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INTRODUCTION

An important problem which must be faced by the designer of advanced
gas turbine engines is the prediction of the viscous flow field in and around
turbine and compressor blade passages. Such a prediction is required to
determine heat transfer rates and aerodynamic losses both of which may be
critical to successful engine operation. Inaccurate predictions of either
loss coefficients or heat transfer rates may result in poor estimates of
engine performance or even catastrophic failure of the engine components.
For example, excess aerodynamic losses associated with viscous phenomena
including boundary layer separations, trailing edge-wake interactions and
massive stall may result in a serious deterioration of component efficiency.
In addition, excessive heat transfer rates associated with boundary layer
separation and reattachment on turbine blades and end walls can have damag-
ing effects as the resulting hot spots may result in structural failure.
Since aerodynamic losses and heat transfer rates are associated with the
viscous nature of the fluid, the ability to predict the viscous flow field
in high performance turbine and compressor blade passages is crucial to the
successful design process.

For the flow regimes and configurations of practical interest, in either
internal or external aerodynamics, the Reynolds number is usually suffi-
ciently high so that viscous effects are concentrated in relatively thin
layers. While this in general allows the direct use of the boundary layer
approximation to obtain meaningful predictions of viscous phenomena there are
several regions of flow over airfoils where the boundary layer approach
breaks down. For example, this approach does not apply in the vicinity of
leading edge separations, shock wave/boundary layer interactions, strong
blowing sites and trailing edge-wake interactions. The common feature of
the flow in these regions is that the boundary layer-like viscous region is
displaced from the airfoil surface and exerts a significant influence on the
inviscid flow. Therefore it is not surprising that the flow in such regions
cannot be adequately described by the usual boundary layer approximation.
When viscous displacement effects do alter the inviscid flow field signifi-
cantly, it is necessary for the calculation procedure to recognize the mutual
dependence between the viscous and inviscid regions either by a solution of
the full equations of viscous fluid motion throughout the entire region of
interest or by a strong interaction analysis between a viscous region solu-
tion and an inviscid outer field solution. Thus two methods of approach are
currently available which offer the long term prospect of providing useful
viscous aerodynamic design information. One consists of obtaining numerical
solutions to the compressible Navier-Stokes equations and the other consists
of constructing and numerically solving viscid-inviscid interaction models of
localized flow regions.
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The emergence of numerical solutions to the Navier-Stokes equations as
a viable method for predicting viscous flows is a fairly recent phenomena
resulting from rapid advances in numerical analysis coupled with development
of high speed computers. Such solutions can be obtained either through solu-
tion of the steady-state equations via a relaxaation procedure or through
solution of the time-dependent Navier-Stokes equations under the influence
of steady boundary conditions. In the latter case, each time-step may be
thought of as a step in the relaxation procedure. Time dependent solution
procedures may be either explicit or implicit. If the method is explicit,
the time-step is governed by stringent stability limits which relate the
maximum time-step to the size of the computational grid. If a viscous layer
is to be adequately defined, a fine grid is required in the vicinity of the
blade surface and in such cases the stability limit would make an explicit
calculation impractical. However, implicit methods are not subject to such
stability limits, rather they are only limited by the physical time scale of
the flow. As a result a time-dependent implicit solution procedure for the
three-dimensional Navier-Stokes equations has been developed at UTRC by
Briley and McDonald. This computer code is a highly modularized program
which has options for two- and three~dimensional modes of operation. In
two-dimensions, solutions to a general coordinate representation of the
Navier-Stokes equations can be obtained. The code has been used previously
to calculate laminar and turbulent flows in ducts and low to moderate
Reynolds number flows past simple aerodynamic shapes, and it could form a
basis for the calculation of viscous flows through cascades. Such solu-
tions would include viscous effects and would be extendable to turbulent
flows and to three-dimensional and time-dependent problems. It is antici-
pated, however, that the computing time required to obtain Navier-Stokes
solutions for cascade flows may limit the usefulness of such solutions to
the turbomachinery designer. In addition, there is some doubt at present
that stable Navier-Stokes solutions can be obtained in the Reynolds number
range of practical interest (i.e., Re = 0(106). Future research should
do much to alleviate these limitations but at this juncture the prospect of
effectively using Navier-Stokes calculations for design applications still
seem to be far off.

Although the Navier-Stokes equations contain all the necessary physics
to describe viscous separation phenomena, it has long been felt that an
intermediate theoretical approach, i.e., a viscous/inviscid interaction
model could provide a useful basis for describing a large class of boundary
layer departure flows. The results of relatively recent numerical experi-
ments do provide empirical support for the use of such models for both low
and high speed flows. In those cases where detailed investigations have been
conducted, predictions based on viscous/inviscid interaction models have been
found to reproduce Navier-Stokes predictions and/or experimental data at
moderate to high Reynolds numbers.




Viscid-inviscid interaction models (interaction boundary layer, triple
deck, etc.) consider three basic elements of the flow: an inviscid region,
a viscous region which is shear layer like and an interaction region which
actively connects the two. Such a model allows one to focus attention on
the significant phenomena in their respective flow regions and therefore
develop efficient and reliable solution techniques tailored to the needs of
each individual region. Numerous examples exist where the interacting bound-
ary layer concept has been successfully applied to laminar and turbulent
separation bubbles in external aerodynamics problems. In addition, the
triple deck equations, which are a subset of the interacting boundary layer
equations, have been used to rigorously study and solve trailing edge flows.
Much fundamental work has been done for laminar flow gast sharp and blunt
(unstalled) trailing edges and Melnik, Chow and Mead have achieved a dra-
matic success for at least one highly important practical problem, the pre-
diction of Reynolds number effects on the lift (Kutta condition) for turbu-
lent flow past transonic airfoils with sharp, attached flow, trailing edges.
Finally, recent fundamental work indicates that the combination of classical
free streamline theory and viscid-inviscid interaction concepts will provide
a valid model for predicting the major features of massive stall phenomena.

It currently appears that viscid-inviscid interaction models have the
potential of providing fast and accurate predictions of several of the vis-
cous phenomena of importance in turbomachinery applications. As such, inter-
action concepts appear to hold the promise of producing useful and efficient
design calculation procedures for turbomachinery applications. Since the
interaction equations are a subset of the Navier-Stokes equations and as
such identify the dominant terms in those equations and the appropriate
scaling laws and correlation parameters, then development of numerical tech-
niques for viscid-inviscid interaction models may have a direct impact on,
and indeed may be a prerequisite for the development of reliable and effi-
cient ways to solve the Navier-Stokes equations in the high Reynolds number
regime.

With the foregoing considerations in mind a research effort has been
conducted to develop an analysis for the prediction of high Reynolds number
flow in a cascade passage. Under the present study an existing implicit
time-marching Navier-Stokes computer code has been further developed to treat
cascade flows. In particular, the general coefficient, matrix inversion, and
boundary condition subroutines have been modified to allow for the specifica-
tion of cascade blade-to-blade periodicity conditions. In addition, calcu-
lations have been performed to assess the reliability and accuracy of the
Navier-Stokes computer code and to verify the successful completion of the
coding changes made under the present contract. Finally, an effort has been
initiated towards bringing viscous/inviscid interaction concepts to bear on
the viscous phenomena of importance in turbomachinery flows. In particular,
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a viscous/inviscid interaction model incorporating asymptotic triple deck
concepts has been formulated for high Reynolds number laminar trailing edge
flows. Numerical solution procedures based on the triple deck version of
this model have been developed and results for both attached and separated
"stalled" trailing edge flows have been obtained.
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PART 1

DEVELOPMENT OF A NAVIER-STOKES SOLUTION PROCEDURE

FOR VISCOUS CASCADE FLOWS




LIST OF SYMBOLS - PART I

Except where dimensions are specified, all quantities in the following
are nondimensional; physical velocities are normalized by U,, density by p
pressure by p U “, dynamic viscosity by u,, and time by L. /U,
where L is the reference length.

r’

a?,j,k Coefficient matrix, Eq. (I-21)

A Constant defined in Eq. (I-3)
Coefficient matrix, Eq. (I-15a)

bY . Coefficient matrix, Eq. (I-21)

» )
B Constant, defined in Eq. (I-3)
c? <k Coefficient matrix, Eq. (I-21)
1)
n i

di,j,k Column vector, Eq. (I-21)

D, sz Finite difference operators for coordinate y™

D?? Momentum equation coefficient, Eq. (I-6)

D_,Dg Damping constants for coordinate transformations, Eqs. (I-24)

D)) Column vector function of the dependent variables and their
spatial derivatives in a single coordinate direction, Eq. (I-9)

:bBC Boundary condition matrix operator, Eq. (I-30)

- Column vector containing spatial derivatives of the dependent

variables in the y™ - direction only, Eq. (I-17)

E(i) Coordinate base vector, Egs. (I-35)

E?j Momentum equation coefficient, Eq. (I-7)

FTjk Momentum equation coefficient, Eq. (I-6)

8ij Metric tensor coefficient

glj Inverse metric tensor coefficient
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LIST OF SYMBOLS - PART I (cont'd)

Momentum equation coefficient, Eq. (I-6)

1jk

H Column vector function of the dependent variables, Eqs. (I-9, I-10)

1 Boundary point index - y1 - direction

Iij Momeiitum equation coefficient, Eq. (I-6)

J Jacobian
Boundary point index, y2 -~ direction

K Momentum equation coefficient, Eq. (I-6)

L Reference length, meters

ng Momentum equation coefficient, Eq. (I-6)

P4 Matrix operator, Eq. (I-15¢)

j% Matrix operator containing spatial derivatives in the y™ -
direction only, Eq. (I-17)

M. Reference Mach number

n Unit outward normal vector

p Pressure

r Computational radial coordinate

R Physical radial coordinate

R; Momentum equation coefficient, Eq. (I-6)

Re Reference Reynolds number, °rurL/“r

. Re, ,m Mesh Reynolds number, |U |ax™Re
g S Column vector containing mixed second order spatial derivative

terms, Eq. (I-9)

t Time

—




At
ax™
ay™

Ar, A6

LIST OF SYMBOLS - PART I (cont'd)

Temperature

Total temperature

Cartesian velocity component, Eq. (I-22)

Reference speed, meters/sec

Velocity vector

Contravariant velocity component

Physical velocity component

Computational curvilinear coordinate

Spatial differencing parameter, Eq. (1-20)

Temporal differencing parameters, Eqs. (I-11, 1-12)

Specific heat rates, cp/cv

Kronecker delta

Time

Mesh

Mesh

Mesh

increment
spacing for cartesian coordinate x™, Eq. (1-22)
spacing for coordinate y®

spacing for computational polar coordinates r and ©

Spatial difference operators, Eq. (I-20)

Convergence parameter, Eq. (I-34)

Artificial viscosity, Eq. (1-22)

Angular polar computational and physical coordinates




LIST OF SYMBOLS - PART I (cont'd)

u Dynamic viscosity

p Density

¢ Dependent variable column vector, Eq. (I-9)

v Dependent variable column vector, Eq. (I-15a)

w Fourth derivation dissipation coefficient, Eq. (I-23)

Subscripts

15 ] K Denote covariant tensor components or function evaluated at grid

point (y!, yI, y¥)

r Denotes dimensional reference value
t=0 Denotes inviscid initial solution
sk Jenotes covariant derivative with respect to coordinate y!

Superscripts

i,j,k Denote contravariant tensor component or grid point location

L Denotes iower periodic boundary of blade passage

U Denotes upper periodic boundary of blade passage

*, kK Denote intermediate solutions of alternating direction procedure
9
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BACKGROUND

The UTRC Navier-Stokes computer code obtains implicit time-marching
finite difference solutions to a general coordinate representation of the
equations of motion. The numerical solution procedure on which this code 1is
based was originally developed by Briley and McDonald (Ref. I-1). A typical
time step in their procedure consists of a time-wise linearization followed by
a fully implicit difference approximation which is solved by an ADI (Alternat-
ing Direction Implicit) procedure of the Douglas-Gunn type (Ref. I-2). The
advantage with ADI methods is that a short sequence of simple matrix inver-
sions replaces the complicated matrix inversion problem associated with a
direct solution of the implicit equations. In this way a real savings in
computer time is made without sacrificing accuracy or stability. Briley,
McDonald, and Gibeling (Ref. I-3) have shown that the ADI scheme has run
stably and accurately with time steps which are orders of magnitude larger
than the explicit stability limit (Ref. I-4). The first applications of the
implicit time-marching Navier-Stokes computer code involved the calculation
of laminar and turbulent flows in rectangular ducts (Refs. I-1 and I-3).
Recently the basic numerical analysis (and computer code) has been extended
by Gibeling, Shamroth and Eiseman to consider a general curvilinear coordi-
nate form of the Navier-Stokes equations. In addition, they applied the
curvilinear coordinate version of the Navier-Stokes code to calculate low to
moderate Reynolds number external flows past simple aerodynamic shapes (Ref.
1-5).

In the present effort sample external flow calculations have been per-
formed to assess the reliability and accuracy of the current version of the
implicit time-marching Navier-Stokes computer code, and this code has been
modified to treat cascade blade passage flows. The governing equations and
numerical solution procedure upon which the UTRC Navier-Stokes computer code
is based will be outlined below for the special case of laminar, steady adia-
batic flow. The'equations of motion and the numerical solution procedure are
described for three-dimensional flows; however, only two-dimensional applica-
tions have been considered herein. For a more general treatment of the gover-
ning equations and more complete details on the numerical method the reader
is referred to References I-1, I-3, and I-5.
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EQUATIONS OF MOTION

All quantities in the following equations are dimensionless; physical
velocities are normalized by U,, density by o, pressure by o U" , tem-
perature by T, molecular viscosity by u., length by L, and time by U /L.
The fluid is assumed to be a perfect gas with zero bulk viscosity coefficient
and constant molecular viscosity and specific heat. The flow is assumed to
be adiabatic with constant total temperature, To, and body forces are assumed
to be negligible. Under these assumptions, the Navier-Stokes equations can
be written for time-independent, curvilinear coordinates (yl, y2, y3) as follows
(Ref. I-6): the continuity equation is

i’_f" +(pv), ;20 (1-1)

and the momentum equations are given by

ik

v L ivi Yo qll $oii gk BgT
P(at Gt "'J)' 9P+t 3Re 9 VoKt e Vi (1-2)

where p is the density, v is the velocity, p is the pressure, u is the =
molecular viscosity, Re = prUrLr/”r is the Reynolds number. In addition, gt
are components of the inverse metric, v! are contravariant velocity components,
subscripts after commas denote covariant derivatives, the indices i, j, and k
vary from 1 to 3, and repeated indices are to be summed. The energy equation

can be replaced with an adiabatic equation of state
p=p [A+Bgijvivi] (1-3)

where A = TO/YMrZ, B=(y-1)/2y, g;; are components of the metric tensor,

N, is the reference Mach number, and Y is the specific heat ratio (cp/cv).

After substituting Eq. (I-3) into Eq. (I-2) to eliminate the pressure,
the governing equations can be expressed in a convenient form for numerical
calculations (Ref. I-5). 1t follows after some algebra that

Apd) , & (puvh =0 (1-4)
ot oy




and

i .3 (1-5)
k dv km J°v
+L: +D.. +Rp+ 1.y
g ;;: 1 ayk m i i)
The coefficients in Eq. (I-5) are defined by
K =AJ
m _ m m
Fii * (gij 8, + B9, 8 ) J
OF ki 3
ki _ g %9mn ( m.n e
ljk aym 2 ayl 8] 8k+agjkg
R|=A£— 3?-% A—i—gk g”‘
gyl ! 3y
y
(1-6)

km _ M 2 Jkam km Kk m
Dij ‘Re“’[ssnsj'%g '818i]

b
WL 99 am pk %0 2 3y _mk
NN L B O i~ et

L‘k Ek GDi'l"" £ 99nm [ kngm, Jkmgh % nmak]
L =E. 4+ + - 9 . +0Q - 9 R
WU g™ 2Re T gy ) j i
where the Kronecker symbol vaanishes unless i = j in which case it is

unity and

koo (2 3y k_, mk 99 g
Eij" Re [Taj 3 V9 a_yﬁm i

Equations (I-4) and (I-5) are the Navier-Stokes equations in a fixed coordinate
frame (y%. yz, y’) with the density, p, and the contravariant velocity compo-
nents, v', i = 1, 2, 3, taken as dependent variables. Once the curvilinear
coordinate system is prescribed, the Jacobian and metric tensor components

and hence the coefficients, defined by Eqs. (I-6) and (I-7), become known

12
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functions of the spatial coordinates. Previous experience (Ref. I-5) has
indicated that the use of contravariant velocity components as dependent
variables can lead to serious truncation errors and as a result the current
version of the UTRC Navier-Stokes computer code has been formulated to
consider the density and the physical velocity components, v(i) as basic
dependent variables, where

vii) = (g;)"2 v (no sum on i) (1-8)

The appropriate form of the Navier-Stokes equations is then obtained after
substituting Eq. (I-8) into Eqs. (I-4) and (I-5).

Although the use of generalized (nonorthogonal) coordinates leads to a
complicated form of the equations of motion. Such coordinates offer signifi-
cant computational advantages. In particular, physical boundaries of the
flow region can be represented as coordinate surfaces, thus removing the
need for fractional cells and boundary condition interpolations. Further,

a uniform mesh can be used in computational space and mapped into a mesh
suitably distributed in physical space to capture large solution gradients
such as those occurring in boudary layers and near airfoil leading and
trailing edges. Finally, the uniform mesh in computational space simplifies
the finite difference approximations of derivative terms.




NUMERICAL SOLUTION PROCEDURE

The numerical method can be briefly outlined as follows: the governing
equations are replaced by an implicit time difference approximation, option-
ally a backward difference or Crank-Nicolson scheme. Terms involving non-
linearities at the implicit time level are linearized by Taylor expansion about
the solution at the known time level, and spatial difference approximations are
introduced. The result is a system of linear difference equations for the
dependent variables at the unknown or implicit time level. To solve these dif-
ference equations, the Douglas-Gunn (Ref. I-2) procedure for generating
alternating-direction implicit (ADI) schemes is introduced. This technique
leads to systems of coupled linear difference equations having narrow block-
banded matrix structures which can be solved efficiently by standard block-
elimination methods.

To describe the numerical procedure it is convenient to express the
Navier-Stokes equations in the following matrix form:

3_;*.'@ = D () +5(@) (1-9)

where ¢ is a column vector containing the dependent variables, H is a column
vector function of ¢, D is a column vector whose elements are functions of the
dependent variables and their spatial derivatives in a single coordinate direc-
tion, and S is a column vector whose elements are functions of the mixed

second order spatial derivatives of the dependent variables. For example,

when the contravariant velocity components are treated as dependent variables,
¢, H (¢) and S (¢) have the form (cf. Eqs. (I-4) and (I-5)):

P -
| Jg.]Pv
¢=|" H= ]
v2 ngij
v3
Jga,‘PV’
(1-10)
r -

I 2l a2y 13 s\ %V 23 3zv 3%y
(0 o5) gy (65« o) gy * o8+ off) 5,05

o) o3 4o v +(623 + o2 PR
S= (z,*o G (Dz' Dzj)ay',ys (D- z;) T3

a1\ % i3 s\ 9% 23 32\ A%
(031*031) *(Dsfo’i)a—yw 4.(D s ) :
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and the elements of the column vector D(¢) consist of the remaining terms in

Eqs. (I-4) and (I-5). It should be noted, that certain definitions and descrip-

tions of terms provided in the present discussion differ from those given
earlier in Refs. I-1, 1-3 and I-5. However, the definitions used here are
appropriate to the current version of the implicit time-marching Navier-Stokes
computer code.

The solution domain is discretized by grid points having eaual Spacings
in the computational coordinates, Ayl, Ay2?, and Ay~ in the y , ¥° and y direc-
tions, respectively, and an arbitrary time step, At. The subscripts i, j, k
and superscript n are grid point indices associated with yl, yz, y- and t,
respectively, and thus ¢ y denotes ¢ (yi, v2, yk, t"). It is assumed that
the solution 1is known at E é n level, tP, and 1s desired at the (n + 1) level,
tn*l, At the risk [ an occasional ambiguity, one or more of the subscripts
is frequently omitted, so that ¢M is equivalent to °?,j,k'

Linearization Scheme

A linear difference approximation to the nonlinear governing equations is
obtained from the following time-difference replacement of Eq. (I-9):

(Wt o u")sat =8, D™ +0-B) D" + By S"H ' 4 (1-B,) 8" (1-11)

where, for example, pntl - H(¢n+1). The parameters (0 < B., B, < 1) permit

variable centering of the scheme in time. Thus Eq. (I~11l) produces a backward
difference or fully implicit formulation for B, = 8, = 1, a Crank-Nicolson
formulation for 8, = By = 1/2, and a forward difference or fully explicit
scheme for 81 = 32 = (. Unconditional stability is anticipated for

81, B > 1/2. 1In the present method the column vector S (¢) 1is treated
explicitly. Thus with 8 = 8,, Eq. (I-11) reduces to

(W *'-n") /8128, 2" 4 (1-3) D" + 5" (1-12)

The mixed derivative terms (in S(¢)) could be treated implicitly within the

AD1 framework; however, this would increase the number of intermediate steps
and thereby complicate the solution procedure. Test cases computed while
developing the present numerical method (Refs. I-1 and I-3) have indicated

that the explicit treatment of mixed derivative terms has no observable adverse
affect on stability.
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The linearization is accomplished by a two step process of expansion
about the known time level t™ and subsequent approximation of the quantity
(3¢/5t)™ At, which arises from chain rule differentiation, by (¢“+1 o 1
The result is

n+l n+l

W' W (an/08) (¢ -¢") +0 (a1 (1-13a)

h+|

2" 2" (a2/2¢) (8" 1'-¢") + 01817 (1-13b)

The matrix 9H/3¢ is a standard Jacobian whose elements are defined by
(3H/a¢)qr = qu/8¢r The operator elements of the matrix 3D/3¢ are similarly
ordered, i.e., (ajb/a¢) = aqu/3¢ however, the intended meaning of the
operator elements requires some clarification. For the qth row, the operation
(ajbq/a¢)“ (™1 _ 4M) is understood to mean that {3/3t D ¢(y1, y2, y3, t)]}“At i
is computed and that all occurrences of (8¢ /3t)™® arising rom chain rule
differentiation are replaced by (¢ ntl ¢“ )/At. The substitution of Eqgs.
(I1-13) into Eq. (I-12) leads to the following linear, implicit, first order
accurate time-differenced scheme: . L

(_3%)“(¢n+l’¢n)61=ﬁ(%) n+l ¢) 9" 4" (I-1L) . 4

Equation (I-14) is linear in the quantity (4™*1 _~ ¢™) and all other quantities
are either known or evaluated at the nth time level. It is convenient to
solve Eq. (I-14) for (¢"+1 - ¢™) rather than ¢n+1. This reduces roundoff
errors, since it is presumably better to compute a small O (At) change in an

0 (1) quantity than the quantity itself. After defining the symbols: 4

v ¢-¢" (1-15a)

Am (—"ﬂ)" (1-15b)
¢

j - ﬁ (02/a¢)n (I—ISC)

Equations (I-14) can be written in the following simplified form

(a+a12)¥"*' = at[2"4 5"] (1-16)
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Alternating Direction Procedure

The solution of Eq. (I-16) is accomplished by application of an alter-
nating-direction implicit (ADI) technique which is a generalization of the
procedure developed by Douglas and Gunn (Ref. I-2) for generating ADI schemes
as perturbations of fundamental implicit difference schemes such as the back-
ward-differences or Crank-Nicolson schemes. The vector operator 2(¢) contains
terms which are functions of ¢ and, in addition, terms which are functions of
¢ and the first and second order derivatives of ¢ with respect to yl, yz, and
y3, but no mixed derivatives. Thus D (and hence /) can be split into three
operators,jbl,:b2,§b3, associated with the yl, yz, and y3 coordinates, each
having the functional form:bm = %, 3/oy™, 32/8ym3ym). Those terms of
2D(4) which do not contain a spatial derivative are grouped under the operator
:bl. Equation (I-16) then becomes

[A +at (L + 2,4+ 13)] VARV [27 +27 + D5 + Sn] (1-17)

and the Douglas-Gunn representation of Eq. (I-17) can be written as the fol-
lowing three step solution procedure:

(a+at2)¥ =at[2]+ 27+ 27 +5"] (1-18a)
(a+ats,)¥*av® (1-18b)
(a+at2) " = ay®® (1-18¢)

where y* and y** are intermediate solutions. If Y* and y** are eliminated,
Eqs. (1-18) become

(A+a12)& (a+a1L) & (a+ ot L)V = at [+ D]+ D3 48" (-19)

and after performing the multiplication on the left-hand side of Eq. (I-19),
it is apparent that Eq. (1-19) approximates Eq. (I-17) to order (at)2.

Spatial differencing of Eqs. (I-18) is accomplished by replacing deri-
vative operators such as 3/3y™ and az/aymay“ (no sum on m) by corresponding
three point finite difference operators, D and Dy where

17
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Dm® = [aA_+ (l—a)A+] /oy = 6¢/ay'“ + 0[(Ay)2 + (a-I/Z)Aym] (1-20a)
2
02, ¢ = (8,80) $/(ay") = /oy 3y + O (ay") (1-20b)

Here, £,¢ and A_4 represent forward and backward differences in ¢. For
example, the difference approximation to the derivative of ¢ at the point
(y%, y%, ya) in the y2 - direction (m = 2) is obtained by setting

By ¢4,§,k = ®4 341,k ~ ®1,§,k and A_ by 5 ¢ = by § g — b5 5-1,k- The
parameter a has been introduced (0 < a < 1) in Eq. (I-20) to permit con-
tinuous variation from backward to forward differences. The standard central
difference formula is recovered for a = 1/2 and was used for the numerical
calculations reported here.

With the introduction of the spatial difference operators e and Di,
defined in Egqs. (I-20), the solution procedure for the alternating direction,
implicit time marching form of the governing equations, Eqs. (I-18), can
be described. Since D and Dé are three point difference operators, the
finite difference approximation to Eq. (I-18a) contains w*i-l,j,k’ w*i,j,k’
and w*i+1,j,k as unknowns. Hence, the system of linear equations generated
by writing Eq. (I-18a) at successive grid points (y%, yg, ya; Ml ey, 1)
can be written in block-tridiagonal form; i.e.,

n o y* "oyt nooy* =d".
oiai$k wi'lnjvk t bi'ink wioivk i ci'j'k ‘Pi +1,j,k ik (1-21)

where a, b, and c are square matrices and d is a column vector, each con-
taining only n-level quantities. When applied at successive grid points
(i=1, ...., I ), Eq. (21) generates a block-tridiagonal system of equations
for y* which, after appropriate treatment of boundary conditions, can be
solved efficiently by using standard block-elimination methods (Ref. I-7).

The solution procedure for Eqs. (I-18b, c) is analogous to that just described
for Eq. (I-18a).

Artificial Dissipation

In computing solutions for high Reynolds number flows, it is often
necessary to add a form of artificial viscosity or dissipation. One possible
dissipation term in common use is based on an observation by Roache (Ref. I-8)
that for a linear model problem representing a one-dimensional balance of
convection and diffusion terms, solutions obtained using central differences
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for the convection terms are well behaved provided the mesh Reynolds number
Repm = lum!Axm Re is < 2, but that qualitative inaccuracies associated
with boundary conditions occur for Rep,m > 2. This suggests the use of an
artificial viscosity term of the form emD%¢, where

|um‘Axm o _]__ _ __l_ (ReAXm ) » Re > 2
2 Re - Re 5 - L%
€m*= (1-22)
0, Repy <2

. to insure that the local effective mesh Reynolds number is no greater than two.

This result has been extended for generalized tensor equations and the appro-
priate dissipation terms for the continuity and momentum equations have been
incorporated by Gibeling et al. (Ref. I-5) into the present version of the
UTRC Navier-Stokes computer code.

A second type of artificial damping which is a fourth-order dissipation
term has been suggested by Beam and Warming (Ref. I-9) to damp small wave-
length disturbances. In the present formulation an explicit fourth-order
damping term was added directly to the fundamental difference scheme,

Eq. (I-16), as follows:
44N
(a+atL)¥" T ar [DN +s" +§‘ (ay™* L
ms:

This dissipation term is treated explicitly to retain the block tridiagonal
matrix structure of the finite difference form of the governing equations.

19




VS

— - - =

NUMERICAL RESULTS FOR FLOW PAST A CIRCULAR CYLINDER

Under the present effort implicit time-marching Navier-Stokes solutions
have been computed for symmetric, two-dimensional flows, at Reynolds numbers
(based on diameter) of forty and eighty, past a circular cylinder (Fig. 1).

In both cases the free stream Mach number was set equal to 0.2. The circular
cylinder case is a convenient example because it represents a relatively
simple geometry and both experimental data and other numerical solutions are
available for comparison (cf. Ref. I-10). 1In particular, Gibeling, Shamroth,
and Eiseman (Ref. I-5) have computed the flow past a circular cylinder at a
Reynolds number of forty using the present numerical method. These authors
considered the density and contravariant velocity components as dependent
variables and did not use artificial fourth-order dissipation (cf. Eq. (I-23))
in their calculations. However, they later modified the Navier-Stokes computer
code to consider density and the physical velocity components as dependent
variables and introduced fourth order dissipation into the calculation proce-
dure in order to compute flows past a symmetric Joukowski airfoil (Ref. I-5).
Circular cylinder calculations are repeated here both to test the current
version of the Navier-Stokes computer code, and so that the present investi-
gators could gain experience in working with the code by applying it to a
simple external flow configuration.

Due to symmetry results are computed for only the upper half-plane of
the flow field using a 35 x 35 mesh embedded in a polar coordinate system.
The outer boundary of the computational region was taken to be fifteen
diameters from the cylinder center. A nonuniform grid spacing in physical
space is applied with points along radial lines concentrated near the cylinder
boundary and points on the circumferential lines concentrated near the front
and rear stagnation points. Mesh points are distributed according to the
relations

@(in8)=m/2-w/2 tanh {Dg [1-2(i-1188/7 ] }/tanh Dy, =11 (1-26a)

R(jAr)=30-29 tanh {D, [1-(j-ar] }/tanhor o j=1 0 (1-24b)

where A8 = n/(I-1), or = 1/(J-1), Dy = 0.75, and D, = 2.7 are
damping constants for the O and R directions, respectively, and I = J = 35.
The coordinate distributions, Eqs. (I-24), are special cases of the Roberts
boundary layer transformation (Ref. I-11) and are shown plotted in Fig. 2.
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The potential flow past a circular cylinder with a compressibility
correction on density is specified as the initial flow field for the present
viscous time marching solutions with the exception that the initial velocity
on the surface of the cylinder is set equal to zero. Thus, the initial condi-
tions are as follows:

Plig=[1+MF C-ymizarse] /[1etme v G-y (men)® 7a)72]  (1-252)
g -2
v(l)‘tzo--(loR )sin®, R#I (1-25b)

=0, R=1

v, =(-R?)cos @ (1-25¢)

where v(1) and v(2) are the physical velocity components in the R and © -
directions, respectively and v is the magnitude of the velocity. The implicit
time marching solutions are constrained to satisfy the following steady
boundary conditions. Symmetry conditions are applied on the stagnation
streamlines; i.e.,

dp/38=v(1)=0v(2)/d8:0, on®:=0,w (1-26)

thus permitting calculations to be restricted to the upper half-plane of the

flow. The velocity and normal pressure gradient, 3p/3n, is set equal to zero
at the cylinder surface. This condition is required to determine a value of

density at the surface and in the present case of constant total temperature,
this condition is equivalent to 3p/3an = 0. Therefore

dp/dR=v()=v(2)=0, on R=| (1-27)

Finally, velocity and density are set to their inviscid values over the
upstream three quarters of the outer boundary while first derivatives of the
physical velocity components are set to zero and the pressure is set to its
inviscid value over the remainder of the far-field boundary; i.e.,

peplyo vnsvin], g w@sva| o, (1-28)

on R:=30, m/4<@<w
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and

ov(1)/dR=0Vv(2)/0R=0,
(1-29)

p=p'tﬂ)/ {A#B[VZU)+VZ(2)]}, on R=30,0<08<w/4

The last condition follows from Eqs. (I-3) and (I-8) with By = 0 due to
orthogonality.

At this point it is convenient to review the solution procedure using the
circular cylinder problem as a vehicle to illustrate the method of incorporat-
ing the boundary conditions into the finite difference approximation. The
foregoing steady state boundary conditions on the lines © = 0 and T and
R = 1 and 30 can each be expressed in the form

n+l

Bac¥ - Bac 4’n*5n (1-30)

wherefbgc is a matrix operator containing derivatives in the coordinate
directions and S is a column vector function of ¢°. Hence the intermediate
solution, U*, after the nth time step of the alternating direction implicit
procedure, is calculated on the circumferential lines, R (jAr) = constant,

j=2, ..., J-1, as a solution of the equation set

. we n, N __
5.C||,iw|'i a'cll‘j¢ ‘S|.j (1-31a)
*
(A’A'xﬂ,'j \pi,j =A'[5|n+52n’sn]i'j - N (1-31b)
B | #l* = f | ¢n (1-31c)
ecitnj "1,j "Tecll,)

After approximating derivatives at boundaries by three point finite difference
expressions, a block tridiagonal system of linear equations of the form
(cf. Eq. (1-21))




n * n * n * n
biij Wi,i*Cu,j Ve,i+ a1, ¥s,j=di (1-32a)

n * n * n * [; _
Qi Wi'hi' biJ 4”,] *Cij Wi.|J :diJ 022,.,1=1 (I-32b)

n * n * n. 4’* =d1n (1-32¢)

Clll wl'z-]

results. Values of V* are determined by using Gaussian elimination methods to
solve this system of equations. Similarly, the viscous flow field at the
(n + 1)th time level, w“+1, is obtained as a solution of the equations

n" s n n
Bec Ia,n Wi,u * "Dgc li.. 4’5‘. i Si., (1-33a)
nel
(A+ At xz)i,j w i = Ai,j “’tl ,j:z'_._.dq (1-33b)
nNel o n
B ac li,J Vi *Dec |a,,, P (1-33¢)

on the radial lines, 0(iA®) = constant, i = 2, ... I-1, after spatial dif-
ference approximations are introduced to express the foregoing equations in
block tridiagonal form. The viscous solution evolves from the inviscid flow
field, y©, until the difference between the flows at two successive time steps,
N and N + 1, satisfies an imposed convergence criterion. Specifically, the
maximum value over the entire field of the absolute difference between the
dependent variables at successive time steps must be less than some small

number, €; i.e.,

N+«i N Net N

N -¢ = max CHEE N ETH
i@l (1-34)
el
k=1,...,3

Here the subscript k refers to the kth component of the column vector ¢. In
the solution procedure the magnitude of the time step at the nth time level,
n=1, N, is a variable parameter which depends on the value of
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In the present study implicit time-marching Navier-Stokes solutions
were advanced through 160 and 200 time steps for circular cylinder flows at
Reynolds numbers of 40 and 80, respectively. The dimensionless time step used
in these calculations varied between 0.15 and 0.5. Artificial fourth order
dissipation was at first applied for the circular cylinder calculations, but
was found to lead to diverging solutions and spurious results in the far field.
Hence, the only artificial viscosity term used below was that based on the mesh
Reynolds number criterion, Eq. (I-22). The computations were carried out on
the UTRC Univac 1110 computer system and the computing time for the nonorthog-
onal form of the governing equations used for the circular cylinder flows is
approximately 0.95 CPU minutes per time step or 7.8 x 10~4 CPU minutes per
grid point per time step. Selected results from the present calculations for
flow past a circular cylinder are described below.

The variation of the minimum pressure and the separation angle, 6., with
time is depicted in Fig. 3 for the Re = 40 case and in Fig. 4 for the
Re = 80 case. After 160 time steps the separation angle reaches a value of
51.4° for Re = 40. This is to be compared with values of 50.0°, 52.59, 53.7°,
and 53.9° obtained by Kawaguti (Ref. I-12), Apelt (Ref. I-13), Kawaguti and
Jain (Ref. I-14) and Son and Hanratty (Ref. I-15). The development of the
pressure distribution around the surface of the cylinder with time is shown
in Fig. 5 for Re = 40 and in Fig. 6 for Re = 80. The time history plots,
Figs. 3 through 6 reveal that although the implicit time-marching results
appear to be converging, steady state solutions have not been achieved even
after a considerable number of iterations or time steps. The maximum dif-
ference between dependent variables at successive time steps (cf. Eq. (34))
is of the order of 2 x 10-3 after 160 (Re = 40) and 200 (Re = 80) time steps.
In addition, as will be seen below, the results after 160 time steps for the
Reynolds number of forty case are not in good agreement with previous cal-
culations or experimental measurement.

The present prediction of surface pressure distribution for Re = 40
after 160 time steps is compared with the predictions of Son and Hanratty
(Ref. I1-15), Kawaguti (Ref. I-12) and Gibeling, Shamroth, and Eiseman
(Ref. I-5) in Fig. 7. Note that the angular coordinate, ©, is equal to 180°
at the front stagnation point. The Kawaguti pressure coefficient prediction
was given relative to the rear stagnation point pressure and in Fig. 7 the
Kawaguti rear stagnation point pressure was arbitrarily set at the Son and
Hanratty value. The predictions of Refs. (I-15) and (I-12) were both obtained
from solutions of the incompressible Navier-Stokes equations while the solution
of Ref. I-5 and the present solution were obtained from the compressible
equations with Mach number equal to 0.2. As is clear from Fig. 7, the agree-
ment between the present predictions and those of Refs. I-5, I-12, and I-15
is rather poor with the present analysis over predicting the pressure over
most of cylinder surface. In addition, the time history plots, Figs. 3 and
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5, indicate that with continued iteration the pressure prediction based on the
present procedure would deviate still further from previous results. Indeed,
the results achieved with the present method after 80 time steps are in better
agreement with the previous predictions than those achieved after 160 time
steps. Wake centerline velocity distributions for Reynolds numbers of 40 and
80, based on the present analysis, along with the predictions of Kawaguti

(Ref. I-12) and Gibeling et al (Ref. I-5), and the experimental measurements
of Coutanceau and Bouard (Ref. I-10) for a Reynolds number of 40 are depicted
in Fig. 8. Again the agreement between the data and the present results for
Re = 40 is not good. As a final illustration of the results of the present
calculations, the velocity profiles for Re = 40 and Re = 80 at several azimuthal
locations are shown in Fig. 9 along with the predictions of Gibeling, Shamroth,
and Eiseman (Ref. I-5) for Re = 40. Substantial differences can be observed
between the results of these two analyses.

Based on the present study the performance of the implicit time-marching
Navier-Stokes computer code has not been satisfactory. Converged solutions
could not be ohtained for simple low Reynolds number flows and the results
after a considerable number of time steps are not in good agreement with those
of previous analyses or experimental data. In contrast, Gibeling, Shamroth
and Eiseman (Ref. I-5) used essentially the same version of the Navier-Stokes
computer code and reported a converged solution for the flow past a circular
cylinder at Re = 40 after only 80 time steps, and their results are in very
good agreement with the previous incompressible analyses of Refs. I-12 and
I-15 and the experimental data of Ref. I-10. The major difference between
the present analysis and that of Ref. I-5 is that physical velocity components
are treated as the dependent variables here, while contravariant velocity
components were assumed as dependent variables in the former analysis. The
modifications to the Navier-Stokes computer code to accomplish this change of
dependent variables were made by Gibeling et al in order to decrease numerical
truncation errors. At this time the reason for the discrepancies between the
present results and those of the Ref. I-5 study are not apparent, but further
studies to clarify this situation seem warranted. In this regard information
concerning the time step distribution and convergence criterion used in the
previous analysis (Ref. I-5) as well as intermediate results for pressure and
velocity would be most useful.
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TWO-DIMENSIONAL CASCADE FLOWS

A major objective of the present study has been to further develop the
implicit time-marching Navier-Stokes computer code so that this code could
be applied to the calculation of viscous flow through cascades. In par-
ticular, a solution scheme for cascade flow fields has been formulated and
the relevant subroutines of the Navier-Stokes computer code have been
modified to accommodate this scheme. The solution formulation is based on
the use of the two-dimensional, curvilinear cascade coordinate system
developed by Eiseman (Ref. I-16). This system consists of coordinate loops
surrounding each blade and radial coordinate lines normal to the blade
surface. The outermost loop is constructed so that cascade periodicity
conditions can be applied without interpolation between grid points. The
coordinates are orthogonal on the airfoil surface, but gradually become
nonorthogonal away from the airfoil. Mesh points can be packed in regions
of large solution gradients and little restriction is placed on airfoil cam-
ber and spacing. At present, Eiseman's coordinate generator can accurately
produce systems for inviscid studies; however, further refinements are
required to produce the higher order smoothness necessary for viscous cas-
cade analyses. An example of an Eiseman cascade coordinate system is
depicted in Fig. 10.

Consider two dimensional flow past an isolated airfoil or a blade in
cascade and a coordinate system consisting of coordinate loops surrounding
the airfoil (or blade) and radial coordinate lines emanating from the
airfoil (or blade) surface and terminating on an outermost coordinate loop.
The sketch in Fig. 11 will be used to illustrate the computational procedure
for both the flow past an isolated airfoil and a blade in cascade. 1In the
former case the reader should envision the outermost coordinate loop ABCDEFGH
in Fig. 11 as lying in the far field while in latter, he should envision the
outermost loop as consisting of cascade periodic boundaries, CD and GH, and
front, HC, and rear, DG, endcaps which lie in the far field. In both cases
the innermost coordinate loop coincides with the airfoil (or blade surface).

For the isolated airfoil an intermediate solution, w*. of the ADI
form of the Navier-Stokes equations, between the n and n + 1 time levels
is obtained by solving the direction - 1 equation, i.e., Eq. (I-18a) with
:b3 = 0 or Eq. (I-31), along the coordinate loops with the exception of the
loop which coincides with the airfoil surface and the outermost or far-
field loop. The starting radial line for the direction - 1 calculation can
be chosen arbitrarily. The solution at the n + 1 time level, wn+1’ is then
ogsaineg+by solving the direction - 2 equation; i.e., Eq. (I-18b) with
v =19 or Eq. (I-33b), of the ADI representation on each radial line
subject to the appropriate boundary conditions at the airfoil surface and
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at the far-field boundary; e.g., the conditions at R = 1 (Eqs. (I-27)) and
R = 30 (Eqs. (1-28 and I-29)) for the circular cylinder problem. Blade
passage flows can be calculated in a similar manner, but conditions must be
imposed at the periodic boundaries (CD and GH in Fig. 11) in lieu of
far-field conditions. These conditions are that the density and velocity
must bhe equal at periodic points (e.g., C and H, and D and G in Fig. 11) and
values of these flow variables on the periodic boundaries must be solutions
of the Navier-Stokes equations. The blade-to-blade periodicitxlrequirement
indicates that solutions of the direction - 2 equations for v™ should
proceed simultaneously along radial lines which terminate at two periodic
points on the outermost coordinate loop.

If E'i , 1 =1, 2, denotes the natural basis of tangent vectors to the
loopwise and radial coordinate curves, then

j i
- -35
€)= 8 R
€iy€(j) =9 (1-35b)

where the superscript in Eq. (I-35a) refers to the contravariant component of
the base vector €, i)+ The components of the unit outward normal vector to
the loopwise-~coordinate lines are obtained by solving the equations

—s — = | z-
Ne@€, =9, n +g, N =0 (1-36a)

and

NF =g, nini = (1-36b)
It follows that

n'=-g,, /0 V3, ) (1-37a)

n%= /g, /v (1-37b)

Then since the velocity must be equal at upper and lower periodic points

/
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s U V) RS L
(V&) =(v'g“¢vzgz|) ==(v g”+vzqzl) -(v-em) (1-38a)

R T 2 e O 2 TR e L A0 (1-38b)

The blade-to-blade periodicity conditions on density and the physical
velocity components then have the form (cf. Eq. (I-8)):

pY - pt (1-39a)

[ Vg, vl +g, v(:e)/s/g‘e2 ]U =-[J9,, vin+g, v(z)//@]" (I-39b)

[J v(2)/~/9_“_?2:]U =-[J v(2) /\/T;',,—E-;z]L (1-39¢)

It is possible to construct an implicit solution scheme for the
Navier-Stokes equations at a cascade periodic boundary; however, such a
scheme would entail rather complicated changes to the Navier-Stokes computer
code. Hence, in the present effort an explicit scheme has been adopted. Thus
the form of the governing equations applied at a periodic boundary follows
from Eq. (I-16) with g = 0; i.e.,

ay "ot [ es") (1-40)

In addition, since the radial coordinate lines of the cascade coordinate sys-
tem do not possess continuous derivatives at periodic boundaries (see Figs.
10 and 11) the use of one sided difference approximations for derivatives

in the radial coordinate direction is indicated. If necessary, an implicit
solution scheme using central differences could be adopted in future studies.
Construction of an implicit scheme would involve straightforward, albeit

very tedious, coding changes. The introduction of central difference
approximations in the radial direction is contingent on future refinements

in the cascade coordinate system described in Ref. (I-16).

With the foregoing ideas in mind the Navier-Stokes computer code has
been modified to encompass the following so%ution scheme for the blade
passage problem. Intermediate solutions, y , of the direction - 1 equations
are obtained in the counterclockwise direction along the coordinate loops
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with the exception of the blade surface and outermost loops. These solutions
start from the first radial coordinate line which terminates on the front
end cap (i.e., at point A in Fig. 11) and proceed around the blade to the
radial coordinate line which terminates at the end of the upper periodic
boundary (i.e., point H in Fig. 11). Solutions at the n + 1 time level,

v® , are then obtained by solving the direction - 2 equations along the
radial coordinate lines subject to solid surface boundary conditions at

the blade, upstream and downstream far-field conditions on the front, AB in
Fig. 11, and rear, EF, endcaps, respectively, of the outer coordinate loop
ABCDEFGH (Fig. 11), explicit Navier-Stokes solutions on the lower periodic
boundary, CD, and blade-to-blade periodicity conditions on the upper
periodic boundary GH. Solutions along radial lines which terminate at
periodic points on the outer boundary proceed simultaneously. Although
this is not strictly required in the present formulation, which uses
explicit Navier-Stokes solutions at the lower periodic boundary, it has
been incorporated so that possible future improvements, i.e., implicit
procedures at the lower boundary can be readily incorporated.

As part of the current effort, the modifications to the matrix inversion,
boundary condition, general coefficient, and spatial differentiation sub-
routines of the implicit time-marching Navier-Stokes computer code, to
incorporate the foregoing formulation have been completed. The changes to
the existing code have been accomplished in a concise manner involving the
addition of only one new subroutine and only a limited number of additional
input parameters. The code modifications have been checked out by calculating
the symmetric flow past an isolated circular cylinder using symmetry condi-
tions, which are similar in form to cascade periodicity conditions ({i.e.,
symmetry involves only a change of sign in Eq. (I-39c)) at the endpoints of
radial lines extending above and below the cylinder. Computed results for
this case after five time steps are virtually identical to those obtained
using the usual isolated body, far-field boundary conditions for the circular
cylinder calculations. Such agreement indicates that the modifications to
the Navier-Stokes code required to treat cascade periodicity conditions have
been successfully completed and that this code is ready to accept the cascade
geometry module developed by Eiseman (Ref. I-16). However, before the
geometry module is incorporated into the Navier-Stokes code the coordinate
generator must be further developed to provide the higher order smoothness
required for viscous flow studies.
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PART 11

A VISCID/INVISCID INTERACTION APPROACH
FOR HIGH REYNOLDS NUMBER TRAILING

EDGE FLOW
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LIST OF SYMBOLS - PART II

a reference length

C Chapman-Rubesin viscosity constant

Cp constant pressure specific heat

e unit vector

h coordinate scale factor

H total enthalpy

Hg surface height in bottom deck variables

] geometry index: j = 0 2-D flow; j = 1 axisymmetric flow
3 Cartesian coordinate unit vector

M Mach number

n transposed normal coordinate

N transposed stretched normal coordinate

i, asymptotic ordering symbol

p static pressure

P inner deck pressure

q heat transfer

Ty %, transverse coordinate and surface radii respectively
Re Reynolds number

8 transposed longitudinal coordinate

- position of coordinate system, inner variables
ts position of coordinate system
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LIST OF SYMBOLS - PART II (Cont'd)

static temperature

longitudinal velocity

inner deck or inviscid longitudinal velocity
normal velocity, transposed coordinates
inner deck normal velocity

normal velocity

longitudinal coordinate

inner deck longitudinal coordirate
normal coordinate

inner deck normal coordinate

inner region ramp angle parameter
ratio of specific heats

inner deck displacement thickness
perturbation parameter

longitudinal surface curvature

Blasius constant

viscosity coefficient

inclination angle with horizontal axis
density

Prandt]l number

shear stress

trailing edge angle
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LIST OF SYMBOLS ~ PART II (Cont'd)

Subscripts

e inviscid edge values

E.P. flat plate solution

m matching region values

)y o trailing edge location

v viscous or main deck region
W wall values

X, Y& 2 coordinate direction

o free stream value
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GENERAL APPROACH

The problem of base flow separation off the trailing edge region of
airfoils (i.e., trailing edge stall) causes difficulty in analytically
predicting the losses and loading in turbomachinery applications. Upon close
inspection, it is obvious that this flow and its attendent difficulties are
very similar to those encountered in predicting surface separation bubbles,
the main difference here being that reattachment takes place on a slip line
instead of on a solid surface. While it has long been clear that classical
boundary layer theory is inadequate for predicting separated flows, recent
analytical developments indicate that a consistent and reliable analytical
model can be constructed using somewhat less than the full Navier-Stokes
equations. Additionally, careful analysis of experimental data suggests that
the effect of the stalled flow trailing edge separation bubble on the flow
field is confined to the immediate region in and about the trailing edge
region. This observation indicates that to capture the trailing edge flow
phenomenon it is only necessary to modify the classical approach (i.e.,
inviscid flow plus boundary layer theory) in the immediate vicinity of the
trailing edge. Thus, while methods based on the application of the full
Navier-Stokes equations to the entire flow field will surely be formally
applicable, alternate, simpler approaches are now available.

For separation bubble flows, all of the simpler analytical models to
date contain two common features: first, in the viscous region diffusion
effects normal to the streamlines dominate all others and; second the inviscid
flow field represents flow over a surface formed by thickening the original
shape with the local viscous region's displacement thickness. Variations on
this approach involve either a composite of these two layers (the thin layer
approximation, the parabolized approach, etc.) or a substructure delineation
(the triple deck, or the multi-deck approaches). In either case, successful
modeling of separation bubble flows has been achieved and it remains now to
apply and extend these concepts to stalled subsonic and transonic trailing
edge regions in turbomachinery applications. This is the overall goal of the
present study with specific interest in the formulation of the two layer,
interacting laminar boundary layer model of this flow field. A companion
study has also been conducted on the development and demonstration of numer-
ical techniques for solving such flows for the supersonic trailing edge
problem - the results of which will be summarized here.

The general approach to be employed here follows closely the work
of Melnik, Chow, and Mead (Ref. II-1) who developed an interacting boundary
layer model for high Reynolds number flow past isolated airfoils. As depic-
ted in Fig. 12, the overall flow field model is rather conventional except
that an interaction model is employed to bridge the trailing edge region
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where the blade boundary layer transists to a wake flow. The major element
of this approach is that for high Reynolds number the laminar viscous flow is
assumed to influence the inviscid flow field principally through displacement
effects and is represented by the displacement thickness as added to the air-
foil surface and wake centerlines. Thus, the major elements of the flow are:
(1) an inviscid flow outside the thin viscous regions here taken to be gov-
erned by the potential flow equations as applied to cascades; (2) a weakly
interacting boundary layer region over the forward portion of the blade; (3)
a weakly interacting wake region aft of the trailing edge region; and (4) a
strongly interacting trailing edge region where the local pressure levels
must be established along with the viscous solution. Coupling of these four
flows produces a boundary value problem in the flow direction that Melnik

et al. (Ref. II-1) have shown can be solved with iterative techniques.
Attention here will be directed at the solution of the strongly interacting
trailing edge region where Melnik et al. used approximate techniques to

solve for attached flows only. The separated (or stalled) trailing edge
problem will be addressed here using recently developed interacting boundary
layer concepts (see Refs. I11-2, 6). Attention will be focused on the laminar
flow past symmetric sharp trailing edges, as depicted in Fig. 13, with trail~
ing edge angles large enough to cause the boundary layer to separate off the
surface and reattach on a wake slip line.
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THE TRAILING EDGE FLOW MODEL

The details of the flow field for the trailing edge region are given in
Fig. 13. Here the basic inviscid flow is that of flow into and out of a
concave corner. This strongly deaccelerating flow field forces the incoming
boundary layer to grow, deflect the inviscid stream, and finally separate
from the surface and reattach along the wake ~ producing a displacement
surface that smooths the sharp corner's influence on the local inviscid flow
field (see Fig. 14).

The analytical model for this flow field is taken directly from that
already proved to be applicable for flow into a compression corner made up of
two solid walls. Vatsa and Werle (Ref. I1I-4), Jenson, Burggraf, and Rizzetta
(Ref. II-7) and Burggraf et al (Ref. II-11) have clearly shown that the
interacting boundary layer concept provides a rational approximation for such
flows and this concept will be carried over directly here. The principle
governing equations for the viscous region are formally recovered from the
Navier-Stokes equations using the formalism of higher order boundary layer
theory (Ref. I11-8) to identify the displacement thickness corrections to the
flow equations.

The basic approach taken here is similar to that first set down by Van
Dyke (Ref. II-9) except that here no attempt is made to filter out the
higher-order effects into separate linear problems. Van Dyke has given a
statement of the full Navier-Stokes equations for two-dimensional or axisym-
metric flow in terms of the coordinates x and y with all distances referenced
to a length, a, velocities to U,, pressure to p U “, density to p_,, temperature

to U,2/C , enthalpy to U,z, and viscosities co the value of y at T = U /Cp.
With these definitions the characteristic Reynolds number becomes

Re = o Ua/u(U?/c) = 1/¢® (11-1)

where ¢ becomes the principle perturbation parameter for an asymptotic
analysis of the separated flow region using the concepts developed by
Stewartson (Ref. II-10).

For present purposes we approach the full equations with the assumption
that in a vanishingly small region near the surface, a region of order ¢
thick, all flow properties except the normal velocity component v are of
order one - v itself being of order ¢ .

Without loss of generality the coordinate system used here will be placed
placed along a smooth surface always located near the line of zero longitudinal
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velocity as shown in Fig. 15.

be totally acceptable.

It will be shown later that within the
framework of an analytical model applicable for asymptotically large
Reynolds number, this arbitrariness in the coordinate definition will

The governing equations are recovered by introducing a stretching of the
viscous region normal coordinate, y,, to give a boundary layer coordinate y

as

y=Yy/€

and retaining the longitudinal coordinate scale as

X=X,

(11-2a)

(I1-2b)

and using unsubscripted variables to designate the flow properties in the

viscous region as follows:

longitudinal velocity
normal velocity:
density:

pressure:

static enthalpy:
total enthalpy:

uply,y, €)= ulx,y,€)
wy(Xy,y, €)=€4w(xy;€)
Py(xV'Yin) g p(x.y,tl
Py (xy.yyi€)=p (x,y,e€)
Ty Xy, ¥y €) = T(x,y €)
Hy(xy .y, €) =H(x,y;€)

The coordinate scale factors are designated as

h,=l+e‘xy =h

hy=!

hz"'o*“ycose)]' ()

(11-3a)
(11-3b)
(II-3c)
(11-34)
(11-3e)
(11-3f)

(II-4a)

(11-4b)

(1I-4c)

Introducing these definitions into the full equations, keeping all terms up
to second order, and invoking the asymptotic matching principle to determine
the interaction with the inviscid flow field, gives the following for plane
(j = 0) or axisymmetric flows (j = 1).
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continuity:

9 (priu)+ -8 (phr'w)=0
£ (pru)+0N phr’w

longitudinal momentum:

p[u Qw2 ]-pm(u,/h)a%(u,/hh
y

alrh 2 _ ph2u?)dy|= L 9 (rin?

where

rsy(—g—: - uh,/h)

total enthalpy:

LIy L. -1y Y
P[ual-rhway] - ay[hr (Q+ut)]
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where

oT dH ou
q=pu/0c —=ulo|— —U — -
M By I [dy dy] (11-5e)

Also the viscosity law is given as:

u = £f(T)

where f(T) represents any appropriate temperature viscosity law with
= 2
T=H-u"/2 (11-6)

The final two relations needed are derived from the matching conditions as

[ ]
h 2 -1 2
Fn *j; h—y3 [PmUe2 -ph uzldy= ¥ P(H-U?) (11-7a)

and

e
pm/pe = (P /Ps)” =[|+(ufxz)(n,—u,z/z)(n-vhz)]7" (11-7b)

The edge conditions, U, and H, identified above, are to be obtained
from the inviscid flow field corrected for displacement thickness effects.
This issue will be addressed later in this section with attention here

directed toward application of the above general equations to the trailing

edge problem and identification of appropriate boundary conditions.
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The first simplification invoked here for the trailing edge problem
involves restriction to the two dimensional case, i.e., taking j = 0 in the
above equations. The second simplification comes about through elimination
of the curvature induced effects identified through the scale factor h.

This is accomplished on two bases. First, in regions of weak interaction,
such as far ahead and aft of the trailing edge, the geometry of the coordi-
nate line is flat and thus its curvature is zero. Second, in regions of
strong interactions as occur near the trailing edge point, the formal ordering
analysis for asymptotically large Reynolds number indicates that these terms
will be of secondary importance. To demonstrate this point it is first neces-
sary to show that the strong interaction equations derived from the asymptotic
triple deck approach are subsets of the interacting boundary layer equations
presented above. Burggraf, Rizzeta, Werle and Vatsa (Ref. II-11) have proven
this point numerically, while Vatsa (Ref. II-12) and Vatsa and Werle (Ref.
11-4) have shown that the introduction of the triple deck scaling laws into
the interacting boundary layer equations leads directly to the correct subscale
equations for strong interaction regions.

Thus, for example, for trailing edge angles a =?(c?) it is found that
within a region x - xqp =0(e3), y =(®(e); i.e., the bottom deck region
within which the separation bubble is contained, the dependent variables
scale as

u=0le (11-8a)
w =0(l/€) (11-8b)
bp =0 (€?) (11-8¢)
p=0(l) (11-8d)
H=0() (11-8e)
e =0ll) (11-8f)

In addition, since in the present approach the coordinate axis is placed on a
surface necessarily contained within this region, it follows that, the
coordinate location, t (x) -0(:5) and its curvature ¢« =((1/e). With

these scalings, the dominate terms of the governing equations for the bottom
deck can be identified for the continuity equations as

continuity: B dw (11-9a)
2 s 2.0
ax * dy

* See the following section of this report for a detail description of the
scaling laws discussed here.
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energy: u o L o P 9°H (I1-9b)
dx dy o gy?

The limit form of the longitudinal momentum equation is dependent on the scaling
law for the edge velocity U, which is established in the outer most

portion of the strong interaction region (y =/(e3)). 1In this region,

one finds that the viscous perturbation to Ug =‘f(£2). With this the

longitudinal momentum Eq. II-5b reduces to

2
Qu &y, .y lls, B (11-9¢)

ox Oy dx ayz

A similar study of the appropriate scalings in the middle deck region of

the strong interaction process would again reveal that the curvature terms
were of secondary importance, but that here density and temperature variations
were of lead order. Thus a composite set of equations can be established for

the two regions as

Py + . =0 (11-10a)
dx dy
du du du ) ( du)
L. ] - Lle. 2 (4 — (11~-10b
P[”ax * My | TRV ey M ey :
on,  ou] o [par o g
p[u : +w6y 3y | 3y +u;1.ay (11-10c¢)

which are merely the classical boundary layer equations with edge properties

adjusted for interaction effects.

The boundary conditions for the present equations can be set down
directly as
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On the blade surface:

On the wake centerline: x » Xr g5

y—= @ ; u—= Ue ond H —= H,

y = -10(1)/6‘ = - t(x)

x < Xp g,y U= w*= O, H=H

where J is the vertical unit vector.

Following Jenson et al (Ref. 1I-7) these latter conditions can be
considerably simplified through use of Prandtl's Transposition Theorem.

define

N=y+t(x) = n/ed

so that the innermost boundary conditions are placed at N = 0 = n.

In addition define

and

so that

and

v=w+u§L=w+uH

X

(r1-11)

(I1-12a)

(I1-12b)

(11-12¢)
(11-124)
(11-12e)

Thus

(11-13a)

(11-13b)

(I1-13c)

(I1-14a)

(I11-14b)

el
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With these definitions the governing equations remain unchanged in form and
thus become

dpu  dpv _
3s *?h‘—-o (II-15a)
du du | _ due _ 4 du
p[u s +V ON] Pe Ve ds (,u ~) (I1-15b)
and
Lo W . RO :
[“a_s"v aN | " oN [cr aN ~ #Y o~] g

The boundary conditions for these equations are straightforward on the
surface, but can be considerably simplified over those given in Eqs. (I1I-12b)
through (11-12d) for the wake centerline.

Referring to Fig. 15, consider the condition that

V=0 (11-16a)
or
w,sin®-u,cosP=0 (11-16b)
Thus
4 . -0t 4,
W,z €%w= u,ton¢- d_suy=-‘ tu (I1-16¢)
which from Eq. (II-13c) give that along the slip line,
n=o v:o (Il’l6d)
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Evaluation of the normal derivative conditions is somewhat more tedious.

The gradient operator is given as

so that

Thus the wake centerline condition on total entha:py becomes

H ._ o om
an h+1°'2 as
and since
T-V=uscos 8
then
du .t |au_.yry
n h+1t.'/2 | ds

(11-17a)

(II-17b)

(11-18a)

(I1-18b)

(I1-18¢c)

These relations can be simplified by noting that in the weak interaction
region t, + O whereas in the strong interaction region, the bottom deck
scaling laws apply. Applying Eqs. (II-Ba) through (11-8f) to Eqs. (11-17a)
and (II-i7b) leads to the result that for o = 0, 8 > 87 g the appropriate

boundary conditions are given as
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oH

Qu _
35 =0 (11-20)

It remains now only to establish the analytical basis for establishing the

edge properties, Ugs Pgs etc. Both the weak and strong interaction

theories indicate that this can be accomplished employing the effective
displacement surface (see Refs. 1I-4,12,13, and 15 for example) obtained

by the simple addition of the boundary layer and/or wake displacement thickness
to the original inviscid flow shape. This is the approach that will be
employed here.
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THE HIGH REYNOLDS NUMBER PROBLEM - THE TRIPLE DECK EQUATIONS*

While the interacting boundary layer problem formulated above is expected
to have application over a very wide range of Reynolds numbers, it has been
shown by Vatsa and Werle** (Ref. II-4) that these equations reduce to a rela
tively simple and instructive form as the Reynolds number increases. In
particular, Vatsa and Werle were able to show that the interacting boundary
layer equations contain the subscale structure (the triple deck structure)
identified by Stewartson (Ref. II-10), and Jenson, Burggraf and Rizzeta (Ref.
11-7) for interacting flows. Of particular interest here is the application
of this concept to the supersonic compression corner problem as depicted in
Fig. 16. Through identification of the subscalings shown near the hinge line
and of the ramp angle, a distinguished limit solution to the Navier-Stokes
equations for Re >> 1 was identified that captured the interaction and separa-
tion phenomena. As such the solutions are as fundamentally important to the
field of separation flow theory as the Blasius solution is to attached flow
theory. An additional benefit of this approach is that it is found to reduce
the parametric dependence of the problem from four (Ma, Re ., T,/T. . @)
to one, a, where

/4
-2 Ren

A
i C(Moz"l)

(Ix-21)

Thus these equations provide a convenient and useful test vehicle for develop-
ing solution methods and demonstrating concepts while providing meaningful
quantitative separated or stalled flow solutions.

The approach used by Vatsa and Werle (Ref. II-4) follows directly frem
that of Jenson et al (Ref. II-7) in that the scaling laws identified for
strong interactions by Stewartson (Ref. II-10) are applied in the near
region of a geometric obstruction - in this case, a compression corner. The
principle region of interest here is the bottom deck of Fig. 16, which can be
identified in terms of scaled dependent variables, X and Y, given as:

3
XK-Xyp=8-Sqp® £\ S/4 ecV® (T'/T.)m X (11-22a)
M2~ 78

*  The work presented here and in the following two sections concerning the
asymptotic Triple Deck equations, their numerical solution algorithm, and
the demonstration of results were performed under a United Technologies
sponsored project outside the scope of the contract requirements. They are
included here to demonstrate the utility of this approach.

*ok

These results have also been discussed by Burggraf (Ref. II-6) and will be
appearing shortly in Ref. II-11.
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i78]°
Ney,+1,= €*'N= N34 -[_‘E_l_ (Tw/To)3/2 Y

(MQZ— l)‘/e

(11-22b)

The dependent variable scalings for this region have been discussed briefly

in an earlier section of this report and are given here in detail as:

longitudinal velocity:

eCI/B

(sz- ) 1/8

U,:UEAW

normal velocity:

€CI/B

2

Wy, Uty = €dy = N30 et
i

static pressure:

/2 (Cva 3
P-Po E A 5 /8 P

(an-l) .

(Tw/ Te) /2 U

1/2
\/8 (Tw/To)  V

(11-23a)

(11-23b)

(11-23c)

With the introduction of these asymptotic scale laws and those for the local
inviscid flow into the interacting boundary layer equations given by Egs.
(11-15a) through (11-15c) above, Vatsa and Werle (Ref. 11-4) were able to
identify the dominant terme of the interacting boundary layer equations for

high Reynolds number strong interactions as
continuity:

ou 9V

F el | ahae
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longitudinal momentum:

2

a9y -
dy ave (11-24b)

Qv 90U  dpP
Uax+vdx+

and the energy equation is found to be uncoupled from these fundamental
equations. These equations are identical to those derived from the Navier-
Stokes equations by Jenson et al (Ref. II-7). The viscous/inviscid interac-
tion law for the asymptotic problem is a simplified version of that for the
interacting boundary layer problem and is given as

s B+ Hg) (11~25a)

dx

where H is the surface height given here for the ramp in inner deck
variables as

Hg=0 for x<0 (11~25b)

H=a X for x>0 (11~25c)

and s is a displacement thickness like function given as

8=lim (v-u) (11-25d)
Y—-®

It has been demonstrated that these equations provide the same solution
at high Reynolds number as that of the interacting boundary layer equations
by Burggraf, Rizzeta, Werle and Vatsa (Ref. I1-11)* with the significant
results repeated here for completeness. For a fixed value of a = 2.5, Figs.
17 and 18 compare separated flow solutions of the interacting boundary layer
equations with solutions of the fundamental equations given above.

* Also see Refs. 11-4, 6, and 11 for further discussion of this point.
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It is clearly seen that both the surface pressure and skin friction
distributions obtained from the interacting boundary layer approach system-
atically approach the triple deck solutions as the Reynolds number increases -
thus verifying the utility of the fundamental triple deck version of the
governing equations for study of the interacting boundary layer model of

the trailing edge stall problem. For this case the boundary condition aft of

the trailing edge is obtained by applying the scaling laws above to Egs.
(11-16d) and (11-18d) to obtain:

X>0,Y=0
v=0 (11-26a)

ou .
o (11-26b)

To provide insight into the nature of the trailing edge flow field, solutions
of Eqs. (I1-24) through (I11-26) have been obtained using numerical techniques

outlined in the following section with a discussion of the results presented in
the subsequent section.
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NUMERICAL METHOD - THE TRIPLE DECK EQUATIONS

The numerical method applied to solve the trailing edge problem described
above will be outlined briefly below. The approach represents an extension
of the concept originally developed by Werle and Vatsa (Ref. II-3) for the
full interacting boundary layer equations. The method used here directly
follows the application and generalization of this technique to the triple
deck equations by Napolitano, Werle, and Davis (Ref. 1I-2) for subsonic and
supersonic separated flow past protuberances and compression corners. The
basic approach uses a marching type implicit finite difference scheme to
solve the continuity and momentum Eqs. (II-4a) and (I1I-4b) with nonlinear-
ities approximated using previous station data. The pressure interaction
effect enters through the pressure gradient term of Eq. (II-4b) and is
coupled to the local velocity through Eqs. (II-5a) through (II-5b). This
effect is accommodated through introduction of a time-like relaxation scheme
wherein dP/dX of Eq. (II-4b) is replaced with the term dP/dX - dé/dt and the
solution marched in time to achieve dé/dt = 0. A simple superposition
technique is employed to determine the simultaneous solution of the conserva-
tion and interaction equations at a given station so that computational
efficiency is maintained.

For completeness two versions of the numerical algorithm were employed
here. The first of these was a slight modification of the numerical algorithm
presented in Ref. I1-2 and as such was first order accurate in the longitu-
dinal direction, AX. A second order accurate version of the numerical method
was also available and has been applied here. A brief outline of the prin-
ciple features of each algorithm is given below.

The First Order Method

The algorithm employed here is virtually identical to that developed
by Napolitano, Werle, and Davis (Refs. II-2 and II-~15) for subsonic and
supersonic flows with several changes as required to accommodate the de-
tails of the flow structure in the trailing edge region. These changes for
the present supersonic case represent generalizations of those concepts
employed by Napolitano et al, (Refs. I11-2 and I1I-15) to accommodate sharp
corner effects in subsonic flows. The changes are identified below with
reference to the appropriate sections and equations of Reference II-15.

(1) the continuity equation (I1I-24a) solution technique was modified
one station aft of the trailing edge in accordance with Section
IV-2 and Eq. (4.13) of Ref. II-15.
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(i1) the numerical representation of the normal convection term of Eq.
(11-24b) was modified according to Section IV-2 and Eq. (4.14) of
Ref. II-15.

(iii) at a given time level, the pressure gradient term dP/dx appearing
in Eq. (11-24b) above was obtained from previous time level solu-
tions using Eq. (4.1) of Ref. II-15.

(iv) the numerical approach employed in Section IV-4 of Ref. II-15 to
solve the interaction law and thus update the pressure gradient
estimate was employed here. However, the Cauchy integral terms
for subsonic flow were replaced by the appropriate algebraic rela-
tion for supersonic flows.

A final modification was made to provide more accurate representation of
the local pressure levels after the solutions were completed. This was found
necessary principally for the flat plate trailing edge problem where singular
gradients and thus large truncation errors were encountered. Thus, the pres-
sure at a typical point, point 2, was given in terms of previous station
values, point 1, from Eq. (II-25a) as

(I1-27)

P =

(82+ Hsz)'(8|_ HSI) Ax ( dp )
+
$ Ax 2 2

dx

The Second Order Method

In an effort to provide very accurate numerical baseline solutions so
that a valid independent assessment of the analytical model could be achieved
untainted by numerical complications, an available second order accurate (in
AX) numerical algorithm was also applied to the present problem. The algo-
rithm employs an approach very similar to that presented in Ref. I1-15 except
that here the first order accurate implicit windward differencing used in the
longitudinal direction for the momentum equation was replaced by a second
order accurate Crank-Nicolson scheme. Similarly the accuracy of the conti-
nuity equation solution was upgraded to second order in AX by centering the
difference equation between two longitudinal stations. To avoid large numeri-
cal errors due to anticipated jump discontinuities in the flow variables
several of the formally second order accurate central difference approxima-
tions were relieved to a first order level at a single station immediately aft
of the trailing edge.




RESULTS AND DISCUSSION - THE TRIPLE DECK PROBLEM

Solution to the high Reynolds number form of the interacting boundary
layer equations (the triple deck equations) were first obtained for super-
sonic flow into a compression corner as depicted in Fig. 19. As such, this
geometry only differs from that of the trailing edge in that the center lire
symmetry condition is replaced by a zero slip condition aft of the corner
point. An essentially exact solution is available for this problem from the
work of Rizzetta (Ref. II-13)*, thus allowing a basis for assessing the cur-
rent algorithms. Figure 20 gives a comparison of the normalized wall shear
stress and surface pressures for a reduced ramp angle of a = 2.5 — a case
for which separation and flow recirculation was encountered. As shown in the
figure both of the present algorithms provide reasonable approximations to the
exact results showing a pressure rise ahead of the cornmer up to a "plateau"
level as the flow separates over the corner followed by a second pressure rise
to the ramp pressure level during flow reattachment. Quite naturally it is
found that the second order accurate (in AX) algorithm is more accurate than
its first order accurate counterpart. These solutions were obtained on a
UNIVAC 1110 computer in approximately 30 seconds of CPU time for grid sizes of
70 (in X) by 26 (in Y) and a convergence criterion that the average variation
per iteration be less than 1074, As shown in the figure the accuracy was
found to be somewhat insensitive to the normal grid size (AY) apparently due
to the second order level of the algorithm for the normal direction. In order
to verify the utility of the present algorithms, solutions were also obtained
across the full range of a with the resulting surface pressure and shear dis-
tributions given in Figs. 21 and 22 respectively. These results clearly
show the significant and systematic growth of the interaction region ahead of
the corner as the ramp angle is increased.

The algorithm as employed to perform the ramp calculations above, was
modified for the trailing edge problem through a single adjustment aft of
the corner point to replace the no surface slip condition with the wake center-
line symmetry condition of Eqs. (II-26). Solutions were then obtained for
a range of @ up to and including the stall (separation) condition. Compari-
sons are first given here for the flat plate (a = 0) case since Daniels (Ref.
11-14) has already provided very accurate solutions for this case which can
be used to assess the accuracy of the present algorithms. Figure 23 gives
a detailed assessment of the present results obtained from both the first and
second order (in AX) algorithms. Here the pressure distribution on the plate
surface up to the trailing edge is given along with the wake centerline pres-
sure distribution. For this geometry, interaction effects cause the pressure

i See also Refs. II-4, 6 and 11
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to begin to drop far ahead of the trailing edge as it anticipates the abrupt
boundary layer thinning aft of the trailing edge when the retarding influence
of the surface no slip condition is relieved. Both the first and second or-
der results essentially reproduce Daniels (Ref. II-14) results with the only
significant difference occurring in the immediate vicinity of the trailing
edge itself. The small oscillations observed in the centerline pressures for
the second order algorithm and "kink" observed for the first order algorithm
are caused by the extremely high acceleration of the flow immediately aft of
the trailing edges. As shown in Fig. 24 these minor difficulties are elimi-
nated as the grid spacing i1s refined with the resulting lst order solution
providing a "smoothed" version of the second order results near the trailing
edge .

Solutions for the general trailing edge problem were then generated
using both of the present algorithms. Figures 25 through 27 give the second
order algorithm results for @ up to 2.5 where stall took place. The pressure
distributions over the airfoils and wake centerlines in the trailing edge
regions are shown in Fig. 25. As the trailing edge angle, @ increases, the
wake effect is anticipated further forward on the airfoil surface in much the
same manner as in the compression corner case. A detailed comparison of
Figs. 22 and 25 indicates that the interaction effect is slightly less severe
for the trailing edge problem then it is for the compression corner. The
airfoil surface shear distributions for the region ahead of the trailing edge
are given in Fig. 26 for the full range of a studied here. Comparison with
Daniels (Ref. I1-14) flat plate results are seen to be very good even in the
immediate trailing edge region where the rapid acceleration in the wake region
has caused a thinning of the viscous layer and subsequent increased shear. As
the trailing edge angle was increased, the initial acceleration effect of the
wake region (producing increased surface shear) changed to a deacceleration
effect (producing decreased surface shear). The appearance of negative shear
for a = 2.5 signals the occurrence of reverse flow (i.e., a stalled trailing
edge). The accompanying wake centerline velocity distributions for the same
range of a are given in Fig. 27. Here comparison with Daniels (Ref.II-14)
flat plate results show a slight loss in accuracy apparently due to the
extremely ragid flow accelerations experienced at the trailing edge (Daniels
shows that 2U + @ ag X + 0*). Fortunately, as the trailing edge
angle was iggreased, this acceleration decreased until it finally reversed,
indicating that a recirculating stalled-flow bubble was formed for a = 2.5.

It was found that the computing time required for the second order algo-
rithm to achieve a converged solution increased as the trailing edge angle
increased. Whereas the solutions for a = 0 were achieved in 1.5 minutes of
CPU time, approximately 9 minutes were required for the a = 2.5 case. Since
the first order algorithm was observed to achieve convergence significantly
faster than its second order counterpart, solutions were also obtained here




B

over a wide range of trailing edge angle using this algorithm. The resulting
pressure distributions are shown in Fig. 28 for a up to 3. These results are
essentially the same up to a = 2 as those given in Fig. 25 for the second
order algorithm but were obtained here in approximately one third of the com-
puting time. For a = 2, the difference in the results was found to be small
and to diminish as the step size was reduced in the first order algorithm.
Thus this algorithm provides a reliable and reasonably efficient method for
solving stalled trailing edge flows and should be useful in the extension of
the present approach to other flow regimes (i.e., subsonic flows, loaded
airfoils, turbulent flows).
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CONCLUDING REMARKS

Two major areas have been investigated under the present effort. The
first concerns the application of a numerical procedure for solving the com-
pressible Navier-Stokes equations to cascade blade passage flows, and the
second deals with the construction and numerical solution of an interacting
boundary layer model for airfoil trailing edge flows.

Under the first part of the present effort an existing computer code,
based on an alternating direction, implicit time marching solution of the
general coordinate representation of the Navier-Stokes equations, has been
modified to be applicable to the blade passage problem. In particular, the
general coefficient, matrix inversion, boundary condition, and spatial dif-
ferentiation subroutines of the existing code were modified to incorporate
cascade blade-to-blade periodicity conditions. The latter consist of obtain-
ing an explicit solution of the governing equations at one periodic boundary
and specifying periodicity of density and velocity at the other periodic
boundary.

Implicit time-marching Navier-Stokes solutions have been computed for
flows past a circular cylinder at Reynolds numbers of forty and eighty. The
convergence rate for this code was found to be slow. In particular, 160 time
steps for the Re = 40 case and 200 time steps for Re = 80, with At varying
between 0.15 and 0.5, were required to achieve a convergence level of 2 x 1073
(c.f. Eq. (I-34). 1In addition, for the Re = 40 case pressure and velocity
distributions after 160 time steps are not in good agreement with previous
calculations or experimental data. Time history plots of the current calcu-
lations indicate that continued iteration would not improve the result compar-
isons. At present the reasons for the lack of agreement between present and
previous calculations are not apparent, and further work (e.g., step size
studies to interrogate truncation errors, investigation of different coordinate
distributions, etc.) seems warranted to resolve this issue.

Under the second part of the present effort an interacting boundary
layer model, incorporating the asymptotic triple deck concept, has been
formulated for airfoil trailing edge flows. Attention is focused on the
flow past symmetric, wedge~shaped trailing edges, with trailing edge angles
large enough to cause flow separation from the airfoil surface and re-attach-
ment on the wake slip line. The analytical model is taken directly from
that already proved to be applicable for flow into a compression corner.

Numerical solutions to the triple deck version of this model have been

obtained for the laminar supersonic case. Results determined for a 0° trail-
ing edge angle (flat plate) were found to be in good agreement with those

59

B




obtained earlier by P. G. Daniels. Present calculations have been extended
over a range of trailing edge angles until a separated flow solution
("stalled" trailing edge) was achieved. Solutions have been obtained with
two different finite difference formulations. One is essentially second

order accurate while the other is first order accurate but provides faster
solutions. Accuracy studies indicate that the two formulations are producing
consistent results for the stalled trailing edge case. Although both attached
and separated supersonic trailing edge flows have been sucessfully calculated,
there are areas for possible improvements in the present numerical algorithms,
in particular, in treating flow discontinuities at the trailing edge, 1if
experimental comparisons indicate that such improvements are warranted.

Future work should also be directed at the extension of the current approach
to turbulent flows, lifting configurations and full cascade flow fields.
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Figure 10—A Coordinate System for a Typical Jet Engine Turbine Cascade
after Eiseman (Ref. I-16)
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Figure 12 Cascade Flow Field Regions at High Reynolds Number
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Figure 13 Trailing Edge Region Flow Structure
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Figure 15 Trailing Edge Region Coordinate Systems
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Figure‘24 Accuracy Details in Trailing Edge Region
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Figure 26 Supersonic Trailing Edge Shear Stress Distributions
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