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ABSTRACT

Two new generalizations of planar graphs, called quasip].anar and

pseudoplanar graphs, are introduced and discussed. A graph Is called

quasiplanar if for each node t , the set of nodes incident to t can

be labeled 1, ... , m so that for each 1 < h < i < j  < k < m, each

pair of paths not containing t and having respective endnodes h ,j

and i,k share a common node . A (directed) graph is called pseudoplanar

if for each pair of nodes s,t, the set of nodes adj acent to t can

be labeled 1, ... , m so that for each maximal arborescence not con-

taining t and having root s and each endnode adjacent to t , the

endnode descendants of each node in the arborescence are either j ,  ... , k

or k, ... , m, 1, ... , j for some 1 < j  < k  < m. Planar graphs are

quasiplanar and they in turn are pseud.oplanar. Conversely, a pseudo-

planar graph that contains with each arc its reverse arc is quasiplanar.

And a quasiplanar graph that excludes subgraphs that are refinements

of the complete bipartite graph with three nodes in both sets

Is planar. Kuratowski (1930) characterized planar graphs as those that

exclude subgraphs that are refinements of either the ccmplete graph

on five nodes or K~~. An analogous characterization of quasiplanar

graphs is given In this paper in which the excluded subgraphs differ

from Kuratowski’s only by adding an edge in K~~. In a companion paper

with Veinott , an algorithm given for finding minimum-concave-cost flows

in single-source networks is shown to run in polynomial time when the

associated graph is pseudoplanar.

___________  TT~~~~~’~-~ - ____



Q.UABIPLANP~R AND PSEUDOPLANAR GRAPHS

1. Introduction.

The purpose of this paper is to introduce and discuss quasiplanar

and pseudoplanar graphs, two new generalizations of planar graphs.

To do this we define t-quasiplanar and st-pseudoplanar graphs where s

and t are nodes in the graph. These generalizations are obtained by

abstracting two properties of planar graphs, viz , the “Intersecting-

staggered-paths property ” and the “consecutive-endnodes property .”

These properties are introduced in Section 2.

The motivation for studying these graphs comes from a companion

paper with Veinott [i]. There we give an algorithm for finding minimum-

concave-cost flows in single-source networks and show It runs in polynomial

time when the associated graph is st-pseudoplanar where s is the

source , t is the sink, and the flows in all arcs adjacent to the

sink are fixed.

The main result of this paper, given in Section 3, is a characteri-

zation of quasiplanar graphs which is analogous to the Kuratowski

Theorem for planar graphs. Kuratowski characterized planar graphs by

excluding subgraphs that are refinements of either the complete graph

on five nodes or the complete bipartite graph with three nodes in both

sets. The subgraphs excluded from quasiplanar graphs differ from the

Kuratowski graphs only by adding an edge in the bipartite graph.

In Section ~4 it is shown that a quasiplanar graph is pseudoplanar ,

and that the converse holds in bidirected graphs. Hence the two

extensions coincide in bidirected graphs.
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2. Preliminaries.

The following notation and definitions will be used throughout this

paper. A (directed) graph G consists of a nonempty finite set GN
of nodes and a set GA of ordered pairs of nodes called arcs. Call

H a subgraph of G if HN CGN and HA CGA. Define the subgraph

G (H) of G induced by H as the maximal subgraph of’ G using only

the nodes in H. UsuaJ~ y the subscripts N and A are clear from

context and will be suppressed. We say that a node u is adjacent to

(resp., adjacent from) a node v if (u,v) (resp. , (v,u)) is an arc

in G. Let a ~~~~ (resp. , chain) be an alternating sequence of distinct

nodes and arcs u
0, 

a
1, 

u
1, ... , a~, u beginning and ending with

nodes u
0 

and u , called endnodes, such that ak €

(uk,uk.l)) (resp. , ak = (uk_l,uk)). A cycle (resp., circuit) is a

path (resp., chain) with an additional arc a
0 

€ [(u
0,
u ),(u~,u0

))

(resp. , a
0 

= (u~,u0
)). We interpret a chain as a “directed” path and

a circuit as a “directed” cycle. A node u is said to be accessible

from node v if there is a chain from u to v (i.e., u
0 

= u ,

u = v in definition).
n

An arborescence is a graph containing no cycles and all nodes are

accessible from a distinguished node called the source. Call the nodes

accessible from a node in an arborescence descendants of that node.

An endnode in an arborescence is a node without descendants. Given

a node s and a set M of nodes in a graph G, define an arborescence

from s to M as a subgraph of G that is an arborescence with source

s and with endnodes in M. A maximal arborescence from a to M is an

arborescence T from a to M with a maximal number of nodes from M

in T.
2
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Let t be a nods: in a graph G. Denote by At the set of’ nodes

in G adjacent to t. Let the ~~~ree dt of a node t be the number

of nodes in At . Call a graph planar if it can be embedded In the plane

so tha t paths intersect only at nodes. After embedding, choose an

arbitrary node t and label by 1, 2, ... , m the nodes in At
cyclica lly, say clockwise, around t . It will be shown in the sequel

that the following two properties are satisfied with such a labeling.

Consider s and t as fixed nodes in an arbitrary graph G.

Intersecting-Staggered-I~ ths Property.

There exists a labeling 1, 2, ... , m, called consistent, of

At such that for each ordered quadruple h < i < j  < k and for each

pair of paths, called staggered, not containing t with endnodes

h, j  and I, k, respectively, the paths share a coninon node.

The following is an example of staggered paths where the solid

node is the common node and h = 2, I = 3, j = ~~, and. k = 6.

-t
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6

5 t 2

3

Figure 1.

Consecutive-Endnodes Property.

There exists a labeling 1, 2, ... , m, called compatible, of

At 
such that for each maximal arborescence H from 8 to At 

not

containing t and each node I in H the endnode descendants of i

are consecutively labeled, i.e., for some 1 < j < k < m, the endnodes

are either j, j+l, ... , Ic or Ic, ... , m, 1, 2, ... , j. These

two properties will be used to define quasiplanar and pseudoplanar graphs

in the next two sections.

ii.

—~~~~~~~~ 
- - — -~~~~~ - ~~~~~~~~~~~~ _~~~~~~~ TJ
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1 2

6 t 3

1 5 ~1.

Figure 2.

3. Quasiplanar Graphs.

The concept of planarity does not depend on the direction of the

arcs and is usually defined for undirected graphs. In order to simplify

the presentation of quasiplanarity, assume throughout this section that

the graphs are undirected, i.e., consider the ordered pairs of nodes

(often called edges) as unordered. ~ ctend other concepts in the natural

way, for example, a path is an alternating sequence of distinct nodes

and edges u
0, 

a1, u1, ... , a , u beginning and ending with nodes

such that a
k = (uk l ,uk) for Ic = 1, ... , n. Let H and G be

(undirected) graphs and call G a refinement of H If G can be

obtained from H by successively replacing arcs by paths. Denote by

Isi the cardinality of a set S.

5
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Two paths are said to be disjoint if they have no nodes (and thus

no arcs) in common. If two paths have at most their endnodes in common,

call the paths separate. Let t be a node in a graph G. Call C

t-quasiplanar if the nodes in At 
have the intersecting-staggered-

paths property. Note that a common node shared by the two paths may

be one of the labeled endnodes, i.e., the path from, say, h to j

may have I as one of its nodes. Bit whenever we refer to two staggered

paths , it is assujneã tha t the four endnodes involved are listinct.

O G.

~~~~ 
~~~~~\

\

Ic ’

/

*Figure 3. Staggered Paths

If t is not in the graph G, then let G be t-quasiplanar by

definition. Call G quasiplanar if’ it is t-quasiplanar for each node

t in G. For notational convenience, let denote the complete

bipartite graph, I.e., a graph consisting of two sets of nodes S1
4.-

* In the figures dashed lines represent paths, solid lines represent 3
arcs, and circles represent nodes.

_ _  . .



and S2, where Is~! = m and 1s 2 1 = n with edges joining each node

in 
~l 

to each node in S2. Also denote by K the complete graph

consisting of n nodes with a maximum number of edges.

Note that if the degree of node t is three or less , then the

graph Is trivially t-quasiplanar since there do not exist two staggered

paths having endnodes in At . This implies that 1(
33 is quasiplanar.

Figure .~~~ Quasiplanar Nonpianar Graph

Lemma 3.1.

A subgraph of a quasiplana r (resp. , t-quasiplanar ) graph is quasi-

planar (resp., t-q.uasiplanar).

Proof.

Let t be a node, G a t-quasiplanar graph, and H be a subgraph

of G. If t / H, then H is t—quasiplanar by definition. If t € H,

then t € G, ~~~~~~~~ 
and the consistent ordering of AGt imposes

a consistent ordering of AHt.

— The ~iext result Indicates the relationship between quasiplanar

graphs and planar graphs, justifying the use of the term “quasiplanar.”

1



Theorem 3.2.

A planar graph is quasiplanar . Conversely a qua siplanar graph

containing no subgraph that is a refinement of 1(33 is planar.

Proof.

Let G be a planar graph embedded in the plane so that paths

intersect only at nodes, i.e., arcs meet only at endpoints. For each

node t in G, label the adjacent set A
t 

in a cyclic manner, say

clockwise , around node t corresponding to the edges that emanate from

node t. Given any labeled quadruple h < i < j  < Ic in At and any

pair of staggered paths (P,Q) with these endnodes. Then P Ott )

together with edges (h,t) and (j,t) form a cycle which divides the

plane into two regions, an inslue and an outside. But by the cyclic

ordering, nodes i and. Ic Lie in different regions; hence by planarity ,

P and Q share a common node (see Figure 5) .

P
~~- / — —

Figure 5. Planar Staggered Paths

The converse is proved by contraposition. Let G be a quasiplanar

graph containing no subgraph tha t Is a refinement of K33. Suppose j
G is not planar. Then by Kuratowaki’ s Theorem [I i. 1, there must be

8
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a subgraph H of G that is a refinement of K
5
. Let t be a node

in H. The adjacent set of t consists of four nodes for which each

labeling results in nonintersecting staggered paths. Thus H is not

t-quasiplanar and by Lemma ~.l neither is C. c~.E .D.

Thus K33 is an example of a graph that is quasipla nar but, by

Kuratowski ’s Theorem, not planar. On the other hand, K
5 

is neither

quasiplanar nor planar.

The main result of this section is Theorem 3.7. It is an ana log

of the Kuratowski Theorem in that it characterizes q.uasiplanar gra phs

by excluding two particular graphs. Several definitions and lemmas

will now be presented which lead to the main result.

If G is a graph and S is a subset of the nodes , let G\S

denote the subgraph of G induced by the nodes not in S. For notat:ional

convenience let G\t denote G\(t) . A graph is connected if there is

a path between each pair of nodes. A graph G is biconnected if

G\t is connected for each node t ~~ G. A component of a graph is

a maximal connected subgraph. The components of a graph are unique.

Let G be a graph and t be a node such that G\t is not

biconnected. A pair of graphs (B1,B2) is called a t-bisection of G

if it is obtained in the following manner. Let v be a node other

than t such that G\(t,v) has at least two components. The node

v exists because G\t is not biconnected. Partition these components

into two nonempty collections of components and let S1 and S2 denote

respectively the sets of nodes in each collection. Consider the sub-

graphs of G induced by SkU(t,
v) for Ic = 1, 2. If (t,v) is not

in C but there are nodes in both S
1 

and S2 which are adjacent to

9



t in G, then add edge (t,v) to the induced subgraphs to obtain

B1 and B2 respectively. Otherwise B1 and B2 are just the induced

subgraphs. The following properties are immediate: (i) The number

of nodes in B
k 

is strictly less than the number of nodes in G for

k = 1, 2; and (2) If G\t is connected, then so is Bk\t for k =

1, 2. See Figure 6.

Figure 6. t—Bisection

A t-decomposition of a graph G is a set of graphs, each member

H of which contains t and has the property that H\t is biconnected,

that is constructed In the following manner. If C
1, C2

, ... C
q

are the components of G\t, then let H
k 

be the subgraph of G induced

by the nodes in Ck together with the node t for 1 < Ic < q. Let

~~irf ~ 
(H
k
)
~~l

. Repeatedly replace each graph H in for which H\t

is not biconnected by the two graphs in a t-bisection of H. By property

(1) of t—blsectlons, the number of such replacements is bounded by the

number of nodes in G. The resultant set is the t-decoinposition

of G.

-- - 

- 

1o

__ 
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The following lemma will be used in the proof of’ Theorem 3.7 to

justify considering only those graphs C where G\t is biconnected.

Lemma 3.3.

A graph is t-quasiplanar if and only if’ all the graphs in a t-

decomposition thereof are t—quasiplanar .

Proof.

Let t be a node in a graph C and be the set of components

C in a\t . Clearly H ~ G(C Ut) is t-quasiplanar for each C €

if and only If G is t-quasiplanar. Since t—decompositions are formed

by repeated t-bisections, it is sufficient to show that each graph

B1 
and B2 obtained in a t—bisection of a graph H such that H\t

is not biconnected. is t-quasiplanar if and only if that is so of’ H.

If a Bk is not t-quasiplanar, then there exists nonintersecting

staggered paths in that B.~ for each labeling of At 
(~ B.c. But these

paths also occur in H, so H is not t—quasip].anar.

Conversely, assume both B
1 

and B2 are t-quasiplanar. If

(t,v) is not in ~~ (and thus B2), 
then only one graph, say B1,

contains the nodes which are in At
. Using the same labeling as for

B1 
implies H is t-quasip].anar. If (t ,v) is in B1 (and thus B

2
) ,

then choose consistent labelings for B1 and B2 respectively. (Refer

to Figure 7.) Since the labelings are cyclic, we may arrange the labels

so that v receives the greatest label, say q, in B1. Add q—1.

to the labels in B2 
after the labels therein have been arranged so

v has the label one. This results in a consistent labeling for H.

To prove this, suppose there is a pair (P1,P2 ) of disjoint paths in

H. Four cases must be considered. If P1 
and P2 are contained in

11



the same subgraph, then they are not staggered since the labeling is

consistent in that subgraph. If they are in different subgraphs, then

the ordering would not allow them to be staggered either. They cannot

both be in both subgraphs since they would intersect at the node v.

Finally, suppose one path, say P
1
, intersects both subgraphs and the

other is in only one subgraph, say B1. Since v Is the only node

in H\t common to both subgraphs, P1 contains v. Let P be the

maximal subpath of P
1 

contained. in B1
. The node v is an endnode

of P with label q. But q was chosen to be the greatest label in

B1. Hence if P1 
and P2 are staggered in H, P and P2 are also

staggered paths in B1 
and so share a common node which is impossible.

We conc]nde that P1 and P2 are not staggered, and thus the labeling

is consistent. Q.E.D.
H

P/ ••
~“ .. .g.\ /

/ P

(
~~N © Y  F~

®
~ ~~~~

B2

Figure 7.

By a simple contraction of a graph G we mean that two adjacent

nodes, say s and u, are replaced by a single node w which is

i2

~~~
- ~~~ ‘- 
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adjaceiLt to those nodes adjacent to s or u. When this is so call

s and u the parents of’ w. Call the graph H a contraction of G

if it can be obtained from C by a sequence of simple contractions,

and call a node s in C an ancestor of a node w in H If there

is a sequence (s,G) = (w1,H1), ... ~ (w~,H~) = (w,H) such tha t

is a simple contraction of Hk_l, and Wk l  is a parent of W
k 

for

2 < Ic < q. In particular, a node is an ancestor of itself. Call a

‘ontraction H of C t-avoiding if t is the only ancestor of itself’.

Let the inverse operation of a simple contraction (resp., contraction)

be called a simple expansion (resp , expansion).

Lemma 3.11.

A t-avoiding contraction of a t-quasiplanar graph is t-quasiplanar.

Proof.

It suffices to prove the result for a t—avoiding simple contraction

C of a t-quasiplanar graph C’. Let s, u be the nodes in G’ which

are replaced by w in C. If P is a path in C, denote by P’ its

unique extension in C’ formed by replacing w , if It appears in P,

by s, u and the edge (s,u). Since G’ is t-quasiplanar, A.~ has

a consistent labeling. This induces a natural labeling on At, where

if w € At, then either a or u is in A.~ and w receives the

label of one such node. Let P and Q be staggered paths in G with

that labeling. Then P’ and Q’ are staggered paths in C’, and

so , because G ’ is t-quasiplanar , share a common node p. Thus , P

and Q must share a common node , viz ., one for which p is a parent,

completing the proof.

13
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Figure 8. Extending Paths in Extensions

The following graph Illustrates the need for the contraction in

Lemma 3.14. to be t-avoiding.

©cont racts ~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 9. A Quasiplanar Graph

With a Nonquasiplanar Contraction

Note that the graph C in Figure 9 has only- nodes of degree three and

so is quasiplanar. Yet if we contract each pair of nodes as indicated,

we obtain the nonquasiplanar graph 1C~~.

Given a node t , denote by K~ the complete gra ph with five

nodes , one being the node t. Denote by Et the graph K33 augmented

114.

7- — 
—~~~~~~

- 
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with an additional edge and t being one of the two nodes having degree

four. (See Figurc LU . )

Figure 10. Kt and Et

Lemma 3.5.

If G contains no subgra ph with a t-avoiding contractIon that is

Kt or Et ,  then neither does each graph in a t-deccznposition of G.

Proof’.

Clearly if G contains no subgraph with a t-avoiding contraction

that is K
t 

or E
t~ 

then neither does a component H of G\t. It

suff ices to show that if H contains no such subgraphs and has the

property that H\t is connected but not biconnected , then the graphs

in the t—bisection (B1,B2
) of If also contain no such subgraphs.

Since the only arc which might be added is (t,v), the result follows

immediately if (t ,v) is in H. Assum e (t ,v) is not in H and

refer to Figure 11. Suppose that there is a subgraph J in say B1

with a t-avoiding contraction that is Kt or Et. Then J must contain

(t,v) otherwise J is contained in If which is impossible. We will

15
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show that there is a path from t to v in B2 not using arc (t ,v)

which may replace (t ,v) in J obtaining a new subgr aph in H tha t

has a t-avoiding contraction that is Kt or E
t. This contradiction

implies tha t there is no such subset J in the gra phs of the t—bisection .

Since (t ,v) was added , there is a node u (other than t) in

B2 that is adjacent to t. Since H\t Is assumed to be connected ,

there is a path P from v to u in H\t . Since t and v are the

only common nodes of B1 and B2, P must lie in B2 and have only

node v in common with B1. Thus the path P can be extended in

B2 by adding node t and arc (t ,u),  obtaining the desired path and

completing the proof.

Figure ll.

Neither Kt nor Et are t—quasiplanar. This is easily verified

by deleting the node t and noting that there exists a path between

each pair of nodes in At that is disjoint from another path between

the other two nodes in A t . Thus each labeling of the nodes in At

results in a pair of disjoint staggered paths. Furthermore , neither

16 
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Kt nor Et is a contraction of the other. The next lemma leads to

the ma in result.

Lemma 5.6.

It t is a node in a graph G with dt > 11., G\t biconnected.,

and E9. not a t-avoiding contraction of any subgraph of C, then

there is a cycle in G\t containing all the nodes adjacent to t in C.

Proof.

Since G\t is bicorinected, Menger’s Theorem [ 5 J asserts that

there exists a cycle in G\t containing a given pair of nodes. Thus,

if d
t 
< 2, the result follows. Assume by induction that there is a

cycle C containing Ic> 2 nodes in At. If k = dt, we are done.

Otherwise, orient the cycle and label the nodes in At fl C 1, 2, ... , k

in the order traversed In the cycle. Let C~ be the segment of the

cycle from the node j € A.~ fl C to the next labeled node (j÷i if

j < k and 1 if j = Ic). Let v be a node in At but not on C.

Meager’s Theorem implies, by adding an artifIcial node adjacent

to the nodes in C, that there exists two separate paths in G\t from

v to the artificial node each intersecting C at unique distinct nodes

u and w respectively. If u and w lie on a common segment C,~,

then the cycle C can be Immediately extended to contain v completing the

induction. Thus It remains to show that all separate paths from v

to C must intersect C on a common segment. Two cases will be

considered , viz., k = 2 and k > 2.

If Ic = 2, then the subgra ph (not containing t) in Figure 12 is

obtained , where we denote v and the nodes in At f lC  by solid nodes.

17
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/

Figure 12.

Since dt > 14, there exists another node in At , say x. Also since

G\t is connected , there is a path P from x to the subgraph in

Figure 12. If’ P first meets the subgraph In Figure 12 at a nonsolld

node, then by contracting a long that path , a ppending node t , and

possibly deleting a few arcs, we obtain Et, which is a contradiction.

Thus using Menger’s Theorem as above, we obtain two separate paths from

x to distinct solid nodes in Figure 12. The resultant subgraph is

shown in Figure 13 taking into account obvious symmetries. A cycle

with at least three solid nodes is easily observed in Figure 13.

Consider now the case k > 3. Then u and w divide the cycle

C into two segments with each containing at least one solid node that

is not an endnode thereof , as illustrated in Figure 1~4.

On appending t , de leting certain edges, and contracting the

subgraph of Figure 114 to that of Figure 15, we obtain Et which is

impossible . Therefore all separate paths from v to C must intersect
...

C on a common segment . Q .E. D.

18 - 1
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Theorem 3.7. (Characterization of t-Quasiplanar Graphs)

A graph is t-quasipla nar if and only if It contains no subgraph

that has a t-avoiding contraction that is K
t or E

t
.

Proof.

Suppose G is t-quasiplanar. Then from Lemma s 3.1 and 3.14, C

cannot contain a subgraph with a t-avoiding contraction being Kt or

Et because these graphs are not t-quasiplanar.

Conversely, assume G contains no subgraph with a t-avoiding

contraction that Is K
t 

or Et where t is a node in G. If dt < ~~,

then C is trivially t-quasiplanar. Thus suppose d
t > 14 . By Lemmas

3.3 and 3.5 we do not lose any generality if we assume G\t is biconnected,

since otherwise we consider the graphs In a t-decomposition, each of’

which satisfies the desired condition if and only if C does. Using

Lemma 3.6, there exists a cycle containing all the nodes adjacent to t.

Now label At in either of the cyclic orders . We show that this labeling

is consistent. If two staggered paths do not intersect, then K
t is

a t-avoiding contraction of the subgraph consisting of the cycle, the

staggered paths , and t as illustrated in Figure 16. This is a con-

tradiction and establishes that C is t-quasiplanar as desired. Q.E.D.

The cycle containing At can be constructed in polynomial time

by using the method indicated in the proof’ of Lemma 3.6. The above

proof indicates tha t to determine t-quasiplanarity it remains to show

that there are no nonintersecting staggered paths. As we shall see,

this problem is closely related to the following problem.
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co1racts t~~~~~~~~~~~~~~~~~~~~~~~~

Figure 16.

Disjoint Path Problem: Given a graph C and two pairs of nodes (h,j),

(i,ic), does there exist a pair of disjoint paths in G having the

given pairs of node s as their respective endpoints?

Corollary 3.8.

The problem of determining whether or not a graph is t-q.uasiplanar

can be solved in polynomial time if’ and only if the disjoint-path problem

can.

Proof.

From the above, the t-quasiplanar problem has been transformed to

the disjoint path problem. Conversely, given two pairs of nodes (h , j)

and (i ,k) in a graph G we construct a new graph H as follows .

Add a new node t adjacent to h, I, j, and k and also add (If

nece~~;ary ) the edres (h,i), (i,.~), (j,k), and (k,h). See Figure 17.

_________________ - 
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Then there exists disjoint paths from h to j and from i to k

if and only if H is not t-quasiplanar. Q.E.D.

Figure 17.

Unf ortunatel.y, the complexity of the disjoint path problem is , I

understand from Professor Even,an unsolved problem and has been an

open question for the last few years. Some related results have been

presented by Knuth (see Karp [3 ]) and Even , Itai , and Shamin [ 2  ~.

Another immediate consequence of Theorem 3.7 is the following

result.

Theorem 3.9. ( Cha racterization of ~uasiplanar Gra phs )

A graph is quasiplanar if and only If for all nodes t there is

no subgraph that has a t-avoiding contraction which Is Kt or Et .

Associated with each directed graph is a unique undirected graph

obtained by considering the ordered pairs as unordered . Call a directed

graph planar (resp. , quasiplanar ) if the associated undirected graph is

planar (resp., quasiplanar). In the next section a property of planar

graphs will be defined in such a manner as to depend on the direction

— 
of the arcs.
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14. Pseudoplanar Graphs.

Let G be a directed graph , M a set of nodes in C, and s a

node in G. Recall that an arboreseence from s to M is an arbores—

cencc wi th source s and ~ndnodes in M. Also recall that a maximal

arborescence T from s to M is an arborescence from s to NI such

tha t a maximum number of’ nodes of’ M are in T.

If there is an arborescence T from a node s to a set M, then

there a lways exists a maximal arborescence from s to M. This is

easily verified. from the definitions since a node t in M is accessible

from s if and only if there is a chain C fr om s to t. This chain

can be used to enlarge an arborescence T, augmenting it by the sub-

chain of C which begins with a node q in T, ends with t, and

contains no other node in T. Successively enlarging the arborescence

will in at most p steps obtain a maximal arborescence where p is

the number of node s in M not in T.

Let s and. t be nodes in a (directed) graph . Call the graph

st-pseudoplanar if the set A
t 

of nodes adjacent to t can be labeled

1, 2, ... , m so as to have the consecutive-endnodes property. Note

that the labeling depends only on s and t. Call a graph pseudoplanar

if for each ordered pair of nodes s, t the graph Is st-pseudoplanar.

A graph in which dt 
< 3 is trivially st-pseudoplanar for all s.

Thus, the graph in Figure 18 is pseudoplanar but not quasiplanar.

Let the arc (t,s) be called the complement of the arc (s,t)

and a graph be called bidirected if the complement of’ each arc in the

graph is also in the graph. The following theorem implies that quasi-

planarity and pseudoplanarity are equivalent in bidirected graphs.
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Figure 18. Pseudop].anar, Not Quasiplanar

Theorem 14.1.

A t-quasiplanar graph with every node in A
t 

accessible from s

is st—pseudoplanar. Conversely, a graph that is bidirected and st-

pseudop].anar for each s is t-quasIplanar .

Proof.

Let C be t-quasiplanar and label the nodes adjacent to t con—

~istently. Suppose the labe1irir’~ i~
; not compatible for some s. Then

there exists a maxima l arborescence F from s to At not containing

t and a node u in F such that the endnode descendents of u are

not consecutively labeled. Hence there exist nodes in At 
labeled

h < I < j  < k such that (without loss of generality) ± and k are

endnode descendents of u while h and j are not. Let P and Q

be the unique paths in F between h,j and i,k respectively. The

path P is the union of two chains , P1 
from a node s’ (accessible

from ~) to h and p2 from a’ to j. Similarly, Q is the union of two

chains , Q~ from a node u’ (accessible from u) to I and from
— 

U’ to k (see Figure 19). We will show that P and Q are disjoint
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which contradicts the consistent labeling assumption . Thus the labeling

is compatible and G is at-pseudoplanar .

Suppose P arid Q intersect at g say. Then 
~m 

and Q meet

at g for some 1 < m, n < 2. By symmetry fix n = 1 and consider

m = 1, 2. If m = 1, there is a chain from u to g to h , con-

tradicting the inaccessibility of h from u. Similarly, if m = 2,

there is a chain from u to g to j ,  contradicting the inaccessibility

of j from u. We conclude that PC~Q = as claimed.

p
2

— _

,
-

~~~~~~~~/ P1~~\ / Q1 /

x

Q2 —

—

Figure 19.

Conversely, let t be a (fixed) node in G and assume C is

bidirected and st-pseudoplanar for each node s in C. If C is not

t-quasiplanar , then there is a component H of G\t such that the

induced subgraph G(HU(t)) is also not t-quasip].anar. For each

labeling of A
t, 

there exist two disjoint staggered paths P1 
and

P2 in H with endnodes h,j and i,k respectively, h < i < k < j

25
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(see Figure 20). Since H is connected, there is a path Q between

P
1 

and P2. Let s P
1(~

Q and u P
21’~

Q and direct arcs away

from s in these paths to obtain an arborescence from s to the end-

nodes h,j and i,k of P
1 

and P2 respectively. Extend this arbores-

cence to a maxima l arborescence T from s to A
t 

not containing t.

Note that by construction, h and j  are not accessible from u in

T. Otherwise a cycle would be formed in T which is impossible.

Thus u does not have consecutively labeled eadnode descendents for

this labeling . Ea ch labeling of G imposes a labeling on H and so

no labeling is compatible. Thus C is not st-pseudoplanar which con-

tradicts the hypothesis. We conclude that G is t-quasiplanar. Q.E.D.

FIgure 20.

An immediate consequence of the above result is the following.

Theorem 11.2.

A quasiplanar graph is pseudoplanar. Conversely, a bidirected
4— -

pseudoplanar graph is quasiplanar.
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Figure 21 summarizes the relationship among planar, quasiplanar,

and pseudoplanar graphs .

Figure 21.

Remark. The compi tational complexity of determining whether or not

a graph is pseudoplanar is at least as great as that for the quasiplanarity

problem since the latter can be transformed (by considering the graph

as bidlrected) to the present problem.

In conclusion we note that the above relationships imply tha t

the intersecting-staggered-paths property and the consecutive—endnodes

property do indeed hold for planar graphs. It is st-pseud.oplanar

networks for which a polynomial-running-time algorithm is developed

in 11].
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