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ABSTRACT

Two new generalizations of planar graphs, called quasiplanar and
pseudoplanar graphs, are introduced and discussed. A graph is called
quasiplanar if for each node t, the set of nodes incident to t can
be labeled 1, ... , m so that for each 1<h<i< j<k<m, each
pair of paths not containing t and having respective endnodes h,j
and i,k share a common node. A (directed) graph is called pseudoplanar
if for each pair of nodes s,t, the set of nodes adjacent to t can
be labeled 1, ... , m so that for each maximal arborescence not con-
taining t and having root s and each endnode adjacent to t, the
endnode descendants of each node in the arborescence are either Jj, ... , k
or ky «eo ,my 1, .o. , j for some 1< j<k<m. Planar graphs are
quasiplanar and they in turn are pseudoplanar. Conversely, a pseudo=-
planar graph that contains with each arc its reverse arc is quasiplanar.
And a quasiplanar graph that excludes subgraphs that are refinements
of the complete bipartite graph K33 with three nodes in both sets
is planar. Kuratowski (1930) characterized planar graphs as those that
exclude subgraphs that are refinements of either the complete graph
on five nodes or K33. An analogous characterization of quasiplanar
graphs is given in this paper in which the excluded subgraphs differ
from Kuratowski's only by adding an edge in K35. In a companion paper
with Veinott, an algorithm given for finding minimum-concave=-cost flows
in single-source networks is shown to run in polynomial time when the

associated graph is pseudoplanar.
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QUASIPLANAR AND PSEUDOPLANAR GRAPHS

Lo Introduction.

The purpose of this paper is to introduce and discuss quasiplanar
and pseudoplanar graphs, two new generalizations of planar graphs.

To do this we define t-quasiplanar and st-pseudoplanar graphs where s
and t are nodes in the graph. These generalizations are obtained by
abstracting two properties of planar graphs, viz, the "intersecting-
staggered-paths property" and the "consecutive-endnodes property."
These properties are introduced in Section 2.

The motivation for studying these graphs comes from a companion
paper with Veinott [1]. There we give an algorithm for finding minimum-
concave-cost flows in single-source networks and show it runs in polynomial
time when the associated graph is st-pseudoplanar where s 1is the
source, t is the sink, and the flows in all arcs adjacent to the
sink are fixed.

The main result of this paper, given in Section 3, is a characteri-
zgtion of quasiplanar graphs which is analogous to the Kuratowski
Theorem for planar graphs. Kuratowski characterized planar graphs by
excluding subgraphs that are refinements of either the complete graph
on five nodes or the complete bipartite graph with three nodes in both
sets. The subgraphs excluded from quasiplanar graphs differ from the
Kuratowski graphs only by adding an edge in the bipartite graph.

In Section 4 it is shown that a quasiplanar graph is pseudoplanar,
and that the converse holds in bidirected graphs. Hence the two

extensions coincide in bidirected graphs. !




2. Preliminaries.

The following notation and definitions will be used throughout this
paper. A (directed) graph G consists of a nonempty finite set Gy
of nodes and a set GA of ordered pairs of nodes called arcs. Call
H a subgraph of G if HNC GN and HACGA. Define the subgraph
G(H) of G induced by H as the maximal subgraph of G using only
the nodes in H. Usually the subscripts N and A are clear from

context and will be suppressed. We say that a node u is adjacent to

(resp., adjacent from) a node v if (u,v) (resp., (v,u)) is an arc

in G. Let a path (resp., chain) be an alternating sequence of distinct

nodes and arcs Uy al, Upy see 5 85 u beginning and ending with

nodes U, and uo, called endnodes, such that a, € ((uk_l,uk),
(uk,uk_l)] (resp., a, = (uk-l’uk))' A cycle (resp., circuit) is a

path (resp., chain) with an additional arc 8, € {(uo,un),(un,uo)]

(resp., a. = (un,uo)). We interpret a chain as a "directed" path and

0
a circuit as a "directed" cycle. A node u is said to be accessible
from node v if there is a chain from u to v (i.e., u, =4,

u =v in definition).

An arborescence is a graph containing no cycles and all nodes are
accessible from a distinguished node called the source. Call the nodes
accessible from a node in an arborescence descendants of thut node.

An endnode in an arborescence is a node without descendants. Given

a node s and a set M of nodes in a graph G, define an arborescence

from s to M as a subgraph of G that is an arborescence with source

s and with endnodes in M. A maximal arborescence from s to M is an
arborescence T from s to M with a maximal number of nodes from M

in T,

N EIIImI———.
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Let t be a nodc in a graph G. Denote by At the set of nodes
in G adjacent to t. Let the degree dt of a node t be the number
of nodes in At' Call a graph g&gggz if it can be embedded in the plane
so that paths intersect only at nodes. After embedding, choose an
arbitrary node t and label by 1, 2, ... , m the nodes in At
cyclically, say clockwise, around t. It will be shown in the sequel
that the following two properties are satisfied with such a labeling.

Consider s and t as fixed nodes in an arbitrary graph G.

Intersecting-Staggered-Paths Property.

There exists a labeling 1, 2, ... , m, called consistent, of

A, such that for each ordered quadruple h < i < j < k and for each

t
pair of paths, called staggered, not containing t with endnodes
h, j and i, k, respectively, the paths share a common node.

The following is an example of staggered paths where the solid

node is the common node and h =2, i =3, j =4, and k = 6.
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Figgre 1.

Consecutive-Endnodes Property.

There exists a labeling 1, 2, ... , m, called compatible, of
At such that for each maximal arborescence H from s to At not
containing t and each node i in H the endnode descendants of i

are consecutively labeled, i.e., for some 1< j < k <m, the endnodes

are either Jj, J+l;, «e¢ ; k OF Ky ¢es , My 1, 2, ¢oe 5 jo These
two properties will be used to define quasiplanar and pseudoplanar graphs

in the next two sections.
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Figure 2.

3. Quasiplanar Graphs.

The concept of planarity does not depend on the direction of the
arcs and is usually defined for undirected graphs. In order to simplify
the presentation of quasiplanarity, assume throughout this section that
the graphs are undirected, i.e., consider the ordered pairs of nodes
(often called edges) as unordered. Extend other concepts in the natural
way, for example, a path is an alternating sequence of distinct nodes
and edges uo, al, ul, cee 5 B w beginning and ending with nodes
such that a, = (uk-l’uk) for k=1, «oo ,n. Let H and G be
(undirected) graphs and call G a refinement of H if G can be
obtained from H by successively replacing arcs by paths. Denote by

|S| the cardinality of a set &.
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Two paths are said to be disjoint if they have no nodes (and thus
no ares) in common. If two paths have at most their endnodes in common,
call the paths separate. Let t be a node in a graph G. Call G

t-quasiplanar if the nodes in At have the intersecting-staggered-

paths property. Note that a common node shared by the two paths may

be one of the labeled endnodes, i.e., the path from, say, h to j

may have i as one of its nodes. But whenever we refer to two staggered

paths, it is assumed that the four endnodes involved are distinct.

Figure 3. Staggered Paths’

If t is not in the graph G, then let G be t-quasiplanar by
definition. Call G gquasiplanar if it is t-quasiplanar for each node
t in G. For notational convenience, let Kmn denote the camplete

bipartite graph, i.e., a graph consisting of two sets of nodes §

p 8

i In the figures dashed lines represent paths, solid lines represent
arcs, and circles represent nodes.
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and S,, where Isll =m and ISQI = n with edges joining each node

in Sl to each node in SE' Also denote by Kn the complete graph

consisting of n nodes with a maximum number of edges.

Note that if the degree of node t 1is three or less, then the
graph is trivially t-quasiplanar since there do not exist two staggered

paths having endnodes in A This implies that K

o b

£ is quasiplanar.

/N

Figure 4. Quasiplanar Nonplanar Graph

Lemma 3.1.
A subgraph of a quasiplanar (resp., t-quasiplanar) graph is quasi-

planar (resp., t-quasiplanar).

Proof.

et t be a node, G a t-quasiplanar graph, and H be a subgraph
of G. If t £ H, then H is t-quasiplanar by definition. If t ¢ H,
then t ¢ G, AHtGEAGt’ and the consistent ordering of AGt imposes

a consistent ordering of AHt'

The next result indicates the relationship between quasiplanar

graphs and planar graphs, justifying the use of the term "quasiplanar."
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Theorem 3.2.
A planar graph is quasiplanar. Conversely a quasiplanar graph

containing no subgraph that is a refinement of K is planar.

35

Proof'.
Let G be a planar graph embedded in the plane so that paths
intersect only at nodes, i.e., arcs meet only at endpoints. For each

node t in G, label the adjacent set A, 1in a cyclic manner, say

t
clockwise, around node t corresponding to the edges that emanate from
node t. Given any labeled quadruple h< i< j<k in At and any
pair of staggered paths (P,Q) with these endnodes. Then P U{t}
together with edges (h,t) and (j,t) form a cycle which divides the
plane into two regions, an insidue and an outside. But by the cyclic

ordering, nodes i and k 1lie in different regions; hence by planarity,

P and Q share a common node (see Figure 53«

e a— e
/O\ oo
/ \
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Figure 5. Planar Staggered Paths

The converse is proved by contraposition. Let G be a quasiplanar
graph containing no subgraph that is a refinement of K35. Suppose
G is not planar. Then by Kuratowski's Theorem [ L4 ], there must be

8




a subgraph H of G that is a refinement of K5' Let t be a node
in H. The adjacent set of t consists of four nodes for which each
labeling results in nonintersecting staggered paths. Thus H is not

t=-quasiplanar and by Lemma 3.1 neither is G. Q.E.D.

Thus K33 is an example of a graph that is quasiplanar but, by

Kuratowski's Tueorem, not planar. On the other hand, K5 is neither
quasiplanar nor planar.

The main result of this section is Theorem %.7. It is an analog
of the Kuratowski Theorem in that it characterizes quasiplanar graphs
by excluding two particular graphs. Several definitions and lemmas
will now be presented which lead to the main result.

If G is a graph and S is a subset of the nodes, let G\S
denote the subgraph of G induced by the nodes not in S. For notational
convenience let G\t denote G\[t}. A graph is connected if there is
a path between each pair of nodes. A graph G is biconnected if
G\t is connected for each node t in G. A component of a graph is
a maximal connected subgraph. The components of a graph are unique.

ILet G be a graph and t be a node such that G\t is not
biconnected. A pair of graphs (Bl’BE) is called a t=bisection of G
if it is obtained in the following manner. Let v be a node other
than t such that G\[t,v} has at least two components. The node
v exists because G\t is not biconnected. Partition these components
into two nonempty collections of components and let Sl and 82 denote
respectively the sets of nodes in each collection. Consider the sub-
graphs of G induced by SkU[t,v} for kwl, 8 If (t,v) 1a not

in G but there are nodes in both §

9

1 and S2 which are adjacent to
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t in G, then add edge (t,v) to the induced subgraphs to obtain

B, and B

o respectively. Otherwise Bl and B2 are Jjust the induced

subgraphs. The following properties are immediate: (1) The number

1

of nodes in Bk is strictly less than the number of nodes in G for

k =1, 2; and (2) If G\t is connected, then so is Bk\t for k =

1, 2. See Figure 6.

G Bl B

Figure 6. t-Bisection

A t-decomposition of a graph G is a set of graphs, each member

H of which contains t and has the property that H\t is biconnected,
that is constructed in the following manner. If Cl’ C2, Sele Cq
are the components of G\t, then let Hk be the subgraph of G induced
by the nodes in Ck together with the node t for 1< k <q. Let

= [Hk}i_:l. Repeatedly replace each graph H in $ for which H\t
is not biconnected by the two graphs in a t-bisection of H. By property
(1) of t=bisections, the number of such replacements is bounded by the
number of nodes in G. The resultant set QNL is the t-decomposition

of G.

10
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The following lemma will be used in the proof of Theorem 3.7 to

Justify considering only those graphs G where G\t is biconnected.

Lemma 3.3.
A graph is t-quasiplanar if and only if all the graphs in a t-

decomposition thereof are t-quasiplanar.

Let t Dbe a node in a graph G and C? be the set of components
C in G\t. Clearly H = G(c\Jt) is t-quasiplanar for each C ¢ {§
if and only if G is t-quasiplanar. Since t-decompositions are formed
by repeated t-bisections, it is sufficient to show that each graph

Bl and B2 obtained in a t-bisection of a graph H such that H\t

is not biconnected is t-quasiplanar if and only if that is so of H.
If a Bk is not t-quasiplanar, then there exists nonintersecting
staggered paths in that B, for each labeling of A, N B.. But these
paths also occur in H, so H is not t-quasiplanar.

Conversely, assume both Bl and 32

(t,v) 4is not in By (and thus Bz), then only one graph, say B,

contains the nodes which are in At' Using the same labeling as for

, implies H is t-quasiplanar. If (tyv) i3 in B, (and thus 82),

then choose consistent labelings for B1 and 32 respectively. (Refer

to Figure 7.) Since the labelings are cyclic, we may arrange the labels

are t-quasiplanar. If

B

so that v receives the greatest label, say q, in Bl' Add q-1.
to the labels in B, after the labels therein have been arranged so
v has the label one. This results in a consistent labeling for H.
To prove this, suppose there is a pair (Pl’Pa) of disjoint paths in
H. Four cases must be considered. If Pl and P2 are contained in

p = !

Pa— e -

B




the same subgraph, then they are not staggered since the labeling is
consistent in that subgraph. If they are in different subgraphs, then
the ordering would not allow them to be staggered either. They cannot
both be in both subgraphs since they would intersect at the node v.

Finally, suppose one path, say P intersects both subgraphs and the

l)
other is in only one subgraph, say Bl. Since v is the only node

in H\t common to both subgraphs, Pl contains v. Let P be the

maximal subpath of Pl contained in Bl. The node Vv is an endnode

of P with label q. But q was chosen to be the greatest label in

Bl' Hence if Pl

staggered paths in Bl and so share a common node which is impossible.

and P2 are staggered in H, P and P2 are also

We conclude that Pl and P2 are not staggered, and thus the labeling

is consistent. Q.E.D.

By a simple contraction of a graph G we mean that two adjacent

nodes, say s and u, are replaced by a single node w which is

12
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adjacent to those nodes adjacent to s or u. When this is so call
s and u the parents of w. Call the graph H a contraction of G
if it can be obtained from G by a sequence of simple contractions,
and call a node s in G an ancestor of a node w in H if there
is a sequence (s,G) = (wl,Hl), ees 5 (W ,H) = (w,H) such that H

qQ° q k

is a simple contraction of Hk—l’ and wk-l is a parent of w

K for
2 <k S q. In particular, a node is an ancestor of itself. Call a
contraction H of G t-avoiding if t is the only ancestor of itself.

Let the inverse operation of a simple contraction (resp., contraction)

be called a simple expansion (resp., exggnsion).

Lemma 3.4.

A t-avoiding contraction of a t-quasiplanar graph is t-quasiplanar.

Proof.

It suffices to prove the result for s t-avoiding simple contraction
G of a t-quasiplanar graph G'. Let s, u be the nodes in G' which
are replaced by w in G. If P is a path in G, denote by P' its
unique extension in G' formed by replacing w, if it appears in P,
by s, u and the edge (s,u). Since G' is te-quasiplanar, A% has

a consistent labeling. This induces a natural labeling on A where

£?
if w e At’ then either s or u is in A% and w receives the
label of one such node. Let P and Q be staggered paths in G with
that labeling. Then P' and Q' are staggered paths in G', and

so, because G' is t-quasiplanar, share a common node p. Thus, P

and Q mst share a common node, viz., one for which p is a parent,

completing the proof.

13
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Figure 8. Extending Paths in Extensions
The following graph illustrates the need for the contraction in
Lemma 3.4 to be t-avoiding.
Figure 9. A Quasiplanar Graph
With a Nonquasiplanar Contraction
%)
Note that the graph G 1in Figure 9 has only nodes of degree three and
‘ so is quasiplanar. Yet if we contract each pair of nodes as indicated,
| we obtain the nonquasiplanar graph K55'
*‘z " Given a node t, denote by Kt the complete graph with five
‘ nodes, one being the node +t. Denote by Et the graph K53 augmented
; 1k
.‘»-—n——-——-——-—: - > e ——— e > vﬂ?‘f —
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with an additional edge and t Dbeing one of the two nodes having degree

four. (See Figure 10.)

Figure 10. Kt and Et

Lemma 3.5.
If G contains no subgraph with a t-avoiding contraction that is

Kt or Et’ then neither does each graph in a t-decomposition of G.

Clearly if G contains no subgraph with a t-avoiding contraction
that is K or E,, then neither does a component H of G\t. It
suffices to show that if H contains no such subgraphs and has the
property that H\t 1is connected but not biconnected, then the graphs
in the t-bisection (Bl’BQ) of H also contain no such subgraphs.
Since the only arc which might be added is (t,v), the result follows
immediately if (t,v) 4is in H. Assume (t,v) is not in H and
refer to Figure 11. Suppose that there is a subgraph J in say Bl
with a t-avoiding contraction that is Kt or Et' Then J must contain
(t,v) otherwise J is contained in H which is impossible. We will

15




show that there is a path from t to v in B, not using arc (t,v)

which may replace (t,v) in J obtaining a new subgraph in H that

has a t-avoiding contraction that is Kt or Et' This contradiction

implies that there is no such subset J in the graphs of the t-bisection.
Since (t,v) was added, there is a node u (other than t) in

B? that is adjacent to t. Since H\t is assumed to be connected,

there is a path P from v to u in H\t. Since t and v are the

only common nodes of Bl and B2, P must lie in B2 and have only

node v in common with BJ: Thus the path P can be extended in

B2 by adding node t and arc (t,u), obtaining the desired path and

completing the proof.

Neither Kt nor Et are tequasiplanar. This is easily verified
by deleting the node t and noting that there exists a path between

each pair of nodes in A, that is disjoint from another path between

t

the other two nodes in At' Thus each labeling of the nodes in At

results in a pair of disjoint staggered paths. Furthermore, neither

16
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Kt nor Et is a contraction of the other. The next lemma leads to

the main result.

Lemma 3.6.
It t is a node in a graph G with d > b, G\t biconnected,
and E, not a t-avoiding contraction of any subgraph of G, then

there is a cycle in G\t containing all the nodes adjacent to t in G.

Since G\t is biconnected, Menger's Theorem [ 5] asserts that
there exists a cycle in G\t containing a given pair of nodes. Thus,
if d_ <2, the result follows. Assume by induction that there is a

t

cycle C containing k > 2 nodes in At. If k=4 we are done.

t,
Otherwise, orient the cycle and label the nodes in Atnc Ly @y enie 3 K
in the order traversed in the cycle. Let Cj be the segment of the
cycle from the node J e Aﬁ;,‘ C to the next labeled node (j+l1 if
j<k and 1 if j = k). Let v be a node in Ay but not on C.
Menger's Theorem implies, by adding an artificial node adjacent
to the nodes in C, that there exists two separate paths in G\t from
v to the artificial node each intersecting C at unique distinct nodes
u and w respectively. If u and w lie on a common segment CJ,
then the cycle C can be immediately extended to contain v completing the
induction. Thus it remains to show that all separate paths from v
to C must intersect C on a common segment. Two cases will be
congidered, viz., k=2 and k > 2.

If k = 2, then the subgraph (not containing t) in Figure 12 is

obtained, where we denote v and the nodes in .Atr\c by solid nodes.

17
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Since d Z.h, there exists another node in A say Xx. Also since

t %’
G\t is connected, there is a path P from x to the subgraph in
Figure 12, If P first meets the subgraph in Figure 12 at a nonsolid
node, then by contracting along that path, appending node t, and
possibly deleting a few arcs, we obtain Et’ which is a contradiction.
Thus using Menger's Theorem as above, we obtain two separate paths from
x to distinct solid nodes in Figure 12. The resultant subgraph is
shown in Figure 13 taking into account obvious symmetries. A cycle
with at least three solid nodes is easily observed in Figure 13.

Consider now the case k > 3. Then u and w divide the cycle
C 1into two segments with each containing at least one solid node that
is not an endnode thereof, as illustrated in Figure 1k.

On appending t, deleting certain edges, and contracting the
subgraph of Figure 14 to that of Figure 15, we obtain E, which is
impossible. Therefore all separate paths from v to C must intersect
C on a common segment. Q.E.D.

18
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Theorem 3.7. (Characterization of t-Quasiplanar Graphs)
A graph is t-quasiplanar if and only if it contains no subgraph

that has a t-avoiding contraction that is Kt or Et'

Proof.
Suppose G 1is te-quasiplanar. Then from Lemmas 3.1 and 3.4, G

cannot contain a subgraph with a t-avoiding contraction being K, or

t
Et because these graphs are not t-quasiplanar.
Conversely, assume G contains no subgraph with a t-avoiding

contraction that is Ki or E, where t is a node in G. If d, <,

t t
then G is trivially t-quasiplanar. Thus suppose dt > 4. By Lemmas
3.3 and 3.5 we do not lose any generality if we assume G\t is biconnected,
since otherwise we consider the graphs in a t-decomposition, each of
which satisfies the desired condition if and only if G does. Using
Lemma 3.6, there exists a cycle containing all the nodes adjacent to t.
Now label At in either of the cyclic orders. We show that this labeling
is consistent. If two staggered paths do not intersect, then Kt is
a t-avoiding contraction of the subgraph consisting of the cycle, the
staggered paths, and t as illustrated in Figure 16. This is a con-

tradiction and establishes that G 1is t-quasiplanar as desired. Q.E.D.

The cycle containing A, can be constructed in polynomial time

t
by using the method indicated in the proof of Lemma 3.6. The above
proof indicates that to determine t-quasiplanarity it remains to show
that there are no nonintersecting staggered paths. As we shall see,

this problem is closely related to the following problem.

20
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contracts to

Figure 16.

Disjoint Path Problem: Given a graph G and two pairs of nodes (h,j),

(i,k), does there exist a pair of disjoint paths in G having the

given pairs of nodes as their respective endpoints?

Corollary 3.8.

The problem of determining whether or not a graph is t-quasiplanar
can be solved in polynomial time if and only if the disjoint-path problem

cane.

From the above, the t-quasiplanar problem has been transformed to
the disjoint path problem. Conversely, given two pairs of nodes (h,J)
and (i,k) in a graph G we construct a new graph H as follows.
Add a new node t adjacent to h, i, j, and k and also add (if

necersary) the edges (h,i), (i,j), (j,k), and (k,h). See Figure 17.
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Then there exists disjoint paths from h to j and from i to k

if and only if H is not t-quasiplanar. Q.E.D.

()

Figure 17.

Unfortunately, the complexity of the disjoint path problem is, I
understand from Professor Even,an unsolved problem and has been an
open question for the last few years. Some related results have been
presented by Knuth (see Karp [3 ]) and Even, Itai, and Shamin [2 ].

Another immediate consequence of Theorem 3.7 is the following

result.

Theorem 3.9. (Characterization of Quasiplanar Graphs)
A graph is quasiplanar if and only if for all nodes t there is

no subgraph that has a t-avoiding contraction which is Kt or Et'

Associated with each directed graph is a unique undirected graph
obtained by considering the ordered pairs as unordered. Call a directed
graph planar (resp., quasiplanar) if the associated undirected graph is
planar (resp., Quasiplanar). In the next section a property of planar
graphs will be defined in such a manner as to depend on the direction

of the arcs. !




L,  Pseudoplanar Graphs.

et G be a directed graph, M a set of nodes in G, and s a

node in G. Recall that an arborescence from s to M is an arbores-

cence with scurce s and endnodes in M. Also recall that a maximal
arborescence T from s to M 1is an arborescence from s to M such
that a maximum number of nodes of M are in T.

If there is an arborescence T from a node s to a set M, then
there always exists a maximal arborescence from s to M. This is
easily verified from the definitions since a node t in M 1is eccessible
from s if and only if there is a chain C from s to t. This chain
can be used to enlarge an arborescence T, augmenting it by the sub-
chain of C which begins with a node q in T, ends with t, and
contains no other node in T. Successively enlarging the arborescence
will in at most p steps obtain a maximal arborescence where p is
the number of nodes in M not in T.

Let s and t be nodes in a (directed) graph. Call the graph

st=-pseudoplanar if the set A of nodes adjacent to t can be labeled

t
1, 2, ... , m so as to have the consecutive-endnodes property. Note

that the labeling depends only on s and t. Call a graph pseudoplanar
if for each ordered pair of nodes s, t the graph is st-pseudoplanar.

A graph in which dt < 3 is trivially st-pseudoplanar for all s.
Thus, the graph in Figure 18 is pseudoplanar but not quasiplanar.

Let the arc (t,s) be called the complement of the arc (s,t)
and a graph be called bidirected if the complement of each arc in the
graph is also in the graph. The following theorem implies that quasi-

planarity and pseudoplanarity are equivalent in bidirected graphs.
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Figure 18. Pseudoplanar, Not Quasiplanar

Theorem 4.1.
A t-quasiplanar graph with every node in At accessible from s
is st-pseudoplanar. Conversely, a graph that is bidirected and st-

pseudoplanar for each s is t=-quasiplanar.

Let G be t-quasiplanar and label the nodes adjacent to t con=-
sistently. Suppose the labeling is not compatible for some s. Then
there exists a maximal arborescence F from s +to At not containing
t and a node u in F such that the endnode descendents of u are
not consecutively labeled. Hence there exist nodes in At labeled
h< i< j<k such that (without loss of generality) i and k are
endnode descendents of u while h and J are not. Let P and Q

be the unique paths in F between h,j and i,k respectively. The

path P is the union of two chains, Py from a node s' (accessible

from s) to h and P, from s' to Jj. Similarly, Q is the union of

chains, A from a node u' (accessible from u) to i and Q, from

u' to k (see Figure 19). We will show that P and Q are disjoint

2k
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which contradicts the consistent labeling assumption. Thus the labeling
is compatible and G 1is st-pseudoplanar.

Suppose P and Q intersect at g say. Then Pm and Qn meet
at g for some 1<m, n<2. By symmetry fix n =1 and consider
m=1, 2. If m=1, there is a chain from u to g to h, con-
tradicting the inaccessibility of h from wu. Similarly, if m = 2,

there is a chain from u to g to j, contradicting the inaccessibility

of j from u. We conclude that PMQ = @§ as claimed.

Figure 19.

Conversely, let t be a (fixed) node in G and assume G is
bidirected and st-pseudoplanar for each node s in G. If G is not
t-~quasiplanar, then there is a component H of G\t such that the
induced subgraph G(H\ (t)}) is also not t-quasiplanar. For each
labeling of At’ there exist two disjoint staggered paths P, and

1
P2 in H with endnodes h,j and i,k respectively, h< i< k<]

25
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(see Figure 20). Since H 1is connected, there is a path Q between

P, and P,. Let s = Pl(\Q and u z P,MQ and direct arcs away

4 from s in these paths to obtain an arborescence from s to the end-

] nodes h,j and i,k of Pl and PE respectively. Extend this arbores=-
cence to a maximal arborescence T from s +to At not containing t.

s Note that by construction, h and j are not accessible from u in

T. Otherwise a cycle would be formed in T which is impossible.

Thus u does not have consecutively labeled endnode descendents for

this labeling. FEach labeling of G imposes a labeling on H and so

no labeling is compatible. Thus G is not st-pseudoplanar which con-

tradicts the hypothesis. We conclude that G is t-quasiplanar. Q.E.D.

# Figure 20.

An immediate consequence of the above result is the following.

Theorem 4.2.
é A quasiplanar graph is pseudoplanar. Conversely, a bidirected

pseudoplanar graph is quasiplanar.

26
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Figure 21 summarizes the relationship among planar, quasiplanar,

and pseudoplanar graphs.

Pseudoplanar Quasiplanar

e

Figgre 21.

Remark. The computational complexity of determining whether or not
a graph is pseudoplanar is at least as great as that for the quasiplanarity
problem since the latter can be transformed (by considering the graph

as bidirected) to the present problem.

In conclusion we note that the above relationships imply that
the intersecting-staggered-paths property and the consecutive-endnodes
property do indeed hold for planar graphs. It is st-pseudoplanar

networks for which a polynomial-running-time algorithm is developed
in [l]o
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