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i. INTROI )U CTION AND SUMM ARY

This paper deals with stochastic simulation in which the system being

studied can be controlled to some extent by setting the value of an input

parameter. The system response for a given input will vary from simulation

I run to simulation run due to uncontrolled and random factors ; we thus con-

sider the aveLage or expected response. This is usually called the simula-

tion response surface. Since our work here involves only a single variable

the term response curve might be more appropriate.~~

The simulation “response’T will generally be identified with some measure

of system effectiveness and the analyst will want to maximize (or possibly

minimize) the response by choosing the optimum value for the input parameter.

More formally, if we denote the input parameter by X and the expected

response by g(X) , we wish to solve the problem

maximize g(x) . (1)

The main difficulty in solving (1) is that g(x) can be evaluated only

approximately due to the random factors in the simul3tion . If a simulation

is carried out with the input parameter X fixed at, say, a1 , the output

from the run will be a confidence interval for which

I Pr(A
1
1 

< g(a1) 
‘-~ A~ 

) = 1 — ( : 2 )

I where is a user—specified value and [A
1
1 

, Aj 1 is the confidence

interval. Such intervals depend on some assumed probability distribution

I (often normal) for the simulation outputs. We do not consider this under-

lying distribution more explicitly in this paper; the reader may refer to

1
I
I
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I
[2] or 13] for some examples. We do require that intervals of the form (2)

be found for each simulation run that is carried out.

The basic result of this paper requires as given a set of confidence

intervals (A .) for the response surface values at fixed inpu t parameter

values ~a.) . (There are a variety of approaches for obtaining these con-

fidence intervals, e.g. batch means, independent replications, autoregressive

schemes, regenerative approach, etc.) These are used to obtain confidence

intervals for the solution to (i), the optimum value g(x*) and a

* *joint confidence region for the point ( x  , g(X ))  , in the case where the

response surface is quadratic, i.e.

g(A) = z1 + z
2
) + z

3
).2 . (3)

The technique applied here is related to a confidence band methodology

developed in a number of previous papers ([2] - [lii). The basic idea is to

find the locus of the optima of all possible quadratic functions which pass

simultaneously through each of the confidence intervals. The result (under

some mild convexity assumptions) is a compact region whose x— axis dimensions

*give the required confidence interval for A . The probability coverage

of the final region is found by multiplying together the probabilities of

the individual response surface confidence intervals.

The main drawback to our method is that the probability coverage of

the confidence interval for the optimum may be quite low when many different

parameter settings are used. By restricting ourselves to a quadratic re-

sponse surface with a single input parameter, then, we may obtain results

with but three or four observations while keeping the probability coverage

I
I
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high. Moreover, the experience of workers in nonlinear programming and

approximation theory indicates that a quadratic approximation is in many

cases an entirely adequate representation for a smooth function over a

restricted range. Thus, the assumed form (3) for g(?.) is not necessarily

restrictive.

The major strength of our technique is that it does not depend on the

distribution of the simulation outputs in any way. In fact, probabilities

are used only to find the probability of the final region by a simple multi-

plication. There is no need for regression, for equal variance assumptions

or for distribution theory in analyzing simulation outputs.

Most other approaches to finding the optimum of a simu lation response

function involve carrying out a search over the parameter space; see [5]

for a review and evaluation of work in this area. In our method no explicit

attempt is made to determine the parameter setting for the next simulation

run ; rather, the emphasis is on using the information already obtained to

determine where the optimum might be. The best use of the present work,

then,would be to carry out an analysis of the final results of a simulation,

perhaps using only the last 3—5 parameter settings.

The remainder of the paper is organized as follows : Section 2 presents

the basic results and Section 3 consists of a numerical example. The final

section reports on some straightforward extensions to the basic results and

app lies them to the numerical examp le.

I
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I
2. BASIC RESULT S

I Suppose that the response surface g(X) is as given by (3) and that

simulation runs have been performed for the inpu t parameter settings

I X = a
1 , 1 � i < n , where a

1 
< . . . 

~ 
a , n 3 - Suppose

further that the simulation results are

A~ < g(a1) ~ 
A~ with probability 1 -

I A~~ < g(a
2
) < A with probability ~ - 

~ 2 ‘ 
(
~~)

A ’ < g(a ) A~ with probability 1 - y

Assuming the simulation runs are independent, g(X) will satisfy all of the

inequalities (1k) with probability (
~ — — ( 1  — ~~

) = I - y

(Alternatively, one might deal with simulations with dependent results as

long as the probability 1 — y may be found; this seems unlikely in practice,

however, so we will not consider it further here.)

With probability 1 - y , th en , g (x) must pass through the points

(a~ ‘ , i = 1, . . n , where A.1 < y. < A~ . Consider the vector

= (y 1, y2, - . . , y )  ; if three of the components of y are fixed , the

corresponding value of z = ( z 1, z~, z_ ) from (3) may be found and the

remaining components of y evaluated. Assuming withou t loss of :~ene r a l i t y

- 
that the three fixed components are y 1, y ,, y3 we have

F
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I
I - 

( a 7 - a2)a 2a3 a 2~ a~~ a
3

- a2 

-

( y 1 , y 2 , y ~ ) 
2 2(a 1- a

3
)a 1a

3 
a, - a1 a1- a7 ( 5)

I ( a
2 - a1)a 1a,. a~~- a~~ a2 - a

I Thus (~~) gives the coefficients of a quadratic function passing through the

I points (a1, y.) , i = 1, 2, 3 . Note that the components of z in ( 5)  are

simp le linear functions of the components of y . We may thus refer to

, say, to indicate the result of (5) for a specific choice of the

y vector.

I When there are more than three simulation runs it is likely that not all

possible choices for the components of y will be admissible since there may

be no quadratic function passing through the specified points. We thus require

that y be a member of the constraint set Y , where

I = (y I A~~~< y~~< A ~ ; i = l , 2, 3 ;

I A~ < z1(y) + z
2
(y)a~ + z3(y)a~ A .

2 ; 3 < i <

I Note that all of the constraints in Y are linear.

The optimum of the quadratic function (3) occurs at the parameter setting

I x = — z . (i)

This will be a maximum as long as a.. - 0 , i.e. the response surface is

I 1)

strictly concave. We assume for the present that, in fact, z3 0 ; dealing

I - 5 -

I
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with linear or convex response surfaces is discussed more fully in Section

‘~
. 3.

The X va lue given by (7) may be viewed as a func ti  on of y just  as

and a
3 

are. Subst i tut ing from ( 5) and simplif y ing yields

A ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. (8)

2(a
3
- a2

)y1
- 2(a

3
- a1)y2

+ 2(a 2 - a
1)y3

Thus (8) gives the optimum X of a quadratic function passing through the

points (a1, y1) , I = 1, 2, 3 . Since we have assumed z
3 

< 0 , ~ ( y )

is a continuous bounded function over the closed compact set Y Thus,

as a function of ycY , X ( y )  takes on a maximum (x) and a minimum

(x) and all intervening values.

Now, given that g(X) is in fact quadratic and that it satisfies (
~~)

(i.e., is contained by all of the simulation output confidence intervals)

the optimum input parameter must lie in the closed interval lx , ~ ] ,

where 5 = sup ~(y)  and A inf ~(y) . Since the probability that (b )
ycY ycY

holds is just 1 - y , we have

~~ x~ ~ ~~
) 

~~ i - y . (9)

*This is the desired confidence interval for X . (The inequality results

from the observation that the optima l parameter may lie in the given interva l

even in cases where the quadratic does not lie within the simulation outpu t

confidence interval.)

I
- 

~~~~~ T~.T~TT ‘~~-~~~~ — -
~~
-

~~~~
- - - - -



Finding A and T is quite straightforward. Examining the gradient

vector found by differentiating (8) :

y _ _, - y
~ 2

(a, - a1)(a~,-a ,)(a 
- a

1)Vy~~(y) = 
‘~~ ~ 

,- y y
2[ (a

3
- a 2)y1- ( a

3
- a 1)y 2 ÷(a 2 - a 1)y

3 J~ 
1 3

- y
1

shows that the fraction will always be positive, since the denominator is

2proportlonal to z3 . Thus, when two of the first three components of y

are fixed the direction of change of ~(y) is constant. (The rate of

change varies but not the direction. ) x(y) may thus be increased, say, by

changing the unfixed y component until one of the constraints in (~~)

becomes binding; this shows that both ~ and 1. occur at extreme points

of the set Y , i.e. three of the simulation output confidence interval

inequalities ~~) will be binding.

Now suppose that X is fixed at some point [~ , X I  . We know that

there is at least one y vector such that X(y) = ~ , i.e. the quadratic

function passing through (a. , y.) , 1 < i < n , has its optimum at X

In general there will he a set of such vectors and the maximum response

value g(i.) will vary as different y values are selected. Denote by

,~. ; y) this maximum and define the functions

= inf g(~ ; y) (i~~

y Y

— 7 —
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C

~
j( 

~
) = sup ; y) (ii)

y
~ 

Y

These f u n c t i o n s  then depic t  a j o i n t  conf idence  region for  th e poin t

* *( A  , g(; ) )  , i.e.

Pr((~~* , g(~
*)) C) > 1 - ( i .~)

where

C = ((
~~ ,gfl x < X - X  ; g(X)~~~~~g~~~~~ (x))

This follows just as for (9).

Now (10) and (11) are linear programs for fixed X . We show this

as follows: the first constraint (~ (y) = ~) may be rewritten as

z,~(y) 2xz7(y) according to ( ‘7) ; simp lif ying using (~~) yields
)

(a7 -a ,))(a,+a,J - 2x) (a~ -a 1)(a ÷a
1- 2A)

yo = y
1 ± 

~
- y . (1

(a7-a 1)(a3 +a1 -2~) ~

( 13) shows that as y1 
and y

~, 
change , y~ shifts so as to keep the opt imu m

fixed at X - The value of g(x ; y) is given b y a ( y )  — z .(y)X1

substituting from (5) and (13) gives

— —

- 
- ( ~~~ —

- .— -‘ 
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2 2
(a7-x) (X- a

1)
g(x ; y) = ‘ y

1 
— y

3 
(11+)

(a
3
-a 1)(a3

÷a
1
- 22) (a

3
-a

1
)(a

3
+a

1
— 2X)

The solution to (10) and (11) will then have two components of y (say, y1

and y
3
) at their bounds , with the third component y

2 
determined by the

optitnality cons tant ~(y)  = x , or (13).

This analysis m~ist be repeated when a
3 

+ a
2 

- 2X = 0 , i.e. X is

at the midpoint of [a1, a3
] - (Note that this point may not be in.

[x , 2 1.) In this case, we obtain

= y
3 

( 15)

(a3
+a l ; = y1 + 

(a
3
-a 1)

2 

(y 
~~

) - ( 1J )

2 ~(a3
-a
2
)(a

2
-a 1) 

2

There are two alternatives for compu ting the bound functions. If this

is to be done by “brute force” (either manually or with a computer) it is

suggested that the analyst select each possible set of two extreme points

in y and investigate the behavior of g(.1 ; y) as a third component of

y is varied and X is adjusted to maintain optimality ; this approach is

feasible for perhaps three or four observations. For more observations ,

it is suggested that the simp le linear programs (10) and (11) be solved

directly for different values of 2 -

-w — —
-- -- - - -

~

- - _

~~~~~~~~

-

~~

--- -

~~~~~



Unfortunately, it is also tedious to obtain a confictence region for

*g(x ) alone. The values

= inf g(x ) - 
(17)

x €  [.~~, x]

= sup~~ (x )  ( 18)

will satisfy

* —P r ( g < g ( x ) < g ) >~~~. y  (19)

just as for (9) and (12). The simplest way to solve (17) and (18) is by

inspection from the B(X) , ~ (x) plots.

The values of £ and ~ do not in general occur at an extreme point

of y although they often seem to. It is suggested, therefore, that the
A

(x (y) , g(x(y) ; y)) values be plotted for each feasible y vector with three

or more of its components fixed at their upper or lower bounds. This will

always yield the values for A and 3 and will often yield the values for

B and j

— 10-

~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~
----——



I
I

3. NUMERI CAL EXAMPLE

I In this section we present a worked— out example as an aid to understand-

ing the analysis of the preceding section. The following data are given:

I i ai A .’ A~

1 -l 1 2 .02

I 2 0 4 5 .02
- 

3 1 1 4 .01

- Thus, for example, Fl, 2] is a 98% confidence interval for g(x) at

x -l . The probability content of the final region is ( .9 8)( . 9 8)( . 99 , =

I .95 approximately. The coefficients z. are given by

I a1 

- 

0 1 0 y
2 

-

-a
2 

-~~~ 0 
~ ~

“2 
=

- 
- 

Z
3 

- - 

~ -l -~ 

- 

y
3 ~-(y1

- 2y0 +y7)

while the function ~(y) is

A - y1-yx(y) = — 
-

2y 1 -4y2+2y
3

The set Y is given by y = (y J l < y 1 < 2 , 4 < y 2~~ 5, l <y3 <4)

I The bounds on X~ are then readily found by observing the extreme points

of the set y :

I- — 11 —



A = _ ~~~~~~ , for

any

3 =  -i , for y~~~~~4

[14

For any X s ~~
_ -

~~~~~ , -
~

] and yc Y , we have, for optitnality,

22-1 ak-i
y =~~~~~~~~~ y

1 + y ,2 4x 4x 3

(l ÷x)2 (l-x)2
g(x ; y) = y — y1 (x ~ o)3

~(0 ;y) =

The resulting g(x ) , ~~(x) functions are obtained, in this case, by

examining the values of ~(x ; y) when two components of y are set at the

various extreme points and the third component is allowed to vary. Taking

the minimum and maximum values for each 2 yields:

222 +82 +4
g(X) = 

~~~~~~~~ 
�x ~~~~ (y1 = 2 , y2 — 1

~ (a~)
22+1

- L 2-

L - 

- - _1. TIT~~~ - 
- - -

~~~~~~~~~~~
-

~~
-

~~~~~~~~~~~~~~~~~ 

- -



- 

~~~~~ 
r ~ ~ -j

~; ~~ 
= 2, y

3
= 1)

l(
~~ +5

0 (y =5, y =1)
1-22 2 3

~ :- ) = ( t i )
+ lOX + 5

l+2~ 
~~ (y1 = 1 ,y 2= 5 )

322 + 102 +3 1
142 

-
~~ ( y 1= 1 , y

3
= 14 )

The segments of each functfon are annotated with the values of the y vector

components which remain fixed. The functions are plotted in Figure 1. Note

the characteristic (and unusual) shape of the joint confidence region for

* *(x , g(X ) )  . Figure 1 shows the upper and lower confidence bands for the

response g() ; see [31 for details.

By inspection we find that

£ = for 2 = 0

= 5.225 for 2 = 3/10

-1 3 —
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I
4. SOM E EXTENSIONS

In this Section we take up a few obvious extensions to the work of

Section 2. These are: dealing with a quadratic function with more than

three simulation outputs, handling non—concavity and selection of good con-

fidence interval widths at each base point. Extensions -to the numerical

example of Section 3 are also presented.

4.1 Additiona l Observations

Suppose that a fourth parameter setting a
4 =- 1/2 

is chosen for

our numerical example and that, with probability .98, 4 ~ g( 1/2) < 5
Including this additional observation decreases the probability of our final

results to about .93; this points up the major disadvantage of adding new

observations to an existing solution.

The various optimization problems solved in Section 3 must be augmented

by adding the constraints

4< -~~~y1 +~~~y2
+~~~y3

< 5 .

When this is done, we obtain

2

A = - l /~~ for y =

p I 14/3
14

I = 1/2 for y =[ 4 ]

— 1 5—

—- — i i ~~
- - - :- ~~~~~~ ~~~~~~~~~~~~~ 



The functions B(~~) 
and g(~~) can also be found ; their form is similar

to ( a )  and (21) and they are plotted in Figure 2. The results for the

optimum value bounds are

- B = 14 1/2 for 2 = 1/14 ,

= 5 1/6 for 2 = 1/4 . -

It is instructive to consider the reduction in size of the various con—

*fidence regions when the fourth observation is added. The intervals for 2

and g(x*) are reduced in. length by 8.3% and 8.2ç~, respectively. By perform-

ing a somewhat tedious integration, one may find that the joint confidence

* *region on (x , g(x ))  is reduced in area by 24%.

4.2 Interval Width Selection

Instead of performing a simulation with an entire ly new parameter

setting as in the previous subsection, one may choose to perform n~ re repli-

cations at one of the existing settings in order to narrow the confidence

interval [A
1
1
, A~~] at that point. Note that this procedure leaves the

probability content of the resulting confidence regions unchanged. Alter-

natively, it is usually possible to narrow any of the original confidence

intervals if one is willing to accept the resulting decrease in the proba-

bility content of the final results. We thus consider the selection of a

set of good widths for the [At , A~~J intervals.

Because of the complex expressions that arise if one allows too much

generality, it is difficult to give robust rules for choosing the interval

F —
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widths. Intuitively, it seems best to select all with about the same width,

or else with about the same probability coverage. In order to consider this

matter more concretely, we shall look more closely at the example of Section 3.

If the additional simulation replications carried out at 2 = a4 
in

Section 14.1 had been run instead for A = a
3 

, the confidence interval

~~~~ A~ J would be based on twice as many observations and would- thus be

about 70.7% as wide as the original interval with the same probability coverage.

The calculations of Section 3 were repeated, therefore, with A = 1.5 and

= 3.5 ; the results are plotted in Figure 3 and are summarized below:

r 2  1
I I I

- for y = i  4 I
18 1 2

2 = f
~ 

for y

B = 14 for 2 = 0

-
~~ 

~ 
25/ ~~~ for 2 =

The sizc. of [X ,X] thus decreases by 3l’~ and of [2,~~l 
by E.8~’ ; the area

of the (2*, g(X
*
)) region decreases by 141%. It may thus be concluded that

in this instance it is preferable to narrow the third confidence interval

than to take additional observations at some other point.
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To pu rsue the matter  fur ther , we investigate how the widths of the

[2~, X ] and [g , ~~ J confidence intervals change as the [A , A~~1 interva l

changes. We assume that -

= 21/2 - ~ , A~ = 21/2 + ~

The result ing widths are p lotted in Figure 4 Note that when ~ = 3
l
~
/
2 in

this case, the vector y = (4 ) yields a linear function; the upper bound
\61

A thus approaches + ~ as ~ increases.

If we further assume that the simulation response at A = a
3 

has a

normal distribution (on an approximately normal distribution) we can plot the

sizes of the two confidence intervals against their probability coverage ; note

that since the a
1 

and a
2 

intervals do not change in this case, the maximum

probability is (.98)
2 

= .960 4 . The result is shown in Figure 5. Note the

sharp upward turn at a point corresponding to 1 - = .914 , i.e. 7
3 

.02

Both Figures 4 arid 5 lend some wieght to our previous observation that
* *the “best” confidence regions for A and g(x ) result when the absolute

widths of the simulation output confidence intervals are about the same. We

must qualify this statement somewhat when the parameter settings are not evenly

spaced , since a greater width is acceptable for parameter set t ings which are

relatively distant  from the optimum.

14.3 Non- Concave Funct ions

When the value of z3( y)  found from ( 5) is not negative , the resul t-

ing g(X) function becomes unbounded as A —‘ ~ - As we saw in Section

this wil l  cause either ‘ or or both to become unbounded as well.
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There are two possible types of response to the situation when it

turns out that z3(y) > 0 - The first response is based on the assumption

that g(X) is actually a strictly concave function. In this case the

ana lyst attempts to adjust the simulation results so as to obtain concave

functions. The other type of response merely restricts the problem (i) to

the closed interval [a , a ] where a < a and a > a are
0 n+l 0—  1 n + l—  n

user—specified constants. Of course, even a convex function attains a maxi-

mum over a closed bounded set. In the rest of this Section we discuss these

two types of response in more detail.

The value of z
3
(y) will be negative as long as

A .
l 

> :: :~ 
A~ + ::~ a 

A,~ (22)

for some i < j < k , 1 < i , j , k < n . The adjus tmen t process consis ts

of modifying one triple A~~, A .
1
, A~ if none of them satisfy (22) .  There

are five ways to do this:

(1) By using the distribution theory that was used to obtain the original

[A
~
1
, A~~] intervals, decrease the probability coverage (i.e.,

tighten the intervals) until (22) is satisfied. It may also be

possible (if normal theory is applicable) to use asymmetric rather

than synunetric intervals or to perform some other adjustement.  It

is likely that only a single interva l will need to be altered.

(2) Carry out more simulation runs. These may be used to tighten the

intervals already obtained or to investigate the response at an

additional base point. Based on the resu l t s  of this  sec t ion , the

- 0~
__ -. — ~_~0 - — - ——— —  - 

-
~ — .  -,

‘ - 
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seco nd alternative is suggested onl y when the responses at the

exist ing points indicate that the optimum lies outside the current

range.

(~~) 
Inequality (22) may be expressed in terms of a constraint on y

and explicitly introduced into the various optimization problems

of Section 2 to insure that z
3
(y) < 0 - The main difficulty

here is that (22) is a strict inequality; for this reason, a

parameter ~ should be chosen and the following constraint used:

y
2 � 

a
3- 

a
2 y1 

+ 

~~~~~~- a1 
y
3 

+ ~ . ( 23)
a
3
-a

1 
a
3
-a

1 
-

A good value for ~ would be a few percent of the maximum

response obtained.

(14) The work of Barlow, et. al [1] on regression under order restric-

tions may be app lied to adjus t , say, A~~, A2
1

, and A~~ so

that (22) always holds ; this would involve estimates of the

variability (i.e. , variance) of the three values. This approach

allows the analyst to use explicitly the additional information

that g(x )  is concave. This approach is somewhat invo lved and

will not be discussed further here.

(5) The assumption that g(X) is concave may be questioned and a

statistical test performed to determine its likelihood. This

would involve information on the distribution of the simulation

output response, however.

—
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I

The constraint (23) offers  a convenient means of carry ing out the second

I approach, i.e. limiting the optimum 2* to the interval [a0 ,  an . + 11 . In

this case we solve for A and I as usual (the constraint protecting us

I from catastrophic unboundedness) and then set

I = maximum (a0 ,

A = minimum (a
~~+i,  X )

As long as ~ is quite small this method should work well.

- 25 -
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