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I . SUPtIARY

Research performed under Contract N00014-75-C-0779 was completed March 3,

1978. This research has explored probabilistic and statistical structures of

the Linear-Quadratic—Gaussian class of control and estimating systems for pur-

poses of development and enhancement of design procedures. En route a complete

theory of “performance anal ysi s” has been developed for this probl em class.

Performance analysis allows the system designer to see the quality of a

given design In a complete statistical sense. As such , it becomes part of a

computer-aided design procedure but, unfortunately, does not explicitly tell

the designer how to modify the design to achieve better performance. Thus, the

research effort has recently focused on the “selec tion ” aspect of design .

A complete theory of control selection has not been established In this

researc h effort; however , significant progress has been made toward a complete

theory. In particular , formulas for statistics of LQG design performance mea-

sures for both continuous and discrete time systems have been derived. Al so,

a control selection technique based upon this formulation has been developed .

This control selection technique, when coupl ed with the performance analysis

technique , becomes an effective design procedure for stochastic control systems.

An inherent property of the resulting designs is that they all contain estima-

tors in their feedback structures and exhibit a separation property.

Two interim technical reports were distributed on the performance analysis

and control selection aspects. These were:

[1] S. R. Liberty and R. C. Hartwig, “On the Essential Quadratic Nature
:~ of LQG Control-Performance Measure Cumul ants” , Interim Techn ical

Report-Contract N00014-75-C-0779, Texas Tec~ Un iversIty, Augus t 1975 ,
and

[2] R. C. Hartwlg, “Design of Stochastic Linear Control Systems According
to Cumulant Based Performance Criteria” , Interim Technical Report-
Contract N000l4-75-C-0779, Texas Tech Un ivers ity, May 1976.

Report [1] also appeared under the same title in

~~~~~ ~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~~~~~~



V. V

[3] Information and Control , Vol . 32 , No. 3, November 1976 .

Work related to [1] and portions of [2] have appeared , or w i ll  appear , in

[4] J. M. Brown , R. C. Hartwig and S. R. Liberty , “On the Design and Per-
formance Anal ys i s of L inear Stochastic Regula tors ” , Proc. of the 7th
As iloma r Conference on Circuits and Systems, pp. 563-566, November
1973,

[5] R. C. Hartwig and S. R. Liberty , “A New Class of Statistical Perfor-
rnance Criteria for Stochastic Linear Control Systems” , Proc . of the
IEEE Con ference on Dec is ion an d Con trol , pp. 1136—1141 , Novem ber
1976,

[6] 5. R. Liberty , “Performance Anal ysis of Stochastic Linear Control
Systems: A New Viewpoint” , Proc. of the International Forum on Al ter-
natives for Multivariabl e Control , pp. 79-86, October 1977,

and

[7] S. R. Liberty and R. C. Hartwig,~~~esign-Performance-Measure Statis-tics for Stochastic Linear Control Systems~ to appear in IEEE Trans-
actions on Automa tic Control , Vol . AC-23 , No) 6, December 1978,

which is incl uded here as Appendix A.

Also , the following theses on these top ics have been compl eted :

[8] R. C. Hartwig, “Cumulan ts of an IQF Differential Equations ” , Mas ter
of Sc ience Thes is, Texas Tech University , December 1973,

[9] J. M. Brown, “A Computer-A ided Design-Analysis Technique for Stochas-
tic Linear Regulator Problems” , Mas ter of Sc ience Thes i s, Texas Tech
University , August 1973,

and

[10] R. C. Hartwlg, “Design of Stochastic Linear Control Systems According
to Cumulant Based Performance Criteria ” , Ph.D. Dissertation, Texa s
Tech University , May 1976.

Another thesis was completed on additional topics involving Riccati equations

arising In cumulant based design procedures for both control and estimating sys-

tems. This work,

[11] M. L. Yao ,~ ’Initial Studies of Riccati Equations Arising in Stochas-
tic L inear System Theory~ Mas ter of Sc ience Thes is, Texas Tech Uni-
versity , December 1977,

Is Inclu ded here as Appendix B. A second Ph.D. dissertation on optima l cumu-

lan t control sel ection In discrete time systems is in the final stages of prep-

aration and will appear as an interim report on Contract N000l4-78-C-0443.
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ABSTRACT - Formulas for statistics of the standard integra l
quadratic performance measure used in stochastic
linear control system design are derived . The
formulas are expressed in terms of dynam ical
variables under the usual assumptions on noise ,
plant , and admissibility of control . All of
these dynamical variables are expressed as
linea r transformations of plant state estimates.
The practicality of this work , which Is directed
toward the establishment of new , statistically
based design procedures for stochastic linea r
systems, is demonstrated by example.
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I. INTRODUCTION

Once a state model for a stochastic linear system is obtained ,

the analytical aspects of designing a feedback controller can be

conceptually dichotomized . We refer to the first part as “control

selection ” and to the second as “performance ana lys i s. ”

In the control selection part the desi gner chooses a per formance

measure that reflects a priori design specifi cations. Statistical

indices associated with this performance measure are then specifi ed

and , finally, a controller is attained via optimization of these in-

dices.

Performance analysis Involves determination of how a spec i fic

controller behaves . This is accomplished by computing statistical or

probab ili stic descriptions of performance measures that , in general ,

are different than the performance measure chosen in the control

selection part of the desi gn procedure . For exampl e, these measu res

may be selected to give the designer specifi c Insight Into how well

the controller is regulating or how much control effort is being ex-

pended .

For certain classes of stochastic linea r control systems the per-

formance analysis problem has been solved ; see [7] and [14]. However ,

the control selection aspect of the design problem has only been solved

In special cases. For the class of systems treated In this paper ,

namel y the Linear-Quadratic -Gaussian (LQG) class, a feedback contro l-

ler that minimizes the mean of an integra l quadratic performance measure :
I

_ _ _  - 

~~~~~~~~~~~~~~~ 

V -



— .  -V. — - -

has been found [16]. An open-loop controller tha t minimizes the variance

of an integral quadratic performance measure subject to a constraint on

its mean has also been discovered [9], [10] , [12] , [13], but feedback

solutions in the context of performance measure statistics beyond the

mean have not surfaced . The reason for this is a lack of tractable

hi gher order statistical descriptions of the performance measure .

In this paper we present the formulation of a complete set of

statistics of the integral quadratic performance measure normally em-

ployed in stochastic- linear control system desi gn. These results are

an outgrowth of work initiated a littl e over ten years ago by Sam [11].

Our formulation is expressed in terms of dynamical variables related to

an estimate of the plant state and should lead the way to new classes of

feedback control structures in the stochastic linear context.

We have attempted to keep our notation as compatible as possible

with that in the tutorial paper by Tse [15] and strongl y reconinend tha t

this reference, along with [8], be primarily used by the reader. Our

presentation is formal so no special mathematical skills should be re-

quired for a fundamenta l understanding of the material .

In Section II we describe the system, the per forma nce measure and

the control objective . Section III contains the development Of a complete

statistical descri ption of this performance. An example of contro l system

design utilizing the new formulation Is presented in Section IV.

-2-
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II. THE SYSTEM DESCRIPTIO N AND PERFORMANCE

Let R~ denote the p— fold Cartesian product of the rea l line , and let

I denote the real line interval [t0, tfj. We wish to control the noisy

linear system described on I by

dx (t) A( t )x ( t) + B( t)u( t) + ~(t) (1)

and

z( t ) = C( t )x ( t ) + e( t ) ,  (2)

where the state x(t) cR~, the control action u(t) CRm , and the observation

z(t) CRr . The initial condition for (1), x(t0), i s assume d to be Gauss ian

wi th mean

x0 
= ECx(t0)} (3)

and covariance

EC[x( t0)-x0][x T(t0)-x~]} (4)

w here (T) denotes matrix transposition . The state process noise, ~~, and

the observation noise, 0, are zero-mean Gaussian—white wi th

E{~(t)e
T(T)} = 0, t,TcI , (5)

E C[ x ( t 0 ) -x 0]~
T ( t ) }  = 0, tel , (6)

E{[x(t0)—x 0]O
T(t)} = 0, tel , (7)

E{~~ ( t )~~
T

( T ) }  = E(t)’$(t-t), t , T C I , (8)

and

E{e(t)eT(T)} = ® (t)~(t—t), 
t,rel , (9)

—3 —
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where ~(t) and e(t) are positive semi -definite and positive definite , respectiv~1y,

on I.

We require that the control action , u , be a causal function of the ob-

servation . That is ,

u ( t )  = ~(t , z (r):Tc[t
0
,t ) )  t~I, (10)

where ~p satisfi es certain technical assumptions stated in [15]; also

see [16]. All matrix functions on I and the mapping q are assumed to

be smooth enough to guarantee mean-square continuity of the state process on 1.

For desi gn purposes we define a “desi gn-performance -measure ”

t
J ~ xT(tf)Sx(tf) + f  f [x T(t)Q(t)x(t) + uT(t)R(t)u(t)]dt , (IT )

to

where the terminal penalty wei ghting , S, is syrmietric arid positive semi—

definite as is the weigh ting Q(t) on I. The weighting R(t) is syn~netric

and positive definite on I , and both Q(t) and R(t) are continuous on I.

These weighting matrices are given values by the designer that reflect

a priori design specifications involving the relative importance of state

regulation and control effort. The design objective is to choose u

i n (10) so system performance i s “good ” i n some sense.

The functional , J , assigns a non-negative real number to each sample run

of the control system with small values implying good performance , However ,

the question of quality of performance is multiply clouded . First , J is random

so it is only meaningful to refer to J in a statistical or probabilistic sense.

Second , since J is the sum of terms representing measures of state regulation

V - 
-



and control effort, the individual quality of these measures is not apparent in a

broad statistical description of J. We will not address these subtlet ies here ,

but will concentrate on obtaining a statistica l description of J that might be

used as a basis for selection of control action. In Section IV , the concepts of

control selection and performance analysis are demonstrated by example.

4



III. A COMPLETE STATISTICAL DESCRIPTION OF J

Let ~ be the sigma-a l gebra induced by the observation

When ~ = tf we will write F without a subscript. We will now generate con-

ditional statistics of J . Expand the process modeled by (1) in an orthonorma l

series,

x(t) ~ x~ q, (t), t~I , 
- (12)

i—i i

where the xi ’s are scalar random var iabl es gi ven by

t
= xT(tf) S~~(tf) + f f  

xT(t)Q(t)~~(t)dt , Vi , (13)

0

and the orthonormality constraint on the nonrandom , vector-valued ~1 ’s is

given by

t
~~(tf)S~~(tf) + f ~ (t)Q(t)~b.(t)dt =o , Vi , j .  (14)

to

In addition , we require that the xi’s be conditionall y uncorrelated , that is

E{[x~-m~][x~—m~]IF } ~~~~ 
Vi , i, (15)

V 
where m1 is the conditional mean of x~ given by

= E(xT(tf)IF } S$i(tf)

t

+ if E(xT(t)iF}Q(t)~i(t)dt, 
Vi , j. (16)

to

4
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A necessary and sufficient condition for ~l5) given (13) and (14) is

that and ~ j satisfy

t

= .rf r(t,r)Q(T)
~i

(T)dT + r(t~tf) S4~ (tf)~ tcl, Vi , ( 17 )

0

where ~ is the smoothed-estimate, error-covariance kernel of the state

process. That is , let the smoothed estimate of x (t) be denoted by

~(tIt f) 
= E{x (t)IF}, tcl , (18)

Then r is given by

r(t,T) = E{[x(t) - x (tltffl [xT(.r)_ ~
T (rl t f )J~F} t,r~I. (19)

As a consequence of the linear-Gaussian assumptions of Section II and the

techn ical assumpti ons on 
~
p

r(t,T) = E{r(t,t ) }  . (20)

That is, r is nonrandom implying that each xj i s nonrandom .

Under the assumptions we have made, J is finite with probability one;

see Doob [1]. It follows that the series in (12) converges in the square

In tegrable sense. Thus,

tf
j  ! x2 + i uT(t)R(t)u(t)dt , (21)

i—i i to

wi th probability one; see Kolmogorov and Fomin (5].

—7—
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Since x i s conditi onal ly Gaussian each x~ i s conditi onall y Gaussi an.

L But , we have forced the x1 ’s to be conditionally uncorrelated , thus they are

conditionally i ndependent as are thei r squares . The conditi onal characteri sti c

function of each x~ term in (21) is of the noncentral chi-square type given by,

CX2IF
(iw) = ~~~~~~~~~~~~~~~~~~~~~~~~~ (22)

The conditional characteristic function of J fol l ows as ,

t
CJIF (iw) 

[ ~ (1—2wX )
~~

] • exp[jw ff uT(t)R(t)u(t)dt
i—i I to

+ ~ j~m
2(l_2JwA ~Y

’]. (23)
i—i i

In our previous work [6], [7 ] we have observed that in the Linear—Quadratic-

Gaussian class of systems the second characteristic function generates trac-

table statistical forms. The second conditional characteristic function ,

is defined as the natural l ogarithm of CJIF~ 
that is ,

P,j~ F(Jw) ~ ln(CJIF (jw)]. 
(24)

The formal MacLaurin series representation of TJ (F is

= 

~ 
K IIF (25)

where the coefficients K j I F are called conditional cumulants . Utilizing (23),

it can be easily shown that the first conditional cumulant of J is given by

—8—
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1IF 

= 

~~ 
+ 
~~ 

m2+j~ u
T(t)R(t)u(t)dt , (26)

while the remaining conditional cumulants are of the form

K
k I F  

= (k_l )~2
k
~ 

‘

~~~~ ~ 
+ k!2k~ ~~~~~~~ ~~~~ k > 1 . (27)

Although the conditional cumulants as given by (26) and (27) are conlplete in

the sense that any statistic of J can be derived from them, they are not in an

attractive form for the control system designer since they are not expressed in

terms of system variables. To accomplish this we must attack the series ex-

pressions in (26) and (27). The first step is to define “iterated kernel s”

• (t ,t) ~ r(t,t) (28)
and

r~~ (t , r )  ~ r(t, tf) sr ~~~~~~~(tf , r)

+ 

~ 
r(t,~) Q(a)r~~~~(~,t) da, k > 1. (29)

It can be inductively shown using (14) and (17) that

= 

~~ 
A~~ 1

( t ) ~~(T). (30)

:1 
It follows that the expression , , can be written as 

V

= Tr[Sr~~~(tf~tf) + if Q(t)r~~~(t,t) dt], k~~l , (31)

0

—9—
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where Tr [•] denotes the trace of the enclosed matrix. Utilizing (16), (18)

and (30) it fol l ows that

1~1m~X~~
1 

= 
~
‘T(t It ) ~~~~~ (tf~tf) S~(tfIt f)

~ ‘k l ’
+ xT(tflt f)s I~ 

- 

‘(tf~t)Q(t)~ (tlt f
) dt

0

+ ~f ~(ttt )Q(t) r~~~~(t , t )dt Sx(t I t)
t f f f
0

t t
+ jf 1f ~

T(t~tf)Q(t)r
(k l)(t,T)Q(T)~~TItf)dTdt , k>l. (32)

to t0

For the case, k=1 , it is easily seen that

*

t -

+ ~
T
(tI t )Q(t)~(tIt )dt (33)

Consider the last term In (32) and note that it contains a syninetric (in

1 : argument) integrand . Therefore it may be rewritten as

_ _ _ _  

-

‘ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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~: 
~~

T
t1tf Q t~~~~

1 t,t Q T n 1 tf~~Tdt

t t V

= 2 f f~
T(tIt )Q(t) f~~

(k_l )(t,t)Q(T)~(T~t )dtdt (34)
t t

0 0

Define the new n-vector valued variab .le

k l
r 

- 

(t~T)Q(r)~ (Tl tf)dT (35)

and note that

lk_l (to) 
= 0. (36)

The conditional cumulants can now be written as

= ~
T(t It ) S~(tfjtf) +

+ uT(t)R(t)u(t)]dt (37)

t
+ Tr[SI’(tf~tf) + if Q(t)r(t,t)dt],

to

and

K
kIF *k!2

k_
~[~

T(tfItf)5r
OC_fl(tf,tf)5~(tflt f) 

-

+ 2~ (tflt f)Snk_l (tf) + 2 i~ ~ 
(tlt f)Q(t)nk_ l (t)dt]

to

k i  (k) tf (k’+ (k-l)!2 
- 

TrESr (tf~tf) + / Q(t)r ~
‘(t,t)dtJ , k > 1. (38)

to

—11— 4
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Equations (37) and (38) provide us with the conditional cumulants of the

design-performance measure , J, expressed in terms of the smoothed esti-

mate of the x-process and the corresponding error covarlance kernel .

Any statistic of J can be expressed in terms of the conditional cumulants

via their relationship to conditional moments. This relationship is of

the same form as (42) bel ow. For example , denoting a cumulant of J by

Ck~ 
we have

E(J} = K
1 

= E{K1 I F
}, (39)

Var {J } = E(K2IF }+V ar(K1 I F }, (40)

and in general

K
k 

= E(K
k(F

}+ (statistics of lower order conditional cumulants}. (41 )

The relationship between noncentra l moments and cumulants is wel l tabulated

[4). Denoting a noncentra l moment of J by 1.hk~ 
this relationship is given by

k k
~ (

~
)
~ K (42)

k+1 .=0 J k-j j+l

Those familiar with the traditional min imum mean LQG problem may

be a little suspicious of equation (37) since it is well known that

ECK 1 I F
} is normally expressed in terms of the filtered estimate (3], ~(tIt),

and Its corresponding error covariance wi th precisely the same structure as

(37) under expectation; see [15]. To demonstrate the equivalence of these

two formulations note that in view of (10) the smoothed estimate can be ex-

pressed as

—12—



t
~(tIt f) 

= 
~(tIt ) 

+ f~ K~t,r )  CT(r)0 1 (r) C(T) v(ilr)dr , tel, (43)
t

see [8],where

V 

~(tIt) 
= E{x(t )IF t}, (44)

K(t,r) = E([x(t) - x(t~t)][x
T(T) - ~T(1 )] } (45)

and the “innovation ” [2 ], v, is given by

v (tlt )  = C(t)[x(t) - ~(tIt)] + e(t). (46)

The smoothed error covariance can also be expressed as

t
r(t ,r) = K (t ,T) _~ f ~t,a)c

T(~)O~~.(a) C(a) K (0,T)~~ (47)
tvt

where tvt means max [t ,r].

Substitution of (43) and (47) into (37) and application of expectation

inimediately yields

K
l 

= E{K1I F
} = E {~~T(t

f
It
f
)S~~(t

f
It
f
) + ~

T tit~~~t tjt

t f
+ uT(t)R(t)u (t)ldt i + Tr[SZ(t ) +/ Q(t)E(t)dt], (48)

f t0

where
~~t) ~ K (t ,t) (49)

-13—
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and we have utilized the fact that v is white noise with covariance

E{~(tIt)~
T(TIT)} = 0(t)~~(t-T). (50)

In deriving (48) from (37) only one subtlety arises that might be

troublesome to the reader . In particular , two terms of the form

El f 
~ (tlt)Q (t) / K(t,r)C (~r)e (T )C (T )v (T IT )d t }

to t

~ tj~ ~1~
= Tr[ jr Q(t)  JT K (t ,T)C ’(T)e (T)C(T)E{v(TIr)~’(tjt)}dTdt] (51)

to t
arise.
It is wel l known [14] that under some technical assumptions on the causal

mapping 4~ in (10)

t t
x (tlt) = I G(t ,r)~(rIT)dT + I ‘~(t ,T)B (T)u (T)dr+~~(t,t0)x

0 (52)
to

’ to

for some kernel G where ~ is the transition matrix associated with

A in (1). Since the control u is assumed to be a causal function of

the observation z, which in turn can be expressed as a causal func-

tion of the innovation , v , it follows in view of (50) that the inner-

most integrand in (51 ) Is zero almost everywhere. Consequently, the

terms in question vanish under expectation .

J

. 
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IV . A DESIGN EXAMPLE

How might these formulations be utiliz ed? there are many possible

answers to this question . For example , let us assume that the design

objective is to select a controller that will keep the variance of J

small without the mean of J becoming too large. Such an objective

suggests selection of a weighted sum of the indices, mean and var iance ,

for optimization . Such a criterion is:

minim ize [E(
~cl IF

} + a(E(K2IF } + Var lK l IF })]

over all admissible control laws subject to the obvious dynamical con-

straints. The nonnegative real parameter ~ allows a trade—off between mean

and variance to be effected In the design procedure. For example , when x

is zero the criterion collapses to the traditional minimum mean criterion .

When the designer selects large ct, emphasis is placed upon making the van-

ance of performance small .

The design procedure consists of selection of several control l ers via

the above criterion, with performance anal ysis of each un til an acceptable

trade—off between mean and variance of performance is achieved .

Unfortunately, research on thi s class of problems has not evol ved to

the point where the complete solu tion is known. We can, however, modify

the criterion to yield a classical problem formulation that will lead to

an interesting class of feedback control l aws.

To accomplish this we retain only second degree terms in the criterion.

Thus, the term Var (K1IF } is arbitrarily dropped . Next we substitute (43)

and (47) into (35) and (38) for k = 2 and fully expand the criterion . All

terms that are not affected by control action or involve future dynamical

— 1 5 —



operations are discarded to allow simple enforcement of (10). For sim-

pli city , terms containing the integral expression in (47) are also dis-

carded . V

It may appear that this surgery is rather drastic but actuall y much

of the original objective has been retained in the modified criterion

which now looks like
tf

mm E{~
T(tfItf)Sx(tfIt f) + f ~

T (t It )Q( t ) ( t It )  + uT ( t )R(t )u(t ) ldt V

U to

+ 4c&~
T (t f~tf )SE (t )Sx (t f lt f ) + 8~x

T
(tflt f)Sn(tf)

• tf
+ 8a I

to

where

-

~~ ~(t) = [A(t) - E(t)C
T(t)e~~(t)C(t)Jn (t) + z(t)Q(t)x(tlt), (53)

with

= o. (54)

Define the augmented matrices
Ix (t lt)1

~(t) ~I . I (55)
[1(t) J

FQ(t ) 4aQ (t)]

O ] (56)

~ 1S + 4~SE (tf)S 4aS l ~ (57)

L 4aS o j
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~r A (t )
~(t) = 1[ E( t ) Q ( t )  A ( t ) - z ( t ) C ( t ) o~~( t)C (t )  (58 )

IB(t) V

(59)

and

I w (t ) 1
j , (60)

where V

W( t )  ~ z ( t )C T (t )e~~(t) (61 )

The criterion can then be rewritten as

mm El ~
T(t)~~(t) + [

_T
(t)~ (t)~ (t) + uT(t)R(t)u(t)]dt}

over admissible u subject to

~(t) = A~(t)~ (t) + ~(t)u(t) + ~( t) v (t It ) ,  (62 )

with

Ixol
= L~i 

(63)

The solution of this “accessi ble state” problem is, of course, wel l

known [l5} and given by

u(t) = -R (t)~
T(t)M(t)~(t), tel, (64)

where the 2nx2n matrix M(t) is the solution on 1 of

~~M(t) = -M(t)~(t) - ~
T(t)M(t) - ~(t) + M(t)~ (t) R~~(t)~

T
( t )M(t ) ,  (65)

with

M(tf) ~~~. (66)

-17—
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A Simple Example: Consider the scalar system described on [0,1] by

~~= x + u + ~~ - 
(1’)

and

z = x + e  (2’)

where

x = 1  (3’)
0

and

= 0. (4’)
0

Let conditions (5) through (7) hold with

E{~ (t)~
T (~ )} = .25~( t — T )  ( 8 ’ )

and

ECe (t )e
T(r)} = .35~(t-i). (9’)

Sel ect the design_perf?rmance_measure

J = I x~(t) + u2 (t ) dt (11 ’ )
0

and calculate , via (65) and (64), the feedback controller that optimizes

the modified criterion for several values of = . For each of these con-

trollers carry out performance analysis by computing statistical and

probabilistic descriptions of state regulation and contro l effort.

Specifi cally, obtain such descri ptions for the function-space squared-

norm of the p~ant state trajectory and the control action trajectory .

That Is , select post design performance measures

,j,~ = I x2(t)dt (67)

and 
1

~u 
j u2(t)dt. (68)

-18-
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The mean M , and variance , V t of J , J < anti ‘
~~~ 

are plotted versus ~
in Fi gures 1— 3 respectively. Note that the ori ginal object ive of making

the variance of 3 small at the expense of larger - mean is achieved . Also

note that both mean and variance of pl ant state regulation are improved

by selecting controllers with large z values. This “ good” regulation is

paid for by a corresponding increase in the mean and variance of control

effort.

Fi gures 4, 5, and 6 contain probability densities for J , J~, and

respectivel y that provide a complete s ta t is t ica l picture of performance.

Some observations should be noted. The class of control laws generated

by the criterion is truly dynamical in that the feedback law contains n

dynamics driven by the filtered estimate of the plant state . A sepa ration

property is inherent. The extension of the traditional LOG criterion to

include second order statistic al terms is simply parametenized . By incor-

porating “performance analysis ” techniques from 7 Into the design pro-

cedure , insi ght into controller properties is enhanced .

V -
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V. CONCLUSIONS

A great deal of research remai ns to be done. We have only scratched

the surface. In parti cular , for cumulan ts of performance beyond the mean ,

it is not apparent that the smoothed estimate formulation will collapse

to a filtered estimate formulation as it did in (48). The resulting pres-

ence of noncausal variabl es is troublesome in control selection and moti-

vated our approach to the example of Section IV .

Consequently, we have not presented a complete theory and feel that

there may be a better formulation of this problem class than that pre-

sented here. Despite this , we are encouraged by these results since they

demonstrate a richness of the LQG problem class that was not apparent in

the minimum mean results of the previous decade.

The practical value of the design viewpoint expressed in Section IV

should be apparent. Thi s viewpoint can , of course, be directly extended

to include higher order statistics with the obvious consequent increase

in off-line computation and complexity of feedback structure .

~~1i
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CHAPTER I

INTRODUCTION

A new class of matrix differential equations has

arisen in the context of Stochastic linear system design .

These equations are nonlinear aiid are parameterized such that

the classical Riccati equation is iiubedded in the class. Be-

cause of this, the new class of equations is referred to as

“Riccati type ” . The work presented herein is the first

investigation of some of the properties of these equations

and the systems in which they are utilized .

chapter ii contain s a sununary of the derivation of

these new equations . In Chapter III , the positive definite

and symmetric properties associated with this new class of

matrix differential equations are shown . Chapter IV contains

steady state results for the scalar case . In Chapter V , three

numerical examples of linear estimation and control are pre-

sented in which the Riccati equations are utilized as design

tools. Conclusions and suggestions for further research are

contained in Chapter VI .
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CHAPTER II

LINEAR STOCHASTIC SYSTENS AND RICCATI EQUATIONS

An interesting class of matrix differential equations

arises in the context of determining complete statistical

descriptions of integral quadratic forms in random processes

generated by linear dynamical systems . These systems operate

on Gaussian-white noise to produce vector valued Gauss-Markov

processes. The derivation of these equations is contained in

f 1] and the results are sununarized here.

Consider the stochastic linear dynamical system

~ (t) a F ( t ) x ( t )  + G ( t ) ~~(t ) , (2— 1)

where the state x(t)~~t ( the n-fold Cartesian produces of

the real line ) and the noise ~ (t ) CRm . The process ~ (t )  is

assumed to be Gaussian white with zero mean and covariance

kernel.

E(~~(t)~
T(t)} a ~ ( t ) 6 ( t — i ) .  ( 2 — 2 )

The initial state for ( 2 — 1 ) ,  x ( t 0) ,  is assumed to be Gaussian

with

E{x (t0)} — xo, 
(2 — 3)

and

E((x(t0)X 0]Ex
T(t0)—X 0

1J) — P0 ; (2 — 4 )

and (2- 1) is defined on a f ini te  interval [t0l tf
].

2
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3

Attached to (2-1) is a performance measure , J, defined

by
t f

— xT (t f ) S x ( t f ) + f xT(t)N (t)x(t)dt , ( 2 — 5 )

where S and N ( t )  are positive semi-definite. In [1] Liberty

and Hartwig show that the statistics of J (in particular the

cumulants of J) can be expressed explicitly in terms of a

countable set of matrix variables sat±sf ying s imultaneous

differential equations. The particular matrix variables of

interest in this work are the H variables of [1) which evolve

according to

I~(S,l) — — F T(3)H (3,1)—Hi3,l)F(~ )—N(6) , 3c[t0,tf],

(2—6)

and

á (8,k) _ _ F T ( 8 ) H ( 3 , k ) _ R ( 8 , k ) F ( 8 )

( 2 — 7 )

-
~~~~~~~ H ( $ , j ) G ( B ) Q ( 8 ) G ( 8 ) H ( 8 , k - j )  8cCt 0, t f ]

j l  k a 2 , 3 , 4 

with boundary conditions

H ( t f~ k) S, ( 2 — 8 )

• and

H(tf~k) 0, ka 2 ,3 , ( 2 — 9 )

It is shown in (ii that the kth cumulant of J contains a term

of the form x~H (t0,k)x0.

-
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The class of Riccati equations of interest in this

work arose in the work of Hartwig [2 ]  in the following way .

Consider a stochastic linear control system

c ( t )  — A ( t ) x ( t )  + 5 ( t ) U ( t )  + G (t)~~(t) ( 2—10 )

where the control action , ~J (t )~~R~~, is to be selected such

that system performance 
V

tf
J — xT (t f ) S x (t f ) +f [XT (t)Q(t)x(t) + UT ( t ) a ( t ) u ( t ) ] dt

to ( 2 — U )

is good in some statistical sense. In (2— 11) , Q ( t )  is

positive semi-defini te and R ( t )  is positive definite. It

is well-known that if U ( t )  is chosen as

~1(t) — — R~~~( t ) B ( t ) K ( t ) x ( t )  , ( 2—12 )

where X ( t ) satisfies the Riccati equation

k ( t )  — — K ( t ) A ( t )  — AT(t)K(t) + K ( t ) B ( t ) R ~~~( t ) B T ( t ) K ( t)~~Q(t ) ,

(2— 13)

then the expected value of 3 is minimized and contains a

:~ ;::.~
5 quadratic in the initial state mean given by

It should also be noted that substitution of (2-12)

into (2—1 1) and ( 2 — 9 )  identifies

F ( t )  a A (t) — B ( t ) R ~~~(t ) BT ( t ) X ( t )  ( 2—14 )

_ _
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and

N ( t )  a Q (t) + K(t)B(t)R 1(t)B T(t)K(t) . (2-15)

It was also observed in [2] that under the conditions

of ( 2—12 )  and (2—13 )

— H ( t 0 ,1) (2— 16)

Indeed if U (t) had been selected as

u(t) a _R~~ (t)B
T(t)H(t,l)x(t) (2—1.7)

then substitution of ( 2— 17)  into (2-10) and ( 2— 12)  would

lead to

F(t) — A (t) — 3 (t)R~~ (t)BT (t)H (t ,l) (2—18)

and

N ( t )  — Q(t) + M ( t , 1) B ( t ) R ~~~( t ) B T ( t ) H ( t , 1) .  (2— 19 )

Substi tution of (2—18 ) and (2- 1.9) into (2—6 )  y ields

*(t , 1) — — H ( t ,.l ) A ( t )  — AT ( t ) H ( t ,1)
1 T ( 2—20 )

+ H (t ,1)B(t)R (t)B (t,l) — 0(t)

If one were to form a linear combination of cuxnulants

of 3 then such a combination would contain a term of the

form

x~ [a 1H (t0,1) + a2H(t0,2) + . . .. . .. . a
~

H ( t 0 , L ) )  ( 2 — 2 1 )

a
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In [1) Hartwig argues that if one were interested in

selecting u(t) such that several statistics of 3 would be

affected in a prescribed way then it might be reasonable to

select u(t) as

u ( t )  — - R~~ (t)S
T(t)[a1H(t,1)

(2—22)

+ a2H ( t ,2) + 

He subsequently demonstrated by several examples that

this conjecture was reasonable and good performance could be

achieved in this sense. Substitution of (2 -22 )  into (2-6 )

and (2-7 ) yields the class of Riccati equations of interest

in this work .

For this ini tial study of the properties and character-

istics of these equations only the first two equations are

studied. Without loss of generality a1 is selected to be

1 and a2 is replaced by a.

~ (t ,1) — — A T ( t ) H ( t , l) — H ( t , l ) A ( t )  — 0(t)

— a 2H (t ,2) B ( t ) R ~~~( t ) B T ( t ) H ( t , 2) ( 2 — 2 3 )

+ H (t , l ) B ( t ) R ~~~( t ) B T ( t ) H ( t , l)

and

4 ~ (t , 2) — —A
T(t)H(t ,2)—H (t,2)A(t)+H (t ,l)B(t)R~~ (t)B

T(t)H(t ,2)

+ H (t , 2 ) B ( t ) R ~~~( t ) B T ( t ) H ( t , 1)

+ 2aH(t ,2)B (t)R~~ (t)3 T (t)ff(t ,2)—H(t ,l)!(t)H(t,1) ,

with the boundary conditions (2-8) and (2-9). (2—24)

— V - _ _ _  _ _ -—- 

-

- -
‘ 

—~~~~ 

V
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CHAPTER II I

MATRIX RESULTS

I ll—A Eigenvalue Trajectories

For a first look at the properties of (2 -23 )  and (2 - 2 4 )

let

Ct 0~’ t f ] — Co , 10] ( 3 - 1 )

and select the coefficients

—l 1. 0

ACt ) — 0 0 0 , ( - 3—2 )

0 —1 —1

Q( t ) 0 (th. zero matrix) , (3....3)

3(t )  — R ( t )  — 3(t) — I (the identity matrix), (3—4)

and final values

3( 10, 1) a 1, (3—5)

3(10,2) — 0. ( 3—6 )

?0t5 that the Pair [A,3] is controllable. Figures (3. 1)  to

(3.4) contain the trajectories of the eigenvalues of H ( t , l )

and H(t ,2) for a — 0, 1, 2 and 4 r .spectively . These V

eigenvaluee of H (t ,].) are da.iqnat.d by A~ 1
(t), i — 1, 2, 3.

.7 

1

— _____________ - - -V 
~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ 
- VV

—-—-----

~
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Those of H ( t , 2) are correspondingly designated by X~~2 ( t ) ,

i a 1, 2, 3. Note that for small values of a , the trajec-

tories are well-behaved . Indeed , selection of an arbitrarily

large time interval, will result in steady state solutions in

negative time. However, for larger values of a , it appear s

that steady state solution may not exist and the trajectories

may be unbounded on the half line .

Mother interesting property is that the trajectories

are non—negative for all t. it is interesting to note that

this is a general property of (2-23 )  and (2 - 2 4 )  which can

easily be shown .

Ill—B Non—negative Definiteness

It is claimed that the matrix solutions to (2-23 )  and

( 2 — 2 4 )  with the final values ( 2 — 8 )  and ( 2 — 9 )  are positive

semi—definite (non—negative definite) for all t .  To see

this select any e~R’~, e ~~8 (the null vector) . Place H ( t , 2)

in a quadratic form in e as

— - eTA (t)32e 
- eTH2AT t e

+ eTa~ 3 ( t )R ~~ Ct) B
T (t )  H2e

+ eTH23 t ) R i
~~t ) B T t H 1e

+ 2aeTH2 B ( t ) R
_ l ( t ) B T ( t ) f f 2e - eTH13H1 e

II

where 
~2 

means H(t,2) and H1 means H(t ,l) .

_________________________ 
- 

—i

~~~~
— 

- ~~~~~~
-- ~__V_
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It is easy to see that if R(t), 0(t), 3(t) and the

final value are symmetric then the matrices H(t,1) and H(t,2)

are symmetric for all t. If the symmetric H is ever non-

negative definite then a non matrix H2 can always be found

such that

a ~2 M 2 ( 3—8 )

Then

eTH2 e 5T~T~ e — H H 2e t I 2 ( 3 — 9 )

which is equal to zero if and only if H2e is the zero vector.

Now consider the H2 trajectory backward in time from t - tf•
Ini tially (finally) H(tf ,2) is the zero matrix so from (3—7)

eTH ( t f , 2 ) e  _eTS!(tf)Se ~ 0 (3—10 )

since !(tf) is non—negative definite. This means that as the

trajectory of H 2 is followed backward in time from t tf~

~2 initially becomes no less negative . Under reasonab le

smoothness assumptions on the coefficients of (2-24), the

solution , 
~2 ’ is continuous implying that the scalar quantity

•
TE(t,2 ) e  is also continuous . Now consider two points in

tim. t1 c t 2 . It follows that in order for eTH ( t , 2 ) e  to be

negative , given that eTH (t2, 2)e is positive , there must exist

a t 3 with t1 < t 3 < t 2 such that

I
V .TH(t3,2)e 0, (3—11 )

I

-- 
-V - ----~~~~- ~~~~~~~ - - - — 

— — — -
-

—~—~ __ ~ — -
-

— —~— — -~ V — — —
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But from previous arguments app lied at t — tf~ 
whenever (3— 11)

is satisfied

CTE ( t 3 , 2 ) e  ~~. 
0. (3—12)

Thus eTH2e equal to zero is a reflective barrier which

cannot be penetrated. Thus H2 is always non-negative defini te.

Similar arguments will also show tha t H1 is non—negative

definite.

.1

_ _ _ _  _ _ _ _  _ _  _ _ _  _ _  _ _ _  _ _ _ _ _ _  L



CHAPTER IV

SCALAR RESULTS

From this point on the sense of time in equations

(2—23) and (2-24) will be reversed . This is equivalent to

negating the right sides of (2-23) and (2-24) . With this

change, the equations become forward time equations and

the content of this chapter is devoted to examination of

steady state solution questions for scalar H 1 and H2 with

constant coefficients . Rewriting ( 2 — 2 3 )  and (2-24) as scalar

forward time equations with constant coefficients , one ob-

tains

a 2aH1 +~~dH~ 
- dH~ + q , (4—1 )

and

H 2 — 2aH2 
— 2 d.H1E 2 

- 2adH~ + , (4—2)

where for siit - .~:ity

d — b 2r~~’ . (4—3)-

Define new dependent variables , V and W by

W ~ (4,4)

and

V 
~ ~2 

(4 5)

Substituting for H
1 

and H2 in (4—1) and (4-2) yields

a (—dW 2 +a2dV2 
+ qe 4at )e 2at 

, (4-6)

U

V 

—— TV_
V _ _

V - 

-- _ _ _
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and 
V

= (-2dVW - 2dcxV2 + 3 W 2)C2at. (4—7)

Define the new independent variable x by

x(t)~~ 
J 

e2
~~ dT a

~~~~~~~[ 
e2

~~ -1]. (4-8 )

Then

e2at 
— 2ax (t) + 1,

next let

a dW/dx — (dt/dVx ) a ~e
2at , (4-10)

and ,

— dV/dx — (dt/dx) = ~~~2at~ (4—il )

Now , rewrite (4—10) and (4—11) in the form

— -dW2 
+ a2dV2 + q (2ax + 1) —2 ( 4 — 12)

a —2dVW — 2adV2 
+ 3W2 , 

(4 — 13)

subject to the initial conditions

W(0) — W (x)
1 

— Hl (t)e 251 a H1
(0) — 5 , (4—14 )

1*1.0 j t—o 
V

and 

V(0) — V (x)~~~ — H2 (t)e 2
~

1 

aH
2

( 0 )  a 0 . (4-15 )

Define a new dependent variable U by

U~~ V/W . ( 4 — 16) j

- - _ _ _ _ _ _ _  - _ _ _ _  - - - 

V - : 
- -
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Then

U(0) — V(O)/W(0) 0, (4—17)

and
I

U UW. (4—18)

It follows that

U’ - ( - l/ W)C2 adU 2 W - 3W2 
+ dW2U

+ a2 dU 3W2 + qU (2 ax + 1) 
_2
~ (4—19)

Equations (4-12) and (4-19) with boundary conditions (4-14)

and (4-17) provide a mechanism for examining steady state

properties of (4—1) and (4-2). Letting S 1, Figures (4.1)

through (4.5) contain U-W phase plane plots for several dif-

ferent values of a, d, q and 3. Interpretation of these

plots is enhanced by observing that (E/4d , W) with W arbi-

trary is an equilibrium point of (4—12) and (4-19) in the

V-W phase plane if a — 4d/ !.

On all of these plots for 0 ~ a < 4d/!, the phase

plane trajectories approach W — 0 implying the existence of

a steady state solution for H1. The value of U approached

yields the corresponding steady state solution for H2

since

U a H
2/fl 1 . (4 20 )

For a = 4d/3 no steady state is reached for H1 but

the time trajectories of H1 and H2 are in proportion as

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~TIii~~~~~
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t — by relation H (t,2) -ø (E/4d)H (t ,l) . That is, U ap-

proaches 3/4d. For a > 4d/E, numerical instability

occurs.

Thus it may be concluded that steady state solutions

to the Riccati equations studied herein may exist but only

for limited ranges of the parameter a.

— —— — -__.- 
— — ‘çV 

V



CHAPTER V

SYSTEM EX?~PLES

Now that some of the properties of the Riccati equa-

tions have been observed , it would be interesting to see

the properties of systems that contain these Riccati equa-

tion solutions as parameters. In this chapter one example

of linear estimators and two examples of linear feedback

controllers that contain Riccati equation parameters are

presented . -

In both example classes , the gains that are normally

a function of the classical Riccati equation are replaced

by gains with the term replaced by the weighted sum of the

two Riccati solutions studied herein. The weighting param-

eter is, of course, the parameter a, that appears in the

actual equations . Note that when a= 0 these new classes of

controllers and estimators reduce to the classical cases.

The example studies here are carried out primarily as a

function of the parameter C L .

Example 1: Filtered estimate of nonlinear process

Consider the nonlinear system

~(t) = sin (x(t)) , (5—1)

with measurement

y (t) = x(t) + e ( t  , (5—2)

15

- - - V  - - -- -_ - -_ _  V . ‘-:~~~~--ii~~ iii
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where 9(t) is zero—mean and white with unity covariance, The

initial condition for (3—1) is random with assumed mean of

zero and unity covariance~

In this example it is desired to estimate x(t} based

upon observations yCt ) , 0 £ r j  t. To accomplish this the

system (5—1) is first linearized to give a linear model

~ (t) = x(t) , 
- (5—3)

= ~ (t) + 9 (t). (5—4)

Eased upon this model , which is a good approximation

only for small x(t), a linear filter is designed utilizing

the classical structure shos~m in Figure (5.1) with the

• filter gain , P(t), selected as

P(t) — H1(t) + aH2(t) 
(5-.5)

where H1 (t) and H2 (t) are solutions to

2
a 2H1 + a2H2 

- H~ , 
(5 ’6)

and

H 2 2ff2 
— 2H 1H 2 — 2aH~ + H~ , 

( 5 7 )

with

H1(0) — 1 , 
(5—8 )

and

— 0 . (5—9)

V 
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4 

V 
V - :T~~—~--r- — ~~~~~~~~~~~~~~~~~
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Note that (5-6 ) and (5-7) are the duals in the traditional

control/filtering sense of (2-23) and (2-24). There is one

subtlety , however , in that there is no dual for the 3(t)

coefficient in (2-24). Consequently it becomes a design

parameter and has arbitrarily been set to unity in this

example . It should be noted that if this coefficient is

set to zero , then H2 will be identically zero and solution

of (2—231 and (.2-24) for any value of a is equivalent to

solution with a 0. It is interesting to note that the

steady state value for x ( t )  in ( 5— 1) is ~r and so ( 5—3 )  is

not a good approximation . Despite this the linear filter

performs quite well. In Figure (5,2) the actua l state

trajectory evolving from a randomly selected initial condi-

tion of x0 
a 0.8 and filtered estimate trajectories for

a 0, 1, and 2 are shown. Note that for a = 0 which is the

classical Kalman f i l ter, the estimate is not as good as for

the cases a 1 and 2. In these cases , however , there tends

to be more oscillatory behavior .

Example 2: A Second Order Linear Regulator

Control System

In this examp le consider the linear system

~(t) — A x (t )  + Bu (t) (5—10)
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0 1
A = (5’ll)

0 0

01
3 a (5—12 )

i i

and 
11

x ( 0 )  a 
i i  (5—13 )

The control action u is selected to be

u(t) a _ R~~3
T[R1+aH2

)x(t) (5—14)

where H1 and H2 are the steady state solutions to equations

(2—23) and (2—24) with

0.2 5 0
a

0 0.25

[3 .  

~~~J 

(5— 16)

and

R — 1. (5—17)

In Figures ( 5 . 3 )  and ( 5 . 4 )  the state trajectories

of the closed loop system are shown for a — 0, 5 and 9.. This

example first appeared in £2] where the system was noisy

and 3 was the noise covariance . In [2] control laws similar

to those here were selected , but only over a f in i te  time

V 
-

V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _  _ _ _
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interval . It was demonstrated in [2] that these controllers

were good in a second order statistical sense. The question

addressed here is that of the asymptotic stability of (5—10)

under the feedback (5-14) . After all, in order for the con-

trol laws suggested by Hartuig in [2] to be acceptable , they

must not only have good statistical properties , but should

also stabilize the system.

Note again as in Example 1 that when a 0 the feed-

back gain collapses on a classical structure. In this case

it is the classical linear regulator which is known to be

asymptotically stable . As can be seen from the state trajec-

tories in Figures ( 5 . 3 )  and ( 5 . 4 ) .  The closed loop system

is also stable for the non zero values of a. Indeed , it

appears from these time domain pictures that for larger

the system is more stable than for the case a = 0.

To obtain a complete picture of the stability of the

feedback system look at Figure ( 5 . 5 )  where the loci of the

closed loop poles of the system are plotted in the complex

plane as a function of a.

Tab le I contains several classical second order system

parameters ~~~~, w~~, Td and % overshoot as a function of a. It

is most interesting to note that for a > 9 numerical insta-

bility arose in attempting to find steady state solutions

to the Riccati equations so instability of the closed loop

control system was never attained .

-_ —  V 

- - - - 

---. -
- 

-— ~~~~~
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Example 3: A Third Order Linear Regulator

Control System

A last example of third order will again demonstrate

similar stability properties as a function of a. The system

is the two—vehicle problem described in [3].  That is a

Linear system with

—i 0 0

1 0 —3. (5—18)

and 
~~0 0 — 1

1 0

3 a  0 0 (5—19)

0 1

The feedback control law is again chosen as in (5-4) with

0 0 0

0 10 0 ( 5—20 )

0 0 0

[~~1 0 1
R a  ( ( (5—2 1)

1° l j

and 3 chosen first as

1 0 0

3 —  0 1 0 ( 5 — 2 2 )

o 0 1

V ~~~~~~~~~~ 

- 

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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State trajectories for this case with

—2.5

x(0) ~ — 4.3 (5.23)

0

appear in Figures (5.6), (5.7) and (5.8) for a a , 0.7 and

1.2. Changing 3 to

5.0 0 0

3 a o 5.0 0 (5—24)

0 0 5.0

yields the traj ectories in Figures ( 5 . 9 )  , (5.10) and (5.11).

Corresponding pole loci for the closed loop systems are shown

in Figures (5.12) and (5.13) with accompanying parameters in

Tables II and III.

V V •
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CONCLUS IONS

Future research on the new class of Riccati equations

should address the question of global existence of solutions .

Numerical behavior of the equations indicates that global exis-

tence may be subject to the value of the a parameter . The

specific relationship between open—loop system properties , the

R.iccati equations and closed loop system performance needs to

be analytically explored . The relationship between the value

of a and the relative stability of a closed loop control system

designed via these equations is only one examp le of this.

A detailed study of estimators (filters in particular)

designed via the new equations needs to be carried out. Whe—

ther or not the properties observed her., in nonlinear applica-

tion are general, is a completely open question .

A full understanding of the duality between the f ii-

tering and control contexts needs to be deve l oped . 
V

22

V 
V V



LIST OF REFERENCES

[1] Liberty , S. R. and Hartwig, R. C., “On the Essential
Quadratic Nature of LQG Control-Performance Measure
Cumulants ,” Information Control , vol. 32, no. 3,
pp. 276—305 , November 1976.

[2] Hartwig, R. C., “Design of Stochastic Linear Control
Systems According to Cumulant Based Performance
Criteria ,” Ph.D. Dissertation, Texas Tech University,
Lubbock, Texas , May 1976.

[3] Levine, W . S., and Athans , M ., “On the Optimal Error
Regulation of a String of Moving Vehicles,” IEEE
Trans. on Automatic Control, vol. AS—li, pp. 355-361,
July 1966.

23

— 
- - — V - - - - V 

-
~~~~~ 

V 

~~
~V



APPENDIX A

F~, Wn, Td, and % Overshoot
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TABLE I

~~~~, Wn, Td (The Period of Oscillation) and % Overshoot

as the Function of a for Example 3

a 
‘ 

Id overs hoot

0:0 -0.8660 ±Q,500~j 0.866025 1 .0 12.57 0.43

0.1 -0.8941 tO.4477J O.89410.Q 1.0 14.03 019
V 

0.2 -0.8210- ±O.3894j 0.903400 0.9087 16.13 0.13

0.3 -0.9470 ±0.3211J 0.947000 0.9999 19.56 0.095

0.4 -0.9723 
V 

±0.2335j 0.972350 0.9999 26.90 0.0002

0.5 —0 .9971 tO.0747j 0.997198 0.9999 83.99 6.49x 1~~
1

0.6 —0.8122 ,-1.02 16 1.006580 
________

0.7 -0.7393 . ,-1.0459 1.015000

1.0 —0.6180 ,-1.1179 1.044220 
________  ________  _______

2.0 -0.4353 ,-1 .3662 1.168000 
_______

3.0 -0.3364 ~-1.654O 1.334000 
_______  _______  _______

4.0 -0.2652 ~-2.O 1 75 1.560000

5.0 -0.2077 ~-2.5110 1.880000 
________  ________  ________

6.0 -0.1589 ~-3.2418 2.368500 
________  ________  ________

7.0 -0.1134 ~-4.4629 3.215400 
________  ________

8.0 -0.0721 ~-6.9631 4.961820 
________ ________

9.0 -0.0318 ,-15.085 0.9131 2 
________ ________ _________

f

______ ______ _____ ______ ________ ___________
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TABLE II

~~~~, Wn, Td and % Overshoot as the Function ofa for

Example 3 with the State Noise Covariance

Equal to Unity

a A 1 , A2 wn Id
overshoot

0.0 -2.19800 ± 1.40900J 0.8418 2.6108 4. 460 0.7400

0.1 -2.43550 ±1.48540j 0.8537 2.8520 4.230 0.3800

0.2 - —2.63018 ±1.51 330j 0.8667 3.0344 4.150 0.4300

0.3 —2 .80475 ~1.49225i 0.8828 3.1770. 4.210 0.2700

0 4  -2 .9605) tl .40080j 0.9039 3.2752 4 .490 0.1300

0.5 -3.07645 t 1.1790 1j 0.9~37 3.2946 5~330 0.0275

0.6 -3.01460 *0.55609 .1 0.9834 3.0654 62.255 1 .77x10~
39

V V
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TABLE III

F~, Wn, Td and % Overshoot as the Function of a for

Example 3 with the State Noise Covarinace Equal to 51.

a A A Id1 ‘ 2 overshoo t

0.0 -2.1980 tl .4090j 0.841870 2.610800 4.460 0.74000

0.1 -3.0760 ~1.1790j 0.833759 3.294200 5.330 0.02750

0.11 -3.0930 ~~0~~ 9651i 0.954600 3.240000 6.509 0.00424

0.12 -3.0145 ~0.5560j 0.983410 3.065300 11.300 4 .01x 10 6

0.122 -2.9586 ~O.4O00j 0.990784 2.985517 15.700 8.098x1d 9

0.123 -2.9106 ~0.2878j 0.895146 2.924790 21.830 1.59x1d~
2

0.124 -2.7920 tO.O5233 0.999820 2.782490 1.2x10 2 1.94x1 O 71

3
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APPENDIX B

Time Domain Trajectories , Phase Pl ane and

Closed Loop Pole Locations
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0 5

?tii~t)
-4 -4

1.0 1.0

00 

- 

~~~~~~~~~~~~~ 

~ ° ~
00..-4 -.4

0.0 5.0 10.0 0.0 5.0 10.0
t

Fig. (1.1) The eigenvalue Fig. (1.2)- The eigenvalue
trajectories for equations traj ectories for equations
(2-23) and (2-24) for the (2—23) and (2-24) for the
conditions (3-1) to (3—5) conditions (3-1) to (3-5)
a~~ 0. a~~ i i .  V

3.0 Au (t)1.0

~~
2>/ I

0 0I-4 -4

1.5 1~t~1t)yX ~~~ J00 00 \
\(

.- -4

~ c~J _ _

0.0 ~~.O
t t

Fig. (3.3) The eigenvalue Fig. (3.4) The eigenvalue
trajectories for equations trajectories for equations
(2-23) and (2-24) for the (2-23) and (2-24) for the
conditions (3—1) to (3—5) conditions (3-1) to (3—5)

~ 2. a~~ 4.

I
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1.0 a 4 V O

w 

0.25,0.81) 

~

0.5 0.5

.5~ .0 ~~ 0.5 V1~~0
U Cl

Fig. (4.1) The U-W phase Fig. (4.2) The U-W phase
plane plots for equations plane plots for equations
(4-12) and (4—19 ) with a:1, (4—12 ) and (4-19 ) with a l ,
d l , q O , E:1. d 1 , q=0, :0.5.

2.0

(0.25,1.69)

1.3 (0.25,1.19) 

W :4.0

Fig. (4.3) The U-W phase Fig. (4.4) The U-W phase
plane plots for equations plane plots for equations
(4—12) and (4-19 ) with a l , (4—12 ) and (4—19 ) with
d:1, q l , ~:1. a:l, d:0.5, q O.6 , E 0.5.

I,
V..

V 
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2.0 (0.25,2.2)

x(t) ,~~(t )
a 4.0 7 5

- ,

~~

0.0 0.5 1.0 0.0 3.0 6.0 9.0 12.0
- U t

Fig. (4.5) The U-W phase Fig. (4.6) The actual state and
plane plots for equations the measurement states with
(4—12 ) and (4-19 ) with different a for Example 1.
a:O.2 , d:0.5 , q Q .8 ,

0.5.
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Fig. (5.7) Time domain Fig. (5.8) Time domain
Trajectories of x2 in trajectories of x3 in
Example 3 with != I. Example 3 with I .
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Fig. (5.9) Time domain Fig. (5.10 ) Time domain
trajectories of x1 in trajectories of x2 inExample 3 with!: SI. Example 3 with 51.
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Fig. (5.11) Time domain Fig. (5.12) Closed icop
trajectories of x 3 in pole locations as a
Example 3 with! = SI. function of a for Example 3

with E :
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Fig. (5.13) Closed loop pole
locations as a function of a
for Example 3 with = 51.
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