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How Tolls Redistribute Customer Benefits in an M/M/1 Queuing System
Abstract

In a FIFO M/M/1 queuing system an arriving customer chooses to enter the
system if his reward for completing service is not less than a constant entrance
tol1l plus expected waiting charge (accumulated at a constant rate). Customers
are partitioned into K classes according to their rewards. The long run average
benefit (reward minus waiting charge) per arriving customer is computed for
each class.

Although a constant toll is fixed for all entering customers regardless
of class or state of the system, the value of the toll can profoundly impact
each classes' long run average benefit per arriving customer. When the value
of the toll is increased, the change in benefit per arriving customer is
investigated for each customer class. These changes are a monotone increasing
function of customer reward. Thus a toll increase is most valuable for those
customers who obtain the highest reward from service completion. Results
obtained assume that (1) all rewards and tolls can be expressed as an integer
multiple of a customer's expected cost of waiting through his own service, and
(2) tolls are not subtracted in computing a customer's benefit from entering

the system.

Note to the reader:

The layout of this paper reflects the fact that all but its appendix has
been submitted for publication. Thus reference [2] where it appears in the
text should direct the interested reader to the appendix. The appendix is
provided to tackle issues that are peripheral to the main thrust of the paper
and the appendix is not intended for publication.
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How Tolls Redistribute Customer Benefits in an M/M/1 Queuing System

Following the pioneering effort of Naor [6], many authors (e.g. [1], [3], [4]
[5], [7], [8]) have compared a queuing system operated so that customers are
free to act in their own interest (individual optimizaticn) with the same system
managed to maximize some social benefit (social optimization). Regardless of
the specific assumptions, these authors unanimously conclude that a customer
acting in his own interest will choose to enter the system on anyoccasion when
he would enter under social control. Typically, a self-interested customer
would enter the system when it is more congested than under social optimization
because he fails to account for the inconvenience that he would cause to future
arrivals. Anatural suggestion is to attempt to achieve social optimization through
imposing a set of tolls whose effect is to encourage the self-interested customer
to act in a socially optimal way. |

Our purpose here is to investigate how benefits to individuals are redistributed
through charging atoll T>0 (independent of the number of customers present) to any
customer who chooses to enter an M/M/1 system. Customers are partitioned into K
classes according to the reward that they receive for completing service;

customers of class k arrive at the facility at rate % and receive a reward Rk

if they choose to enter the system. We assume R1>R2>--->RK. Here we consider
long run average measures of system performance; without discounting
it does not matter when a customer's reward is paid. The server
provides independent identically distributed services at rate u on a first-come
first-served basis and any customer pays a holding charge h per unit time while

in the system. A customer arriving at the facility is informed of how many

others are present and will choose to enter if and only if his toll plus exp~-ted

holding costs does not exceed his reward. (We could obtain the results assuming

)




that a customer will enter only if his expected holding cost plus tol}l is
strictly less than his reward.) Without loss of generality we assume that time
and money are measured in units so that u=1 and h=1.
We also make the restrictive assumption that T and all Rk's are integers.

Any reward or toll must exactly equal the expected holding cost incurred during
the complete service times of an integer number of customers. Otherwise,
imposing a positive toll could further restrict one class from entering the
system without restricting another. For example, with R]=3.1, R2=2.9 and T=0 vs.
T=0.2, customers of type 1 enter with 2 or fewer, 1 or fewer present respectively;
2-customers enter with 0 or 1 present in either case.

Tncreasing T by 1 decreases by 1 for each k the maximum number of customers
present under which k-customers will enter. This degree of "fairness" is

necessary for our main result; a counterexample for non-integer T is included

in [2].
With a fixed integer to11 T we have a birth-death process with stationary

distribution {"i’i=°’]’2""} easily computed. For class k the long run average

benefit per unit time is defined as
Rk-1-T
Bk(T) =0, igo ms (R =1-1)

and the long run average benefit per arrival as

R -1-T
A(T) = T = (R -i-1)
k jug V¥

Assuming ok>0, Ak(T) = Bk(T)/°k' Even if ak-o. Ak(T) is well-defined. Both

Bk(T) and Ak(T) are defined to be 0 if Rk-l-T is negative.
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Qur main result is that for T]>T030, Ak(T]) - Ak(To) is decreasing in k

over all classes k whose customers opt for entering an empty system with toll

Ty. Thus increasing (or imposing) the toll causes an increase in benefit to a

typical 1-customer that exceeds the increase in benefit to a 2-customer, etc.
Increasing the toll increases the attractiveness of the system more fgr customers

who more highly value service. Inparticular, if T is chosen to maximize ZBk(T) and T>0
k=1

then A](T)>A](0) whereas some classes may be denied admission altogether and
among those classes k>2 who still choose to enter an empty system,

A(T)-A(0) < A (T)-A,(0).

Notice that T is assumed to infiuence a customer's decision to enter the
system but T is not counted in Bk(T) or Ak(T). If the toll were subtracted

from net benefits, our main result does not hold (see [ 2]).
The assumption that tolls are not subtracted from net benefits may be

reasonable if toll revenues collected from class k are redistributed to all
class k customers regardless of whether or not they enter the system. An
alternative context in which this assumption is plausible is one in which a
private contractor classifies customers into K classes according to the
revenue (R]>R2>--->RK) he receives from a service completion. The contractor
must pay a holding cost accumulated at a constant rate for each customer in
the system and he can 1imit congestion by denying entrance to anybody. He
chooses the operating policy "accept a customer only if the expected profit
(i.e. revenue minus expected holding cost) is at least T." Then an increase
in T implies that the contractor's average profit per arrival increases more
for high revenue customers than for low revenue customers. The next section

provides our main result.
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1. Main Result

Lemma 1 is useful in comparing the stationary distributions of hirthedeath

processes before and after a toll increase.

Lemma 1: If birth-death processes 1 and 2 both have death rates of 1 in every

state and process 1 has birth rates Ai.i=0,1.2.... and stationary distribution

{ny} while process 2 has birth rates 1;,i=0,1,2,.... with A‘:}i and stationary

i=0

i
distribution {n:} then for any M, . ' -
i Lny > 1 .
i=0 i=0
i-1 i-1
Proof: For i>1, let W, = moa, and H; = T A and let W, = N6 = 1. Clearly
n=0 n=0
M M
) m;=1 implies ) n;=1; we need only consider M with both sums less than 1 and
= i=0

thus wM

and wh both positive. Then

) T U/ Tuo= DML TR Wy T M= D+ (T W) Oy ] W)
= T W W, = + .

iZO " 1Zo i/ 120 LI 1=:’ Miaiey 1 M jamer 1 MM e

M
) w% is similarly defined. The lemma will be proved if we can
i=0

demonstrate both: (1) iZM+1H;/H' < I Wy

= =me !
M M
and (2) wh/izou% < Wy/ 1§0H1. The first is obvious from a term by term
i-1 i-1

comparison since "1/”M . n"xn > nnxa = Hi/w*. For the second observe that
n= n=

M M ( Hn) (u")w
Wy 120“i = Wy 120 W/ (W) and \WLM: > W, for i=0,1,...,M. Thus

M M
W/ 1§°u; < Wy 1Z°u1. Q.E.D.




More specifically if we consider birth-death processes 1 and 2 before

and after increasing the toll by 1 unit then A% = Al for i=0,1,2,.... Lemma 2,

proved in [2 ], follows quickly.
Lemma 2: If birth-death processes 1 and 2 as defined in Lemma 1 represent a

system before and after increasing the toll by 1 then n% = ﬂi+]/(1-w0), 12051525 -

Theorem 1, the main result, is stated for two classes k and k+1 whose
rewards differ by 1. It can (and will) be easily generalized to any two classes.

K+ with Rk-Rk+]=1 then for

Theorem 1: If classes k and k+1 have rewards Rk’ R
any integer T, Ak(T+1) - Ak(T) > Ak+](T+1) - Ak+](T) provided that class k+]

customers will enter an empty system with toll T+l (i.e. R, ,-(T+1) > 1).

k+1

Proof: Let {ni}, {w%} denote stationary distributions with tolls T, T+1 respectively.

R -T-2 R, -T-1
Then Ak(T+1) = 12 i (Re-i-1)5 AL (T) = _Z . (R -i-1)
=0 i=0
Ris1=T-2 . Ry4p-T-1 :
Ay (T#1) = iZo"i (Regq=1=103 Aq (M) = T 1y (Ryyq=i-1)
- i=0
R -T-2
A (T+#1) = A(T) = T} -m;)(R -i-1) - Tn (1)
k k g’ 1K R=T-1
Rk+] -T-2

A, .. (T#1) - A, . (T) = (n: -7, )(R,  ,=%-1) = Tx
k+1 k+1(T) iZO B el Rgs1-T-1

(2)
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Subtracting (2) from (1) yields

Rieq-T-2
A(T#1) = AL(T) = (A (THT) - A (T)) = JUms —me) + (mp  -mp g AT#1)
i=0 k-T-2 k
- T{n - }
R -T-1 7 "R, -T-2
Resy-T-2
" b )t R T Tl
- 1 }
Ry ~T-2
Ry -T-2
A N LRl W R WKL

Lemma 1 implies that the first term on the right of (3) is positive while
lemma 2 guarantees that the second term is non-negative (positive for T>0). Q.E.D.
Since it was not necessary to assume Ty and/or T+ positive in the proof

of Theorem 1, the resuit can be extended to arbitrary classes k and k+1 with

Rk'Rk+1 > 1 by establishing additional classes with rewards Rk-l, Rk-2....Rk+]+1

and arrival rates all 0. Theorem 1 can then be used to compare average benefits

per arrival for all pairs of classes whose rewards differ by exactly 1 and these

results when combined will suffice to extend Theorem 1 to apply to classes

k and k+1 with arbitrary Rk'Rk+l'
In [ 2], complications introduced by assuming non-integer Rk's are discussed.

Our impression is that in most practical examples Ak(T+1)-Ak(T) would exceed

Aa (T#1) - A 1 (T) for all pairs of classes k, k+1. Pathologies discussed in

[ 2] for non-integer Rk's are likely to be relevant only when R, and Rk+1 are

k
particularly close. The result that customers who value service more also
benefit more from the imposition of tolls is an accurate statement if all Rk's
and T are integers and is 1ikely to be accurate if T is an integer but some

'
Rk s are not.
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Appendix

Here we include three results omitted from the paper:
(1) a counterexample to the main theorem when tolls and/or rewards are not
integer-valued, and a discussion of the impact of non-integer Rk's and/or T.
(2) a counterexample to the main theorem when the toll is substracted from
a customer's benefit and
(3) a proof of Lemma 2.
First, if tolls and rewards are both not integers, it is possible that
an increase in the toll can further truncate the arrival process for some
customer classes but not for others. For example, if R

=3.1, R,=2.9, T=0

1 2
then 1-customers enter with 0,1 or 2 nresent; 2-customers enter with 0 or

1 present. If T is increased to 0.2 then 1-customers enter only with 0

or 1 present; 2-customers still enter with 0 or 1 present. In this example,
i ﬁ1=02=0.2 then with T=0, =

.628]4,n] = .25126, .10050, n3=.02010

0° 5"
and average benefits per arriving customer A](O) = 1.60553, AZ(O) = 1.41960.

If 7=0.2 then m,=.64103, =, = .25641, n, = .10256 and A,(0) = 1.62787, A,(0) = 1.44872.

The differences A](.Z) - A1(O) = 0.02234 and A2(.2) - AZ(O) = 0.02912 provide a

counterexample to our main result when both T and the Rk's are non-integer.

If T is integer-valued but the Rk's are not, our main result still doesn't
hold. We can prove two results, Theorem A1 and A2 below, but they can not be
combined to reach a general conclusion about Ak(T+1)-Ak(T)-{Ak+](T+1)-Ak+1(T)}.
The proof of Theorem Al parallels that of Theorem 1 but is slightly more
complicated. Throughout [x] denotes the greatest integer in x.

Theorem Al: If classes k and k+1 have rewards Ry Rt with Rk'Rk+l < 1 and
[Rk]'[Rk+1] = 1 then for any integer T, Ak(T+1)-Ak(T) > Ak+](T+1) - Ak+1(T)
provided that class k+1 customers will enter an empty system with toll T+]

(i.e. Rk+]-(T+1) *» ¥}




(R -T-2] [R -T-1] .
Proof: A, (TH) = igoﬂ% (Re-1-1)3 AT) = T = (R

i=0 ¥
[Ry4q-T-2] [Rk+]-T-1]
A1 (TH1) = T g (Ryyq=1-1)5 Ay (T) = L mi(Ryq-i-1)

i=0 i=0
The analogues of (1) and (2) are then

[Rk-T-Z]
A (T+1)-A(T) = igo(n; -1 ) (R -i-1) - n[Rk_T_]](Rk-[Rk]+T) (A1)

[Ry47-T-2]
Ay (T#1)-A, 4 (T) = izo("; M) (Regy=i-1) - mpp e 17 Riee1 7 [Rysq 147 (A2)
Subtracting (A2) from (A1) yields:

[Rk+]-T-2]

ATH)-A(T) (A, 4 (T+1)-A, 1)} = izo("% -ni)(Rk-Rk+])+(wka_T_2]-w[Rk_T_z]ka-[Rk]+r+1)

- n[Rk_T_1](Rk—[Rk]+T)+n[Rk+ 1. 1](Rk+1 [ k+1]+T)

[R -T-2]
5 'ZO(“; )RRy )+ "tRk-T-z](Rk-[Rk]+T+1—Rk+Rk+])

(R [R J+T+1-R +

"R, -T-2] kPR e HR i 1-1T)

- 7[R -T-1] R R T
[R,-T-2]

- igo(ﬂ% 1) (R-Ryyq )+ PTRk-T-Z](Rk+1'[Rk+1]+T)

-ﬂ[Rk-T_]](RETRk]ﬂ')} (A3)
Lemma 1 implies that the first term on the right of (A3) is positive. Lemma
2 implies "'[Rk-T-2]>"[Rk-T-1] AlsoRk Resp < 1 with [Rk] [Rk+1] 1 implies

e . o TN e e ——— -
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(Regq=[Ryyq 2#47) > (R -[RJ+T).  The second term on the right of (3) is also
positive. Q.E.D.

Unfortunately, Theorem A2 below is a result contrary te that needed to
extend Theorem 1 to non-integer Rk's.

Theorem A2: If classes k, k+1 have rewards Rk’ Rk+1 with [Rk]=[Rk+1] then

Ak(T+I) - Ak(T) < A, (T+1) - Ak+1(T) provided that class k+1 customers will

k+1
enter an empty system with toll T+1.

Proof: Subtracting (A2) from (A1) and noting that [Rk-T-Z] = [Rk+1'T'2] yields:
[Rk-T-Z]

A (T4 = A (1) - dR (T4 - A (7§ - Ly ) ReRin) =g 111 ®Rin)
[R,-T-2]  [R,-T-1]
=z izow% - izo 7o) (Re-Ryyq)
- E"i o % { (ReResy)  (A4)

li=[R,-T] i=[R,-T-1]]

|

Qi=ER"iT]}{] - 1/Q=ng)f (ReRyyy)  (RS)
k

The transition from (A4) to (A5) follows from Lemma 2. The right of (A5) is

non-positive. Q.E.D.

Theorems (A1) and A(2) allow only the following very
slight generdlizaion inconditions for which Theorem 1 holds. Rather than insisting
that all Rk's be integers we can allow for any set of Rk's with (1) all [Rk]

different and (2) the fractional parts Rk'[Rk] non-decreasing in k. For example,

R] = 5.3, R, = 4.3, R3 = 3.4, Ry = 2.6 is suitable. Theorem (A1) can then be

used to successfully compare classes with arrival rates 5.3, 4.3, 3.4, 2.6.
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The following numerical example demonstrates that Theorem 1 does not
extend to cover the case where tolls are subtracted from net benefits per

arriving customer. Let Oy M lly = 03 = .3.R]=10, R2=9, R3=2. For T=0 we have:

average benefit minus

entrance rate average benefit per arrival tol1 per arrival
class 1 .29948 7.03539 7.03539
2 .29773 6.04297 6.04297
3 .14624 0.25654 0.25654

For T=1:
average benefit minus
entrance rate average benefit per arrival toll per arrival
class 1 .29930 7.35508 6.35741
2 .29695 6.35744 5.36760
3 .09317 0.31059 0.00003

Comparision of the two last columns for any pair of classes demonstrates a
counter-example.

Finally we prove Lemma 2.

Lemma 2: If birth-death processes 1 and 2 as defined in Lemma 1 represent a

system before and after increasing the toll by 1 then a} = ni+1/(1- "0)’ 190125000 «

1

Proof: A; = Ai+l for i=0,1,2,... since increasing a toll by 1 decreases by

1 the maximum number of customers present such that class k customers will

enter (for all k who will still enter an empty system after the toll increase).
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Abstract

In a FIFO M/M/1 queuing system an arriving customer chooses to enter the
system if his reward for completing service is not less than a constant entrance
tol1 plus expected waiting charge (accumulated at a constant rate). Customers
are partitioned into K classes according to their rewards. The long run average
benefit (reward minus waiting charge) per arriving customer is computed for
each class.

Although a constant toll is fixed for all entering customers regardless

of class or state of the system, the value of the toll can profoundly impact

each classes' long run average benefit per arriving customer. When the value
of the toll is increased, the change in benefit per arriving customer is
investigated for each customer class. These changes are a monotone increasing

function of customer reward. Thus a toll increase is most valuable for those
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customers who obtain the highest reward from service completion. Results
obtained assume that {¥} all rewards and tolls can be expressed as an integer
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% /327 tolls are not subtracted in computing a customer's benefit from entering
the system.
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