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THE DECAY OF TURBULENCE

ABSTRACT

Solutions are given for the temporal decay of homogeneous turbulence
and spatial decay of turbulence induced by a source of energy on a Plane z = 0.
In the latter case there may be a superimposed basic current W perpendicu-
lar to the plane. The initial energy spectrum function (at t = 0 or z = 0) for
the idealized source is proportional to the wave number k. With increase of
time or distance from the plane, the smaller eddies decay strongly and an
energy peak develops at k = k,. The energy in larger waves is permanent
in the sense that the energy in a given wave number divided by the energy at
that wave number in the original spectrum is a constant for k <k,. Thus the
energy peak moves to larger and larger eddies containing smaller and
smaller amounts of energy. The integral length scale £ = k;* increases
and the root-mean-square velocity u decreases in accordance with ut =x,
where » is a constant characteristic of the ""action" of the energy source.
This behavior, together with the energy equation, helps to close the problem
and leads to solutions for u and fat finite z and t in the various cases.

The results agree with previous theories for turbulence caused by
an oscillating grid and by flow in a wind tunnel past a fixed grid. There is
also a comparison “vith experimental observations in the two cases.

An analysis is given for the spatial and temporal decay of the turbu-
lence induced by a plane source after t = 0 when the action of the source
ceases. The turbulence becomes spatially homogeneous in a layer between
z=0and z = D where D= (ut)i.




1. Spatial Decay of Turbulence Induced by a Steady Source
of Disturbances on a Plane.

In a recent paper, the author (Long, 1978) considered the problem of
motion in an infinite, incompressible, homogeneous Newtonian fluid, induced
by a steady, horizontally homogeneous source of energy on a plane z = 9.
The purpose of the present investigation is to gain a deeper understanding of
the decay process in this problem and to use this understanding to solve other
simple decay problems of interest. In the cited paper, the source of dis-
turbances consists of an infinite number of doublets at points (id, jd, 0)
where i, j are all of the positive and negative integers. The axes of the
doublets may be aligned along the positive z axis where i + j is even and
along the negative z axis when i + j is odd and the strengths p are all taken
to be equal. Use of the energy equation shows that motions at finite z may be
finite if ;,|.ou:t3 as d ~ 0. Then all mean quantities must be functions of x, z
and v where » is the limit of u/d® and v is viscosity. The results for the

integral length scale ¢ and the root-mean-square velocity u are

Obviously the rms velocities v and w are of the same form as u. The z-
behavior in (1) is in rough agreement with observations by Hopfinger and
Toly (1976) in an experiment (figure 1) with a horizontal oscillating grid in
a vessel of water. Their observations also indicated that u, v, w were all
nearly equal except very close to the grid. When the Reynolds number

Re = /v is large, the principle of Reynolds number similarity suggests
that A, and A, are universal constants. If the energy source begins at

‘A, where i =1,2,3,... denoteuniversal constants throughout the paper.




t = 0 in a resting fluid, a layer of turbulence of thickness D(t) develops.
The theory predicts D =« (nt)i and this also agrees with some recent ex-
periments (Dickinson and Long, 1978).

It is useful for present purposes to rederive the results in (1)

using an energy source that is more appealing physically, perhaps, than

the set of doublets. We begin by considering the classical problem of a
steady jet along the z-axis in an infinite fluid (Hinze, 1959, p. 404). We
imagine that the jet issues at z = 0 from a long pipe of small diameter d
under a pressure gradient force G. The velocity in the pipe and at a point

§ at a distance of order d from the end of the pipe is of order Géd% if the flow
is tarbulent and G& /v if the flow is laminar in the pipe. Also the momentum
flux

2T ©
J=[ [ (P+w®)rdrde @)
070

is constant for all z and t where P is the pressure divided by the density.

The flux J is maintained by the pipe flow so that J = J(G,d, v ) or
Gid%

@)

Thus we may maintain a jet with finite velocities at finite z by letting G
increase as d =0 in such a way that » - Z2m G%d% is finite and non-zero.
The mean velocity, for example, may be found by dimensional analysis

to be

N|x
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and observations tend to support this behavior. Notice that if Gid% is not ;
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- finite as d - 0, evaluation of J in (2) at a level z ~d indicates that J is
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infinite or zero and therefore that velocities must be precisely proportional
to d~! for the singularity, in the form of a pipe of infinitesimal diameter d,
to produce finite motions at finite distances.

With this background, we may now construct an energy source on the
plane z = 0 by using an infinite number of long pipes of small diameter filling
the space z < 0 and ending at the plane z = 0 (figure 2). The pipes are evenly
spaced with centers on z =0 at points (10 id, 10 jd, 0). Flow, driven by the
same pressure gradient force G in each pipe is in opposite directions for
i+ j »venand i+ j odd. The spacing 10d has been chosen arbitrarily to
yield flows to and from the pipes, as in figure 2, which interfere rather little
at the level z = d. In accordance with the discussion of a single jet, we
require that Géd% tends to a finite, non-zero quantity » as d - 0. We
thereby obtain an energy source on the plane z = 0, characterized by a
quantity x of dimensions L°T™, and we may obtain (1) again by dimensional
analysis.

A useful physical interpretation of the problem of constructing a
plane energy source is that there is a competition between the very large
energy flux issuing from the source and the very large viscous dissipation
in the vicinity of the source. If the velocity is proportional to d?t, the
source is characterized by a quantity « with the dimensions of v and the
only length unit near z =d is d itself. Then the energy flux crossing the
plane z = d is proportional to ™. On the other hand the integral of the
energy dissipation, \(vu,)®
portional to 2. The small (finite) difference between these two large

» over the layer from d to a finite z is also pro-

quantities equals the finite energy flux at the level z corresponding to the
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finite, non-zero motions there. If the velocity G%d% or 3d7v is proportional
to d™* where n > 1, the energy dissipation is weak compared to the energy
flux divergence and the motions at z are infinite. If n <1, the energy
dissipation is too large and the motion dies away before it can reach a
finite level z. If the motion is turbulent as it issues from the pipe and the
Reynolds number »/vis large, the energy dissipation may occur in eddies
that are quantitatively much smaller that the pipe diameter d. Nevertheless
our estimate of the velocity derivative as proportional to d™ is correct
because all velocity scales are proportional to d”* and all length scales
are proportional to d. For example at z = d, the dissipation function is
¢ = w’d"*f(x/v ), so that the Kolmogoroff length scale v%/ e% is d(v/» )%/fl"
and the Kolmogoroff velocity scale (ve)% is &yt f%.

Dimensional analysis permits the argument to be very simple but
one problem remains. Thus, as d =0 and the pipes move closer together,
it seems possible at first glance that the inflow and outflow through alternate
pipes might cancel in such a way as to yield zero velocities at finite z. This
would correspond to Ay =0 in (1) or to a zero energy flux as d = 0. To show
that this does not happen, we calculate the energy flux for a finite set of pipes

at z =d. Itis

EF « (&E’is;s*xﬁ) (5)

where w,, w, are the average vertical speeds upward in the jets and down-
ward in the region outside of the jets, where S, and S, are the respective
areas and S = Sy+8S, is the total area. From continuity

SoWo =Sy w, (6)
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so that
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2= s &) o
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The non-dimensional quantities So/S and So/S, can only be functions of »x/v
and so are independent of d. According to the basic nature of viscous flows,
as portrayed in figure 2, the ratio S,/S, is certainly less than one so that
the energy flux is not zero in the limit as d =0 and the source yields finite
velocities at finite z.

Let us now consider the energy distribution among the various wave
numbers k. At any level z the energy comes from below with energy flux
EF. Some is used to maintain the energy spectrum at that level against
dissipation and the rest is passed along to higher levels. At the level z and

near the source plane, the energy spectrum functions are

E(k,2) = »’kf(kz), E(k,0) = x’kf(0) )
These are illustrated in figure 3, where we recognize that energy losses
occur first in the smaller eddies. The peak of the spectrum at z corresponds
to

%ﬁ_ =0 =P f(kz) + » kzf'(kz) ©)

Thus at the peak, kyz =b is a constant and f(b) = constant. The spectrum
function at k =k, is

E(ky, 2) =17k £(b) (10)
whereas the energy at that wave number at the place of origin is
g o E(K, ,0) = » %, £(0) (1)
- ; Thus
E(k,, z) = E(k,, 0) 12)
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so that the energy at the wave number k, of the peak (at the integral length
scale) is proportional to the energy at that wave number in the original
spectrum. It is easy to see that this is true for all k < k, and this is in
accordance with the classical concept of the '""permanence' of the large eddies.
This, together with the linearity in k of the original spectrum function, explains

the behavior uf = constant.

2. Turbulence in a Current Moving Past a Plane Energy Source.

We are now in a position to consider the problem of high Reynolds
number turbulence in a current moving through the plane energy source of
Section 1. For large z this should resemble turbulence in a stream moving
past a grid in a wind tunmel. We suppose that a mean velocity W issues
from the pipes at the energy source in addition to the agitation caused by the
alternate up and down motions of Section 1. Since the mean current should
not affect the relationships u ~ v ~w, the energy equation for high Reynolds
number turbulence may be written

du® R R
)

A3W5; - Ag?z' :\K‘Ez- J + =0 13)

where the second term is the energy flux divergence and K is a quantity
with the dimensions of eddy viscosity. The relationship ut = » should also
be uninfluenced by the basic current, as we may infer from the discussion
at the end of Section 1, and we use this to eliminate £ in (13). In addition
the eddy viscosity should be independent of W so that we may take K = x.

Eq. (13) becomes

2 2 4
A A T s Bag 14)
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With the definitions
s A _ A Wz .
FaEwWr, L= S (15)
(14) becomes
™ =T'+T° (16)

This differential equation was solved numerically, using the asymptotic
behaviors,
T-¢"'+2¢°m¢, as(~=

T-6C"%, as(-0 17

and the solution is shown in figure 4 together with the curves of the asymptotic
solutions.

At small ¢ the basic current is unimportant and we obtain the
behavior in (1). For large C the solutions become

Wi \% /nz )é

u=A, ), 4= 4 (B 18)
These results correspond to one of the two classes of solutions to the equation
of Karman and Howarth (1938) assuming "self-preservation" (Korneyev and
Sedov, 1976). Experiments in a wind tunnel downstream of a ""passive'

grid (Comte-Bellot and Corrsin, 1966) or downstream of a mechanically
agitated grid similar to the present theoretical model (Ling and Wan, 1972)
suggest an approach to the behavior in (18) as the effect of the mechanical

agitation becomes relatively large and overcomes the effect of the linear

momentum wakes.

3. Temporal Decay of Homogeneous Turbulence.
In the flow behind a grid where W >> u, the space rate of change of
energy flux is small and in a coordinate system moving with the mean speed W

P




e = 7
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the turbulence is nearly homogeneous in space but decaying with time.
Eq. (18) yields 1

we Ay \tﬁ) . 4=Ag, o (19)
We may also obtain (19) directly by imagining doublets of strength u at
points (id, jd, kd) for t <0, where i, j, k are all the positive and negative
integers. Let the doublets suddenly cease at t = 0 and integrate the energy

equation,

3
X Al (20)

from time (d°/x) tot, where x = uw/d®. Using u® = (° /&°)o(tu/d , n/v), we get
T
o =) =9 L, <) =-§jl x(T, <)d7 (21)

where T =tw/d®. As d -0 witht and « fixed, o (T, #/v) = o (=, »/v) =0, on
physical grounds, wherea3 (1, */V)is finite because d® /u is of the order of
an eddy time just after the doublets cease. X also goes to zeroasd -0
with t and » fixed but is of order one for T ~1 as d 0. Thus the energy
equation Permits finite motions at finite times if, ultimately, the distance
between the doublets tends to zero and » = u/dz is held fixed. Then at time t,
u and ¢ must depend only on » and t and we obtain (19). Notice that a discussion
similar to the discussion of the energy spectrum function at the end of Section 1
again reveals that the eddies larger than the integral length scale 4 are
permanent.
4, Spatial and Temporal Decay Above a Plane Energy Source.

The final problem of this paper concerns the decay of turbulence with
respect to both z and t when the plane source of Section 1 suddenly ceases its

output at t = 0. According to Hopfinger and Toly (1976), u,v,w are all equal

3
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except very near the grid when the grid is oscillating steadily, and we may
safely assume this is true in the present case. Using the same assumptions

as used for equation (14), we get

9,3 Fu® u*

(W /2) - Ayan =3 t Ay =0 (22)
The solution has the form

2
2 _ 2A,3 % L nt

u = Ays 'Z'?-'T('ﬂ), T =4A,2 = (23)
and (22) becomes

T'=-8T-TT"N-2T"1"+ T° =0 (24)

The numerical integration of (24) differs from that in Section 2 in that a
universal constant is unknown, namely the limit of TT =a, as N-=.
The limit corresponds physically to homogeneous decaying turbulence in

a region -D < z < D about the origin in which

u«{tﬁ; s z«(ut)% (25)

and D =< (# t)é. At smaller times (or larger z),T is given as a function of
7 in figure 5 in which the choice of curves (or a,) must be made on the basis

of experimental evidence.
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LEGENDS
Figure 1. Oscillating grid experiment. The grid oscillates vertically
producing turbulence in the homogeneous fluid above.
Figure 2. System of pipes producing an energy source at a plane.

Figure 3. Energy spectrum functions at a plane energy source and at
level z above the source.

Figure 4. Solution of Eq. (16). T is proportional to the kinetic energy
and { is proportional to distance from the energy source.

Figure 5. Solution of Eq. (28). The various curves correspond to a
parameter a, which is a universal constant to be chosen on the
basis of experimental evidence.
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