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new model was developed for the water vapor continuum comprised of

both far wing and aggregate-water-molecule type contributions. The pre-
vious 23°C data and the new 25°C data were used to calculate the water
vapor continuum absorption in the 3.5~ to 4.0-micrometer spectral
region as a function of relative humidity for standard atmospheric
pressure and ambient temperatures. Updating the presently used data
base for this spectral region with these new values will have signifi-
cant impact on the accuracy of the modeling of atmospheric transmission
effects for Army electro-optical systems. In particular the results of
this study show that the partial pressure of water vapor, especially at
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SUMMARY

This report contains the first ambient temperature measurements of the
pressure dependence of the water vapor continuum absorption in the 3.5-
to 4.0-micrometer spectral region. In particular, an extensive set of
measurements at 25°C has resulted in a measured value of the foreign-
to-self-broadening coefficient of 0.011. This value was found to be
frequency dependent and is an order of magnitude smaller than the value
of 0.12 measured by Burch et al. at higher temperatures. This self-
contribution to the water vapor continuum was nearly an order of magni-
tude larger than predicted by the Burch extrapolation scheme based on
his higher temperature measurements. These results were used to formu-
late a new model for the water vapor continuum in the 3- to 5-micrometer
window. The continuum appears to have contributions from both far wing
type and aggregate-water-molecule type absorption, the latter having
little or no foreign broadening dependence. Calculations are presented
for the absorption due to the water vapor continuum as a function of
relative humidity at ambient temperature and standard pressure using
the new model based on the new 25°C data and previous measurements at
23°C. The temperature dependence of this model will soon be determined
by measurements in progress at the Atmospheric Sciences Laboratory (ASL)
and will be reported at a later date.

The results presented in this report will increase the accuracy of
modeling results used for the performance prediction and evaluation of
Army and DoD electro-optical and high energy laser systems.
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PREFACE

The authors thank Robert L. Spellicy for his critical review of the
manuscript.,




INTRODUCT ION

An accurate and detailed knowledge of atmospheric transmission in and
near the intrared spectral windows is essential to the design, perfor-
mance evaluation, and comparative testing of electro-optical (FQ)
svstems [1].  Of the many contributors to gaseous absorption in the
atmosphere, water vapor is the most widespread spectrally and of
preatest concern for many practical applications, especially for long-
path high-visibility conditions. A major stumbling block to obtaining
usable modeling predictions for Armv EO including high energyv laser (HEL)
svstems is lack of an accurate data base for the water vapor continuum
absorption in the 3= to S-micrometer window. Although recent neasure-
ments by the ASL have signiticantly improved the strength predictions
for this continuum under ambient temperature and pressure conditions

[1], the parameters needed to describe temperature and pressure depen-
dences have not been addressed. Lacking the needed data base, pressure
and temperature scaling parameters measured under substantially higher
temperature and pressure conditions than prevail {n the normal atmo-
sphere have been the only ones available tor use in modeling the water
vapor continuum absorption in the 3- to S-micrometer window [2]. The
ralidity of using these scaling parameters has been seriously questionea
by the tactor of ? difference between predicted strengths and previous
measurements pertormed by the ASL tor lasd torr of water vapor air broadened
to 700 torr at 23°C [l]. this questioning was the impetus tor pertorming
the extensive pressure dependence study ot the water vapor continuum in the

3o.9= to 4.0=micrometer spectral region at 25°C.

Laboratory measurements arve contained herein which improve predictive model=
ing ot the pressure dependence of the 3= to S=micrometer water vapor contine=
uum absorption at ambient temperatures (i,ee, at naturally occurving tempor=
atures between 07C and 40°C).  Long-path absorption cell measurements on
deuterium depleted water vapor samples have rvesulted in the first measures
ot the selt=broadening contribution as well as the toreign=to=sclt=broadening
coetticient ot the 3,5= to 40=micrometer water vapor continuum absorption
at an ambient temperature, These data can be used to inter that the ambient
temperature water vapor continuum absorption in this spectral repgion has
contributions trom two ditterent sources,  The tirvrst mechanism is due to

tar wing absorption and has substantial torveipn pas broadening dependence.
The second mechanism is less understood trom the standpoint ot the actual
absorber but mav be due to some torm of agprepate=water=molecule with per-
haps ionic bonding present,  This scecond mechanism has little or no depen=
dence upon forcipgn pas pressure and much stronger fatlott with fncreasing
temperature than the tfar wing contribution. These new measurements sub-
stantially increase the accuracy ot the data base used in modeling of the
cettects of the atmosphere on Armyv and Department of Detense FO including
HEL svstems,

STATUS OF THE AMBIENT TEMPERATURE WATER VAPOR CONTINUUM

Throughout this report, transmittance is taken to be ot the torm
T = exp (=k{), where k is an absorption coefficient expressed in km™!




and { 1is the pathlength in kilometers.

Since the water vapor continuum is a residual absorption in spectral

7 regions between strongly absorbing bands (i.e., atmospheric windows),

Fil the absorption is relatively weak (a few percent/kilometers) yet important
to the operation of many EQO including HEL systems [3]. To understand
what causes this absorption and hence accurately model it, extensive
measurements of the pressure and temperature dependencies of the contin-
uum must be made. The physical mechanism responsible for the water vapor
continuum absorption in the infrared atmospheric windows still remains

. in question. Several recent measurements of the continuum in the 8- to

] 12-micrometer window imply, in part, the existence of an aggregate-water-
molecule type of absorption (perhaps water dimers) [4,5] with strong tem-
perature and weak foreign gas broadening dependencies. Measurements of
Burch et al, [2] at elevated temperatures imply a far wing type continuum
in the 3- to S5-micrometer window with weaker temperature and stronger for-
eign gas broadening dependencies. (However, the Burch measurements do not
‘ extrapolate well to ambient temperatures, as is evidenced by the factor of
2 difference between predictions and previous ASL measurements [1].)

A detailed discussion of the functional form of the far wing type water
vapor continuum has already been given elsewhere and will not be re-
iterated here [1]. The absorption coeftficient was given as:

k(v T) = n_ [cs(v. D opg * G 0 pe)s (1

where ng is the number of water vapor molecules per cmj. Cs and Cf have

units cmz(atm molecule)‘1 and are frequency (V) and temperature (T)
dependent empirical parameters which qualify, respectively, self- and
foreign-broadening contributions. Pg and pg are, respectively, self

(i.e., water vapor) and foreign gas partial pressure in atmospheres.
In the following discussions the pressure will be given in torr instead
of atmospheres with a corresponding change in the units of Cg and Cf.

An important quantity needed to accurately model this absorption as a
function of pressure is the ratio of the foreign-to-self-broadening
coefficients Cf/cs’ In the 8- to l2-micrometer window, the ratio of

C¢/Cy is measured to be at most 0.005, with a lower bound of Cg/Cg

approaching zero [6], which is atypical of far wing type absorption.
The elevated temperature measurements of Burch give a value of Cf/CS of

0.12 in the 3= to 5-micrometer window which is consistent with the far
wing explanation of the water vapor continuum. Increased absorption in
the wings of water lines (or "super'-Lorentz line shapes) has been
measured for water vapor on either side of the 3- to S-micrometer window
[7,8], lending further support to the far wing explanation for a portion
of the continuum absorption observed in water vapor.




ANALYTICAL AND EXPERIMENTAL APPROACH

As a first attempt to explain the factor of 2 discrepancy between the
Burch predictions for the ambient temperature water vapor continuum
absorption and the ASL measurements, the pressure dependence of the
absorption needs to be investigated. This investigation entails measur-
ing the self-broadening contribution Cs as well as the foreign-to-self-

broadening ratio Cf/Cs at ambient temperatures. For the present measure-

ments, midlatitude summer (MLS) type conditions were used: 14.3 torr of
water vapor at 25°C with varying partial pressures of air (80/20 mixture
of N2/02). If the Burch elevated temperature value for cf/cq of 0.12 is

correct, then the self-term nSCs!‘s (no foreign broadening) would con-

tribute about one-seventh of the total (self- and foreign-broadened)
absorption at standard pressure (760 torr), while the total absorption
would be increased by 50 percent it the total pressure is air broadened
to 1-2/3 atmospheres (about 1260 torr). Accordingly the measurement
scheme was to measure the absorption of 14.3 torr of water vapor air
broadened in 250-torr intervals from 0 to 1250 torr. From these measure-
ments the self-contribution C, as well as the foreign-to-self-broadening

ratio Cf,Cs can be deduced.

The water vapor continuum absorption measurements were pertormed by

using an experimental setup described elsewhere [1,9,10]., A\ line tunable
3.5- to 4.0-micrometer DF laser is used in conjunction with a 2l-m long-
path absorption ceil with conventional White-tvpe optics, A fully
automated path differencing technique [11] was used to pertform these
measurements - the path difference being 151 m. The cell was main-
tained at the summer time laboratory nominal temperature ot 25°C.

These measurements are not easy to perform for several reasons. The
absorption of air broadened water vapor at each laser line is due not
only to the water vapor continuum but also to line absorptions from H,0

and HDO molecules and, near 4.0 micrometers, substantial absorption
arises from the nitrogen continuum especially at the higher buffering
pressures. The problem of relatively strong HDO line absorption is
somewhat alleviated by using (as in previous experiments) [1,12] a
deuterium depleted water sample with one-fiftieth the normal HDO con-
centration. Even with deuterium depleted water, predictions must be
obtatned for the line abscrptions at each laser line for each buffering
pressure and subtracted from the total absorption to obtain the contin-
uum contribution. These calculations are performed by using the AFCL
line paraheter compilation [13], and details of the procedures are
given elsewhere [1]. The problem of the nitrogen continuum absorption
was essentially eliminated through the usual procedure of ratioing the
transmission through an atmosphere with the deuterium depleted water
vapor present to an atwmosphere without the water vapor. One salient
feature remained, however, in that the weak laser signals at the ends
of a series, in particular the vy - ¥5> laser line series near 4.0




micrometers, were substantially attenuated by the nitrogen absorption
resulting in more data scatter.

A second and even more complicating factor is the magnitude of the
water vapor continuum between 3.5 and 4.0 micrometers. The relatively
weak continuum absorption does not have spectral fine structure; hence,
high resolution and spectral scanning are not required, but high-
sensitivity absorption measurements are. The measurement of ambient i
temperature water vapor continuum cannot be simplified by significantly |
increasing the water vapor content (and hence the magnitude of the weak |
absorption) because condensation will result. This condensation must
be strictly avoided to perform accurate long-path absorption cell mea-
surements. Bearing in mind these factors, the measurements performed
during this study were difficult to obtain even with the sophisticated
long-path absorption cell used. Without the automated path differ-
encing technique used [11], it may not have been possible to perform
this study at all.

DISCUSSION OF EXPERIMENTAL RESULTS

The absorbing and nonabsorbing absolute cell transmittances represented
by (as discussed in ref 14) T1 [N, 1] and Tn [N, 1], respectively, were
neasured at 25°C for a 37-spot {i.e., N = 37) multipath ir a fully auto- 5
mated 21-m long-path absorption cell (i.e., L = 21 m) for 26 DF laser

lines ranging in frequencies from Pl_O(Z) at 2862.646 el to P, _»(11) i

at 2471.243 er”l. For the absorbing case, a pressure of 14.3 torr of
deuterium depleted water vapor was used and replaced by 14.3 tcrr of 05

for the nonabsorbing case. Six absorbing and nonabsorbing cases were
investigated with foreign gas (80/20 mixture of N¢/02) buffer pressures

varying in 250-torr intervals from 0 to 1250 torr. The cell total
pressures were thus 14.3, 264.3, 514.3, 764.3, 1014.3, and 1264.3 torr.
The water vaper continuum absorption coefficients for each cell pressure
are fundamentally obtained by applying the Lambert-Beer expression

T = exp (-k\{¢) to the absolute transmittance of the water vapor with a
A{ path difference using T = T, [37,1) / 98 [37,1] and then subtracting
the water line absorption predicticns [1] obtained by using the AFGL
tape [13].

In these measurements the nonabsorbing absolute cell transmittance
Tn [37,1] was not truly nonabsorbing because of the presence of the

nitrogen continuum near 4.0 micrometers. Measurements of the nitrogen
continuum have already been made by Burch [2] and can be used to obtain
a correction factor (') to make the T, [37,1] values truly nonabsorbing

L
transmittances Tn[37,l] for each cell pressure. The same factor of
course must also be used on the absorbing T‘ [37,1] values torresponding

to each cell pressure sc as not to alter the value of the absolute
transmittance of the water vapor T = T‘ [37,1]'/‘1‘n [37,1]'. Before

W&J




such a correction was performed, the nitrogen continuum absorption was
checked by comparing the absolute cell transmittance for a 1512-m path
difference with 1250 torr of N, to 1250 torr of an 0p-A, mixture (a pure

02 atmosphere was not used) against the Burch measurements. Three laser
lines were used P3_2(11), P3_2(10), and P3_q(9). The results were about

10 percent below Burch but with overlapping error bounds. HKence Burch's
values were used to correct the absolute cell transmittance values.

The reason for the above discussion of correcting for the nitrogen con-
tinuun absorption will now be made clear. The measured value of the
water vapor transm’ttance T when obtained by using path differencing
exhibits almost no long-term drift error commonly associated with long-
path absorption cell measurements and hence is nearly time independent
[14]. The values of '1“l [37,1] and Tn [37,1] at each cell total pressure
should also remain time independent barring a major experimental setup
change. This proved to be the case during this experiment. Now,

there is no a priori reason why the nitrogen continuum corrected T”
[37,1]" values should not change with total cell pressure. Increased
cell pressure, though nonabsorbing, dces spread the laser beam and has
the net effect of reducing the cell output signal. Typically 5 to 10
percent signal losses were experienced by the laser line frequencies in
a monotonic fashion as the nonabsorbing gas pressure was changed from
14.3 torr to 1264.3 torr. The loss experienced was not consistent from
laser line to laser line (perhaps beam geometry related) but did vary
essentially linearly for each line with total cell pressure. Hence, a
least squares linear fit was used on all of the Tn[37,l]' values for
the six different cell pressures to obtain more accurate values for
Tn[37,1]' for each cell pressure. There was some indication that the

Burch nitsogen continuum absorption values were slightly high since the
Tn [37,1] values for laser lines near 4.0 micrometers exhibited

essentially no loss with increasing cell pressure indicating that the
N,-corrections overcorrected and eliminated these effects. Examples

with and without the nitrogen continuum present, P3_:(9) and PI_O(L),
respectively, are given in the upper plots of figures 1 and 2

Before the absorbing absolute cell transmittance values Tq [37,1] could

<

be analyzed, they had to be corrected for nitrogen continuum absorption
plus Ho0 and HDO line absorptions so as to reflect only a transmittance

loss due to the water vapor continuum before ratioing them to the
corresponding Tn [37,1]' values, These transmittance values are de-
noted as Ta[37,1]". However, using the same kind of linear smoothing
on the absorbing absolute cell transmittance values T‘_1 [37,1]" as was
used on the Tn [37,1)" values is not strictly valid, since if equation

(1) is correct, the absorption coefficient, not absolute cell trans-
mittance, is linear with foreign broadening pressure. Fortunately,




since the absorption coefficients are small (a few percent/kilometer),
the absolute transmittance values are very nearly equal to 1 minus the
absorption coefficient so that a linear fit could be applied to the ab-
sorbing absolute cell transmittance values T, [37,1]" as well, to in-

crease the accuracy of the values at each cell pressure (see middle plots
of figures 1 and 2),

Taking the ratio cf the linear curve fit values of T1 [37,1]" to
Tn [37,1]" for a given cell pressure yields the absolute transmittance

due to the water vapor continuum absorption over the 1.512-km path dif-
ference, The corresponding per kilometer absorption coefficients can
then be calculated for each of the six cell pressures used by dividing
-1a[T] by the path difference of 1.512 km. A linear fit with respect to
foreign broadening pressure was again applied to these values for each
laser line to obtain more accurate values (see lower solid line plots of
figures 1 and 2). The elaborate scheme of data reduction is designed to
obtain the best possible values for the weak self-contribution to the
water vapor continuum absorption and hence an accurate foreign-to-self-
broadening coefficient. The absorption coefficients for all 26 laser
lines are listed in table 1 and are plotted in figures 3 and 8 for each
cell pressure used and are compared to the Burch extrapolations (solid
curves), The self-contribution shown in figure 3 is weak (a few percent/
kilometer) but not nearly as weak as the extrapolated values obtained
from the elevated temperature data of Burch, In fact, the absorption

is strong in comparison. Also, note that the factor of 2 difference
observed previously at 23°C [1] was still present in the 25°C data at
764,3 torr total pressure. A comparison between the present work at 25°C
and the previous measurement of the water vapor continuum absorption at
23°C is shown in figure 9. The present data are in general about 15 per-
cent lower but well within the measurement uncertainty of about 0.01 km=1,
Finally, comparison of the 14.3 torr data and 1264.3 torr data indicates
much weaker dependence of the water vapor continuum on foreign broadening
pressure than Burch measured at 155°C.

Before the actual value of the foreign-to-self-broadening is obtained,
further data reduction is necessary. At each foreign broadening pres-
sure a quadratic least squares fit of the absorption coefficient versus
frequency was performed by using the data at all 26 laser frequencies.
These fits are represented by the dashed lines in figures 3 to 8 and
all have very similar shapes, including minimums near the same fre-
quency. The values at each laser frequency are listed in parentheses
in table 1 and shown as a dashod line linear fit for laser lines
Pl_o(b) and P3_2(9), respectively, in the lower plots of figures 1 and

2. An iterative process could have been used to make the curves at
each pressure have exactly the same shape by performing a linear least
squares fit to the quadratic curve fit values at each laser frequency
for the six foreign broadening pressures.




These values could then be used to obtain a new quadratic it of absorp-

tion versus trequency for the six foreign broadening pressures, and the

proceas repeated, This proceas was not pursued because the fivat

ftevat{on produced only minfmal changes from the curve fits shown in

figurea 1 to 8, Note that the quadratic vits used on the data were not

perfect shape representations of the continuum abaorption. The endm of

the curves appear to vise too vapidly especially at the higher broad- :
enfng pressures,  As a vesult, extrapolation outafde the 3.5 to 4.0~

micrometer vrepfon will vield only approximate values for the water

vapor cont inuum absorpt fon,

The forefign-to=-self-broadening coetficient B* can now bhe calculated for
each lamer frequency, but first {t should be better defined. Uning
R - V‘/C , equation (1) can be vewrftten tor a given laser line at

"

25°C and 14,3 tore of water vapor as

- S Ao 4 B i P
k‘,(p‘\ n, €, (14 Y p‘\ )

S{ince the curve tit valuer of kv(p'\ vary l{nearly with torveign broad-
ening pressure (see bottom dashed line plots {n figures 1 and ), only
values of kv\n\ and kr(lfﬂn\ need be ured to obtain the values of Bv,

The resulting expreasfon tor BY {a

k‘,\“"‘“ = k _(0) a3 K (125)) « k_(0)
BY - e e L N B B ———— (@)
k“u‘\ 1250 k\‘\\\\

Values tor the torefgn-to-selt-broadening coctticfonts are given {n table
Sand tigure 10 tor all 2o laser lines. Column ) vepresents BN values
obtafned by usfug the absorption coefti{ctents atter the quadratic curve

it was applied to the sets of data at Pe ® O and 125% tory.,  Theve s
something peculiar about these BY values of forefgn-to=selt-broadening

which cannot be explatned even when the 0,01 km“‘ measurenent un-
certainty of the abmovrption coettficients (a8 taken into account., From
tigure 10, B appears to be frequency dependent, showing smaller values

near 800 vm"l than at Jooo cm"l. Column 1 represents values of WA

betore curve titting, the average value tor the f{rat being 0,018 and
the second 0,010, There {r a problem with taking a simple avervage he-
cause the values of B at laser l{nes whetre kv\n\ {r small have large

uncertainties due to the l/kv\ﬂ\ dependence of B4 Hence a weighted

average would be more appropriate, o

| | I e ——— (@)
S
P - kv\U\‘
10
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where the index represents the ith laser line. The B* values for both

sets of B* values in columns 2 and 3 of table 2 gave the same weighted
average value of 0.011 which is an order of magnitude smaller than the
elevated temperature Burch value of 0.12.

One can conclude that the 3.5- to 4.0-micrometer water vapor continuum
exhibits similar behavior to the 8- to l2-micrometer region where the
continuum {s thought to be due to aggregate-water-molecule absorption.
One should not jump to the conclusion that there is no far wing type
absorption however. Note that 65°C foreign gas broadened water vapor
continuum absorption data measured at ASL supports the 0.12 value of
foreign-to-self-broadening ratio rather than the 0.011 measured here
at 25°C.

AMBIENT TEMPERATURE CONTINUUM MODELING

Oné could stop the discussion at this point and allow the readers to
model for themselves the measured values of self-contribution to the
water vapor continuum and the foreign-to-self-broadening ratio at
ambient temperature. A method will, however, be conjectured herein
which should be taken as preliminary since, though it is consistent
with the results obtained thus far, it requires verification by the
extensive temperature dependent study of the water vapor continuum ab-
sorption between 25°C and 65°C now being pursued at the ASL. The
reason for presenting the method of course is that the authors feel that
it will yield more accurate predictions than any of the presently
existing models.

First the authors feel that the water vapor continuum has at least three
significant terms instead of the two shown in equation (1). There should
be an additional term representing a possible aggregate-water-molecule

absorption (perhaps with ionic bonding) [15] of the form nscﬁps which
results in a new expression for k. (v, T) of

ke Go D =g [ oD opg+df @D pt ) 0D ps] (5)

where the superscripts W and A represent, respectively, far wing and
aggregate contribution to the continuum absorption. The temperature
dependence (as discussed later) will not be the same for the different
terms, The justification for the expression is obtained by observing

the behavior of the term CQ (vy T). If the aggregate absorption in

the 3.5- to 4.0-micrometer region is similar to that in the 8- to 12-
micrometer window, there will be little if any change in the absc-ption
with foreign broadening pressure [6]. iha nscg vy, T) Pg term gives

this behavior as well as a squared dependence on the self-pressure
since ng ~ Pge

11

it



Values of Cﬁ vy T pg can be obtained for each laser line and

n
s
foreign broadening pressure used by assuming that the Burch extrapola-

tion {s valid and represents only far wing type absorption which can be
subtracted trom the measured continuum absorption coefficients. A set
of the Burch predictions for the far wing continuum contribution

nqcf (P + 0.12 pg) for 14.3 torr water vapor at 25°C buffered by the

various foreign broadening pressures used i{s given in table 3 for all

206 laser lines. The residual absorption taken as the value of ns(‘.’;pQ
was obtained by subtracting the Burch values in table 3 from the

corresponding curve tit values of total! water vapor continuum absorp-
A

sPs
values is piven in table 4, At each laser line the aggpregate-water-

?qu {s nearly independent of

tion given in parentheses in table 1. The resulting set of qu

molecule absorption contribution ng(
foreign broadening pressure within the experimental uncertainty of the
measured absorption coefficients and the Burch predictions. This pres-
sure independence {s only borderline near 3.5 micrometers. However,
this i{s the region where the ASL 65°C data did not conclusively support
the Burch extrapolations. Even so it is still reasonable until a
better data base {s available to use the average of the six residual
absorption values at each laser frequency listed in column 7 of table 4

as the value of n_Cop. at 25°C.
s'sls

At this point the temperature dependence of the water vapor continuum
will be discussed briefly. The two far wing type terms (superscript W)
in equation (5) arve modeled by using the Burch temperature dependence
which has the torm

.
2 axp|lemfi -4
T i 1

0

where the TO/T part i{s from the ng term, the exponential is due to

. W
(‘:: and t.f y» and the coetticient m is found to be frequency dependent [l(\].

The CQ temperature dependence in the third term of equation (5) is not
known at this time but should cause the apgregate absorption to become
small at 65°C. The absorption should be far wing type dominated at
65°C since the absorption is dominated by the foreign pressure broad-

J
ened term nac¥pf fn equation (5) as evidenced by the agreement of the

Burch predictions and the ASL foreign broadened measurements at 65°C.
The question of how much aggregate absorption is present at 65°C is
atill not clear at this point.

Comparison of the previous ASL 23°C water continuum measurement with
the present one i{s beneficial. In table 5 the Burch water vapor con-
t inuum measurement extrapolations for 14.3 torr water vapor buffered
to 760 torr total pressure at 23°C (column 3) are subtracted from the
ASL measurement curve fit values (column ) to obtain the aggregate-
water-molecule absorption at 23°C (column 4), The 23°C values are

o e A e ———— o mom—




within the measurement error of the 25°C aggregate-water-molecule
absorption values (column 5) obtained in this study; consequently, no
meaningtul temperature dependence can be derived from these sets of
measurements. It is at least pleasing that the 25°C values are in
general smaller than the 23°C, thus hinting at a falloff of the absorp-
tion with increasing temperature as expected. What can be done is tu
average the two sets of values to arrive at values of nscﬁps to be used

for temperatures around 24°C as in column 6 of table 5. The total con-
tinuum absorpticn (column 8) {s obtained by adding the Burch predictions
(colum 7) to column 6.

In review, the proposed model tor the ambient temperature has several new
teatures. First, the water vapor continuum absorption in the 3- to 5-
micrometer window is assumed not to be solely due to selt- and foreipgn-
broadened tar wing absorption but has an additional contribution due to a
proposed apprepate=water=molecule tvpe absorption expressed as n‘Cﬁpp with
essentially no foreign broadening dependence. Second, values for this
aggpregate contribution can be obtained by assuming the Burch extrapola-
tion ot the far wing contribution to the water continuum based on higher
temperature and pressure measurements to be valid at ambient tempera-
tures. The Burch extrapolated values can then be subtracted from the

total measured continuum absorption to give values for nscﬁpq. Third,

the aggregate contribution must decrease more rapidly than the far wing
contribution between 25°C and 65°C since the water vapor continuum is
far wing dominated at 65°C. The exact expression for this dependence
cannot be adequately detined until further measurements are performed.

Last, bearing in mind the above, representative values of nscgps are

obtained by averaging available 23°C and 25°C data to obtain estimates

for the aggrepate contribution around 24°C. Values for the water vapor
continuum absorption can be obtained for temperatures around 24°C by
adding the Burch far wing absorption for this temperature to the 24°C

‘\A
value of ngCepge

The most significant departure of this new modeling scheme for the
water vapor continuum at ambient temperatures will now be discussed.
The water vapor continuum will not vary as expected with changes in the
partial pressure of water at 760 torr total pressure atmospheres. The

24°C values of nscgps column 6 of table 5 and the Burch predictions are
used to model equation (5) for relative humidities ranging from 10 to
100 percent in table 6 for 760 torr total pressure at 24°C. The pre-
dicted absorption values are more strongly dependent on water vapor
partial pressure than previously thought because of the reduced depen-
dence of the water vapor continuum absorption on foreign pressure
broadening. Also, the absorption will not fall off as rapidly with
decreasing buffer pressure as was expected with increasing altitude.
Unfortunately, modeling of the water vapor continuum absorption as a
function of altitude is not practical at this time because of the wide
fluctuation of temperature with changes in altitude.
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Cell transmittances (for a 1,512 km path diftference) and corrve-
sponding water vapor continuum absorption coettficients at 25°C tor
DF laser line Pj-p(4) at 2810.380 em=l, Upper plot:  Absolute non-
absorbing cell transmittance data taken for 14,3 torr of 0 buffered
by 0,250,500,750,1000, and 1250 torr of air (80/20 mixture of N»/0:),
Side=byv=side data represent multiple values at same butfer pressure,
No N> continuum corrvection needed. Solid line represents linear
least squares fit to data. Middle plot: Absolute absorbing cell
transmittance data taken under same buttfering conditions as above
except 14,3 torr of deuterium depleted water vapor replaces the 14,3
torr of 0., Data are corrected for H;0 and HDO line absorptions.
Solid line represents linear least squares tit to data. lower plots:
Per km absorption coefficients for water vapor continuum obtained from
transmittance data for each of the six buffering pressures, Circles
represent absorption coefficients derived from the linear fits shown
in the upper and middle plots. Solid curve 18 a linear least squares
fit to the values thus obtained. Triangles represent absorption
coefficients obtained from a least squares quadratic fit in frequency
for 26 DF laser lines using the linear fit absorption coefficient

(as above) at each of the six buffer pressures. Dashed line {s a
linear least squares fit to these values,
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BUFFER PRESSURE (torr)

Cell transmittance (for a 1,502«km path difference) and correspond-
fng water vapor continuum absorption coefficients at 25°C for DF

laser line P;3_>(9) at 2521.769 em™!, Upper plot: Absolute non=-
absorbing cell transmittance data taken for 14.3 torr of 0, buffered
by 0,250,500,750,1000, and 1250 torr of afr (80/20 mixture of N»/0:),
Side=by-side data represent multiple values at same buffer pressure.
Data are corrected for N; continuum absorption. Solid line represents
linear least squares fit to data, Middle plot: Absolute absorbing
cell transmittance data taken under same buffering conditions as above
except 14,3 torr of deuterfum depleted water vapor replaces the 14,3
torr of 0;, Data are corrected for N: continuum and H,0 and HDO line
absorptions, Solid line represents linear least squares fit to data,
Lower plots: Per km absorption coefficients for water vapor continuum
obtained from transmittance data for each of the six buffering pressures.
Circles represent absorption coefficients derfved from the linear fits
shown in the upper and middle plots. Solid curve is a linear least
squares fit to the values thus obtained. Triangles represent absorp-
tion coefficients obtained from a least squares quadratic fit in
frequency for 26 DF laser lines using the linear fit absorption coef-
ficient (as above) at each of the six buffer pressures, Dashed line
{8 a linear least squares fit to these values,
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TABLE 2.

FOREIGN-TO-SELF BROADENING COEFFICIENTS (C¢/Cg) FOR 14.3 TORR
WATER VAPOR CONTINUUM AT 25°C

Laser Line Foreign-to-self Broadening Coefficients
from i
Curve Fit Measurements =
P, (2) .0021 .0034 |
P1(3) .0025 .0015 |
P1(4) .0032 .0034 i
P1(5) .0040 .0102 ,
P, (6) .0052 .0150 |
P2(3) .0063 .0041 ;
Py(7) .0069 -.0001 ;
P2(4) .0082 .0026
P]§8) .0093 .0014
P>(5) .0110 .0020
P1(9) .0128 .1065
P> (6) .0149 -.0010
P1(10) .0181 .0746
P5(7) .0199 .0129
P3(4) .0238 .0068
P5(8) .0259 .0276
P3(5) .0290 -.1608
P>(9) 0311 -.1209 |
P3(6) .0330 .0320 :
P2(10) .0336 .0284
P3(7) .0336 .0188
P2(11) .0318 .0281
P3(8) .03 1270
P3(9) .0268 .0071
P3(10) .0224 .0286 |
P3(11) .0184 .0135
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TABLE 3,

| BURCH EXTRAPOLATIONS FOR THE WATER VAPOR CONTINUUM ABSORPTION
| FOR 14.3 TORR WATER VAPOR AT 25°C FOR VARIOUS AIR BROADENING PRESSURES

S -1
Burch Extrapolated Absorption Coefficients (km ')

Laser Line For Different Air Broadening Pressures

0 Torr: 250 Torr 500 Torr '750 Torr 10C0 Torr 1250 Torr

.0052 .0161 .02 .0380 .0439 .0599
.0049 .0152 .0255 .0358 .0461 .0564
.0046 .0142 .0239 .0335 L0431 .0528
.0043 .0132 .0222 0311 .0401 .04
.0039 .0122 .0205 .0287 .0370 .0453
.0037 .0115 .0192 .0270 .0348 .0425
.0036 0112 .0187 .0263 .0339 .0414
.0034 .0105 .0176 .0248 .0319 .0390
.0033 .0101 .0170 .0238 .0306 0375
.0031 .0095 .0160 .0225 .0289 .0354
.0029 .0091 .0153 .0214 .0276 337
.0028 .0087 .0147 .0206 .0265 .0324
) 0027 .0083 .0139 .0195 .0251 .0303
.0025 .0080 .0135 .0189 .0244 .0298
.0025 .0076 .0128 .0180 .0231 .0283
.0024 .0074 .0124 .0175 .0225 J0275
.0023 .00 .0119 .0167 .0216 .0264
.0022 .0069 015 .0162 .0209 .0255
.0022 .0068 0114 .0160 .0205 0251
.0022 .0068 413 .0161 .0208 .0254
.0022 .0069 L0117 .0164 L0211 .0258
) .0023 .0072 0121 .0170 .0219 .0268
.0024 .0074 .0124 .0175 .0225 .0275 1
.0026 .0082 .0137 .0193 .0248 .0304
.0030 .0092 .0155 .0218 .0280 .0343
.0033 .0104 .0174 .0244 .0314 .0385
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