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THE DECAY OF TURBULENC E

ABSTRACT

Solutions are given for the temporal decay of homogeneous turbulenc e

and spatial decay of turbulenc e induced by a source of energy on a Plane z 0.

In the latter case there may be a superim posed basic current W perpendicu-

lar to the plane . The initial energy spectrum function (at t = 0 or z = 0) for

the idealized source is proportional to the wave number k. With increase of

time or distance from the plane , the smaller eddies decay strong ly and an

energy peak develops at k = k .  The energy in larger waves is permanent

In the sense that the ener gy in a given wave number divided by the ener gy at

that wave number in the original spectrum Is a constant for k < k 1. Thus the

energy peak moves to larger and larger eddies cont iilnlng smaller and

smaller amounts of energy. The integral length scale L k~ increases

and the root-mean—square velocity u decreases in accordance with uL =

where ‘~ Is a constant characteristic of the “action ” of the energy source.

This behavior , together with the energy equation, helps to close the problem

and leads to solutions for u and tat finite z and t in the various cases.

The reElits agree with previous theories for turbulence caused by

V 
an oscillating grid and by flow inawind tunnel pastaflxed grid. There is

also a comparison with experimental obeervationa In the two cases.

An analysis is given for the spatial and temporal decay of the turb u-

lence Induced by a plane source after t 0 when the action of the source

ceases. The turbulence becomes spatially homogeneous In a layer between
1

• . z = O a n d z = D w h e r e D x ( K t )’.
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1. Spatial Decay of Turbulence Induced by a Steady Source
of Disturbances on a Plane.

In a recent paper, the author (Long, 1978) considered the problem of

motion in an infinit e, incompressible , homogeneous Newtonian flui d, induced

by a steady, horizontally homogeneous source of ener gy on a plane z 0.

The purpose of the present investigation is to gain a deeper understanding of

the decay process In this probl em and to use this understand ing to solve other

simple decay problems of Interest. In the cited paper , the source of dis-

turbances consists of an infinit e number of doub lets at points (Id, Jd, 0)

where i, j are all of the positive and negative integers . The axes of the

doublets may be aligned along the positive z a.xis where i + j is even and

along the negative z axis when i + j is odd and the strengths p. are all taken

to be equal . Use of the energy equation shows that motions at finite z may be

finite if p. ad3 as d — 0. Then all mean quantities must be functions of ~t, z

and v where t is the limit of p. /da and v is viscosity. The results for the

integral length scale L and the root-mean-square velocity u are

= Aa, (~
)
~ 

£ = A.~~
’
) (1)

Cbviously the rms velocities v and w are of the same form as u. The z-

behavior in (1) is in rough agreement with observations by Hopfinger and

Toly (1976) in an experiment (figure 1) with a horizontal oscillating grid in

a vessel of water. Their observations also indicated that u, v, w were all V

nearly equal except very close to the grid. When the Reynolds number

I ~
. Re = it/v is large, the principle of Reynolds number similarity suggests

[ that A~ and A3 are universal constants~ If the energy source begins at 4

1 A 1, where I 1, 2, 3, . . .  denot e universal constants throughout the paper.
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t = 0 in a resting fluid, a layer of turbulence of thickne ss D(t) develops.

The theory predict s D ( itt)1 and this also agrees with some recent ex-

periments (Dickinson and Long, 1978).

It is useful for pr esent purposes to reder ive the result s in (1)

using an energy source that is more appealing physically, perhap s, than

the set of doublets. We begin by considerin g the classical problem of a

steady J et along the z-axis in an infinit e fluid (Hinze, 1959, p. 404). We

imagine that the J et Issues at z = 0 from a long pipe of small diameter d

under a pres sure gradient force G. The velocity in the pipe and at a point

at a distance of order d from the end of the pipe is of order G1d1 if the flow

is turbulent and Gd3 /v if the flow is laminar in the pipe. Also the momentum

flux
2w

= I f (P+ w3 )rdrd 9 (2)
- 0  0

is constant for all z and t where P is the pressure divided by the density.

The flux J Is maintained by the pipe flow so that J = J(G , d, v )  or

J = Gd3f(2-~ - ) (3)
\ V  /

Thus we may maintain a Jet with finite velocities at finite z by letting G

incr ease as d —0 in such a way that ,~ .21m G1d~ is finite and non-zero.

The mean velocity, for example , may be found by dimensional anal ysis

to be

(4)

and observations tend to support this behavior. Notice that if G1d~ is not

finlte a s d — O , evalua tion o f J i n ( 2 ) a ta leveiz—dindl ca tes that J is

—: 
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Infinite or zero and therefore that velocities must be precis ely proportional

to d~ for the singularity , in the form of a pipe of infinitesimal disnneter d,

to produce finit e motions at finite distances.

With this background, we may now construct an energy source on the

plane z 0 by using an infi nite number of long pipes of small diameter filling

the space z < 0  and ending at the plane z = 0 (figure 2). The pipes are evenly

spaced with centers on z = 0 at points (10 Id, 10 jd, 0). Flow, driven by the

same pressure gradient force G in each pipe Is in opposite directions for

i + J ‘~‘~ z and i + J odd. The spacing lOd has been chosen arbitraril y to

yield flows to and from the pipes, as in figure 2, which interfere rather little

at the level z = d. In accordance with the discussion of a single J et , we

require that G1d~ tends to a finite , non—zero quantity it as d — 0. We

thereby Obtain an energy source on the plane z = 0, characterized by a

quantity it of dimensions L3T~~, and we may obtaIn (1) again by dimensiona l

analysis.

A useful physical interpretation of the pr oblem of constructing a

plane energy source Is that there is a competition between the very large

energy flux issuing from the source and the very large viscous dissipation

in the vicinity of the source. If the velocity is proportional to d ’, the

source is characterized by a quantity it with the dimensions of v and the

only length unit near z = d is d itself. Then the energy flux crossing the

plane z = d is proportional to d ’. On the other hand the integral of the

energy dissipation , ~(vu~ ~
‘, over the layer from d to a finite z is also pro-

portional to d~~. The small (finite) differenc e between these two large

quantities equals the finite energy flux at the level z corresponding to the

— I ,
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finite, non-zero motions there. If the velocity GM da or ~d~’v is proportional

to e wher e n > 1, the ener gy dissipation is weak compared to the energy

flux divergence and the motions at z are Infinite. If n <1 , the energy

dissipation is too large and the motion dies away before it can reach a

finit e level z. If the motion is turbulent as it issues from the pipe and the

Reynolds number it/v is large, the energy dissipation i~ay occur in eddies

that are quantitatively much smaller that the pipe diameter d. Nevertheless

our estimate of the velocity derivative as proportional to d~ is correct

because all velocity scales are proportional to d~ and all length scales

are pro portional to d. For example at z = d, the dissipation function is

it3cr4 f(i~Jv ), so that the Kolmogoroff length scale v~/e~ Is d(v/ it ) 4/f4

and the Kolmogoroff velocity scale (vt) 4 is d~ x~v f4.

Dimensional anal ysis permits the argument to be very simple but

one problem remai ns . Thus, as d —0 and the pipes move closer together ,

It seems possible at first glance that the inflow and outflow through alternate

pipes might cancel in such a way as to yield zero velocities at finite z. This

would correspond to A1 = 0  in (1) or to a zero energy flux as d — 0 .  To show

that thi s does not happen, we calculate the energy flux for a finite set of pipes

t z = d .  It is

EF~~~~~~~~~”~~ (5)S

where w0, w1 are the average vertical speeds upward in the J ets and down-

ward in the region outside of the jets, where S0 and S1 are the respective

areas and S = S0+ S1 Is the total area. From continuity

S0w0 = S1 w 1 (6) 

_ _ _ _  ___________________
~~~~~~~~~~~~~~ ~~~~~~ -: 
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so that
• 

EF~~~~~’i -~~.) (7)

The non-dimensional quantities S0/S and S0/S 1 can only be functions of it/v

and so are independent of d. According to the basic nature of viscous flows,

as portrayed in fi gure 2, the ratio So/Si is certainly less than one so that

the energy flux is not zero in the limit as d —0 and the source yields finite

velocities at finite z.

Let us now consider the energy distribution among the var ious wave

numbers k. At any level z the energy comes from below with energy flux

EF. Some is used to maintain the energy spectrum at that level against

dissipation and the rest is passed along to higher levels. At the level z and

near the source plane , the ener gy spectrum f tznctions are

E(k , z) = it 2kf (kz), E(k , 0) = Xa kf(0) (8)

These are illustrated in figure 3 , where we recognize that energy losses

occur first in the smaller eddies. The peak of the spectrum at z corres ponds

to

= 0 = it3 f(kz ) + it5 kzf’ (kz) (9)

Thus at the peak, k1z b is a constant and f(b) = constant. The spectrum

function at k Ic1 is

E(k1, z) = i t 3k1f(b) (10)

whereas the energy at that wave number at the place of origin is

E(k1, 0) = i t 5k1f(0) (11) 
4

Thus
E(k , z)~~ E(k1, 0) (12)

- - - -  - ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ______ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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so that the energy at the wave number k, of the peak (at the integral length

scale~ is proportional to the energy at that wave number in the original

spectrum. It is easy to see that this is true for all k < k, and this is in

accordance with the classical concept of the “permanence ” of the larg e eddies.

‘This, together with the linearity in k of the original spectrum function , explains

the behavior uL constant.

2. Turbulence in a Current Movin g Past a Plane Energy Source.

We are now In a position to consider the problem of high Reynolds

number turbulence in a current moving through the plane energy source of

Section 1. For large z this should resemble turbulence in a strea m moving

past a arid In a wind tunael. We - suppose that a mean velocity W issues

from the pipes at the energy source in addition to the agitation caused by the

alternate up and down motions of Section 1. Since the mean curre nt should

not affect the relationshi ps u v — w, the energy equation for high Reynolds

number turbulenc e may be written

A3 W - A4 .~~~~~ (K 
~~~~~~; 

+ = 0 (13)

where the second term Is the ener gy flux divergence and K is a quantity

with the dimensions of eddy viscosity. The relationship uL it should also

be uninfluenced by the basic current , as we may infer from the discussion

at the end of Section 1, and we use this to eliminate .L In (13). In addition

the eddy viscosity should be independent of W so that we may take K it.

Eq. (13) becomes
au3

A5W~~~~ 4&~~ it ~j  + 0 (14) 

~~- -
_ __~~~~~ — ~~~~~ ~. - — ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 
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With the definiti ons

• ~
a 

=~~~~ W3T , c= (15)

(14) becomes

T” =T ’+ T~ (16)

This differential equation was solved numericall y, using the asymptotic

behavior s,

T - ’ C 1 + zc~ lnc, as c — ~
T — 6C~~~, as C O (17)

and the solution is shown in fi gure 4 together with the curves of the asymptotic

solutions.

At small ~ the basic current is unimportant and we obtain the

behavior in (1) . For large ~ the solutions become

u = A 7 
~~~~~~~~~~~~~ 

, 2 =  
~~ 

(18)

These results corresp ond to one of the two classes of solutions to the equa tion

of Karman and Howa rth (1938) assuming “self-preservati on” (Korneyev and

Sedov, 1976) . Experiments in a wind tunnel downstream of a “passive ”

gr id (Comte -Bellot and Corrsin , 1966) or downstream of a mechan ically

agitated grid similar to the present theoretical model (Ling and Wan, 1972)

suggest an approach to the behavior in (18) as the effect of the mechanical

agitation becomes relativel y large and overcomes the effect of the linear

momentum wakes.

• 3. Temporal Decay of Homogeneous Turbu lence.

In the flow behind a gr id where W >> u, the space rate of change of

energy flux is small and In a coordinate system moving with the mean speed W

-‘f ’ 
~~~~~~~

- - ~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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the turbulence is nearly homogene ous in space but decaying with ti me.

Eq. (18) yields

= 
~~~ 

(
~ 

, 2 = A10 (it t)~ (19)

We may also obtain (19) direct ly by imagining doublets of strength ii. at

points (id , jd , kd) for t <0 , where I , J, k are all the positive and negative

integers. Let the doublets suddenl y cease at t = 0 and integ rate the energy

equation ,

8u _
-

~~~~ — A 1~ (v;) (20)

from time (cia lit) to t , where it = i /cl
2 . Using u2 

= (it
2 /d2 )cp(tit/’d3 

, it/v), we get

tp(~r , ~~) - t p (1, ~~) = -
~~~~~~~ 

x(’r , ~~)d~ (21)

where ¶ = t ~/da . As d — 0  with t and it fixed , ~ ( r  , it/v ) -• to (co, it/v) -.0, on

• physical grounds, wherea i cp(1, k/v)is finite because d2/it is of the orde r of

an eddy time Just alter the doub lets cease. x also goes to zero as d -. 0

with t and it fixed but is of order one for ~~~~ as d — 0. Thus the energy

equation permits finit e motions at finite times if, ultimately, the distanc e

betwe en the doublet s tends to zero and it = u./cja is held fixed. Then at time t ,

u and 2 must depend only on it and t and we obtain (19). Notice that a discussion

similar to the discussion of the energy spectrum function at the end of Section 1

again reveals that the eddies larger than the integ ral length scale £ are

permanent.

4. Spatial and Temporal Decay Above a Plane Ener gy Source.

The final pro blem of this paper concerns the decay of turbulence wit h

resp ect to both z and t when the plane source of Section 1 suddenl y ceases its

output at t = 0. According to Hopfinger and Toly (1976), u, v, w are all equal

_ _ _ _ _ _ _  

_ L
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except very near the grid when the grid is oscillating steadily, and we may

safely assume this is true in the present case. Using the same assumptions

• as used for equat ion (14) , we get

-~~(u~/2) — A 12it~~~~~ + A~3 ~~ = 0  (22)

The solution has the form

u2 
= ~~.~1~~rT( 11) , 1 1 4 A12~~~ (23)

and (22) becomes

T’ — 3 T — 7T’Ti — 2T”~fl 2 + T2 = 0 (24)

The numerical integration of (24) differs from that in Section 2 in that a

universal constant is unknown, namely the limit of T~ = a~ as ~

• The limit corresponds physically to homogeneous decaying turbulence in

a region -D < z  < D  about the origin in which

I

u , £ ‘~~ (it t) (25)

and D ~ (it t)*. At smaller times (or larger z), T is given as a function of

Ti in figure 5 in which the choice of curves (or a~) must be made on the basis

of experi mental evidence.
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LE GENDS

Figure 1. Oscillating grid experiment. The grid oscillates vertically
producing turbulence in the homogene ous fluid above.

Figur e 2. System of pipes producing an energy source at a plane.

Figure 3. Energy spectrum functions at a plane energy source and at
level z above the source.

Figure 4. Solution of Eq. (16) . T is proportional to the kinet ic energy
and ~ is proporti onal ‘to distance from the ener gy source.

Figure 5. Solution of Eq. (28). The various curves correspond to a
parameter a1 which is a universa l constant to be chosen on the
basis of experimen tal evidence.
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