grain. For this case, the tan-

gential strain at the ends of the grain (where the largest difference

Iis expected due to the uniform end loading assumed in this analysis) is

still less than 6% greater than the "exact" strain.

The dashed lines on Figures 6 and 7 represent the results ob-

tained for the tangential propellant strain from Vandenkerckhove's 2

analysis for the rigid motor case. Vandenkerckhove expressed his re-

I suits in terms of the radial and tangential propellant stresses. His

fanalysis is extended in the same manner as this analysis to obtain the
tangential bore strain of the propellant. The motor case and propellant

strains are matched at the propellant-case interface and are zero for

the rigid motor case. A uniform end loading equal in magnitude to the

I.
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internal pressure (Pi) is assumed (i.e. Vandenkerckhove modeled the

grain as a long, uniform thick walled cylinder with no end loading or

Iend constraints) and the tangential strain is given as a function of
the pressure ratio and the physical properties of the propellant. The

I tangential strain predicted by the rigid motor case analysis is not,

however, a function of the physical properties of the motor case as

I is true for the flexible motor case analysis.

j As seen in Figures 6 and 7, the tangential strains calculated from

the rigid motor case analysis are generally less than the finit, element

j results, while the flexible motor case results are larger. The tangen-

tial strains predicted by the current theory are closer to the finite

element results than are the rigid case results for the middle portion

of the grain in each of the six configurations. For the larger webs

(Figure 6), the rigid case results are better than the flexible case

results near the ends of the grain, but this difference is less pro-

nounced for the smaller webs. In general, except for locations very

close to the ends of the grain, the flexible motor case predictions of

I this analysis yield a better approximation to the finite element results.

The results for radial and axial strains are not as promising as

1 those for the tangential strain. The axial propellant strains predic-

ted by the present theory are close to the strains predicted by the

Ifinite element solution for the smallest webs (Figure II), but in gen-

f eral, the results of this analysis must be deemed invalid for both radial

and axial strains. In particular, the radial strains (Figures 8 and 9)

Jpredicted by this simplified analysis are greatly in error when compared

to the results obtained from the finite element method. This does not

I.J
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invalidate the analysis for application to the problem at hand, since

the results for tangential strain, the only parameter needed for the

ballistic analysis, are sufficiently close to the "exact" strains that

they may be used to include propellant deformation effects in motor per-

formance predictions.

The advantage of this analysis, at least for tangential strain, lies

I in the simplicity of the calculations required. Whereas the finite ele-

ment technique gives more accurate results, it requires lengthy com-

puter time and storage to complete. The tangential strain computed from

the equations derived in this analysis requires only a knowledge of the

geometry and physical properties of the motor and is done in fractions

Iof a second on the computer.

1 In summary, this simplified analysis for propellant strains yields

good results for tangential strain calculations and is directly applica-

ble as a first approach to including deformation effects in rocket mol or

performance predictions. Since the propellant deformation effects re-

1 quire a tangential bore strain calculation after each propellant inczu-

ment is burned, the disadvantage of the finite element technique is ohvi-

ous. The entire analysis would have to be repeated at each bore diameter

and each such analysis requires substantial time to complte. The tan-

gential strain calculations from this simplified &nalysis also have to

be repeated at each bore diameter, but they require only the evaluation

of one relatively simple equation. This analysis thus provides a fast,

simple technique for calculating tangential strain which may be easily

included in existing software computer programs in order to evaluate

the effect of propellant deformations in rocket motors.

IA
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I IV. APPLICATIONS TO THE INTERNAL BALLISTICS OF SOLID ROCKET MOTORS

I As was discussed in the Introduction section of this thesis, the

propellant deformations in solid rocket motors can greatly affect motor

performance and performance predictions. A detailed analysis of the ef-

fect of grain deformation on the internal ballistics of solid rocket

motors is presented in Reference 5.

IThe basic hypothesis upon which the grain deformation effects on

internal ballistics is bazed is that, at constant pressure, the regres-

sion rate of the propellant burning surface is independent of the strain

in the solid prcpellant underneath the burning layer. In addition, when

Poisson's ratio is approximately 0.5 (as is true for most composite

Isolid propellants) it can be shown that the density of the unheated pro-
pellant is essentially independent of strain5 . The unheated propellant

is that portion of the grain which lies under the burning surface of the

grain. This thin layer of burning propellant is of unknown composition

(liquid and/or solid) and the physical properties of the propellant in

5I this zone are degraded to a state where they cannot support shear stress

Thus, the density and burning rate of the propellant within the burning

perimeter are considered independent of the strain in the propellant be-

neath the combustion zone.

The internal ballistics of the SRM are modified for propellant def-

ormation effects by two changes. The mass generated equation and the

time int-rval required to burn a given increment of propellant are bothI29
I.
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modified. The following discussion is taken from the work of SforzIni

and Foster and is only summarized. The reader is referred to P, fcrence

6 for a detailed discussion of the SRM perfoimance prediction prog(ram.

Only the analysis of the deformation effects on internal balll-tlcs, are

considered here. The program modifications necessary to includ* tbesc

effects are explained In Re (rence 5.

The masn generated pyr unit time per unit length at the burning sur-

face of the propellant (the control surface is chosen to lie just be-

neath the layer of degraded propellant) would normally be written as

AG S P r (26)

where S is the burning perimeter of the grain, P is the density ofo po

the propellant and r is the burning rate of the propellant. The sub-

script o refers to the undeforned and unheated propellant. The defor-

mation modification requires that Equation (26) be written as

'hG/L So(1 + ce0 )Pporc/[1 - P(l - 2V)/t 1 + a(TGR - TREY (27)

where C is the tangential strain in the propellant just beneath the burn-

Ing surface (calculated from the tangential strain relation derived in

the Analysis section of this paper), P is the chamber pressure, E is the

elastic modulus of the propellant and V is Poisson's ratio for the pro-

pellant. The term [1+a(TGR-TREF)] is a further modification for the

thermal expansion effects in the grain. The linear coefficient of therm-

al expansion of the propellant is a, and TREF and TGl are reference and

actual temperatures, respectively. Equation (27) is presented exactly

as found in Reference 5. The thermal effect is a very mall one and is

.. .. .. ..I -- . . J
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not directly connected with the propellant deformation due to pres-

surization. Also, it is assumed that thermal and pressure loadings

have negligible effects on changes in the grain length (See Reference 5).

The time interval (At) required to burn a propellant increment (Ay)

nor-al to the burning perimeter is calculated from

At = Ay/r' (28)

The effect of propellant deformation due to pressurization and heating

will modify the burning rate as

3

r° = r (1 + E)/[1 - P(I - 2v)/EJJ + ct(T R - TRIT)]I (29)

where r is the propellant burning rate determined from ballistic test

motors or strand burners. The time interval of Equation (28) is thus

modified to include the effect of the deformed propellant by using

Equation (29) for the burning rate.

Using the SRM performance prediction program of Reference 5, the

effect of the propellant deformations due to pressure loading are ex-

amined for two motors. Detailed descriptions of the motors and the in-

put parameters for the deformation analysis are given in Reference 5.

The thermal expansion effects are not present for either of these test

cases since the reference and actual temperatures are the same. The

performance program is used with and without the propellant deformation

modifications and the results are compared with experimental data on the

two motors. These results are shown in Figures 12 and 13.

Figure 12 shows a plot of vacuum thrust versus time for a Castor

motor developed by the Thiokol Chemical Corporation (motor designation

I
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TX354-5). This motor has a totally c.p. slotted grain and is thus

Iespecially suited for a test case on the results of this analysis. Fig-

ure 12 includes the experimental results obtained from Thiokol7 and the

results predicted by three predictions of the SRM performance prediction

program. Two of these predictions include the propellant deformation

effects while the third does not. The two predictions that include the
deformation effects differ only in the elastic modulus (E) of the pro-

pellant. The nominal modulus is 813 psi., but the second computer run

was made with a modulus of 406.5 psi. to demonstrate the effects of the

( propellant modulus on the performance of the rocket motor. These effects

may be important for a particular application since the elastic modulus

Imay vary between propellant batches and the actual modulus may be uncer-

I tamn.

As can be seen from Figure 12, the two performance predictions that

include the deformation effects more closely predict the actual motor

performance. The prediction with the low modulus serves to point out

I the definite effects of propellant modulus on the performance predictions.

This is evident since the modulus of the propellant affects only the def-

ormation modifications in the performance prediction program. As the

jelastic modulus decreases, the propellant will deform more under pres-

surization. This will result in a larger actual burning surface. Thus,

I the apparent burning rate will increase resulting in a larger deviation

from the expected burning rate based on ballistic test motor or strand

burner data.

I Each of the three performance predictions of Figure 12 was made with-

out a scale factor on the strand burning rate. The performance prediction

I8
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with deformation effects and the low elastic modulus (E=406.5 psi.)

I comes closer to the motor performance than does the prediction with the

deformation effects and the nominal modulus (E=813 psi.). In the case

of two or more SRM's firing in parallel, variations in performance will

contribute to thrust imbalance. The effect of the propellant modulus

on the deformation of the grain, and thus on motor performance, can be

helpful when investigating such phenomena since the physical properties

of the propellant may vary somewhat between motors.

Figure 13 shows the predictions for the Titan III C/D SRM where

head end stagnation pressure is plotted versus time. Again, no scale

factor was used on the burning rate and the performance prediction with

I the deformation effect is closer to the experimental data than the results

'I without the deformation effects. This motor has a star grain segment at

the head end of the grain but this segment is treated with a burning rate

that is not modified due to the propellant deformation. The present

strain analysis is not applicable to star grains, and for that reason,

I no deformation effects are included for this portion of the grain. This

probably has a minor effect on the performance predictions for this

motor since the star segment is a small portion of the total grain (i.e.

Iinitial star grain length of 95 inches and an initial c.p. length of 613

inches). For motors with a star segment that comprises a larger portion

Iof the total grain, however, the performance predictions with propellant

deformations would be more greatly affected. The possibility of includ-

ing star segments in future work in this area is discussed briefly in the

J Conclusion section of this thesis.

I
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V. CONCLUSIONS

It has been shown that the strain analysis of this thesis has

applications in the performance predictions of rocket motors. Addi-

tional comparisons are needed to substantiate the accuracy and use-

fulness of this technique, however, it is clear that the theory can be

helpful in future SRM design and modification work. Such comparisons

should include several different motors with different grain config-

urations. These grains should include variations on the straight c.p.

grain such as slots or tapers as well as entirely different geometries

such as star and wagon wheel grains. In the case of the star or wagon

wheel grains, this analysis will have to be modified to predict the

fpropellant deformation. One possibility would be to compute an ef-

fective bore perimeter for these more complicated grains, or perhaps an

fentirely different approach will be necessary.
1More comparisons on the straight c.p. grains are desirable in

order to verify that the performance prediction results shown for the

Itwo motors examined in this paper are typical for the general class of

c.p. grain motors.

f Future work in this area of propellant deformation should also ex-

amine the effect of changing the constraints and assumptions used in

this analysis. For example, the uniform end loading assumed on the

I grain might better be approximated by the average of the internal pres-

sure (Pi) and the axial propellant stress at the propellant-case inter-

36
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face. Another possibility would be to use a non-zero value for the

axial motor case stress. Some nominal value between zero and one half

of the hoop stress may be chosen, or a value may be assumed based on the

characteristics of a particular motor (i.e. thrust to weight ratio or

case properties).

It is important to remember that one of the prime features of this

analysis rests in the simplicity of its application in performance pre-

diction programs. That is, the tangential strain relations are inde-

pendent of axial position and are easily applied at any bore diameter.

An increase in accuracy may be obtained be using a non-uniform end

loading or a position dependent axial case stress, but this would en-

tail more complex calculations to obtain the tangential bore strain.

In addition to improving motor performance predictions, the pro-

pellant deformation effects may also be useful in the examination of

other SRM ballistic problems. The use of burning rate scale factors

may actually disguise some ballistic effects. For example, from Figure

13, one can see that the areas under the performance prediction curves

Iand the experimental data curve are not the same. This suggests a

nozzle erosion rate discrepancy that would be hidden if the performance

traces were matched by the use of a scale factor * A refinement of the

current propellant deformation theory and/or the strain analysis may

i lead the way in analyzing and correcting other performance prediction

I errors.

I
I
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