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CHAPTER O

NOTATION
The following notations and conventions are used.

Lower case latin letters denote vectors, functions, and integers.
Upper case latin letters denote matrices and index sets.

Greek letters denote real numbers.

Script letters denote sets and classes.

The transpose of A is A'.

The ith component of x is (x)i.

No notational distinction will be made between row vectors and
column vectors.

The inner product of the row vector w and the column vector x

is denoted by w-x.

The special vector e of dimension n, called the unitary vector,

is defined by

(e)1 e i 1w By ons o
The following special functions are defined:
a) Positive part function:

+ a if a>0

a =
0 if a<o
b) Negative part function:
. ‘ ¢ if a<o

a=lo if a>0




c¢) Sign function:
-1 if a<o
sgn(Q) = 0 if a=0

+1 if a>0
If any of these functions appears with a vector argument, the function applies
to each component, i,e.
(£(x)), = £((x),)

Similarly, the inequality x > O requires all components of x to be

positive.




CHAPTER 1

INTRODUCTION

1,1. Pattern Recognition and Classification

Pattern recognition is concerned with the universal problem of identify-

ing the "class" of an object from examination of its attributes. A major
objective of pattern recognition is the development of machine implementable
methods of classification. For simple applications such as optical reading
of characters with a fixed type font, such methods offer great increases in
speed ani accuracy relative to human processing. For more difficult problems
such as medical diagnosis or weather prediction, complex relationships in
large quantities of multi-dimensional data may not immediately be apparent
to casual observation. In such cases, algorithmic procedures implemented on
a computer can often complement and extend human recognition capebilities.

The recognition process can be divided into two phases, feature extrac-

tion and classification. Feature extraction involves isolating the most

relevant portions of the available data and representing them in a compact,
useful form. A pattern is defined to be a finite dimensional vector x € Ifa
Each component of the pattern is called a feature. Features are functions

of observable data concerning the object to be classified. The feature
extraction process consists of reducing points in a general measurement

space to points in a finite dimensional pattern space.

For example, let the measurement space consist of continuous functions
f:]Rl—» ]R1 on the finite interval [al,aa]. This case occurs in the
analysis of electrocardiograms, electroencephalograms, various kinds of
spectra, and generally in problems where the physical data consists of

3




continuous waveforms. A simple set of features can be generated by sempling

the function on a uniform grid:

(x)i = f(al + (i=-1)8) , ol PR

where

Another alternative is to find an approximating function such as a polynomial
that is defined by a finite set of parameters or coefficients which can then
be used as the features, Clearly some feature sets will be better than others,
but there are few if any general purpose feature extraction methods that

yield good results for a wide variety of applications. Guess work, intuition,
and experience with the specific problem are usually necessary to develop

a good feature set.

Classification is concerned with determining decision procedures for

assigning one of a finite number of class labels to a given pattern. The
distinction between classification and feature extraction is not sharp,
since classification itself may be a multi-stage process involving several
transformations of the original pattern space.

Here we will be concerned with pattern classification procedures based

on mathematical programming methods., Thue it is assumed that an initial

set of features is given.

1.2. Discriminants and the Two-Class Problem

Let x € R® be a pattern that belongs to one of two possible
classes, Ca or C%. One common form of classification rule decides

L
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x € (’1 P Pxe] >0
(12.2.5)
x€ €, i1t ) <O

=

where fﬁmn -azml is called a discriminant function. The case f(x) =0

is considered indeterminant and an arbitrary decision may be made or the
choize may be randomized with specified probabilities. Geometrically, the

function f divides the pattern space into the disjoint regions

=
1

{x:f(x) > 0)

o
i

[x:f(x) < 0) 2

For many classes of functions, the equation f£(x) = 0 defines a surface

that bounds these regions, In this case, f(x) is said to separate
91 and mg.
There are several types of classification problems, each with its

own solution philosophy. Two of these problems form the basis for much

of the discussion here. The first, or template-matching problem, is

characterized by two given finite sets of prototype pattern vectors xj’
one set for each class, Let
’*81 Sy e %l

J2 = {xk+l’ Siaie xm]

be the prototype patterns for classes Cl and C%, respectively, Each
observed pattern from a given class can be identified with one of the

prototype patterns from that class, differing from the prototype by a




relatively small displacement vector d. The displacement vector cean be
thought of as a random error associated with the physical measurement process

or as a statistical variation in the pattern population itself. Thus
(1.2.2) C’i = {x + d:x € a!i, d € o} , J=Nya o

where ¢ 1is the set of possible displacement vectors.

The prototype sets 451, 432 are often called design or training
sets. One general solution procedure for this problem involves assuming
a parametric functional form f(x;p) for the discriminant, where p 1is
the parameter vector. The vector p 1is chosen so that f(xi;p) > Q,

x, < efl and f(xi;p) <0, x4 < e’

i if possible, i.e. by solving the

2}
inequality system

( 5 f(xi;p) L i=1..., k
Lo«
f(xi;p) <0, 1=Kkt .o 5 M

A feasible solution to (1.2.3) defines a discriminant that correctly
classifies the design sets QJI and 592. If the system is feasible,
the sets ,31, gyg are said to be separable over the assumed parametric
functional form, If the functional form f(x;p) is continuous and the
set of displacement vectors 9 1is bounded by sufficiently small bounds,
then the discriminant defined by this procedure will also separate the
complete pattern classes Cl and C%.

Desirable properties of a discriminant function for the template-

matching problem are errorless performance on the design sets 4!1, ayg

o o
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and separation of C’l and C, for the largest possible set of displacement
=

vectors. Let p = {d:|ld]] < @) for some vector norm [l

. Then the

template-matching problem for this vector norm is defined as

(Ie2sy mex o
g.t. £(x:p) >0 , VvV x€ Cl
f(x;p) <0 , Vx602
where

C = {x+axs Ji, a€p}, i=1,2.
(See 1.2.1.)

A common choice of functional form is the linear discriminant
f(x) = wx - 6

This case is quite general since any discriminant of the form

S
Plx) = L af (x) -8
. ililx

L]

is linear with respect to the transformed pattern Yy € R° defined by

(y); = £,(x) , L=1..0,8 .
Thus techniques developed for generationof linear discriminants are also
applicable to all functions f(x;p) that are linear in the parameter
vector p, e.g. polynomials of all degrees in the components of x.

The template-matching problem (1.2.L4) for linear discriminants is dis-

cussed in the next chapter.

‘8 11 16 (03




Template matching problems arise in relatively simple, well-defined
contexts such as optical recognition of characters printed in a fixed type
font, where pattern variation is very limited. More complex problems,
such as medical diagnosis, often involve patterns that do not always fall
into clo.e groupings around prototypes. In this second kind of problem,
observed patterns are considered as random samples from classes having
different probability distributions. If the class distributions overlap,
then an errorless classification scheme for the complete classes Cl and
C% is, of course, impossible. A discriminant is sought that minimizes some
loss criterion such as the probability of misclassification.

This problem also involves two training sets 461, 482 consisting
of examples of patterns from the respective classes Cl, Cé. A discriminant
f(x;p) 1is sought that performs well, although not necessarily perfectly,
on the training sets., If these sets are large and well representative of
their respective source distributions, then such a discriminant should

perform well on these distributions. Some specific models and results for

this type of problem are discussed in Chapter L.

1.3. Outline of Presentation

Chapter 2 deals with classification problems for which linear
discriminants can be found that separate the two design sets. Mathematical

programming methods for determining these discriminants are discussed and

reliability interpretations are made for a class of template-matching problems.

An application to a set of adaptive pattern classification machines is

given.




In Chapter > the least positive deviations solution concept for a
possibly infeasible system of linear inequalities is defined. Connections
with linear programming are established and a very efficient algorithm
based on an unusual pivoting rule is developed for determining this
solution. Application of the algorithm is extended to a sequence of problems
of which the most general is the general linear programming problem,

In Chapter L this solution concept is applied to linearly inseparable
classification problems. Large sample solution characterizations are
obtained for design sets consisting of random samples from overlapping
source distributions. Several alternative approaches to this problem are
discussed and some numerical results utilizing the algorithm of Chapter 3
are presented,

Chapter 5 extends these methods to piecewise linear discriminants.

A transformation of the pattern space is defined that renders any pair
of finite, disjoint design sets separable by a convex piecewise linear
function. An algorithm is presented that constructs such a function by
solving a sequence of linear programs of a type directly suitable for

application of the least positive deviations algorithm. Results for a

sample problem are reported.

P ——— .er.




CHAPTER 2

LINEAR SEPARABLE CLASSIFICATION PROBLEMS

2.1. Linear Separability

Let 451 = {xl, ey xk}, 282 = [xk+1, iz xm} be finite,

disjoint, nonempty sets of n-dimensional patterns from classes €, and

1
Qg’ respectively. These sets are defined to be linearly separable if

there exists a linear discriminant f(x) = w*X - 8 such that

£(x) >0 Vxe jl

£(x) < 0 vie 4,

The vector w is called the weight vector and the real number 6 is
called the threshold for reasons to be described in the next section.
Geometrically, ‘jl and <J; are linearly separable if, as illustrated in
Figure (2.1.1), there exists a separating hyperplane wex = 6 such that
all patterns in 211 lie in one half-space and all patterns in g/?

lie in the other.

For each pattern x € ]Rn, a corresponding signed augmented pattern

+
a mn : is defined by

(x,=-1) , if x € J

(2.1.2) a =
(-x,+1) , it x€ 4,

10




* = class C, pattern
® = class C, pattern

Figure (2.1.1). Ldinear Separable Pattern Sets.

The signed augmented pattern mstrix A € R x(n+1) is defined by
Fal i i
1 1
%
{2.1.3) K .= i = feceeeiiaia
-X2 e,
a
- m -

where X and X are matrices whose rows are the patterns (row vectors)

1 2
in Jl and ,32, respectively, and ey and e, are unitary column
vectors.

Ll



PROPOSITION (2.1.4). ch, lgg are linear separable iff the inequality system

(2.1.5) Au> 0

+
u € ]fn L

is feasible,

Proof. The proof follows immediately from the identification u = (w,e). O

Clearly the system (2.1.5) is feasible iff the system

(2.1.6) Au > e

is feasible. System (2.1.6) will serve as the constraint set in several

of the mathematical programming models discussed below.

Application of

the following version of the Farkas lemma provides a geometric criterion

for linear separability.

LEMMA (Farkas). The inequality system

Au > b

u€ R

is feasible iff the dual system
A'ly =0
by >0
m
y20, YER
is infeasible.



For

4 I 1
e ..E. o
-X2 - e2
and b = e, the dual system is
] - ' o
(2.1.7) X1y, X2y2 0

-el.yl + e2-y2 = O

k -k
fropl 20 , HREX, p W

Since the system is homogeneous and el'yl<=e2‘y2;¥0 any feasible solution

~

(31,32) can be scaled so that e1-§1 =e = 1. Then Xiy, and

R
Xé§2 are points in the convex hulls of QJl and 112, respectively.

Thus the Farkas lemma stated geometrically says:

PROPOSITION (2.1.8). ‘Il, <¥2 are linearly separable iff their respective

convex hulls do not intersect.

2.2. Threshold Logic Units and Adaptive Machines

A device designed to implement a linear discriminant function is
shown schematically in Figure (2.2.1). The device is called a threshold
logic unit (TLU) and has aroused considerable interest as a simple mathe-
matical model of a neuron (e.g. [1], (2], [3]). A TLU has n input

terminals, one for each pattern component. Each pattern component (x)1

13




Ca s
'—_>“( 2, (W),
+1
: ke
* Summer  Threshold
_>_(")n (W),

Figure (2,2.1). Threshold Logic Unit for Implementing the Discriminant

f(x) = wx - 6.

is multiplied by an adjustable internal weight (w)i. The results are
summed and compared to an adjustable threshold 6. An output of + 1 is
made if the sum equals or exceeds 6, otherwise the output is -1.
(In the neuron model, the + 1 output corresponds to the "firing" of a
neuron in the presence of certain stimuli, The =1 output represents
the normal, inactive state.)

The choice of the weight vector w and the threshold 6 determine
the patterns or stimuli that activate the TLU. Because the weights and
threshold are adjustable, the TLU can be regarded as "trainable" and

various adaptive algorithms have been devised for training. In particular,

14
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error correction procedures have been investigated as training methods

based on the following general scheme, Patterns are selected from 4!1
and 432 in some prescribed manner and presented to the TLU for classifi-
cation. If a pattern is correctly classified, no corrective action is-
taken. If, however, the classification is incorrect, the weights and
threshold are adjusted in a manner tending to correct the error,

A classic example is the Perceptron error correction procedure

due to Rosenblatt [2]:

(2.2,2) ©Step 1. Set Uy * (wl,Gi)- to an arbitrary vector.

Set k = 1. Go to Step 2.

Step 2. Stop if w, defines a separating hyperplane. Other-
wise select any pattern x € ”41 U <£2 which is
incorrectly classified by Uy e Let a be the

corresponding signed augmented pattern, so uk-a < 0.

Go to Step 3.

Step 3. Set Woq =Y + a. Increment k by 1 and go to Step 2.

It can be shown (Novikoff [4]) that if “1’ gfe are linearly separable,
then the algorithm converges in a finite number of steps to a separating
u*. Numerous variants to the procedure exist and a summary of error
correction procedures for solution of the system Au > O is presented by
Duda and Hart [5]. One major drawback to this class of methods is that

they are generally ineffective in the linearly inseparable case in that no

15
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determination of linear inseparability is made in a finite number of steps.
This deficiency is corrected in the mathematical programming methods dis-
cussed later in this chapter.

More elaborate learning devices called Perceptrons can be con-
structed by assembling TLUs into layered networks such as that shown in
Figure (2.2.3). Each TLU in the first, outer layer computes a binary function
of the pattern vector. Subsequent inner layers perform Boolean operations
on these binary functions. The innermost layer is a single TLU which makes
the decision. The overall discriminant function implemented by such a
network is piecewise linear, and with a sufficiently large number of TLUs,
any two finite, disjoint pattern sets can be separated. Unfortunately,
there is no known error=-correction training algorithm analogous to (2.2.2)
that is guaranteed to converge to a piecewise linear function capable of
such a separation. Training is usually confined to the innermost TLU
with the remaining weights being selected by heuristic or even random
procedures. In Section (2.3) a linear programming procedure is presented
for determining the weights and threshold in the inner layer that maximizes
the reliability of a twoplayer Perceptron when the outer layer TLUs are
subject to failure, Also, in Chapter 5 mathematical programming methods
are presented that determine a separating piecewise linear discriminant

for general finite disjoint pattern sets.

16
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2.5. Maximum Quality Programs

Let u = (w,9) solve Au > 0. Since the system is homogeneous,

Au is also a solution for any A > 0; i,e. the underlying separating

hyperplane A;-x = N8 is invariant to the choice of the scale factor A.

is a vector

It is convenient to scale u so that |[w|| = 1, where |-
norm.
Grinold [€] defines the quality of the separating hyperplane

~
corresponding to u as

(2.3.1) Q) =  min  ((aQ),)
1=k, 00650

He observes that many of the mathematical programming models for pattern
classification that have been suggested in the literature are of the
general form

max  Q(u)

s.t. ue U

where U 1is some subset of feasible solutions to Au > 0 on which Q(u)

is bounded, The set
U = {utu = (w,6), Au >0, |lw|| = 1)
is a common choice that results in the mathematical program

(2.3.2) max A




Let A\* Dbe the optimal objective value for (2.3.2), There are

three possible cases.

Case 1:

Case 2:

Case 3:

A*¥ = 0, This corresponds to the optimal solution u* =0, It

follows from Proposition (2.1.4) that 441, ‘g are linearly

2
inseparable.

0 < M* <o, An optimal solution u* = (w*,0%) defines a separating
hyperplane w¥*-x* = 6%, The constraint [w*|| <1 must be tight;
otherwise u = u*/Hw*H is a better solution. Also, at least one
of the constraints

Au* - A*e >0
is tight; otherwise A = A* may be increased while maintaining
u = u¥, Hence N* = Q(u*).

N =+ o, If 4‘ is empty, then A = [-X.e.] and u = (w, 6)
1 2

2
is a feasible solution for all sufficiently large values of ©
and any w satisfying |w] < 1. Hence A is unbounded in this
case and similarly in the case where q’2 is empty and

A= [Xl i -el]. If neither set is empty, then there exist at

least two constraints of the form

wex, - 62 A, x; € 43&
WX, + AN, xjeJe
which imply
19




- x,)

w(xi ;

A<

o=

Hence A must be bounded since |lw|| < 1 end the sets 1!1 and 152
are finite, Thus this case is eliminated by assuming neither sample set
is empty.

These results are summarized in the following proposition:

PROPOSITION (2.3.3). Let g;l, ‘;2 be finite, non-empty pattern sets.

Let u* = (w*,6*%) be an optimal solution to (2.3.2) with objective value
AN*. Then 531, EJQ are linearly separable iff A¥ > O, and in the
separable case |w*|| =1 and Q(u¥) = a*.

If A* >0, there is an equivalent form of (2.3.2):

min Hw“
(2.5.4) s.t.
Au > e
o = (w0) € B

The equivalence of (2.3.2) and (2.3.4) in the linearly separable case can

be demonstrated by rewriting (2.3.L4) as

S
w
u
g.be A n;ﬂ - N 2>0
u= (w,0) € n

Thus if u*

(w*, o*) solves (2.3.4), then u*/||w*| solves (2.3.2)

with max A

1/|lw*|l. Conversely, if u* = (w*,6%) solves (2.3.2)

20
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with A* > 0, then u*/)* solves (2.3.4) with minlw| = 1/a*.

The programs (2.3.2) and (2.3.4) will be called the primary and
alternative forms, respectively, of the maximum quality problem. Several
different mathematical programming methods become applicable with the

choice of the specific vector norm. Let

R py1/p
Hw”p = (jgl l(w)Jl )

denote the Zp norm for 1 < p < «, where

M, = mex (]Ga),0)

J=Ls . cenll

The Ew, zl, and 22 norms are of particular interest since the maximum

quality problem can be formulated as a linear program in the £, and zl

cases and as a quadratic program in the 22 case,

The £ norm case leads to the following linear program for the

primary form of the maximum quality problem:

max A

(2:3.5) Betn
Au - e >0
1< (w), <1 J=1,..,n

+
IRn 1

[«
|
—~
=
>y
(e
~—
(N

This is a variation on a model originally proposed by Mangasarian [7].
System (2.3.5) has the following reliability interpretation for
the two-layer Perceptron shown in Figure (2,2.3). In this TLU network,

the first layer consists of k TLUs whose combined output forms a



transformed pattern yfzimk for each input pattern x € I*l. The single
second layer TLU then classifies y. The network is defined to be redundant
if no final classification change results when the output of an arbitrary
single TLU in the first layer changes from + 1 to -1 or from =1 to + 1.
Thus a redundant Perceptron remeins reliable with respect to any single
TLU failure in the first layer.

Since the change induced by a failed TLU in the corresponding
component of the transformed pattern y is of fixed magnitude, namely,
2, the discriminant function f(y) = w-y - 6 implemented by the inner
layer TLU will not change sign if it is of sufficiently high quality.

This is made explicit by the following proposition,

PROPOSITION (2.3.6). Let the set of transformed patterns be linearly

separable by the hyperplane w-y = ¢, where Hw”m = 1. Then the Perceptron

is redundant if Q(u) = Q(w,8) > 2.

Proof. Failure of the jth first layer TLU changes a transformed pattern
y to y', where

[g*), = )l =2,

Let f(y) = wy - 4. Then

[£(y') = £(y)| = 2| (w,)]| < 2, since Hw{luo =1

4
(%)

But Q(w,8) > 2 implies |f(y)| > 2. Hence f(y) and f(y') must be
both either strictly positive or strictly negative and therefore no

classification change occurs, a

22




If Q(w,0) < 2, the network may not be redundant. Since I(wj)l =1

for at least one component j, a failure in the corresponding TLU implies

|[£(y') - £(y)] =2

If, for example, f(y) = -Q(w,8) and f(y') =2 + f(y), then

fily) <©
Q(w,6) <2 =
f(y') >0

Hence the inner layer TLU output changes from -1 to + 1.

If Q(w,8) > 2s, where s is any positive integer, then by the
argument used for Proposition (2.3.6), the Perceptron is redundant with
respect to simultaneous failure of any s TLUs in the outer layer. Thus
Q(w,8) 1is an index of reliasbility in the sense described above and the
maximum quality program (2.3.5) is a natural choice for determining the
weights and threshold of the iﬁner TLU when redundancy is a prime concen-
tration.

A second formulation for solution of the linear separability problem
is suggested by Ibaraki and Maroga [8]:

n
min .Z I(w)JI
J=1

(2.3.7) s.t. Au > e
n+l

This is the alternative form of the maximum quality problem with the el




norm, Since the objective function is convex, piecewise linear, and

separable, (2.3.7) has the linear programming equivalent

+ -
min e.w + e-.w

(2.3.8) s.t. Au' - Au” > e

This program has m constraints in 2(n + 1) non-negative variables.
Typically m, the total number of patterns, is much larger than n, the
pattern dimensionality. Thus it may be computationally advantageous to

solve the dual

(2.3.9) o

which has (2n-1) constraints in m non-negative variaﬁles.

Let wex = 6 be a separating hyperplane for the design sets AJ;,
442. In problems such as the template-matching model (1.2.4), it is
desirable for the discriminant to generalize to additional patterns that

differ from those in the design sets by small observation errors and noise

terms. TIbaraki and Maroga define the input tolerance & associated

with we'x = 6 as the upper bound on the zm norm of displacement veétors

d such that x + d 1lies on the same side of the hyperplane as x, where

X € ‘}1 U er Thus an observed pattern x' that differs from a design
pattern x by a magnitude less than & in each component will be classified
into the same class as x. They show that the separating hyperplane defined
by an optimal solution to (2.3.7) has the maximum input tolerance of all

separating hyperplanes.
24




The alternative form of the maximum quality problem with the £2
norm was first investigated by Rosen (9] in the form of the quadratic

program

(2.3.10) s.t. Au>e

This program has the following geometrical interpretation. Let
u = (w,0) be any feasible solution to the system Au > e. The hyperplanes
Q-x = %—l, Q-x =0+ 1 are parallel to the separating hyperplane Q-x = é

and bound a "dead zone" o = [x:[%-§-§] <1} of width E/HwH2 as shown

in Figure (2.3.11). If the patterns in ‘;1 and 112 suffer displacements,

#* = class C, pattern
© =class C, pattern

Figure (2.3.11). Pattern Sets Separated by an Empty "Dead Zone."




the hyperplane Q-x =8 will still separate the displaced sets as long as
all displacements are of Euclidean distance less than 1/Hw{l2, i.e. half
the width of the dead zone. Thus the optimal solution to (2.3.9) defines
the separating hyperplane with dead zone of greatest width and hence highest
tolerance to pattern displacements as measured by Euclidean distance.

The reliability results of this section are all examples of the
following general principle. Let u = (w,8) define & separating hyperplane
wex = 6 of quality Q(u) for the pattern sets ‘Jl’ AJZ. Let the pattern

classes Ca, C% be defined for a given scalar value a >0 by

C; = {x+dixe€ Ji, ||c1||q < a)

Let p, g Dbe real numbers such that 1< p <®, 1< q<», and

1/p + 1/q = 1.

PROPOSITION (2.2.12). Let w.x = 8 separate 4, Je'
If a< Q(w,e)/Hpr, then the hyperplane w+x = 6 separates

Cl and Cg.

Proof. Let f(x) = w.x-6. For a given displacement d and pattern x
X € ‘Jl u QJ2, x and x + d will have the same classification if

[£(x + a) -~ £(x)| < |£(x)

. But Q(u) = min |£(x)|, so it is
XE 471”)2
sufficient to show |[f(x + d) - f(x)| < Q(u) for all displacements d

such that ”d”q < a, But

[f(x + d) - £(x)|= |wd]|

and the result follows from the hypothesized upper bound on « and the
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Holder inequality

|w-d| < llwllp . Hdilq : o

For any w there exists a displacement d such that |w-d|

p
Eq norm of allowable displacements is sharp, and the solution of the maximum

= |lwl dHq (Luenberger [10], p. 30). Thus the bound Q,(u)/”wllp on the

quality problem (2.3.2) or (2.3.4) defines a separating hyperplane that
maximizes the £_  norm of allowable displacements. The Perceptron results

q
1), the input tolerance in the Ibaraki and Maroga model

"

(p=w, q

(p =1, @ =), and the dead zone width in the Rosen model (p =2, q = 2)

are specializations of the following corollary to Proposition (2.3.12).

COROLLARY (2.3.13). Let w'x = & be a separating hyperplane defined by

an optimal solution u = (;,5) to the maximum quality problem

max A
s.t. Au - e >0
< 1
Il <
+
u = (w,08) € R .
Then f(x) = w.x-6 solves the template matching problem (1.2.4) for the

2 norm, i.e.
q

max o
s.t. fixpp) >0 VWx¢€ Cls {x + d:x € Jl’ d € p}

f(x;p) <0 VxE€ 6’25 {x + d:x € Je, d € p)

where f(x;p) = f(x;w,0) = w:x=-0 and 9 = {d:||d||q Lqa .




2.4, Extensions to the Inseparable Case

If the definition (2,3,1) of the quality Q(u) of the hyperplane
defined by u = (w,8) 1is extended to non-separating hyperplanes, the
quality of such hyperplanes is non-positive. In a linearly inseparable
problem, a maximum quality hyperplane may provide a useful discriminant
if theregion of overlap between the convex hulls of J 1 and J 5 is
relatively small. However, the maximum quality program (2.3.2) is no
longer applicable since it produces the useless optimel solution =0
in the inseparable case, This solution can be eliminated by bounding
|lw]| away from zero in the program

max A
(2.4,1) s.t. Au - A >0
[[wll

u=(w,8) R

v

1
n+l
which is obtained from (2.3.2) by reversing the inequality defining the
bound on |lw|l.
Let u* = (w*,6%) be an optimal solution to (2.4.1) with optimal

objective value \¥*, There are three cases.
Case 1. AN* =+ o, This occurs when Jl and J2 are linearly separable.

In this case there exists a solution f = (9,3) with quality Q(&) >0
to the system

Au > 0

lwll =1

+
u = (w,0) € ]Rnl

Then for all o > 1, u = ofi is feasible for (2.4,1) with corresponding
objective value A = oQ(f).
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Case 2,

Case 2.

These cases are summarized in the following analog to Proposition (2.3.3).

N = 0. This is a special case in which strict linear separability

is impossible but there exists a u* = (w*,6%) such that

w*.x > 6 Vxe€ ‘81

w¥.x < 6 Vx€ 452

with at least one inequality being tight for a pattern from each
sample set. Thus the convex hulls of Jl and A2 intersect

only in a subset of the hyperplane w*:x = 6%,

A¥ < 0. This is the linearly inseparable case of interest.

The constraint |lw|l > 1 is tight; otherwise u = u*/[w*| is
a better solution. Similarly, at least one of the inequalities
Au* - X*e > 0 1is tight; otherwise A = A* may be increased

while maintaining u = u*. Hence M*

i}

Q(u*) and (2.4,1)

defines a maximum quality hyperplane.

PROPOSITION (2.4.2). Let ., 4 , be finite pattern sets. Then .,

4&2 are linearly inseparable iff (2.4.1) has a bounded optimal objective

value N* < O corresponding to an optimal solution u* = (w*,6%). it

A <0, then |w*| =1 and a* = Q(u*).

(2.4.3)

If M <0, (2.4,1) has the alternative form

mex ||wl|
s. t. Au > -e

u= (v,0) € B, .
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If u* = (w*,0%) solves (2.4.3), then u*/||w*| solves (2.L4.1) with
max A = -1//w*||l. Conversely, if u* = (w*,6%) solves (2.4, 1) with
A < 0, then u*/-\* solves (2.4.3) with max|lw] = -1/A%.

A geometric interpretation of the meximum quality hyperplane
produced by (2.4.3) in the linearly inseparable case with the £ norm

2
is shown in Figure (2.L4.4). The inequality system Au > -e 1is equivalent to

wexy = 0> -1 Vx, € Jl

(2.4,5)

wx, -6<1 Vx1€J2

* = class C, pattern
©=class C, pattemn

Figure (2.4.4). Linearly Inseparable Pattern Sets.
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Thus all patterns in ‘!1 lie in the non-negative half-gspace of the
hyperplane w-+x = 6-1 and all patterns in g;; lie in the non-positive
half-space of the parallel hyperplane w-x = 6 + 1, Thus the pattern

sets overlap in the zone
p = (x:|wx - 8| <1 s

while the patterns outside this zone all are classified correctly. The
zone has width 2/”w”2, so the optimal solution to (2.4.3) is defined to
be the one whose overlap zone is of minimum width,

The maximum quality hyperplane in the linearly inseparable case
has several drawbacks. First, it is quite difficult to solve the
programs (2.4.1) and (2.4,3) in general. In (2.L4.1) the constant set is
non-convex, while (2.4.3) requires the meximization of a convex function,
so a Kuhn-Tucker point is not necessarily a global optimum. Second, the
maximum quality hyperplane may be a very poor choice if there is signifi-
cant overlap between the convex hulls of ¢!1 and 4!/. The problem isg
illustrated by the following example, which shows that the maximum quality
hyperplane places too much emphasis on the outlying or "maverick" patterns

which are least representative of their own classes.

EXAMPLE (2,4,6),

Let J1= {12, c003s 85 =s(k+1)}, JH = {=),%2,.cs; =K, (k1
be sets of one-dimensional patterns. For k > 2, the linear discriminant
with the lowest error rate is given by f(x) = x = 8 for any
8 € (-1,1). Such a discriminant misclassifies only the two outliers,

namely, ~-(k +1) in é‘l and (k+1) 1in ¢‘U. However, the maximum
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quality hyperplane produced by (2.4.1) is quite different. Tightness of
the constraints [w[ > 1 at optimality implies that w =+ 1 or w = -1
for any zp rorm, It is easily verified that the optimal solution to
(2.4.1) is (w,8) = (-1,0) with A = 1-k. This corresponds to the dis-
criminant f(x) = =X, which misclassifies all patterns in both sets except
the two outliers. For large values of k this ranks among the worst

choices of possible discriminants. (]

The difficulty of computation and possible poor performance of
the maximum quality hyperplane for linearly inseparable problems suggests
the need for alternative procedures. Such procedures are the subject of

Chapter 4. In particular, the linear program

min e-s
(2.4.7) 8.8, M+Inde

§ 20

wE ™ S p®

is discussed. This program determines a separating hyperplane if one
exists, but the solution does not necessarily have any of the desirable
properties of a maximum quality discriminant. However, in the linearly
inseparable case, (2,4,7) is much easier to solve than a maximum quality
problem and places less emphasis on outlying patterns. For the example
cited above, it is shown that the optimal solution to (2.4.7) yields the
discriminant f(x) = x, which is in the set of lowest error rate dis-

criminants,
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CHAPTER 3

THE LEAST POSITIVE DEVIATIONS PROBLEM

3.1. Linear Inequalities

This chapter deals with the general linear inequality system

(3.1.1)

where A is a (m x n) matrix with m >n and D € R". The matrix A

is assumed to be of full column rank n, Let ai denote the ith row of

A and Bi the ith component of b. Thus the ith inequality is
a,-x 2 B,.
A solution to (3.1.1), if one exists, can be .found as the optimal

solution to the Phase I linear program

min e-s
(3:1.2) s.t. Ax + Is > b
8 2>0

Problem (3.1.2) will be called the least positive deviations (LPD)

problem corresponding to the tableau [A:b]. If (%,8) 1is an optimal
solution to (3.1.2), then % will be called a LPD solution to the

inequality system (3.1.1). A LPD solution always exists since the LPD
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linear program is feasible (x =0, 8 = b+ is a feasible solution) and
the objective function is bounded below by zero on the constraint set,
Clearly system (3.1.1) has a feasible solution iff the LPD solution is
" a feasible solﬁtion. In this case the optimal LPD objective value is
equal to zero.

The least positive deviations terminology arises from the
equivalence between the LPD 11neér program and the unconstrained minimiza-
tion problem

m

(3.1.3) in_ f(x) = % (B, -a,.x)
: xné;uﬁan 1= .t ~

1}

-4

e- (b - Ax)

where (Bi - ai-x)+ = max(0, B = ai-x). If (%,58) is optimal for
(3.1.2), then it is easy to show that § = (b - A§)+. Furthermore, for
any x € R, (x, (b - Ax)+) is feasible for (3.1.2). Together these
statements imply that (%,8) is optimal for (3.1.2) iff % is optimal
for (3.1.3), where § = (b - Aﬁ)+.

The LPD linear program (3.1.2) can be written in the standard form

min e-*s

8.5, Ax, = Ax_ + I8, « Is_ =D

(3.1.4) 1 2 1 2
Xy 20, x,2 0, 8 20, 5,20
n n m m
xl€IR, x€]R,sl€1R,s2€]R

This primal formulation has m constraints in 2(m + n) non-negative

variables., The dual of (3.1.L4) is

3L




(3.1..5) R A'y =0
Qi< 3 < e
y € ®r"
which has n constraints in m wupper bounded non-negative variables, If

the number of inequalities m in (3.1.1) is large relative to n, then
the simplex method with upper bounds (Dantzig [11]) applied to the dual
(3.1.9) would be computationally more convenient and probably more
efficient than the standard simplex method applied to the primal (7.1.4).
When applied to (3.1.5), the simplex method with upper bounds
terminates in a basic optimal solution § which has n basic veriables
(?)il, P (?)in and (m-n) non-basic variables. Each non-basic
variable is either equal to its lower bound of zero or its upper bound
of one, while the basic variables are equal to values lying in the interval
[0,1]. The optimal basis defined by § consists of n column vectors
8, 5 ee0s 3 ai from A'. The simplex multiplier vector X corresponding

1 n
to the optimal basis is the solution to the (n X n) linear equality system

ail'x = Bl
(3.1.6)
“ B an
n

From the duality relationship between (3,1.4) and (3.1.5) it follows that

% defines the optimal solution
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X, = b'e

x, = %
(3-107) A -+

8y = (b - A%)

sy = (b - A%)™

to the primal (3.1.4) and hence X is a LPD solution to (3.1.1). The
termination condition of the simplex method with upper bounds requires

that the columns of A' price out as follows

ai.g =B, if (9)i is basic
(3.1.8) a, %> By if (f)\f).1 = 0 and is non-basic
ai'i <8y if (?)i = 1 and is non-basic

If the primal solution (3.1.7) is non-degenerate, there are no basic slack
variables equal to zero and the inequalities in (3.1.8) are strict. Thus

if a non-basic optimal dual variable is at its lower bound the corresponding
inequality in (3.1.1) is satisfied at x = X, while if it is at its upper
bound the inequality is violated (assuming a non-degenerate primal solution).
If the dual variable is basic, the inequality is tight.

Thus the search for a LPD solution to (3.1.1) can be confined to
simplex multiplier vectors associated with bases for the dual problem
(3.1.5). The following terminology will be used to describe these vectors.
A point % € ]Rn is defined to be a basic inequality solution to the
inequality system Ax > b if at least n of the m inequalities are
ail, v 3 ain are

linearly independent. If exactly n inequalities are tight, & is non-

tight at x = & and the corresponding row vectors

degenerate. For any linearly independent set of n row vectors

o

By 5 eer s ai , there is exactly one basic inequality solution X which
x n
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can be found by solving the linear equality system (3.1.6). Each basic
inequality solution x to (3.1.1) defines the corresponding basic feasible
solution to the primal linear progrsm (3.1,4) given by

+ - + -
(2 ) (xl, X5 8y, 52) = lfx", x, (b= Ax) , (b —hx ) )
Conversely, however, each basic feasible solution to (3.1.4) does not
necessarily define a basic inequality solution to (3.1.1). For example,

the basic feasible solution to (3.1.L4)

N
(xl, X, 8y s2) = (0, 9, b, b))

corresponds to the non-basic inequality solution x =0 +to (3.1.1).

Two basic inequelity solutions Xy X, are defined to be
adjacent if the corresponding dual bases have exactly (n-1) column vectors

of A' in common. Thus the simplex multiplier vectors x at

K Nkt
successive iterations of the simplex method with upper bounds applied to
the.dual are adjacent basic inequality solutions to (3.1.1). Again,
however, the basic feasible solutions defined by (3.1.9) for two adiacent
X, to (3.1.1) are not necessarily
adj@cent basic feasible solutions to the primal problem (3.1.4). The

basic inequality solutions x

reason is that the two sets of (m-n) basic slack variables can be
completely different. The algorithm presented below for determining LPD
solutions gains considerable computational efficiency by moving only
between adjacent basic inequality solutions to (3.1.1), thus avoiding
pivoting operations at intermediate basic feasible solutions to (3.1.4)

where only slack variables are entering and leaving the basis,




If the simplex method with upper bounds is applied to the dual,
the dual objective function b'y increases at each step (assuming non-

degeneracy). However, it is not true in general that f(x, ) < f(xk)

k+1
for the corresponding simplex multiplier vectors X Xy where
f(x) = e-(b - Ax)+ is the LPD objective function. Thus intermediate
multiplier vectors may be quite far from being optimal for the primal, and
hence the dual problem must be iterated to completion to obtain a good (in
this case, optimal) basic solution to the primal. From numerical experience
on LPD problems of pattern recognition and control theory origin, it has
been observed that the structure of the constraint set can be very com-
plicated even in relatively small"problems (e.g. m < 1000, n < 11) with
consequent sl&w convergence of the simplex method with upper bounds.

In the next sections an algorithm for the LPD problem is presented
that has proved to be very efficient on many numerical test problems,
particularly on those in which the system Ax > b is infeasible. The

algorithm produces a finite sequence {x of basic inequality solutions

i)
to (3.1.1) that terminates in a LPD solution. Members of the sequence

are shown to be obtainable as the simplex multiplier vectors corresponding
to the path of bases produced by a modification to the usual pivot selection
rules in the simplex method with upper bounds applied to the dual.

Assuming non-degeneracy, the new pivot selection rules produce a decrease

in the primal objective rather than an increase in the dual objective

at each basis change (the upper and lower bounds on the dual variables do

not enter into the calculation and are thus ignored).
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3.2. The One-Dimensional LPD Problem

For the case n = 1, the inequality system (3.1.1) has the form

i\

oy 2

o g

(3.2.1) 2 x> 2
\o, By

where x is a scalar variable. It is easily seen that system (3.2.1) is

feasible iff

B B
= 1 T
Tl = max a-i min a—: T2
&, 20 i <0 i
i i
and any x 1in the interval [Tl,wg] is a feasible solution (Tl = o
if all ai are non-positive; similarly 12 =+ 0 I1f all ai are non-

negative). However, if the system (3.2.,1) is infeasible, & more general
approach is necessary to find a LPD solution. In place of the linear
programming approach presented in the last section, a more direct solution
technique for the LPD problem is discussed below. This method treats the
problem in the unconstrained form
(3.2.2) min _£(x) = & (8, - ax)"

x€ R N
Without loss of generality, it is assumed that a, 0 1 S0l hensii

Let f(x) = Zim fi(x\, where f, (x) = (Pi - aix)+. A typical

=1
fi(x) for a, >0 and o, <0 is graphed in Figure (3,2.3). 1In either
case the graph consists of two linear segments with a breakpoint at

X = Biﬂai. At the breakpoint the slope increases by |ai|. Figure (3.2.4)
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Figure (3.2.3). Typical One-dimensional Least Positive Deviation Functions.
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Figure (%.2.4). Sum of Six Positive Deviation Functions, with

Minimum at x = Bﬁ/aj'
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illustrates Qhe graph of the sum of six such functions. In geuneral,
assuming the points ﬁi/ai, i=1,...,m are distinct, the graph of f(x)
consists of (m + 1) linear segments with breakpoints at each Biﬁxi.
The right-hand derivative at each breakpoint Bi/ai exceeds the left-hand
derivative by |a;|. The extreme left hand infinite segment has slope
equal to -(E?=l a;) and the extreme right-hand infinite segment has
slope equal to X?zl a;. If there is no flat (zero slope) segment, f(x)
has a unique minimum &t the breskpoint where the right-hand derivative first
becomes positive, If there is a flat segment, all points along this
segment are minima,

From the observations above it follows that the right and left

hand derivatives at any point x = X are given by the formulas

m
e N -
ax | e i=1 (i:B; /0, <)
(3.2.5)
m +
ggilf—)— — Z a]'_ - Z [ﬂii
ax s ¢ A= (i:B, /o, <%)
X=X b i

These formulas are the basis of the following solution procedure for the

one-dimensional LPD problem (3.2.2)

PROCEDURE (3.2.6). One-Dimensional LPD Solution Procedure

1. Sort the m breakpoints B.l/'ozi into ascending order. If there are
repeated instances of any breakpoint, all such instances must be
included in the ordered list. Reindex and let the index i now

refer to the new order.

Ly




2. Let

Jeu.

a, + o ||, j=1,...,m
: i
i=1
and let i*¥ be the smallest value of j for which Yj > 0. Then

the breakpoint x* = Bj*/aj* is optimal for (3.2.2).

Proof. By (3.2.5),
af (x|
+

r5 <
dx x=1BJ./Ot‘j

with equality if only one inequality is tight at x = Bj/dj. Thus by

definition of Y and j*,

(3.2.7) )

o8
-7 ax

xX=x*

x=x¥

But (3.2.7) are precisely the necessary and sufficient conditions for a
convex piecewise linear function of a scalar variable x to be minimized

by x = x¥*, [}

The procedure is implemented by ordering the breakpoints and successively
adding the slope changes |ai| to the initial left-hand derivative. The
procedure stops at an optimal breakpoint when this sum, and hence the
right-hand derivative, first becomes non-negative. If the minimum is
not unique, the solution that is produced is thus the smallest minimizing
breakpoint.

As an alternative to (3.2.5), the derivatives at any point X
can be calculated from the formulas

Lo




= - i -, + Ly
x=% [1:0.2<8.] (i:0,% =)
(3.2.8)
g-(jl = 2. -a - X
dx X=X {i:¢ 2<:51} (i % = Bi]

Rather than starting from the numerically smallest breakpoint as in

Procedure (3.2,€), the search procedure can be initiated from an arbitrary

breakpoint through the use of these formulac.

PROCEDURE (3.2.9). Modified One-Dimensional LPD Solution Procedure

A,

Select an arbitrary breskpoint %X = B.l/ai and calculate the left
and right-hand derivatives at X from (3.2.8). If X 1is optimal
by (3.2;7), stop. Othérwise go to step 2.
ke (df/dx+)|x=ﬁ < 0, sort the breakpoints thet are strictly greater
than X into ascending order and let the index i refer to this order.
If (df/dx-)'x=ﬁ > 0 sort the breakpoints that are strictly less than
X into descending order indexed by i. In either case include all
instances of repeated breekpoints.

Define

r :éf—
Jd  ax

M

- sgn g_f_'. . la '
x=5 ax ' |x=R j=1 9

Let j* be the smallest value of J such that

Yix 20 and Yyx - laj*l <o
Then x* = Bj*/aj* is optimal for (3.2.2).
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Proof. From (3.2.5) and (3.2.8), it follows that

< 8
3 Flx-p . Ja
| 33
d
YJ- IC’JIZ"f__'
dx x=ﬁd/dj

with equality in each case if only one inequality is tight at x = Bj/aj.
Thus by definition of j¥, the optimality criterion (3.2.7) is satisifed

at x = x%*, ]

The procedure first determines on which side of the initial break-
point X the minimum lies based on the algebraic sign of the right-hand
derivative at X. Successive breaskpoints are then examined and the
derivative updated until an optimum breakpoint satisfying (3.2.7) is
found. Procedure (3.2.9) will be incorporated into an algorithm>for
solving the general n-dimensional LPD problem. It is used to solve one-
dimensional problems of the form

min _ f(x +14d)
T E

where x € R® 1is a basic inequality solution to (3.1.1) and d € R

is a search direction.
Let %€ R® be a basic inequality solution to Ax > b with

8 5 8 5 cen, By the linearly independent row vectors corresponding
1 2 n

to n éight inequalities at x = %, Define the (n x n) matrix

Ly




(3.2.10) A, = 4

Then the system Ax > b can be rearranged and partitioned as

Ax>DbD
(3.2.11) - :

A2x > b2

with % = Ailbl' The following equations define a search direction

dk GZRn such that all but the kth inequalities in Alx > bl remain

tight for x = % + Tdk, T # 0:

®
o)
[l
()
.
H<
o

(3.2.12) J

Thus dk is the kth column vector of. Ail. Improvement in the LFD

objective function can be attempted by solving the one-dimensional problem

(3.2.13) min. £(R + td)
TQIﬁl

This can be rewritten as the one-dimensional LPD problem

(3.2.14) min (e (b - ar)* + (-1)*]
T€ZR1
where a = A df
2
b = b2 - A_ﬁ
)45
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Let 1% = (S)i*/(a)i* be & minimizing breakpoint for (3.2.1k).

PROPOSITION (3.2.15). If 7 =0 is not optimal for problem (3.2.1L),

then % + r*dk and % are adjacent basic inequality solutions with

£(% + %) < £(8).

Proof. From the defining equations (3.2.12) for dX, it follows that the

n inequalities A.x > bl’ which are tight at 1 = O, remain tight at

1l

r = ™* except for the inequality corresponding to a; . An additional
k

inequality ai*x > Bi* in the system A2x > b2 that was not tight at

T =0 Dbecomes tight at 1 = 1%, The row vector &y cannot be linearly

k

dependent on [a.:.L ceey S , & 3 o g an}; otherwise a,,d” =0,

1 R,
implying ai*-ﬂ = P, @and hence (E)i* = 0 which contradicts non-optimality

at Tt =0. Thus % + T*dk is a basic inequality solution corresponding

1 ik-l k+1 n

optimality at 1 = 0 implies f(% + t*d ) < f(%). 0

to the dual basis {ai TR » Bixs By 5 oeee s 8y } . Non-

Proposition (3.2,15) immediatély suggests the algorithm for the
LPD problem that is presented in the next section., Starting with an
arbitrary basic inequality solution, the algorithm generates a sequence
of improved adjacent basic inequality solutions by solving one-dimensional
LPDs of the form (3.2.14). Computationally, the algorithm is shown to be
implementable by changing the pivot selection rules of the simplex method
with upper bounds as applied to the dual, As in the simplex method, the

algorithm terminates in a finite number of steps with an optimal solution.
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3.3. The ALPD Algorithm

This section presents the Accelerated Least Positive Deviations

(ALPD) algorithm for determining & LPD solution to the system Ax > b,
It will be assumed that all basic inequality solutions are non-degenerate,

If this is not true, the vector b can be perturbed by

’\Ib')i:(b)i-{-‘l
and the system Ax > b' will be non-degenerate for all sufficiently small
positive values of ¢ and the optimal dual basis for the perturbed system
will also be optimal for the original system. The standard lexicographic
schemes (Dantzig [11]) for the simplex method can be used intact.

Let

k = iteration number
X, = basic solution at iteration k
Ak = (n X n) non-singular submatrix of A such that the

corresponding inequalities are tight at x

k
i -1
dk = ith column of AP
£(x) = e« (b - Ax)" .

ALGORITHM (3.3.1). ALPD

Step O, Set k =1, Let Alx e bl be any set of n 1inequalities

such that A, is non-singular. Set x, = Azlbl. Go to Step 1,

u7

daanich.

Py




Step 1. Determine the right and left-hand derivatives

i i
df(xk + rdk)
Yi = _._+ 61 - ~
dt =0 dt =0

for 1 = l,..ey D,

Let %i = min(ri, -bi) and ki* = min {Xi]. If
S 1) R -
N.x 20, go to Step 3. Otherwise, go to Step 2.

i*

Step 2. Using (3.2.9) with initial breakpoint 7 = 0, solve the one-

i %
dimensional LPD problem min f(xk + al Let 1* be the

T k b

i %
minimizing breskpoint. Set x ., =X+ T*d; and form A,

by replacing the i*th row of A with the row of A correspond-

k
ing to the breakpoint at +t*, Increment k by 1 and go to Step 1.

Step 3. Stop. The final is optimal.
*x

PROPOSITION (3.3.2). Under the non-degeneracy assumption, the ALPD

algorithm converges in a finite number of steps to an optimal basic

solution.

Proof. Let Xy be an intermediate basic solution. Since xk is not the
final solution, by Step 1 and convexity of f(x) the right and left-hand

derivatives and B are non-zero and have the same algebraic sign.

Tix 1%

Hence 1t = 0 cannot be optimal in Step 2 and therefore by Proposition

(5.2 15) x, @nd X4 OT€ adjacent basic solutions with f(xk+l) < f(xk).
Thus cycling cannot occur. There are at most (2) basic solutions, so

the algorithm must be finite. It remains to be shown that the final basic
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solution % is optimal, This will be done by
corresponding point
ST At A= At
(X ; X, 8, 8 ) = (X y X, (b o AX)

is optimal for the LPD linear program (3.1.4).

Let Al

tight inequalities at x

be the n X n submatrix of A

o
X.

v

where A, is an (m-n) X n matrix
inequalities. The linear program (3.1,
in e.sl + 3
min e.s, + e*s,
+ - + =
s.t. Alx - Alx 5 Isl - Isl
+ i [
Apx - AEX u In&
x € R", 8, € B,

Then the system Ax > b

demonstrating that the

’ (b = Aﬁ)-)

corresponding to the basic

can be written as

corresponding to the remaining non-basic

L) then takes the form

Since A1 is non-singular, this problem can be transformed by elementary

row operations (Gaussian elimination) to yield

(SeT) min e-sz + e.s;
0 = -1 + -1
% A ..
8.5, 115, Ix + 1 sL A1 s
+ - -1 + -l
Isy = I8y - A A "s) + AAS
x € R”, 5, EX,

n




The following basic feasible solution to (3.3.3) can be selected

+ - o+
from: (X, Xy 8 S )2

+ -]

(x ); 1is basic if (Al*bl)i >0
For 1 =1,,..,8
- . . . - \ =
(x )i is basic if (Allbl'i <0
(3.3.4)
o= . J " - \
s, is basic if (b2 - A2Allbl)j =00
For J = 1,ceo,M=0 . -lb
s, 1is basgic if (b2 - A2Al l)j <0

This solution corresponds to the basic solution % = Azlbl tolliEed L),
(3.3.4) is optimal if the reduced costs for all non-basic variables are
non-negative.

Let (yl,yz), vwhere y, € R", ¥, € R™", be the simplex
multiplier vector associated with the basic feasible solution (3.3.4),
From the form of (3.3.3) it follows that ¥, =0 and hence the reduced

: iy -
cost for all non-basic components of x and x equals zero, Also

from (3.3.3) it is seen that

(v.)). =1 if (s). is basic
(Fe3:5) 2’3 i J
(yg)j =0 if (s2)j is basic

Thus the reduced cost for all the non-basic components of s+ and s_

2 &
equals + 1, The reduced cost for (s{)i is
i
(3.3.6) 1+yAd, G TR
where di is the ith column of Ail. Similarly, the reduced cost for




<SI)1 is

(5.5.7) —ygAgdl " =l

Application of the formulas (3.2.8) to the function

A i = - o+ e
(3.3.8) f(® + 1d") = e- (b - at) + (=1) ,
- il - -lb ;
where a = A2d and b = b2 - AgAl 1 yields
A ) me=n
dfgx 2 7 "['d ) w2 Z (A dl)-,
ar- =1 2 I
=0
i
—: -yeAed
= Yi
and
A L m-n :
df X +-Td P l et Z (Aedl) )
o =0 =1 :
i
= - % - ygAgd
= 51

Comparison with (3.3.6) and (3.3.7) reveals that y; and -8, are the

reduced costs for (SI)' and (s{)i, respectively.

i

But by the termination condition in Step 1,

¥y 20, 5, 20, I PO

at %, so % is optimal. =

2k



The ALPD algorithm can be implemented using a pivotal procedure

on tableaus. Define the tableau

>
o’

corresponding to the basic solution x = A;lbl. By elementary column
operations (equivalent to Gaussian elimination row operations on the

transpose of T), T can be transformed into the canonical form

I . 0
(3.3.9) T, = o5 5
A2Al . By = By

=1,...,n and let b = b, - A AT

Let a- be the ith column of A 2t AP

m
Then the right and left-hand derivatives Yi’ Bi of the function
fi(r) —e (b -an)" + (-1)" at 1 =0 can be calculated from (3.2.8).

The fastest rate of descent (minimum reduced cost for the primal problem)

is

(3.5.10) Ax = _ min {min(y;, -6,))
=l

If N 20, then the current solution is optimal. Otherwise the i¥*th

row of Al will leave the dual basis. It will be replaced by the j*th

row of A2, where

-i%

{3.3.31) (5)3*/(a )J*
is the minimizing breakpoint of fi*(T).
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This is accomplished by executing a standard simplex method pivot
on the transpose of T, using the (i*, j* + n) element of Té as
the pivot element. The new tableau, after rearrangement, will be in the
canonical form corresponding to the new dual basis.

The pivot operation used to move from one basic solution to an

adjacent basic solution is thus the same ag that used by the simplex method

with upper bounds applied to the dual (3.1.5) in exchanging one basic
column of A' for another, Thus the ALPD algorithm can be implemented
simply by changing the pivot selection rule in standard simplex method
software and ignoring the upper bounds on the dual variables. The new
pivot rule selects the column that leaves the dusl basis according to
the minimum reduced cost rule (3.3.10). The entering column is selected
as the one corresponding to the breakpoint that minimizes the LPD
objective function (3.3.9). Each iteration then results in a decreased
primal objective rather than increased dual objective.

The relative efficiencies of the ALPD and simplex method pivot
selection rules can be compared directly by counting the number of basis
changes (pivot operations) required to reach optimality from a given
starting basic, The ALPD algorithm has been coded in FORTRAN and applied
to numerous small (typically m < 1000, n < 11) LPD problems arising
from pattern classification models. These problems generally have a
totally dense A with b > 0, Comparative runs with the simplex method
with upper bounds have been made with the following general results,

In cases where the inequality system Ax > Db is feasible, the two pivot
rules require approximately the same number of pivots. However, in cases
where the system is infeasible, the number of simplex method pivots

grows rapidly with the extent of the infeasibility, i.e. the number of
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inequalities violated by the optimal solution. The number of ALPD

b pivots appears insensitive to this factor. 1In many infeasible cases

3 the number of simplex pivots exceeded the number of ALPD pivots by
factors of several hundred. Detailed results of a series of systematic

comparison trials are presented in the next chapter.

3.4, Initializing the Algorithm

The choice of the initial basic solution is arbitrary. However,

the following procedure produces an initial basic solution by constructing

a sequence {xo, Xy eee s xn) of points such that

‘ f(xk) < f(xk_l) ; o=l ey B

The final point X, is the desired initial basic solution. Thus a

|
|
! considerable amount of improvement in the objective function may be
|
|

achieved in the initiation sequence.

Let
k = iteration number
’ sk = partial set of vectors in the dual basis
’ at iteration k.

PROCEDURE (3,4,1)., ALPD Initialization.

Step 1. Set &, = d, X = 0.
Choose an arbitrary direction d0 # 0 (the unit vector

dy = (1,0,..., 0) 4is convenient); set k = 1 and go to Step 2.

54

e si——————— e



Step 2. Solve the one-dimensional LPD problem

; o
min f(xk-l T dk-l)
Let ak be the row vector corresponding to the inequality that

becomes tight at the optimizing 1 = 1%, Set

K
— = *
By = Bga V8] e " R |

If k =n, go to Step 4. Otherwise go to Step 3.

Step 3. Determine a new direction d, # 0 sSuch that
4 at=0, S S &

(The Gram-Schmidt orthogonalization procedure can be used.)
Increment k by one and go to Step 2.
Step 4. Stop. $, is the initial dual basis and x is the initial

basic solution.

After Step 2 of iteration k, the k inequalities corresponding to

al, seo 3 ak are tight at Xy . Each new search direction is generated

in such a way that these inequalities remain tight at x where a new

k+1’
inequality becomes tight.

3.5. Extensions of the LPD Problem

In this section a sequence of increasingly general linear programs
are shown to be reducible to equivalent LPD linear programs. Ultimately
the applicability of the ALPD algorithm to the general linear programming

problem is demonstrated.




The weighted LPD problem with tableau [A:b] and weight vector

w >0 1is defined as the linear program

min w.s
(3.5.1) s.t. Ax+ Is>D
s >0

x€ERY, s€ R
This is the immediate generalizaetion of the standard LPD problem (3,1.2)
obtained by replacing the LPD objective e+s with the weighted LPD

objective wes. The equivalent unconstrained problem is

{3.5.2) min f(x) = we(b - Ax)+
xEIEF
Since w >0, we(b - Ax)+ = e+ (Wb - WAx)+ where W is them xm

diagonal matrix defined by W,., = (w)i, 1 =1, ..:;0. Thus (3.5.1) is

ii
equivalent to & standard LPD problem with tableau [WA:Wb]. In appli-
cation of the ALPD algorithm to (3.5.1), either of the tableaus [A:Db]
or [WA:Wb] may be used for pivoting since both have the same set of
basic solutions. However, the pivot selections are governed
by the derivatives of the LPD objective function f£(x) = e« (Wb - WAx)' .
The weighted LPD problem cen be further generalized by allowing
penalties on both positive and negative deviations. Let w & ﬂfl,

z € ]Rm be non-negative vectors such that w + 2z > 0. The weighted

least deviations problem with tableau [A:b] and weight vectors w and

z 1is defined by the linear program
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2
5 * + £ - o=
(3.5.3) s.t Ax + Is, - Is, =D
5y 2 o, S, =10
r . ol m
x€ R , slc]R, 52€IR
It is easily seen that in an optimal solution (X ’gl’gg) to (5.5.5)

the relations §l = (b - Aﬁ)F and %2 = (b - A%X)” must hold and hence

(3.5.3) is equivalent to the unconstrained problem

(3.5.4) min _ £(x) =w (b - )" + 2. (b - Ax)”
x € R

Since (b - Ax)™ = (-b + Ax)+, the weighted least deviations problem
(3.5.3) can be reformulated as a weighted LPD problem. In particular,
if w>0 and 2z >0 the tableau and weight vector for this weighted

LPD problem are

At B

(3:5.5) and [w,z]

-A . -p

respectively. In application of the ALPD algorithm to (3.5.3) it is
sufficient to pivot on the partial tableau [A:b] since the pivoting

operation preserves the opposite sign relationship between the upper

and lower halves of the full tableau. Again, however, the pivot selections

are determined by the derivatives of (3.5.L4).

The dual of (3.5.3) is

(3.5.6) s.t. Ay =0

o gp— ————————

Y ———_ I VTR e




which differs from the dual (3.1.5) of the standard LPD problem only in

the generalization of the lower and upper bounds on the dual variables.

Example (3.5.6).

The general linear epproximation problem with lp norm criterion

is

(3.5.7) min £(x) = |lax - pr
x € 1R
The vector b € Hfl is approximated by a linear combination of the columns
of the m X n matrix A, with the best approximation defined as that which
minimizes the ZP norm of the residual vector. Problems of this type
arise in linear regression analysis and function approximation ('curve
fitfing'). The choice p = 2, equivalent to the usual least squares
criterion in regression analysis, is the simplest case both analytically
and computationally, since an explicit solution x = (A'A)-l A'b exists
whenever A'A is non-singular, Also, in the general linear statistical
model with the usual Gaussian error distribution assumption, the maximum
likelihood estimate of the coefficient vector is a solution to a problem
of type (3.5.7) with 12 norm., However, it was first suggested by
Edgeworth [12] that the ll criterion of minimizing the sum of the
absolute values rather than the sum of the squares of the deviations
may be more suitable when the deviations are large and erratic., For
example, if the error distribution is given by the double exponential
distribution with probability density

fle) = (2(;)-l e-l(l/0 " -« < ¢ <w®
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then the maximum likelihood estimate is a solution to a linear approximation
problem with £, norm criterion (Dreper and Smith [13]). This distri-
bution has a much more slowly decaying tail than a normal distribution
with the same variance 02 and hence is more likely to produce the
kind of deviation pattern mentioned above. Before the availability of
linear programming techniques, however, the compute .onal difficulties
presented by the Kl criterion limited application :“ 2arly solution
methods (e.g. Rhodes [14] and Singleton [15]) to low dimensional problems,
typically n < 3. The first linear programming formulstion of this
problem is due to Charnes and Cooper {167, wﬁo present the least weighted
deviations program (3.5.3) with w=e and 2z =-e. The computational
advantage of the dual and the applicability of the simplex method with
upper bounds is noted by Wagner [17]. The ALPD algorithm given here
is a generalization of a special purpose algorithm for the 21 norm
problem presented without proof by Davies [181]. (m;

The final extension of the LPD problem considered here is the

constrained weighted LPD problem obtained by adding the p X n inequality

system

(3.5.8) Ax > b2
x € R*
to the constraint set of the weighted LPD problem (3.5.1). (A constrained

weighted least deviations problem can similarly be defined by adding

(3.5.8) to the constraint set of the weighted least deviations problem
(3.5.3). As shown above, the weighted least deviations problem can be
reformulated as a weighted LPD problem, so the discussion below also

applies to this case,) The general form of the constrained problem is

thus 2
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(3.5.9) g b.

The (m + p) X n matrix

where m+ p >n, is assumed to be of full column rank n.
Problem (3.5.9) does not have a direct weighted LPD equivalent.

However, if the inequality system (3.5.8) is feasible, the weighted

LPD problem
| min wes, + k(e-sg)
(3.5.10) s.t. Ajx + Isg > by
A2x 3 I82 > b2
Sy >0, s2 >0
x € R, s, € R, 52611'\‘p

will be shown to have the same set of optimal basic solutions as (3.5.9)

for sufficiently large values of the scalar weighting factor A.

PROPOSITION (3,5.11). If the added constraints (3.5.8) are feasible,

then the constrained weighted LPD problem (3.5.9) has anoptimal solution,

A &vPF o
Proof. If % 1is feasible for (3.5.8), then x =%, s = (b - AX) is
feasible for (3.5.9). The objective function of (3.5.9) is bounded
below by zero, so an optimal solution exists. D
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LEMMA (3.5.12). Let x* Dbe an optimal basic solution to (3.5.10)

for some A >0 and let s} = (bl - Ax*)+. If A_x* >b_, then
oat = =

(x*,s*) is optimal for (3.5.9).

s i e S il

Proof. If Aex* > bQ, then there exists an optimal solution (%,8)

to (3.5.9) by Proposition (3.5.11). Since (x*,si) is feasible for

>w-8. But (x, s

p So) = (&, §,0) is feasible for (3.5.10)

whereas (x¥, s} 0) is optimal, so wys¥ < wes. Thus

and (x*,s{) is optimal for (3.5.9). O

WesS¥ = W.8
1 i

PROPOSITION (3,5.13). If the added constraints (3.5.8) are feasible,

AAS o s e S

then there exists a number A > 0 such that any optimal basic solution
x* to (3.5.10) for A > XN defines an optimal solution x = x¥,

s = (b - Ax¥)" to (3.5.9).

- —— e e

Proof. Let & = [xl, W 7 xk] be the set of basic solutions to
(3.5.10) that are infeasible for the system A X >D,. ® is a finite,

possibly empty set. If ® is empty, let X = O and the result follows

from the lemma, If ® 1is non-empty, define

- +
5 = min e [b2 =A xi]

x.E8 =
%

and let X = (w-8)/6 where (%,8) is any optimal solution to (3.5.9).
Thus if A >},

?\(e'[b2 - Axi]+) > wes Vx, €8

Hence no member of ® can be optimal for (%.5.10) when X\ > X since
(x,sl,sg) = (%,8,0) 1is a feasible solution with a lower objective value.

The result then follows from the lemma. Q
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Thus the constrained LPD problem can be solved by application
of the ALPD algorithm to the weighted LPD problem (3.5.10) with any
weight factor A greater than A. In general the value of X is
not explicitly known, so the choice of A is open at the start of:the
algorithm. Numerical experience with constrained LPD problems has
shown that if A is initially chosen very large, the sequence of basic
solutions encountered by the ALPD algorithm first is driven into the
feasible solution set of (3.5.9) with all subsequent basic solutions
remaining in this set. For sufficiently large values of A, this

behavior is guaranteed, It follows from the argument used to prove

Proposition (3.5.13) that the objective values corresponding to basic
solutions that are infeasible for (3.5.9) are bounded below by &)X,
where 5 > O, while objective values for feasible basic solutions do
not depend on A. Thus for sufficiently large values of A, the latter
will be uniformly lower than the former. In practice, once a feasible
basic solution is attained, the value of A can be raised at any time
during the course of the algorithm to avoid a pivot operation that would
result in an infeasible basic solution.

The following example demonstrates the applicability of the

ALPD algorithm to the general linear programming problem,

Example (3,5.1L4),

The general linear programming problem is
min c-x
(3.5.15) ' s.t. Ax=0D

x>0, x€ R®
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where A is a (m X n) matrix assumed to be of full row rank m with
n >m, The dual of (3.5.15) is
max by
(3.5.16) s.t.  Ay<ec
y € R"
If an optimal solution % to (3.5.15) exists, then by duality theory

an optimal solution ¥ to (3.5.16) exists and c'% = b-§¥. In this case

let O be any number such that «a > b-§, Then the constrained LPD

problem
min o
(35.%7) Bets by+o>a
-A'y > =c
g>0

yeE R, s€ RY

is feasible and has an optimal solution (y*,o0¥*) by Proposition
(3.5.11). It is easily seen that o* = = b*§y and y* is an optimal
solution to the dual problem (3.5.16). A value of « need not be known
explicitly for application of the ALPD algorithm. It is sufficient for
purposes of calculating the required derivatives simply to con-

sider the inequality bey > a as always being violated. The optimal
solution to the primal problem (3.5.15) conveniently appears in the

final tableau in the row corresponding to this inequality. O

Numerical experience reported in the next chapter suggests that

if the underlying inequality system is feasible or nearly feasible, the
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ALPD algorithm is competitive with standard simplex software in terms

of the total number of basis changes but does not offer any significant
computational advantages. For example, once a feasible basic solution
to the inequality system =-A'y > -c is reached in Example (3.5.14),
close examination of the ALPD algorithm reveals that for large values
of the weight factor A the pivot sequence is precisely the same as

that of the dual simplex method (Dantzig [11]) applied to the primal.

Thus the algorithm simply becomes a convenient method of initializing

the dual simplex method if a basis with non-negative reduced costs is

not readily available. However, the ALPD algorithm has shown a large
computational advantage if there are alarge number of infeasibilities
in the inequality system. This case arises, for example, in the f
linear approximation problem (3.5.6) since both the systems Ax > b

and =Ax > -b ap}=ar in the LPD formulation. Similarly, the algorithm
should perform well on the following constrained version of this

problem,

Example (3,5.18),

Let bk € I¥n be the state vector at time k for a discrete

time control system governed by the equation

where F is a m x m matrix, ak is the scalar control applied at time k,

and g-fimm is a constant vector representing the change in the state

vector per unit of applied control., Given bo, the terminal error

problem [19] requires the determination of a sequence of controls

(Ib




= an, Oy eve s an-l) thet minimizes the ¢, mnorm of the difference

between the terminal state vector bn and a desired state vector b.
n - 5 ] x =

The control sequence vector x € R is subject to the inequality

constraints

A2x =

where A2 is a p X n matrix and c € iz ’
The terminal state bn is given by

n=-1 n=2
bn = Fnbo R oY e 8y shawell Fgan_f + g

0 n-1

where bo is the initial state vector., Define the m x n matrix Al as

n-1 n-2
A = (B g, ¥ "B «cs 5 P& &)

Then the terminal error problem can be formulated as the constrained

least total deviations linear program

, +
min e.-s + e-s

i -
+ - = -
et Alx s s b Fnbo
e 2
+ -
8 20, 8 >0
- 4 -
xER', s €ER®, s"e R . O
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CHAPTER L

THE LINEARLY INSEPARABLE CASE

L,1. The Stochastic Classification Problem

In many practical applications, the patterns in a given class
can be regarded as random vectors distributed according to some multi-
variate probability distribution. For example, in the template-match-
ing problem defined in Section (1.2), each observed pattern in a given
class is equal to the sum of one of a finite number of prototype patterns
from that class and a random displacement vector attributable to random
observation error or random variability in the paﬁtern population
itself., It was shown in Chapter 2 that if the underlying prototype

sets are linearly separable and there exists a sufficiently small bound

on the size of the random displacement vectors as measured by the la

norm, then any sets of observed patterns from the two classes are also

linearly separable, If the prototype sets are completely known, then

the maximum quality programs (2.3.2) and (2.3.4) with zp norm

determine the linear discriminant that maximizes the bound on the %1

norm of the displacement vectors while maintaining linear separability.
If, however, the prototype sets are linearly inseparable

or the bounds on the displacement vectors are too large,not all sets

of observed patterns will be linearly separable. More generally,

let f(x}Cl), f(x]C%) be probability densities corresponding to the

distributions of observed patterns in class Cl and class Cé,

respectively, If these densities overlap on a region «®, where
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@ = {x € B £(x]C) >0, £(x|C) > 0)

then there is no discriminant, linear or otherwise, that will always
correctly classify an unknown test pattern x < Q.
The following Bayesian model is often employed for the stochastic

problem. Unknown test patterns are randomly presented from €. and

1

&

C; with given prior probasbilities of occurrence ™y and m,, respec-

tively. Thus the test patterns have the mixture density

(4.1.1) Plx) = vlf(x!Cl) + m,£(x|C,)

Let Pr(Cilx) be the posterior probability that x belongs to C.,

i = 1,2. Then by the Bayes formula,
(h.1.2) Pr(Ci[x) = vif(x,CE)/f(x) , 1= 1,8,

Define the loss matrix

where Aij is the loss incurred by deciding that an unknown test pattern
belongs to Ci when its true class is CB. The expected loss for the

decision "x belongs to Ci" is thus
(1.1.3)  qg(x) = Ay Pr(Glx) + Ay Pr(Cylx), 143, 1 =12

The decision rule that minimizes the expected loss is
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(k1. %) decide x € Cl i ql(x) < q2(x)
x:"C’g

it q,(x) > q,(x).

This is called the Bayes decision rule. The equivalent Bayes discriminant

is

(4.1.5) a(x) = a,(x) - q,(x) .

Although the Bayes discriminant is optimal in the sense of
minimizing the expected loss, rarely is enough information available to
calculate it, The probability densities f(x]Cli, f(x[C%) and the prior
probabilities LY and m, are usually unknown. The only data available
may be two given sets zﬂj ¢12 of known representatives of C’1 and
Cé, respectively. There are several approaches in this case. First, a
parametric form for each class dengity, such as multivariate normal,
may be assumed. The sample sets ;!1, ‘;2 are used to estimate the

parameters and hence the density functions., The estimated density

functions are combined with estimates of the prior probabilities .,

Ty to yield an estimate of the Bayes discriminant.

The formulational difficulty with this approach is that the
assumption that a class density belongs to a known parametric family
may be unwarranted, For example, in the template matching problem,
the class densities may be complex mixtures of simpler densities
centered around the prototypes. An alternative approach in this case

is the use of non-parametric density estimation techniques such as

Parzen window function estimators (Duda and Hart, [5]). The drawback
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with this technique is that it can produce very complicated density
function estimates that reguire storage of all given samples
e 451 u <82 for implementation.

The approach taken here is to assume a parametric functional
form, namely linear, for the discriminant function. The linear coefficients
are chosen so that the discriminant performs well, according to some
mathematical programming criterion, on given known sets of sample patterns.
If the sets of sample patterns are large and well representative of their
respective class populations, then the discriminant is expected to
perform well on these entire class populations. The performance
criterion used will be the error rate on the given sets of sample patterns.

This corresponds to the Bayesian loss matrix
0O 1
L =
L 0
The optimal Bayes discriminant is thus
(4.1.6) g(x) = p(C [x) - P(C,|x)

corresponding to the decision rule of assigning the pattern to the

class of greater posterior probability.

4.2, Linear Discriminants by Mathematical Programming
Assume two sample sets .4’, 142 of known representatives

of classes Cl and Cb, regpectively, are given. Let
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be the corresponding m x (n + 1) signed augmented pattern matrix,
Then linear discriminants of the form g(x) = wex - 6 can be generated

as solutions to mathematical programs of the form

(-2 ) min f(u) =
s, 6.6 T 1l

W ™MB

f(u,ai)

where f(u,a) is a penalty function that reflects the performancé of the

discriminant defined by u on the pattern corresponding to a. Ideally,

f(u,a) should have the following properties.

Pl. Errors should be penalized (f(u,a) >0 if a.u < 0) and correct

classifications rewarded (f(u,a) < 0 if a.u> 0).

P2. The mathematical program (4.2.1) should be easily solvable by

existing algorithms.

P35, iR ch and ¢42 are linearly separable, the solution to (4.2.1)

should determine a separating hyperplane,

These properties generally govern the choice of the function f(a,u)
in the models discussed below. However, in all these cases at least

one of the properties has been sacrificed to achieve the others.

4,3, Minimum Error Rate Programs

If error rate is the dominant criferion for choosing a decision
rule, then the best linear discriminant that can be generated from the
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sample sets Jl and Jg is the one that makes the fewest misclassi-
fications on these sets, This corresponds to the penalty function

1 au <0

f£(u,a) =

0 au >0
Thus the objective f(u) = Z'::l f(u,a.i) in (4.2.1) is equal to the number
of errors made by u on Jl U J .

Ibaraki and Maroga [8] have formulated this case as the mixed

integer linear program

min ees
(4.3.1) s.t. Au + BIs > e
u=(w,0) € e

(8)1=° g R, B O

where B 1is a large positive number. If B is sufficiently large,

then an optimal solution (u,s) to (4.3.1) satisfies

—~
w>
~—
[N
|

=0 iff a,cu>1

1

—~

wn>

~
I

=1 iff a, <O

i

and § is thus a minimum error rate discriminant. Unfortunately, the
computational difficulty of solving (4.3.1) would become prohibitive
for large values of m., Thus this penalty function has properties Pl
and P3 but lacks P2, Other choice of penalty function may yield a
discriminant with nearly as low an error rate on o LU JQ with

far less computational effort,

T1

st



4.4, Least Squares Programs

The penalty function choice f(u,a) = (l-a-u)2 results in the

program

(4.4.1) | min 2w - efl3
u=(w, G)EIZIRn"-l

which is an example of the linear approximation problem with z2 norm

discussed in Section (3.5). As noted there, the explicit solution to
(k.4.1) is

(b 4.2) u=(aa)tave

where the existence of (A'A)'1 is guaranteed by the assumption that A
is of full column rank (n + 1). Computationally, this is the easiest

of the models to solve. However, the model lacks Properties Pl and P3.
The function (1 - a-u)2 penalizes both incorrect (a-u < 0) and correct
(a*u > 0) classifications. For correct classifications, the penalty
actually increases as asu increases past the margin value of one. The
following simple example illustrates the absence of Property P3 due to

this unfortunate behavior.

Example (L4,4.3),

Let ﬂ}l = {e, 2,1}, g‘z = {=1} Dbe one-dimensional pattern sets
with o > 0. Clearly e!l and c!? are linearly separable by the

discriminant g(x) = x for all positive values of . The signed

augmented pattern matrix is
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o =1
A = 2 -1
1=l
1 1
o .

A direct calculation using (4.k.2) shows that the least squares dis-
criminant, after normalization to make the coefficient of x equal to

unity, is given by

o - 6o+ b

8(x) = x + 5775

For all values o > k4 + 26, g(-1) >0 and hence the pattern in z{z
is misclassified. The penalty that the least squares criterion places
on excessively large absolute values of the discriminant function for
both correct and incorrect classifications gives too much influence to

isolated patterns that are far from the main group. =

Despite this drawback, the least squares discriminant has a
significant asymptotic property. Patterson and Womack (20] show that
if 4!1 and A!é are constructed from class Cl and C% patterns,
respectively, by selecting m independent patterns of known classifi-

cation from the mixture distribution with density

f(x) = wlf(xlcl) + Wef(xlcﬁ) s

then the discriminant defined by (L.4,2) asymptotically approaches the

minimum squared error approximation to the Bayes discriminant go(x)

>
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as m -, This approximation minimizes
(4.1 4) [ [Gex = 0) = gy(0)71% £(x)ax

However, as Dude and Hart [5] point out, the best linear approximation
to the Bayes discriminant does not necessarily have any favorable error
rate properties, Points where f(x) 1is large and points far from the
surface go(x) = 0 are emphasized at the expense of points near this

surface.

L.5. Linear Discriminants by Least Positive Deviations

The penalty function

(4.5.1) f(u,8) = (1 - asu)”

leads to the LPD linear program first suggested in a pattern classifi=-
context by Smith [21]
min e-s
(4.5.2) 8.5, Au + Is > e
s >0

+
ue= (w0 € B, s B

This model has the property P2 since it is relatively easy to solve by
the ALPD algorithm presented in Chapter 3 or by the simplex method with
upper bounds applied to the dual. In addition, property P> is satisfied
since linearly separable problems are characterized by the feasibility
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of the system Au > e, so (4.5.2) will produce a separating hyperplane
if one exists. The only property not satisfied is Pl. A penalty is
incurred whenever f(a,u) > 0, which is equivalent to the event

asu < 1, This event will be called a margin violation. A margin violation

is a true misclassification only if a-u < 0. Thus correct classifications
are penalized if O < a-<u < 1.

The dual of (4.5.2) is

4.5.5) g2 b, A v =)

yG]Rm

Let § be an optimal basic solution to (4.5.3) as determined by the
simplex method with upper bounds, and let @ be the optimal primal
solution which is the simplex multiplier vector for the terminal optimal
basis in (4.5.3)., Assuming non-degeneracy, the termination conditions

(3.1.8) for each non-basic variable (?)i are

I

(§), =0 <=> a;cu>1
(4.5.4) 3

il

2 l<==>a..u<l
i i

&)
Thus the patterns which are margin violators are those for which the
corresponding optimal dval veriables are at the upper bound.

Two distinct cases arise which are distinguished by the form

of the optimal solution @ = (%,5):




Case 1.

¥ = 0, This case occurs when the corresponding optimal dual
basis in (4.5.3) consists of signed augmented patterns which are
all derived from a single sample set 131 or <82. The sample

set which is the source of the optimal dual basis will be called
dominent. If 4, is dominant, 6 = -1; otherwise 8 =+ 1.

In general the dominant set is the larger of the two sample sets
since the optimal objective value is equal to twice the number

of patterns in the non-dominant set. The discriminant correspond-
ing to § is the constant function f(x) = -8, which is equivalent
to the decision rule that classifies all patterns into the class
of the dominant sample set. Since all of the inequalities
corresponding to patterns in the dominant set are tight at

u = i, this solution is degenerate if there are more than (n + 1)
such patterns.

This case may arise, for example, when one of the sample sets
is overwhelmingly larger than the other and the sets are not
linearly separable, In such circumstances the discriminant
f(x) = -8, although uninteresting, is not unreasonable. However,
this case can be avoided if desired by appending additional
constraints to (L4.5.2) as seen in several models discussed below
or by solving a weighted problem where greater weight is assigned

to the smaller set ‘4 i (see 4.5.8),

Case 2. W # 0. This is the case of interest which occurs when the optimal

dual basis consists of a mixture of signed augmented patterns

derived from both pattern sets. The discriminant hyperplane can
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be characterized geometrically as follows. As shown in Figure

(4.5.5), this

hyperplane together with the parallel margin

hyperplanes %+x = -1 and W.x = 6 + 1 divide the pattern

space R into four regions defined by

(4.5.6)

R = {x:%-x > 6 + 1)
iRp—{x:g?f_w-x<8+l}
sﬂ5z{x:%-l< x < 0)
R = {x:%-x < 8 - 1)

Assuming non-degeneracy, exactly (n + 1) of the inequalities Au 2 €

are tight at u = 1.

k patterns from ‘!l

Thus the margin plane we.x = 6 + 1 passes through

n

and the margin plane wex =6 - 1 passes through

n+ 1l -k patterns from cJ; where 1 < k < n, The margin violators

are the patterns in gsl thet lie in R

in 4;; that lie in
the patterns in 141

that lie in %l u RQ.

classes Ci and C.
&

are large, then there

5 U Q3 U Qh and the patterns

m] Ueg, U RB. The true misclassifications are

that lie in m5 U &h and the patterns in cf;

It is shown below that if the underlying pattern

are bounded and the sample sets ng and ‘3;

are approximately equal numbers of margin violators

from ;!1 and ¢50 and the centers of gravity (means) of the margin

violators in each set

are approximately equal.

The following example illustrates these concepts

Example (L4.5.7).

tet 4, = (1,

2yene, Ky =(kt1)), . = (-1,-2,...,-k, (k+1))

A
<

be one-dimensional pattern sets with k > 2. This is the same problem
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as that discussed in Example (2.4.6) where the poor performance of the
maximum guality hyperplane was revealed. Here the LPD discriminant will
be shown to be g(x) = ox where @ >0, This discriminant correctly
classifies all patterns in “51 U ‘42 except the outliers -(k+l) in

+ i x
qu and (k+l) in ,‘82

The signed augmented pattern matrix is

[ 1 -1 i
-1
; -1
k -1
-(k+tl) =1
s 1 1
2 1
- 1
k 1
| -(k+l) 1]

For i =1,2,...,k, the two signed augmented patterns (i,-1) and (i,1)
derived from él and JE’ respectively, define the basic inequality solution
u, = (1/1,0). As seen in Section (3.3), u, defines an optimal solution

to (4.5.2) if

4af
—_— (u, + 74 = 0
dr+(l j)'r=0—
J= 1,2
d—f:(ui+rd.) <0
drt J =0

where the directions
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1/(21)) <1/(21)>
= and 4, =
= -1/2 2 \1/e
are the first and second columns cf the matrix
<i -l>-l
b i
+
and f is the LPD objective function defined by f(u) = e*(e - Au) .

A direct calculation from formulas (3.2.8) yields

df-‘\. (ui + T dl) = df+ (u + 1t d \‘
dt =0 drt =0
-3 A | e
and
Eﬁ: u *toT dl)l = 92: 4 + 1 dy)
dt |[T=0 drt =0
1 -(i-1)(1 /
= - -+
S (k+1)]

Let i¥ be the smallest positive integer such that

i*g1*2+ 1) S %

For k > 2, it is easily verified that 1 < i¥ < k and hence Uy

is optimal for (4.5.2). The corresponding discriminant is g(x) = (1/i*)x.
The mérgin violators for this discriminant consist of all patterns x

such that |x| < i* and the two outliers, while the only true mis-

classifications are those two outliers. m|




If misclassifications of patterns from one class are considered
more serious than misclassifications from the other class, it may be
desirable to adjust the penalty functions accordingly. The LPD program
(4.5.2) can be generalized to the weighted LPD model

min o,ess, + g e-s

1 i 2

(4.5.8) s.t. Aju + Is)

A u + Is
<

o

1V
o

v
o

where Al and A2 are the signed augmented pa.'tte:rn matrices for J 1

and 32, respectively, and oy and a2 are scalar weighting factors

reflecting the relative penalty on each type of error. The dual of

(4.5.8) is
mex e-y, + ey,

(4.5.9) s.t. Aly, * A'2y2 =50

2 Osylgale, OSyggozge

m
y = (y,¥,) €R

Let § = (91,92) be an optimal solution to (4.5.9) as determined
by the simplex method with upper bounds and let i be the corresponding
simplex multiplier vector that defines the weighted LPD solution to

(4.5.8)., Define the following index sets
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r

to
I
—~
e
—~
<>
~—
(=5

is basic and X, € A!j}’ Ji="1,8

(=1
]

o
Ho
<

is non-basic, equal to its upper bound of aj’

and x; € 43;}, Jo="Ro

ek
1}

{i:(?)i is non-basic and equal to its lower bound of zero}

The termination criteria for the simplex method with upper bounds

imply that Ul and U, are the index sets of the margin violators from

2
451 and 452, respectively. Let my and m, be the respective numbers
of elements in Ul and U2, and let
- 1 :
ST el e Z s 3 d = 1,2,
I By gey L

J

be the mean of the margin-violators from <{j. The following proposition
will be used to show that for large values of my and m., the ratio
ml/in2 of the numbers of margin violators from df; to margin violators
from 5!2 is approximately equal to the inverse penalty ratio Ob/dl'
Furthermore, if both pattern classes Cl and C% are bounded, then the

means il and §2 are approximately equal.

PROPOSITION (L4.5.10). Let A be the optimal objective value correspond-

ing to i in (4.5.8) and let y = max HxiH for any vector norm
i e
l. Then

a) N = (n + 1) max(al,aé) < moy + mya, < ;
b) Imloz1 - m20t2| < (n+ 1) max (o , )

c) Wil - i2” <2(n+ 1) r[max(al,ag)ﬁmax(alml, aéme)]

82




Proof. Equality of the optimal primal and dual objective values implies

A= Tyt I @)+ T @),
1€BlUB2 iEU]_UU 5 i€L
By the termination criteria of the simplex method with upper bounds, the
second term is equal to oy * aem2 and the third term vanishes,
Part a) then follows immediately from the bounds on the (n+l) basic
variables in the optimal dual solution. Substitution of the known values
of the non-basic optimal dual variables in the constraint set

1 Al — 3
Alyl + A2y2 =0 yields

X, xi X, xi
s o 2 (7)-az (F)-2 WERS (3w,
€U, \ 21 & 1€, \ 11 1€B\ -1 1€B. \ -1 i

1k 2 1

The last of the (n+l) equations (4.5.11) implies
lng, - ma=l 2 §), - T (@),
iEBl 1:B2

£ B,
1€B1UB2

Part b) then follows from the bounds on the (n+l) elements in B, U BE'
Application of the triangle inequality to the first n equations in

(k.5.11) yields

(4.5.12) “almlil - aemzigﬂ < (n¥l)y max(al,ae)

But
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a,.m o
R e e
ey = ll = |%) - am *2 * a2 e
Y ] P B LYRY
alml 2 orlml 2
By (Lk.5.12),
o om, _ b (n+1)y ma.x(al Ote)
L ahe N g Sy
and by part b)
Iaemg - almli ”_ I - (Il+l)Y ma.x(al,ag)
a,m Xl = Q.
11 1™
Thus
" i 2l 2(n+l)y max(al,aé)
5,15} x, = x, || <
i 2 alnﬁ.

Part c) then follows from (4.5.13) and the symmetrical relation obtained

and X.. ]

by reversing the roles of il o

COROLLARY (L4,5,14)., 1If the underlying pattern classes C, and Cé are

L
bounded, then ~
A &
b W
Q
lim 2—1 o
m,,m, = © 2 al !
I%, - %l 0

8L




Several additional models have been proposed that eliminate the
use of a margin vector and hence the distinction between margin violators
and true misclassifications. In general these are constrained weighted
LPD problems of the form

min u.s. + v-s2

3
(k.5.15) s. t.  Aju+ Isy >0
+
A2u 152 >0
Gu >Db
8y >0, s, >0
el
u = (w) 6) € :IR ) ,(Sl)se) e ]Rm

where u and v are strictly positive weight vectors and Gu >Db

is a set of added constraints that eliminate the useless solution u =0
and the uninteresting solution w =0, 6 =+ 1 that occurs when one

of the pattern sets is dominant. Grinold [6] suggests a single added
constraint of the form

g*.u Z ik

where g* = e:A/m, i.e. the mean of all the signed augmented patterns.
The program (4.5.15) will be feasible as long as g* # 0. (The case
g*¥ = 0 occurs only when the numbers of sample patterns from each
class are equal and the sample means are equal.,) Another possibility
is the pair of constraints

g{-u e B

¥
32 u>l

85




where g}, j = 1,2 1is the mean of the signed augmented sample patterns
from class Jj. For the sake of feasibility it is required that

g{ # -g; or equivelently that the sample means of the two classes differ.
The linear discriminant produced by (4.5.15) then separates the two

class sample means.

4.6, A Numerical Experiment

In order to compare the behavior of the ALPD and simplex
algorithms under various problem conditions, the following numerical
experiment was devised.

Two n-dimensional pattern sets ¢f and 2!2 were constructed,

B
each containing m/2 patterns. Each pattern x in ‘Kl was generated
by the formula

(x)i =u[=- 1/2) 1/2] = A, 1=1,..,n0

where u[- 1/2, 1/2] 1is a pseudorandom number uniformly distributed
in the interval [-1/2, 1/2]. Thus the patterns in 181 are pseudo=-
random vectors uniformly distributed in the interior of the unit n-dimen-
sional hypercube H, centered at -(\,...,\). Similarly, the patterns

in Q’

, were generated by the formulae

(x)i =ul-1/2, 1/2] + A, i

These pseudorandom vectors are uniformly distributed in the interior
of the unit n-dimensional hypercube H, centered at (A\,...,A).
The situation for n = 2 is illustrated in Figure (4,6.1).
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For values of the scalar parameter )\ in the interval [0,1/2], i
the unit hypercubes H1 and H2 overlap on a cubical region of volume 1
V(A), where
v(n) = (1 - 22)"°.

For A>1/2, V(A) =0 since H) and H, are disjoint. Thus any

g

desired fractional overlap o 1is achieved by the setting

;

1'

o O[]./n 1
2

This problem is intended to simulate a stochastic pattern classi- ‘
fication problem with mixture density

£(x) = 3 £(x|C) + % £(x|C,)
where

$ 1 sl s Hi
f(xlCi) = l

0 otherwise

A Bayes discriminant for the lowest error rate criterion is easily
verified to be go(x) = =e*X, As seen in the two-dimensional case
illustrated in Figure (4.6.1), the discriminant plane go(x) =0

separates all of classes C, = {x £ H

1 and Cé = {xe HQ] outside

1)
the region of overlap and passes through the center of this region,
misclassifying exactly half of each class there for an overall error

rate of /2.

88




A series of pattern set pairs 451, Qfg was generated for
various values of the total number of patterns m, the pattern dimension=-
ality n, and the fractional overlap a. All combinations of the

parameter values

B8
I

= 100, 200, 500, 1000
(L4.6.2) n

1}

1,2, 5 10

were used for a total of 9¢ cases. Usually five independent test problems
were run for each case, although only two and in some cases one problem
were run for some of the larger values of m and® n. Altogether a

total of 377 independent problems were solved.

For each case, the signed augmented pattern matrix A was
constructed., The LPD problem (4.5.2) with tableau [A:e] was solved
with the ALPD algorithm, while the dual (4.5.3) was solved by the simplex
method with upper bounds (SMUB). Since the two algorithms use identical
pivot operations for basis changes but differ only in the pivot selection
rules, the total number of pivots (basis changes) required to reach an
optimum solution from the same initial, arbitrarily chosen basis serves
as a convenient basis of comparison. (Thus the ALPD initialization
algorithm given in Section (3.4) was not used. Rather the (n+l) members
of the initial basis were chosen as the signed augmented patterns

corresponding to the first n patterns in ‘j; and the first pattern

in dfe.)
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In all cases except those for which « = 0, the same optimal
basis was achieved by both algorithms. When = O the pattern sets are
linearly separable and several distinct optimal bases may exist.
Frequently the algorithms arrived at different optimal solutions in this
case, although of course each optimal solution defined & separating

hyperplane. In general, the error rate achieved on q61 J <§ by the

2
discriminant corresponding to the optimal solution was usually very close
to the Bayes error rate of /2 with small fluctuations =zbout this rate
due to the finite size of the pattern sets.

Average values of the numbers of pivots required by the ALPD and
SMUB algorithms are listed in Table (L4,6.3) for each case. Some graphical
representation of this data is provided by Figures (L.6.4) through
(4,6.13) which reveal two clear trends.

First, as seen in Figures (4.6.4) through (4.6.7), the SMUB
algorithm is highly sensitive to the fractional overlap « while the
ALPD algorithm is not, For o = O the numbers of required SMUB and
ALPD pivots are nearly equal. As « and here the degree of infeasibility
of the system Au > e increases, the number of SMUB pivots increases

very quickly and then levels off while the number of ALPD pivots

remains relatively constant., For several cases with large values of

0, the relative advantage of the ALPD algorithm in terms of number of pivots

reaches a factor of several hundred. For a given value of «, this
factor seems to be an increasing function of the aspect ratio m/(n+l)

of the matrix A.




u-

Second, as seen in Figures (4.6.8) through (4.6.13), for fixed

values of « aﬁd n the number of pivots appears to be a linearly
increasing function of m. However, except for the & = 0 case, the
rate of increase is much higher for the SMUB than the ALPD algorithms.
The computational advantage of the ALPD algorithm thus appears
most significant for problems in which the mstrix A has a high aspect
ratio and the underlying inequality system has a large degree of
infeasibility. Such problems arise not only in linearly inseparable
pattern classification models with large pattern sets but also in the
linear approximation problem (3.5.6) with Ej norm, For such problems
usually the number of data points greatly exceeds the number of parameters
to be fit, thus creating the high aspect ratio situation. The large
degree of infeasibility in the underlying inequality system arises

naturally since it is comprised of the two systems Ax >b and

-Ax > -b.
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CHAPTER 5

PIECEWISE LINEAR DISCRIMINANTS

5.1. Piecewise Linear Discriminants

A direct generalization of the linear discriminant is the piece-
: c a Ay 2 " n ]R]_
wise linear discriminant. Piecewise linear functions f:R o can

be defined recursively as follows (Chang [22]):

Definition (5.1.1). Piecewise Linear Function

1. Any linear function f(x) = w'x - 9 is piecewise linear,

S Te fl(x), fg(x) are piecewise linear, then so are

£(x) = max{f, (x), f,(x))
(5.1.1) and &

n

g(x) min{f, (x), £, (x))

3. No other functions are piecewise linear,

Piecewise linear functions of arbitrary complexity can be con-
structed by repeated use of rule 2 in (5.1.1). With "V " and "A"
representing the maximum and minimum operators respectively, the
following identities are useful for manipulating expressions involving

piecewise linear functions.
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"

a) £ /\(f?\/ fﬁ)
b) £, VI, ALy
(5.1.2) (5, V£,
a) -(2, AL,

(£, A fﬁ)\/ (£, Afs)
(£, Y Q))/\(f&v\/fﬁi
"f-l A -fz)

=%y Vv ~%,

1

i

n

By repeated use of the distributive property a) and the associativity
and commutativity of the minimum and meximum operators, any piecewise

linear function f can be written in disjunctive normal form

m n'1
(5.1.3) gy (D2,
i=1 j=1 *J

where each fij is linear.

This representation has the following geometrical interpretation

m

Let R = {x:£(x) >0}, Them R = U R, where R, is the polyhedral
i=]

convex set defined by the linear inequality system

fn(x) >0
(5.1.4)
fin =) 20
o
A
Thus each concave function fi = (/\ fii) in (5.1.3) isolates a convex
g7l
region .‘Ri whose boundaries are defined by the hyperplanes fil(x) =0,

Hev fin (x) = 0. In a two-class pattern classification problem with
i

pattern sets Jl and if each region contains patterns only from

?J
Jl and together the regions contain all of the patterns in Jl’

m
then f = V fi is a piecewise linear discriminant that separates
i=1
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‘Xl from Agﬂ. The situation is illustrated in Fig., (5.1.5).

* = class ¢, pattern
© = class C, pattern

Figure (5.1.5). The Piecewise Linear Function

(fllA f]_}‘) V (fEI A f§22) V (f51 A f§2)

Separates the Two Pattern Classes,
The disjunctive normsl form representation (5.1.3) can be used
to show that piecewise linearity is preserved under the operations

of addition and scalar multiplication.

PROPOSITION (5.1.6). If f, and f_, are piecewise linear functions

then afl iy sz is plecewise linear for all real constants o, B.
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Proof. It is sufficient to show that afl and f1 + f? are piecewise

linear. Let

n 8
m i I p
2= V(N 2., £,= V (An)
1=1 j=1 9 - p=l @=1
be disjunctive normal form representations.
Scalar multiplication: B
m i
If a>0, at, =Y (N ez
- 3 e ij
i=1 j=1
m i
If G<0, af; = -(lale) = N (V -la] 2.)
i=1 j=1 J
Addition: &
V(A
£, b s ( ) e
1€ = el 4=l 1 2
n, ;
V (N @ +£))
= L, o t T
i 2
ful Je) W
r Sp
But £,, + f, = \/ § A, (6,. +m_)), which is piecewise linear. m]
13 TR ey et o w0

5.2. Some Examples.

Many pattern classification schemes implicitly use piecewise
linear discriminants. An example is the minimum distance classifier,

also known as the '"nearest neighbor" rule,
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Let @ = [pl, PSR pj], Q = [ql, .+« » @) De sets of prototype

patterns representing classes Cl and Cé, respectively. Let

a. (x) = min {[x - p,|.)

1 3 illp
(5.2.1) i"]-,o‘.,j

dy(x) = min {[|x - qiﬂ2] -

i=1,...,k

A minimum distance classifier is defined to be a classification procedure

that implements the discriminant function
\ , 2 2
(5.2:2) £(x) = de(x) - dl(x) :

Thus a pattern x is classified into the class of the nearest prototype
pattern as measured by Euclidean distance. This discriminant is piecewise

linear by Proposition (5.1.6) since it can be written in the form

(5.2.3) £(x) = . lmin {-2q*x + Hqiﬂg} - min (-2p,°x + HpiHS] .
=l de ok o ) PRESRE

Minimum distance classifiers are particularly effective in
situations where the patterns in each class cluster into isolated
subclasses., If the clusters are sufficiently far apart, then a single
prototype pattern selected from each subeclass anc included in the
appropriate set C? or Zl will insure good performance of the discriminant
on that subclass. Such multimodal behavior is sufficiently common that
the problem of clustering multidimensional data has received much

attention (e.g. (5], Ch. 6).
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Even in the absence of such clustering behavior, a minimum
distance discriminant can always be found that separates two finite,
disjoint pattern sets 4!1 and 44;. This follows immediately from
the choice @ = Jl’ A = é,_, When a minimum distance classifer uses
prototype sets consisting of large numbers of known sample patterns
from classes Cl and Cé, respectively, the terminology "nearest
neighbor rule" is often used to describe the classification procedure.
Cover and Hart [23] show that if the known sample patterns are drawn
from the same mixture distribution that produces the test patterns,
the asymptotic error rate on new patterns as the number of known samples
increases without bound is less than twice the error rate of the Bayes
discriminant. However, this performahce is achieved at the very con-
siderable price of a large data storage requirement for the list of
prototype patterns and the computational effort required to identify
the nearest known sample to a test pattern.

Another example of a piecewise linear discriminant is found
" in the layered network of threshold logic units discussed in Sectiomn 2.2.
Nilsson [24] shows that if there are k TLU's in the first layer, then

a layered machine implements & discriminant of the form

(5.2.4) £(x) = max (£, (x)} - mex (£, (x))
1%L, 004s) 1=§+1,...,2

where each fi(x) is linear.

In the next section piecewise linear discriminantsof the form
k
£f(x) = VY fi(x)
i=1
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where each fi(x) is linear are considered. Necessary and sufficient
conditions for the existence of a discriminant of this type that separates
two given finite pattern sets are developed. General applicability of
this discriminant to arbitrary finite pattern sets is then demonstrated

by use of a class of pattern space transformations.

5.3. Convex Separability

Let ‘él’ 42 be subsets of 8 where 8 1is a convex subset

of IRn.

Definition (5.3.1). Jl is convex separable from JQ if there exists

a continucus convex function f:8 — ]Rl such that

f(x) >0 VxE.Jl

f(x)(o Vx€J2

PROPOSITION (5.3.2). Let Jl = {xl, Wite 5 xk] be a finite point set

and let 42 be any subset of ]Rn. If J 1 is convex separable from

Jg, then there exists a convex piecewise linear separating function f(x).

Proof. Let g(x) be a continuous convex separating function and let
R = {x:g(x) <0}, ® 1is an open convex region whose closure & contains
J2 as a proper subset and does not intersect Jl' Thus by the

separating hyperplane theorem, for each X, > J 1 there exists a hyperplane
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Witk = 91 which separates Xy

from R, i,e. £, (x) = w,ox = 6, is

] i X
positive for x = x, and negative for all x ¢ X, Then f(x) = V fi(x)
i=1

i

is a convex piecewise linear function that separates ‘Jl from

Ve

Proposition (5.3.2) can be used to prove the following geometric criterion
for convex separability of finite pattern sets. Let c(,é) denote the

convex hull of tg "

PROPOSITION (5.3.5). Let Jl’ J;} be finite, disjoint pattern sets.

Then Jl is convex separable from d,) iff Jl n C(Je) =g,

Proof. C(J ») 1is a closed convex set. If ’Jl n C(JE) = ¢, then a
convex piecewise linear separating function can be constructed as in the
proof of Proposition (5.3.2). Conversely, if a continuous convex function

f separates ‘!1 from f 1is strictly positive on J]_ and

2)
strictly negative on Jg. By convexity, f 1is also strictly negative

on C(Jg). Hence ‘Jl f‘uC(Je) =d. 0

Figure (5.3.4) demonstrates that convex separability is not a
symmetric relation between ’Jl and J;}' Here e’l n C'(Jz) = (g,
vut c(dy) nd, #9.

Clearly not all disjoint pattern sets are convex separable,
However, the following sufficient condition for convex separability
motivates a class of coordinate transformations that render all finite

disjoint pattern sets convex separable in the transformed space.
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¥ = class Ci patto’n
© = class C, pattern

Figure (5.3.4). Class C, Patterns Are Convex Separable from Class C_

Vo

Patterns But Not Conversely.

/’—’\ i

* = class C, pattem
© = class C» patterm

Figure (5.3.6). Finite Disjoint Pattern Sets on the Surface of a Sphere
Are Always Convex Separable. The Convex Hull of the
Class C, Patterns, Except for the Patterns Themselves

Lies Inside the Sphere and Thus Cannot Contain Any

Class Cl Patterns.
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PROPOSITION (5.3.5). Let o) = (x,.e0sx ), dp = (Kypseeorx) be
finite disjoint pattern sets and let f(x) be a strictly convex function
defined on C( J 1 u je). If there exists a real constant o such that
f(x) =a for all x € Jl u 32, then '81 is convex separable from JQ

and JE is convex separable from J 1°

Proof. Let x € C( J 1). Then there exist non-negative constants

My oo

of f,

’7‘k such that Z]i: A, =1 and x=21;

1M A X By convexity

=L ‘i’

k
flx) « 2 3 Hx ) =
el b i

|
Q

By strict convexity of g, f(x) <a if x 1is not an extreme point of
C(Jl), i.e. if x ng Since ‘Jl and ,Jg are disjoint and
f(x) =a for all x € J2’ C(Jl) n Je = ¢, By inverting the roles

of ‘Jl and o 1t follows also that Jl n C(Je) =d. 0

Geometrically this proposition states that two disjoint pattern
sets distributed on the surface defined by the equation f(x) = q,
where f(x) is strictly convex, are convex separable from each other.
This follows from the fact that convex hull of each set intersects the
surface only at the points in the set itself. This is illustrated for

the case of a sphere in Figure (5.3.6).
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Example (5.3.7).

Disjoint binary pzttern sets in ]Rn, where each pattern component
is either equal to + 1 or -1, are convex separable since they satisfy

the hypotheses of Proposition (5.%.9) with

n
£f(x) = L (x) and o=n., o

For two general finite disjoint pattern sets ., o, in

]Rn, it is possible to define a one-to-one mapping into sets J'l’ ‘4:2

+ Y o
in R" 5 such that Jl and J are convex separable, Let
g:]Rn - ]Rl be a strictly convex function defined on C(,,!1 U Je). Let
h:RL 5 Rl be a strictly convex function with an inverse LR o R

defined on {a - g(x):x € Jl U Jl,\‘! for some real constant o. For

each x € 'JI‘U Jg, define the transformed pattern y € IRm'l by
(5.3.8) y = (x, b7 - g(x))

Let J'l’ J'Q be the sets resulting from applying the transformation

(5.3.8) to the patterns in ‘Jl and J’/’ respectively.

PROPOSITION (5.3.9). The transformed pattern sets J;, J; are convex

separable from each other,

Proof, The function f£:R°'Y _ Rl defined by

£(x,8) = g(x) + h(p), x€R,, a€ R!
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is strictly convex. The set Jl and J2 are disjoint and if

y€cg‘1UJé,

£ly) = £(x, 1" (@ - g(x))

g(x) + h(h™Ha - g(x)))

n

=
and the result follows from Proposition (5.3.5). O
. 1 '
The sets Jl’ J2 are formed by mapping the patterns in jl
and J o onto the surface f(y) = in a one-higher dimensional space.
The following two examples provide pattern space transformations that

are valid for all finite, disjoint pattern sets in R" .

Example T (9,3

M

(x)i, h(p) =B2. Choose o = max [g(xi)).
1 i=1,...,k

Let g(x) =
i

i

Then
y = (x, va-glx))

is the desired pattern space transformation. In this example the n-dimension
patterns in /1 U J o are mapped onto the surface of the (n+l)-dimensional

sphere of radius /@ centered at the origin. O

Example (5.3.11).

This example works for any strictly convex function g(x), e.g.
g(x) = xCx where C is an n X n positive definite matrix. Choose

h(B) -fn(B). Then the desired pattern space transformation is

114




)
y = (x, eg(x”)

The strictly convex function

f(x,p) = g(x) - £n(B)

is equal to zero for all transformed patterns y. O

In the next section an algorithm is presented that constructs a
convex piecewise linear discriminant by the method suggested in the
proof of Proposition (5.3.2). An arbitrary pattern is chosen from
efl and then a linear discriminant separating this pattern from the
entire set agg is found as a solution to a constrained LPD problem,
The problem is designed to encourage the separation of as many as possible
additional patterns in ¢51 from 442 along with the chosen one, All
patterns in 451 that are separated from 4fw are then dropped from
‘Jl and the process is repeated with new linear discriminants until 5!1

is empty.

5.4, An Algorithm for Convex Piecewise Linear Separation

Let ‘;1 = {xl,..., le, Q52 = {x£+l, e 3 xm] be finite dis-
joint pattern sets such that ;11 is known to be convex separable from
g,? (e.g. the patterns are binary or have undergone the transformation
described in Section 5.3). An algorithm is now presented that detemmines

a convex piecewise linear geparating function.
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Let

iteration number

= set of patterns in le not yet separated from q¥2 before
the kth iteration.

= selected element of ,¥§k).

X
A§k) = gigned augmented pattern matrix corresponding to ‘$§k)- {x(k)]
A2 = signed augmented pattern matrix corresponding to gfg.
(k) _ (k)
a = gigned augmented pattern corresponding to x 2
ALGORITHM (5.L4.1).
(1)
step 1. set k=1, iV = . Go to step 1.
Step 2. Choose an arbitrary pattern x(k) € ¢f£k). Form the matrix
A£k) and solve the constrained LPD problem
min e.s
(5.4.2) 8.5, Aik)u +Is>e
a(k)u 21
Agu >e
8 >0
u = (w,6) € B
k k k
Let u( by (w( ),6( )) be an optimal solution to (5.k4.2).
Go to Step 3.
Step 3. Set ;J£k+l) = {xi L ngik)sw(k)-x - G(k) < 0).

i
It 46 §k+l) is empty, go to Step 4., Otherwise increment k

by 1 and go to Step 2.
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Step 4. Stop. Let k* be the final value of k. Then the desired

convex piecewise linear separating function is

k* by
ee(x) = Y wx - o8y
i=1

Proof of Algorithm:

Since Jl is assumed convex separable from J , each indi-

2
vidual pattern in Jl is linearly separable from J,). Thus the
{

inequality system

a(k) ‘u>1
(5.4.3)

A u 2he
is feasible and hence an optimal solution u(k) to (5.4.2) exists by
Proposition (3.5.11)., Since w(k)-x(k) - G(R) > 1, J](.kﬂ) is smaller
than J{k) by at least one element for all k < k¥, Thus the algorithm
must terminate in at most £ iterations. For each Xy € 1’ there is
at least one value of k such that w(k)-xi - e(k) > 1. Hence
F 4

f*(x) >0 for all x € ‘Jl' Also, since Aou(k) >e for k=1,,..,k*

f*¥(x) <0 for all x € 42. o

The linear program (5.4.2) produces a hyperplane that minimizes

the sum of the infeasibilities corresponding to remaining class Cl

patterns subject to the constraint that all class Cg patterns and a
specified Cl pattern are on the 'correct' side of their respective

margin planes, Hopefully this LPD form of the objective function
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encourages the optimal hyperplane to separate other class Cl patterns
in addition to the specified one at each iteration whenever possible,
Toward this end it has been found that for several test problems of the
overlapping hypercube type discussed in Section (4.6), replacement of
the constraints A2u > e in (5.4,2) with A:u > ce, where ¢ is a
very small positive number, often reduces the total number of iterations
required. In effect, this change eliminates the margin problem for the
class C% patterns and forces the optimal hyperplane to pass very close
to the convex hull of gié. Thus for sufficiently small values of ¢,
the possibility of a class Cl pattern lying between the optimal hyper-
plane and this convex hull is eliminated. Numerical experience with
this revised form of the algorithm suggests that when the selected

class Cl pattern is part of a cluster of Cl patterns that are
linearly separable from EJ;, all or nearly all of the cluster is
separated by the optimal hyperplane. The following example illustrates

this behavior,

Example (5.L4.4)

The overlapping hypercube problem discussed in Section (4.6)
was selected as a test case. A total of m = 200 patterns of dimension
n = 2 were generated, half in each class. The two unit squares overlapped
on an area of o = 0,20. To introduce convex separability, the patterns
were mapped onto the surface of a three dimensional sphere by the trans-
formation given in Example (5.3.10). The resultant three-dimensional
patterns were separated by a convex function generated by the revised

version of algorithm (5.4,1). The constrained LPD problems were solved
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by the ALPD algorithm after conversion to a weighted LPD format. The
separation sequence is shown in Table (5.4.5). The problem required a
total of 11 iterations for complete separation. The first iteration
hyperplane succeeded in separating a large cluster of 78 class Cl
patterns, while subsequent hyperplanes separated either isolated patterns
or small clusters. This behavior is consistent with the geometry of the
problem. In the original pattern space (IR2) , the 20% overlap factor
implies that a large fraction of the class Cl patterns should be
linearly separable from Jg. Since the mapping of the patterns onto
the sphere in IR5 leaves the first two coordinates intact, linear
separability of these patterns is preserved. The remaining class Cl
patterns in ]R2 are uniformly distributed in or near the area of
overlap., Thus the transformed patterns in IR3 from the overlap area
in ]R2 are expected to show little tendency to cluster by class
with only small linearly separable clusters of class Cl patterns
being formed by chance. a
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Number of Class

Iteration Remaining Class C, Patterns
Number Cl Patterns Separated
1 100 78
2 22 3
o) 19 )

L 18 6
5, 12 1
6 13l 2
i 9 il
8 8 2
9 6 1
10 5 b)
1k 2 2

Table (5.4.5). Separation sequence of convex separation algorithm
in Example (5.4.4)
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\ MATHEMATICAL PROGRAMMING APPLICATIONS IN PATTERN RECOGNITION
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N
Problems in pattern recognition are treated by the methods of mathematical
! programming. In particular the two-class pattern classification model with
‘ decision rules based on discriminant funccions is considered with emphasis
| on mathematical programs that determine iine 'r and piecewice linear discri-
minants.

For linearly separable pattern se . s of separating hyperplane can be determine#
by solving a system of linear inequa +ies. This system serves as the con-
straint set for a class of mathemati al programs that define separating
linear discriminants exhibiting maximum tolerance to pattern noise. Specific
cases that can be modelled as linear and quadratic programs are discussed
and a reliability interpretation of the objective criterion is given.

Application of linear discriminants to the linearly inseparable case leads to
consideration of solution concepts .or possible infeasible linear inequality
systems. The Least Positive Deviations (LPD) solution to the general system
Ax > b, where A is a (m X n) matr x with x € BR™ and b € R™M, is defined
by a Phase I linear programming model. An equivalent unconstrained minimi-
zation problem with a piecewise linear ¢ ective serves as the basis for the
development of the Accelerated Lea t Posi “ve Deviations (ALPD) algorithm

for the solution of the model. T! algorithm is shown to be implementable

by a sequence of pivot operations ¢ ~ the same type as employed by the simplex
method with upper bounds applied to the dual of the Phase I problem but with
a novel pivot selection rule and without regard to the upper bounds. At

each iteration the pivot selection is determined by the solution to an uncon-
strained minimization of a piecewise linear function of a one-dimensional
variable. Like the simplex method, the ALPD algorithm converges in a finite
ramber of iterations to an op.imal solution. A direct comparison of the
relative efficiencies of the simplex and ALPD algorithms can be made in terms
of the number of basis changes required to reach optimalicy from the same
arbitrary initial basis. Results of an extensiv: series of numerical tests
are reported which indicate a large ALPD advantage for linearly inseparable
classification problems. The advantage appears to increase with the aspect
ratio (m/n) of the matrix A and the degree of infeasibility of the under-
lying inequality system.

The LPD problem is generalized to the weighted and constrained weighted least
deviations problems, which are shown to be directly solvable by the ALPD algo-~
rithm. Examples of such problems are presented from linear estimation and
control theory. The general linear programming problem is also formulated as
a constrained weighted least deviations model. Properties of LPD and related
models are explored for classification problems and an asymptotic LPD dis-
criminant characterization is obtained.

The LPD methodology is extended to piecewise linear discriminants. A class of
pattern space transformations is defined that renders any pair of finite
disjoint pattern sets separable by a convex piecewise linear function. An
algorithm is presented that constructs such a function through the solution
of a sequence of constrained weighted least deviations problems. Results of
a numerical test problem are presented.
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