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1. | INTRODUCTION AND SUMMARY

\\This paper deals with stochastic simulation in which the system being
studied can be controlled to some extent by setting the value of an input
parameter. The system response for a given input will vary from simulation
run to simulation run due to uncontrolled and random factors; we thus con-
sider the average or expected response. This is usually called the simula=-

tion response surface. Since our work here involves only a single variable

the term response curve might be more appropriate.[\

“_ The simulation "response" will generally be identified with some measure
of system effectiveness and the analyst will want to maximize (or possibly
minimize) the response by choosing the optimum value for the input parameter.
More formally, if we denote the input parameter by A and the expected

response by g(1) , we wish to solve the problem

maximize g(1) . (1)

The main difficulty in solving (1) is that g()) can be evaluated only

approximately due to the random factors in the simulation. If a simulation

is carried out with the input parameter )\ fixed at, say, a, , the output

1

from the run will be a confidence interval for which

1 2
Pr[A1 < g(al) <A }) = 1- 71

: (2)

1
1

interval. Such intervals depend on some assumed probability distribution

€y
where 71 is a user-specified value and [A S~ , Ai‘] is the confidence

(often normal) for the simulation outputs. We do not consider this under-

lying distribution more explicitly in this paper; the reader may refer to

\
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[2] or [3] for some examples. We do require that intervals of the form (2)
be found for each simulation run that is carried out.

The basic result of this paper requires as given a set of confidence
intervals {Ai] for the response surface values at fixed input parameter
values {ai) . (There are a variety of approaches for obtaining these con-
fidence intervals, e.g. batch means, independent replications, autoregressive
schemes, regenerative approach, etc.) These are used to obtain confidence
intervals for the solution 1 to (1), the optimum value g(l*) and a
joint confidence region for the point (l*, g(l*)) , in the case where the

response surface is gquadratic, i.e.

g(\) = z; + z) + 25>2 . (3)

The technique applied here is related to a confidence band methodology
developed in a number of previous papers ([2] = [4]). The basic idea is to
find the locus of the optima of all possible quadratic functions which pass
simultaneously through each of the confidence intervals. The result (under
some mild convexity assumptions) is a compact region whose x-axis dimensions
give the required confidence interval for l* . The probability coverage
of the final region is found by multiplying together the probabilities of
the individual response surface confidence intervals.

The main drawback to our method is that the probability coverage of
the confidence interval for the optimum may be quite low when many different
parameter settings are used. By restricting ourselves to a quadratic re-
sponse surface with a single input parameter, then, we may obtain results

with but three or four observations while keeping the probability coverage

o
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high. Moreover, the experience of workers in nonlinear programming and
approximation theory indicates that a quadratic approximation is in many
cases an entirely adequate representation for a smooth function over a
restricted range. Thus, the assumed form (3) for g(») is not necessarily
restrictive.

The major strength of our technique is that it does not depend on the
distribution of the simulation outputs in any way. In fact, probabilities
are used only to find the probability of the final region by a simple multi-
plication. There is no need for regression, for equal variance assumptions
or for distribution theory in analyzing simulation outputs.

Most other approaches to finding the optimum of a simulation response
function involve carrying out a search over the parameter space; see [5]
for a review and evaluation of work in this area. In our method no explicit
attempt is made to determine the parameter setting for the next simulation
run; rather, the emphasis is on using the information already obtained to
determine where the optimum might be. .The best use of the present work,
then,would be to carry out an analysis of the final results of a simulation,
perhaps using only the last 3-5 parameter settings.

The remainder of the paper is organized as follows: Section 2 presents
the basic results and Section % consists of a numerical example. The final
section reports on some straightforward extensions to the basic results and

applies them to the numerical example.




e BASIC RESULTS

Suppose that the response surface g()) is as given by (3) and that
simulation runs have been performed for the input parameter settings
A= a; 1<i<n , where a; <l s W a , n > 3% . Suppose

further that the simulation results are

All < gla;) < AZ with probability 1- 7, ,
&) < ala) < A° with probability I« y (%)
o = 8lay) S Ay 2 7
2 it
g 1 -
A< g(an) A~ with probability 1 Vs

Assuming the simulation runs are independent, g()) will satisfy all of the
inequalities (4) with probability (1 =~ 71)(1 - 72) LB 1Y 7n) =1=95 .
(Alternatively, one might deal with simulations with dependent results as
long as the probability 1 - y may be found; this seems unlikely in practice,
however, so we will not consider it further here.)

With probability 1 - y , then, g (1) must pass through the points
(a.i ’ yi) y £=1, « .8 , where A;"f ¥y < A;z . Consider the vector
y = (yl, Yor = o s yn) 3 if three of the components of y are fixed, the
corresponding value of z = (zl, z,, 25) from (3) may be found and the
remaining components of y evaluated. Assuming without loss of generality

that the three fixed components are Yir Yor y5 we have

o

o —




= 2 2
(aB-ag)aga5 a] - alB-a2
(yl ) y(? p) }’3) ( ) 2 o (5)
z = a . =a_ja.a a, = a &= a 5
& a ) I 315 4 1 1 3
(a,j al)(a2 al)(a5 a2)
(a_=a )a.a e a_-a
2 T¥TLS 1“2 2 31
=

Thus (5) gives the coefficients of a quadratic function passing through the
points (ai, yi) , i=1,2, 3. Note that the components of z in (5) are
simple linear functions of the components of y . We may thus refer to
"zl(y)" , say, to indicate the result of (5) for a specific choice of the
y vector.

When there are more than three simulation runs it is likely that not all
possible choices for the components of y will be admissible since there may
be no quadratic function passing through the specified points. We thus require

that y be a member of the constraint set Y , where

Y = ly| Al <y, <A2 5 1=1,2,3; _
(6)

A1<z(y)+z(y)a +z(y)a£<A2-"<i<n]

i = °1 2 i 3 g = g *2 - .

Note that all of the constraints in Y are linear.

The optimum of the quadratic function (3) occurs at the parameter setting

;: = z;j/f.’z . (7

J

This will be a maximum as long as z_ <0
o,

strictly concave. We assume for the present that, in fact, z3 <0 ; dealing

, i.e. the response surface is

e— e — i ot e e ——— Bt -~




with linear or convex response surfaces is discussed more fully in Section

4.3,

~
The X value given by (77) may be viewed as a function of y just as

2

Ay)

2 s 2 2 2 B
(ai'ae)yl'(ai'al)ye“ae’31)33

z_ and 25 are, Substituting from (5) and simplifying yields

2(a3- ae)yl- 2(a3- al)y2+-2(a2- al)y5

~
Thus (8) gives the optimum ) of a quadratic function passing through the

points (ai, yi) , i=1,2, 3 . Since we have assumed z

5<0 y)

is a continuous bounded function over the closed compact set Y . Thus,

N —
as a function of ye¢Y , A(y) takes on a maximum (1) and a minimum

(2) and all intervening values.

Now, given that

g(1) is in fact quadratic and that it satisfies (1)

(i.e., is contained by all of the simulation output confidence intervals)

the optimum input parameter must lie in the closed interval [X, 1] ,

~— A ~
where A = sup AM(y) and A = inf A(y) . Since the probability that (4)

yeY
holds is just 1 ~ y

yeY

, we have

* —
Prl €0 €

) < L= 7

*
This is the desired confidence interval for A v

(9)

(The inequality results

from the observation that the optimal parameter may lie in the given interval

even in cases where the quadratic does not lie within the simulation output

confidence interval,)




Finding A and A 1is quite straightforward. Examining the gradient

vector found by differentiating (8):

Y5 = Vg
~ a -a )(a,-a )(a, -a
Iyr(y) = e ‘{)<6 ) y, =y
ol(a,=a )y = (a,~a)y, +(a,-a)y,]" : :
i B L) | Wl Tr -l
T =By
L =

shows that the fraction will always be positive, since the denominator is

2

proportional to =z, Thus, when two of the first three components of vy

are fixed the direction of change of X(y) is constant. (The rate of
change varies but not the direction.) a(y) may thus be increased, say, by
changing the unfixed y component until one of the constraints in (6)
becomes binding; this shows that both ) and ). occur at extreme points
of the set Y , i.e. three of the simulation output confidence intervai
inequalities (%) will be binding.

Now suppose that ) is fixed at some point [J, X] . We know that
there is at least one y vector such that ;(y) = ) , i.e. the quadratic
function passing through (ai ; yi) , 1<i<n , has its optimum at A .
In general there will be a set of such vectors and the maximum response

value g(2) will vary as different y values are selected. Denote by

g()» 3 y) this maximum and define the functions

2(3) = i glriy) (10)

My) =)
y oY

— - e it AR - —— z (e — —r
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8(2) = sup glisy) (11)
My) =2
yeY

These functions then depict a joint confidence region for the point

A X

(A s g(1)) , L.e.

Pe((2”, g(3")) c6) > 1- 4 (12)

where

e
I

~
—~~
%
.
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This follows just as for (9).
Now (10) and (11) are linear programs for fixed A . We show this
e
as follows: the first constraint (A(y) = 2) may be rewritten as

-z (y) = 2)25(y) according to (7); simplifying using (5) yields

(a_j)- a;))(a_,) +a2- 2x) (a‘,]- 81)(31_‘ +a1.. 22)
yr; = Yl -+ y5 " (l)
4 - 3 - - 1 X 2

tr s (g = ) 8y = 20)

¢ shows that as and . change y,, shifts so as to keep the optimum
y]. yj b4 2

D

A -
fixed at ). . The value of g() ;y) is given by zl(y) -z (y)\" ;
o

substituting from (5) and (1%) gives




——————

. - )° (r-a)®
g(rsy) = Py ® Yz (1%)
(a3- al)(a3 +a - 2))

The solution to (10) and (11) will then have two components of y (say, v,

and yB) at their bpunds, with the third component Yo determined by the

A

optimality constant A(y) =2 , or (13).

5 S ieet s

(Note that this point may not be in

This analysis must be repeated when a5 +a,=-2L=0

at the midpoint of [al, a3] .

LL,.K].) In this case, we obtain

Vi = Vs (15)
~ 2z 3y (§3- al)2 {
g (—1;—- ; y) = ¥y o (ye-yl) . (16)

There are two alternatives for computing the bound functions. If this
is to be done by "brute force" (either manually or with a coméuter) it is
suggested that the analyst select each possible set of two extreme points
in- y and investigate the behavior of 2(3 ;y) as a third component of
y 1is varied and ) is adjusted to maintain optimality; this approach is
feasible for perhaps three or four observations. For more observations,
it is suggested that the simple linear programs (10) and (11) be solved

directly for different values of )\

-0 =

— - '- i T e o ;‘("4—-’*"———-‘1




Unfortunately, it is also tedious to obtain a conficence region for

*
g(A') alone. The values

g = inf g(1) - (1)
Aelx ,Ej
T = sup g(d) (18)
rely, 3
will satisfy
Prig< g0) <Bl>1- 4 (19)

just as for (9) and (12). The simplest way to solve (17) and (18) is by
inspection from the g(1) , 7&(1) plots.

The values of g and E§ do not in general occur at an extreme point
of y although they often seem to. It is suggested, therefore, that the
(K(y), E(X(y) 3¥)) values be plotted for each feasible y vector with three
or more of its components fixed at their upper or lower bounds. This will
L always yield the values for ) and ) and will often yield thé values for

g and g .

- -




He NUMERICAL EXAMPLE
In this section we present a worked-out example as an aid to understand-

ing the analysis of the preceding section. The following data are given:

i a, Ail A12 74
1 -1 1 2 .02
2 0 L 5 .02
3 1 1 L .01

Thus, for example, [1l, 2] 1is a 98% confidence interval for g(1) at
A ==1 ., The probability content of the final region is (.98)(.98)(.99) =

.95 approximately. The coefficients z, are given by

- = = O o =
z, 0 E @ Yy Y,
P g | ) w1} 3in s
22 s 2 0 2 y2 h(}'3 yl) ’
z e SRR y Hy, =2y, +y,)
5, 3 1 2 3

while the function A(y) is

~ g
My) = 1
O, = 2

The set Y is givenby y = {y|1l< 152, k59,85, 1% Y5 < 4}

*
The bounds on )\  are then readily found by observing the extreme points

of the set vy :

= J1e




r .

A =-1—%) - for =] %
o
= -
any

T = —; ; for y=| L
Lh

For any A€ {- - —1] and yeY , we have, for optimality,

10’2
2% =1 S 1
Yy = Y. ok y )
2 g 2 by 9
. (1+2)2 (1=2)°
g(r3y) = ys = y; (x#0) ,
by by

Bosy) = % .

The resulting g(1) , §(2) functions are obtained, in this case, by

~
examining the values of g();y) when two components of y are set at the
various extreme points and the third component is allowed to vary. Taking

the minimum and maximum values for each )\ yields:

2% 48 +14 1 1
Bl) = == =t gags (y=2,3=4 (20)
2x +1
- 10 =

— — B e W *-‘—\\__‘-“‘_V;'
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-

,Xi-t)\+1 1 1

—_————— - — A & — =2 =1
) w6t (=2 y,=1)
2

"= 10N +5 1

—— AR S0 (ya=5,y3=1)

1=-2)

hx2+1ox+5
St A ERE gy e, g )
1+2)\

302 + 101 +3

1
isxs—g (y,=1,y,=4)

I 10 3

The segments of each function are annotated with the values of the y vector
components which remain fixed. The functions are plotted in Figure 1. Note
the characteristic (and uﬁusual) shape of the joint confidence region for
(x*, g(l*)) . Figure 1 shows the upper and lower confidence bands for the
response g(2) ; see [3] for details,

By inspection we find that

2 = b for A =0

5.225 for L\ = 3/10

ool
I

- 13 =
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4,  SOME EXTENSIONS

In this Section we take up a few obvious extensions to the work of
Section 2, These are: dealing with a quadratic function with more than
three simulation outputs, handling non-concavity and selection of good con-
fidence intérval widths at each base point. Extensions to the numerical

example of Section 3 are also presented.

4,1 Additional Observations

Suppose that a fourth parameter setting a), = 1/2 1is chosen for
our numerical example and that, with probability .98, L4 < g(1/2) <5 .
Including this additional observation decreases the probability of our final
results to about .93; this points up the major disadvantage of adding new
observations to an existing solution.
The various optimization problems solved in Section 3 must be augmented

by adding the constraints

1 2 -,
bS-gYL LYt I35 -
When this is done, we obtain
T
A = =1/0 for y = >
h/3
u(
g
A= 1/2 for y = i
4
41/
- 15 =




The functions g(2) and g()) can also be found; their form is similar
to (20) and (21) and they are plotted in Figure 2. The results for the

optimum value bounds are

4 1/2 for A

]

14,

b
I

5 1/6 for X & .

oo |
I

It is instructive to consider the reduction in size of the various con-
fidence regions when the fourth observation is added. The intervals for k*
and g(k*) are reduced in length by 8.3% and 8.2%, respectively. By perform-
ing a somewhat tedious integration, one may find that the joint confidence

* *
region on (1 , g(A )) is reduced in area by 24%.

4,2 Interval Width Selection

Instead of performing a simulation with an entirely new parameter
setting as in the previous subsection, one may choose to perform more repli-
cations at one of the existing settings in order to narrow the confidence

interval [A:l A2

) 1] at that point. Note that this procedure leaves the
probability content of the resulting confidence regions unchanged. Alter=-
natively, it is usually possible to narrow any of the original confidence
intervals if one is willing to accept the resulting decrease in the proba-
bility content of the final results. We thus consider the selection of a
R L SR 1
g i] ntervals,

Because of the complex expressions that arise if one allows too much

set of good widths for the [A

generality, it is difficult to give robust rules for choosing the interval

e et e —— -+ o e = . — » .
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widths. Intuitively, it seems best to select all with about the same width,
or else with about the same probability coverage. In order to consider this

matter more concretely, we shall look more closely at the example of Section 3.

If the additional simulation replications carried out at A = a, in

Section 4.1 had been run instead for A = a the confidence interval

3 )
[A;', A;H would be based on twice as many observations and would- thus be

about 70.7% as wide as the original interval with the same probability coverage.

The calculations of Section 3 were repeated, therefore, with A;' = 1.5 and
A;z = 3.5 ; the results are plotted in Figure 3 and are summarized below:
- 5 -
1
kA om = for y = b
18 1%
- 1
—_ N -5— ¥,
A = T for y hl
3z
g = Ll» for A = O
% w5 Dliee gor % ow Py

The sizc of [), ] thus decreases by 31% and of [g, ] by €.87; the area
* *

of the (A , g(\)) region decreases by L41%. It may thus be concluded that

in this instance it is preferable to narrow the third confidence interval

than to take additional observations at some other point.

- 18 =
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To pursue the matter further, we investigate how the widths of the
B ,K] and [g,g] confidence intervals change as the [A;’, A;21 interval

changes. We assume that

1 1/ 2 1/
A, = 2o = 2p .
5 2=5% , A + 8

The resulting widths are plotted in Figure 4. Note that when § = 51/2 in

this case, the vector y = (ﬁ) yields a linear function; the upper bound
2 thus approaches + o as g increases.

If we further assume that the simulation response at A = a5 has a
normal distribution (on én approximately normal distribution) we can plot the
sizgs of the two confidence intervals against their probability coverage; note
that since the a, and a, intervals do not change in this case, the maximum
probability is (.98)2 = ,9604 . The result is shown in Figure 5. Note the

sharp upward turn at a point corresponding to 1=y = .94 , i.,e. =IR02 e

-
Both Figures 4 and 5 lend some wieght to our previous observation that

the "best" confidence regions for l* and g(k*) result when the absolute

widths of the simulation output confidence intervals are about the same. We

must qualify this statement somewhat when the parameter settings are not evenly

spaced, since a greater width is acceptable for parameter settings which are

relatively distant from the optimum.

4.3 Non=Concave Functions

When the value of =z (y) found from (5) is not negative, the result=-
=,
ing g(2) function becomes unbounded as X =t ® . As we saw in Section 4,2,

this will cause either ) or % or both to become unbounded as well.
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Figure 4, Variation in confidence region size as the half-width (&) of
the interval at X = a, changes.
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There are two possible types of response to the situation when it
turns out that 25(y) >0 . The first response is based on the assumption
that g()) is actually a strictly concave function. In this case the
analyst attempts to adjust the simulation results so as to obtain concave
functions. The other type of response merely restricts the problem (1) to
a an_+1] where a,<a; and a

user-specified constants. Of course, even a convex function attains a maxi-

the closed interval | are

> a
n+l< n
mum over a closed bounded set. In the rest of this Section we discuss these
two types of response in more detail.

The value of 25(y) will be negative as long as

- a. a.= a.
AJ,1 > ak—lAie + J———lAke (22)
ak-ai ak-ai

for some i< j<k , 1<1i,j,k<n . The adjustment process consists
of modifying one triple A, A, , Ak if none of them satisfy (22). There
are five ways to do this:

(1) By using the distribution theory that was used to obtain the original
[A;', A;B] intervals, decrease the probability coverage (i.e.,
tighten the intervals) until (22) is satisfied. It may also be
possible (if normal theory is applicable) to use asymmetric rather
than symmetric intervals or to perform some other adjustement. It
is likely that only a single interval will need to be altered.

(2) Carry out more simulation runs. These may be used to tighten the

intervals already obtained or to investigate the response at an

additional base point. Based on the results of this section, the
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second alternative is suggested only when the responses at the
existing points indicate that the optimum lies outside the current
range.

Inequality (22) may be expressed in terms of a constraint on y
and explicitly introduced into the various optimization problems
of Section 2 to insure that 25(Y) <0 . The main difficulty
here is that (22) is a strict inequality; for this reason, a

parameter & should be chosen and the following constraint used:

3 1
¥> = Sy, o+ - B (23)
2 a_=a a_-a 5 :
b 2k

A good value for & would be a few percent of the maximum
response obtained.

The work of Barlow, et. al [1l] on regression under order restric-
tions may be applied to adjust, say, Afz, A;', and éf so
that (22) always holds; this would involve estimates of the
variability (i.e., variance) of the three values. This approach
allows the analyst to use explicitly the additional information
that g(2) is concaQe. Thié approach is somewhat involved and
will not be discussed further here. A

The assumption that g()) is concave may be questioned and a
statistical test performed to determine its likelihood. This

would involve information on the distribution of the simulation

output response, however.
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The constraint (23) offers a convenient means of carrying out the second

*
approach, i.e. limiting the optimum 2 to the interval [ao, an_+1] « | In

this case we solve for ) and A as usual (the constraint protecting us

from catastrophic unboundedness) and then set

A = maximum (ao 2
A = minimum (an-+1’ A} .

As long as & 1is quite small this method should work well.
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[3]

(4]
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