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based on an alternating direction , implicit time—marching solution to a
general coordinate representation of the Navier—Stokes equations has been
mod ified to be applicable to the blade passage problem . In addition , a
simple external flow field , i.e., flow past a circular cylinder , has been
calculated in order to gain exper ience in working with this code and to
assess its rel iabil i ty and e f f i c i ency .  In the second part of the present
ef fort an interacting boundary layer model , incorporating asymptotic triple
deck concepts , has been constructed to predict the flow in the trailing edge
region of an airfoil. - Numerical results, based on the triple deck version
of this model are pre~ented for both attached and separated laminar super-
sonic flows past symmetric sharp trailing edges. Results for a flat plate
trailing edge are in good agreement with the previously published numerical
results of P. C. Daniels.
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INTRODUCTION

An important problem which must be faced by the designer of advanced
gas turbine eng ines is the prediction of the viscous flow field in and around
turbine and compressor blade passages. Such a prediction is required to
determine heat trans fer  rates and aerodynamic losses both of which may be
critical to successfu l engine operation . Inaccurate predictions of either
loss coefficients or heat transfer rates may result in poor estimates of
engine performance or even catastrophic failure of the engine components.
For examp le , excess aerodynamic losses associat ed with viscous phenomena
including boundary layer separations , trailing edge—wake interactions and
massive stall may result in a serious deterioration of component efficiency.
In addition , excessive heat transfer rates associated with boundary layer
separation and reattachment on turbine blades and end walls can have damag-
ing effects as the resulting hot spots may result in structural failure.
Since aerodynamic 1os~~s and heat trans fer rates are associated with the
viscous nature of the fluid , the ability to predict the viscous flow field
in high performance turbine and compressor blade passages is crucial to the
successful design process.

For the flow regimes and configurat ions of practical interest , in either
internal or external aerodynamics , the Reynolds number is usually suffi-
ciently high so that viscous effects are concentrated in relat ively thin
layers. While this in general allows the direct use of the boundary layer
approximation to obtain meaning ful predictions of viscous phenomena there are
several regions of flow over airfoils where the boundary layer approach
breaks down . For example , this approach does not apply in the vicinity of
leading edge separations , shock wave/boundary layer interactions , strong
blowing sites and trailing edge—wake interactions . The common feature of
the flow in these regions is that the boundary layer—like viscous region is
displaced from the airfoil surface and exerts a significant influence on the
inviscid flow. Therefore it is not surprising that the flow in such regions
cannot be adequately described by the usual boundary layer approximation .
When viscous displacement effects do alter the inviscid flow field signifi-
cantly, it is necessary for the calculation procedure to recognize the mutual
dependence between the viscous and inviscid regions either by a solution of
the full equations of viscous fluid motion throughout the entire region of

• interest or by a strong interaction analysis between a viscous region solu-
tion and an invjscjd outer field solution . Thus two methods of approach are

• currently available which offer the long term prospect of providing useful
viscous aerodynamic design information . One consists of obtaining numerical
solutions to the compressible Navier—Stokes equations and the other consists
of constructing and numerically solving viscid—inviscid interaction models of
localized flow regions.
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The emergence of numerical solutions to the Navier—Stokes equations as
a viable method for predicting viscou s flows is a fairly recent phenomena
resulting from rapid advances in numerical analysis coupled with development
of high speed computers. Such solutions can be obtained either through solu-
tion of the steady—state equations via a relaxaat ion procedure or through
solution of the time—dependent Navier—Stokes equations under the influence
of stead y boundary condi t ions . In the latter case , each time—step may be
thought of as a step in the relaxation procedure. Time dependent solution
procedures may be either explicit or implicit. If the method is explicit ,
the time—step is governed by stringent stability limits which relate the
maximum t ime—step to the size of the computational grid . If a viscous layer
is to be adequately def ined , a f ine grid is required in the v i c in i ty  of the
blade surface and in such cases the stability limit would make an explicit
calculation impractical. However , implicit methods are not subject to such
stability limits , rather they are only limited by the physical time scale of
the flow . As a result a time—dependent implicit solution procedure for the
three—dimensional Navier—Stokes equations has been developed at UTRC by
Briley and McDonald. This computer code is a highly modularized program
which has options for two— and three—dimens ional modes of operat ion . In
two—dimensions , solutions to a general coordinate representation of the
Navier—Stokes equations can be obtained . The code has been used previously
to calculate laminar ai’id turbulent flows in ducts and low to moderate
Reynolds number flows past simple aerodynamic shapes, and it could form a
basis for the calculation of viscous flows through cascades. Such solu-
tions would include viscous effects and would be extendable to turbulent
flows and to three—dimensional and time—dependent problems . It is antici-
pated , however , that the computing t ime required to obtain Navier—Stokes
solutions for cascade flows may limit the usefulness of such solutions to
the turbomachinery designer. In addition , there is some doubt at present
that stable Navier—Stokes solutions can be obtained in the Reynolds number
range of practical interest (i.e., Re 0(106). Future research should
do much to al lev ia te  these l imi ta t ions  but at this  juncture  the prospect of
effectively using Navier—Stokes calculations for design applications still
seem to be far off.

Although the Navier—Stokes equations contain all the necessary physics
to describe viscous separation phenomena , it has long been felt that an
intermediate theoretical approach , i.e., a viscous/inviscid interaction
model could provide a useful basis for describing a large class of boundary
layer departure flows. The results of relatively recent numerical experi-
ments do provide empirical support for the use of such models for both low ~•

and high speed flows. In those cases where detailed investigations have been
conducted , predictions based on viscous/inviscid interac t ion models have been
found to reproduce Navier—Stokes predictions and/or experimental dat. at
moderate to high Reynolds numbers.
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V i sc id—inv i sc id  in terac t ion models ( i n t e r a c t i o n  boundary layer , t r i p l e
deck , etc.) consider three basic elements of the flow : an inviscid region ,
a viscous reg ion which is shear layer like and an in terac t ion  reg ion which
actively connects the two . Such a model allows one to focus attent ion on
the significant phenomena in their respective flow regions and therefore
develop efficient and reliable solution technique s tailored to the needs of
each individual region . Numerous examples exist where the interacting bound-
ary layer concept has been successfully applied to laminar and turbulent
separat ion bubbles in external  aerodynamics problems . In add i t ion , the
tri ple deck equations , which are a subset of the interacting boundary layer
equat ions , have been used to rigorously stud y and solve t r a i l i ng  edge flows .
Much fundamental work has been done for laminar flow ~ast sharp and blunt
(unstalled) trailing edges and Melnik , Chow and Mead have achieved a dra-
matic success for at least one highly important prac t ical problem , the pre-
diction of Reynolds number effects on the lift (Kutta condition ) for turbu-
lent flow past transonic airfoils with sharp, attached flow , trailing edges.
Fi n a l l y ,  recent  fundamental  work indicates  that the combination of class ica l
f ree  streamline theory and v i sc id—inv i sc id  in teract ion concepts wi l l  provide
a va l id model for p red ic t ing  the major  fea tures  of massive s t a l l  phenomena.

It cu r r e n t l y  appears that  v i sc id—inv i sc id  in teract ion models have the
poten t ia l  of providing fas t  and accurate predictions of several of the vis-
cous phenomena of importanc e in turbomachinery applications . As such , inter—
act ion concepts appear to hold the promise of producing useful and efficient
des ign ca l cu l a t i on  procedures for turbomachinery applications. Since the
interaction equations are a subset of the Navier—Stokes equations and as
such identify th~ dominant terms in those equations and the appropriate
scaling laws and correlation parameters , then development of numerical tech-
niques for viscid—inviscid interaction models may have a direct impact on,
and indeed may be a prerequisite for the development of reliable and effi-
cient ways to solve the Navier—Stokes equations in the high Reynolds number
regime .

With the foregoing considerat ions in mind a research effort has been
conducted to develop an analysis for the prediction of high Reynolds number
flow in a cascade passage . Under the present study an existing implicit
time—marching Navier—Stokes computer code has been further developed to treat
cascade flows . In part icular , the general coefficient , matrix inversion, and
boundary condition subroutines have been modified to allow for the specifica-
tion of cascade blade—to—blade periodicity conditions . In addition , calcu-
lations have been performed to assess the reliability and accuracy of the
Navier—Stokes computer code and to verify the successful completion of the
coding changes made under the present contract . Finally, an effort has been
initiated towards bring ing viacous/inviscid interact ion concepts to bear on
the viscous phenomena of importance in turbomachinery flows. In part icular ,
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a v i scous / inv i sc id  i n t e r a c t i o n  model incorporating asymptotic tri ple deck
concepts has been formulated for high Reynolds number laminar trailing edge
flows . Numerical solution procedures based on the tri ple deck version of
this model have been developed and results for both attached and separated
“stalled” trailing edge flows have been obtained .

4



PART I

DEVELOPMENT OF A NAVIER-STOKES SOLUTION PROCEDURE

FOR VISCOUS CASCADE FLOWS
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LIST OF SYMBOLS — PART I

Except where dimensions are specified , all quantities in the following
are nondimensional; physical velocities are normalized by Ur~ 

density by 
~r ’

pressure by OrUr
2
~ 

dynamic viscosity by p~~, and t ime by Lr/Ur
where Lr is the re fe rence  l eng th .

Coefficient matrix , Eq. (1—21)

A Constant defined in Eq. (1—3)
Coefficient matrix , Eq. (I—15a )

b?,3,k Coefficient matrix , Eq. (1—21)

B Constant , defined in Eq. (1—3)

- k Coefficient matrix , Eq. (1—21)
, I

d?~~~k 
Column vector , Eq. (1—21)

Dm~ 
Dm
2 Finite difference operators for coordinate ylfl

D~~ Momentum equat ion coe f f i c i en t , E q.  ( 1—6 )

Dr~
De Damping constants for coordinat e trans formations , Eqs. (1—24)

Column vector function of the dependent variables and their
spat ial  der iva t ives  in a single coordinate  d i r e c t i o n , E q. (1— 9 )

Boundary condition matrix operator , Eq. (1—30)

Column vector con ta in ing  spa t i a l  der iva t ives  of the dependent
va r iab les  in the ~m — d i r e c t i o n  on ly ,  E q. ( 1— 17)

Coordinate base vector , Eqs. (1—35)

E~f~ Momentum equation coefficient , Eq. (1—7)

FTjk Momentum equat ion c o e f f i c i e n t , Eq. ( 1— 6)

Metric tensor coefficient

Inverse metric tensor coefficient

6
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LIST OF SYMBOLS — PART I (cont ’d)

Gijk Momentum equation coefficient , Eq. (1—6)

H Column vector function of the dependent variables , Eqs. (1—9 , 1—1 0)

I Boundary point index — y1 
— direction

Momt~itum equation coefficient , Eq. (1—6)

J J a c o b i a n
Boundary point index , y2 — d i r e c t i o n

K Momentum equation coefficient , Eq. (1—6)

Lr Refe rence  length , m e t e r s

~~~ Momentum e q u a t i o n  c o e f f i c i e n t , E q.  ( 1 — 6 )

I Matrix opera tor , E q.  ( I — l S c )

Matrix operator containing spatial derivatives in the ~m —

direction only, Eq. (1—17)

M r Refe rence  Mach number

Uni t  outward normal vector

p Pressure

Computational radial coordinate

R Ph y s i c a l  rad ia l  coord ina te

R
~ 

Momentum equation coefficient , Eq. (1—6)

Re Referenc e Reynolds number , prUrL/Ur

Mesh Reynolds number , I U m I~~X~R~

S Col umn vector containing mixed second order spatial derivative
terms , Eq. (1—9)

t Time

7
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LIST OF SYMBOLS — PART I (cont ’d)

T Tempera ture

Total t e m p e r a t u r e

um Cartesian velocity component , Eq. (1—22)

U r Refe rence  speed , m e t e r s / s e c

V e l o c i t y  v e c t o r

C o n t r a v a r i a n t  v e l o c i t y  c omponent

v(i) Physical velocity component

y 1 Computa t iona l  c u r v i l i n e a r  coord ina te

Spa t i a l  d i f f e r e n c i ng p a r a m e t e r , Eq .  ( 1—20 )

Temporal d i f f e r e n c i n g  p a r a m e t e r s , E q s .  ( I — l i , 1—12 )

Spec i f i c  heat  ra tes , c~~/c~

Kronecker delta

Time increment

Mesh spacing for  c a r t e s i a n  coord ina te  ~m , Eq.  (1 —22)

~ym Mesh spacing for  coordina te  yW

hr , ae Mesh spac ing for  c o m p u t a t i o n a l  polar  coordinates r and e

£~~, k. Spatial difference operators , Eq. (1—20)

£ Convergence parameter , Eq. (1—34)

Artificial viscosity, Eq. (1—22)

e , e Angular polar computational and physical coordinates

8

- ~—~- - 
- 

~~1~~ 
—



- - - - - F- -

LIST OF SYMBOLS — PART I (cont ’d)

Dyn amic v iscos i ty

p Dens i ty

• Dependent v a r i a b l e  column vector , E q. ( 1—9)

• Dependent variable column vector , Eq. (I—l5a)

w Fourth d e r i v a t i o n  d i s s i p a t i o n  c o e f f i c i e n t , E q. (1—23)

Subscr i pts

i , j , k Denote covar iant  tensor component s or func t i on  evaluated at g r id
p oin t  (y ’, ~

J , ~~~

r Denotes dimensiona l reference value

t~~O Denotes invisc id  i n i t i a l  so lu t ion

, i ~enotes covarian t de r iva t ive  w i t h  respect to coordinate y’

Superscr i pts

i .,j,k Denota contravariant tensor component or grid point location

L Denotes  lower per iodic  boundary of blade passage

U Denotes upper periodic boundary of blade passage

** Denote intermediat e solutions of alternating direction procedure
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BACKGROUND

The UTRC Navier—Stokes computer code obtains implicit time—marching
finite difference solutions to a general coordinate representation of the
equations of motion . The numerical solution procedure on which this code is
based was ori g i n a l l y  developed by Br i l e y  and McDonald ( R e f .  I — i ) .  A t y p i c a l
time step in their procedure consists of a t ime—wise linearization followed by
a fully implicit difference approximation which is solved by an ADI (Alternat-
ing Direction Implicit) procedure of the Douglas—Gunn type (Ref. 1—2) . The
advant age with ADI methods is that a short sequence of simple matrix inver-
sions replaces the complicated matrix invers ion problem associated with a
direct solution of the implicit equations . In this way a real savings in
computer time is made without sacrificing accuracy or stability. Briley,
McDonald , and Gibeling (Ref. 1—3) have shown that the ADI scheme has run
stabl y and accurately with time steps which are orders of magnitude larger
than the explicit stability limit (Ref. 1—4). The first applicat ions of the
imp l i c i t  t ime—marching Navier— Stokes  computer  code involved the calculation
of laminar and turbulent flows in rectangular ducts (Refs. I—]. and 1—3).
Recently the basic numerical analysis (and computer code) has been extended
by Cibeling , Shamroth and Eiseinan to consider a general curvilinear coord i-
nate form of the Navier—Stokes equations . In addition , they applied the
curvilinear coordinate version of the Navier—Stokes code to calculate low to
moderate Reynolds number external flows past simple aerodynamic shapes (Ref.
1—5).

In the present effort sample external flow calculations have been per-
formed to assess the reliability and accuracy of the current version of the
implicit time—marching Navier—Stokes computer code, and this code has been
modified to treat cascade blade passage flows . The governing equations and
numerical solution procedure upon wh ich the UTRC Navier—Stokes computer code
is based will be outlined be low for the special case of laminar , steady adia-
batic flow . The equations of motion and the numerical solution procedure are
described for three—dimensional flows ; however , only two—dimensional applica-
tions have been considered herein . For a more general treatment of the gover-
ning equations and more complete details on the numerical method the reader
is referred to References I—I , 1—3 , and 1—5.

10
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EQUATiONS OF MOTION

All quantities in the following equations are dimensionless; physical
velocities are normalized by Ur~ 

density by 
~r’ 

pressure by PrU
2
r, tem-

perature by Tr~ 
molecular viscosity by Ur~ 

length by Lr~ 
and t ime by U r/Lr~The fluid is assumed to be a perfect gas with zero bulk viscosity coefficient

and constant molecular viscosity and specific heat. The flow is assumed to
be adiabatic with constant total temperature , T0, and body forces are assumed
to be neg li gible. Under these assumptions , the Navier—Stokes e~uations can
be written for t ime—independent , curvilinear coordinates (y 1 , y’, y3) as follows
(Ref. I—b): the continuity equation is

~ç +(pV ’),~:~~ ( 1—1)

and the momentum equations are given by

I ( K
( 1—2)

where P is the d e n s i t y ,  is the velocity, p is the pressure , ii is the
molecular viscosity, Re PrUrLr/i

~r 
is the Reynolds number. In addition , g

~
3

are components of the inverse metric , vt are contravariant velocity components ,
subscri pts after co as denote covariant derivatives , the indices i, j ,  and k
vary from 1 to 3, and repeated indices are to be suamed . The energy equation
can be rep laced with an adiabatic equation of state

p =
~~ [A +Bg ,v’v J] (1—3)

where A To/YM r
2
~ 

B ~ (y — l)/2y, 
~~ 

are components of the metric tensor ,
Mr is the reference Mach number , and y is the specific heat ratio (c

~
/c
~
).

After substituting Eq. (1—3) into Eq. (1—2) to eliminate the pressure ,
the governing equations can be expressed in a convenient form for numerical
calculations (Ref. 1—5). It follows after some algebra that

+ .L... (~ jv~
) rO (1—4 )

t
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and
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K - ~~ + F
m ô (pv ivk )

~~ 
(jg

11
pv 1) +

( ‘— 5 )
K km+ L~1 E + D1~ K m + R1p +

ôy öy o y

+ G,Jk pv ’v ”

The coefficients in Eq. (1—5) are defined by
K

F’~ =(g 8~~+Bg 8m)J

Tn

ij k 

dFJKI 
— ~~ ô9~~ m n

= 
~~~ 2 

~~~~~~

— (
~ 

8k+Bg~k gmn)
y

R :4 _ ~i ~~~~~~~~~~~~ A 
Q1k jh

9I j 
ay i

(1—6)
krn ~“D,1 ~~~~~ J 

[* 
8~

I
8r _ g . g

km _ 8
I
87~]

+ ____ 

ôQ~~ 
[iQ

Am pk ~9pfl 2 ~ L~~~~~~ ~Ri ôy~ 
T

ö01 
_____= + I 

~~~~~~~~~~~~~ 
j  

~~~~~~ f gkn 8m
+Qkm 3fl ...

+gnm 8k]éj m 2Reôy
where the Kronecker symbol d~vanishes unless i — j in which case it is
unity and

1~ ‘~2 iL 8k _ a  ink ~9 im.

~~~~

. [
~ 

g 
ôy i ] 

(1—7)

Equations (1—4 ) and (1—5) are the Navier—Stokes equations in a fixed coordinate
f rame (y 1 , y2 , y3) with the density, p ,  and the contravariant velocity compo—
nents , v~ , i • 1 , 2 , 3, taken as dependent variables . ~~ce the curvilinear
coordinate system is prescribed , the Jacobia n and metric tensor component s
and hence the coefficients , defined by Eqs. (1—6) and (1—7), become known
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functions of the spatial coordinates . Previous experience (Ref. 1—5) has
indicated that the use of contravariant velocity components as dependent
variables can lead to serious truncation errors and as a result the current
version of the UTRC Navier—Stokes computer code has been formulated to
consider the density and the physical velocity components , v (i) as basic
dependent variables , where

v(i) (g 11 )
I
~
2 v (no sum on I) (1—8)

The appropr ia te  form of the Navier—Stokes  equat ions is then obtained after
subst i t u t i n g  Eq. ( 1—8) into E qs .  ( 1— 4) and ( 1— 5 ) .

Althoug h the use of gene ra l ized  (nonorthogonal )  coordinates leads to a
complicated form of the equations of motion . Such coordinates o f f e r  signifi-
cant computational advantages. In particular , physical boundaries of the
flow region can be represented as coordinate surfaces , thus removing the
need for  f rac t iona l  cel ls  and boundary condit ion interpolat ions . Further ,
a uniform mesh can be used in computational space and mapped into a mesh
su i t a b l y  d i s t r ibu ted  in physical  space to capture large solution gradient s
such as those occurring in boudary layers and near airfoil leading and
trailing edges. Finally, the uniform mesh in computational space simplifies
the finite difference approximations of derivative terms .

13



NUMERICAL SOLUTION PROCEDURE

The numerical method can be briefly outlined as follows: the governing
equations are replaced by an implicit time difference approximation , option-
ally a backward difference or Crank—Nicolson scheme . Terms involving non—
linearities at the implicit time level are linearized by Taylor expansion about
the solution at the known time level , and spatial difference approximations are
introduced . The result is a system of linear difference equations for the
dependent variables at the unknown or imp licit time level. To solve these dif-
ference equations , the Douglas—Cunn (Ref. 1—2) procedure for generating
alternating—direction implicit (ADI) schemes is introduced . This technique
leads to systems of coupled linear difference equations having narrow block—
banded matrix structures which can be solved efficiently by standard block—
elimination methods.

To describe the numerical procedure it is convenient to express the
Navier—Stokes equations in the following matrix form :

= ~ 
(
~

) + s(4’) (1-9)

where • is a column vector containing the dependent variables, H is a column
vector function of •, .2 is a column vector whose elements are functions of the
dependent variables and their spatial derivatives in a single coordinate direc-
tion , and S is a column vector whose elements are functions of the mixed
second order spatial derivatives of the dependent variables. For example,
when the contravariant velocity components are treated as dependent variables ,
•, H (

~) and S (~
) have the form (cf. Eqs. (1—4) and (1—5)):

Jp

J9 i~pv j
.H: 

i92 j p V ’

J931p V 1

(1—10)

(D:~ 
+ D~’) ôy ’ô~~ 

+ (D’,~ + o~) ~~~~T + (D~~ + o~ ) 
~~~~~

= (D~ + D~~) ô
1
~~~

2 + (o
~ 

+ D~~) ôy y ~ 
+(D~~ + D~~) ~~~~~~~~~~~~~

- 

(o~
2
~ +D~~) ~~~~~ 

+ (D~ +D~~) 
~~~~~~~~~~~~~ 

+ (o~~+ D~~) Ô~
:;~

3

1.4

— -.~~~~ .I•— ~~~~~~~~~~~~~~~~~~ 
- —



and the elements of the column vector.~~(4) consist of the remaining terms in
Eqs. ( 1—4 ) and ( 1— 5) . It should be noted , th at certain def ini t ions  and descrip-
tions of terms provided in the present discussion differ from those given
earlier in Refs. I—i , 1—3 and I—S . However , the definitions used here are
appropriate to the current version of the implicit time—marching Navier-~Stokes
computer code.

The solution domain is discretized by grid points having equal spacings
in the computational coord inates, L1y~- , ~y

2, and 
~
y3 in the y1, y’ and y3 direc-

tions, respectively, and an arbitrary time step , ~ t .  The subscripts I, j, k
and superscript n are grid point indices associated with y1, y2, y3 and t ,
respectively,  and thus ~~ k denotes ~ (y~ , y~ , y~ , t n ) .  It is assumed tha t
the solution is known at ~~~ n level , t~~, and Is desired at the (n + 1) level ,

At the risk an occasional ambiguity, one or more of the subscripts
Is frequently omitted , so that •fl is equivalent to

Linearization Scheme

A linear difference approximation to the nonlinear governing equations is
obtained from the following time—difference replacement of Eq. (1—9) :

(H~ 
~~~~~_ l4~’)/~ t = ~ ~~~f l+ I 4(1 —

~~
) ~~~~“ + 

~~ 
+ (I — 

~~ 
Sn (I-l i)

where , for example , ~~~ — H(~~~
1). The parameters (0 

~ 
81, B ~ 1) permit

variable centering of the scheme in t ime . Thus Eq. (I—li) pro3uces a backward
difference or fully implicit formulation for 81 82 1, a Crank—Nicolson
formulat ion for B~ — 82 — 1/2 , and a forward dif ference or fu l l y explicit
scheme for g1 82 U. Unconditional stability is anticipated for

~~ 
> 1/2. In the present method the column vector S (+) Is treated

explicitly. Thus with B — 
~~ 

Eq. (1— 11) reduces to

(H~~~’— s ~)/At ~~~~~~~~~ 4 ( ,_ ~~~
)
~~~~ fl 

~~~~~ (1-12)

• The mixed derivative terms (in S(~)) could be treated implicitly within the

ADI framework;  however , this would increase the number of intermediate steps
and thereby complicate the solution procedure. Test cases computed while
developing the present numerical method (Ref a. 1—1 and 1—3) have indicated
that the explicit treatment of mixed derivative terms has no observable adverse
affect on stability.

_ _  
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The linearization is accomplished by a two step process of expansion
about the known time level t ’~ and subsequent approximation of the quantity
(~~~ /~~t ) ’~ tt , v~ich arises from chain rule differentiation , by ~~~~ 

—

The result is

I4~~~: ~~~ (aH /a+)~(~~’—+~) +c~ (At)
2 (I-l 3a)

.~~
n+I ~~~~ 

~~~~~~~~~~ +~~
(At)2 (I—l 3b)

The matrix ~H/~~ is a standard Jacobian whose elements are defined by
(
~H/~~)qr ~~~~~~~ The operator elements of the matrix 3 .~ / a4 are similarly
ordered , i.e., (a .~~

/
~

c1)qr a2 q/a4~ however , the intended meaning of the
operator elements requires some clarification . For the qth row2 the operation
(~ .~ q/~4))fl (~n+1 — •

n) is understood to mean that (3/at .2 
[~~ y
’
~ 

y2, y3, t ) ] }’~~t
is computed and that all occurrences of (3$ r /3t)~ arising ~rom chain rule
differentiation are replaced by 

~~~~~ 
— 4~ ) / t.~t. The substitution of Eqs.

(1—13) into Eq. (1—12) leads to the following linear, implicit, first order
accu rate t ime—d ifferenced scheme:

~~ 
(+~ ‘— ,i/~ = ~ ~~~~~~ + ~~ + s~ 

(1-114)

Equation (1—14) is linear in the quantity (~n+l — 4~
) and all other quantities

are either known or evaluated at the nth time level. It is convenient to
solve Eq. (1—14) for (4~~~ 

— 4~
T~) rather than t ’~~~. This reduces roundoff

errors, since it is presumably better to compute a small 0 (st) change in an
O (1) quantity than the quantity itself. After defining the symbols:

• +-.•
‘l (I—iSa)

n

• - ~ (a.~/o~)’~ 
(I-15c)

Equations (1—14) can be written in the following simplified form

(a + At.!) q,f l+ l , 
~~~ [~~n~ 

~~~~ 
(1—16)
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Alternating Direction Procedure

The solution of Eq. (1—16) is accomplished by application of an alter-
nating—direction imp licit (ADI) technique which is a generalization of the
procedure developed by Douglas and Gunn (Ref. 1—2) for generating ADI schemes
as perturbations of fundamental implicit difference schemes such as the back-
ward—differences or Crank—Nicolson schemes. The vector operator ~~~~~ contains
terms which are functions of 4 and , in addition , terms which are functions of

~ and the first and second order derivatives of ~ with respect to y
1, y2, and

y3, but no mixed derivatives. Thus .2(and hence)) can be split into three
ope rators .~~1,.~~2 , .~~3, associated with the y 1- , y 2 , and y 3 coordinates , each
having the fun ctional form .

~ m 
= 

~~~~~~~ 3/3YTfl , 32/3~m3~m)~ Those terms of

~~~~ which do not contain a spatial derivative are grouped under the operator

~~ 
Equation (1—16) then becomes

[A+At (J+.!2+J3)]~~~~:At [.~ 
+.

~~~~~ 
+.~~~~~ +S1.~] (1-17)

and th e Doug las—Gunn representation of Eq. ( I— l 7) can be writ ten as the fol-
lowing three step solution procedure :

(a + AtJ1)~ At { .
~~~I 

+ .~~~ + .~~~ + (I-18a)

(A +At4)~I’
5
=A4 l (I—18b)

n+l is
(A + At 13) * A+ (I—18c)

where ip* and ~** are intermediate solutions. If ~4 * and ~P*~ are eliminated,
Eqs. ( 1—18) become

(a .~. AtJ1)~~ (a + ~ t 4)a ~ (a + AtJ )~~~
1 

At [.
~~

‘+ .
~~~ 

+ .
~~~ 

+ S~
h1
~ (1-19)

and after performing the multiplication on the left—hand side of Eq. (1—19) ,
it is apparent that Eq. (1—19) approximates Eq. (1—17) to order (~ t) 2 .

Spatial differencing of Eqs. (1—18) is accomplished by replacing deri-
vative operators such as a/a ym and 32/3ym3ym (no sum on m) by corresponding
three point finite difference operators , Dm and D~ where 

-- . .
~ ~~~~~~~ ~~~

--—- -— . . - 

~~~~~~~~~~



1Dm 4) ~ {a~~_ + ( I_ a) A+] #/Aym a~/a/” + ~~[(Ay)
2 + (a_ I/2)t~ym] (I- 20a)

D~ 
4) (~ +&) #/(A m)

? ... ~
2
+/ô

m ö~
m 

+ ~~(~~ m)
2 

(I-20b)

Here , 
~~~ 

and ~~~ represent forward and backward d i f f e rences  in ~. . For
examp le , the d i f f e r ence  app roximation to the derivative of • at the point
(y~ , y~~, y~ ) in the y 2 — direct ion (m = 2) is obtained by se t t ing

~+ 4~i , j  ,k = ~i ,j+l ,k — 

~i,j ,k 
and tL. 

~i,j ,k ~i,j ,k 
— 

~i ,j — l ,k~ 
The

pa rameter a has been introduced (0 < a < 1) in Eq. ( 1—20 ) to permit con-
t inuous var ia t ion  from backward to forward d i f fe rences .  The standard central
d i f f e rence formula is recovered for a 1/2 and was used for  the numerical
calculat ions reported here .

With the int roduction of the spatial d i f fe rence  operators Dm and
defin ed in Eqs. ( 1— 20) , the solution procedure for  the al ternating direction ,
implicit time marching form of the governing equations , Eqs. ( 1— 18) , can
be desc ribed . Since Dm and D~ are three point d i f fe rence  operators , the
f i n i t e  d i f fe rence  approximation to Eq. (I—18a) contains ~~~~ ,~ 

k’ ~~~ k ’
and ~V* j+l,j,k as unknowns. Hence, the system of linear equatlor s gene~~.~ed
by writing Eq. ( I— l8a) at successive grid points (y~~, y~ , y~ ; I = 1, ..., I)
can be written in block—tridiagonal form ; i.e.,

n * n * n0 I11~K i — I ,j,k + bI l k  i,~,K + C,,~,k i+I ,j, k — i,j ,k (1—21)

where a , b, and c are square matrices and d is a column vector , each con-
taining only n—level quantities. When applied at successive grid points
(I  = 1 , I ), Eq. ( 21) generates a b lock—trid iagonal system of equations
for ~* which , after appropriate treatment of boundary conditions , can be
solved ef f ic ien t ly by using standard block—elimination methods (Ref. I—i).
The so lu tion procedu re fo r Eqs. ( I — 18b , c) is an alogous to that just desc r ibed
fo r Eq. ( I— l8a) .

Artificia l Dissipation

In computing solutions for high Reynolds number flows, it is often
necessary to add a form of a r t i f i c ial viscosity or dissipation . One possible
dissipation term in common use is based on an observation by Roache (Ref .  1—8 )
that f or a linear model problem representing a one—d imensional balance of
convection and diffusion terms , solutions obtained using central differences

18 
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fo r the convection terms are well behaved provided the mesh Reynolds number
Re is < 2 , but that  qua l i t a t i ve  inaccuracies associated

with boundary conditions occur for ReLXm > 2. This suggests the use of an
artificial viscosity term of the form cmD~ 1 , where

- 

IUmfr~
m 

i I ( R e
~ x m ....s) i Re~~~~

> 2
Em ( 1—22 )

O ,ReAxm �2

to insure that the local effective mesh Reynolds number is no greater than two .
This result has been extended for generalized tensor equations and the appro-
priate dissipation terms for the continuity and momentum equations have been
incorporated by Cibeling et al. (Ref. 1—5) into the present version of the
UTRC Navier—Stokes computer code.

A second type of artificial damp ing which is a fourth—order dissipation
term has been suggested by Beam and Warming (Ref. 1—9) to dam p small wave-
length disturbances. In the present formulation an explicit fourth—order
damping term was added directly to the fundamental difference scheme,

• Eq. (1—16) , as follows:

• (A +At J )4 l~ :At [~~ (4)fl) ÷S~] +
~~ (~~~~ m)

4 C
~
1m 

Ô( y~ )4 (1-23)

This dissipation term is treated explicitly to retain the block tridiagonal
matrix structure of the finite difference form of the governing equations .
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NUMERICAL RESULTS FOR FLOW PAST A CIRCULAR CYLINDER

Under the present effort imp licit time—marching Navier—Stokes solutions
have been compuied for symmetric , two—dimensional flows , at Reynolds numbers
(b ased on diameter ) of fo r ty and e ighty , pas t a c irc u lar cy linder (Fig. l).
In both cases the free stream Mach number was set equal to 0.2. The circular
cy linder case is a convenient examp le because it represen ts a rel ativel y
simple geometry and both experimental data and other numerical solutions are
ava ilable for comparison (cf. Ref. 1—10). In particular , C ibel ing ,  Sharnroth ,
and Eiseman (Ref. 1—5) have computed the flow past a circular cy linder at a
Reynolds number of forty using the present numerical method . These authors
con sidered the density and contravariant velocity components as dependent
var iables and did not use artificial fourth—order dissipation (cf. Eq. (1—23))
in their calculations. However , they later modified the Navier—Stokes computer
code to consider density and the physical velocity components as dependent
variables and introduced fourth order dissipation into the calculation proce-
dure in order to compute flows past a symmetric Joukowski airfoil (Ref. 1—5).
Circular cylinder calculations are repeated here both to test the current
version of the Navier—Stoke s computer code , and so that the present investi-
gators could gain experience in working with the code by app lying it to a

• simple ex ternal f low conf i guration .

Due to symmetry results are computed for only the upper half—plane of
the flow field using a 35 x 35 mesh embedded in a polar coordinate system .
The outer boundary of the computational reg ion was taken to be f if teen
d iameters from the cy linder center. A nonuniform grid spacing in physical
spa ce is app lied with po in ts along rad ial lines concen tra ted near the cyl inde r
boundary and points on the circumferential lines concentrated near the front
and rear stagnation points. Mesh points are distributed according to the
rela t ions

8( iL~9)~~r/2 — p r /2  tonh { D9 [ 1 - 2  ( i _ I ) A e / 7 r ] }/ tanh D9 , i 1 ,1 (I—24 a)

R ( j t ~r)~ 3O—29 tOf lh { Dr [ 1_ j I ) ~~r] }~ ‘Ionh D~
. , j : I , . . . , ~J (1 24b )

where M — 1 T/ ( I — l ) ,  t~r = l/(J—l) , De = 0.75 , and Dr — 2 .7  are
damp ing constants  for  the 0 and R d i rect ions , r espectively,  and I J — 35.
The coordinate distributions , Eqs. (1—24) , are special cases of the Roberts
boundary layer transformation (Ref. I—il) and are shown plotted in Fig . 2.
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The potential flow past a circular cy l inder with a compressibility
correction on density is specified as the initial flow field for the present
viscou s t ime marching solutions with the exception tha t the initial velocity
on the surface of the cylinder is set equal to zero. Thus, the initial condi-

tions are as follows:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(I—25 a)

R�I ( I— 25b )

R= I
(I—25c)

where v(l) and v(2) are the physical velocity components in the R and 0 —

direc t ions , respectivel y and v is the magnitude of the velocity. The implicit
time marching solutions are constrained to satisfy the following steady
boundary conditions. Symmetry conditions are applied on the stagna tion
streamlines; i.e.,

öp /ôø: v ( I ) : â v ( 2 ) / ô 9 : O . 0n8:O ,-,r (1-26)

thus permitting calculations to be restricted to the upper half—p lane of the
flow . The velocity and normal pressure gradient , 3p/3n , is set equal to zero
at the cylinder surface. This condition is required to determine a value of

density at the surface anc~ in the present case of constant total temperature ,
this condition is equivalent to 3p /3n = 0. Therefore

ôp/äR:v(l):v (2)~~O , Ofl R~~I 
(1—27)

Finally, velocity and density are set to their inviscid values over the
upstream three quarters of the outer boundary while first derivatives of the

physical velocity components are set to zero and the pressure is set to its
invisc id value over the remainder of the far—field boundary ; i.e.,

p :p If :O v ( I): v ( I i i  t:O ,‘~(2) v(2) ~~~ 
(1—28)

On R:30, ,r/4C8< w

21



and

ô v ( i ) / O R ;  à v ( 2 ) / Ô R : O ,
( 1— 29 )

p:p 
‘ t :O  / { A + B  {v 2 ( I ) + v 2 ( 2 ) J }  I Ofl R:30 , ose� 1T /4

The last condition follows from Eqs. (1—3) and (1—8) with g12 = 0 due to

orthogonality.

At this point it is convenient to review the solution procedure using the

circular cy linder problem as a vehicle to illustrate the method of incorporat-

ing the boundary conditions into the finite difference approximation . The

foregoing stead y state bound ary cond itions on the lines 0 = 0 and ~ and
R = 1 and 30 can each be expressed in the form

n+I n ~‘~ BC ’4’ — b BC4~ 
+S ( 1—30 )

where 
~ BC is a matrix operator containing derivatives in the coordinate

directions and Sn is a column vector function of q ”. Hence the intermed idte

solution , * , after the nth time step of the al terna t ing direc t ion imp licit
procedure , is calcula ted on the c i rcumferen t ial lines , R (j~t r )  = cons tan t ,

j  = 2 , •. .,  J—l , as a solution of the equation set

I , ~~~~ ~~ 
(I-3la)

(Af A t .t, ~ :At [bn + •S~] ~, , j :2 , I—I (I—31b)

I 1,j ~~~~ ~~ec I 4’ (1 3lc)

After approx imating derivatives at boundaries by three point finite difference

exp r essions , a block t r idiagonal  system of linear equat ions of the form
(cf. Eq. (1—21))
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b1~~ ~~~~ i~c 1~~ 44~ 
+ 0 

~~~~~ 
:d~~ (l-32 a)

o~~ ~~~~~~~~~~~~~~~~~ 
b~~ ~~~j ~~~~ +~.i ,j :d~~ ,i:2 , .., I - l  (I - 3 2 b

~ l~ j ~ 1-2 ,j  + a~~ 
~~~~ 

s b1~ ~~~~~~~ . 
:d~~ (I -3 2c )

results. Val ues of w* are de termined by using Gaussian elimination methods to
solve this system of equations. Similarly ,  the viscous flow field at the

(n + l)th time level , ~~~~~ is obtained as a solut ion of the equations

• bBC I
~~, ~

i
~~

1

1~~
1 : 

~~~~~ I i , I 
S~ (I—33a)

• n+I *( A+ At 
~~ ~ 

: A 
~~ 

,41 
~~j 

, j :2, .• . ,  J I (I 33b)

BC 
~~~~~ 

4’ 
,~~ ~~BC I , , ,  ~ 

( I — 3 3 c )

on the radial lines, 0(it~e) = constant , i = 2 , ... 1—1 , after spatial dif-
ference approximations are introduced to express the foregoing equations in
block tridiagonal form . The viscous solution evolves from the inviscid flow
f i e ld , ~°, until the difference between the flows at two successive t ime steps ,
N and N + 1, satisfies an imposed convergence criterion . Specifically, the
maximum value over the entire field of the absolute difference between the
dependent variables at successive time steps must be less than some small
number , c; i.e.,

N.i N N.i N
114) — 4 )  II: max I~ k 4 ) k I s E ,

I i : I , . , 1\ ( 1—34)

• ( j: ...,j

Here the subscr ipt  k refers to the kth component of the column vector ~~~
. In

the so lu t ion  procedure the magnitude of the time step at the nth time level ,
n — 1, • . .  N , is a variable parameter which depends on the value of
1k tm — II .

2~
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In the present study implicit time—marching Navier—Stokes solutions
were advanced through 160 and 200 time steps for circular cylinder flows at
Reynolds numbers of 40 and 80, respectively. The dimensionless time step used
in these calculations varied between 0.15 and 0.5. Artificia l fourth order
dissipation was at first applied for the circular cylinder calculations , but
was found to lead to diverg ing solutions and spurious results in the far field.
Hence, the only artificial viscosity term used below was that based on the mesh
Reynolds number criterion , Eq. (1—22) . The computat ions were carried out on
the UTRC Univac 1110 computer system and the computing time for the nonorthog—
onal form of the governing equations used for the circular cylinder flows is
approximatel y 0.95 CPU minutes per time step or 7.8 x l0—~ CPU minutes per
grid point per time step . Selected results from the present calculations for
flow past a circular cylinder are described below .

The variation of the minimum pressure and the separation angle , Os’ with
time is dep icted in Fig . 3 for the Re 40 case and in Fig . 4 for the
Re = 80 case. After 160 time steps the separation angle reaches a value of
51.4° for Re — 40. This is to be compared with values of 50.0°, 52.5°, 53.7°,
and 53.9° obtained by Kawaguti (Ref. 1—12), Apelt (Ref. 1—13), Kawaguti and
Jam (Ref. 1—14) and Son and Hanratty (Ref. 1—15). The development of the
pressure distribution around the surface of the cylinder with time is shown
in Fig . 5 for Re = 40 and in Fig . 6 for Re = 80. The time history plots,
Figs. 3 through 6 reveal that although the implicit time—marching results
appear to be converging, steady state solutions have not been achieved even
af t e r  a considerable number of i terations or time steps. The maximum dif-
ference between dependent variables at successive time steps (cf. Eq. (34))
is of the order of 2 x l0~~ after 160 (Re 40) and 200 (Re — 80) time steps.
In addition , as will be seen below, the results after 160 time steps for the
Reynolds number of forty case are not in good agreement with previous cal-.
culations or experimental measurement .

The present prediction of surface pressure distribution for Re — 40
after 160 time steps is compared with the predictions of Son and Hanratty
(Ref. 1—15), Kawaguti (Ref. 1—12) and Gibeling , Shamroth, and Eiseman
(Ref. 1—5) in Fig . 7. Note that the angular coordieate , 0, is equal to 180°
at the front stagnation point. The Kawaguti pressure coefficient prediction
was given relative to the rear stagnation point pressure and in Fig. 7 the
Kawaguti rear stagnation point pressure was arbitrarily set at the Son and
Hanratty value. The predictions of Ref s. (1—15) and (1—12) were both obtained
from solutions of the incompressible Navier—Stokes equations while the solution
of Ref. 1—5 and the present solution were obtained from the compressible

4 
equations with Mach number equal to 0.2. As is clear from Fig. 7, the agree—
ment between the present predictions and those of Ref s. 1—5 , 1—12 , and 1— 15
is rather poor with the present analysis over predicting the pressure over
most of cylinder surface. In addition , the time history plots, Figs. 3 and
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5 , indicate tha t with continued iteration the pressure prediction based on the
present procedure would deviate still further from previous results. Indeed ,
the results achieved with the present method after 80 time steps are in better
agreement with the previous predictions than those achieved after 160 time
steps. Wake centerline velocity d i s t r ibu t ions  for  Reynolds numbers of 40 and
80, based on the present analysis , along with the predictions of Kawaguti
(Ref. 1—12) and Cibeling et al (Ref. 1—5), and the experimental measurements
of Coutanceau and Bouard (Ref. 1—10) for a Reynolds number of 40 are depicted
in Fig . 8. Again the agreement between the data and the present results for
Re — 40 is not good . As a final illustration of the results of the present
calculations , the velocity profiles for Re — 40 and Re 80 at several azimuthal
locations are shown in Fig . 9 along with the predictions of Gibeling , Shamroth ,
and Eisemari (Ref. 1—5) for Re — 40. Substantial differences can be observed
between the results of these two analyses.

Eased on the present study the performance of the implicit time—marching
Navier—Stokes computer code has not been satisfactory . Converged solutions
could not be obtained for simple low Reynolds number flows and the results
after a considerable number of time steps are not in good agreement with those
of prev ious analyses or experimental data. In contrast , Gibeling , Shanroth
and Eiseman (Ref. 1—5) used essentially the sanie version of the Navier—Stokes
computer code and reported a converged solution for the flow past a circular
cylinder at Re — 40 after only 80 time steps, and their results are in very
good agreement with the previous incompressible analyses of Refs. 1—12 and
I—iS and the experimental data of Ref. 1—10. The major difference between
the present analysis and that of Ref. 1—5 is that physical velocity components
are treated as the dependent variables here, while contravariant velocity
components were assumed as dependent variables in the former analysis. The
modifications to the Navier—Stokes computer code to accomplish this change of
dependent variables were made by Cibeling et al in order to decrease numerical
truncation errors. At this time the reason for the discrepancies between the
present results and those of the Ref. I—S study are not apparent , but further
studies to clarify this situation seem warranted . In this regard information
concerning the time step distribu tion and convergence criterion used in the
previous analysis (Ref. 1—5) as well as intermed iate results for pressure and
velocity would be most useful.
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TWO-DIMENSIONAL CASCADE FLOWS

A major  obj ect ive of the presen t stud y has been to fu r ther  develop the
imp l ic i t  time—marching Navier—Stokes computer code so tha t this code could
be applied to the calculation of viscous flow through cascades. In par-
ticular , a solution scheme for cascade flow fields has been formulated and
the relevant subroutines of the Navier—Stokes computer code have been
modif ied t o accommodate this scheme. The solution formulat ion is based on
the use of the two—d imensional, curvil inear cascade coordinate system
developed by Elseman (Ref . 1—16) . This system consists of coord inate loops
surround ing each blade and radial coordinate lines norma l to the blade
su r f a c e .  The outermost loop is constructed so tha t cascade period icity
conditions can be applied without interpolation between grid points. The
coordinates are orthogonal on the airfoil surface, but gradually become
nonorthogonal away from the airfoil . Mesh points can be packed in regions
of large solution grad ients and little restriction is placed on airfoil cam-
ber and spacing . At present , Eiseman ’s coordinate generator can accurately
produce systems for inviscid stud ies; however , further refinements are
requ ired to produce the higher .rder smoothness necessary for viscous cas-
cade analyses. An example of an Eiseman cascade coordinate system is
dep icted in Fig . 10.

Consider two dimensional flow past an isolated airfoil or a blade in
cascade and a coord inate system consisting of coord inate loops surround ing
the airfoil (or blade) and radial coord inate lines emanating from the
airfoil (or blade) surface and terminating on an outermost coordinate loop.
The sketch in Fig . 11 will be used to illustrate the computational procedure
for both the flow past an isolated airfoil and a blade in cascade. In the
former case the reader should envision the outermost coordinate loop ABCDEFGH
in Fig. 11 as lying in the far field while in latter, he should envision the
outermost loop as consisting of cascade periodic boundaries, CD and CH , and
front , HC, and rear, DC, endcaps which lie in the far field . In both cases
the innermost coordinate loop coincides with the airfoil (or blade surface).

*
For the isolated airfoil an intermediate solution, p , of the ADI

form of the Navier—Stokes equations, between the n and n + 1 time levels
is obtained by solving the direction — 1 equation , i.e., Eq. (I—l8a) with

— 0 or Eq. (1—31) , along the coordinate loops with the exception of the
loop which coincides with the aIrfoil surface and the outermost or far—
field loop. The starting radial line for the direction — 1 calculation can
be chosen arbitrarily. The solution at the n + 1 time level, ~~~~~ is then
o~tained ~y solving the direction 

— 2 equation ; i.e., Eq. (I—lBb) with
— ~n+ or Eq. (I—33b) , of the AD! representation on each radial line

subject to the appropriate boundary conditions at the airfoil surface and
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at the far—field boundary; e.g., the conditions at R = 1 (E qs. ( 1— 27 ) )  and
R — 30 (E qs. (1—28 and 1—29)) for the circular cylinder problem . Blade
passage flows can be calculated in a similar manner , but conditions must be
imposed at the period ic boundaries (CD and GH in Fig . 11) in lieu of
far—field conditions. These conditions are tha t the density and velocity
must he equal at periodic points (e.g., C and H, and D and C in Fig. 11) and
values of these flow variables on the periodic boundaries must be solutions
of the Navier—Stokes equations . The blade—to—blade period icit~1

requ irernent
indicates tha t solutions of the direction — 2 equations for ~-

n should
proceed simultaneously along rad ial lines which terminate at two period ic
points on the outermost coordinate loop.

If 
~~i)~ 

I = 1, 2, denotes the natural basis of tangent vectors to the
loopwise and radial coordinate curves, then

(I— 35a)

(I—35b)

where the superscript in Eq. (I—35a) refers to the contravariant component of
the base vector 

~~i)~ 
The components of the unit outward normal vector to

the loopwise-.coordinate lines are obtained by solving the equations

U 2n • e ( 1 )  
: 

~I2 ~ :0 (I—36a)

and

I I ? ~ II :g~ n ’ ni = i (I—3 6b)

It follows tha t

f l :  9i2/~’~ 
/~7 )

( I—37b )

Then since the velocity must he equal at upper and lower periodic points

/
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—. U U I 2 L ~~~-.. L
V ~~ ( p ) ) ( v 1 g

11 • V ) — ( v  + v ) = — (v ~ e (~) ) (I—38a )

(I—3 8b)

The blade—to—blade periodic ity conditions on density and the physical
velocity components then have the form (cf. Eq. (i—B)):

pU pL (I—3 9a)

{ .J~~ v ( l ) s g12 v(2)/.Jj~~} :_ [i ~~ v ( l ) + g 12 V(2)/.Ji~~} 
(1 39b)

{~ V(2)/./911 ~22 I :_{J v (2)/~Jj~ Q22] (I-39c)

It is possible to construct an implicit solution scheme for the
Navier-Stokes equations at a cascade periodic boundary; however, such a
scheme would entail rather complicated changes to the Navier—Stokes computer
code. Hence , in the present effort an explicit scheme has been adopted . Thus
the form of the governing equations applied at a periodic boundary follows
from Eq. (1—16) with 6 — 0; i.e.,

A 4’~~~
1 :.~~t [&‘ •s~’J (1—40)

In addition , since the radial coordinate lines of the cascade coordinate sys-
tem do not possess continuous derivatives at periodic boundaries (see Figs.
10 and 11) the use of one sided difference approximations for derivatives
in the radial coordinate direction is indicated . If necessary , an implicit
solution scheme using central differences could be adopted in future stud ies.
Construction of an implicit scheme would involve straightforward, albeit
very tedious, coding changes. The introduction of central difference
approximations in the radial direction is contingent on future ref inements
in the cascade coordinate system described in Ref . (1—16) .

With the foregoing ideas in mind the Navier—Stokes computer code has
been modified to encompass the following solution scheme for the blade
passage problem . Intermed iate solutions, ~p , 

of the direction — 1 equations
are obtained in the counterclockwise direction along the coordinate ioops
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with the exception of the blade surface and outermost loops. These solutions
start from the first rad ial coord inate line whic h terminates on the front
end cap (i.e., at point A in Fig. 11) and proceed around the blad e to the
radial coord inate line which terminates at the end of the upper per iodic
boundary (i.e., point H in Fig . 11). Solutions at the n + 1 tim e level ,

are then obtained by solving the direction - 2 equations along the
radial coord inate lines subj ect to solid surface boundary condi t ions  at
the blade , upstream and downstream far—field conditions on the front , AS in
Fig . 11, and rear, EF , endcaps , respec tively, of the outer coord inate loop
ABCDEFCH (Fig. 11), explicit Nav ier—Stokes solutions on the lower period ic
boundary, CD, and blade—to—blade period icity conditions on the upper
period ic boundary GH. Solutions along rad ial lines which terminate at
period ic points on the outer boundary proceed simultaneousl y. Althoug h
this is not strictly required in the present formulation , which uses
explicit Nav ier—Stokes solutions at the lower period ic boundary, it has
been incorporated so tha t possible fu tu re  improvements , i .e . ,  impl ici t
procedures at  the lower boundary can be readily incorporated .

As part of the current effort , the modifications to the matrix inversion ,
boundary cond ition , general coeff icien t , and spatial d i f f e ren t i a t ion  sub-
routines of the implicit time—marching Nav ier—Stokes computer code , to
incorporate the foregoing formulation have been completed . The changes to
the existing code have been accomplished in a conc ise manner involving the
addition of only one new subroutine and only a limited number of additional
input parameters. The code modifications have been checked out by calculating
the symmetric flow past ar’ isolated circular cylinder using symmetry cond i-
tions, which are similar in form to cascade period icity conditions (i.e.,
symmetry involves only a change of sign in Eq. (I—39c)) at the endpoints of
rad ial lines extending above and below the cylinder . Computed results for
this case after five time steps are virtually iden t ical to those obtained
using the usual isolated body, far—field boundary conditions for the circular
cylinder calculations. Such agreement indicates tha t the modifications to
the Navier—Stokes code required to treat cascade periodicity cond itions have
been successfully completed and tha t this code is ready to accept the cascade
geometry module developed by Eisevian (Ref. 1—16). However , before the
geometry module is incorporated into the Navier-Stokes code the coord inate
generator must be further developed to provide the higher order smoothness
required for viscous flow studies.
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PART II

A VI SCID / I N V I S C I D  IN TERACTION APPROACH

FOR HIGH REYNOLDS NUMBER TRAILING

EDGE FLOW
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LIST OF SYMBOL S - PART II

a r e f e r e n c e  length

C Chapman—Rubesin viscosity constant

constant pressure specific heat

e unit vector

h coordinate scale factor

H total enthal py

H5 surface heigh t in bottom deck variables

j geometry index: j  0 2—D flow ; j  = 1 axisymmetric flow

Cartesian coordinate unit vector

M Mach number

n transposed norma l coordinate

N transposed stretched norma l coordinate

asymptotic ordering symbol

p static pressure

P inner deck pressure

q heat transfer

r , r0 transverse coordinate and surface radii respectively

Re Reynolds number

8 transposed longitudinal coordinate

t position of coordinate system , inner variables

to position of coordinate system

___________ 
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LIST OF SYMBOLS — PAR T II (Cont ’d)

T static temperature

u long i t u d i n a l  veloc i t y

U inner deck or inviscid longitudinal velocity

v normal v e l o c i t y ,  t ransposed coord ina te s

V inner deck norma l velo city

w normal velocity

x long itudinal coordinate

X inner deck long itudinal coordir .ato

y norma l coordinate

‘1 inner deck norma l coo rdinat e

inner region ramp ang le parameter

Y ratio of specific heats

6 inner deck disp lacement thickness

£ perturbation parameter

long itudinal surface curvature

A Blasius constant

P viscosity coefficient

inclination angle with horizontal axis

0 density

0 Prandtl number

I shear stress

0 trailing edge angle
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LIST OF SYMBOLS — PART II (Cont ’d)

Subscri pts

e inviscid edge values

F . P .  f l a t  p la te  solut ion

m matching region values

T.E . trailing edge location

v viscous or main deck reg ion

W wall values

x , y, z coordinate direction

free stream value
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GENERAL APPROACH

The problem of base flow separation off the trailing edge reg ion of
a i r f oi l s  ( i .e . , t r a i l i n g  edge sta l l )  cau ses d i f f i c u l ty in anal yticall y
predicting the losses and loading in tur bomachine ry app lic ations. Upon close

inspection , it is obvious that this flow and its attendent difficulties are
very similar to those encountered in predicting surface separation bubbles ,
the main difference here being that reattachment takes place on a sli p l ine
instead of on a solid surface. While it has long been clear that classical
bo undary lay er theory is inad equate for predicting separated flows , recent

anal ytical deve lopments indicate that a consistent and reliable analytical
model can be constructed using somewhat less than the full Navier—Stokes
equations. Additionall y ,  caref u l an alysis of experimen tal data suggests that
the effect of the stalled flow trailing edge separa t ion bubble on the f low
fi eld is confined to the immediate region in and about the trailing edge
reg ion. This observation indicates that to capture the trailing edge flow

phenomenon it is onl y necessary to modif y the classical approach (i.e.,
inviscid flow plus boundary layer theory) in the immediate vicinity of the
trailing edge . Thus , while methods based on the app lication of the full
Navier—Stokes equations to the entire flow field will sure ly be formally
app lic able , alterna te , simp ler approaches are now available.

For separation bubble flows , a l l  of the s imp ler anal ytical models to
date contain two common features: first , in the viscous region diffusion
effects nortaa i to the streamline s dominate all others and ; second the inviscid
flow field represen ts flow over a surface formed by thickening the original
shape wi th the local v iscous region ’s disp lacement thickness. Variations on

this approach involve either a composite of these two layers (the thin layer

approximation , the parabolized approach , etc.) or a substructure delineation
(the tri p le deck , or the multi—deck approaches). In either case , successful
modeli ng of separation bubble flows has been achieved and it remains now to
app l y and extend these concepts to stalled subsonic and transonic trailing

edge regions in turbomachinery app lica tions. This is the overall goal of the

present stud y with specific interest in the formulation of the two layer ,
interacting laminar boundary layer mode l of this flow field. A companion
stud y has also been conducted on the development and demonstration of numer-
ical techni que s for solving such flows for the supersonic trailing edge
problem — the results of which will be summarized here.

The general approach to be employed here follows closel y the work
of Melnik , Chow , and Mead (Ref. Il—I) who developed an interacting boundary
layer mode l for high Reynolds number flow past isolated airfoils. As depic—
ted in Fig. 12 , the overall flow field model is rather conventional except
that an interaction model is employed to bridge the trailing edge region
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where the blade boundary layer transists to a wake flow . The major element
of this approach is that for high Reynolds number the laminar viscous flow is
assumed to influence the inviscid flow field principall y through displacement
effects and is represented by the displacement thickness as added to the air-
foil surface and wake centerlines. Thus, the major elements of the flow are :
(1) an inviscid flow outside the thin viscous reg ions here taken to be gov-
erned by the potential flow equations as app lied to cascades; (2) a weak l y
in terac t ing bounda ry layer reg ion ove r the forward portion of the blade; (3)

a weakly in tera ct ing wake reg ion aft of the trailing edge reg ion; and (4) a
st rongl y interacting trailing ed ge region where the local press ure lev e ls
must be established along with the viscous solution . Coup l ing  of thes e fo ur
flows prod uces a boundary value problem in the flow direction that Melnik
et al. (Ref. 11—1) have shown can be solved with iterative techniques.
Attention here will be directed at the solution of the strong ly interacting
t r a i l i n g  edge region where Meln ik  et a l .  used approximate techni que s to
solve fo r a t tached f lows onl y.  The sepa rated (or s t a l l e d)  t r a i l i n g  edge
problem will be addressed here using recentl y developed interacting boundary
layer  concepts  (see R e f s .  11—2 , 6) .  A t t e n t i o n  will be focused on the imninar
flow past synunetric sharp trailing edges, as dep ic ted in Fig. 13 , with trail-
ing edge angles large enough to cause the boundary layer to separate off the
surface and reattach on a wake sli p line .
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THE TRAILING EDGE FLOW MODEL

The details of the flow field for the trailing edge region are given in
Fig. 13. Here the basic inviscid flow is that of flow into and out of a
concave corner. This strong ly deaccelerating flow field forces the incoming
boundary layer to grow , deflect the inviscid strean , and finall y separate
from the surface and reattach along the wake — producing a disp lacement
surface that smooths the sharp corne r ’s influence on the local inviscid flow
field (see Fig. 14).

The anal ytical model for this flow field is taken directl y from that
alread y proved to be applicable for flow into a compression corner made up of
two solid walls. Vatsa and Werle (Ref. 11—4), Jens on , Burggraf , and Rizzetta
(Ref. 11—7) and Burggraf  et al (R e f .  I l — l i )  hav e c lear l y shown tha t the
interacting boundary layer concept provides a rational approximation for such
flows and this concept will be carried over directl y here. The principle
governing equations for the viscou s region are formally recovered from the
Navier—Stoke s equations using the formalism of higher order boundary layer
theory (Ref. 11—8) to identif y the disp lacement thickness corrections to the
flow equations .

The basic approach taken here is similar to that first set d own b y Van
Dyke (Ref. 11—9) except that here no attempt is made to filter out the
higher—order effects into separate linear problems . Van Dyke has given a
statement of the full Navier—Stoke s equations for two—dimensional or axisym—
metr ic f low in terms of the coordinates x and y wi th all distances referenced
to a length , a , velocities to U,,,, pressure to p~ U,,,

2, density to p~~ , temperature
to U~~/C~ 1 enthalpy to ti 2, and viscosities co the value of p at T — U~ L/ C~ .
With these definitions the characteristic Reynolds number becomes

Re — P,.U.,a/~ (U.~
2/C~) I/c 8 (LI—i)

where £ becomes the princi ple perturbation parameter for an asymptotic
anal ysis of the separated flow region using the concepts developed by
Stewartson (Ref. 11—10).

For present purposes approach the full equations with the ass~aoption
that in a vaniehingly small region near the surface , a region of order
thick , all flow properties except the normal velocity component v are of
order one — v itself being of order

Without loss of generality the coordinate sys tem used here viii be placed
placed along a ~~ooth surface always located near the line of zero longitudinal
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“elocity as shown in Fig . 15. It will be sh own later that within the
f ram ework of an anal ytical model applicable for asymptoticall y large
Reyno lds  number , t h i s  arb i t r a r i n e s s  in the coord ina te  d e f i n i t i o n  w i l l
be totall y acceptable.

The governing equations are recovered by introducing a stretching of the
v i s c o us reg io n normal  coordi nate , Yv ’  to give a boundary  l aye r coordinat e y
as

y~~y71/€ (II—2a)

and r e t a in ing  the long i t u d i n a l  coordina te  scale as

(I1—2b)

and us ing unsub sc ri pted variables to designa te the f low proper t ies in the
v i sco us reg ion as follows :

long i tudinal velocity: u~(x~,y E)~~~
x,YsE) (II-3a)

normal vel oci ty:  W,,~(~ ,y1,,E):E4W(x,y4c) (II—3b)

densi ty :  P~,(x11,y~,,E) :p (X,y,E~ (II—3c )
press ure:  ~~~~~~~~~~~~~~~~~~ (11 3d )
sta tic enthal py: T~(X~ ,y11~€) :T(x,y~€) (II—3e )

total enthal py: H~ (x ,,y~ ,E):H(x,y~€ ) (I I 3f)

The coord inate scale factors are designa ted as

h~ :I+E 4K y Eh (11 4a)

( I I — 4b)

(II—4c )

Introduc ing these definitions into the full equations , keep ing all term s up
to second order , and invoking the asymptotic matching principle to determ ine
the interaction with the invi~ci d f l ow f ie l d , gives the following for pl ane
(j  • 0) or axisyimsetric flows (j  1).
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continuity:

_.L. (pr 1u) + .-_~~ _— (phr~~w ) O  (II— 5a)ox ON

long i tud ina l  mome ntum :

Ôhu

~~~. [f !!i. (pvnUe
2 _ P t~

2u2~~YJ 
L ..L (r~h

2t) (1I—5b )

where

rm~~(~~ 
_ uh~ /h) (II~5c )

t o t a l  en tha l py:

p u-~ —+ 
hw.~

.
~-l 

: .i_ .L 
~~~~~ 

+u r )J  (Il-Sd)
Oy j r i  ày
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where

q ~~/~ /‘O~ /J~/Ø~ 
— U f (I l -Se )

Also the viscosity law is given as:

= f ( T )

where f(T) represent s any appropriate temperature viscosity law with

T H — u 2 /2 (11—6 )

The final two relations needed are derived from the matching conditions as

rn ~~~ ~~T 11
0
m~~~

2 _ p h2 U2} dy : ~~~ p (~i~~~~) ( l I - l a )

and

Pm /Pc : (Pm~~ e)
7
: [e

2
/2 e

_ 2/ 2 _ h 2
~~~~~ (II-7b )

The edge cond itions , Ue and He iden t i f i ed  above , are to be obtained

from the inviscid flow field corrected for disp lacement thickness effects.

This issue will be addressed later in this section with attention here

directed toward application of the above general equations to the trailing

edge problem and identification of appropriate boundary conditions.
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The f i r s t  s i m p l i f i c a t i o n  invoked here for the t r a i l i n g  edge problem
involves  r e s t r i c t i o n  to the two d imensional  case , i . e . ,  t a k i n g  j = 0 in the
above equations. The second simp lification comes about through elimination
of the curvature induced effects identified through the scale factor h.
This  is accompl ished on two bases .  Firs t , i n reg ions  of weak i n t e r a c t i o n ,
such as far ahead and aft of the t r a i l i n g  edge , the geometry of the coord i-
nate line is flat and thus its curvature is zero. Second , in reg ions  of
st rong interactions as occur near the trailing edge point , the formal ordering

anal ysis for asymptoticall y large Reynolds number indicates that these terms
will be of secondary impor tance . To demonstrate this point it is first neces-

sary to show that the strong interac tion equations derived from the asymptotic
tri ple deck approach are subsets of the interacting boun d a r y  laye r equations

presented above . Burggraf , Rizze ta , Werle and Va tsa (Ref. 11— 11) have proven
this point numericall y ,  while Vatsa (Ref. 11—12) and Vatsa and Werle (Ref.

11—4 ) have shown tha t the introduction of the tri ple deck sca l ing  laws into
the in terac t ing boundary layer  equa t ions lead s d i rec t l y to the correc L subscale
equations for strong interaction regions .

Thus , for example , for tr a i l i n g  edge ang les a “~~ (~~
2) it i~ found that

wi thi n a reg ion x — x TE =~~~
(
~~

3 ) , y “~~~(c); i.e ., the bottom deck region

withi n which the separation bubble is contained , the dependen t v a r i a b l e s
sca le  as

(II—8a)
w :.~(I/E) (II—8b)

t i p :3(E 2) (I1—8c)
p:~~(I) (Il—8d )

(II—8e )

~~~~~I) (II—8f)

In addition , since in the prese nt approach the coordinate axis is placed on a
surface necessaril y contained wi thin this reg ion , it follows that , the

coordinate location , t0(x) ‘~~ (~
5) and its curvature ~ ~~(l/t). Wi th

these scalings , the dominate term s of the governing equations for the bottom
deck can be identified for the continuity equations as

continuity: (II—9a)
.~~~~~ + ~~~~ 0Ox à~

* See the following sect ion of this report for a detail description of the
scaling laws discussed here.
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energy : u + w _~-H 
: ~ 02H ( 11 9b )

Ox O y °

The limit form of the long itudinal momentum equation is dependent on the scaling

law for the edge velocity U0, which is e s t ab l i s h e d  in the  outer  most
portion of the strong interaction reg ion (y — ~ ( c 3) ) .  In t h i s  reg ion ,
one finds that the viscou s perturbation to U~ ~ (E 2). Wi th this the

longit udinal momentum Eq. lI—Sb reduces to

+ w 
O U  

— ~~~~~~ 
02u ( I I— 9 c )

Ox dx

A s i m i l a r  s tud y o f the  appropr i a t e  s cal i ngs  in the m i d d l e  deck reg i on of
the strong interaction process would again reveal that the curvature terms
were of secondary importance , but  tha t  here de n s i t y  and t empera tu re  v a r i a t i o n s
wer e of lead order. Thus a composite set of equations can be established for

the two reg ions as

ÔpU 
+ 

Op w :0 (II-lOa )
Ox O y

+ W P U e ~.YJ : _
~
_ (

~ f~
..) (11 10b)

f [~f+u~~1 ui-10c

wh ich are merel y the classi cal boundary layer equations with edge properties

adjusted for interaction effects.

The boundary conditions for the present equations can be set down

directl y as
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U -  - -

y c D ; U * Ue Ofld H~~~~He 
(11-li)

y -t0(x)/~
4m — t(x~ (II-12a)

On the blade surface: x < X T E ;  U — W = 0, H — H~, ( I I — 1 2 b )

On the wake c e n t e r l ine : x ) X T E ;  !~~~~
0 ( I l — l ~~c )

j . V H : 0  ( I I — 1 2 d )
(1 l— 12e)

whe re 3 is the v e r t i c a l  u n i t  vec t o r .

Following Jenson et al (Ref. 11—7) these latter conditions can be
cons iderabl y simp l i f i e d  throug h use of P r a n d t l ’ s Transpos i t ion Theorem. Thus
de f ine

N~~y + t (x ) :n/€ 4 (I1— 13a )

so that the innermost boundary conditions are placed at N — 0 — n.
In addition define

S~~x ( I 1 — 1 3 b )

and

V : W + U ~~.!~ : w+Uf ’ ( I I - 1 3c)
dx

so that

A: 
~~ 

+ t’.~~. (II—14a)

and

(11 14b)
ày oN
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W i t h  these d e f i n i t i o n s  the gover n in g  e q u a t i o n s  remain unchan ged in form and
thus  become

d pu Opv
+ -i—-— :~~ (II— 15a)

P[u
..
~~- +~~~~ .-j _ pe ue -~j~

t : .
~ _ ( 1~~-) (JI-1 5b)

and

(II-l5c )

The boundary  cond i t i o n s  for  these  equa t ions  are s t r a i gh t f o r w a rd on the
surfact— , but can be considerabl y simplified over those given in Eqs. (II—l2b )
th rough ( I ’.~— l 2d)  for  the wake c e n t e r l i n e .

Referring to Fig. 15 , consider the condition that

~~V :O (II-16a)

or

WV SIfl 4~
_ U W COS~~ :0 ( I I - i bb )

Thus

4 A dt0w1, :E  w U~tOflP~~~~~~U~~~~( t u  (II- 16c )

which from Eq. (1I—13c ) give that along the sli p line ,

fl:0 V:0 (ll-16d )
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Eva lua t ion of the normal  d e r i v a t i v e  c o n d i t i o n s  is somewhat more ted i ous .
The g r a d i e n t  operator  is g iven  as

(II-17a)

so th at

T.V:
_
~ 6[$~

_ tone
~~1+cos 6~ r ( I I l 7 b )

Thus the wake centerline condition on total enthc i py bec omes

OH - 
t 0 OH

h+10~
2 ~~~ (lI— 18a)

and s i n c e

T.Q:uicos 6 (II—lSb)

then

.~~~~~ - = — h+t 012 
~~~ 

K t o’uJ (II--1 8c )

These relation s can be simplified by noting that in the weak interaction
reg ion to • 0 whereas in the strong interac t ion region , the bottom deck
scaling laws apply. Applying Eqs. (11—Ba) thr ough (Il—Sf) to Eqs. (h — h a)
and (II—17b) leads to the result that for n — 0 , a > ‘T.E. the appropriate
boundary conditions are given as
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- - 5  -- -~~~ —~~~~-~~ -

(1 1—19 )

-: 0 ( 1 1— 2 0 )

It remains now onl y to establish the anal ytica l basis for establishing the

ed ge proper t ies , Ue~ 1
~e ’ 

etc. Both the weak and strong interaction

theories indicate that this can be accomp l i shed  emp loy ing the effective

disp lacement surface (see Refs. 11— 4 , 12 , 13 , and 15 for  examp l e)  ob t ai ned
by the simp le additio n of the boundary layer and/or wake disp lacement thickness

to the or i g inal  inv i sc id  f low shape . This  is the approach tha t  w i l l  be
emp loyed here .
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THE HIGH REYNOLDS NUMBER PROBLEM - THE TRIPLE DECK EQUATIONS*

Whi le  the interacting boundary layer problem formulated above is expected
to have application over a very wide range of Reynolds numbers , it has been
shown by Vatsa and Werle** (Ref . 11—4 ) that these equations reduce to a rela

tivel y simp le and instructive form as the Reynolds number increases. In
partic ular , Vatsa and Werle were able to show that the interacting bounda ry
layer equations contain the subscale structure (the tri p le deck structure)
iden t i f i e d  by Stewartson (Ref. 11—10), and Jenson , Burggraf and Rizzeta (Ref.
11—7) for interacting flows . Of particular interest here is the app l i c a t ion
of this concept to the supersonic compression corner problem as dep icted in
Fi g . 16. Through identification of the subscalings shown near the hinge line

and of the ramp ang le , a disting uished limit solution to the Navier—Stokes
equations for Re >> 1 was identified that captured the interaction and separa-
tion phenomena. As -such the solutions are as fundamentall y import ant to the
field of separation flow theory as the Blasius solution is to attached flow
theory. An additional benefit of this approach is that it is found to reduce
the parametric dependence of the problem from four (M , Re ,,, T~

/T
~
, e)

to one , a, whe re

‘/4
( n—2 1)

Thus these equations provide a convenient and useful test vehicle for develop-
ing solution methods and demonstrating concepts while providing meaning ful
quantitative separated or stalled flow solutions.

The approach used by Vatsa and Werle (Ref. 11—4) follows directl y from
that of Jenson et al (Ref. II—?) in that the scaling laws iden tified for
st rong in terac t ion s by Stewartson (Ref. 11—10) are app lied in the near

region of a geometric obstruction — in this case , a compression corner. The
pri nci p le reg ion of interest here is the bottom deck of Fi g . 16 , which can be

identified in terms of scaled dependent variables. X and Y , g iven as :

I vu 3
X ...X TE S...STE E X’5”4

1 
(C 

~~~~ 
(T
~
/T.)~~~x 

(II-22a)

I. • ‘) J

* The work presented here and in the  fo l lowing  two sections  concerning the
asymptotic Tri p le Deck equations , their numerical solution algorithm , and
the demonstrat ion of results were performed under a United Technologies
sponsored project outside the scope of the contract requirements. They are
included here to demonstrate the utility of this approach .

** These results have also been discussed by Burggraf (Ref. 11—6) and will be
appearing shortl y in Ref. Il—li.
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fl ~~~~ t0 : E4N m 

(M 2 1)’/8 
(T
~/T~)

3”2 
~ (II-22b )

The dependent variable scalings for this region have been discussed briefly

in an earlier section of this report and are given here in detail as:

long itudinal velocity:

(T
~/T~

)”2U (II-23a)

normal velocity :

m ~314 (T~/T~
)”2 v (II-23b )

static pres str~~:

1/2 EC
VB P

~~ P 
X 

~~~~~~~~ ] ~ (II-23c)

With the introduction of these asymptotic scale laws and those for the local

iriviscid flow into the interacting boundary l aye r  equa t ion s given by Eq s .
(I i—l5a) through (II— 15c ) above , Vatsa and Werle (Ref. 11—4) were able to

ide ntif y the dominant terms of the interacting boundary layer equation s for

hi gh Reynolds number strong interactions as

continuity:

. L ~~~~~~~ _ : 0  (II—24a )
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long itudinal momentum:

(II-24b)

and the energy equation is found to be uncoup led from these fundamental

equations. These equations are identical to those derived from the Navier—
Stokes equations by Jensori et al (Ref. 11—7) . The viscous/inviscid interac-
ti on law for the asymptotic problem is a simp lified version of that for the
interacting boundary lay er proble m and is g iven as

P 
~~~~(8+M5) (II—25a)

where H8 is the su r f ace  hei ght given here for the ramp in inner deck
va r i ab le s  as

H5:O for x ~ 0 (I1 25b)

H :aX f o r X >O (II-25c)

and s is a d i sp lacement thickness like function give n as

8: urn (v — u) (11 25d )
Y-.

It has been demonstrated that these equation s provide the same solution
at h igh  Reyno lds  numbe r as that of the interacting boundary layer equations
by Burggraf , Rizzeta , Werle and Vatsa (Ref. II_ ll )* with the significant
results repeated here for comp leteness. For a fixed value of ~ — 2.5 , Figs.
17 and 18 compare separated flow solutions of the interacting boundary layer
equations with solutions of the fundamental equations given above .

* Also see Refs. 11—4 , 6, and 11 for further discussion of this point .

50

- - ~~~~~~~~~- - S -- — 
—- . - -  — 5-- —- -—- S -- S - —  — — —



It is clearl y seen that both the surface pressure and skin friction
d i s t r i b u t i o n s  o b t a i n e d  from the interacting bo undary  l aye r approach system-
at i c a l l y approach the t r i ple deck s o l u t i o n s  as the Reynolds number increases —

th us verif y ing the utility of the fundamental trip le deck version of the

governing equations for stud y of the interacting boundary layer model of

the trailing edge stall prob lem . For this case the boundary condition aft of

the trailing edge is obtained by app l y ing the scaling laws above to Eqs.

(I 1— 16d) and (II— l8d) to obtain:

X>O , y:O

V O  (II—26 a)

Ou -O ( I I — 2 6 b )

To provide insigh t into the nature of the trailing edge flow field , solutions

of Eq s. (11—24) through (11—2 6) have been obtained using numerical techniques

outlined in the following section with a discussion of the results presented in

the subsequent section. 
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NUMERICAL METH ID - THE TRIPLE DECK EQUATIONS

The numerical method app l i ed to solv e the t r a i l i n g  edge problem desc r ibed
above will be outlined briefl y below . The approach repr esents an extension
of the concept ori ginall y dev e loped by Werle and Vatsa (Ref. 11—3) for the
full interacting boundary laye r equations . The method used here directl y
follows the application and gene r a l i z a t ion of th i s  techni que to the triple
deck eq ua t io ns by Napolitano , Werle , and Davis (Ref. 11—2) for subsonic and
supersonic separated flow past protuberances and compression corners. The
basic approach uses a marching type impl i c i t f i n i te d i f f e r e n c e  scheme to
solve the continuity and momentum Eqs. (II—4a) and (II—4b ) with nonlinea r—
ities approxi mated using previous station data. The pressure interaction
effect enters through the pressure gradient term of Eq. (II—4b ) and is
coupled to the local velocity through Eq s. (II—Sa) through (1I—5b). This
effect is accommodated through introduction of a time—like relaxation scheme
wherein dP/dX of Eq . (II—4b ) is replaced wi th the term dP/dX — d6/dt and the
sol ut ion ma rched in t ime to achieve d 6/d t 0 . A s imp le supe rposi t ion
techniq ue is employed to determine the simultaneous solution of the conse rva-
t io n and in terac t ion eq uat ions at a given station so that computational
e f f i c ie nc y is maintai ned .

For comp leteness two versions of the numerical algori thm were employed
he re. The first of these was a sligh t modification of the numerical algorithm
prese nted in Ref. 11—2 and as such was first order accurate in the long i tu-
d i n a l  d i rec t ion , ~X . A second order accurate version of the numerical method
was also available and has been applied here . A brief outline of the prin-
ci ple features of each algorithm is given below .

The Firs t Order Method

The al gori thm emp loyed here  is v i r tual l y identical to that developed
by Napol i t ano , Werle , and Davis (Refs . 11—2 and 11—15) for subsonic and
supersonic flows wi th several changes as required to accommodate the de-
tails of the flow structure in the trailing edge region . These changes for
the present supersonic case represent generalizations of those concepts
emp loyed by Napoli tano at al , (Refs. 11—2 and 11—15) to accommodate sharp

corne r effec ts in subsonic flows . The changes are identified below with
reference to the appropriate sections and equations of Reference 11—15.

(i) the continuity equation (II—24a) solution techni que was m o d i f i e d
one station aft of the trailing edge in accordance with Section
IV— 2 and Eq. (4.13) of Ref. Il—iS .
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(ii) the numerical representation of the normal convection term of Eq.
(II—24b ) was modified according to Section IV—2 and Eq. (4.14) of
Ref. 11-15.

(iii ) at a given t ime level , th e pressure gradient term dP/dx appearing
in Eq . (II—24b) abov e was obtained from prev i ous t ime level solu-
tions using Eq. (4.1) of Ref. 11—15.

(iv) the numerical approach employed in Section IV—4 of Ref. 11—15 to
solve the interaction law and thus update the pressur e gradient
es t im a te was em ployed here . However , the Cauc hy integral terms
for subso n ic f l o w  we re rep lac ed b y the appropriate al gebraic rel a-
t ion for supe r sonic f l o w s.

A fi nal modification was made to provide more accurate representation of
the local pressure levels after the solutions were completed . This was found

neces sa ry  pr inci pally for the flat pla te trailing edge problem where singular
gr adients and thus large truncation error s were encountered . Thus, the pres-

sure at a typ ica l  point , point 2, was given in terms of previous station
values , poin t 1, from Eq. (II—25a) as

- ~~~~ 
H52)(81 - H5 ) 

~ x ( dP \ (1 1—27)
2 tlx ~~~i~~dX/ 2

The Second Order Method

In an effort to pr ovide very accurate numerical baseline solutions so
th at a valid independent assessment of the analytical model could be ach i eved

untainted by numerical complications , an available second order accurate (in

~X) numerical al gorithm was also app lied to the present problem. The al go-
rithm empl oys an approach very similar to that presented in Ref. 11—15 except
that here the first order accurate implicit windward differencing used in the

longitudinal direction for the momentum equation was replaced by a se cond
order accurate Crank—Nicolson scheme . Similarly the accuracy of the conti-
nuity e q u a t i o n  s o l u t i o n  was upgraded to second order in 8X by centering the
difference equation between two long itudinal stations. To avoid large numeri—
cal errors due to antici pated jump discontinuities in the flow variables
several of the formall y second order accurate central difference approxima—
tions were relieved to a first order level at a sing le station immediately aft
of the trailing edge .
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RESULTS AND DISCUSSION - THE TRIPLE DECK PROBLEM

Solution to the hi gh Reynolds number form of the interacting boundary
laye r equations (the triple deck equations) were first obtained for super-
sonic flow into a compression corne r as dep ict ed in Fi g . 19 . As such , this

geometry onl y differs from that of the trailing edge in that the center line
symmetry condition is replaced by a zero sli p condition aft of the corne r
point . An essent i a l l y exact solution is available for this problem from the
work of Rizze t ta (Ref. II_13)* , thus allowing a basis for assessing the cur-
rent al gorithms . Figur e 20 g ives a compar i son  of the norma l i zed  w a l l  shea r
st ress and surface pressures for a reduced r~~ p angle  of a — 2.5 — a ca se
for which separation and flow recirculation was encountered . As shown in the
f i gure both of the present algorithms provide reasonable approximations to the

exact results showing a pressure rise ahead of the corner up to a “platea u”

level  a s the f low separa tes over the corner fo l lowe d b y a second press ure r i s e
t o the ram p press ure leve l duri ng flow reattachment . Quite naturall y it is
found that the second order accurate (in hX) algorithm is more accurate than
its first order accurate counterpart . These solutions were obtained on a
UNIVAC 1110 computer in approximatel y 30 second s of CPU t ime for grid sizes of

70 ( i n  X )  by 26 (in Y) and a convergence criterion that the average variation
per iteration be less than ~~~4• As shown in the figure the accurac y was
found to be somewhat  i n sens i t i ve  to the normal grid size (A? ) apparent ly due

to the second order leve l of the al gori thm for the normal direction. In order

to v e r i f y the ut i l i ty of the presen t al gori thms , sol ut ions were  also obt ained
across the full range of a wi th the resulting surface pressure and shear dis-
tributions given in Figs. 21 and 22 respective ly . These results clearl y
show the significant and systematic growth of the interaction reg ion ahead of
the corne r as the ramp ang le is increased.

The algori thm as employed to pe r fo rm the ramp calc u la t ions above , was
modified for the trailing edge problem through a sing le adj ustmen t af t of
the corne r point to rep lac e the no surface slip condition with the wake center-
line symme try condition of Eqs. (11—26). Solutions were then obtained for
a range of a up to and including the stall (separation ) condition. Compari-
sons are first giv en here for the flat plate (a — 0) case since Daniels (Ref.

11—14) has alread y provided very accur ate solutions for this case which can
be used to assess the accurac y of the present algori thms . Figure 23 gives
a detailed assessment of the present results obtained from both the first and

second order (in AX) al gori thms. Here the pressure distribution on the pla te
surface up to the trailing edge is given along wi th the wake centerline pres—

sure dis tribution . For this geometry , interaction effects cause the pressure

* See also Refa. 11—4 , 6 and 11
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to begin to drop far ahead of the trailing edge as i t  a n t i c i p a t e s  the  a b r u p t
boundary  l a y e r t h i n n i n g  a f t  of the  t r a i l i n g  ed ge whe n the ret arding influence
of the s u r f a c e  no s l i p condition is relieved. Both the first and second or-
der results essentially repr iuc e Daniels (Ref. 11—14) results with the onl y
si g n i f i c a n t  d i f f e r e n c e  o c c u r r x n ~ i n  the  immed ia t e  v i c i n i t y  of the t r a i l i n g
edge itself. The small oscillations observed in the centerline pressures for
the second order algorit hm and “kink ” observed for the first order algorithm
are caused by the extreme l y high acceleration of the flow immediatel y aft of
the  t r a i l i n g  edges.  As sh wr~ in Fig. 24 these minor difficulties are elimi-
na ted  as t he  g r i d  s p a c i n g  i s  r e f i n e d  w i t h  the r e s u l t i n g  1st order  s o l u t i o n
pr ov i d i ng a “smoothed” version of the second order results near the trailing
ed ge .

Sol utions for the general trailing edge problem we re the n generated
using both of the present algorithms . Figures 25 throug h 27 give the second
orde r al gorithm results for a up to 2.5 where stall took place. The p r e s s u r e
distributions over the airfoils and wake centerlines in the trailing edge
reg ions are shown in Fig. 25. As the trailing ed ge angle , a increases , the
wake effect is antici pated furthe r forward on the airfoil surface in much the
same manne r as in the compression corner case. A detailed comparison of
Figs. 22 and 25 indicates that the interaction effect is slightly less severe
for the trailing ed ge problem then it is for the compression corner . The
a i r f o i l  s u r f a c e  shear d i s t r i b u t i o n s  for  the  reg ion ahead of the t r a i l i n g  ed ge
are g iven  in Fig . 26 fo r  the  f u l l  range of a s t ud i ed  here . Compar ison w i t h
D a n i e l s  ( R e f .  11—14) f l a t  p l a t e  r e s u l t s  are seen to be very  good even in the
immedia te tr a i l i ng edge reg ion where the rap id accelera tion in the wake reg ion
has  caused a t h i n n i n g  of the v i scous  laye r and subsequent  increased shear .  As
the trailing edge angle was increased , the initial acceleration effect of the
wake reg ion (producing increased surface shear) changed to a deacceleration
effect (producing decreased surface shear). The appearance of negative shear
for a — 2.5 signals the occurrenc e of reverse flow (i.e., a stalled trailing
edge). The ac company ing wake centerline veloci ty dis tributions for the same

range of a are given in Fig. 27. Here comparison with Daniels (Ref.11—14)
flat plate results show a sligh t loss in accuracy apparentl y due to the
extremely rap id flow accelerations experienced at the trailing edge (Daniels
shows that • as X • 0 ’~) .  F o r t u n a t e l y ,  as the trailing edge
angle was iR~reased , this acceleration decreased until it finally reversed ,
indicating that a recirculating stalled—flow bubble was fo rme d for a — 2 . 5 .

It was found that the computing t ime required for the seco~~ order algo—
rithm to achieve a converged solution increased as the trailing edge ang le
inc reased . ~~ereas the solutions for a — 0 were achieved in 1.5 minutes of
CPU t ime , approximately 9 minutes were required for the a • 2.5 case . Since
the first orde r algorithm was observed to achieve convergence significantly
faster than its second order counterpar t. , solutions were also obtained her e
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ove r a wide  range of t r a i l i n g  ed ge angle  u s i n g  t h i s  a l g o r i t h m . The r e s u l t i n g
p r e s s u r e  d i s t r i b u t i o n s  are shown in F i g .  28 fo r  a up to 3. These r e s u l t s  are
e s s e n t i a l l y t he  same up to a — 2 as those g iven in Fi g .  25 fo r  the  second
order algorithm but were obtained here in approximatel y one third of the corn-
puting t ime . For a 2 , the difference in the results was found to be small
and to diminish as the step size was reduced in the first order algorithm .
Thus this algorithm provides a reliable and reasonab ly efficient method for
solving stalled trailing edge flows and should be useful in the extension of
the present approach to other flow reg imes (i.e., subsonic flows , load ed
a i r f o i l s , turbulent flows).
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CONCL UD I NC REMA RK S

Two major areas have been investigated under the present effort. The
first concerns the application of a numerical procedure for solving the com-
pressibl e Navier-Stokes equations to cascade blade passage flows , and the
second deals with the construction and numerical solution of an interacting
boundary  l aye r  model for  a i r f o i l  t r a i l i n g  ed ge f lows .

Unde r the first part of the present effort an existing computer code ,
based on an a l t e r n a t i n g  d i r e c t i o n , imp l i c i t  t ime marching solution of the

genera l  coo rd ina t e  r e p r e s e n t a t i o n  of the N a v i e r — S t o k e s  equa t ions , has  been
modified to be spp licable to the blade passage problem. In particular , the
general coefficient , matrix inversion , boundary condition , and spatial dif-
f e r e n t i a t i o n  s u b r o u t i n e s  of the existing code were modified to incorporate
cascade b l a d e — t o — b l a d e  p e r i o d i c i t y  c o n d i t i o n s . The l a t t e r  cons i s t  of obta in-
ing an e x p l i c i t  s o l u t i o n  of the  governing e q u a ti o n s  at one p e r i o d i c  boundary
and spec i f y ing p e r i o d i c i t y  of d e n s i t y  and v e l o c i t y  at the other  per iodic
boundary.

Implicit time—marching Navier—Stokes solutions have been computed for
f l ows  past  a c i r c u l a r  c y l i n d e r  at Reyno lds  numbers of fo r ty  and eig h t y .  The
convergence ra te  for  t h i s  code was found to be slow . In p a r t i c u l a r , 160 t ime
steps for the Re 40 case and 200 t ime steps for Re 80, with At varying
between 0.15 and 0.5, were required to achieve a convergence level of 2 x 1O 3

(c.f. Eq. (1—34). In a d d i t i o n , for  the Re 40 case pr .ssure and velocity
distributions after 160 t ime steps are not in good agreement with prev ious
calculations or experimental data. Time history plot s of the current calcu-
lations indicate that continued iterat ion would not improve the result compar-
isons . At present the reasons for the lack of agreement between present and
previous calculations are not apparent , and further work (e.g., step size
studies to interrogate truncation errors , investigation of different coordinate
d i s t r i b u t i o n s , e t c .)  seems w a r r a n t e d  to  resolve th i s  issue .

Under the second part of the present effort an interacting boundary
layer model , incorporat ing the asymptotic triple deck concept , has been
formulated for airfoil trailing edge flows . Attention is focused on the
flow past symmetric , wedge—shaped trailing edges , with trailing edge angles
large enoug h to cause flow separation from the airfoil surface and re—attach -
ment on the wake sli p line . The analytical mode l is taken directly from
that already proved to be applicable for flow into a compression corner.

Numerical solutions to the triple deck version of this mode l have been

obtained for the laminar supersonic case. Results determined for a O trail-
ing edge angle (flat plate) were found to be in good agreement with those
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obtained earlier by P. C.  Daniels. Present calculations have been extended
over a range  of t r a i l i n g  edge angles  u n t i l  a separated flow solution
(“ stalle d” t railing edge) was achieved . Solutions have been obtained with
two different finite difference formulations. One is essentially second

order  a c c u r a t e  w h i l e  the o ther  is f i r s t  order  a c c u r a t e  but provides  f a s t e r
s o l u t i o n s .  Accuracy  s t u d i e s  i n d i c a t e  t h a t  the  two f o r m u l a t i o n s  are produc ing
c o n s i s t e n t  r e s u l t s  for  the s t a l l e d  t r a i l i n g  edge case.  Al though  bo th  a t t a c h e d
and separated supersonic trailing edge flows have been sucessfully calculated ,
there are areas for possible improvements in the present numerical algorithms ,
in p a r t i c u l a r , in t r e a t i n g  f l o w  d i s c o n t i n u i t i e s  at the t r a i l i n g  ed ge , i f
e x p e r i m e n t a l  compar isons  i n d i c a t e  t h a t  such improvements  are warranted.
Future work should also be directed at the extension of the current approach

to turbulent flows , lifting confi gurations and full cascade flow fields.
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Figure 13 Trailing Edge Region Flow Structure

U

78— 08 - 1 7 4 -  1

- - ---- 
~~~~~~~~~~~~~~~~~~~



. 5 . -. r .

~~~~~~~~~~~~~~~~~~~~~~~~~ INVISC~~~~~~OW

“

~~~~~~~~~T~~~T T.

Figure 14 Trailing Edge Region Displacement Surface

7 8— 0 8 - 1 7 4 — 2

—.5—— — — — 

—.—- - -

~ — — — —--— _ _ _ _ _ _ _ _ _ _



V

U 

— 
U 
~~ L. 

x

Figure 15 Trailing Edge Region Coordinate Systems

a

78— 0 8 - 1 14 3

— 5— - 5---  - - - _______ 
- - 5—’. - 5 -

~T~~
--—

~ 
- -



I

__ 

I

I

7 8-0 8-9 7  6

5 - .- .  r ‘—



C)

1 1

2

0 
F-

- C l
F- -J

0 1
~~~l

U.
0 ~
2 1. 0. 0. 6.

~~~~r.c 
C C C  I

I E
8

z~~~F- I (#0
U I
4

0 C
F- C.’)
2 I
- I

I 

~l

ci 1

7 8 — 0 8 — 9 7 — 2

- 
6. ~~~~‘ ‘  —



I I I

C),
-

C)
( (#0

0
U.
8.
5)

C .0
-~~~~~~ E

UI.
~~
0

0 C
~~~ C.’)

.0

1 1 1 1 1  I I I I I I o x  I
~~
.

U, C ‘~~
LU 0.

~~ ~~~~~U).
LU > 0  C 00
-j C 0 0 0

~- < 8 ~
— 0

~ 0 0 II (0
F- I

U.

C)
-

C I
LU
I-2

I I 0
I I I I C)

(0
C”) ... C)

0.

7 8 — 0 8 — 9 7 — 1

_ _ _  - -. -.5,- 
~~~~ -~~~~~~-



U-

M

Figure 19 Rotated Compression Corner Flow Field

U

78-- 0 8 — 9 7 — 7

_ _  _ _ _  

IiT i~~~~



I—

SOURCE ,~Y “e ~~~ REMARKS

PRESENT 0.25 6.5 0.3 2ND ORDER IN .~~X

— — — PRESENT ,~ 0.25 6.5 
~ 0.3 1 ST ORDER IN ~~ X( 0.50 13 .O~

REF1T-7 0.6 20.0 0.3 EXTRAPOLATED TO .~ X = 0

3.0

a = 2.5

2.0 - . .

‘
V

1

~

8.o :o o :o 8.o

DISTANCE FROM TRAILING EDGE, X

Figure 20 Computer Code Validation for Compression Corner Flow

78—08—9 7—8

—— - 
- —



0

U) 0 0• It)
C’) - .- 0

C
(0

C)
S I I
U I I (#0
S I I a.

‘ ‘ I E
% I (5\ ‘C I

~~~~I I C

~~~ I I 0
S I I U,

% U I I X UI
% ~ I I C) 0)

‘ ‘  I I\~~ 5 I 0 0\ \ \  I U.
\\~~ ‘C C.)
\\  ‘ I ‘5• ~~~~ I —‘ 0U~~ ~. U I — U

S~~ ~ ~ 5 8.

~~~~~ aI \ \ \ \ \  C)
~~~~

‘ ‘ ‘ % S  0
~ 

‘4. ‘S. ~~I z
V \ \ % I  < 0)
\ \ \ \% o.~~~~

‘ ‘ ‘ ‘  10
\ V V %

\ \ \‘
‘S. ~~IV % I C  8)

1 Dl
U..

‘

\ 0
cc;

I 1.
C 0 0 0~~~

d ‘3HflSS3IId
7 8 — 0 8 - 9 7 — 5

— 
:

_ . _ — - 
I. ‘ 5-~~~~ — - — - - -- .—- --



— r

C

U

III 0
- (0

I -

~~~~~~

I l  I
I I  C
I t  I .2I II S  8)

0I I I  U
~° I ° I ~~~~~°. I Lt) ci

C. IL,!I S C
. t  ‘ ‘ F.~

aV V .~~~‘ ‘ ‘. IJ)} ) I 0H  6.i ir
/ / I U.
I I I  0 (#0
I / I
/ I / U. 6.

U.’

I I  / 8.I / / (0I I ,  a,
-

~~~~~~~~~~~~

_ _ _

Ae/n~~NOIfl I~~ NI)IS

78—08—97—g

“ “—-5 - - - —-‘..- 5-—_- -



_ _ _ _ _ _ _ _ _ _ _  
1:1 

_ _ _ _ _ _ _ _ _ _ _

U.’I ~ C
I -J U,I F-I U, -J

‘C I
C)I - ~~~~0 . ’  -I Q. LU U.’

0 L~~~~~

~~~~~~~~~~

-

U.

3
0

C)
(0

_ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _  
0

0 •~ ‘0 ~~ ‘ a a ’0 I I

ci ‘3IiflSS38d d ‘~~ flSS~ Ud
78_ O B_ 97— 10



10, ORDER METHOD

— —— _ 21id ORDER METHOD

A DANIELS ’ RE SULT S. REF .fl- 14

0

a = 0.0

N
— 

~~~~~~~~

a.

U.
’

C
D -0,4 -
(J,

I
C
a.

—0.6 —

—0.8 I I I
—3.0 —2.0 — 1.0 0 1.0 2.0 3.0

DISTANCE FROM T R A I L I N G  EDGE . X

Figure 24 Acc urac- Details in Trailing Edge Region

78—08—109—1

~~~~~~~ ~~~~~~~~~~~

‘—



C)

It)I L t ~ 1 0 ( L ~ 
~~ d ‘

I C  II II I 
0

I I I _ 0•
I I 

LI.’I I 
II I I 

C 

\ L U

0
C

I I
I I C

C

U,
C~4
a,
6.

.2’~~~~0 U.

0•

0
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  II 

0 I0 00 
~~ . 

I
C

d ‘38flSS3~ld 
78—08—97-3

I I



DISTANCE FROM TRAILING EDGE , X

Figure 26 Supersonic Trailing Edge Shear Stress Distributions
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