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How Tolls Redistribute Customer Benefi ts in an M/M/l Queuing System

Abstract

In a FIFO M/M/l queuing system an arriving customer chooses to enter the

system if his reward for completing service is not less than a constant entrance

toll pl us expected waiting charge (accumulated at a constant rate). Customers

are partitioned into K classes according to their rewards. The long run average

benefi t (reward minus waiting charge) per arriving customer is computed for

each c lass .

Al though a constant toll Is fixed for all entering customers regardless

of class or state of the system, the value of the toll can profoundly Impact

each c l asses ’ long run average benefit per arriving customer. When the value

of the toll is increased, the change in benefit per arriving customer is

i nvestigated for each customer class. These changes are a monotone increasing

function øf customer reward . Thus a toll increase is most valuable for those

c us tomers who obta in the highest rewar d from serv ice compl et ion. Results

obtained assu~ne that (1) all rewards and tolls can be expressed as an Integer

multiple of a customer~s expected cost of waiting through his own service, and

(2) tolls are not subtracted in computing a customer ’s benefit from entering

the system.

Note to the reader:

The layout of this paper reflects the fact that all but its appendix has

been submi tted for publication . Thus reference (2] where It appears In the

text should direct the Interested reader to the appendix. The appendix is
provided to tackle issues that are peripheral to the main thrust of the paper

and the appendix is not Intended for publication.

- - - - 
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How Tolls Redistribute Customer Benefits in an M/M/l Queuing System

Following the pioneeri ng effort of Naor [6], many authors (e.g. [1), [3], [4]

[5], [7), [8]) have compared a queuing system operated so that customers are

free to act in their own interest (individual optimization) with the same system

managed to maximize some social benefit (social optimization). Regardless of

the spec ifi c assumptions , these authors unanimously conc lude that a customer

acting in his own interest will choose to enter the system on any occasion when

he would enter under social control . Typically, a self-interested customer

would enter the system when it is more congested than under social optimi zation

because he fails to account for the inconvenience that he woul d cause to future

arri vals. A natural suggestion is to attempt to achieve social optimization throu~”

imposing a set of tolls whose effect is to encourage the self-interested customer

to act in a socially optimal way.

Our purpose here is to investigate how benefits to individuals are redistributed

through charging a toll T>O (independent of the number of customers present) to any

customer who chooses to enter an M/M/l system. Customers are partitioned into K

classes according to the reward that they receive for completing service;

customers of c lass k arr ive at the fac ility at rate and receive a reward Rk

If they choose to enter the system. We assume Ri>R2
>...>R

~
. Here we consider

long run average measures of system performance; without discounting

it does not matter when a customer ’s reward is paid. The server

provides Independent identically distributed services at rate Li on a first—come

first-served basis and any customer pays a holding charge h per unit time while

In the system. A customer arriving at the facility is informed of how many

others are present and will choose to enter If and only if his toll plus exp’~ted

holding costs does not exceed his reward. (We could obtain the results assuming

T~~J ~~~~T f r~~- ’  -~



2

that a customer will enter only if his expected holding cost plus to}l is

strictly less than his reward.) Without loss of generality we assume that time

and money are measured in units so that L i 1  and h=l .

We also make the restrictive assumption that I and all Rk ’s are integers .

Any reward or toll must exactly equal the expected holding cost incurred durIng

the complete service times of an integer number of customers . Otherwi se ,

imposing a positive toll could further restrict one class from entering the

system without restricting another. For example, with R1=3.1 , R2=2.9 and 1=0 vs.

T=O.2, customers of type 1 enter with 2 or fewer, 1 or fewer present respectively;

2-customers enter with 0 or 1 present in either case.

Jncreasing I by 1 decreases by 1 for each k the maximum number of customers

present under which k-customers will enter. This degree of “fairness” is

necessary for our main result; a counterexample for non-integer I is included

in [2).
With a fixed integer toll T we have a birth-death process with stationary

distribution {,r
~
,i=O,l ,2,. ..} easily computed. For class k the long run average

benefi t per unit time is defined as
Rk~

l_T
Bk(T) °k ~1=0

and the long run average benefit per arrival as

Rk
_ l _T

Ak (T) = 
~ ~j

(R k
_ i_ l)

1=0

Assumi ng 
~k
>0’ Ak(T) z Bk(T)/ok. Even if Ok*O, Ak(T) is wel l -defined . Both

Bk(T) and Ak(T) are defined to be 0 If Rk~
l_T is negative.

~ 

-~~~~~~~~~~~ -~~--
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Our main result is that for T1>T~~0, Ak(Tl ) - Ak(TO) is decreasing in k

over all classes k whose customers opt for entering an empty system with toll

T~. Thus increasing (or imposing) the toll causes an increase in benefit to a

typical 1-customer that exceeds the increase in benefit to a 2-customer, etc.

Increasing the toll increases the attractiveness of the system more for customers

who more highly value service. In ç~rticular, ifTis chosen to maximize ~B ~T)and T>Ok=1 k

then A 1 (T)>A 1 (0) whereas some classes may be denied admission altogether and

among those classes k>2 who still choose to enter an empty system,

A k
(T)_A

k(O) < A 1(T)—A 1 (O).

Notice that I Is assumed to infl uence a customer’s decision to enter the

system but T is not counted In Bk(T) or A k(T). If the toll were subtracted

from net benefits, our main result does not hold (see [ 2]).
The assumption that tolls are not subtracted from net benefits may be

reasonable If toll revenues collected from class k are redistributed to all

class k customers regardless of whether or not they enter the system. An

alternative context in which this assumption is plausible is one in which a

private contractor classifies customers into K classes according to the

revenue (R1 >R2>~ 
. .>R~) he receives from a service completion . The contractor

must pay a holding cost accumulated at a constant rate for each customer in

the system and he can limit congestion by denying entrance to anybody. He

chooses the operating policy “accept a customer only if the expected profi t

(i.e. revenue minus expected holding cost) is at least T. ” Then an increase

in T implies that the contractor ’ s average profi t per arrival increases more

for high revenue customers than for low revenue customers . The next section

provides our main result.
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1. Main Result

Lenmia 1 is useful in comparing the stationary distributions of birth’.death
processes before and after a tol l increase .

Lema 1: If birth-death processes 1 and 2 both have death rates of 1 in every
state and process 1 has birth rates A1,i=0 ,l,2,... and stationary distribution

while process 2 has birth rates A~,i=O ,l,2 with A~<A 1 and stationary

dis t r ibut ion {it~~} then for any M, ~~ , >
1=0 1 i=O

1— 1 i—i
Proof: For 1>1 , let W. = ii A and W ’ = IT A ’  and let W g.~ W~ = 1. Clearly
_ _ _ _  — 1 n=0 n I ~_0 n ‘J

M M
~ w1=l implies ~ ir a1 ; we need only consider M with both sums less than 1 and
1=0 i=~

thus W14 and WA both positive. Then

M M M 14 14
~ W / ~ W = 

~ 
Wi/[ ~W1+ WM ~ 

Wi/WM] = 1/(1 + (
~ Wi/WM)(Wf4/ ~ W1)]i 0 i=O i=0 i=0 i=O 1=14+1 i M+l 1=0

M
is similarly defi ned. The lenina will be proved if we can

1=0

demonstrate both: (1) 
~ Wi/WA c ~1=14+1 1=14+1

N N
and (2) WW ~ W~ < W ~/ ~ 

W~. The first is obvious from a term by termi_a 1=0

i— i i— i
comparison since Wi/W14 TI A > if A~ W~/Wj~. for the second observe that

n_N ‘~ fl=M

N M ( W M\ /W M\
Wj ,1/ ~~~ W14/ ~ ~W~/ (Wi ) and ~~~~~ > W 1 for i=O ,l ,...,M. Thus

i~0 ’ 
W14/ Z W 1. Q. E .0.

______________ - - —  r 
- - —-
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More specifically if we consider birth-death processes 1 and 2 before

and after increasing the toll by 1 unit then = for i=O ,l ,2 Lemma 2,

proved in [2]~ follows quickly.

Lemma 2: If birth-death processes 1 and 2 as defined in Lemma 1 represent a

system before and after increasing the tol l by 1 then n
1~~1

/ (l-1T
0
), i=O,l ,2 

Theorem 1 , the main result , is stated for two classes k and k+l whose

rewards differ by 1. It can (and will) be easily generalized to any two classes.

Theorem 1: If classes k and k+l have rewards Rk, Rk÷l with Rk
_R

k+l =l then for

any integer I, Ak(T+l) - Ak(T) > Ak+l (T+l) - Ak+l (T) provided that class k+l

customers will enter an empty system with tol l 1+1 (i.e. Rk+l _ (T+l) > 1).

Proof: Let {~~.} ,  denote stationary distributions wi th tolls 1, 1+1 respectively.

Rk
_T_ 2 Rk

_T_ l
Then Ak(T+l) = ~~r~j(R~_ i_ l); Ak(T) = 

~~
it j (R

k
_ i_ l )

Rk+l
_T_ 2

A k+l (T+l ) = 

~ 
(Rk+l

_ i_ l); Ak+l (T) = 

i~O 
wj(Rk+l

_ i_ l )

Rk
_T_2

A (T+l)  — A (I) = Z(~ 
_
~j )( R k_ i_ l )  — Ti~~ 

(])
k k 1=0 k’-T-l

Rk+l -1-2
A k+l (T +l )  - Ak+l (T) = ~~~~ 

_ Tr l) ( R k+l
_ i_ l )  — Tir~~~~11 (2)

_ _ _ _ _  _ _ _   
p

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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Subtracting (2) from (1) yields
Rk+l

_T_2

A
k
(T+l) - Ak(T) 

- {Ak+l (T+1) 
- A k+l (T) } = 

~~~~ 

-
~ i ) +

- T
~~

Rk
_T_ 1 - 

~
‘Rk

_T_2 1

R
k+l -T-2

= 
~~ -n.) + 1T

I~ _ T_ 2 (T
~
l) T

~~R -T-l

-

Rk
_T_2

= 
~
T ’

i 
1T~~) + T{i~~~12  - 

~
R
k
_T_l ’ (3)

Lemma I implies that the first term on the right of (3) is positive while

lemma 2 guarantees that the second term is non-negative (positive for T>O). Q.E.D.

Since it was not necessary to assume and/or ak+l positive in the proof

of Theorem 1 , the result can be extended to arbitrary classes k and k+l with

Rk
_R

k+l > 1 by establishing additional classes with rewards Rk~
l I Rk

_2...

and arrival rates all 0. Theorem 1 can then be used to compare average benefits

per arrival for all pairs of classes whose rewards differ by exactly 1 and these

results when combined will suffice to extend Theorem 1 to apply to classes

k and k+l wi th arbitrary Rk
_R

k+l .

In (2], complicatIons Introduced by assuming non-integer Rk ’s are di scussed.

Our Impression is that in most practical examples Ak(T+l)
_A

k(T) would exceed

Ak+l (T+l) - Ak+l(T) for all pairs of classes k, k+l . Pathologies discussed in

E 2] for non-integer Rk ’s are l ikely to be relevant only when Rk and Rk+l are

particularly close. The result that customers who value service more also

benefit more from the imposition of tolls is an accurate statement if all Rk’s

and T are integers and is likely to be accurate if I is an integer but some

Rk’s are not.

-~ 
— -  i_ - - S ~~~~- 

- 
~~~~~~~~~~~~~~~~~~~~~~~~
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Appendix

Here we include three results omitted from the paper:

(1) a counterexample to the main theorem when tolls and/or rewards are not

integer-valued , and a discussion of the impact of non-integer Rk ’s and/or T.

(2) a counterexample to the main theorem when the toll is substracted from

a customer ’ s benefit and

(3) a proof of Lema 2.

First, if tolls and rewards are both not Integers , It is possible that

art increase in the tol l can further truncate the arrival process for some

customer classes but riot for others. For example , if R1=3.l , R2=2.9, T=O

then 1-customers enter with 0,1 or 2 oresent; 2-customers enter with 0 or

1 present. If T is increased to 0.2 then 1-customers enter only wi th 0

or 1 present; 2-customers still enter wi th 0 or 1 present. In this example ,

~ ~1=° 2=°
~~ 

then wi th 1=0, .62814 , = .25126, = .10050 , 1T3— .O2O 1O

and average benefits per arriving customer A 1(O) = 1.60553 , A2(0) = 1.41960 .

If 1=0.2 then 
~o

= .64lO3 , 7r
1 

= .25641 , = .10256 and A1(O)  = 1.62787, A2
(O) = 1.44872.

The di fferences A 1 (.2) - A 1 (0) = 0.02234 and A2(.2) 
- A2(0) 

= 0.02912 provide a

counterexample to our main result when both I and the Rk ’s are non-integer.

If I is integer-valued but the Rk ’s are not, our main result still doesn ’t

hold. We can prove two results , Theorem Al and A2 below , but they can not be

combined to reach a general conclusion about

The proof of Theorem Al parallels that of Theorem 1 but is slightly more

complicated . Throughout [x] denotes the greatest integer in x.

Theorem Al: If classes k and k+l have rewards Rk, Rk+l with Rk
_R

k+l < 1 and

= 1 then for any integer T , A k (T +1)_A k (T) > A k+l (T+ l)  - Ak+l (T)

provided that class k+l customers will enter an empty system with toll T+l

(i.e. Rk+l _ (T+l) > 1).

r _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



[R k~
T
~
2] [Rk

.T
~
l] 9

Proof: A k (T+l ) = ir~ (R k_ i_ l ) ;  A k (T)  = 
~ ~

c j(Rk
_ i _ l)

i=O i=O

[Rk+]
_ T_2] [R k+]_T_ 1]

A k+l (T+l ) = ~~ (R~~1 — i— l); A k+l (T) = 
~ 

7T.(R k+l
_ i_ l )

i=O j Q  1

The analogues of (1) and (2) are then
{Rk

_T_2]

A k (T+l)_A k(T) = 
~ 

(
~ 

_
~
.)(Rk

_ i_ l) - 
~[R k

_T_ l](Rk_CR k]+T) (Al)
i=0 1 1

[R k+l
_T_2]

= ~ (~~‘ _n j)(Rk+l
_ 1_ l) — l](R k+l

_ [R
k+l ]+T) (A2)

i=O lRk+l
_T

Subtracting (A2) from (Al) yields :

[Rk+l
_T_2]

= 
~ ( ,

~‘
1=0 ~

- 
~[Rk

_T_ l]~~k
Rk~~

T) [R k+l
_T_ l] k+l

_
k+l~~

T)

{R k_ T_ 2]
= 

~ 
(
~ 

_ 7T .)(Rk
_R

k+l )+ ~[Rk
_T_2] k

_ [R
k T+l

~
Rk+Rk+l )i=O 1 1

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

]-T )

- ‘T[R k
_T_ l ](Rk

_ [R
k]4T)

[Rk_ T_ 2 ]
= ~ (~ ‘ _w

i )(Rk
_R

k+1 )+ {~ Rk
_T_2](Rk+l

_ [t
~k+l

]+T)
1=0

(A3)

Leniiia 1 Implies that the first term on the right of (A3) is positive . Lema

2 implies 1T ’
[R -T-2f’1 R T n  A1SORk

_R
k+l < 1 w i t h  [R k ]_ [R k+l ] = 1 implies
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(R k+l
_ [R

k+l ]+T) 
> (R~

_ [R
~]+T). The second term on the right of (3) is also

positive . Q.E.D.

Unfortunately, Theorem A2 below is a result contrary t~ that needed to

extend Theorem 1 to non-integer Rk ’s.

Theorem A2: If classes k, k+l have rewards Rk~ 
Rk+l wi th [Rk](Rk+1] then

A k(T+l) 
- Ak(T) < A k+l (T+l) - Ak+l (T) provided that class k+l customers will

enter an empty system with toll T+l .

Proof:  Subtracting (A2) from (Al ) and noting that [R k
_T_ 2] = [R k+l

_T_2] yields:

[R k-T~
2]

A k(T+l) — Ak(T) 
- 

~
Ak÷l (T+l) - A k+l (T)c i~O

’ 
_
~I)(Rk

_R
k+l ) 

_
~[Rk

_T_ 1]~~k
_R

k+1 )

[R k
_T_2] [R k

_T-l]
= - 

~~~~ 

(R~
_R
~~1 )

- (Rk
_R

k+l ) (A4)

~
i=[R k

_T] i= [Rk
_T-l]

- 1/ (1_
~O)}

(R k
_R

k+l ) (A5)

The transition from (A4) to (A5) follows from Lemma 2. The right of (A5) is

non-pos itive . Q.E.D.

Theorems (Al) and A(2) allow only the following very

slight generaliz&ion ticonditions for which Theorem 1 holds . Rather than insisting

that all Rk ’s be integers we can allow for any set of Rk ’s with (1) all [Rk]

different and (2) the fractional parts Rk
_ [R

k] non-decreasing in k. For example,

R = 5.3 , R2 4.3, R3 
= 3.4, R4 = 2.6 Is suitable. Theorem (Al) can then be

used to successfully compare classes with arrival rates 5.3, 4.3, 3.4, 2.6. L.
1

_ _ _ _ _ _ _ _ _  - 
_ 

—-— . — -  
~~~~~~ 

--

~~~~~~~~~

-

~~~~~~~ 

— ——-—--
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The following numerical example demonstrates that Theorem 1 does not

extend to cover the case where tolls are subtracted from net benefits per

arriving customer. Let 01 02 
= 0

3 
= .3,R1=lO , R2=9, R3=2. For T=O we have:

average benefit minus
entrance rate average benefit per arrival toll per arrival

class 1 .29948 7.03539 7.03539

2 .29773 6.04297 6.04297

3 .14624 0.25654 0.25654

For T=1:

average benefit mi nus
entrance rate average benefit per arrival toll per arriva l

class 1 .29930 7.35508 6.35741

2 .29695 6.35744 5.36760

3 .09317 0.31059 0.00003

Comparision of the two last columns for any pair of classes demonstrates a

counter-example.

Finally we prove Lemma 2.

Lemma 2: If birth-death processes 1 and 2 as defined in Lemma 1 represent a

system before and after increasing the toll by 1 then i = lrj+i/(l_ 1r~)~ 10,1 ,2 

Proof: = for 1=0,1 ,2,... since increasing a tol l by 1 decreases by

1 the maximum number of customers present such that class k customers will

enter (for all k who will still enter an empty system after the tol l increase).

. 
~~~ - ~~~~~~~~~~~~~~
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Then W~ = W1~1/x0 for i 
= 0,1 ,2 .  (since ~1 =

and ~ W =

= 
~

W
~
/A 0 

- 1/A 0

and 
W n u 

= 

W~~1/A 0 = 
w +l

~ W1/A 0- 1/A 0

i.e. ii ’ 
= w +l Wi = Q.E.D.

W.
i=1 1

-

‘

- 
. ~~~~~~~~~~~~~~~~~~~~~~ 

—
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How Tolls Redistribute Customer Benefi ts in an M/M/l Queuing System

Abstract

In a FIFO M/M/l queuing system an arriving customer chooses to enter the

system if his reward for completing service is not less than a constant entrance

toll pl us expected waiting charge (accumulated at a constant rate). Customers

are partitioned into K classes according to their rewards. The long run average

benefi t (reward mi nus waiting charge) per arri ving customer is computed for

eac h cl ass.

Although a constant toll is fi xed for all entering customers regardless

of class or state of the system, the value of the toll can profoundly impact

each classes long run average benefit per arriving customer. When the value

4 of the toll is increased , the change in benefit per arriving customer is

in vestigated for each customer class. These changes are a monotone Inc reasi ng

function of customer reward. Thus a toll increase is most valuable for those

customers who obtain the highest reward from service completion. Resul ts

obtained assume that (X) a11 rewards and tolls can be expressed as an integer

mul tiple of a customer ’s expected cost of waiting through his own service, and

tolls are not subtracted In computing a customer’s benefit from entering

the system.
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