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THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN
OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED .
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1. Introduction

Consider two binomial populations "l and "2 having success proba-
bilities 0 < Py < 1l and 0 < P, < 1 respectively. Experimenters have
used a variety of measures for comparing "1 and ﬂ2 including the odds
ratio ¥ = pl(l—pQ)/(l—pl)p2, the relative risk p = pl/p2 and the dif-
ference between the success probabilities A = P, = Py See Cornfield (1956),
Gart (1971), Gail (1973), Dunnett and Gent (1977), and Katz et. al. (1977)
for comparisons of these measures and examples.

When Py and p, are unknown the statistician is interested in con-
structing confidence intervals for the measure of interest based on a 2 x 2
contingency table of data formed from independent random samples of sizes
Nl and N2 from T and Lo respectively.

For the measure ¢ both exact (small sample) confidence intervals
(Cornfield (1956) and Katz et al. (1977)) and asymptotic (large sample)
confidence intervals (Cornfield (1956) and Gart (1971) among others) have
been devised. Computer programs for implementing the exact methods of
Cornfield and Katz et. al. have been published by Thomas (1971) and Baptista
and Pike (1977) respectively.

Asymptotic confidence intervals for p have been proposed by a number
of authors. Katz et. al. (1977) contains a summary and comparison of five
such intervals. There have also been a number of asymptotic confidence
intervals proposed for A (Gart (1971)). Buhrman (1977) proposed methods
for designing and analyzing an experiment which yields exact confidence in-
tervals for p and A. Thomas and Gart (1977) have published a method for
constructing "exact" confidence intervals for p and 4 in undesigned exper-
iments. However, as we show below, their A intervals do not satisfy the

\

conditional confidence guarantee they claim nor even a corresponding
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unconditional confidence guarantee. Katz et. al. (1977) give conditional

counterexamples for their p intervals.

This paper proposes two methods for constructing exact 100(1-a)%
confidence intervals for A& 1in undesigned experiments. It will be in-
dicated how the methods can be modified to determine exact confidence in-
tervals for p. We begin by reviewing that part of the basic theory of
2x2 tables required for our later work; we then give two examples which
illustrate the problem of the intervals in Thomas and Gart (1977).

Let Xl and X2 be the numbers of successes based on independent

random samples of sizes N, and N, from w, and =, respectively and

& 2 i 2
let X = (xl,x2). The joint probability mass function of Xl and X2 is

(

( Nl)( N2) p"qul"‘lp"quz"‘z e

L :
Flxy %)) = < % e, ] TR 2 % S
0, otherwise

.

where q, =1 - pi(i=l,2) and S

{(yl,yz)lyi is an integer between 0
and Ni inclusive}. Regarded as a function of A = P, - P and Py for

fixed (xl.x2) € S, the likelihood is

N N X N.-x X N_-x
= = 1 2 1 1 1 o b | -, 2
PploA[xl‘xl’ X2-x2] L <Xl )(x2> pl (l-pl) (Pl 4) (l+A-pl)

where -1 <A <1 and P, € I1(A) 1is given by

(0, 144), =-=1<A <O
(1.1) 1(a) = (0,1), A=0
: (4,1), 0<Ac<1l.




B Also of interest is the conditional distribution of Xl given x1 + x2 =m

which is given by

N N .
§ - 14 \m-j
L

(1.2) g(j|m,p) =

; s 3 = 2(m),2(m)+1,...,u(m)
? “E"') (Nl> ( "2) .
x £=2(m) 2 m-2

where £(m) = max{o0, m-N2} and u(m) = min{m,Nl}. Expression (1.2) is
valid for any integer m between 0 and N, + N2 inclusive; g(*|m,y)
is degenerate at X equal to 0 and Nl + N2 when m = 0 and N1 + N2
respectively. In other cases g('lm,W) depends on Py and P, only

through the odds ratio .
Both Cornfield (1956) and Katz et. al. (1977) have proposed methods
for constructing exact two-sided 100(1-a)% confidence intervals

(WL(K), Wu(z)) for Y. If Pw[-lm ] denotes a probability calculated

under distribution (1.2) then both of their intervals satisfy
(1.3) Pl (X) < ¥ < 4y (X)[m] > 1-a

for every ¢ € (0,») and every integer 0 <m 5-"1 + N2. Hence they satisfy

the (unconditional) confidence interval guarantee

(1.4) PplpA[wL(é) <P < wu(é)l > l-a

for all Py and A. The method of Katz et. al. will be reviewed since
it yields shorter intervals than the Cornfield method and the tables of

Section 2 are based on their intervals.

e stk




Fix m e {0,1,...,N, + N2} and for each Y ¢ (0,2) let A = A (m)

1 v

be the subset of {&(m),...,u(m)} so that ﬁw[Xl € Awlm] > l-a and

g(k|m,y) < g(j|m,¢) for all k ¢ AW and all j € A Define the

"
confidence interval for ¢ to be {y € (O,w)lx1 € AW(X1+X2)}. It
is easy to check that the resulting interval satisfies (1.3).

In a series of papers Gart (1971), McDonald et. al. (1974) and
Thomas and Gart (1971) attempt to produce exact small sample confidence
intervals for A based on intervals (wL(§), WU(K)) satisfying (1.3)
and on the following relationships. To construct the upper limit

AU = AU(K) first determine the solution x,, of the equation

U

xU(xU+N2-m)

N (m-xU)(Nl-xU)

(1.5) v

satisfying max{0, m-N2} i}xu j_mzn{m,Nl}. Then let AU = xU/Nl - (m-xU)/N2.
The lower limit AL can be obtained in a similar fashion. These authors

claim that
(1.6) P, (X) <8 < 8 () |m] > 1-a

for all ¥ € (0,#) and hence (AL(K). AU(z)) also satisfies the probability
guarantee unconditionally. This method has two problems. The first is that
Equation 1.5 defining Xy is derived on asymptotic grounds (Cornfield (1956)).
The second is that if m § N, or m % N, then A or A, are bounded

away from -1 or 1. This second problem will be examined in more detail

in Section 4. Consequenty it is not surprising that (1.6) need not hold for

small samples as the following example shows.




Example 1.1: Let Nl =2= N2, m=1 and o = .0l. McDonald et. al. (1974)

compute the following 99% confidence intervals for A based Gart's method.

2y ¥o 4 4y
0 1 2 .4808
1 0 -.4808 +1

Consider P, = 3/4 and P, = 1/4 so that A =1/2 and ¢ = 9.
Py=olf(X) < 1/2 < 8, (0113 = P [X,=1, X,=0]1] = .90 < .99,

As Example 1.1 is a conditional probability calculation it might

still be conjectured that this method satisfies the unconditional probability

requirement
(1.7) Ppl’A[AL(x) < A< AU (5)] > l-a

for all A € (-1,1) and P, € 1(A) provided (AL,AU) is correctly defined

for m =0 and Nl + N2 since the corresponding ¥ interval is undefined

for these two outcomes. In the following example (AL,AU) is defined to

be (-1,1) when m =0 or N1 + N2.

Example 1.2: Again choose Nl = 2= N2 and a = .0l. The conditional

confidence intervals of McDonald et. al. (1974) are




xl x2 AL AU
0 2 -1 .4811
0 1 -1 .4808
X 2 -1 .4808
1 1 -.9316 .9316
0 0 -1 +1
2 2 -1 +1
2 1 -.4808 +1
1 0 -.4808 +1
2 0 -.4811 +1

When P, = 3/4 and P, = 1/4 then A = 1/2, ¢ =9 and

[AL(')\S) < L/ AU(¥)] =1 [(xl’x2) € {(0’2)’(0,1)(192)}]

Pa/u,1/2 = Paju1/2

= .949 < .99.

In Section 2 a method of constructing exact confidence intervals for
A based on conditional ¥ intervals will be proposed which satisfies the
conditional confidence guarantee (1.6) and hence the weaker unconfidence
guarantee (1.7). Section 3 discusses a second method for constructing A
intervals which directly attempts to satisfy (1.7) rather than the conditional

statement (1.6). Section 4 gives an example and draws some comparisons

between the two methods while Section 5 summarizes the results and makes

some recommendations regarding the use of Thomas-Gart (1977) intervals.




2. Conditional Confidence Intervals

For a given ¥ € (0,%) there are infinitely many (pl,p2) pairs
or equivalently (pl,A) pairs associated with that ¢ value. For each

‘P € (o’oo) let
(2.1) D(w) = {A € (-1,1)131)1 e I(a) > pl(l+ﬁ-pl)/(1-pl)(pl-b) =y}

be the set of differences associated with the odds ratio ¥.

The idea of the method is to use the set of all differences, A',
associated with ¥'s in an interval (WL(K), Wu(é)) satisfying the condi-
tional confidence guarantee (1.3) as the confidence interval for A. It
will be shown below (Theorem 2.1) that the resulting confidence interval
will also have conditional confidence level (1-a) and hence unconditional
confidence level (1-o).

Formally the intervals are defined as follows. For any (a,b) < (0,%)

let

(2.2) E(a,b) = u D(V¥).

Ve (a,b)
E(a,b) is the set of all A's representable as py -p, for some (p,,p,)
satisfying p,(1-p,)/(1-p,)p, € (a,b). E(a,b) is always non-empty since
the equation Yy = pl(l-p2)/(1-pl)p2 always has solutions satisfying

0 < Py» Py < % for any 0 < y < ® . The interval boundaries A, and A

L U

are defined in terms of (WL,WU) and E(:,-) as follows:

(2.3) AL(é) = inf E(stWU) and

PP




(2.4) Au(é) = sup E(wL,wU).

The following characterization of E(a,b) will simplify the calculation of

the sup and inf given in (2.3) and (2.4).
Lemma 2.1. E(a,b) = {A = pl-pl/((l—pl)w + pl)l(pl,w) € (0,1) x (a,b)}.

Proof. If A € E(a,b) then there exists P, € I(A) <(0,1) so that
pl(l+A-pl)/(1-pl)(pl—A) =y for some ¢y in (a,b). Solving for A shows
A 1is in the right hand set above. Now suppose A 1is in the right hand
set then there is (pl,w) € (0,1) x(a,b) satisfying A = pl-pl/((l—pl)w + pl)-
It follows that A € (-1,1) since O < Py © 1 and ¢ > 0. Solving for
v gives ¢ = pl(l+A-pl)/(l—pl)(pl-A); it remains to show P, € I(A) in
order that A € D(y) ¢ E(a,b). Three cases are possible: (1) -1 < A < 0,
(2) A =0 and (3) 0 < A < 1., Only the first case will be considered
as the remaining two are similar. It suffices to show Py < 1+A since
I(A) = (0, 14A) when -1 < A < 0. But 0 < ¢ = pl(l+A-pl)/(l—pl)(pl-A) < ®
implies 0 < l-pl+A since min{pl, l-pl,pl-A} > 0 when -1< A <0 and
the proof is completed.

Let A(pl,w) = pl-pl/((l-pl)w + pl) and R(a,b) = (0,1)x (a,b). From
(2.3), (2.4) and Lemma 2.1 the 100(1l-a)% conditional confidence limits
AL(%) and Au(é) corresponding (WL,wU) are the solutions of the following

optimization problems:

A, (X) = inf A(pP,,¥) and
L'~ R(WL’WU) 1

A,(X) = sup Ap, ,¥).
U d
R(WL""U)

BUTR— B s e ot
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First a lemma describing the behavior of A(pl,w) as a function Py

for fixed ¢ will be given.

Lemma 2.2.

(a) For any fixed 0 < ¢ < 1, A(pl,¢) is a (strictly) negative convex

function in Py furthermore sup A(pl,w) = 0 and inf A(pl,w)
ple(Oal) ple(o’l)

A(_ﬂ_ ,,)f_w’__l_
/$-+l /E +00

(b) For v =1, A(pl,l) 0 for all P, € (o051},

(c) For any fixed 1 < ¢y < o, A(pl,w) is a (strictly) positive concave

function in Py furthermore sup A(pl,w) = A __ZE__ = !@L:_i
U+l U+l

plE(O.l)

and inf A(pl,w) = 0.

Proof. Case (b) is immediate from the definition of A(pl,W). It suffices

to prove (a) since (c) follows from (a) and the easily verifiable relationship

A(pl,w) = -A(l—pl, ) Fix 0 < ¢ <13 fop any 0°< P, < 1 we have

P1

(l—pl)w +p) < 1 and hence A(pl,w) =py - TE:SITE—;—BI'< Py - Py

= 0.

Taking derivatives of A(pl,w) wrt p, gives

(2.5) gﬂL =1 - * 5 and
P ((1-pl)w-+pl)
2.
(2.6) g g o w20liop) 5!
apl (pl(l-w)+w)
32A

Now S L for 0 < Py < 1l since 0 < y <1 and hence A(pl,W) is
ap
b |

g T s N
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convex in P;- The minimum of A(pl,w) occurs at the solution of

o L O iles. at P, = -—XEL—- while lim+ A(pl,W) = lim_ A(Pl’W) =0

9p) oo+l P,>0 p,+1
3
and hence the supremum of A over (0,1) is 0. This completes the proof.

Figure A is a graph of A(pl,W) vS. pl and ¢. The main result

of the section will now be given.

Theorem 2.1. Suppose (wL(g), wU(x)) c (0,») satisfies

Ppl,A[wL(é) <Y< wu(g)lm] > l-a V-1 <A <1 and P, € I(a) for some integer

m between zero and Nl + N,. The interval (AL(K), Au(ﬁ)) given by

2
r
(X)) -1
’ 0= ‘IJL%) -
4 W (X)) + 1
(2.7) 8 (X) =
0, 1 s ‘bL(é) s
\
2
0, @ <9, =1
o < y(X) - 1 :
(2.8) B = —————, 1<y <o
i Ay + 1 g
- + l’ wU =

satisfies Ppl,A[Ang) <8< a,(X)m) > 1-a V-1<4 <1 and

Bt I(a).

Proof. First note that f(x) = (/% - 1)/(/x+1) can be easily shown to
be strictly increasing on the domain (0,®). Now fix A € (-1,1) and
Py ¢ I(A) and let § be the corresponding odds ratio. Suppose the sample

point w e [AL(é) <y < wu(g)]; it suffices to prove w ¢ [AL(g) <4< AU(¥)].
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THE SURFACE A(plﬂb) OVER (0,1)x(0,»).
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A.

7 B T T L O N

il ik o CobE iR s ks
g
O (S
|
|
s e o
|




12

The details of the proof differ slightly according as (a) WU(K) <1,
(b) 1<y (X) and (c) wL(g)'< 1 < ¥,(X) and only (a) will be discussed as
the other cases are 8imilar. Since ¢ < wu(x) < 1 we have A(pl,w) < 0'=AU(5)

by Lemma 2.2 and the definition of AU. Choose wL € (wL,w) then

1

wL+l

o -1
Y + 1

A(Pl,w).i > AL(¥) where the first inequality follows

from Lemma 2.2, the second from Y > WL and the strictly increasing nature
of f(x) and the last by the definition of AL(%). The proof is completed.
This method can also be applied to determine exact conditional confidence
intervals for the relative risk p = pl/p2. For p ¢« (0,) and
(a,b) c (0,») define the analogs of (2.1) and (2.2) by
(0,1), p>1

(2.9) 1I'(p) =
(0,p), O0<p<1

(2.10) D'(¥) = {p € (0,=)[dp; € T'(p) > (p-p,)/(1-p,) = y} and

(2.11) E'(a,b) = v D'(y).
ye(a,b)

L
D (¢) is the set of p = pl/p2 values associated with the odds ratio . The
function p: (0,1) x(0,») + (0,») relating PPy and ¢ is given by
O(pl,w) = w(l-pl) + Py- An analysis of this surface similar to that given

by Theorem 2.1 yields the following confidence limits for p.

Theorem 2.2. Suppose (WL(K)’ wu(x)) satisfies the hypothesis of Theorem 2.1.

The interval (OL(é)’ Du(é)) given by
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: X 0 <) <1

(2.12) pL(K) =
s 1< wL(g)
\.
r i 0< ¢ (X) <1
U n, -
(2.13) ou(’)\(') = <
s 1< w(x) <=

.

satisfies Ppl’A[pL(g) <o < pU(¥)lm] > l-a for all p > 0 and
py e I'(p).

The conditional method of this section is computationally simple to
implement. The intervals are generally wider than the corresponding Gart
intervals. Table 1 contains 100(1-a)% two-sided confidence intervals
for 1 :_Nl, N2_§lO and o = .01, .05 and .10. The computations were
made on Cornell University's IBM 370/168 computer by applying (2.7) and
(2.8) to the ¢ intervals of Baptista and Pike (1977). Intervals are not
listed for all possible (xl,xz) pairs. When (xl,x2) = (0,0) or (Nl’N2)
the A interval is (-1,+1) while for any other (xl.x2) not listed in
Table I the A interval can be obtained from the relationships:

AL(xl’XZ) = -AU(Nl-xl, N2—x2) and AU(xl,x2) = -AL(Nl-xl, N2-x2).

In contrast to the conditional method of the present section the direct

method of Section 3 is computationally difficult but generally produces

tighter bounds than those in Table I.

Ul

e c———
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3. Unconditional Confidence Intervals

3.1 Introduction

This section describes a method for constructing confidence intervals
which directly satisfy (1.7). The following notation and definitions
will be required throughout. For any R c Nl x N2 and A € (-1,1)

let ¢(R,A) denote inf{Pp A[(xl,xz) € R]Ipl e 1(A)} and @(R,A)

1’
denote sup{Ppl’A[(Xl,XQ) € R]Ipl e T(a)}.
Definition 3.1. A set U c N1 x N2 is in the northwest corner (NWC)
of Nl x N2 provided (a) (xl,x2) c U= (xl,l) elf for 2 = x2+1,...,N2
and (b) (xl,x2) e U= (l,x2) c U for £ = 0,...,x1-1.

Cenditions (a) and (b) are equivalent to requiring that the quadrant of points
in N, x N, to the "northwest" of any (x;,%,) in U also be in U.
Suppose P = {(do’dl]’(dl’d2]""’[dn-l’dn)} is a partition of (-1,1)

satisfying -1 = a, < dl &gt < dn =l and 9= R ,...,Rn} is a

il
collection of subsets of Nl x N2. Here the events Ri need not be
disjoint. For a fixed pair (P,S) define for each (xl,x2) € Nl x N2
(3.1} Tl y%.) = | © td, .4d.] v (4; .+4.) u L, . 8,7}
1772 ‘. =2 > e bl B =173
].dj:p ].dj_l:p, j.dj_l>0
dj>0

The first result is that T(Xl,xz) is a 100(1-a)% confidence region

for A provided (P,S) satisfies

Condition 3.1. ¢(Rj,A) >l-avyAde [dj-l’dj] and v j ¢ {1,...,n}.

Lemma 3.1. Suppose (P,S) satisfies Condition 3.1 then

Ppl,A[A € T(xl,x2)] > 1l-a for all A € (-1,1) and all P, € 1(a).

N a2z Ao ot R e e
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Proof. Fix A € (-1,1) and P, € I(A); let i_ be the index for which

d, LY Yo A2 4, €0

Yo 0 ‘e
A e W, L¢3 It 4 <0, 4, >0
10 X 10 10-1 10
(4 T, I O if 4. >0 :
io 1 iy 10-1
Then A ¢ [dio_l,dio] and

P [A € T(xl,xz)] = P

Py [(Xl.x2) € R, ]

P,,4 0

> ¢(R; ,4) since P, € 1(a)
0

> 1l-a and the proof is completed.

Clearly there are many (P,S) pairs satisfying Condition 3.1, for

example, the trivial pair P = {(-1,1)} and S = {Nl x N.}; by Lemma 3.1

2

any of these can be used to generate 100(1-a)% confidence regions for A.

Two additional intuitive requirements will be imposed on (P,S).

Condition 3.2. T(xl,xz) must be an interval for all (xl,xz) € Nl x N2.

This is equivalent to requiring that for each point (xl,x2) € N1 x N2

there are indices f = f(xl,xz) and % = z(xl,x2) satisfying (xl,x2) € Ri

o £<1<18.

The last requirement deals with the shape of Ri' First some addi-
tional notation must be introduced. Let n, =m(R) = {i]3j with (i,j) € R}
and n, = n2(R) = {jla i with (i,3) € R} be the projections of Rc N, x N

'} 2

onto the X and X, axes respectively.
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Condition 3.3. For R, (@D) R, must be of the form Ui - Uz where

Ul < Ui and both are NWC sets, (2) nl(Rl) and ﬂ2(Rz) must be

intervals of integers and (3) there must exist real numbers « and R > 0
so that a + Bi > s; = min{j|(i,]) « Rl} whenever 5, > 0, a+8i=< li
max{j|(i,j) € Rl} whenever 2i <N, (3-a)/8 j_Sj = min{i](i,]) € Rl}
whenever Sj >0 and (j-a)/B < Lj = max{i|(i,j) € RE} whenever

Lj < Nl' Note that si, li’ Sj and Lj are only defined for

ie nl(Rl) and j ¢ H2(R2).

Intuitively (1) and (2) are connectedness conditions which insure
that Ry has no holes while (3) is a technical condition under which
¢(R2,A) is quasi-concave on (-1,0] i.e. ¢(R2,A2) :_min{¢(R2,Al),¢(Rl,A3)}
for -1 < Al < Az.i A3 < 0.

There are numerous criteria that can be employed to select from among
those (P,S) pairs satisfying Conditions (3.1)-(3.3). Two examples are
(a) (P,S) must minimize the average length of the intervals T(xl,xg)
and (b), a generalization of (a), (P,S) must minimize a weighted sum
of the lengths of T(xl,x2). Both (a) and (b) are difficult to implement
since they only indirectly stipulate conditions on (P,S). This paper
contains an algorithm for generating (P,S) based on the so called
"greedy" heuristic. It attempts to construct short intervals by forcing
the Ri to be "small"; as few points as possible are added to Ri and
as many points as possible are removed for Ri in order to construct Ri+

1

3.2 The Algorithm

Given o ¢ (0,1) and positive integers N. and N2 the algorithm

1
below generates a (P,S) pair satisfying Conditions (3.1)-(3.3). Briefly,
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Step 0 is an initialization procedure, Steps 1 through 5 form one inductive
step and Step 6 generates the final (P,S) pair based on symmetry con-
siderations. At each iteration Step 1 is entered with constants

-1 = do < dl Sl di—l < 0 and regions Rl""'Ri satisfying

(3.2) ¢(R5,A).1 l1-a VA € (dj-l’dj] for 1 <3 <i-1

(3.3) ¢(Rj,dj) =2a For 1l<J<i-l

(3.4) Rl""’Ri satisfy Condition 3.3

(3.5) ifl I = I(i,xl,x2) = {j € {l,...,i}i(xl,x2) € Rj} then 521 (di-l’dj

is either empty or an interval for every (xl,xz) € Nl x Nz.

Two final pieces of notation are required. Given Rj = U, - U, as in (3.4)
let Lj = Nl x N2 - U; be the set of points to the "southeast" of Rj;

. P P g
for arbitrary S c N, XN, let s = {(xl’x2)l(Nl x,,N, x2) € S} be the

"rotation" of S and |S| the cardinality of S.
Step 0. Set dy = -1 and R, = {(O,Nz)}. Construct U0 € N, x N, so that

0.1 Uo is in the northwest corner of Nl x N, and Uo n Ug =@

2
0.2 Nl x N2 - (Uo U Ug) satisfies condition 3.3

0.3 o(Uy v UF,0) < a

0.4 if B c Nl x N2 satisfies (0.1), (0.2) and (0.3) then either

|B| < IUOI or |B| = |u0| and (B u B°,0) > e, v Ug,o).

Set L. = U

0 0° i =1 and go to Step 1.

]




Step 1.

Step 2.

Step 3.

Steg 4,
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Set D, = {ac (di_l,l)|¢(Ri,A) < l-a} and define &, =1 oo

inf Dl as Dl =§ or Dl # Dl.
If (Uo - Ui) # @ go to Step 2.

If alo -~ Ui) = @ set di = Al and if di < 0 go to Step 4
while if di > 0 go to Step 6.

set U = {(x)5%,) € UO n RilRi - {(xl,x2)} satisfies Condition 3.3
and ¢(Ri - {(xl,xz)},A) > l-a for some A € (di_l,mln{Al,O}]}.

1f U#9 go to Step 3.

1If U=0 set di = Al and if di < 0 go to Step 4 while if

d, > 0 go to Step 6.

i
For each (xl,xQ) e U set di(xl,x2) = inf{A € [di_l,min{Al,O}]l
¢(Ri - {(xl,x2)},A) > l-a}. Let d; = min{di(xl,xz)l(xl,xz) e My,

Construct U* c Uo n R, so that

i

3.1 R; - U* satisfies Condition 3.3.

3.2 the infimum of {A e (di_l,min{Al,o})|¢(Ri - Ut ,p) > 1-a}
exists and equals di

3.3 if B < Uy n R, satisfies (3.1) and (3.2) then |B| < |U%|,

= - U=
Set R, Ry U% and go to Step 1.

Construct S < Li - Lo so that
4.1 S u ki satisfies Condition 3.3
4.2 inf{A € (di,l)|¢(S U Ri’A) < l-a} > di whenever the set is

nonempty

4,3 if B c Li - Lo satisfies 4.1 and 4.2 then either |B| > |S|

or |B] = |s| and ¢(S v Risdg) > ¢(B U Ry,d,).




19

Set R, ., =8Su R, and U = {(xl,xz) € lUyn Ri+l|R1+1

= {(x,x)},4,) > 1-a}.

- {(xl)xz)}
satisfies Condition 3.3 and ¢(§£+l
If U# @ go to Step 5 while if (I

# set Ri+l = Ri+l and

go to Step 1.

% R % i
Step 5. Construct U* c Uo n Ri+l so that (U* possibly empty)

5.1 R, . - U* satisfies Condition 3.3
i+l
5.2 " inf{l € (di,l)|¢(§;+l—Lﬁ,A) < l-al > di whenever this set
is nonempty
5.3 if Bcljn §i+l satisfies (5.1) and (5.2) then either
% = |y R R. _-U*
IB| < |u%] or |B| = |u*| and (R, 1-Bod,) < O(R,, -U*,d,).

= R - U
Set Ri+l Ri+l U* and go to Step 1.

0
Step 6. If Ri = Ri then complete (P,S) as follows: P

i—l’-di-l)’[ dl ? dl 2
S = {RseeuRy [ GRR l,...,RP}

{(-l,dl],...,

(d oo s~ d ,1)} and

If R, # Rg then complete (P,S) as follows: P

{('l,dl],---a

(di_l,O],(O,-di_ ],...,[-dl,l)} and S = {R

p (]
1 .,Ri,Ri,...,Rl}.

100"

3.3 Intuitive Description

The flow of the algorithm is diagrammed in Figure B. It begins in Step 0

B. FLOW CHART FOR ALGORITHM

e ==l
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by constructing two disjoint sets Uo and Lo in the corners of the region

N1 x N2 having total probability less than a when A = 0 and for any P;-

Uo and L0 are used in the completion process of Step 6. Step 0 also

initializes Rl = {(O,Nz)} and do = -1. Next a trial di’ Al’

constructed in Step 1 so that ¢(Ri,A) > l-a for all 4 ¢ (di-l’Al]' Then

is

in Steps 2 and 3 the algorithm checks whether any points, U*, can be -

deleted from Ri 0% di is permitted to be smaller than A If so,

1°

a revised di is constructed and then Ri+ is generated by deleting U%*

1
from Ri; Step 1 is reentered. If no points can be removed from Ri and
di < 0 then the algorithm goes to Step 4 and constructs a trial Ri+l by
adding points, S, to Ri so that ¢(Ri+l = Ri U S,di).z l-a. Then in
the remainder of Step 4 and in Step 5 it checks whether any other points,
U*, can be deleted from S u Ri while keeping ¢(S u Ri - U*,di) > l-a.

At the stage when di > 0 the remaining sets Rj and points dj are con-

structed via symmetry considerations in Step 6.

3.4 Properties of the Algorithm

The proofs that (P,S) satisfies Conditions (3.1) to (3.3) will be
given in this subsection and the appendix. Some preliminary results regarding
the behavior of ¢(R,A) and ¢(R,A) will be stated first. Let cf(I(A%))

denote the closure of I(A%).

Lemma 3.2. Suppose R 1is a nonempty proper subset of Nl x N2 which satisfies

Condition 3.3. A necessary condition for (pI,A*) (a* ¢ (-1,1) and p; € c2(I(a%)

to be a local minimum of q(pl,A) = Pp [(xl,xz) ¢ R] is that q(pi,A*) =0

A
l’
(and hence ¢(R,A%) = 0). Furthermore in this case i) ¢(R,A) = 0 for

A e (-1,0] when A* < 0, ii) ¢(R,A) = 0 for A € [0,1) when A* > 0, and
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iii) either ¢(R,A) = Q for A € (-1,0] or A ¢ [0,1) when A%* = Q.

See the appendix for the proof.

Lemma 3.3. Suppose R satisfies the conditions of Lemma 3.2. Then ¢(R,A),
regarded as a function of A, 1is quasiconcave on (-1,0], i.e. if

-1 < Al < A2 < A3 < 0 then ¢(R,A2).i min{¢(R,Al),¢(R,A3)}.

Procf. Suppose the contrary, then there exist -1 < Al bt N A3 <0 for
which ¢(R,A,) > ¢(R,A,) and ¢(R,4;) > ¢(R,A,). It can be shown that
¢(R,A) 1is continuous in A and hence there exists A%® ¢ (Al’Aa) satisfying

$(R,A%) = min  ¢(R,A). Choose p*ec8$(I(A%)) so that Pp*,A*[(Xl’X2) € R] =
Ae[Al,A3]

¢(R,A*). Two cases arise: ¢(R,A*) = 0 and ¢(R,A%) > 0. If ¢(R,A%) =
= % = % i

Pp*,A*[(xl’x2) e R] = 0 then p 0 or 1+ A% since R # @#. It follows
from Lemma 3.2 that ¢(R,A) = 0 for all A € (-1,0] which is a contradiction.
If Pp*’A*[(Xl,Xz) e R] > 0 then choose any e€-ball, B, about (p¥*,A%*) so
that B n {(p;,0)|4 ¢ (-1,1) and p, e I(A)} < {(p,,A)[a ¢ (4,,4,) and
P, € I(aA)}. By Lemma 3.2 (p¥*,A*) is not a local minimum and hence there
exist (p,A) in B n {(pl,A)IA e (-1,1) and P, € 1(A)} so that
e S s - x
Pp,z{(xl,XQ) € R] < Pp*,A*[(xl’XQ) € R]. This implies that ¢(R,A) < $(R,A%)
which is a contradiction and the proof is complete.

The following lemma will be used to show that the extension of Step 6

gives regions which satisfy Condition 3.1.

Lemma 3.4. Fix Rc N, x N, and let ¥ = {(xl,xz)](Nl-—xl,N2

the rotation of R. Then &(R,A) = ¢(Rp,—A) for all A € (-1,1) and

—xb) € R} be

#(R,8) = ¢(R°,-4) for all 4 e (-1,1).

Proof. It suffices to consider ¢(R,A) since &(R,A) =1 - ¢(RC,A) where R®

is the complement of R in Nl x N2. Fix A € (-1,1); it is easy to check

e e et e e e i ———




P, € c(I(a)) <= l—pl € c(I(-a)). Then it follows that

W, Ny 4
p X, X R 36 3
el €’ = L GhGeyaey)

N -i : N, -3
1 g 2
(pl A) (1 pl+A)

N N N_ -2 N.-k ~
\ & 2 £l k 2
L (l )(k )(l-pl) Py (l—pl+A) (pl-A)

from the change of variables & = Nl-i and k = N2-j

P
Pl_pl’_A[(Xl,XQ) g

So if pj € c2(I(A)) satisfies ¢(R,A) = Pp* A[(Xl,Xz) € R] then
l’

®(R,A%) P % ECX. ;X.) st] > ¢(Rp,-A). A similar argument gives the
l—pl,—A 3 -

reverse inequality and completes the proof.
It is easy to check that ¢(Rl = {(O,Nz)},A) = ]AIm on (-1,0]

where m = max{Nl,NQ}; hence the first time Step 1 is entered Al
X

be -(l-u)m and the algorithm will go to Step #. It will now be shown

will

that the algorithm is executable at all later iterations since Step 4 can

always be implemented.

Lemma 3.5. Suppose {Rl""’Ri} and {a »d, .} satisfy Conditions 3.1

or gy
and 3.3. If Step 4 is entered then there exists a nonempty set, S,

satisfying (4.1) and (4.2) of Step 4.

Proof. Fix S = Li - Lo. We claim S # # under the hypotheses of the lemma.

Step 4 is entered only if b, = {4 € (di_l,o)l¢(Ri,A) < l1-a} is nonempty
and di = Inf Dl < 0. Hence there exists A ¢ (di,o) such that ¢(R1,K) < l-a

while ¢(R;,d, ,) > l-a by construction. The level set
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{a € (-1,0)|¢(Ri,A) > l-a} 1is convex since ¢ is quasiconcave and so

¢(Ri,0) < l-a. On the other hand if S = Li =T = then Li =L, and

0 0
¢(Ri,0) = ¢(Nl x N,y - (L0 u Ui),O) 3_¢(Nl * N, - (LO u UO),O) > l-u where
the first inequality follows from Ui (= Uo and the second from Step 0.
This contradiction shows S # #. It is proved in the appendix that

Su R, = Nl x N2 - (LO u Ui) satisfies (4.1). The above inequalities show
that ¢(S v Ri,O) > l-a while ¢(S v Ri’di) :_¢(Ri,di) > 1-a. Hence

{A € (di,l)|¢(S v Ri’A) < 1l-a} < (0,1) by the convexity of

{a € (-1,0][¢(S u R;»8) > 1-a}. This implies that (S v R,) satisfies

(4.2) and completes the proof.

Theorem 3.1. The (P,S) pair constructed by the algorithm satisfies

Condition 3.1.

Proof. The inequality ¢(Ri,A) >1-a for A € [d di] holds by con-

i-1°
struction for any i with di < 0. Lemma 3.5 shows that the inductive
steps 1 through 5 can stop only with di > 0 and the execution of Step 6.
Lemma 3.4 shows that the above inequality holds for i with di > 0 and
the result is proved.

The next two results demonstrate Condition 3.2 that T(xl,xz) is always

an interval. They are based on the following easily derivable representation

of T(xl,x2)-

T(xl,x2) = Tl(xl,x2) u (-Tl(Nl—xl,Nz—xz))

where Tl(xl,x2) = (~1,0] n 0 (dj’dj+1]’ I(xl,x2) = {][(xl,x2) € Rj
]EI(xl sx2)
- = n - -
dj < 0} and Tl(xl,x2) o1} u i dj+l’ dj). The set Tl(xl,x2)

JeI(xy,%,)

+1°
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is that part of T(xl,x2) on and to the left of the origin; the set

(-T,(Nl—xl,NQ-x2)) is that part of T(xl,x2) on and to the right of the

origin.

Lemma 3.7. For every (xl,x2) € Nl x N Tl(xl,x2) is an interval.

29

Proof. If Tl(xl,x2) = @ the result is trivial; assume Tl(xl,x2) £ 0.

Suppose Tl(xl,x2) is not an interval so that there exists A., A, and

N2

b4 satisfying -1 < Al < A2 < A3 < 0 for which Al’AS € Tl(xl,x2) and
e - e :
8, ¢ Tl(xl,x2). Let i, <i, < i be the indices for which Al € (dil_l,dil],
R-e (d d. 1 and Ao e (d o d T The paint’ (o sx ) € R s il - =5
2 12-1 i, 3 i, i i, 1242 i i i
(xl,x2) € U; = U; since the sequence {U;} is nondecreasing by construction.
2 3
But (xl,x2) ¢ Ri2 and (xl,xz) € R13 = (xl,x2) € Ui2 = Ui3 which is

impossible since the {Uj} sequence is also nondecreasing and completes the

proof.

Theorem 3.2. For every (xl,x2) € N %N T(xl,x2) satisfies Condition 3.2.

a4 2

Proof. If Tl(xl,x2) = fp or Tl(Nl-xl,N2—x2) = # then the result is

immediate from Lemma 3.7. Now suppose Tl(xl’XZ) £ 0, Tl(Nl_xl’NQ_x2) £ 0

and T(xl,xz) is not connected. Let T be the index for which

0 € (dr’dr+l]' It follows that either 0 ¢ Tl(xl,x2) and/or O ¢ Tl(Nl_xl’NQ—x2)

<=> either (xl,x2) € UT+ and/or (N.-x_,N_-x.) € U The last equivalence

ik R L Sl T+1°

follows from the fact that if (xl,x2) € Lr+ = ,x2) € Lj for jet

14 1

since {Li} is a nonincreasing sequence = Tl(xl’x2) = @ which is impossible.

Assume wlog that (xl,x2) € UT+l

c UO =P el . = (N -x ,N, -x

=
0 M+l 17Xy oNp=%y) € Lo,

i

Tl(Nl_xl’NQ_x2) = @ which is a contradiction. A similar contradiction arises

and completes the proof.

if (N,-x. ,N.-x.) € UT+

T g i &
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Theorem 3.3. All regions Ri in the family S constructed by the algorithm

satisfy Condition 3.3.

Proof. The regions R Rr+l(0 € (dr’dr+ 1) satisfy Condition 3.3 by

12000 1

construction. It can easily be checked that if R satisfies Condition 3.3

then Rp also does. The result follows since for i > s Ri = Re for
1]

some j < T+l.
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4, An Example and Conclusions

This section will present a detailed example to illustrate the
unconditional method of Section 3 and make some comparisons among the
Thomas-Gart (TG) method, the conditional method of Section 2 and the
unconditional method of Section 3.

The example below constructs 80% confidence intervals when
Nl = N2 = 2. The sample size Nl = N2 = 2 was chosen to keep the
computations feasible by hand while the relatively large value of

a = .2 was selected to illustrate Step 5. Step 5 is not used for

@ < 125,

Initialization:

Iteration 1: b

Step 0: Set do =] R, = {(0,2)}. Let U= {(0,2)}; U satisfies

0.1, 0.2 and 0.3 (&(Uu UP,0) = .125 < .2). U also satisfies 0.4

since for any other candidate set B either Ul z {(0,2),(0,1)} ¢ B

or U, = {(0,2),(1,2)} < B and hence ¢(B u B°) > (U, v Uf,0) =0(U, v U,0)

= 375 > <2, So U0 = U= {(0,2)} and LO = {(2,0)}.

Step 1: ¢(R1,A) = A2 or 0 according as A <0 or A>0 so

D, = {8 ¢ (-l,l)|¢(Rl,A) < .8} =(-/.8,1) and 4, = inf D, = -/.8

= -.8944, Go to Step 2.

Step 2: R, - {(0,2)} = ¢= sup $(R, - {(0,2)},A) = 0 < .8=0 = ¢.
Ae(-1,-.89u4)

Set dl = -.8344 and go to Step 4.

L

Step 3. Candidate sets satisfying (4.1) and |S| =1 are S1 = {(0,1)}

and S, = {(1,2)}. In both cases ¢(Si U Rl,A) = ¢(R1,A) implies that
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inf{A € (-.8944,1)|¢(S; U R;,A) < .8} = -.8944 violating 4.2.
Candidate sets satisfying (4.1) and |S| = 2 are 5, = {(0,0),(0,1)},
s, = (1,2),(2,2)} and s, = {(0,1),(1,2)}. For i=1 and 2

¢(S; U R;,A) = ¢(R ,8) = inf(A € (-.8944,1)[(S; U R ,A)(< .8} = -.89u4
again violating 4.2. However

r
(l—A)3(5+3A)/16, 0 < A < -,4415

#(s, u R ,8) = J ~28 - &%, -.un15 < B <D

o, 0<Ac<1

\

=> inf{A ¢ (—.89“4,1)|¢(83 U Rl,A) < .8} = -.5754 > & . By construction

1
S, satisfies 4.3 and hence S = Sq- Set 'é = {(0,2),(0,1),(1,2)};

u- ¢ since ¢(R2 - {(0,2)},-.83u4)

.1795. Finally set R2 = R2

and go to Step 1.

Iterations 2, 3, 4 and part of 5 are summarized in Table 2. The values

Al listed in column 3 are calculated in Step 1. In all 4 cases the

maximum of ¢(Ri - UO,A) over A in [di_l,Al] is less than .8 implying

that U = ¢ and the algorithm goes from Step 2 to Step 4. Column 7 shows

that U = ¢ in iterations 2, 3, and 4 while U = {(0,2)} in iteration 5.

We now complete iteration 5.

Iteration 5 (cont.):

Steg 5: Set u* = {(0,2)}; is‘u* = {(0’0)9(031)!(l’o)’(lil),(l’2)!
(2,1),(2,2)} satisfies (5.1); (5.2) holds since
inf{a e (-.0757,1)|¢(R; - U*,s) < .8} = .3137 > -.0757 while

(5.3) is trivially satisfied. Set Ry = ﬁé- {(0,2)} and go to Step 1.

NRERSTEE P
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Iteration 6:

29

Step 1: D, = (.3137,1) so that & = .3137; U - U, = ¢ so set
d6 = .3137 and go to Step 6.
Step 6:
P S
(-1,-.8944] R, = {(0,2)}
(-.8944 - . 5754] R, = {(0,2),(0,1),(1,2)}
(-.5754,-.5528] Ry = 1(0,2),(0,1),(1,2),(1,1)}
(-.5528,-.1649] B * £00,2),00,1)461,2),01,1),(0,0),(2,2)})
(-.1649,-.0757] Rg = 1(0,2),(0,1),(1,2),(1,1),(0,0),(2,2),(1,0)}
(-.0757, .0757] K = Rg = {(0,1),(1,2),(1,1),(0,0),(2,2),(1,0),(2,1)}
[.0757,.1649) R, = Rp = {(2,0),(2,1),(1,0),(1,1),(2,2),(0,0),(1,2)}
[.1649,.5528) Rg = Ry = {(2,0),(2,1),(1,0),(1,1),(2,2),(0,0)}
[.5528,.5754) Ry = R} = {(2,0),(2,1),(1,0),(1,1)}
[.5754,.89u4) R = Ry = {(2,0),(2,1),(1,0)}
[.8944,1) Ry, = R = {(2,0))

The 80% confidence intervals for A = P, = P, are:

2
X X, T(xl,x2)
0 2 (-1,-.0757]
0 1 (-.8944,.0757)
1 2 (-.8944,.1649)
1 1 (-.5754,.5754)

0 0 (~.5528,.5528)

2 2 (~.5528,.5528)
2 1 (~.0757,.8944) i
3 0 (~.1649,.8944)

2 0 .0787,1) . l




Remark 4.2. So far no mention has been made of the computational work

30
Remark 4.1. As iteration 4 illustrates, there can be several sets S
satisfying (4.1)-(4.3) and several sets U* satisfying (3.1)-(3.3) or
(5.1)-(5.3). Randomization or an arbitrary selection rule can be used
to break such ties. For example the following rule is used here: '"choose

S atesith s 1 - s .

the set S minimizing TET i; randomize among sets tied accord-
(i,j)es

ing to this criteria.

required to implement the algorithm. In the example when R2 = {(0,1),(0,2),(1,2)}

and A < 0:

¢(R2,A) min P [(Xl,XQ) € R2]

p,€[0,1+4] Bgah

min {-3pu + 6(A+l)p3 - (3A2-+10A-+5)p2-+2(2A2-+3A-+1)p = (A2+2A)}.
1 1 1 1
pl€[0,l+A] :

Minimizing P [(X,,X,) € R,] in p. for fixed A requires comparison
I 2 1
of the function values at the bounding points 0 and 1+A and at the zeroes

1 1
of the equation Ppl,A[(xl’x2

differentiation with respect to Py- In this case the zeroes of a 39 degree

) € R2] = 0 where the prime denotes partial

polynomial must be computed. In the general case the zeroes of an (N1+N2—l)
degree polynomial must be computed. This particular case can be simplified

by reparameterizing the problem to w = (1+4)/2 - Py

For A < O:
¢(R,,4) = min P [X.+%.)y ¢ R.]
2 o188 7 Wi 2
W[ <—— z
= min ((1-8)"/16 + (1-82)(1-2)%/4 + (1.58% - & - .52 - 3w},
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2
The terms in brackets are a function of t = w2, say, g(w’). So

min 9 {g(0) + (l.SA2 - A - .5)t - 3t2}
(1+4)
3 g

n

$(R,,4)
0<t<

min 2 g(t).
0<ti..(_'£%A_)._

Clearly g(t) is concave; its minimum is either achieved at 0 or
(1+8)°/4. For & < -.u815, @(R),0) = g(0) = (1-8)*/16 + (1-0)2(1-82)/u;
for -.441S < A <0, §(R,,A) = g((1+AY74) = -A(2+n).

In general, the order of the polynomial in P» Pp A[(xl’x2) € RLJ’

l,
can be halved by the same reparameterization whenever Nl = N2 and
R, = {(Nl—x2, N2-xl)|(xl,x2) € Rl}. These conditions imply that Pp ,A[(xl,xz)e Rz]

A
is symmetric in P, about (1+A)/2.

When the algorithm is applied to the Nl = N2 = 2 case for a = .01,
.05 and .1 it yields the A intervals of Table 3. The corresponding
conditional A intervals of Section 2 are listed in Table 4 and the
Thomas-Gart A intervals based on the Baptista-Pike ¢ intervals are listed
in Table 5. Note that the 99% Thomas-Gart A intervals of Example 1.2
are based on the Thomas (1971) ¢ intervals. Hence the intervals of Table 5
are never wider than those listed in Example 1.2. We shall make several

comparisons among these intervals.

We begin by eontinuing Example 1.2. The actual coverage probahilities

of A =1/2 are listed below when p, = 3/4 and p, = 1/4. The intervals
1 2

are taken from Tables 3,4 and 5; all have nominal 99% confidence coefficients.

M b i A M A e A gy NI L
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3. UNCONDITIONAL CONFIDENCE INTERVALS FOR Nl = N2 =2

X X 90% 95% 99%

0 . -1 0 -1 .0543 -1 .3676
0 3 -.9u87 L2747 -.9747 L4294 | -.9950 .6708
1 2 -.9487 .3591 | -.9747 .5028 | -.9950 .7183
1 1 -.7147 L7147 -.80u48 .80u48 -.9160 .9160
0 0 -.6838 .6838 -.7764 .7764 | -.9000 .9000
2 2 -.6838 .6838 -.7764 . 7764 -.9000 .9000
2 X -.2747 .9u87 -.4294 .97u49 -.6708 .9950
i 0 -.3591 .9487 -.5028 L9747 -.7183 <9950
2 0 0 X -.0543 3 -.3676 4

4. CONDITIONAL CONFIDENCE INTERVALS (SECTION 2) FOR N, = N_ = 2

s
T 30% 95% 99%
o | 2 -1 | .1178 e -1 | .us11
o | 1 23 .5 -1 | o268 -1 | .81
1] 2 ol 5 -1 | .e2ee -1 | e
1| 1 | -.7151 | .7151 | -.79u5 | .79u5 | -.90u3 | .90u3
o | o <3 1 al 1 =3 1

i 242 -1 1 -1 1 ~1 1

E | 2 | 1 -t 1 J-6268] 12 | -mm]| 1

| 1] o 27 1 |-628| 1 | -8am ] 2

E gl o j.am}l 1 (-5 ] 1 |-.eeid 1




5. THOMAS-GART

INTERVALS FOR N, = N

1 2
90% 95% 99%

-1 .1178 -1 «2515 -1 L4811

-1 .3486 -1 L4150 -1 .4808

-1 .3u486 -1 .4150 -1 .4808
-.7151 | .7151 | -.7945 | .7945 | -.9043 | .9043

=F 1 -1 h i -1 1

-1 i -1 i -1 j &
-.3486 x -.4150 1 -.4808 1
-.3u86 1 -.4150 1 -.4808 1
-.1178 1 -.2515 1 -.4811 1




.996, based on Table 3

Py 172 FAL(X) < 1/2 < Ay(X)] = ﬁ .996, based on Table 4

949, based on Table 5.

\

Our intervals gain extra coverage probability as « decreases
since they become much wider than the TG intervals for m = 1 and 3.
In general our conditional intervals and the TG intervals are both (-1,1)

when m =0 or Nl-+N2;
wL <1« wU and m = Nl = N2. For other choices of m when Nl >N

and Nl > 1 the unconditional intervals become much wider than the TG

they coincide in a non-trivial interval when

2

intervals as a decreases; this characteristic is the source of the
counterexample given in Section 1. For fixed (xl,xz), AL(xl,xz) should
intuitively approach -1 and AU(xl,x2) should approach 1 as o decreases

to zero. It will be shown below that for a given m, AU and AL generated
by the TG method are constrained to a proper subset of (-1,1) unless

m = Nl = N2 and hence cannot attain +1 and -1 respectively as a
decreases. It follows that counterexamples similar to Example 1.2 are
possible even for large Nl and N2 by examining A near +1 and -1,

for these values will be excluded from certain A intervals regardless

of the a chosen.

Our conditional intervals are generally wider than our unconditional
intervals although this is not uniformly the case as the outcome (xl,x2) = (1.1
shows when a < .1. This phenomenon can be explained by looking back at
the example. In iteration 2, S = {(1,1)} 1is chosen. If instead

s = {(0,0),(2,2)} had been used (in violation of (4.3)) the following

changes would result in the unconditional intervals:

pr—— v e e gy = I — o\ -
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X, , X, 7 95% 99%

1 1 & -.7623 .7623 -.8946 . 8946
0 0 -.80u48 .8048 -.9160 .9160
2 2 -.80u48 .8048 -.9160 .9160

These unconditional intervals are uniformly more narrow than the conditional
intervals of Table 4. However the revised set of unconditional intervals
is not uniformly more narrow than the original unconditional intervals
of Table 3 (nor is the reverse true). Furthermore the use of the revised
unconditional intervals over those of Table 3 results in an increased total
(average) length of the intervals from 14.9254 (1.6584) to 14.9522 (1.6614)
when a = .01 and from 12.5870 (1.3986) to 12.6156 (1,4017) when a = .05.
This computation illustrates the operation of the "greedy" heuristic in the
form of (4.3).

We conclude this section by showing that A, and A_ are bounded

U L

away from +1 and -1 respectively except when m = Nl = N2. Assume

3_max{N2,2}. Fix (xl,xz) satisfying 0 <m = x_+x. < N, +N

L2 L. 2

(the other two cases are trivial). Given 0 < wL f_wU < o then the

A

wlog that Nl

Xp 9%y calculated from (1.5) satisfy:

(4.1) max{O,m-N2} <X %y < min{m,N}.

Then A = A. and A, are calculated from x = Xy and X respectively i

U L

by

(4.2) A=-Nl‘---(ﬂn'—")-=x(ni+ﬁl—)-ni.
1 2 X Te 2
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Substituting the bounds (4.1) into the equation (4.2) gives the following

bounds on A and A :

L U
m-N,-N N_+N_.-m
max{<", —Nl—z} < ALy < min{—%, 1.
2 i 2 1

When m = Nl = N2 these bounds are -1 and +1; when m # N2 the lower

limit is greater than -1 and when m # Nl the upper limit is less
than +1. Hence if for some A < 1 there is a nonempty set A c Nl x N2
which x € A =A¢ (AL(Q),AU(E)) for all o then for any € > 0,

p, can be chosen to satisfy

| A

inf P [X ¢ A] + ¢

P [a (X) < A& <A (X)]
pyoa- LR ok rel(a) ™

19

1 - o(A,A) + €.

It follows that for any a< ®(A,A), (AL(%)’ AU(K)) cannot satisfy (1.7).

for




e 30 S
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5. Summary

This paper has adopted a frequentist approach to the problem of
determining exact confidence intervals for A = Py =Py in "2 %2
contingency tables. Since this is a nuisance parameter problem the
intervals proposed achieve converage probabilities greater than or
equal to their nominal (1l-a) levels. The conditional intervals of
Section 2 are easily computed from conditional  intervals. The
unconditional intervals of Section 3 are much more difficult to compute
but generally yield narrower intervals than the conditional ones. The

exact method of Thomas and Gart (1977) should be considered an asymptotic

method appropriate for reasonably large o. Conditional intervals for

p are also presented.
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Appendix

Two preliminary lemmas are presented below which are required in

the proof of Lemma 3.2.

Lemma A.l. Suppose Ri satisfies Condition 3.3; denote
Hl(Ri|x2) = {xll(xl,xz) € Ri} and n2(Ri|x1) = {le(xl,x2) € Ri}'
Whenever these sets are nonempty they are intervals of integers.

The proof follows from an easy contradiction argument.

2
NWC sets. For p.(A) = A then either G(A) = P, . [(X.,X.) e R] =0
1 A8 1%

Lemma A.2. Suppose R = U' - U where U c U' # Nl x N, and both are

for all A € (0,1) or there exist integers s,f£ and m > 0 satisfying
L 5 .
0<s<28<m for which G(A) = } ('Jf‘)AJ(l-A)""J for all A e (0,1).
A=s
Furthermore analagous representations hold when pl(A) =1 and A > O,

or p, = 0 and A <0 or pl(A) = 14A and A < 0.

Proof. By Lemma A.l Hl(RlNz) is either empty or has the form

{s,s+l,...,4} for some 0 <s < % :_NQ. When P, = A then
Py, = Py~8 = A-A = 0 and hence G(4) =0 V A ¢ (0,1) when Hl(R|N2) = ¢

2 < > :

y (‘;.')Aj(l-A)“"] V4 e (0,1) when T (R[N, #¢. This
j=s

completes the proof.

and G(4)

Proof of Lemma 3.2. First we consider the case when (pf,A*) is on the

i

boundary of B {(pl,A)| A € (-1,1) and P, € I(A)}. Suppose A% > 0

and pt = A%*; a slight modification of the argument below works for any

A% # 0 and p’l‘ € cMI(A%)) - I(A*). From Lemma A.2, G(A) = PA A[(xl,xz) e R]

L s s
is either 0 VA ¢ (0,1) or has the form ) (?)AJ(I-A)m-] for some
j=s
m and 0 < s <2 <m. Hence if G(A*) = 0 then G(A) = 0 for A € (0,1).

We claim G(A*) > 0 is impossible. If G(A*) > 0 then the second
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representation holds with 0 < s < £ <m. Note that G'(A*) = 0 and
G''(A*) > 0 since A* is a local minimum. If s =0 and & =m then
G(A*) = 1 which is impossible. If s =0 and % < m then
8 n! k-1 n-k
G(a) =1 - g b(u,Hl,m)du where b(u,k,n)A- (—k?l—-)-!—(-n—-—-_k)!- u (1-u)
while if 0 <s and 2 =m then G(A) = ] b(u,s,m)du. In either
0 E

case G'(A*) # 0 and hence is impossible. If 0 <s < ¢ <m then

1
6(a8) = [ {b(u,s,m) - b(u,2+1,m)}du, G'(A) = b(A,s,m) - b(A,2+1,m) and

0
after some algebraic manipulation, G''(A) = G‘(A){S_1+A(l-m)} b(A”?“Ll’m)’ul—s}

A(1-3) A (I-) ¢
<5 (Azzi:i;A(l—m)} . In particular G''(A*) < 0 since G'(A%*) =0

which is again impossible. Now suppose A%* = 0 and pf = 0, then pg = 0.
Hence G(0) = ¢(R,0) = 0 or 1 according as (0,0)¢ R or (0,0)¢ R.
The latter case is impossible since (pf,A*) is a local minimum and

R # Nl x N To show that either ¢(R,A) = 0 for all A € (-1,0) or for all

o°

A ¢ (0,1), suppose not. Then there are -1 < Al < Q< A2 < 1 so that

¢(R,A,) > 0 for i=1 and 2. This implies P EX.,X ) e Rl >0 and
i O,Al Il

P [(X,,X,) € R >0. Hence there exist positive integers x%* and x¥

Y Lt 1 2

so that (O,xg) e R=U"-U and (xf,o) € R. Now (xf,o) e R and

(0,0) § R =(0,0) ¢ U =(0,x,) ¢ U for all x, € {0,...,N,} = (0,x%) ¢ R

2
a contradiction. A slight modification of the above argument yields the ]
result when A%* = 0 and pf = 1,
We now show that a local minimum cannot occur at (pi,A*) € B.
AR ' ol
Suppose (pl,A ) € B is a local minimum then Ppg,A*[(xl’x2) e Rl >0
since pi is not on boundary of I(A%*). Choose ¢ > 0 so that the

open ball, B, of radius ¢ satisfies (1) B c B8 and

(2) pr.A*[(xl’x2) ¢ R] :-Ppl,A[(xl’XQ) € R] whenever (pl,A) & '8,

.

Define p4 = p} - A* and for i e M (R) let . . minHQ(Rli) and
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L = maxn2(R|i); also let H(pl,pz) be defined on [0,1] x [0,1] by

H(p,»P,) = Ppl,pl_p2[(xl,x2) € R]
3t g N-i 1
= I ()p;(1-p,) [ b(u,%.+1,N )du +
: gl b
i<C p2
B % N -1 Py
.Z (;p,(2-p)) / [b(u,si,Nz) - b(u,2.+1,N,)]du +
ieM 0
Tk N,-i P2
I ¢hpra-p )t [ blu,s,,N )du +
i L L)
i€eT 0

Nl 3 N_-1i
igA ([p,(2-p))

where C = {i € Hl(R)so = s,

§ S M), M= Hiem(RO<s, <2 <N,

i 2

T2 {1c¢ Hl(R)|0 <@g, <&, = N2} and A = {i € Hl(R)|O.= s, and 2, = N2}.

1 >

The case B =M =T = ¢ is impossible since H(pl,p2) must then be

$ea Nl-1 L Nl % Nl-i
independent of P, of the form H(pl,p2) = igA ( i)pl(l-—pl) = izs (i)pl l-pl)
for some 0 <s < & :_Nl by Condition 3.3. In particular pg must be a
SN N -i
local minimum for G(pl) = Z (¢ ;)p;(l-pl) s Arguments similar to those

i=s
above, show this is impossible.

Hence at least one of the set Rg = {(i,si-l)li € Hi(R) with s; > 0}
and R = [(i,li)li € Hl(R) with L, < N2} must be nonempty. Now since
(pi,A*) is a local minimum it follows that VH = VH(pg,pg) = 0 and
V2H(p*,pg) is positive semi-definite, i.e., z'VHz >0 forallye R2.

é Let z = (A,-1) then

i 21 ¥R 52K 2| % 1 a%
2'VHz = 2-Aa 3 + A 2--xa 3 .
3p, PP 3p; Py°Py
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Let x, = a + Bi (B > 0) be the line specified by Condition 3.3 which
passes through R and let A = Bpl(l-pl)/p2(l-p2). Then
i -
; oty e % 8P (1-py) 3% “e 3H
; apg pz(l—pQ) 9p,3p, pi(i-Pij ap,
Bp(bp)‘2 2 p,(1-p,) 2
sl N e bty R v SEARNGRT 3H
pl(l—pi) ap2 B pi(i—p1773p2apl Bpl(l-pij 3p,
1

since VH = 0. All derivatives are evaluated at (pf,pg) in (A.1). Both

bracketed terms will be shown below to be negative thus leading to the

desired contradiction.
After two differentiations and a rearrangement of terms, the first

bracketed expression in (A.1l) can be shown to be

si-(a+Bi) Nl i Nl-i N2-1 si-l N2-si
a2)'R, "1 el 0 PPN O-PD T (M0 ¢ el
(1,3)eRg py(1-p3) i
2.+1-(a+Bi) N : N.-i N -1 L. N -1-%.
- ¥, ——— | (Heviaem T 2 Hew tapn 2 E
(i,A)eR p*(1-p,) i |
L 2'"Pg
- % - %
Cp EAPHECLE |
ph(1-p)* %p,
By assumption gﬂL =0, s, - (a#Bi) <0 for (i,j) e R, and &, - (a+Bi) > O
P, : — S i -

for (i,j) € R;. Furthermore Ppi,A*[(xl’x2'l) € R ] can be shown to be

positive from ggL = 0 and the fact that Rs v RL must be nonempty. Dropping
1 ‘

the first term, rewriting the second as a probability and setting the last

equal to zero gives the following upper bound on (A.2):
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_N2

- P E(X-X =1) R ] <.0;
pa(1-pt) PIPz 172 L

A similar argument shows

a2y Pp(l-py) 2y % 9H

= + <
api Bpl(l-plfrap28pl 8p1(l-pi7rapl

0

and the proof is completed.
The following two lemmas establish that Ri u S satisfies Condition 3.3

for S = Li-LO.

Lemma A.3. Suppose R, = Ui - Ui satisfies Condition 3.3 and ¢(Ri’di-l)-i l-a

where a ¢ (0,1) and di— < g3  if (xl,xz) €L, then (xl-l,xz) ¢ Ui

1
and (xl,x2+l) ¢ Ui whenever these latter two points are in N, x N,.
Proof. Suppose Ri satisfies the above conditions and there exists

(xl,x2) € Li which (xl-l,x2) € Lli (the case (xl,x +1) 1is proved

2

analogously). By assumption HQ(Ri) = {j integerls.i j < 2} for some

0<s<&<Ny Forany k=0,....x-1 we have (k,x,) e U; = (k,x,) ¢ R

2 1
=> either X, <s or x,> L If Xy €. 8= (0,2) ¢ R, for 2 < X3
(xl-l,x2) € Ui = (0,x2) € Ui => (0,2) ¢ R for 2 > x, and we conclude

that the entire line {(0,2)|2 = 0,...,N2} is not in R;. But this implies

0 < l-a < ¢(Ri,di_l) 5 Po,di_l[(xl’x2) € Ri] = 0

a contradiction. If Xy > 2 then a similar contradiction results and the proof

if completed.

Lemma A.4. If Ri satisfies the conditions of Lemma A.3 then Ri uSs

satisfies Condition 3.3 for S = Li- Lo.




‘for which Xy ¢ Hl(Ri U S). It follows that each (xl,z) must be in L
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Proof. To show part (1) of Condition 3.3 it suffices to prove that le N, - L

2
is a NWC set since R, u (L,-L_ ) = (N, xN
b i 0 1

2 1 2
Pick (xl,x2)€ Nl! N2— Lo and any integers &(1<R< N2—x2) and k(lﬁkj}l);
it must be shown that (xl,x2+l) and (xl—k,xz) € N1)<N2- LO' We have

(x15%,) € N} xN, - L) <= (xl,x2) ¢ L, = U8<*='> (N} =%, ,N -x,) ¢ Uy

= - - - - - p -
= (N -x,+k, N-x,) ¢ U, and (N -x ) ¢ Uy <= (x,-k,2,) ¢ Uy =Ly

3 1° Nom%y
and (xl,x2+2) * Lo <=>(xl-k,x2) and (xl,x2+2) € Nl.xNQI'LO' We next show

that Ill(Ri U S) must be an interval of integers. Let .3y

and Ei = maxﬂl(Ri U S). Suppose there exists an integer x

= minll, (R, v S)
11

~

R e B

3% Ry Hils

0

or Ui for £ = 0,...,N We claim that (xl,N2) ¢ L, and (xl’O) ¢ Ui.

T
= = (x =

If (x,N,)) € Ly then (x),N)) ¢ N, xN, - L, (x,,2) ¢ N, xN,-Ly <R, uS

for every £ contradicting the assumption that §i € nl(Ri u S). Similarly

,0) € Ui thenr  (1,3) e Ui for all integers 0 < i < x. and

if (x .

=

0) e L_ and (xl’NQ) € Ui. It follows that X, = mlnHl(Uilxl) is

(strictly) positive and (;l,gfl) € LO c Li' But this contradicts Lemma A.3
and (;l’;2) € Ui. A similar argument shows that n2(Ri U S) is an interval
of integers and concludes the proof that part (2) of Condition 3 holds. We
begin the proof that part (3) of Condition 3.3 holds by choosing a ¢ Rl and

B > 0 so that part (3) holds for Ri' Let sk,lk,sj and Lj be defined for

R, as in part(3) and st,zﬁ p S? and L? be defined for Ri vuS in a similar
fashion. Pick m € Hl(Ri u S) having 0 < s;. If me nl(Ri) then

sg 28, since Ri €S uUR = o 0 and so s; < s, < atBm. Now suppose

m ¢ nl(Ri) then (m,s;) € L; - Ly. Two subcases must be considered:

% & .
(1) sk e H2(Ri) and (2) sk ¢ n2(Ri). In the first subcase we

Ls* <m or m< Ss* since (m,s;) ¢ Ri. The case m < Ss* is impossible since
m

-Lo) - Ui and Ui < U0 e N.x N.- L

contradicting the assumption X € Hl(Ri U S). Hence it must be that
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* [} * 1 . . . *
(SS;,sm) € Ui = (m,sm) e U' contradicting the assumption (m,sm) € Li'
So Loy <m< N, and since R, satisfies Condition 3.3 it follows that

m

s* -a
L. >m>0L . > - or oa+Bm > s®*, In subcase 2 it must be that
s:fl— el m
{(O,S:),...,(m,s;)} © Ly -L, otherwise there exists an x¥ satisfying

(xi,s;) € Ui and (xi+l,s;) € Li a contradiction. This shows that

%
R; < {(yl,y2)|0 <y, <m and sk <y, <N)}. So forany y, e I (R;)

we have <m and s_ > s* >0 and hence s* <s_ < a+By. < a+Bm => s* < a+Bm.
Y1 m — m §F o 1 m

2 1
The remaining three cases follow from analogous arguments and complete

the proof.

T T —

RS R MR
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