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I. SUMMARY

Research performed under Contract N00014-75-C-0779 was completed March 3,
1978. This research has explored probabilistic and statistical structures of
the Linear-Quadratic-Gaussian class of control and estimating systems for pur-
poses of development and enhancement of design procedures. En route a complete
theory of "performance analysis" has been developed for this problem class.

Performance analysfs allows the system designer to see the quality of a
giQen design in a complete statistical sense. As such, it becomes part of a
computer-aided design procedure but, unfortunately, does not explicitly tell
the designer how to modify the design to achieve better performance. Thus, the
research effort has recently focused on the "selection" aspect of design.

A complete theory of contro{ selection has not been established in this
research effort; however, significant progress has been made toward a complete
theory. In particular, formulas for statistics of LQG design performance mea-
sures for both continuous and discrete time systems have been derived. Also,

a control selection technique based upon this formulation has been developed.

This control selection technique, when coupled with the performance analysis

technique, becomes an effective design procedure for stochastic control systems.

An inherent property of the resulting designs is that they all contain estima-
tors in their feedback structures and exhibit a separation property.

Two interim technical reports were distributed on the performance analysis

and control selection aspects. These were:

[1] S. R. Liberty and R. C. Hartwig, "On the Essential Quadratic Nature
of LQG Control-Performance Measure Cumulants", Interim Technical
Report-Contract N00014-75-C-0779, Texas Tecit University, August 1975,
and

[2] R. C. Hartwig, "Design of Stochastic Linear Control Systems According
to Cumulant Based Performance Criteria", Interim Technical Report-
Contract N00014-75-C-0779, Texas Tech University, May 1976.

Report [1] also appeared under the same title in
1
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[3] Information and Control, Vol. 32, No. 3, November 1976.

Work related to [1] and portions of [2] have appeared, or will appear, in

(4] J. M. Brown, R. C. Hartwig and S. R. Liberty, "On the Design and Per-
formance Analysis of Linear Stochastic Regulators", Proc. of the 7th

Asilomar Conference on Circuits and Systems, pp. 563-566, November
1973,

[5] R. C. Hartwig and S. R. Liberty, "A New Class of Statistical Perfor-
mance Criteria for Stochastic Linear Control Systems", Proc. of the
IEEE Conference on Decision and Control, pp. 1136-1141, November
1976,
[6] S. R. Liberty, "Performance Analysis of Stochastic Linear Control
Systems: A New Viewpoint", Proc. of the International Forum on Alter-
natives for Multivariable Control, pp. 79-86, October 1977,
and RTEPT S
L)
[7] S. R. Liberty and R. C. Hartwig,t’Besign-Performance-Measure Statis-
tics for Stochastic Linear Control Systems*;. to appear in IEEE Trans-
actions on Automatic Control, Vol. AC-23, No/ 6, December 1978,
which is included here as Appendix A.
Also, the following theses on these topics have been completed:

[8] R. C. Hartwig, "Cumulants of an IQF Differential Equations", Master
of Science Thesis, Texas Tech University, December 1973,

[9] J. M. Brown, “A Computer-Aided Design-Analysis Technique for Stochas-
tic Linear Regulator Problems", Master of Science Thesis, Texas Tech
University, August 1973,

and

[10] R. C. Hartwig, "Design of Stochastic Linear Control Systems According
to Cumulant Based Performance Criteria", Ph.D. Dissertation, Texas
Tech University, May 1976.

Another thesis was completed on additional topics involving Riccati equations
arising in cumulant based design procedures for both control and estimating sys-
tems. This work,

vemd T Yy

[11] M. L. Yao, ¢Initial Studies of Riccati Equations Arising in Stochas-
tic Linear System Theoryfﬁ Master of Science Thesis, Texas Tech Uni-
versity, December 1977, K

is included here as Appendix B. A second Ph.D. dissertation on optimal cumu-
lant control selection in discrete time systems is in the final stages of prep-
aration and will appear as an interim report on Contract N0OOO14-78-C-0443.
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DESIGN-PERFORMANCE-MEASURE STATISTICS FOR
STOCHASTIC LINEAR CONTROL SYSTEMS*

STANLEY R. LIBERTY, Member, IEEE, and
RONALD C. HARTWIG, Member, IEEE

ABSTRACT - Formulas for statistics of the standard integral
quadratic performance measure used in stochastic
Tinear control system design are derived. The
formulas are expressed in terms of dynamical
variables under the usual assumptions on noise,
plant, and admissibility of control. A1l of
these dynamical variables are expressed as
linear transformations of plant state estimates.
The practicality of this work, which is directed
toward the establishment of new, statistically
based design procedures for stochastic linear
systems, is demonstrated by example.

S. R. Liberty is with the Department of Electrical Engineering,
01d Dominion University, Norfolk, Virginia 23508.

R. C. Hartwig is with Department 4361, Sandia Laboratories,
Albuquerque, New Mexico 87115.

* This research was supported by the Office of Naval Research,
Contract NOO014-75-C-0779
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I. INTRODUCTION

Once a state model for a stochastic linear system is obtained,
the analytical aspects of designing a feedback controller can be
conceptually dichotomized. We refer to the first part as "control
selection" and to the second as "performance analysis."

In the control selection part the designer chooses a performance
measure that reflects a priori design specifications. Statistical
indices associated with this performance measure are then specified
and, finally, a controller is attained via optimization of these in-
dices.

Performance analysis involves determination of how a specific
controlier behaves. This is accomplished by computing statistical or
probabilistic descriptions of performance measures that, in general,
are different than the performance measure chosen in the control
selection part of the design procedure. For example, these measures
may be selected to give the designer specific insight into how well
the controller is regulating or how much control effort is being ex-
pended.

For certain classes of stochastic linear control systems the per-
formance analysis problem has been solved; see [7] and [14]. However,
the control selection aspect of the design problem has only been solved
in special cases. For the class of systems treated in this paper,
namely the Linear-Quadratic-Gaussian (LQG) class, a feedback control-

ler that minimizes the mean of an integral quadratic performance measure

5P
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has been found [16]. An open-loop controller that minimizes the variance
of an integral quadratic performance measure subject to a constraint on
its mean has also been discovered (9], (10], [12]1, [13], but feedback
solutions in the context of performance measure statistics beyond the
mean have not surfaced. The reason for this is a lack of tractable

higher order statistical descriptions of the performance measure.

In this paper we present the formulation of a complete set of
statistics of the integral quadratic performance measure normally em-
ployed in stochastic linear control system design. These results are
an outgrowth of work initiated a 1ittle over ten years ago by Sain [11].
Our formulation is expressed in terms of dynamical variables related to
an estimate of the plant state and should lead the way to new classes of
feedback control structures in the stochastic Tinear context.

We have attempted to keep our notation as compatible as possible
with that in the tutorial paper by Tse [15] and strongly recommend that
this reference, along with [8], be primarily used by the reader. Our
presentation is formal so no special mathematical skills should be re-
quired for a fundamental understanding of the material.

In Section II we describe the system, the performance measure and
the control objective. Section III contains the development of a complete
statistical description of this performance. An example of control system

design utilizing the new formulation is presented in Section IV.
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II. THE SYSTEM DESCRIPTION AND PERFORMANCE

Let Rp denote the p-fold Cartesian product of the real line, and let
I denote the real line interval [to, tf]. We wish to control the noisy

linear system described on I by

détt A{t)x(t) + B(t)u(t) + £(t) )

and

z(t) = C(t)x(t) + 8(t), (2)

where the state x(t) eRn, the control action u(t) eRm, and the observation

z(t) erR".

The initial condition for (1), x(to), is assumed to be Gaussian
with mean

X, = E(x(ty)) (3)

and covariance

£, = E(Dx(t,)-x J0x (t)=x]1) (4)

where (T) denotes matrix transposition. The state process noise, &£, and

the observation noise, 6, are zero-mean Gaussian-white with

E{e(t)e (1)} =0, $.0el, (5)
ECIx(t,)x e ()} =0, tel,  (6)
E{[x(to)-xo]eT(t)} =0, tel, (7)

E(E(t)ET (1)} = E(t)8(t-1), t,el, (8)
and
E(a(t)e’ (1)} = o(t)s(t-1), totel, (9)
aJe

S3p s

e v




where =(t) and O(t) are positive semi-definite and positive definite, respectively,
on I.
We require that the control action, u, be a causal function of the ob-

servation. That is,

u(t) = w(t, Z(T):Te[to,t)) tel, (10)
where ] satisfies certain technical assumptions stated in [15]; also
see [16]. A1l matrix functions on I and the mapping v are assumed to

be smooth enough to guarantee mean-square continuity of the state process on I.

For design purposes we define a "design-performance-measure"

t
IET(esn(ty) + 7 O (0)ace)x(t) + ol (LR(t)u(t) Tdt, (11)
t

0

where the terminal penalty weighting, S, is symmetric and positive semi-
definite as is the weighting Q(t) on I. The weighting R(t) is symmetric
and positive definite on I, and both Q(t) and R(t) are continuous on I.
These weighting matrices are given values by the designer that reflect

a priori design specifications involving the relative importance of state
regulation and control effort. The design objective is to choose u

in (10) so system performance is "good" in some sense.

The functional, J, assigns a non-negative real number to each sample run
of the control system with small values implying good performance, However,
the question of quality of performance is multiply clouded. First, J is random
so it is only meaningful to refer to J in a statistical or probabilistic sense.

Second, since J is the sum of terms representing measures of state regulation

. N8 ¥
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and control effort, the individual quality of these measures is not apparent in a
broad statistical description of J. We will not address these subtleties here,
but will concentrate on obtaining a statistical description of J that might be
used as a basis for selection of control action. In Section IV, the concepts of

control selection and performance analysis are demonstrated by example.




[II. A COMPLETE STATISTICAL DESCRIPTION OF J

Let F_ be the sigma-algebra induced by the observation {z(r):re[to,c)}.
When o = tf we Wwill write F without a subscript. We will now generate con-
ditional statistics of J . Expand the process modeled by (1) in an orthonormal

series,
x(t) ~ % x,0,(t), tel , (12)
i=1

where the xi's are scalar random variables given by

T te 1
T xl(g) seyleg) + S aT0ate (e, w, (13)
0

and the orthonormality constraint on the nonrandom, vector-valued ¢1's is

given by

T te 1 :
t

0

In addition, we require that the x_,'s be conditionally uncorrelated, that is

i
E{[xi-mi][xj-mj]lF} = Aidij’ ¥i; s (15)

where m, is the conditional mean of Xy given by

N
mo= E{x (t)[F} So,(te)

o aret :

+ I Eix (t)[F}Q(t)cbi(t)dt, vi, j. (16)
t
0
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A necessary and sufficient condition for (15) given (13) and (14) is

that oy and )i satisfy

f
Ao, (t)

ot

I‘(t,r)Q(r)d:i(r)dT + F(t,tf) S¢1(tf)’ tel, %1, (17)
0

where r is the smoothed-estimate, error-covariance kernel of the state

process. That is, let the smoothed estimate of x(t) be denoted by

§(t|tf) = E{x(t)|F}, tel. (18)

Then T is given by

P(e,t) = E(Ix(t) - R(t[t)] XM (2)-R" (elte))IF} tozel. (19)

As a consequence of the linear-Gaussian assumptions of Section II and the
technical assumptions on v
r(t,t) = E{r(t,7)} - (20)

That is, r is nonrandom implying that each xj is nonrandom.

Under the assumptions we have made, J is finite with probability one;
see Doob [1]. It follows that the series in (12) converges in the square

integrable sense. Thus,

t
f
J » % =g uT (£)R(t)u(t)dt, (21)

i=1 i to

with probability one; see Kolmogorov and Fomin [5].




IR

Since x 1is conditionally Gaussian each Xy is conditionally Gaussian.

But, we have forced the x,'s to be conditionally uncorrelated, thus they are

conditionally independent as are their squares. The conditional characteristic

function of each x% term in (21) is of the noncentral chi-square type given by,

Cxi‘ F(jw) = (1-2jw Ai)'%exp[jwmziﬂ -2jw >\1) 'l] '

(22)
The conditional characteristic function of J follows as,
i o
Co(jw) = [ ® (1-2wn )7%] - exp[jw [ u (t)R(t)u(t)dt

J|F i=1 i t

0
+ F jumi(1-25wn, )7, (23)

i=1 1 i

In our previous work [ 6], [7 ] we have observed that in the Linear-Quadratic-

Gaussian class of systems the second characteristic function generates trac-

table statistical forms. The second conditional characteristic function,

Ty|F» is defined as the natural logarithm of Cy|F, that is,

13(F(de) £ 1nCq|F(du)].

(24)
The formal MacLaurin series representation of Ty|F is
: © (.w i
e = T e S (25)
e !

where the coefficients j|F are called conditional cumulants. Utilizing (23),

it can be easily shown that the first conditional cumulant of J is given by




t
e = Boa + Bomdest u (t)R(E)u(t)dt, (26)
; S -
while the remaining conditional cumulants are of the form

k-1 k k-1 2, k-1
qp = (k=112 B AL k12 Eopll w1, (27)

Although the conditional cumulants as given by (26) and (27) are complete in

the sense that any statistic of J can be derived from them, they are not in an

attractive form for the control system designer since they are not expressed in

terms of system variables. To accomplish this we must attack the series ex-

pressions in (26) and (27). The first step is to define "iterated kernels"

rM (t,0) & (t.r) (28)
and
r(6) (e,0) & (e, %) SF(k'])(tf,T)
+ I 1ty a(o)r'* " (g,1) do, Kk > 1. (29)
0

It can be inductively shown using (14) and (17) that

TR WG ILR (30)

It follows that the expression, 121x§ , can be written as

t
Fk e mrsrMe, e + o awrt®e e et k2, (31)
t
0
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where Tr [-] denotes the trace of the enclosed matrix. Utilizing (16), (18)
and (30) it follows that

2,k-1 _ T (k=1) -
SmgAy T = K (ki) ST (teate) Sk(telte)

t =
+ R (tg]te)s ff rtkT e, ta(t)R(e]e,) at
(o]
t %
; {f xtleaee) rRN (e, eat sk(e |t
0

t, t
+ 75 T eemr® N ooz e e ddedt, k> (32)
t .
0 O

For the case, k=1, it is easily seen that

2 AT o
g M T X (telte)SKitelty)

+ }f $T(t]t)Q()R(t|t,)dt (33)
t f f .
0

Consider the last term in (32) and note that it contains a symmetric (in

argument) integrand. Therefore it may be rewritten as

«10=
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L.

e

f.T

P ATl a)r® D (e 003 ¢ dardt

'S ot
S ct

0o 0

t t :
= 2 {fﬁT(tItf)Q(t) é‘F(k'])(t,r)Q(r)Q(rltf)det (34)

0 (o}

Define the new n-vector valued variable

At
et &1 T D et e (35)
0
and note that &
Me_p(ty) = 0. (36)

The conditional cumulants can now be written as

K = Q! o tf T oY
e = R (telte) SR(tgfty) + { (% (tltg)alt)x(t]ty)
0

+ uT(£)R(t)u(t)]dt (37)
te
+ Tr[ST(te,te) + /7 QE)r(t,t)dt],
tO
and

cp1ok=TpaT (k=1) o
Kk|F ki2™" ' [x (tfltf)SF (tf,tf)Sx(tfltf)

AT
+ 2X

t
(tf|tf)5nk_](tf) + 2 {f SET(tltf)Q(t)T'lk_'l(t)dt]
0

t
+ (k-])!2k'1Tr[Sr(k)(tf,tf) + {f ae)r®) (e, t)at], k> 1. (38)
0

wlle
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Equations (37) and (38) provide us with the conditional cumulants of the
design-performance measure, J, expressed in terms of the smoothed esti-
mate of the x-process and the corresponding error covariance kernel.

Any statistic of J can be expressed in terms of the conditional cumulants
via their relationship to conditional moments. This relationship is of
the same form as (42) below. For example, denoting a cumulant of J by

Ky we have
E(J} =, = E{K1IF}’ (39)

var{J} = x, = E{k, .} +Var{x

2 2|F 1|F}’

and in general

k= E{k ,.}+ {statistics of lower order conditional cumulants}. (41)

k K|F
The relationship between noncentral moments and cumulants is well tabulated
[4]. Denoting a noncentral moment of J by ug, this relationship is given by
Kk
- ; 42
Mot = 2 G950 )
j=0
Those familiar with the traditional minimum mean LQG problem may
be a Tittle suspicious of equation (37) since it is well known that
E{K]|F} is normally expressed in terms of the filtered estimate [3], x(t|t)s
and its corresponding error covariance with precisely the same structure as
(37) under expectation; see [15]. To demonstrate the equivalence of these
two formulations note that in view of (10) the smoothed estimate can be ex-

pressed as

-12~
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f T -1

Kt,t) C' (1) (1) C(t) v(t|t)dT, tel, (43)

Y ot

§(tltf) = x(t|t) +

see [ 8], where

x(t|t) = E{x(t)[F.}, (44)
K(t,T) = E([x(t) - x(t]£)][x (1) - X1 (z|1)]} (45)
and the "innovation" [2], v, is given by
v(t[t) = C(t)[x(t) - x(t[t)] + a(t). (46)
The smoothed error covariance can also be expressed as
te , SR,
r(t,t) =K(t,7) -/ Kt,0)C (o) (o) C(o) (o,T)do (47)

tvt

where tvrt means max [t,t].

Substitution of (43) and (47) into (37) and application of expectation

immediately yields

t
q = Eley g = ER (tlte)sR(tety) + {f[QT(ﬂt)Q(t)x(tlt)

0
t
+ uT()R(t)u(t)Idt} + TrlsE(t,) +tfo(t)Z(t)dt], (48)
0
where A
I(t) & K(t,t) (49)
=13
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and we have utilized the fact that v is white noise with covariance

ECu(tt)v (t]T] = o(t)s(t-1). (50)

In deriving (48) from (37) only one subtlety arises that might be

troublesome to the reader. In particular, two terms of the form

A t

e A Ternace) A ken)cT (e (e (x)v(x | t)dts
to t
t t
= 1 s o) {fK(t,r)CT(T)G'](T)C(T)E{v(rIT)QT(tlt)}drdt] (51)
€
arise, :

It is well known [14] that under some technical assumptions on the causal

mapping ¢ in (10)

x(t|t) =

St

t

G(t,t)v(t|T)dT + ¢(t,T)B(T)u(T)dT-+¢(t,to)xo (52)

‘ t
0 0
for some kernel G where ¢ is the transition matrix associated with
A in (1). Since the control u is assumed to be a causal function of
the observation z, which in turn can be expressed as a causal func-
tion of the innovation, v, it follows in view of (50) that the inner-
most integrand in (51) is zero almost everywhere. Consequently, the

terms in question vanish under expectation.

The :

St




IV. A DESIGN EXAMPLE

How might these formulations be utilized? There are many possible
answers to this question. For example, let us assume that the design
objective is to select a controller that will keep the variance of J
small without the mean of J becoming too large. Such an objective
suggests selection of a weighted sum of the indices, mean and variance,

for optimization. Such a criterion is:
minimize  [E{cy|p} + alElxpp} + Var{cy[g})]

over all admissible control laws subject to the obvious dynamical con-
straints. The nonnegative real parameter a allows a trade-off between mean
and viriance to be effected in the design procedure. For example, when «
is zero the criterion collapses to the traditional minimum mean criterion.
When the designer selects large «, emphasis is placed upon making the vari-
ance of performance small.

The design procedure consists of selection of several controllers via
the above criterion, with performance anafysis of each until an acceptable
trade-off between mean and variance of performance is achieved.

Unfortunately, research on this class of problems has not evolved to
the point where the complete solution is known. We can, however, modify
the criterion to yield a classical problem formulation that will Tead to

an interesting class of feedback control laws.

To accomplish this we retain only second degree terms in the criterion.

Thus, the term Var{n]|F} is arbitrarily dropped. Next we substitute (43)
and (47) into (35) and (38) for k = 2 and fully expand the criterion. A1l

terms that are not affected by control action or involve future dynamical

-15-
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operations are discarded to allow simple enforcement of (10). For sim-
plicity, terms containing the integral expression in (47) are also dis-
carded.

It may appear that this surgery is rather drastic but actually much
of the original objective has been retained in the modified criterion

which now looks 1ike

t
f
min £ (telte)Sk(telte) + [ (X (£)a(t)x(t[t) + uT(BIR(E)u(t)]dt
u tO

# 4k (telt)Sa(t )SK(telt,) + Bax (tolto)sn(t,)

te
+ 8 J X' (£[t)Q(t)A(t)dt},
t0
where
d . g y d
ge () = [A(Y) - s(t)cT(e)e™ T (E)C(t)In(t) + Z(£)Q(tIx(t]t), (53)
with
n(t,) = 0. (54)
Define the augmented matrice§
[ x(t[t)
FOEIB : (55)
[ n(t)
W[ ac) 4aQ(t)
q(t) -L"'“Q(t) 0 , (56)
T 8 S + 4a$2(tf)5 40S : (57) 3
i 80S 0 ‘
A6 :




A(t) 0
A(t) r
z(t)Q(t) A(t)-z(t)C(t)o (t)C(t) (58)

B(t)
B(t) & e (59)
and y
NG %
W(t) = F o , (60)
where
we) 2 ze)cT(t)e (t) (61)
The criterion can thentbe rewritten as
f
min E{ x‘T(tf)s_x(tf) + { [IT(t)ﬁ(t)I(t) + uT(t)R(t)u(t)]dt}
0
over admissible u subject to
x;(t) = K(t)x(t) + B‘(t)u(t)~ + W(t)v(t|t), (62)

with

The solution of this "accessible state" problem is, of course, well

known [15] and given by

u(t) = R (6)BT (EM()X(L), tel,  (64)
where the 2nx2n matrix M(t) is the solution on I of

-1 1

$Mt) = MR - A (OM(E) - TQt) + MEBIERT (£)B (E)M(t),  (65)

with
M(tf) = S. (66)

.




A Simple Example: Consider the scalar system described on [0,1] by

X=X+Uu+E¢ ‘ § &b
and

zZ=X+09 (2')
where

xo=1 (3*)
and

zo=0. (4')

Let conditions (5) through (7) hold with

Efe(t)e (x)} = .256(t-1) (8')
and

Efo(t)e (1)} = .356(t-1). (9')

Select the design-perf?rmance-measure

3= S D) + u¥(e) et (11")
and calculate, via (65) and (64), the feedback controller that optimizes
the modified criterion for several values of =. For each of these con-
trollers carry out performance analysis by computing statistical and
probabilistic descriptions of state regulation and control effort.
Specifically, obtain such descriptions for the function-space squared-
norm of the piant state trajectory and the control action trajectory.

That is, select post design performance measures
1

3 = [ otieyee i
and 1
du » fo ul(t)dt. (68)
-18-
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The mean M, and variance, V, of J, Jy and J, are plotted versus =
in Figures 1-3 respectively. Note that the original objective of making
the variance of J small at the expense of larger mean is achieved. Also
note that both mean and variance of plant state requlation are improved
by selecting controllers with large = values. This "good" regulation is
paid for by a corresponding increase in the mean and variance of control
effort.

Figures 4, 5, and 6 contain probability densities for J, Jy, and Jy
respectively that provide a complete statistical picture of performance.

Some observations should be noted. The class of control laws generated
by the criterion is truly dynamical in that the feedback law contains n
dynamics driven by the filtered estimate of the plant state. A separation
property is inherent. The extension of the traditional LQG criterion to
include second order statistical terms is simply parameterized. By incor-
porating "performance analysis" techniques from [7] into the design pro-

cedure, insight into controller properties is enhanced.

-19-
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V. CONCLUSIONS

A great deal of research remains to be done. We have only scratched
the surface. In particular, for cumulants of performance beyond the mean,
it is not apparent that the smoothed estimate formulation will collapse
to a filtered estimate formulation as it did in (48). The resulting pres-
ence of noncausal variables is troublesome in control selection and moti-
vated our approach to the example of Section IV.

Consequently, we have not presented a complete theory and feel that
there may be a better formulation of this problem class than that pre-
sented here. Despite this, we are encouraged by these results since they
demonstrate a richness of the LQG problem class that was not apparent in
the minimum mean results of the previous decade.

The practical value of the design viewpoint expressed in Section IV
should be apparent. This viewpoint can, of course, be directly extended
to include higher order statistics with the obvious consequent increase

in off-1ine computation and complexity of feedback structure.

«20.

i, o




e m————

ACKNOWLEDGEMENTS

We wish to thank Drs. Michael K. Sain, David D. Sworder, and Gary L.
Wise for many helpful comments, criticisms, and discussions during the

evolution of this work.

“23=

‘ T R = TR




(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

(12]

(13]

REFERENCES

J. L. Doob, Stochastic Processes. New York: Wiley, 1953.

T. Kailath, "An Innovations Approach to Least-Squares Estimation
Part I: Linear Filtering in Additive White Noise," IEEE Trans.
on Automat. Contr., vol. AC-13, no. 6, pp. 646-654, December 1968.

R. E. Kalman and R. S. Bucy, "New Results in Linear Filtering and
Prediction Theory," J. of Basic Engrg., vol. 83, pp. 95-107,
March 1961.

M. G. Kendalland A. Stuart, The Advanced Theory of Statistics.vol. 1,
New York: Hafner Publishing Co., 1963.

A. N. Kolmogorov and S. V. Fomin, Elements of the Theory 0§ Functions
and the Functional Analysis. vol. 2. Baltimore: Graylock Press,
1961.

S. R. Liberty, "Characteristic Functions of LQG Control," Ph.D.
dissertation, Dept. of Elec. Engrg., Univ. of Notre Dame, Notre
Dame, Ind., August 1971.

S. R. Liberty and R. C. Hartwig, "On the Essential Quadratic
Nature of LQG Control-Performance Measure Cumulants," Information
and Control, vol. 32, pp. 276-305, November 1976.

I. B. Rhodes, "A Tutorial Introduction to Estimation and Eiltering,"
IEEE Trans. on Automat. Contr., vol. AC-16, no.6 pp.688-706,
December, 1971.

M. K. Sain, "Relative Costs of Mean and Variance Control for a
Class of Linear, Noisy Systems," in Proc. 3rd Annual Allerton
Con§. on Cirncuit and System Theory, pp. 121-129, October 1965.

M. K. Sain, "Control of Linear Systems According to the Minimal
Variance Criterion--A New Approach to the Disturbance Problem,"
IEEE Trans. Automat. Contr., vol. AC-11, pp. 118-121, January 1966.

M. K. Sain, "Performance Moment Recursions with Application to
Equalizer Control Laws," 1in Proc. 5th Annual Allerton Conf. on
Cireuit and System Theory, pp. 327-336, October 1967.

M. K. Sain and S. R. Liberty,"Some New Computational Results
for Minimum Variance Controllers," in Proc. 7th Annual Allerton
Con§. on Circuit and System Theory, pp. 408-417, October 1969.

M. K. Sain and S. R. Liberty, "Performance Measure Densities for

a Class of LQG Control Systems," IEEE Trans. Automat. Contr.,
vol. AC-16, pp. 431-439, October 1971.

s

’-..L'*a‘ﬁ9m.':i By ladib v




[14]

(15]

(6]

D. D. Sworder and L. L. Choi, "Stationary Cost Densities for
Optimally Controlled Stochastic Systems," IEEE Trans. on
Automat. Contr., vol. AC-21, no. 4, pp. 492-499, August 1976.

E. Tse, "On the Optimal Control of Stochastic Linear Systems,"
IEEE Trans. Automat. Contr., vol. AC-16, pp. 776-785, December 1971.

W. M Wonham, "On the Separation Theorem of Stochastic Control,"
SIAM J. Control, vol. 6 no. 2, pp. 312-325, 1968.

<25-




III.

APPENDIX B




INITIAL STUDIES OF RICCATI EQUATIONS ARISING IN STOCHASTIC
LINEAR SYSTEM THEORY
by
MONG LING YAO, B.S. in E.E.

A THESIS
IN
ELECTRICAL ENGINEERING
Submitted to the Graduate Faculty
of Texas Tech University in
Partial Fulfillment of
the Requirements for
the Degree of
MASTER OF SCIENCE
IN

ELECTRICAL ENGINEERING

Approved

Ch an of the CS;ﬁitt
' =

Gpr @

T T

é?w LB pan—
Cdmtl Uy

Accepted

Dean of the Graduat( échool
December 1977

‘ T T T TIe J .

4.__4




-14-

N AL Gl TN

\

ACKNOWLEDGEMENTS

I am deeply indebted to Dr. Stanley R. Liberty for
his suggestion of this research topic and for his patience
and guidance throughout; to Dr. Wayne T. Ford for his help-
ful assistance and suggestions which aided in the analytic
portion of this work; to Dr. Kwong S. Chao and Dr. Benjamin
S. Duran for their consideration and criticisms in the prep-

aration of this thesis.

11

e — TP ———

B




TABLE OF CONTENTS

SERA SR PLNESNRI RS RS IS RErANS SR asentns » AE

ACKNOWLEDGEMENTS
LIST OF TABLES ® © 0 00 00 00 0900 IGO0 000G eeee e e e0e iV
LIST OF FIGURES ® 8 0 0 0 0 0000000 L SN 00N 0NN e P 0GRS e v

Chapter

I.

II.

III.

Iv.
= Ve

INTRODUCTION

oooo..o:o.c.couc.o..ooo-oo.n. 1

LINEAR STOCHASTIC SYSTEMS AND
RICCATI EQUATIONS L I B B B I B L B

MATRIX RESULTS .. vvevvcevoconcaccancannnns

Eigenvalue Trajectories .......ccccceee.
Non-negative Definiteness ......c.cccecee

scm RESULTS ..oo.ot....oc..oo-...c:oo..

SYSTEM EXAMPLES

® ® 0 ° 95 00 000 80 e s e 000 e s

Wd NN

11
15

T IR S A SR s A S S AR 22
LIST o/r REFERENCBS O.......‘..I..‘.....‘.l.......... 23 1

APPENDICES
A.
B.

Lwn' Td' md‘wer.hootoao.n..n.-.aoooo

Time Domain Trajectories, Phase Plane
and Closed Loop Pole Locations .......

ii4

24

28




L 4a$ 0 J

e

Table

II.

III.

LIST OF TABLES

E, Wn, Td (the period of oscillation
and % Overshoot as the Function of
a for Example 3...c.ccccccccvcsscscscccse

E, Wn, Td and % Overshoot as the
Function of a for Example 3 with
the State Noise Covariance Equal
to Unity..ccocons S et aletotelelar simie vmleesdnis s siv

£, Wn, Td and % Overshoot as the
Function of a for Example 3 with
the State Noise Covariance Equal

to SI..-......... ----- eees ee 0000 0ceescee

iv

25

26

27

S U




Figure
1.3

1.2

3.4

4.1

4.3

4.4

4.5

4.6

LIST OF FIGURES

The Eigenvalue Trajectories for Equations
(2-23) and (2-24) for the Conditions

(3-1) to (3-5) a =0

® o 00 000000

The Bigenvalue Trajectories for Equations
(2-23) and (2-24) for the Condltlons

(3-1) to (3-5)

a= Lo.oo

The Eigenvalue Trajectories for Equations
(2-23) and (2-24) for the Conditions

(3-1) to (3-5) a = 2

The Eigenvalue Trajectories for Equations
(2-23) and (2-24) for the Conditions

(3-1) to (3-5)

The U-W Phase
(4-12) and

qso,:-

The U-W Phase
(4-12) and
q-O,E:

The U-W Phase
(4-12) and
q.l,E-

The U-W Phase
(4-12) and

g= 0.6, == 0.5.

a =4

Plane Plots for Equations
(4-19) with a=1,d =1,

® © 00 000000000000 00 s

Plane Plots for Bquations
(4-19) witha=1,d4d =1,

O-S-o.-..

Plane Pldts for Equations
(4-19) with a =1, d =1,

100-.0..0.-.o.oooo.oo‘ol.ouoo

Plane Plots for Equations
(4-19) with a = 0.25, 4 = 0.5,

The U-W Phase Plane Plots for Equations

(4-12) and (4-19) with a = 0.2,

-o.s...-..o.ovtacn-

d =0.5, g

= 0.8, =

The Actual State and the Measurement

States with Different a for

Example l....ccccccceccccsccoccccccncans

Block Diagram of Example l.......

Time Domain Trajectories of x; in

Examplﬁ 2.0.....-..-oooo.ooooo-o-ooocooo

29

29

29

29

30

30

30

30

31

31
31

32




™

Pigure
5.4

5.5

S'G

5.7

5.8

5‘9

5.10

.11

5.12

5.13

Time Domain Trajectories of xj
j.nExa.mple3 oooooooooo ;'c’.ooqo.uoooooooo

Closed Loop Pole Locations as a Function
of @ for Example 2....cessscansesossses

Time Domain Trajectories of x,

in Example 3 with

=lc.a|o.‘ll000'000

Time Domain Trajectories of xj3

in Example 3 with

’Iooooo..’loo-oo.o

Time Domain Trajectories of x,

in Example 3 with

-I.ooocoo.o.o.oooo'

Time Domain Trajectories of Xy

in Example 3 with

Time Domain Trajectories of x,

’51.00.-00..000000

>

in Exsmple 3 with Z = 5%...cccvvevesces

Time Domain Trajectories of xi

in Example 3 with

=
.
-

= SI.......QIOOOQOO

Closed Loop Pole Locations as a
Punction of a for Example 3

withs-I.o.‘....l-c.ncoooooo-......-o

Closed Loop Pole Locations as a
Punction of a for Example 3
'iths.SIIQQ.‘.Q.QIQ...Q....I......C.

vi

32
32
32
a3
33
33

33

34

34

34



CHAPTER I

INTRODUCTION

A new class of matrix differential equations has
arisen in the context of Stochastic linear system design.
These equations are nonlinear and are parameterized such that
the classical Riccati equation is imbedded in the class. Be-
cause of this, the new class of equations is referred to as
"Riccati type". The work presented herein is the first
investigation of some of the properties of these equations
and the systems in which they are utilized.

Chapter II contains a summary of the derivation of
these new equations. In Chapter III, the positive definite
and symmetric properties associated with this new class of
matrix differential equations are shown. Chapter IV contains
steady state results for the scalar case. 1In Chapter V, three
numerical examples of linear estimation and control are pre-
sented in which the Riccati equations are utilized as designm

tools. Conclusions and suggestions for further research are

contained in Chapter VI.




CHAPTER II

LINEAR STOCHASTIC SYSTEMS AND RICCATI EQUATIONS

An interesting class of matrix differential equations
arises in the context of determining complete statistical
descriptions of integral gquadratic forms in random processes
generated by linear dynamical systems. These systems operate
on Gaussian-white noise to produce vector valued Gauss-Markov
processes. The derivation of these equations is contained in
(1] and the results are summarized here.

Consider the stochastic linear dynamical system
x(t) = P(t)x(t) + G(L)E(L), (2-1)

where the state x(t)eR" (the n-fold cartesian produces of
the real line) and the noise g(t)eRm. The process £(t) is
assumed to be Gaussian white with zero mean and covariance
kernel.

E{E(L)ET(E)} = Z(&)§(t-1). (2-2)

The initial state for (2-1), x(to), is assumed to be Gaussian
with

E{x(to)} = X (2=3)

O'
and
E([x(t )-x J[x (t )=x "]} = P_; (2-4)
Q Q Q (o] (o]
and (2-1) is defined on a finite interval [to,tf].

2




3
Attached to (2-1) is a performance measure, J, defined

by
te
T T
T = x (tg)Sx(ty) +f X (£)N(t)x(t)dt , (2=-5)

to

where S and N(t) are positive semi-definite. In [1l] Liberty
and Hartwig show that the statistics of J (in particular the
cumulants of J) can be expressed explicitly in terms of a
countable set of matrix variables satisfying simultaneous
differential equations. The particular matrix variables of
interest in this work are the H variables of [l1] which evolve

according to

fi(s,1) = -FT(8)H(8,1)-H(3,1)F(8)-N(8), Belto, tel,

(2-6)
and
f(8,k) = -FT(8)H(8,k)~H(8,k)F(8)
(2-7)
x-1
- jz H(8,9)G(8)Q(8)G(B)HE(B,k-3) Belty, tel
=1 k = 2,3,4,....
with boundary conditions
Hit, k) = S, (2-8)
and
Hit, k) = 0, R 2.3 005 . (2-9)

It is shown in (1] that the kth cumulant of J contains a term

of the form x.H(te,k)Xg.
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The class of Riccati equations of interest in this
work arose in the work of Hartwig [2] in the following way.

Consider a stochastic linear control system
x(t) = A(t)x(t) + B(t)u(t) + G(t)E(t)  (2-10)

where the control action, U(t)eRp, is to be selected such

that system performance

te
J = xT(tf)Sx(tf) +J' [xT(e)Q(t)x (k) + uT(£)R(E)u(t)] dt

t, (2-11)

is good in some statistical sense. In (2-11l), Q(t) is
positive semi~-definite and R(t) is positive definite. It

is well-known that if U(t) is chosen as
d(e) = - R-I(e)B(E)R(E)x(E) , (2-12)
where K(t) satisfies the Riccati equation

K(t) = =R(E)A(t) - AT(E)R(t) + R(£)B(£)R™L ()BT (£)K(t)~-Q(t),

(2-13)
then the expected value of J is minimized and contains a
term that is quadratic in the initial state mean given by
T
xOK(to)xo.
It should also be noted that substitution of (2-12)

into (2-11) and (2-9) identifies

F(t) = A(t) - B(&)R™ T (&)BT (£)K(¢) (2-14)

SR, € S




and

N(t) = Q(t) + RK(£)B(8)R T (&)BT ()R (¢). (2-15)

It was also observed in (2] that under the conditions

of (2-12) and (2-13)
K(to) = H(to,l) (2-16)
Indeed if U(t) had been selected as
-1 m
uit) = =R (E)YR"(L)H((E,L)x(t) (2=-17)

then substitution of (2-17) into (2-10) and (2-12) would

lead to
F(t) = A(t) - B(e)R T(e)BT (£)H(¢t,1) (2-18)

and

N(t) = Q(t) + H(t,1)B()R T (e)BT(0)H(E,1). (2-19)
Substitution of (2-18) and (2-19) into (2-6) yields

H(t,1) = - H(t,1)A(t) - AT(&)H(t,1)
(2-20)

+ B(t,1)B(e)R™Y(£)BT (¢,1) - Q(t)
If one were to form a linear combination of cumulants
of J then such a combination would contain a term of the

form

T -
xo[alﬂ(to,l) + aH(t,,2) + ........azﬂ(to,z)] (2=21)

&5 ot de

iR v
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In [1] Hartwig argues that if one were interested in
selecting u(t) such that several statistics of J would be
affected in a prescribed way then it might be reasonable to

select u(t) as

u(t) = - R-l(t)BT(t)[alH(t,l)
(2=22)
+ aza(t,Z) R azH(t,z)]x(t).

He subsequently demonstrated by several examples that
this conjecture was reasonable and good performance could be
achieved in this sense. Substitution of (2-22) into (2-6)
and (2-7) yields the class of Riccati equations of interest
in this work.

For this initial study of the properties and character-
istics of these egquations only the first two equations are
studied. Without loss of generality ey is selected to be

1 and as is replaced by a.
f(t,1) = =-AT(t)H(t,1) ~ H(t,1)A(t) - Q(t)
-aza(t,z)s(t)n'l(t)sT(t)a(t;z) (2=23)

+ H(e, B R (e 8T ()HE, )
and
f(t,2) = -AT(£)H(t,2)-H(t,2)A(t)+H(t,1)B(t)R™ - (£)BT (£)H(t,2)
+ H(t,2)B(&)R™ Y (£)BT (&) H (¢, 1)
+ 2aH(t,2)B(&)R™ Y (e)BT (£)H(t,2)-H(t,1) 2 (L) H(E, 1),
with the boundary conditions (2-8) and (2-9). (2-24) ;

et




CHAPTER III

MATRIX RESULTS

III-A Eigenvalue Trajectories

For a first look at the properties of (2-23) and (2-24)
let
[tO' tfl = [o, 10] (3-1)

and select the coefficients

-1 1 0

A(t) = 0 0 0 |, (3-2)
0 -1 -1

Q(t) = 0 (the zero matrix), (3=3)

B(t) = R(t) = Z(t) = I (the identity matrix), (3-4)

and final values
3(10.1) bl 1' (3‘5)
H(10,2) = 0. (3=-6)

Note that the Pair [A,B] is controllable. Figures (3.1) to
(3.4) contain the trajectories of the eigenvalues of H(t,l)
and H(t,2) for a = 0, 1, 2 and 4 respectively. These

eigenvalues of H(t,l) are designated by Ail(t), i =1, 3, &

-
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Those of H(t,2) are correspondingly designated by kiz(t),
i=1, 2, 3. Note that for small values of a, the trajec-
tories are well-behaved. 1Indeed, selection of an arbitrarily
large time interval will result in steady state solutions in
negative time. However, for larger values of &, it appears
that steady state solution may not exist and the trajectories
may be unbounded on the half line.

Another interesting property is that the trajectories
are non-negative for all t. It is interesting to note that
this is a general property of (2-23) and (2-24) which can

easily be shown.

III-B Non-negative Definiteness

It is claimed that the matrix solutions to (2-23) and
(2-24) with the final values (2-8) and (2-9) are positive
semi-definite (non-negative definite) for all t. To see
this select any e:Rn, e #0 (the null vector). Place H(t,2)

in a guadratic form in e as

eTﬁze = = QTA(t)Hze - erﬂzAT(t)e
+ QTHIB(t)R-l(t)BT(t)Hze
+ eTH,B()R T (£)B” (t)H e i

T =X casa? G, o
2ae HZB(t)R (t)B (t)Hze e Hl-Hl e

+

where H., means H(t,2) and H, means H(t,1l).

2 1




It is easy to see that if R(t), Q(t), Z(t) and the
final value are symmetric then the matrices H(t,l) and H(t,2)
are symmetric for all t. If the symmetric H is ever non-

negative definite then a non matrix Hy can always be found

such that
B, =8 A, (3-8)
Then
e’u, e = THJA, e = [[Hje[|’ (3-9)

which is equal to zero if and only if §2e is the zero vector.
Now consider the 32 trajectory backward in time from t = tf.

Initially (finally) H(tf,2) is the zero matrix so from (3-7)

eTH(tf.Z)e s -eTs‘:'.(tf)Se <0 (3-10)

since E(tf) is non-negative definite. This means that as the
trajectory of Hz is followed backward in time from t = ter

H, initially becomes no less negative. Under reasonable

2
smoothness assumptions on the coefficients of (2-24), the
solution, Hz, is continuous implying that the scalar quantity
QTB(t,Z)e is also continuous. Now consider two points in

£, < &, It follows that in order for eTH(t,Z)e to be
negative, given that eTH(tz,Z)e is positive, there must exist

time

a t3 with tl < t3 < tz such that

.Tu(t3,z)e - 0, (3~11)

v~z B RO I SR LA
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But from previous arguments applied at t = tf, whenever (3-11)

is satisfied

eTH(t3.2)e < 0. (3-12)

Thus eTHZe equal to zero is a reflective barrier which

cannot be penetrated. Thus Hz is always non-negative definite.

Similar arguments will also show that Hl is non-negative

definite.

it
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CHAPTER IV

SCALAR RESULTS

From this point on the sense of time in egquations
(2-23) and (2-24) will be reversed. This is equivalent to
negating the right sides of (2123) and (2-24). With this
change, the equations become forward time eguations and
the content of this chapter is devoted to examination of
steady state solution guesticns for scalar Hl and Hz with

constant coefficients. Rewriting (2-23) and (2-24) as scalar

forward time equations with constant coefficients, one ob-

tains

s - 2

81 = ZaHl +<:dH2 - dHl + q, (4-1)
and

§. = 2aH, - 2dH.H, - 20dHZ + =82 (4=2)

2 2 12 2 s
where for simy ity

4= bt , (4-3)

Define new dependent variables, V and W by

W4 Hje 22 (4-4)

and

v & azc‘z‘t. (4=5)

Substituting for Hl and Hz in (4-1) and (4-2) yields

2 2 1(,2 e-4at)e2at

W = (=dW° +d°av° + g ' (4-6)

11




and

¥ = (-2dVW - 2dav? + T wl)e?3t,

Define the new independent variable x by

’

t
x(£)8 j e’2%ay =§l;[ et _11.
o
Then
eZat = 2ax(t) + 1,
next let
W' = dW/dx = $8 (dt/dx) = We 3%
and,
v

v* = dv/dx = (dt/dx) = Ve

Q
(a3

2at

Now, rewrite (4-10) and (4-11l) in the form

2 2 avrd

W' = =dW”~ + a®dv® + g(2ax + 1)

V' = -2dVW - 20dv> + ZW?

subject to the initial conditions

-2

W(0) = W(x) = al(c)e"zal -5 (0) = s,
o ’

V(0) = V(x) = az(c)e‘“‘L =H,(0) = 0
L-o =0

and

Define a new dependent variable U by

ui v/w

12

(4=-7)

(4-8)

(4-9)

(4-10)

(4-11)

(4-12)
(4-13)

(4-14)

(4-15)

(4-16)

S e e e

e
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Then ]
U(0) = v(0)/W(0) = 0, (4-17) l
and
U = UW. (4-18)
It follows that
1
Ut = (-1/W) [2adu’w - zw? + aw’u
+ a2avdw? & qui2ax + 1) "2 (4-19)

Equations (4-12) and (4-19) with boundary conditions (4-14)
and (4-17) provide a mechanism for examining steady state
properties of (4-1) and (4-2). Letting S = 1, Figures (4.1)
through (4.5) contain U-W phase plane plots for several dif-
ferent values of a, 4, g and =. Interpfetation of these
plots is enhanced by observing that (Z/4d, W) with W arbi-
trary is an equilibrium point of (4-12) and (4-19) in the
V-W phase plane if a = 44/:=.

On all of these plots for 0 < a < 44/, the phase
plane trajectories approach W = 0 implying the existence of
a steady state solution for Hl. The value of U approached
yields the corresponding steady state solution for Hy
since

U= 52/31 ] (4-20)

For @ = 4d/= no steady state is reached for Hl but

the time trajectories of Hl and H, are in proportion as

Y
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t - » by relation H(t,2) + (2/4d)H(t,1l). That is, U ap-
proaches =/4d. For a > 4d4/3, numerical instability
occurs.

Thus it may be concluded that steady state solutions
to the Riccati equations studied herein may exist but only

for limited ranges of the parameter a.




CHAPTER V

SYSTEM EXAMPLES

Now that some of the properties of the Riccati equa-
tions have been observed, it would be interesting to see
the properties of systems that contain these Riccati equa-
tion solutions as parameters. In this chapter one example
of linear estimators and two examples of linear feedback
controllers that contain Riccati equation parameters are
presented.

In both example classes, the gains that are ncrmally
a function of the classical Riccati equation are replaced
by gains with the term replaced by the weighted sum of the
two Riccati solutions studied herein. The weighting param-
eter is, of course, the parameter a, that appears in the
actual equations. Note that whena= 0 these new classes of
contrcllers and estimators reduce to the classical cases.
The example studies here are carried out primarily as a

function of the parameter a.

Example 1: Filtered estimate of nonlinear process

Consider the nonlinear system
x(t) = sin(x(t)) , (5~1)
with measurement

yi(t) = x(t) + 8(t) , (5=2)

15
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where 8 (t) is zero-mean and white with unity covariance, The
initial condition for (5-1) is random with assumed mean of

zero and unity covariance.

In this example it is desired to estimate x(t] based
upon observations y(t)l, 0 £ T £ t. To accomplish this the

system (5-1) is first linearized to give a linear model
() = x(&) , (5=3)
y(E) = x(£) + 8(L). (5~4)

Based upon this model, which is a good approximation
only for small x(t), a linear filter is designed utilizing
the classical structure shown in Figure (S.1) with the

filter gain, P(t), selected as
P(t) = Hy(x) + aHz(t) (3=31}

where Hl(t) and Hz(t) are solutions to

H, = 2H. + 2H2 - g2 (5=6)
1 5 " A
and
§ = 2H, - 2H.H, - 2aHZ + H? (5=7)
2 2 1°2 2 o
with
- -8
Hl(O) ) (5=-8)
and
(5=9)
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Note that (5-6) and (5-7) are the duals in the traditional
control/filtering sense of (2-23) and (2-24). There is one
subtlety, however, in that there is no dual for the Z(t)
coefficient in (2-24). Consequently it becomes a design
parameter and has arbitrarily been set to unity in this
example. It should be noted that if this coefficient is
set to zero, then Hz will be identically zero and solution
of (2-23) and (2~-24) for any value of a is eqguivalent to
solution with a = 0. It is interesting to note that the
steady state value for x(t) in (5-1) is 7 and so (5-3) is
not a good approximation. Despite this the linear filter
performs quite well, 1In Figure (5.2) the actual state
trajectory evolving from a randomly selected initial condi-
tion of X, = 0.8 and filtered estimate trajectories for

a= 0, 1, and 2 are shown. Note that for a« = 0 which is the
classical Kalman filter, the estimate is not as good as for

the cases @ = 1 and 2. In these cases, however, there tends

to be more oscillatory behavior,

Example 2: A Second Order Linear Regulator
Control System

In this example consider the linear system

x(t) = Ax(t) + Bu(t) (5=10)

with
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Q1
A = [ ] (5-11)
0 O
0
1
and { 1 }
x(0) = 1 (5=13)

The control action u is selected to be

u(t) = - R‘laTtal + B, ]x (t) (5-14)

where Hl and H2 are the steady state solutions to equations

(2-23) and (2-24) with

1 ® 3
B [ } (5-16)

and

R = 1, (5=17)

In Figures (5.3) and (5.4) the state trajectories
of the closed loop system are shown fora= 0, 5 and 9. This
example first appeared in [2] where the system was noisy
and I was the néise covariance. In [2] control laws similar

to those here were selected, but only over a finite time
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interval. It was demonstrated in [2] that these controllers
were good in a second order statistical.sense. The guestion
addressed here is that of the asymptotic stability of (5-10)
under the feedback (5-14). After all, in order for the con-
trol laws suggested by Hartwig in [2] to be acceptable, they
must not only have good statistical properties, but should
also stabilize the system.

Note again as in Example 1 that when a¢ = 0 the feed-
back gain collapses on a classical structure. In this case
it is'the classical linear regulator which is known to be
asymptotically stable. As can be seen from the state trajec-
tories in Figures (5.3) and (5.4). The closed loop system
is also stable for the non zero values of a. 1Indeed, it
appears from these time domain pictures that for larger
the system is more stable than for the case a = 0.

To obtain a complete picture of the stability of the
feedback system look at Figure (5.5) where the loci of the
closed loop poles of the system are plotted in the complex
plane as a function of a.

Table I contains several classical second order system
and % overshoot as a function of a. It

parameters £, w_, T

n d
is most interesting to note that for ¢ > 9 numerical insta-
bility arose in attempting to find steady state solutions

to the Riccati equations so instability of the closed loop

control system was never attained.

IRy - * SRR S —
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Example 3: A Third Order Linear Regulator
Control System v

A last example of third order will again demonstrate
similar stability properties as a function of a. The system
is the two-vehicle problem described in [3]. That is a

linear system with

-1 0 0
A= 1 0 =1 (5-18)
0 0 =i
and
1 0
B = 0 0 (5-19)
0 1

The feedback control law is again chosen as in (5-4) with

0 0 0
Q= ¢ 10 0 (5=-20)
0 0o o0
1 0
R = [ ] (5-21)
0 1
and : chosen first as
3 9 | 0
: = 0 i 0 (5-22)
o 0 1 ‘
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State trajectories for this case with

-2:§
x(0) = | —-4.3 (5-23)
0

appear in Figures (5.6), (5.7) and (5.8) for a =, 0.7 and

122 Changing = to
5.0 0 0
E = 0 $.0 © (5-24)
0 0 S.0

yields the trajectories in Figures (5.9) , (5.10) and (5.1l1).
Corresponding pole loci for the closed loop systems are shown

in Figures (5.12) and (5.13) with accompanying parameters in

Tables II and III.

e R — R



CONCLUSIONS

Future research on the new class of Riccati equations
should address the gquestion of global existence of solutions.
Numerical behavior of the equations indicates that global exis-
tence may be subject to the value of the a parameter. The
specific relationship between open-loop system properties, the
Riccati equations and closed loop system performance needs to
be analytically explored. The relationship between the value
of a and the relative stability of a closed loop control system
designed via these equations is only one example of this.

A detailed study of estimators (filters in particular)
designed via the new equations needs to be carried out. Whe-
ther or not the properties cbserved here, in nonlinear applica-
tion are general, is a completely open guestion.

A full understanding of the duality between the fil-

tering and control contexts needs to be developed.

22
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APPENDIX A

£, Wn, Td, and $% Overshoot
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TABLE I

£, Wn, Td (The Period of Oscillation) and % Overshoot

as the Function of a for Example 3

25

. A ’ A2 § B Td overZhoot
| ISR ki

0.0 [-0.8660 +0.5008j |0,866025| 1.0 12.57  |0.43

0.1 |-0.8941 *0.44773 |0.89410a| 1.0 14.03  [0.19

0.2 |-0.8210- *0.3894j |0.903400) 0.9087 | 16.13 [0.13

0.3 [-0.9470 *0.3211j [0.94700a| 0.9999 | 19.56  {0.095

0.4 [-0.9723 ~ *0.2335j [0.972350( 0.9999 | 26.90  [0.0002

0.5 |-0.9971 *0.0747; |0.997198] 0.9999 | 83.99 [6.43x10""]

0.6 |-0.8122 ,-1.0216 |1.006580

0.7 |[-0.7393. ,-1.0459 |1.015000

1.0 |-0.6180 .-1.1179 |1.044220

2.0 |-0.4353 ,-1.3662 [1.168000

3.0 [-0.3364 .-1.6540 [1.334000

4.0 |-0.2652 ,-2.0175 |1.560000

5.0 |-0.2077 ,-2.5110 |1.88000Q

6.0 |-0.1589 .-3.2418 |[2.368500|

7.0 |-0.1134 .-4.4629 |3.2154Q0

8.0 [-0.0721 .-6.9631 |4.961820

9.0 (-0.0318 ,-15.085 [0.91312




TABLE II
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£, Wn, Td and % Overshoot as the Function of a for

Equal to Unity

Example 3 with the State Noise Covariance

a A-| . A g wn Td :
overshoot

0.0 {-2.19800 *1,40900j/0.8418 |2.6108 4,460 0.7400
0.1 |-2.43550 *1.48530j[0.8537 |2.8520 4.230 0.3800
0.2 |-2.63018 *1.51330§/0.8667 |3.0344 4.150 0.4300
0.3 |-2.80475 ¥1.49225j(0.8828 (3.1770. | 4.210 0.2700
0.4 |[-2.96051 *1.40080j [0.9039 |3.2752 4.490 0.1300
0.5 |[-3.07645 %1.17901j[0.9337 [3.2946 5.330 0.0275
0.6 |-3.01460 %0.55609.)0.9834 |3.0654 |62.255

1.77x10732




&, Wn,

Example 3 with the State Noise

TABLE III

Td and % Overshoot as

27

the Function of a for

Covarinace Equal to 5I.

p
b Al A2 § g i overshoot
0.0 | -2.1980 *1.4090j |0.841870 [2.610800 | 4.460 |0.74000
0.1 | -3.0760 ¥1.17905 |0.833759 [3.294200 | 5.330 |0.02750
0.11 | -3.0930 *0.9651j |0.954600 |3.240000 | 6.509  [0.00424
0.12 | -3.01a5 *0.5560j |0.983410 [3.065300 {11.300 [4.01x107°
0.122 | -2.9586 10.4000; [0.990784 |2.985517 [15.700  (8.098x10°|
0.123 | -2.9106 f0.2878j |0.895146 |2.924790 [21.830 |1.59x10°'2
0.124 | -2.7920 *0.05233 |0.999820 |2.782490 | 1.2x10 |1.94x157!
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APPENDIX B
Time Domain Trajectories, Phase Plane and

Closed Loop Pole Locations
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Eigenvalues

Eigenvalues

1.0

0.5 1

10.0

0.0 5.0
‘t

Fig. (1.1) The eigenvalue
trajectories for equations
(2-23) and (2-24) for the
conditions (3-1) to (3-5)
a = 0.

0.0

Fig. (3.3) The eigenvalue
trajectories for equations
(2-23) and (2-24) for the
conditions (3-1) to (3-5)
a = 2.

Eigenvalues

]

Eigenvalues

1.0 1

o

3.

1.5

29

w

0.0 5.0 10.

Fig. (1.2) The eigenvalue
trajectories for equations
(2-23) and (2-24) far the
conditions (3-1) to (3-5)
a = 1. ]

0 Ault

0.0 >.0 10.0

Fig. (3.4) The eigenvalue
trajectories for equations
(2-23) and (2-24) for the
conditions (3-1) to (3-5)
a = U,
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az=4.0
(0.25,0.81)

0. 51

CEO I

U
Fig. (4.1) The U-W phase
plane plots for equations
(4~12) and (4-19) with a=1,
d=1, q=0, ==1.

1.3 (0.25,1.19)
1 =4.0

0.654

0.0 0.5 1.0

U
Fig. (4.3) The U-W phase
plane plots for equations
(4-12) and (4-19) with a=1,
d=1, q=1, ==1.
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.0
-, =8.0
(0.125,0.81)
” .0
2.0
=4.0
'0.5¢ a=6.0
0.5 T.0
8)

Fig. (4.2) The U-W phase
plane plots for equations
(4-12) and (4-19) with a=1,
d=1, q=0, = =0.5.

2.0,

(0.25,1.69)

- T R
u
Fig. (4.4) The U-W phase
plane plots for equations
(4-12) and (4-19) with
a=1, d=0.5, q=0.6, = =0.5.
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3
2.0} (0.25,2.2)
x(t),x(t)
TS 9
&(t)(a=0.0) 4
x(t)@=2.0)
%(t)(a=1.0)
3.75 ¢
V\f—\
(t)
0.0 0.5 1.0 0.0 3,0 6.0 9.0 12,0
g Tt
Fig. (4.5) The U-W phase Fig. (4.6) The actual state and
plane plots for equations the measurement states with
(4-12) and (4-19) with different a for Example 1.
a=0.2, d=0.5, q=0.8,
g =0.5. .
Nonlinear Process Linear Filter

P

%(0) r(“ﬁ 0 1
%(t) é x(t)] X i é(glgl\ B(t)

© O p(t 12

sin()

Fig. (5.1) Block Diagram of Example 1
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Fig. (5.3) Time domain
trajectories of %y in

Example 2.

¥
m
0.6
a=0
+ 0.3
Re —t - < 0.0
-15.0 =-10.0 -5.0
t+-0.3
-0.6

Fig. (5.5) Closed loop
pole locations as a
function of a for
Example 2,

x2(t)
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.0

Fig. (5.4) Time domain
trajectories of X, in

Example 3.

Fig. (5.6) Time domain

trajectories of x

Example 3 with 3

in
Ts
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Ra(E)
1.0 2
1
0.0 §.0 5.0
* t
-1.0!
-2.01
-3.01
-4.04
-5.0
Fig. (5.7) Time domain Fig. (5.8) Time domain
Trajectories of x, in trajectories of X in
Example 3 with 3="1I. Example 3 with = X I.
5.0
-s.ol
Fig. (5.9) Time domain Fig. (5.10) Time domain
trajectories of x; in trajectories of x, in
Example 3 withz = SI. Example 3 with =="SI.
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xa(t)
5.0 .
s 1.6
* a=0.0
. 0.8
SE e, S 0.0
T s W S 5.
r-0.8
% | -1.6
Fig. (5.11) Time domain Fig. (5.12) Closed loop
trajectories of xj3 in pole locations as a
Example 3 withZ = SI. function of ¢ for Example 3
with 2 = I.
In 1
a=0.0
. 0.8
Re " i 0.0
-10.0 -5.0 - -1.0
.-0-8
1-1.6

Fig. (5.13) Closed loop pole
locations as a function of a
for Example 3 with Z = SI.




