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CHAPTER 0

NOTATION

The following notations and conventions are used.

1. Lower case latin letters denote vectors, functions, and integers.

2. Upper case latin letters denote matrices and index sets.

3. Greek letters denot~ real numbers.

14. Script letters denote sets and classes.

5. The transpose of A is A’ .

6. The ~th component of x is (x) i.

7. No notational distinction will be made between row vectors and

column vectors.

8. The inner product of the row vector w and the column vector x

is denoted by w•x.

9. The special vector e of dimension n, called the unitary vector,

is defined by

(e)1 1 , i = l,...,n

10. The following special functions are defined:

a) Positive part function:

+ a

0 if a < 0

b) Negative part function:

if a < 0

0 if a > 0
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c) Sign function:

-l if a < O
sgn(cr) = 0 if a = O

+1 if  a > O

If any of these functions appears with a vector argument, the function appl ies

to each component, i.e.

(t(x) )~ = f((x)~ )

Similarly, the inequality x > 0 requires all components of x to be

positive.

2
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CHAPTER 1

INTRODUCTION

1.1. Pattern Recognition and Classification

Pattern recognition is concerned with the universal problem of identify-

ing the “class” of an object from examination of its attributes. A major

objective of pattern recognition is the development of machine implementable

methods of classification. For simple applications such as optical reading

of characters with a fixed type font, such methods offer great increases in

speed ar.-~ accuracy relative to human processing. For more difficult problems

such as medical diagnosis or weather prediction, complex relationships in

large quantities of multi-dimensional data may not immediately be apparent

to casual observation. In such cases, algorithmic procedures implemented on

a computer can often complement and extend human recognition capabilities.

The recognition process can be divided into two phases, feature extrac-

tion and classification. Feature extraction involves isolating the most

relevant portions of the available data and representing them in a compact,

useful form. A pattern is defined to be a finite dimensional vector x € ] &~‘.

Each component of the pattern is called a feature. Features are functions

of observable data concerning the object to be classified. The feature

extraction process consists of reducing points in a general measurement

space to point s in a finite dimensional pattern space.

For example , let the measurement space consist of cont inuous functions

f :~~~-~ ~~ on the finite interval [ a 1,a2 ]. This case occurs in the

analysis of electrocardiograms, electroencephalograms, various kinds of

spectra , and generally in problems where the physical data consists of

3
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continuous waveforms. A simple set of features can be generated by sampling

the function on a uniform gr id:

(x)1 = f(a1 + (1—1)5) , I = 1,.. .,n

where
(a2 - a1)5 = (n - 1)

Another alternative is to find an approximating function such as a polynomial

that is def ined by a f inite set of parameters or coeff icients which can then

be used as the features. Clearly some feature sets will be better than others,

but there are few if any general purpose feature extraction methods that

yield good results for a wide variety of applications. Guess work, intuition,

and experience with the specific problem are usually necessary to develop

a good feature set.

Classification is concerned with determining decision procedures for

assigning one of a finite number of class labels to a given pattern. The

distinction between classification and feature extraction is not sharp,

since classification itself may be a multi—stage process involving several

transformations of the original pattern space.

Here we will be concerned with pattern classification procedures based

on mathematical programming methods. Thus it is assumed that an initial

set of features is given.

1.2. Discriminants and the Two-Class Problem

Let x € be a pattern that belongs to one of two possible

classes, ~~ or ~~~~. One co~~~n form of classification rule decides

4
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if f(x)~~~0

(1.2.1)
x E C , If f (x)<O

n 1where f:]R —, ~ is called a discriminant functiofl. The case 1(x) = 0

is considered indeterminant and an arbitrary decision may be made or the

cho~ ~e may be randomized with specified probabilities. Geometrically, the

function f divides the pattern space into the disjoint regions

= (x:f(x) > 0)
= (x:f(x) < 0)

For many classes of functions, the equation 1(x) = 0 defines a surface

that bounds these regions. In this case, f(x) is said to separate

and

There are several types of classif ication problems, each with its

own solut io~i philosophy. Two of these problems form the basis for much

of the discussion here. The first, or template—matching problem, is

characterized by two given finite sets of prototype pattern vectors

one set for each class. Let

= (x 1, .. . , xk)

= 

~~k+1’ ~ 
X )

be the prototype patterns for classes C
1 

and C2, respectively. Each

observed pattern from a given class can be identified with one of the

prototype patterns from that class, differing from the prototype by a

5 

— -~~——- -—— -
~~~~~~~~~

-. 

- 

- - -  
-
~~~~~~~~~_

‘- .- --.±--“
~~~~~~~~~~~~ 1~~ 

— 
-- . ---- - - - ..



relatively small displacement vector d. The displacement vector can be

thought of as a random error associated with the physical measurement process

or as a statistical variation in the pattern population itself. Thus

(1.2.2) C1 = Cx + d:x € 4, d E D) , I = 1,2

where ~j  is the set of possible displacement vectors.

The prototype sets A1, J2 are often called desigfl or training

sets. One general solution procedure for this problem involves assuming

a parametric functional form f(x;p) for the discriminant, where p is

the parameter vector. The vector p is chosen so that f(x~ ;p) > 0,

and f(x~ ;p) < 0, x~ J2, if possible, i.e. by solving t~’e
inequality system

f(x~ ;p) >0 , i = 1,..., it
(1.2.3)

f(xi;p) < 0 , i = k+l, ... , in

A feasible solution to (1.2.3) defines a discriminant that correctly

classifies the design sets and J~. If the system is feas ible,

the sets 
~~1’ ~~2 

are said to be separable over the assumed parametric

functional form. If the functional form f(x;p) is continuous and the

set of displacement vectors D is bounded by suff iciently small bounds,

then the discriminant def ined by this procedure will also separate the

complete pattern classes C1 and C2.

Desirable properties of a. discriminant function for the template-

matching problem are errorless performance on the design sets ‘1’ ~~2

6
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and separatir n of C1 and C2 for the largest possible set of displacement

vectors. Let 2~ = Cd : Jd~ < a) for some vector norm fi. Then the

template-matching problem for this vector norm is defined as

(1.2. 14) max a

s.t. f(x;p) > 0 , V x € C1
f(x;p)<0 , V x E C2

where

C~ = (x + d :X J ~, d € ~j ) , i 1,2 .

(See 1.2.1.)

A common choice of functional form is the linear discrimiriant

f(x) = w~x - e

This case is quite general since any discriminant o~ the form

S
f(x) = ~~ 

(x . f . (x) — e
i=l

is linear with respect to the transformed pattern y € ]RS defined by

= f’
i(c) , i =

0

Thus techniques developed for generation of linear discriminants are also

applicable to all functions f(x;p) that are linear in the parameter

vector p, e.g. polynomials of all degrees in the components of x.

The template-matching problem (1.2.14) for linear discriminants is dis-

cussed in the r~ xt chapter.

7 
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Template matching problems arise in relatively simple, well—defined

contexts such as optical recognition of characters printed in a fixed type

font , where pattern variation is very limited. More complex problems,

such as medical diagnosis, often involve patterns that do not always fall

into c1o..~e groupings around prototypes. In this second kind of problem,

observed patterns are considered as random samples from classes having

different probability distributions. If the class distributions overlap,

then an errorless classification scheme for the complete classes C
1 

and

~2 
is, of course, impossible. A discriminant is sought that minimizes some

loss criterion such as the probability of misclassification.

This problem also involves two training sets ~~~~~ 
~~2 

consisting

of examples of patterns from the respective classes C1, C2. A di~criminant

f(x;p) is sought that performs well, although not necessarily perfectly,

on the training sets. If these sets are large and well representative of

their respective source distributions, then such a discriininant should

perform well on these distributions. Some specific models and results for

this type of problem are discussed in Chapter 1t.

1.3. Outline of Presentation

Chapter 2 deals with classification problems for which linear

discriminants can be found that separate the two design sets. Mathematical

programming methods for determining these discriminants are discussed and

reliability interpretations are made for a class of template-matching problems.

An application to a set of adaptive pattern classification machines Is

given.

8
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In Chapter 3 the least positive deviations solution concept for a

possibly infeasible system of linear inequalities 1~ defined. Connections

with linear programming are established and a very efficient algorithm

based on an unusual pivoting rule is developed for determining this

solution. Application of the algorithm is extended to a sequence of problems

of which the most general is the general linear programming problem.

In Chapter 14 this solution concept is applied to linearly inseparable

classification problems. Large sample solution characterizations are

obtained for design sets consisting of random samples from overlapping

source distributions. Several alternative approaches to this problem are

discussed and some numerical results utilizing the algorithm of Chapter 3

are presented.

Chapter 5 extends these methods to piecewise linear discriminants.

A transfo rmat ion of the pattern space is def ined that renders any pair

of finite, disjoint design sets separable by a convex piecewise linear

function. An algorithm is presented that constructs such a function by

solving a sequence of linear programs of a type directly suitable for

application of the least positive deviations algorithm. Results for a

sample problem are reported.

9
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CHA PTER 2

LINEAR SEPARABLE CLASSIFICATION PROBLEMS

2.1. Linear Separability

Let A1 = [x1, . . .  , xx ),  
~~2 

1~ k+l~ 
... , x J  be finite,

disjoint, nonempty sets of n-dimensional patterns from classes C1 and

C2, respectively. These sets are defined to be linearly separable if

there exists a linear discriminant f(x) = w~x - G such that

f(x)>O Vx. €

f(x)<O V x €  J 2.

The vector w is called the weight vector and the real number 9 is

called the threshold for reasons to be described in the next section.

Geometrically, and are linearly separable if, as illustrated 5.n

Figure (2.1.1), there exists a separating hyperplane w~x = 9 such that

all patterns in lie in one half-space and all patterns in

lie in the other.

For each pattern x € ~~~ a corresponding signed ~~~~ented pattern

a ~ n+l is defined by

(x,-l) , if x €

(2 .1. 2 )  a =

(-x ,+l) , ~~~~ x E

I 
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Figure (2.1.1). Linear Separable Pattern Sets.

The signed augmented pattern matrix A € ~ m~~~+1) is defined by

:1 -e1

(2.1.3) A = 
2 

=

-X2~~ 
e~

a
m

where X1 and X
2 

are matrices whose rows are the patterns (row vectors)

in and 
~~2’ 

respectively, and e1 and e
2 

are unitary column

vectors.

11
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PROPOSITION (2.1.4). 
~~l’ 12 are linear separable iff the inequality system

(2.1.5) Au>0

uE ]R

is feasible.

Proof. The proof follows immediately from the identification u = (w, O) .  0

Clearly the system (2.1.5) is feasible iff the system

(2.1.6) Au > e

is feasible. System (2.1.6) will serve as the constraint set in several

of the mathematical programming models discussed below. Application of

— the following version of the Farkas lemma provides a geometric criterion

for linear separability.

LEMMA (Farkas). The inequality system

A u > b

is feasible iff the dual system

A’ y = 0
b.y > 0

y > O ,
is infeasible.

12

- 
- .  - -. - - 

( — 
-. — —



For
X1 -e1 

. 

-X 2 : e2

and b = e , the dual system is

(2.1.7) X~y1 
- X~y2 = 0

+ e2 .y 2 0

e1.y 1 + e
2
.y
2 
> 0

(y1,y2) >0 , y
1 
€ ~ k 

~
, 

~~

Since the system is homogeneous and e1 y
1

e
2~y2 / O  any feas ible solution

can be scaled so that e1•~ 1 = e2 •~ 2 = 1. Then Xj~~ and

X~~2 are points in the convex hulls of and A2~ respectively.
Thus the Farkas lemma stated geometrically says:

PROPOSITION (2.l.B). j1, J 2 are linearly separable iff their respect ive

convex hulls do not intersect.

2.2. Threshold Logic Units and Adapt ive Machines

A device designed to implement a linear discriminant function is

shown schematically in Figure (2.2.1). The device is called a threshold

logic unit (mu) and has aroused considerable interest as a simple mathe-

matical model of a neuron (e.g. [1], [2], [3]). A TLU has n input

terminals, one for each pattern component. Each pattern component (X)
i

13 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . . - -



(w),

iT~TL~
W
~

Summer 1krtsP~oId

(w),~(x),~

Figure (
~ • 2.1). Threshold Logic Unit for Implementing the Discriminant

f(x) = w x  - 0.

is multiplied by an adjustable internal weight (w)~~. The results are

summed and compared to an adjustable threshold 0. An output of + 1 is

made if the sum equals or exceeds 0, otherwise the output is -1.

(In the neuron model, the + I output corresponds to the “firing” of a

neuron in the presence of certain stimuli. The -l output represents

the normal, inactive state.)

The choice of the weight vector w and the threshold 9 determine

the patterns or stimuli that activate the Thu. Because the weights and

threshold are adjustable, the ThU can be regarded as “trainable” and

various adaptive algorithms have been devised for training. In particular,

14
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error correction procedures have been investigated as training methods

based on the following general scheme. Puttern~ are selected from 41

and .~~~2 in some prescribed manner and presented to the ThU for classifi-

cation. If a pattern is correctly classified, no corrective action is

taken. If, however, the classification is incorrect, the weights and

threshold are adjusted in a manner tending to correct the error.

A classic example is the Perceptron error correction procedure

due to Rosenblatt 12]: -

(2.2.2) Step 1. Set u
1 

= (w1, 91) 
- 

to an arbitrary vector.

Set k 1. Go to Step 2.

Step 2. Stop if defines a separating hyperplane. Other-

wise select any pattern x E U which is

incorrectly classified by U
k~ 

Let a be the

corresponding signed augmented pattern, so uk
.a < 0.

Go to Step 3.

Step 3. Set U
~x~~~ 

u~ + a. Increment k by 1 and go to Step 2.

It can be shown (Novikoff [4 ]) that if 
~~1 

are linearly separable,

then the algorithm converges in a finite number of steps to a separating

uW . Numerous variants to the procedure exist and a summary of error

correction procedures for solution of the system Au > 0 is presented by

Duda and Hart [5]. One major drawback to this class of methods is that

they are generally ineffective in the linearly inseparable case in that ~~

15 



determination of linear inseparability is made in a finite number of steps.

This deficiency is corrected in the mathematical programming methods dis-

cussed later in this chapter.

}.iore elaborate learning devices called Perceptrons can be con-

structed by assembling TLUs into layered networks such as that shown in

Figure (i .~:’ .3). E~ch TLU in the first, outer layer computes a binary function

of the pattern vector. Subsequent inner layers perform Booleari operations

on these binary functions. The innermost layer is a single TLU which makes

the decision. The overall discrl.niinant function implemented by such a

network is piecewise linear, and with a sufficiently large number of ThUs,

any two finite, disjoint pattern sets can be separated. Unfortunately,

there Is no known error-correction training algorithm analogous to (2.2.2)

that is guaranteed to converge to a piecewise linear function capable of

such a separation. Training is usually confined to the innermost TLU

with the remaining weights being selected by heuristic or even random

procedures. In Section (2.3) a linear programming procedure is presented

for determining the weights and threshold in the Inner layer that max~.mizes

the reliability of a two-layer Perceptron when the outer layer ThUs are

subject to failure. Also, in Chapter 5 mathematical programming methods

are presented that determine a separating piecewise linear discriminant

for general finite disjoint pattern sets.

16
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(
~a +1~

(x)~ —

Figure (7.2.3). A Two-Layer Perceptron. The Output from the k

First Layer TLUs Forms a k-dimensional Binary Input

Vector y for the Second Layer Thu.
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2.3. Maximum Quality Programs

Let u = (w,6) solve Au > 0. Since the system is homogeneous,

?~u is also a solution for any ?.~ > 0; i.e. the underlying separating

hyperplane ~w•x = 7~6 is invariant to the choice of the scale factor N.

It is convenient to scale u so that IwI~ = 1, where ~~ is a vector

norm.

Grinold [6] defines the quality of the separating hyperplane

corresponding to U as

(2.3.1) Q(i) = n u n  ((A~)1)i=l,. . .,m

He observes that. many of the mathematical programming models for pattern

classification that have been suggested in the literature are of the

general form

max Q(u)

s.t. u € U

where U is some subset of feasible solutions to Au > 0 on which Q(u)

is bounded. The set

U = (u:u = (w, O), Au > 0 , ItwIl 1)

is a common choice that results in the mathematical program

(2.3.2) max ?~

s.t . A u - ? ’~e > O

lvii < 1

~~ -f I
u = (w,9) € ]R

18
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Let )~* be the optimal objective value for (2.3.2). There are

three possible cases.

Case 1~ X~ = 0. This corresponds to the optimal solution u* 0. It

follows from Proposition (2.1.4) that 
~~~~~~~~ 

A 2 are linearly

inseparable.

Case 2: 0 < X* <c o . An optimal solution u* = (w*, 0*) defines a separating

hyperplane w~~x* = 9*~ The constraint jw*ii < 3. must be tight;

otherwise u = u*/ ~w~ is a better solution. Also, at least one

of the constraints

Au* - ~ *e > 0

is tight ; otherwise 7~ = 7’~ may be Increased while maintaining

u = u*. Hence N* = Q(u*).

Case ~3: ?~ = + ~~. If is empty, then A = [-X 2 e2] and u = (w, e)

is a feasible solution for all sufficiently large values of 0

and any w satisfying jw~ < 1. Hence N is unbounded in this

case and similarly in the case where is empty and

A = {X
1 -e3.]. If neither set Is empty, then there exist at

least two constraints of the form

- 0 > ~~ , x~~€ J~
_V~ X

j
+ P > ? % , X

j 
€ 12

which imply

19
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- x~ )

Hence N must be bounded since !Iw II < 1 and the sets and A 2
are finite. Thus this case is eliminated by assuming neither sample set

is empty.

These results are summarized in the following proposition:

PROPOSITION (~ .3.3) . Let 
~~~ 

J 2 be finite, non-empty pattern sets.

Let u~ = (w*,9*) be an optimal solution to (2.3.2) with objective value

A*. Then 
~~~ ~~2 

are linearly separable iff N* > 0, and in the

separable case iiw*Il = 1 and Q(u*) =

If N* > 0, there is an equivalent form of (2.3.2):

mm liw il
(2.3.4) s.t.

Au > e
n+l

u = (w,O) IR

The equivalence of (2.3.2) and (2.3.4) in the linearly separable case can

be demonstrated by rewriting (2.3.4) as

max = N

s.t.

n+ 1u = (w , G) € ]R

Thus if u~ = (w*,0*) solves (2.3.4), then u*/IIw*!I solves (2 .3.2 )

with max A = i/iiv*il . Conversely, if u~ = (w*,O*) solves (2.3.2)

20
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with A* > 0, then u*/N* solves (2.3.14) with minliwli =

The programs (2.3.2) and (2.3.4) will be called the primary an~

alternative forms, respectively, of the maximum quality problem. Several

different mathematical programming methods become applicable with the

choice of the specific vector norm. Let

li w il = (
~~ j=l

denote the £
~ 

norm for 1 < p < oo , where

IwIL = max (I(W)
jI)

j=1,...,n

The £ , £
1, 

and £2 norms are of particular interest since the maximum

quality problem can be formulated as a linear program in the £ and £1

cases and as a quadrat ic program in the £2 case.

The £ norm case leads to the following linear program for the

primary form of the maximum quality problem :

max N

(2.3.5) s.t.

Au - Ne > 0

—l < (w)~ < 1 j = l,...,n

n+l
u = (w,d)

This is a variation on a model originally proposed by Mangasarian [7].

System (2.3.5) has the following reliability interpretation for

the two-layer Perceptron shown in Figure (2.2.3). In this ThU network,

the first layer consists of k ThUs whose combined output forms a

21



transformed pattern y ]Rk for each input pattern x € ~
n 

The single

second layer TLU then classifies y. The network is defined to be redundant

if no final classification change results when the output of an arbitrary

single TLU in the first layer changes from 4- 1 to -l or from -l to + 1.

Thus a redundant Perceptron remains reliable with respect to any single

TLU failure in the first layer.

Since the change induced by a failed TLU in the corresponding

component of the transformed pattern y is of fixed magnitude, namely,

2, the discriminant function f(y) = w~y - E~ implemented by the inner

layer ThU will not change sign if it is of sufficiently high quality.

This is made explicit by the following proposition.

PROPOSITION (2.3.6). Let the set of transformed patterns be linearly

separable by the hyperplane w~y = , where ~~ = 1. Then the Perceptron

is redundant if Q(u) Q~(w ,O) > 2.

Proof. Failure of the j-ch first layer TLU changes a transformed pattern

y to y ’, where

(~r ’ )
~ 

— (y)
,1 

= 2

Let f(y) = w~y - 0. Then

-. 
If (y’) — f(y) 21 (w. )i ~ 2, s l i ce Hw !~ = 1

But Q(w,O) > 2  implies If(y) I > ~~. Hence f(y) and f(y’) must be

both either strictly pos1tiveor~~tri. ct.ly negative and therefore no

classification change occurs. o
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If Q(w,9) < 2, the network may not be redundant. Since J (w.)l = 1

for at least one component j, a failure in the corresponding ThU implies

f(y’) - 1(y) = 2

If , for example, 1(y) = -Q(w,&) and f(y’) = 2 + f(y), then

1(y) < 0
Q(w, e) < 2 =~’

f(y’)~~~O

Hence the inner layer ThU output changes from -1 to + 1.

If Q(w,&) > 2s, where s is any positive integer, then by the

argument used for Proposition (2.3.6), the Perceptron is redundant with

respect to simultaneous failure of any s ThUs in the outer layer. Thus

Q(w,6) is an index of reliability in the sense described above and the

maximum quality program (2.3.5) is a natural choice for determining the

weights and threshold of the inner ThU when redundancy is a prime concen-

tration.

A second formulation for solution of the linear separability problem

is suggested by Ibaraki and Maroga [8]:

n
mm ~ l (W)jI

j=l

(2.3.7) s.t. Au > e
n+lu = (w,O) ~

This is the alternative form of the maximum quality problem with the L
i
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norm. Since the objective function is convex, piecewise linear, and

separab le, (2.3 .7) has the linear programming equivalent

+
mm e.w + e.w

( 2 . 3 .8) s. t. Au~ - Au > e
+ - n+lu >0, u >0, u= (w ,6)€ ]R

This program has m constraints in 2(n + 1) non-negative variables.

Typically m, the total number of patterns , is much larger than n , the

pattern dimensionality. Thus it may be computationally advantageous to

solve the dual

max e.y

(2.3.9) s.t. (
_e
) <A ’y < (

~
)

y > O  ~~~~~~

which has (2n-l) constraints in m non-negative variables.

Let w~x = 0 be a separat ing hyperplane for the design sets

In problems such as the template-matching model (1.2.4), it is

desirable for the discrirninant to generalize to additional patterns that

differ from those in the des ign sets by small observat ion errors and noise

terms. Ibaraki and Maroga define the input tolerance 5 associated

with w~x = 0 as the upper bound on the £ norm of displacement vectors

d such that x + d lies on the same side of the hyperplane as x, where

x € ~ Thus an observed pattern x ’ that differs from a design

pattern x by a magnitude less than S in each component will be classified

into the same class as x. They show that the separating hyperplane defined

by an optimal solution to (2.3 .7) has the maximum input tolerance of all

separating hyperplanes.
24



The alternative form of the maximum quality problem with the £
2

norm was first investigated by Rosen 9] in the form of the quadratic

program

miri w~w

(2.3.10) s.t. Au > e
n+l

u (w,O) t

This program has the following geometrical interpretation. Let

U = (;,9) be any feasible solution to the system Au > e. The hyperplanes

= ~~~ ~.x = 0 + 1 are parallel to the separating hyperplane ;.x = 9

and bound a “ dead zone” ~ (x : 
~~~~~~~~ 

< ~L) of width 2/ lw 2 as shown

in FIgure (2.3. 11) . If the patterns in stud J2 suffer displacements,

* *
*

* * * *
* *

** *
*

(9 (S

.4
(9 (9

4. ¼ (9
*— ~~Iass C 1 pattern

.4
+ (9 b2class CL~~tt~rn

Figure (2.3.11). Pattern Sets Separated by an Empty “Dead Zone.”
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the hyperplane w.x = 9 will still separate the displaced sets as long as

all displacements are of Euclidean distance Les s than i/ wi 2, 
i.e. half

the width of the dead zone . Thus the optimal solution to (2.3.9) def ines

the separating hyperplane with dead zone of greatest width and hence highest

tolerance to pattern displacement s as measured by Euclidean distance.

The reliability results of this section are all examples of the

following general principle. Let u = (w,e) define a separating hyperplane

w.x = 8 of quality Q(u) for the pattern sets j1, J 2 Let the pattern

classes C1, C2 be defined for a given scalar value a > 0 by

C1 = (x + d:x E J~ l i d l l q < a)

Let p, q be real numbers such that 1 < p <~~ , 1 < q < ~ , and

1/p + i/q = 1.

PROPOSITIOM (2.2.12). Let w~x = 0 separate 
~~~ 

J2.
If a < Q(w,O)/ilwj , then the hyperplarie w•x = 0 separates

C1 and C .

Proof. Let 1(x) = w~x-0 . For a given displacement d and pattern x

x € U j2, x and x + d will have the same classification if

ff(x + d) - f ( x ) I < i f ( x ) i .  But Q(u) = min~~ ~ 
if (x)I, so it is

1 2
sufficient to show if(x + d) - f ( x )  i < Q(u) for all displacements d

such that ild li q < a. But

t f (x  + d) - f ( x ) J =  iw ~di

and the result follows from the hypothesized upper bound on a and the
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H&der inequality

~ llw ii~ 
. lld lq 0

For any w there exists a displacement d such that w.dI

= Il W ll p~ l l d il q (Luenberger [10], p. 30). Thus the bound Q(u)/Jw I on the

norm of allowable displacements is sharp, and the solution of the maximum

quality problem (2.3.2) or (2.3.4) defines a separating hyperplane that

maximizes the tq norm of allowable displacements. The Perceptron results

(p = ~ , q = 1), the input tolerance in the Ibaraki and Maroga model

(p = 1, q = co) , and the dead zone width in the Rosen model (p = 2, q = 2)

are specializations of the following corollary to Proposition (2.3.12).

COROLLARY (2.3.13). Let w~x = 0 be a separating hyperplane defined by

an optimal solution u = (w,9) to the maximum quality problem

max A

s.t. Au - N e > O

Iwil < 1p —

- n-fl
u = (w,0)

Then f ( x )  = w. x— O solves the template matching problem (1.2 . 4) for the

£ norm, i.e.q

max a

s.t. f (x;p) > 0 Yx € C1~ (x + d:x € d € D)

f (x;p) < 0 Yx € C2
m (x + d:x € ‘2’ d € f~)

where f (x ;p )  = f (x ;w ,O) = w.x-8 and D = ( d : I i d i i q < a )
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2. 4 . Extensions to the Inseparable Case

If the definition (2.3.1) of the quality Q(u) of the hyperplane

defined by u = (w,0) is extended to non-separating hyperplanes, the

quality of such hyperplanes is non-positive. In a linearly inseparable

problem, a maximum quality hyperpiane may provide a useful discriminant

if the region of overlap between the convex hulls of 11 and is

relativel.y small. However, the max imum quality program (2.3.2) is no

longer applicable since it produces the useless optimal solution ~ = 0

in the inseparable case. This solution can be eliminated by bounding

w i  away from zero in the program

max N

(2.4.1) s.t. Au - Ne > 0

lw > 1
n+1u = (w, 9)

which is obtained from (2.3.2) by reversing the Inequality defining the

bound on l w .

Let u~ = (w*, &~) be an optimal solution to (2.4.1) with optimal

objective value N*. There are three cases.

Case 1. N* = + ~~. This occurs when and 12 are linearly separable.

In this case there exists a solution ~ = (
~‘,~~

) with quality Q(cI) > 0

to the system

A u > 0

vii = 1
n+ 1u (w,0) € ]R

Then for all a > 1, u = c41 is feasible for (2. 4.1) with corresponding

objective value N = aQ (ft).
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Case 2. X~ = 0. This is a special case in which strict linear separability

is impossible but there exists a u~ (w*,0*) such that

V x € .42

with at least one inequality being tight for a pattern from each

sample set. Thus the convex hulls of and 42 
intersect

only in a subset of the hyperplane ~~~~ = 0~ .

Case 5. ~~ * < 0. This is the linearly inseparable case of interest.

The constraint Il w ll > 1 is tight; otherwise u = u*/IIw *II is

a better solution. Similarly, at least one of the inequalities

Au* - N*e > 0 is tight; otherwise 7~ = X~ may be increased

while maintaining u = u~. Hence N* = Q(u*) and (2.4.1)

defines a maximum quality hyperplane.

These cases are summarized in the following analog to Proposition (2.3.3).

P~~POSITION (2.4.2). Let 11’ ~~2 be finite pattern sets. Then

-
~~ 2 

are linearly inseparable iff (2. 4.1) has a bounded optimal objective

value ?~ < 0 corresponding to an optimal solution u* = (w*, O*) . If

N* < 0, then iI~(*li = 1 and ~~ = Q(u *).

If N* < 0, (2.14.1) has the alternative form

max liwli
(2. 4 .3)

s.t. Au > -e
n+lu = ~~w,0 ) € ] R
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If u~ = (w*,9*) solves (2.14.3), then u*/llw*il solves (2. 4.1) with

max N = _l/Ijw*il . Conversely , if u* (~~,e*) solves (2 .4 .1) wIth

N* < 0, then u*/_N* solves (2. 4 .3 ) with maxIlvIl =

A geometric interpretation of the maximum quality hyperplane

produced by (2. 4 .3) in the linearly inseparable case with the £2 norm

is shown in Figure (2.4.4). The inequality system Au > -e is equivalent to

V x~~€ J 1

(2.14.5)
w.x

i~~~
O < l  Vx

1 € 12

* /
* *

* /
* 1*

* (9 (9

* / *
* / *  ~~~ C,

(9 
(9

I.’ C,
$1
•1 *4., 1

~‘il 
w (S

7 •0 
(9

/ ¼ (9
.

~~ 
(9

4.e.
*—c.lass £~~pattern( 9— class ~~ pathern

Figure (2. 4 . 14). Linearly Inseparable Pattern Sets.
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Thus all patterns in lie in the non-negative half-space of the

hyperplane w~x = 0-1 and all patterns in lie In the non-positive

half-space of the parallel hyp erplane w~x (~ + 1. Thus the pattern

sets overlap in the zone

= I x : I w . x  — 

~ < l i

while the patterns outside this zone all are classified correctly. Th~

zone has width 2/
~wI~~, so the opt imal solution to (2.~~. ’) is defined to

be the one whose overlap zone is ot minitnurn width .

The maximum quality hyperplane in th~ linearly inseparable -~a~e

has several drawbacks. First, it is quite difficult to ~olv~ the

programs (2.14.1) and (~ .4.3) in general. In (
~ .

)
~.l) the constant se

t 1.~

non—convex, while (2. 4 .5) requires the maximizatior . of a convex function ,

so a Kuhn-Tucker point is not nece~~ ar i ly a global optimum . Secoiv~. ~‘~ç

maximum quality hyperplane may be a ve ry poor choice Lf there is sI , r . i fi-

cant overlap between the convex hulls of and J2 . The problen ’s

illustrated by the following example , whirh howi~ t rI~~t the maxlm’sn qt~il~~::

hyperplane places too much emphasis on the outlying or “mavericic ” patte:~

which are least representative of their own classes.

ED(AMPLE (~~~~ . 14. 6).

Let = (1,2 ic, -(k-i- i)], ~J (—l ,-~ -~c (k. 1’)

be sets of one—dimensiona l patterns . For k’~ > 2 , the l inear fl~~cr ’r t nant

with the lowest error rate is given by f ( x )  x - ~ for any

8 € (—1 , 1). Such a digcriminant misciassif ies only the two out~ ier~

namely, _ ( k  + 1) In arid ( k - +  1) in 
~~2 Howeve r , the m&xlriui-
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quality hyperplane produced by (2.14.1) is quite different. Tightness of

the constraints iiwli > 1 at optimality implies that w = + 1 or w -l

for any £~ norm. It is easily verified that the optimal solution to

(2. 14.1) is (~v ,~) = (-1,0) with ?~ 1-k . This corresponds to the dis-

criminant f(x) = —X , which misclassifies all patterns in both sets except

the two outliers . For large values of k this ranks among the worst

choices of possible discriminants. 0

The difficulty of computation and possible poor performance of

the maximum quality hyperplane for linearly inseparable problems suggests

the need for alternative pro cedures. Such procedures are the subject of

Chapter 4. In particular , the linear program

mm e•s

(2.4.7) s.t. Au + Is > e
5

n-f-i -s~~~ ]R

is discussed. This program determines a separating hyperplane if one

exists , but the solut ion does not necessarily have any of the desirable

properties of a maximum quality discriniinant. However, in the linearly

inseparable case , (2. 4 .7) is much easier to solve than a max imum quality

problem and places less emphasis on outlying patterns. For the example

cited above , it is shown that the optimal solution to (2.4.7) yields the

disc r i rn inan t  f (x )  x , which is in the set of lowest error rate dis-

c rj mj nants.
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CHAPTER 3

THE LEAST POSITIVE DEVIATI ONS P~)BLEM

3.1. Linear Inequalities

This chapter deals with the general linear inequality system

A x > b
(3.1.1) 

—
- n -

x~~ JR -

awhere A is a (in x n) matrix with a > n and b € JR . The matrix A

is assumed to be of full column rank n~ Let ai denote the ith row of

A and the ith component of b. Thus the ith inequality is

a~.x ~
A solut ion to (3.1.1). if one exists, can be found as the optimal

solution to the Phase I linear program

mm e~ s

(3.1.2) s.t. Ax + Is > b

s~~~0

x E i R’~ , s € ] Rin

Problem (3.1.2) will be called the least positive deviations (LPD)

problem corresponding to the tableau [A:b]. If ~~~ is an optimal

solution to (3. 1.2 ) ,  then ~ will be called a LPD solution to the

inequality system (3.1.1) . A LPD solut ion always exist s since the LPD
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linear program is feasible (x = 0, s b
+ 

is a feasible solution) and

the objective function is bounded below by zero on the constraint set.

Clearly system (3.1.1) has a feasible solution iff the LPD solution is

a feasible solution. In this case the optimal LPD objective value is

equal to zero.

The least positive deviations termInolo~ r ar ises from the

equivalence between the LPD linear program and the unconstrained minimiza-

tion problem

(3.1.3) miii f (x )  = E (~~~~
. - a.

- x € i R ~ i=l ~

= e .(b  - AxY
f
-

where (~ . - a1
.x ~

f- 
= max (O, 

~~ 
- a. .x) . If ~~~ is opt imal for

(5. 1.2 ),  then it is easy to show that ~ = (b - A~ Y
f- . Furthermore, for

any x E  ]R~~, (x , (b - Ax) ’) is feasible for (3. 1.2) . Together these

statement s imply that ~~~ is optimal for (3.1.2) iff ~ is optimal

for (3. 1.3 ),  where ~ = (b -

The LPI) linear program (3.1.2) can be written in the standard form

mm e s 1

(~~.i.4) s.t. Ax1 - Ax2 + Is1 - 152 = b

x1 > O , x2 > O , s1 > 0 , 52~~~
0

x €~~~~~~~~~~ , ~ €~~~~, ~ €~~~~, ~1 2 1 2

This primal formulation has in constraints in 2(m + n) non-negative

variables. The dual of (3.1.14) is
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max l)~y

(5.1.5) s.t. A ’ y r

0 <. y < e

~

which has n constraints In m upper bounded non-negative variables. f~’

the number of inequalities in in (3.1.1) is Large relative to n, then

the simplex method with upper bounis (Dantzig i ii]) applied to the dual

(3.1.5) would be coinputationally more convenient and probably more

efficient than the standard simple:-: method applied to the prima]~ (3.i.~~

When applied to (3.1.5), the simplex method with upper bounds

terminates in a basic optimal solution ~ which has n ba~ic variable~

(p ) . , ... , ( p ) . and (in-n) non-basic variables. Each non-bas ic11 in
variable is either equal to its lower bound of zero or its upper bound

of one, while the basic variables are equal to values lying in the interval

0,1]. The optimal basis defined by ~ consists of n column vectors

a . , . . .  , a from A’ . The simplex multiplier vector 2 corrcspon~5ng11 in
to the optimal basis is the solution to the (n x ii) linear equality syster-.

a. .,(~~~~~~~

(~ .l.6)

a. ~~~~~~~~~~~~~~~
1 fl
ii

From the duality relationship between (3.1.14) and (3.1.5) it follows that

~ defines the optimal solution
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= X

x2 
=

(3. 1.7) 
+

= (b - A~)

= (b -

to the primal (3.1.14) and hence ~ is a LPD solution to (3. 1.1) . The

termination condition of the simplex method with upper bounds requires

that the columns of A’ price out as follows

~~~~ = if (~)~ is basic

(3. 1.8) ai
.
~ ~ 

if (p). = 0 and is non-basic

a1~~ < if (v) . = 1 and is non—basic

If the primal so~ution (3.1.7) is non-degenerate, there are no basic slack

variables equal to zero and the inequalities in (3.1.8) are strict. Thus

if a non-basic optimal dual variab:e is at its lower bound the corresponding

inequality in (3. 1.1) is satisfied at x = ~, while if it is at its upper

bound the inequality is violated (assuming a non-degenerate primal solution).

If the dual variable is basic, the inequality is tight .

Thus the search for a LPD solution to (3.1.1) can be confined to

simplex multiplier vectors associated with bases for the dual problem

(3.1.5). The following terminology will be used to describe these vectors.

A point x € JR is defined to be a basic inequality solution to the

inequality system Ax > b if at least n of the in inequalities are

tight at x = ~ and the corresponding row vectors a4 , . . .  , a
1 

are
ii

linearly independent . If exactly n inequalities are t ight, ~ is non-

degenerate. For any linearly independent set of n row vectors

ai , ... , a~ , there Is exactly one basic inequality solution ~ which
1 n
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can be found by solving ~ie linear equalit~ system (15.1. EL ~ ac~ L~ ic

inequality solution x to (3.1.1) defines the corresponding basic feasible

solution to the primal linear program (3.1,’.,) given by

(3.1.9) (x1, x2, 
~~ 

s2) (x~ , x . (b - Ax)t (b - Ax ) )

Conversely, however, each basic feasible solution to (3.1.14) ~oes not

necessarily define a basic inequality solution to (15.1.1). For exar sile ,

the basic feasible solution to (3.1.4)

(x 1, x~ . s~ . s
2
) = (0 , 0, b~, b )

corresponds to the non-basic inequality solution x = 0 to (3.1.1).

Two basic inequality solutIons x1, x2 are defined to be

adjacent if the corresponding dual bases have exactly (n-i) column vectors

of A’ in common. Thus the simplex multiplier vectors Xk~ 
X
k+l 

at

successive iterations of the simplex method with upper bounds applied to

the dual are adjacent basic inequality solutions to (5.1.1). Again,

however , the basic feas ible solutions defined by (3 .l.~~) for two as ’a~ent

basic inequality solutions x1, x2 to (3.1.1) are not necessarily

adjacent basic feasible solutions to the primal problem (3.1.4). The

reason is that the two sets of (rn-n) basic slack variables can be

completely different. The algorithms presented below for determining LPD

solutions gains considerable computational efficiency by moving oniy

between adjacent basic inequality solutions to (3.1.1), thus avoiding

pivoting operations at intermediate basic feasible solutions to (3.1.14)

where only slack variables are entering and leaving the basis.
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If the simplex method with upper bounds is applied to the dual,

the dual objective function b~y increases at each step (assuming non-

degeneracy). However, it is not true in general that f(xk+l) <

for the corresponding simplex multiplier vectors x,~, Xk+l, where

f(x) = e~ (b - Ax)~ is the LPD object ive funct ion. Thus intermediate

multiplier vectors may be quite far from being optimal for the primal, and

hence the dual problem must be iterated to completion to obtain a good (in

thi s case , optimal) basic solution to the primal . From numerical experience

on LPD problems of pattern recognition and control theory origin, it has

been observed that the structure of the constraint set can be very com-

plicated even In relatively small problems (e.g. in < 1000, n < 11) with

consequent slow convergence of the simplex method with upper bounds.

In the next sections an algorithm for the LPD problem is presented

that has proved to be very e~fficient on many numerical test problems,

particularly on those in which the system Ax > b is infeasible. The

- algorithm produces a finite sequence [X
k

) of basic inequality solutions

to (5. 1.1) that terminates in a LPD solution. Members of the sequence

are shown to be obtainable as the simplex mult iplier vectors corresponding

to the path of bases produced by a modification to the usual pivot selection

rules in the simplex method with upper bounds applied to the dual .

Assuming non-degeneracy, the new pivot selection rules produce a decrease

in the primal objective rather than an increase in the dual objective

at each basis change (the upper and lower bounds on the dual variables do

not enter into the calculation and are thus ignored).
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3.2. The One-Dimensional Li~D Probiesi

For the case n = 1, the inequality system (3.1.1) has the form

a1

a
(3.2.1) 2 

~ >

where x is a scalar variable . It ~s easily seen that system (3. ?. ~) is

feasible if f

max —~~~~~< miii —~~~-r
1 

a. >o ai a . <o a. 2
1 1

and any x in the interval I11,-r
2
] is a feasible solution (-r , = - co

if all a1 
are non-positive; similarly 1

2 
= ÷ if all a

1 
are non-

negative). However, if the system (3.2.1) is infeasible, a more general

approach is necessary to find a LPD solution. In place of the linear

programming approach presented in t t e  last se’.~t ion. a more direct sotut~..on

technique for the LPD problem is ~iscusne’. below. This method treats the

problem in the unconstrained form

(5.2.2) miii f(x) = ~ (~
. . -

xEl&- i - l

Without loss of generality, it is assumed that c~ �‘ 0. i = 1 m.

Let f(x) = ~ ••
m
1 
f.(x~ , where f (x) = (~~. - ~~~~~~ A t~ p iLca 1

f1(x) for a1 > 0 and a. < 0 is graphed in Figure ~~~~.5) . In either

case the graph consists of two linear segments with a breakpoint at

x = 
~i
/a1. At the breakpoint the slope increases by cX~I. Figure (5.2.4)
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f(x) f(x)

L 1~2I+X

Figure (3.2.5). Typical One-dimensional Least Positive Deviation Functions.

1(x)

0

—t ~Ab c 1 13~/oc~ /3,/ac, J?~,/o~ I
~

frc, Pi~/o~

Figure (5.2.14). Sum of Six Positive Deviation Functions, with

Minimum at x ~5/a5.
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illustrates ~he graph rf the sum of six such fuucttons. In ga~e~ al,

assuming the points ~~~~~ I = 1,...,m are distinct , the graph of f(x~

consists of (in + 1) linear segments with breakpoints at each ~./a..

The right-hand derivative at each breakpoint ~./a. exceeds the left-hand

derivative by !a11 . The extreme left hand infinite segment has slope

equal to 
~~~~~ 

a~) and the extreme right-hand infinite segment ile s

slope equal to 
~~~l 

aj . If there is no flat (zero slope) segment, f(x)

has a unique minimum at the breakpoint where the right-hand derivative first

becomes positive. If there is a flat segment, all points along this

segment are minima .

From the observations above it follows that the right and ~eft

hand derivatives at any point x = 2 are given by the formulas

df(x) 
= - ~~~ a~ +

1=1 1 (i:~~./a.<2) 
1

x=x 1- 1—

(5.2.5)

df( x) 
= -. 

~~~ a~ +

dx 
~~~~ 

- 1=1 
1 

[i:~3./a.
<
~~) 

1

These formulas are the basis of the following solution procedure for the

one-dimensional LPD problem (3.2 .2)

PBOCEDUT~E (5.2.6). One-Dimensional LPD Solution Procedure

1. Sort the in breakpoints ç~1/a1 into ascending order. If there ~re

repeated instances of any breakpoint , all such instances must ~e

included in the ordered list. Relndex and let the index i now

refer to the new order.
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2. Let

r = -  ~ a~~÷ i . I ,
1=1 i’-l

and let jX be the smallest value of j for which ~~~~ ? 0. Then

the breakpo int x* = f3~~/a~~ is optimal for (5.2.2).

Proof. By (5 .2 .5) ,

df(x)
+— 

dx x=~~./a~

with equality if only one inequality is tight at x = ~~~~~ Thus by

definition of and j~~~~,

(5 .2.7) 
df( x) < ~ < 

df(x)

x=x* x=x* - -

But (5.2.7) are precisely the necessary and sufficient conditions for a

convex p iecewise linear function of a scalar variable x to be minimized

by x = x *. 0 
-

The procedure is implemented by ordering the breakpoints and successively

adding the slope changes a1 ! to the initial left-han d derivative. The

procedure stops at an optimal breakpoint when this sum, and hence the

right-hand derivative, first becomes non-negative. If the minimum is

not unique, the solution that is produced is thus the smallest minimizing

breakpoint.

As an alternative to (3 .2 .5) ,  the sterivatives at any point ~è

can be calculated from the formulas
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df(x) 
+

dx xrr2 (i:a
~
2K

~~
.) [i: .2 = c ~ .) 

1

(3. 2 .8) 
-

df(x) 
= ~~~, -a. -

dx x=2 (i:a~~<~~1) 
1 

[i :a12 = ~~ 
1

Rather than starting from ~he numerically smallest breakpoint as in

Procedure (5. 2 .6) ,  the search procedure can be initiated from an arbitrary

breakpoint through the use of these formulas.

PROCEDURE (5.2.u). Modified One-Dimensional LPD Solution Procedure

1. Select an arb itrary breakpoint 2 and calculate the left

and right-hand derivatives at 2 from (5.2±~). If 2 is optimal

by (3. 2. 7) .  stop. Otherwise go to step 2.

2. If (df/dx
~)!~~2 

— 0, sort the breakpoints that are strictly greater

than 2 into ascending or~er an~ ~et the index i refer to this order.

If (df/ax ) 1 2  > 0 sort the breakpoints that are strictly ie~s than

2 into descending order indexed by i. In .either case include aLl

instances of repeated breakpoints.

Def ine

df ‘ii. ‘ ‘~v. = — - sgn (— ! 1 . ~ I a . !
dx x == dx x=2 / i- - I

Let j * be the smallest value of j such that

> 0 and r j * - a.~ I ~ 0

Then x* = 
~~~~~~ 

is optimal for (5.2.2).
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Proof. From (3.2.5) and (3. 2.8), it follows that

dfr j ~ dx

r - ta f >
~~

-
~

—
— 

dx x=e~/cr.

with equality in each case if only one inequality is tight at x =
Thus by definition of j*, the optimality crIterion (3.2.7) is satisifed

at x = x ~. 0

The procedure first determines on which side of the initial break-

point 2 the minimum lies based on the algebraic sign of the right-hand

derivative at 2. Successive breakpoints are then examined and the

derivative updated until an optimum breakpoint satisfying (3.2.7) is

found. Procedure (3.2.9) will be Incorporated Into an algorithm for

solving the general n-dimensional LPD problem. It is used to solve one-

dimens ional problems of the form

mm f(x+Td)

n - nwhere x C ]R is a basic inequality solution to (3.1.1) and d E ]R

is a search direction.

Let 2 € be a basic Inequality solution to Ax > b with

aj , a . , . . .  , a1 the linearly independent row vectors corresponding
1 2 n

to n tight Inequalities at x = 2. DefIne the (n x n) matrix

44

____________________________________________________________________________________________ ( 
_ —r — -



a~

(3.2.10) A
1 

= 1
•

a. I
1
ii

Then the system Ax > b can be rearranged and partitioned as

A A > b
(5.2.11) 

1 — 1

A2
x > b

2

with 2 = A~~b1. The following equations define a search direction

€ such that all but the kth inequalities in A ,x > b~ remain

tight for x 2 + Tdk
, t / 0:

k
a.~~ d = 0 .  j i k

(3.2.12)
k

a
1 

d = 1
k

Thus d
k 

is the kth column vector of A~
1. Improvement in the LFD

objective function can be attempted by solving the one-dimensional problem

(5.2.15) miii r (2 + Tdk )
T ~

This can be rewritten as the one-dimensional LPD problem

(3.2.14) m.tn [e(~ - aT)  + ( ) ~
]

t €

where a = A2d1
~

= b
2 

- A22
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L~t r~ - (
~)~~/(~

)
~~ 

be a minimizing breakpoint for (5. 2.114).

P1~)P0SITI0N (5.2. 15). If -r = 0 is not opt imal for problem (5.2. 114) ,

then 2 + r*d and 2 are adjacent basic inequality solutions with

f(2 + ~r*d
k
) < f(2).

Proof. From the defining equations (3.2.12) for dk, it follows that the

ii inequalities A1x > b1, 
which are tight at t = 0, remain tight at

= r* except for the inequality corresponding to a~ . An additional
k

inequality ai~
x > in the system A2x > b~ that was not tight at

t = 0 becomes tight at -r = t~~. The row vector 
~~~ 

cannot be linearly

dependent on (a~ , . . .,  a1 , a. , ... , a); otherwise a
~~~

d.’
~= ~1 k-i k+l

implying a
1~
.2 = and hence (

~~) • *  = 0 which contradicts non-optimality

at T = 0. Thus 2 + .r*dk is a basic inequalIty solution correspond ing

to the dual basis fa i , ... , a~ , a1~ , a1 , ... , a1 3 . Non-
- 1 k-i k+l n

optiinality at = 0 implies f(2 + T*d )  < f(2). 0

Proposition (3.2.15 ) immediately suggests the algorithm for the

LPD problem that is presented in the next section. Starting with an

arbitrary basic inequality solution, the algorithm generates a sequence

of improved adjacent basic inequality solut ions by solving one-dimensional

LPDs of the form (3.2. 114). Computationally, the algorithm is shown to be

iniplernentable by changing the pivot selection rules of the simplex method

with upper bounds as applied to the dual. As in the simplex method , the

algorithm terminates in a f inite number of steps with an optimal solution.

46



•~.3. The ALPD Aigorithm

This section present s t~~~~~ A ’- - ~r ated~~ea~t Fo~ i~i~ v~ ~eviations

(ALPD) algorithm for determinIng a LPD soU~,ion to the s ,-~~ten Ax > b.

It will be assumed that all basic inequality c. ~tions are non— e~ener~~te.

If this is not true, the v~’ctcr b car. oe perturbed t~ ’

(b’) = ~b) +
I ‘ 1

and the system Ax > b ’ wi ll be nor~-1ege nerate for all suff ic ient ly  ;n a lL

positive values of e and the o~t~:na~ dual basis for the perturh~~ sy~~~-~

will also be optimal for the originaL system. The standard ~exi:ov ~i~’- c

schemes (Dantzig [11]) for the simplex method can be used intact.

Let

k = iteration number

xk = basic solution at iterat ion k

Ak = (n x n) non-singular submatL -ix of A such that the

correspohdung inequalities are tight at

d~
’ = ith column of

It

f ( x )  = e .(b - Ax)~

ALGORfl~~ (3.5.1). ALPD

Step 0. Set k L. Let A 1
x > b

1 
be any set of ii Inequalities

such that A 1 is non-singular. Set = A~~b1. 
Go to Step L.
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Step 1. DetermIne the right and left-hand derivatives

= 

df(x~ + rd~) 
= 
df(x,~ + rd~)

1 dr - dr r=O

for i = I,..., n.

Let = min(-r
~
, -~~~) and = mm (?‘~.). If

i=1,...,n

> 0, go to Step 5. Otherwise, go to Step 2.

Step 2. Tsung (3.2.9) with initial breakpoint I = 0, solve the one-

dimensional LPD problem mlii f(x
k 

+ rd~~). Let -r* be the

1*minimizing breakpoint. Set ~~~ = X
k 

+ T*d
k 

and form Ak+l
by replacing the i*th row of Ak with the row of A correspond-

ing to the breakpoint at r*. Increment k by I and go to Step 1.

Step 5. Stop. The final x,~ is optimal.

PROPOSITION (3.5. 2). Under the non-degeneracy assumption, the ALPD

algorithm converges In a finite number of steps to an optimal basic

solution.

Proof. Let X
k be an intermediate basic solution. Since is not the

final solution, by Step 1 and convexity of f(x) the right and left-hand

derivatives y.~ and are non-zero and have the same algebraic sign.

Hence = 0 cannot be optimal In Step 2 and therefore by Proposition

(~~
. ‘ . 15) X

k 
and ~~~ are adjacent basic solutions with f(x,~~1) < f (x ,K ) .

Thus cycling cannot occur . There are at most (~) basic solutions, so

the algorithm must be f ini te .  It remains to be shown that the final basic
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solution ~ is op t i : -a l . This wil’. be Cone by dernonstrat~ng that the

corresponding point

(x~ , x~, s~ , s )  = , ~~~, (b - A2)~ , (
~ -

is optimal for the LPD linear program (3.l.)-
~).

Let A1 be the ii x n ~ubrnatrIx of A corresponding to the basic

tight inequalities at x = 2. Then the system Ax > b can be ~.-r~tten &s

A ,x >

A~ x > b , .

where A2 is an (m-n) x ii matrix corresponding to the remaining no-~-basic

inequalities. The linear prograr~. (5.1.14) then takec the form

+ +n u n 
~l 

+ e s 2

s.t. A1x~ 
- A ,x + Isi~ - Is~ = b1

A 2x~ - A0x + I~ - Is = b
2

x C TR~~, s
~ 

C ~~~~~~~
, ~~~~ ~~ ~ rn-n

Since A1 is non-singular, this problem can be transformed by eles-entarv

row operations (Gaussian elimination) ~o yield

(3.5.3) miii e-s~ + e.s~

s.t. 1x
4 

- 1x + A~~5~ - A~~s~ = A~
1
b1

1s - Is~ - A~A~~s~ + A~A~~s~ = b2 - A2A~~b1
x C ~~~~~~ s1 C ~~~

‘ , 
~2 

C ~ ni-n

— -—--- — - - — — —  S
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The following basic feasible solution to (3.5.5) can be selected

+ - + -from (x , x , s , s ) :

(x~ ) .  is basic if (A~~b1). > 0

For i = 1 ,...,n

(x). is basic if (A~~b1). < 0

(5.5.14)

is basic if (b2 - A
2
A~

L
b1). 

> 0

For j  = l,...,m-n
s is basic if (b2 - A

2
A~~b1). 

< 0

This solution corresponds to the basic solution 2 = A~~b1 to (5.1.1),

( 3.3 . 14) is optimal if the reduced costs for all non-basic variables are

non-negative.

Let (y1,y2
), where y

1 
E IR ti

, y,, C ~~~~ be the simplex

multiplier vector associated with the basic feasible solution (3.3.—~) .

From the form of (3.3 .3) it follows that y1 
0 and hence the reduced

cost for all non-basic corn?onents of x
4 

and x equals zero. Also

from (5.5. 3) it is seen that

(y ) . = 1 if (s~) . is basic
2 j  2 j

~~2
3j = 0 if (8)j 

is basic

Thus the reduced cost for all the non-basic components of 
4 

and s

equals + 1. The reduced cost for (s~)~ is

( 3 .5 . 6 )  1 + y2
A
2
d
i 

, i =

where d~ is the Ith column of A~
1. Similarly , the reduced cost for
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(s~~ is

(5.3 .7)  -y2A2
& , i = 1, .. .,  ii.

Application of the formulas (3.2.8) to the function

(3.5.8) f(2 + -rd’) e.(~ - 
~~~~ + ( - ) ~

where a = A
2
d~ and ~ = b

2 
- A

2
A~~b1, yields

= - 

rn-n 
(A
2
d~ )T

j1

= ~ 2
A
2
d

=

and

i i  rn-ndf(x +~~d )  
_

~~~~~~~~
_ 

~~~ (Ad 1).
dr  jrl 2 .~

= - 1. - y2A~
d1

Comparison with (5.5.6) and (3.3.7) reveals that and -

~~~~~ 
are the

reduced costs for (si). and (4).. respectively .

But by the termination condition in Step 1,

Ti ? 0 , -

~~~~ 
> 0 , i 1, .. . , n.

at 2 , so 2 is optimal. o
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The ALPD algorithm can be implemented using a pivotal procedure

on tableaus. Define the tableau

A
1 ~~b1

T =

A2 :b ~

corresponding to the basic solution x = A~~b1. By elementary column

operations (equivalent to Gaussian elimination row operations on the

transpose of T), T can be transformed into the canonical form

(5.5.9)  T
~ 

= 

[A 2~~
1 b2 

- A2A~~~1]

Let be the ith column of A2
A~
1
f I = l,.,.,n and let ~ = b2 

- A
2
A~~~1.

Then the right and left-hand derivatives 8. of the function

= e .(~ — ~~~r)~ + (— -r)~ at ‘r = 0 can be calculated from (3.2.~ ) .

The fastest rate of descent (minimum reduced cost for the primal problem)

is

(5.5.10) = miii (min(y., -8~))

If > 0, then the current solution is optimal. Otherwise the i*th

row of A1 will Leave the dual basis. It will be replaced by the j*th

row of A2, where

(5.5.11)

is the minimizing breakpoint of
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This is accomplished by executing a standard simplex method pivot

on the transpose of Tc~ using the (1*, j~ + n) element of T’ as

the pivot element. The new tableau, after rearrangement, will be in the

canonical form corresponding to the new dual basis.

The pivot operation used to move from one basic solution to an

adjacent basic solution is thus the same as that used by the simplex method

with upper bounds applied to the dual (5.1.5) in exchanging one basic

column of A ’ for another. Thus the ALPD algorithm can be implemented

simply by changing the pivot selection rule in standard simplex method

software and ignoring the upper bounds on the dual variables. The new

pivot rule selects the column that leaves the dual basis according to

the minimum reduced cost rule (3.5.10). The entering column is selected

as the one corresponding to the breakpoint that minimizes the LPD

objective function (3.5.9). Each iteration then results in a decreased

primal objective rather than increased dual objective. 
-

The relative efficiencies of the ALPD and simplex method pivot

selection rules can be compared directly by counting the number of basis

changes (pivot operations) required to reach optimality from a given

starting basic. The ALPD algor ithm has been coded in FORTRP~N and applied

to numerous small (typically ni < ~~~~ ii < 11) LPD problems arising

from pattern classification models. These problems generally have a

totally dense A with b > 0. Comparative runs with the simplex method

with upper bounds have been made with the following general results.

In cases where the inequality system Ax > b is feasible, the two pivot

rules require approximately the same number of pivots. However, in cases

where the system is infeasible, the number of simplex method pivots

grows rapidly with the extent of the irifeasibility, i.e. the number of
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inequalit ies violated by the opt imal solution. The number of P1LPD

pivots appears insensitive to this factor. In many infeasible cases

the number of simplex pivots exceeded the number of ALPD pivots by

factors of several hundred. Detailed results of a series of systematic

comparison trials are presented in the next chapter .

3.14. Initializing the Algorithm

The choice of the initial basic solution is arbitrary. However,

the following procedure produces an initial basic solution by constructing

a sequence (x0, x1, ... , x~) of points such that

f(xk) < f(xk l ) , k =

The final point x~ is the desired initial basic solution. Thus a

considerable amount of improvement in the object ive function may be

achieved in tne initiation sequence.

Let

k = iterat ion number

= part ial set of vectors in the dual basis
at iteration k.

PROCEDIJRE (5. 4.1). ALPD Initialization.

Step 1. Set = ~~, x0 = 0.

Choose an arbitrary direction d0 ~ 0 (the unit vector

= (1,0,...,  0) is convenient) ; set k = 1 and go to Step 2.
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Step ?. Solve the one-dimensional LPD problem

miii f(x
k l  

+ T d
k l )

Let ak be the row vector corresponding to the inequality that

becomes tight at the optimizing t = -r*. Set

- ~k 
= 

~k-l 
U [a

k
) = X

k l  
+ 1* dk l

If k = ii , go to Step 14. Otherwise go to Step 5.

Step 5. Determine a new direction dk ~ 0 ~uch that

= 0 , i = 1,..., k,

(The Gram-Schmidt orthogonalization procedure can be used.)

Increment k by one and go to Step 2.

Step 14. Stop. ~~ is the initial dual basis and is the initial

basic solution.

After Step 2 of iteration k, the k inequalities corresponding to

a1, . . .  , a
k are t ight at x~. Each new search direction is generated

in such a way that these inequalities remain tight at Xk+l) 
where a- new

inequality becomes tight.

5.5. Extensions of the LPD Problem

In this section a sequence of increasingly general linear programs

are shown to be reducible to equivalent LPD linear programs. Ultimately

the applicability of the ALPD algorithm to the general linear programming

problem is demonstrated.
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The weighted LPD problem with tableau {A:b] and weight vector

w > 0 is defined as the linear program

iuin w. 5

(3.5.1) s.t. Ax + Is > b

iixE ]R ,

This is the immediate generalization of the standard LPD problem (3.1.2)

obtained by replacing the LPD objective e~s with the weighted LPD

objective w.s. The equivalent unconstrained problem is

(3.5.2) mm f(x) = w. (b -

x€

Since w > 0, w. (b - Ax)~ = e~ (Wb - WAx)~ where W is the m x in

diagonal rnacrix defined by W~1 = (w) 1, i = l,...,m. Thus (5.5.1) is

equivalent to a standard LPD problem with tableau {WA:WbJ. In appli-

cation of the ALPD algorithm to (5.5.1), either of the tableaus [A:b]

or {WA:Wb ] may be used for pivoting since both have the same set of

basic solutions. However, the pivot selections are governed

by the derivatives of the LPD objective function f(x) = e.(Wb - WAx)~
’
.

The weighted LPD problem can be further generalized by allowing

penalties on both positive and negative deviations. Let w

z C be non-negative vectors such that w + z > 0. The weighted

least deviations problem with tableau [A:b] and weight vectors w and

z is defined by the linear program

- / . — —



~i~~r ~~~ + z.s

(3.5.5) s.t. Ax + Is
1 

— Is
2 

= b

s
1

> O , 5
2~~~

0

x C 
~l 

~ 
~~~~~~~

‘ 
~2 

~ ~
m

It is easily seen that in an optimal solution (2 , ‘
~1’~~2

) to (3.5.3)

the relations 
~l 

= (b - A2)~ and 
~2 

= (b - A~) nuust hold and hence

(3.5.5) is equivalent to the unconstrained problem

(5 .5. 14) miii 
~ 

f(x) = w.(b - Ax)~ + z.(b - Ax)
x E  IR

Since (b - Ax) = (.-b + Ax)~~, the weighted leant deviations problem

(5.5.5) can be reformulated as a weighted LPD problem. In particular,

if w > 0 and z > 0 the tableau and weight vector for this weighted

LPD problem are

r A :  b

(5.5.5) I and [w,zJ

respectively. In application of the AA.LPD algorithm to (5.5.5) it is

sufficient to pivot on the partial tableau {A:b] since the pivoting

operation preserves the opposite sign relationship between the upper

and lower halves of the full tableau. Again, however, the pivot selections

are determined by the derivatives of (5.5. 14) .

The dual of (5 .5.3) is

max b~y

(3.5. 6) s.t .  A ’ y 0

-z < y  < V

y C
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which differs from the dual (5. 1.5) of the standard LPD problem only in

the generalization of the lower and upper bounds on the dual variables.

Example ~~~~~~
The general linear approximation problem with norm criterion

is

(3.5.7) 
~~~~~~ 

f(x) = lAx - bi!

The vector b C is approximated by a linear combination of the columns

of the m x ii matrix A, with the best approximation defined as that which

minimizes the norm of the residual vector. Problems of this type

arise in linear regression analysis and function approximation (‘curve

fitting’). The choice p = 2, equivalent to the usual least squares

criterion in regression analysis, is the simplest case both analytically

and computationally, since an explicit solution x = (A’AY~
’ A ’b exists

whenever A’A is non-singular. Also, in the general linear statistical

model with the usual Gaussian error distribution assumption, the maximum

likelihood estimate of the coefficient vector is a solution to a problem

of type (5.5.7) with £2 norm . However , it was first suggested by

Edgeworth [12] that the £~ criterion of minimizing the sum of the

absolute values rather than the sum of the squares of the deviations

may be more suitable when the deviations are large and erratic. For

example , if the error distribution is given by the double exponential

distribution with probability density

f (~ ) = (2cT)~~ e d~~ €

58

-- --- - 
_ _ _ _ (~~._ ~~~

— - — -



then the maximum likelihood estimate is a solution to a linear approximation

problem with 2
1 norm criterion (Draper and Smith [15]). This distri-

bution has a. much more slowly decaying tail than a normal distribution

with the same variance a2 and hence is more likely to produce the

kind of deviation pattern mentioned above. Before the availability of

linear programming techniques, however, the compute .~,onal difficulties ¶

presented by the £1 criterion limited application - 

~arly solution

methods (e.g. Rhodes [114] and Singleton [15]) to low ditsensional problems,

typically ii 
~~. 

The first linear programming formulation of this

problem is due to Charnes and Cooper [16], who present the least wetghte~I

deviations program (5.5.3) with w = e and z = e. The computational

advantage of the dual and the applicability of the simplex method with

upper bounds is noted by Wagner (17]. The P.LPD algorithm given here

is a generalization of a special purpose algorithm for the norm

problem presented without proof by Davies [18]. 0

The f inal extens ion of the LPD problem considered here is the

constrained weighted LPD problem obtained by adding the p x ii inequality

system

(s.~.8) A
2x >

~ €

to the constraint set of the weighted LPD problem (3.5.1). (A constrained

weighted least deviations problem can similarly be defined by adding

(5.5.8) to the constraint set of the weighted least deviations problem

(3.5.3). As shown above, the weighted least deviations problem can be

reformulated as a weighted LPD problem, so the discussion below also

applies to this case.) The general form of the constrained problem is

thus 

-
.
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n u n w•s

(3.5.9) s. t. A 1x + Is > b
1

A, x > b
— 2

s > O

x € ]Rii , sE ]Rin

The (in + p) x n matrix

(
Al’\

\ A
2 
/ ‘

where in + p > n, is assumed to be of full column rank ii.

Problem (3.5 .9) does not have a direct weighted LPD equivalent.

However, if the inequality system (3.5.8) is feasible, the weighted

LPD problem

mm w’s1 
+ 7~(e.s 2 )

(3.5.10) s.t. A1x + Is1 ? b1

A
2
x +1s0 >b 2

s1 > O , 52 ?0

x€ ]R~, s1
€ ]Rin

, s2
€~~~

will be shown to have the same set of optimal basic solutions as (5.5.9)

for sufficiently large values of the scalar weighting factor ?~.

P~~P0SITION (5.5.11). If the added constraints (3.5.8) are feasible,

then the constrained weighted LPD problem (5.5.9) has an optimal solution.

Proof. If 2 is feasible for (3.5.8), then x = 2 , s = (b - A2)~ is

feas ible for (5.5. 9). The objective function of (3.5.9) is bounded

below by zero, so an optimal solution exists. 0
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LE~~A ~ - .5.l ) .  Let x~ he an optimal bas9~ solution to (5.5.10 )

for some ?\ > 0 and let s* = (b - Ax*) +. If A~x* > b ), then1 1 —~~~
(x*, s*) is optimal for (5.5.9).

Proof. If A2x~ > b~, then there exists an optimal solution ~~~~~

to (5.5.9) by Proposition (5.5.11). Since (x*,s~) is feasible for

(5.5. 9) , w.s-~ > w.S. But (x, 
~~ ~~ 

= (
~ , ~,O) is feasible for (~ ,~ j c ’~

whereas (x+, s~, 0) is optimal, so w1s! 
<- w•~~. Thus w.s~ =

and (x*,s~) is optimal for (5.5.9).

PROPOSITION (3.5.15). If the added constraints (3 .5. 8) are feasible,

then there exists a number 7~ > 0 such that any optimal basic solution

x* to (5.s.io) for ?~ > ~ defines an optimal solution x

s = (b1 
- Ax*)~ to (3.5.9) .

Proof. Let ~ (x 1, . . .  , X
k

) be the set of basic solutions to

(5.5.10) that are infeasible for the system A2x > b .~. 93 is a finite,

possibly empty set. If 93 is empty, let ?\ = 0 and the result follows

from the lemma. If 93 is non-empty, define

= mlxi e.[b
2 

- A
2

X . ]~~~

and let ~ = (w.~~)/~ where (2,~ ) is any optimal solution to (5.5.9).

Thus if ?\>~~ ,

7.~(e.[b 2 _ A x~ }~ ) >w .~ V x ~~E 93

Hence no member of 93 can be optimal for (3.5.10) when ~ > ~ since

(x ,s1, s2) = (2,~~,0) is a feasible solution with a lower objective value.

The result then follows from the lemma. 0
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Thus the constrained LPD problem can be solved by application

of the ALPD algorithm to the weighted LPD problem (5.5.10) with any

weight factor 7~ greater than ~~ . In general the value of ~ is

not explicit ly known, so the choice of ?~ is open at the start of- the

algorithm. Numerical experience with constrained LPD problems has

shown that if 7~ is initially chosen very large, the sequence of basic

solutions encountered by the ALPD algorithm first is driven into the

feasible solution set of (3.5.9) with all subsequent basic solutions

remaining in this set. For sufficiently large values of ?~, this

behavior is guaranteed. It follows from the argument used to prove

Proposition (3.5. 13) that the objective values corresponding to basic

solutions that are infeasible for (3.5.9) are bounded below by ~~~

where 5 > 0, while objective values for feasible basic solutions do

not depend on 7 . Thus for sufficiently large values of ?~, the latter

will be uniformly lower than the former. In practice, once a feasib’~e

basic solution is attained , the value of ?~ can be raised at any time

during the course of the algorithm to avoid a pivot operation that wou’d

result in an infeasible basic solution.

The following example demonstrates the app1icab~lity of the

ALPD algorithm to the general linear programming problem.

Example (5.5.114).

The general linear programming problem is

mm c~x

(3.5.15) - s.t. Ax = b

x > 0 , x E ]RU



where A is a (in x xi) matrix assumed to be of full row rank m with

n > m. The dual of (3.5.15) is

max b~y

(5.5 .16) s.t. A’y < c

y C

If an optimal solution 2 to (3.5.15) exists, them by duality theory

an optimal solution ~ to (3.5.16) exists and c~2 = h’y. In this case

let Cr be any number such that Cr> b.~?. Then the constrained LF

problem

mm a

(3.5.17) s.t. b y + a > CX

-A’y > -c

a > 0

y C IRm , 5 C

is feasible and has an optimal solution (y*,~ *) by Proposition

(3.5.11) . It is easily seen that &~ = - b•~ and y
~ 

is an optimal

solution to the dual problem (3.5.16). A value of a need not be known

explicitly for application of the ALPD algorithm. It is sufficient for

purposes of calculating the required derivatives simp ly to coil-

sider the inequality b.y > a as always being violated. The optimal

solution to the primal problem (3.5.15) conveniently appears in the

final tableau in the row corresponding to this inequality. 0

Numerical experience reported in the next chapter suggests that

if the underlying inequality system is feasible or nearly feasible, the
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ALPD algorithm is competitive with standard simplex software in terms

of the total number of basis changes but does not offer any significant

computational advantages. For example , once a feasible basic solution

to the inequality system -A’y > -c is i~~i~hed in Exwm-ie (3.5.:4),

close examination of the ALPD algorithm reveals that for large values

of the weight factor \ the pivot sequence is precisely the same as

that of the dual simplex method (Dantzig [11]) applied to the primal.

Thus the algorithm simply becomes a convenient method of initializing

the dual simplex method if a basis with non-negative reduced costs is

not readily available. However, the ALPD algorithm has shown a large

computational advantage if there are a large number of infeasibilities

in the inequality system. This case arises, for example, in the

linear approximation problem (3.5.6) since both the systems Ax > b

and -~x > -b apj ‘ar in the LPD formulation. Similarly, the algorithm

should perform well on the following constrained version of this

problem.

Example (3.5.18).

Let bk C be the state vector at time k for a ~uiscrete

time control system governed by the equation

b
k+l F

~k 
+

where F is a in x m matrix, Cr
~K is the scalar control applied at time k,

and g ~ is a constant vector representing the change in the state

vector per unit of applied control. Given b
0
. the terminal error

~rob1em [19] requires the determination of a sequence of controls

. - .  



n-i .
= [a0, a1, .. .  , a ) that minimizes the L

i ~uorm ot the difference

hetwean the terminal state vector b and a desire 9 state vector b.

The control sequence vector x C is subject to the iriequa .ity

constraints

A
2

x < c

where A2 
is a p x xi matrix and c C 1R12 .

The terminal state b~ is given by

= F%0 + F ga0 + F
’
~
2ga1 

+ ... ± Fgc~. +

where b
0 is the initial state vector. Define the in x n matrix A

1 as

n-i n-2
= (~‘ g, F g, . . .  , Fg, g)

Then the terminal error problem can be formulated as the constraine

least total deviations linear program

-F- —mm e.s + e.s

+ - n
s.t. A1

x + s  - s  = b - F b 0

-A2x > -b 0

+
S >0, S >0

xC ]R xi
, s~~€ J F h1

~, s € ~~~ . 0

6~



CHAPTER 14

THE LINEA RLY INSEPARABLE CASE

14.1. The Stochastic Classification Problem

In many practical applications, the patterns in a given class

can be regarded as random vectors dtstributed according to some multi-

variate probability distribution. For example, in the template-match-

ing problem defined in Section (1.2), each observed pattern in a given

class is equal to the sum of one of a finite number of prototype patterns

from that class and a random displacement vector attributable to random

observation error or random variability in the pattern population

itself. It was shown in Chapter 2 that if the underlying prototype

sets are linearly separable and there exists a sufficiently small bound

on the size of the random displacement vectors as measured by the

norm, then any sets of observed patterns from the two classes are also

linearly separable. If the prototype sets are completely known, then

the max imum quality programs (2.5.2) arid (2.5.14) with L
~ 

norm

‘I~ term i ri~ the linear discrLminant that maximizes the bound on the

norm of the displacement vectors while maintaining linear separability.

If, however, the prototype :ets are Linearly inseparable

or the bounds on the iisplacement vectors are too large,not all sets

of observed patterns will he linearly separable. More generally,

let f(x~C1), f(xtC2) be probability densities corresponding to the

distributions of observed patterns in class C
1 and class

respectively. If these densities overlap on a region ~, where
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j fl~
fl f x~C1) > C , f ( x I C ~~ > 0)

then there is no discriminant, linear or c~ h~ rwise, that~ w U a tway~

correctly classify an unknown test pattern x

The following flay~s~.an model is often employed for the ~to~~~~ tic

problem. Unknown test patterns are randomly pre~~n~ei from C1 and

with given prior probabilities of occurrence -n~ an~ ~~ , respec-

tively. Thus the test patterns have the mixture densit~r

(14.1.1) f(x) = -ii-1f (,d C1) 
+ ir2

f ( x~C

Let Pr(cijx) be the posterior probability that x belon~~ to C.,

i = 1,2. Then by the Bayes formula,

(14.1.2) Pr(C.~x) =- -n- .f (xIC .)/f (x) , i = 1,2.

Define the loss matrix

A11 A12

L =  

~2l ~~ ?

where is the loss incurred by deciding that an unknown test pattern

belongs to C1 when its true class is C~. The expected loss for the

decis ion x belongs to Ci” is thus

(14.1.5) q~ (x) = A
11 

Pr(C1fx) + 2.~~ Pr(C~jx) , i 
~ 
j, i = 1,2

The decision rule that min5~iiizes the expected loss is
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(14.1.14) decide x € C1 
if q

1(x) q2
(x)

x C2 if q1(x) > q~ (x).

This is called the Bayes decision rule. The equivalent Bayes discriminant

is

(14.1.5) q(x) r q
2(x) - q1(x)

Although the Bayes discriminant is optimal in the sense of

minimizing the expected loss, rarely is enough information available to

calculate it. The probability densities f(x~C1), f(xjC2) and the prior

probabilities -w1 and 
~2 

are usually unknown. The only data available

may be two given sets ‘1’ J ~ of known representatives of C1 and

C2, respectively. There are several approaches in this case. First, a

parametric form for each . class density, such as niultivariate normal,

may be assumed. The sample sets 
-
~~~~~~

‘ J
2 

are used to estimate the

parameters and hence the density functions. The estimated density

functions are combined with estimates of the prior probabilities 711,

to yield an estimate of the Bayes discriminant.

The formulational difficulty with this approach is that the

assumption that a class density belongs to a known parametric family

may be unwarranted. For example, in the template matching problem,

the class densities may be complex mixtures of simpler densities

centered around the prototypes. An alternative approach in this case

Is the use of non-parametric density estimation techniques such as

Parzen window function estimators (Duda and Hart , [ 5 ] ) .  The dra~back

6R 
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with this technique is that it can produce very complicated density

funct ion estimates that require storage of all given samples

x U for implementation.

The approach taken here is to assume a parametric functional

form, namely linear, for the dLscrmminant function. The linear coefficients

are chosen so that the di~ L~r1rninant nerforms well, according to some

mathematical programming criterion, on given known sets of sample patterns.

If the sets of sample patterns are large and well representative of their

respective class populations, ~hen the discriminant is expected to

perform well on these entire class populations. The performance

criterion used will be thc error rate on the given sets of sample patterns.

This corresponds to the Bayesian loss matrix

/ 0 1
L = ~~

1 0

The optimal Bayes discrim~nant is thus

(4.1.6) g(~ ) = P(C11 x) - P(C21 x)

L corresponding to the decision rule of assigning the pattern to the

class of greater posterior probability.

14.2. Linear Discriminants by Mathematical Progra~nming

Assume two sample sets 
~~1’ 

J2 of known representatives

of classes C1 and C2, respectively , are given. Let
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a
1

am

be the corresponding m x (n + i) signed augmented pattern matrix.

Then linear discrmminants of the form g(x) = w.x - 0 can be generated

as solutions to mathematical programs of the form

(4.2.1) mm 
+ f(u) = ~ f(u,a

u= (w,&)~~~~ i=l

where f(u,a) is a penalty function that reflects the performance of the

discriminant defined by u on the pattern corresponding to a. Ideally,

f(u,a) should have the following properties.

P1. Errors should be penalized (f(u,a) > 0 if a.u < 0) and correct

classifications rewarded (f(u,a) < 0 if a.u >0).

P2. The mathematical program (14.2.1) should be easily solvable by

existing algorithms.

P3. If and are linearly separable, the solution to (4.2.1)

should determine a separating hyperplane.

These properties generally govern the choice of the function f(a , u)

in the ~~dels discussed below. However, in all these cases at least

one of the properties has been sacrificed to achieve the others.

14.3. Minimum Error Rate Programs

If error rate is the dominant criterion for choosing a decision

rule, then the best linear discri minant that can be generated from the

— -  . . 
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sample sets and 
~ 2 is the one that makes the fewest misciassi-

fications on these sets. This corresponds to the penalty function

1 a .u<O
f(u,a) =

0 a.u>0

Thus the objective 1(u) = 
~~~~~i 

t(~,a1) in (4.2.1) is equal to the number

of errors made by u on 
~‘l 

U 12’
Ibara.ki and Maroga [8] have formulated this case as the mixed

integer linear program

mm c’s

(4 .3. 1) s . t .  Au + ~Is > e

n-flu = (w,9) € ]R

= 0  or 1, i =

where ~ is a large positive number. If ~ is sufficiently large,

then an optimal solution (i.t,s) to (4.3.1) satisfies

itt a1. u > 1

itt a~~< O

and (1 is thus a minimum error rate discriminant. Unfortunately, the

computational difficulty of solving (4 .3. 1) would become prohibitive

for large values of m. Thus this penalty function has properties P1

and P3 but lacks P2 . Other choice of penalty function may yield a

discriminant with nearly as low an error rate on U 
4

far less computational effort .
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14.14. Least Squares Programs

2The penalty function choice f(u,a) = (l—a.u) results in the

program

(14.14.1) - 
mm Iku - eIJ~n+l

u=(w, e)E]R

which is an example of the linear approximation problem with £
2 

norm

discussed in Sect ion (5 .5) .  As noted there, the explicit solut ion to

(4.4.1) is

(14.4.2) u (A’A)~~A’ e

where the existence of (A’A)~~ is guaranteed by the assumption that A

is of full column rank (n + 1). Computationally, this is the easiest

of the models to solve. However, the n~ del lacks Properties P1 and P3.

The function (1 - a.u)
2 penalizes both incorrect (a .u  < 0) and correct

(au > 0) classifications. For correct classifications, the penalty

actually increases as a~u increases past the margin value of one. The

following simple example illustrates the absence of Property P3 due to

this unfortunate behavior.

Example (4.14.3).

Let = (cr,2,1), 
~~2 

= (-1) be one—dimensional pattern sets

with a > 0. Clearly and are linearly separable by the

discriminant g(x) = x for all positive values of a. The signed

augmented pattern matrix is
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a -1

2 -.1

1 —l

1 1

A direct calculat ion us ing (14 . 4.2)  shows that the least squares dis-

criminant, after normalization to make the coefficient of x equal to

unity, is given by

a
2 

- + 14g(x) x + 2a+l2

For all values a > 14 + 2 ~~~, g(-1) > 0 and hence the pattern in 4
is misclassified. The penalty that the least squares criterion places

on excessively large absolute values of the discriminant function for

both correct and incorrect classif ications gives too much influence to

isolated patterns that are far from the main group. 0

Despite this drawback, the least squares discriminant has a

significant asymptotic property. Patterson and Womack (20] show that

~~~ and 12 are constructed from class C1 and C
2 

patterns,

respectively , by selecting m independent patterns of known classifi-

cation from the mixture distribution with density

f(x) = 7r
1
f(x (C ) + ir2f(xIC2)

then the discrim inant defined by (4 .14.2) asymptotically approaches the

minimum squared error approximation to the Bayes discriminant g
0(x)
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as ni —~ ~~ . This approximation minimizes

(14.14.14) 1 [ (w.x - c~) - g
0(x)]

2 f(x)dx

However, as Duda and Hart [5] point out, the best linear approximation

to the Bayes discriniinant does not necessarily have any favorable error

rate properties. Points where f(x) is large and points far from the

surface g,0(x) = 0 are emphasized at the expense of points near this

surface.

14.5. Linear Discriminants by Least Positive Deviations

The penalty function

(14.5.1) f(u,a) = (1 - a.u)~

leads to the LPD linear program first suggested in a pattern classif i-

context by Smith [213

rain e-s

(14.5.2) s.t. Au + Is > e

s > 0

U (w, ) € ~
n+l 

~

This model has the property P2 since it is relatively easy to solve by

the ALPD algorithm presented In Chapter 3 or by the simplex method with

upper bounds applied to the dual. In addition, property P5 is satisfied

since linearly separable problems are characterized by the feasibility

7)4
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of the system Au > e, so p4 .5 .2)  produce a separating hyperplane

if one exists. The only çroperty not satisfied is P1. A penalty is

incurred whenever f(a,u) > 0, which is equivalent to the event

a~u < 1. Th is event ~iL1. be called a margin violation. A margin violation

is a true misclassific~t-~on only if a u  K 0. Thus correct classifications

are penalized if 0 < a u  -
~~ 1.

The dual of (14... 2) is

max e.y

(14.5.3) s.t. A ’ y = 0

O < y < e

E

Let ~ be an optimal basic solution to (4 .5.3) as determined by the

simplex method with upper bounds, and let (1 be the optimal primal

solution which is the simplex multiplier vector for the terminal optimal

basis in (14.5.3) . Assuming non-degeneracy , the termination conditions

(3.1.8) for each non-br~nie variable (v). are

(~~) .  =O<==> a1•u> 1
(4 .5.4) 1

= 1 <==> a1.u < 1

Thus the patterns which are margin violators are those for which the

corresponding optimal dual variables are at the upper bound.

Two distinct cases arise which are distinguished by the form

of the optimal solution Q (~~, O ) :

75



Case 1. ?r = 0. This case occurs when the corresponding optimal dual

basis in (14.5.5) consists of signed augmented patterns which are

all derived from a single sample set or The sample

set which is the source of the optimal dual basis will be called

dominant. If 
~~l 

is dominant, 0 = -1; otherwise 9 = + 1.

In general the dominant set is the larger of the two sample sets

since the optimal objective value is equal to twice the number

of patterns in the non-dominant set. The discriminant correspond-

ing to ft is the constant function f(x) = -~ , which is equivalent

to the decision rule that classifies all patterns into the class

of the dominant sample set. Since all of the inequalities

corresponding to patterns in the dominant set are tight at

u = ft, this solution is degenerate if there are more than (n + 1)

such patterns.

This case may arise, for example, when one of the sample sets

is overwhelmingly larger than the other and the sets are not

linearly separable. In such circumstances the discriminant

f (x )  = -‘fl
, although uninteresting, is not unreasonable. However,

this case can be avoided if desired by appending additional

constraints to (14.5.2) as seen in several r~~dels discussed below

or by solving a weighted problem where greater weight is assigned

to the smaller set 
~ 

(see 14.5.8).

Case 2. ?r ~ 0. This is the case of interest which occurs when the optimal

dual basis consists of a mixture of signed augmented patterns

derived from both pattern sets. The discriminant hyperplane can
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Figure (.5.5). LPD Discriminant and Margin Planes Divide the Pattern

Space into Four Regions. Correctly Classifie Margin

Violators Are Marked with a (‘) and True Misclassifications

with a (“).

77



be characterized geometrically as follows. As shown- in Figure

( 14 .5 .5 ) ,  this hyperplane together with the parallel margin

hyperplanes ~~x ~?-i and ?j.x = 0 + 1 divi~e the pattern

space ~ n into four regions defined by

= ~~~~ > e + 1)

~ = fx: e < w .x < e +1)
(14.5.6) 2 —

- ~R3 
= (x:~ - 1 < w~x ~ 

0)

= (x :~~.x < 0 - 1)

Assuming non-degeneracy, exactly (n + 1) of the inequalities Au > e

are tight at u = ft. Thus the margin plane w.x = 9 + 1 passes through

k patterns from and the margin plane w•x = 9 - 1 passes through

n + 1 - K patterns from 12 where 1 < K < n. The margin violators

are the patterns in that lie in ~~ U U and the patterns

in A2 that lie in 
~l 

U 
~2 

U R~ . The true misciassifications are

the patterns in that lie in U ~R4 
and the patterns in

that lie in U 
~2 

It is shown below that if the underlying pattern

classes C1 
and C are bounded and the sample sets ‘1 

and

are large, then there are approximately equal numbers of margin violators

from and 
~~2 

and. the centers of gravity (means) of the margin

violators in each 3et are approximately equal.

The following example illustrates these concepts

Example (14.5.7).

Let 
~~l 

= (1,2,..., K, — (k+1)), 
~~2 

= (—l ,—2 —k , (k+l))

be one-dimensional pattern sets with K > 2. This is the same problem
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as that discussed in Example (2 .14.6) where the poor performance of the

maximum quality hyperpl~ne was revealed. Here the LPD discrim inant will

be shown to be g(x) = ~~c where a > 0. This discriminant correctly

classif ies all patterns in A~ 1 
U except the outliers -(k+l) in

1 
and (k+l) in

The signed augmented pattern matrix is

1 -l

2 -l
-1

k -l

-(k+l) — l
A =  1 1

2 1 -

1

K 1

-(k-i-i) 1

For i = l,2,...,k, the two signed augmented patterns (i , -i) and (i,1)

derived from 
~~l 

and 
~~2’ 

respectively, define the basic inequality solution

u~ = (1/i,0). As seen in Sect ion (3.3), u~ defines an optimal solution

tc (14.5.2) if

~~~ (u
~ 
+ T d

j)I~~~ ~~
O 

j = 1,2

<0
dT

where the direct ions
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/l/(2i)
d =  ( J and d = (1 

\ - i/~ , 
2 

\1/2

are the f irst and second columns of the matrix

(]. -l

1

and f is the LPD objective function defined by f(u) = e• (e - Au)~~.

A direct calculation from formulas (3.2.8) yields

~~ -(u . + i d
1)

’ = ( u . + i d j~
di 1 

T~~~ di 1

= ~~ [
i(1+l) 

- (k+1)]

and

=~~~
_ ( u

~~
± T d 2 )

di i 0  di TrO - -

= ~~ [ (1•~1)(i) 
- (k+l)]

Let i* be the smallest positive integer such that

k + 1

For k > 2, it is easily verified that 1 < i~ < k and hence u~~.

is optimal for (14.5.2). The corresponding discriminant is g(x) = (l/i )x.

The margin violators for this discriminant consist of all patterns x

such that l x i < i~ and the two outliers, while the only true mis-

classi’3.cations are those two outliers. 0
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If misclass~fI’~ .tions of patterns from one class are considered

more serious than ruisciassif ications from the other class, it may be

desirable to adjust the penalty functions accordingly. The LPD program

(14.5.2) can be generalized to the weighted LP~) model

mm ÷ a2e~s0

(14.5.8) s.t. A1
u + Is

1 > e

A~u +Is >e
2 —  -

s
~~
>0, 5

2 a0

U = (w, 0) ~ ~ n+1 
~~~ 

s2) 
~m

where A1 and A
2 are the signed augmented patte’rn matrices for 

‘1

and 
~~2’ 

respectively, and a1 and a
2 are scalar weighting factors

reflecting the relative penalty on each type of error. The dual of

(14.5.8) is

max e~y1 
+ e.y

2

(14.5.9) s.t. A~y1 
± A~y2 

=- 0

0< y 1
< c z

1
e, O < y

2 < a 2e

= (y1,y2) ~

Let ~ = be an optimal solution to (14.5.9) as determined

by the simplex method with upper bounds and let CI be the corresponding

simplex multiplier vector that defines the weighted LPD solution to

(14.5.8) . Define the following index sets
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= [i:(~I). is basic and x~ € J~~~)~~ 
j = 1,2

= ( i :(
~~

) i is non-basic, equal to its upper bound of a.,

and x. E J .) ,  j = 1,2

L = [i:(~ ). is non-basic and equal to its lower bound of zero)

The termination criteria for the simplex method with upper bounds

imply that U1 and U2 are the index sets of the margin violators from

and ~J 2 ’ respectively. Let m1 and in
2 

be the respective numbers

of elements in U
1 

and U
2, 

and let

- 1 ~x. L. ~~~ , 3 = 1 ,2,
3 m . iEU .

3

be the mean of the margin-violators from 
~~~~~~

. The following proposition

will be used to show that for large values of m1 and m2, the ratio

of the numbers of margin violators from 
~~l 

to margin violators

from ‘2 is approximately equal to the inverse penalty ratio a
2/a1.

Furthermore, if both pattern classes C
1 

and C2 are bounded, then the

means and are approximately equal.

PROPOSITION (14.~.io). Let be the optimal objective value correspond-

ing to ft in (14.5.8) and let y = max lxiii for any vector norm
i=l,.. .,m

lI~ll . Then

a) ~~~~~(n + l) max(a1, a2 ) < + m ~a~~~~?\

b) 1m1a1 - ni2a2l  < (n + 1) max(a1,a2 )

c) 1k1 — x l i  ~ 2(n + 1) y [max (a1,a2 ) /max (a1m1, a2m2) ]
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Proof. Equality of the optimal primal and dual objective values implies

= 
~ 

(
~ )~ 

+ 
~~ 

(
~ )~ + 

~~
i€B1UB

2 
i€U

1W2 
iEL

By the termination criteria of the simplex method with upper bounds, the

second term is equal to a1m1 
+ a2

m2 and the third term vanishes.

Part a) then follows immediately from the bounds on the (n-i-i) basic

variables in the optimal dual solution. Substitution of the known values

of the non-basic optimal dual variables in the constraint set

A1y1 + A~y2 = 0 yields

(14.5.11) a1 
~ ( X i)  a

2 
( X i

) 

= ( X
i )  (

~ )~ 
- (

X i )

i€U1 -1 1EU2 \ -1 IEB2\ -l iEB1 \ -l

The last of the (n-i-i) equations (14.5.11) implies

15h2a2 
- ~~~ = 1 E (

~ )~ 
- 

~~

~ (S~~i€B
1

LIB
2

Part b) then follows from the bounds on the (n-i-i) elements in B1 
U B2.

Application of the triangle inequality to the first n equations in

(4.5.11) yields

(14.5.12) jia1m,~ 1 
- a2m2~2ii < (n+l)y max(a1,a2)

But
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- - - cx2m2 - - -11x1 - x 2 11 = x1 -~~ ——— x2 +~~~ --- x2 - x 2

- + 
la~m~ - a~mi I 

Il)~ II— 1 2 a1m1 2

By ( 14.5 .12 ),

- 
a
2m2 - 

(n+1)r max(a1,a2)xl - x2 <

and by part b)

1a2m2 - a1m,j  - 
(n-a)y max(a1,a2)lix II <a

1m1 2 — a
1
m
1

Thus

2(n-4-l)~ max(a ,a
(4.5.13) ll~ l - X~~ J ~ a1m1 

1 2

Part c) then follows from (14.5.13) and the symmetrical relation obtained

by reversing the roles of and x2. 0

COROLLARY (4.~~.i14). If the underlying pattern classes C1 
and C2 are

bounded, then

m1a1 ÷ m2a2 
1

u r n  = 1rn2 a1
lIX l - x211 o

0

8

~ 
- -



Several additional models have been proposed that eliminate the

use of a margin vector and hence the distinction between margin violators

and true miselassifications. In general these are constrained weighted

LPD problems of the form

mm u.s
1 
+ v .s2

(14.5.15) s. t. A1u 
+ 151 > 0

A
2
u +Is >O

Gu >b

5l~~~
0
~ ~2~~~

°

U = (w,6) ~ ~
n+1 

~~~~~~ 
~

where u and v are strictly positive weight vectors and Gu > b

is a set of added constraint s that eliminate the useless solut ion u = 0

and the uninteresting solution w = 0, 9 = + 1 that occurs when one

of the pattern sets is dominant. Grinold [6] suggests a single added

constraint of the form

g*.u > 1

where g* = e.A/in, i.e. the mean of all the signed augmented patterns.

The program (4.5.15) will be feasible as long as g* ~ 0. (The case

= 0 occurs only when the numbers of sample patterns from each

class are equal and the sample means are equal.) Another possibility

is the pair of const raints

g~.u>l

g~ .u > 1
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where g~, j = 1,2 is the mean of the signed augmented sample patterns

from class j. For the sake of feasibility it is required that

~ -g~ or equivalently that the sample means of the two classes differ.

The linear discriminant produced by (4 .5.15) then separates the two

class sample means.

14.6. A Numerical Exper iment

In order to compare the behavior of the ALPD and simplex

algorithms under various problem conditions, the following numerical

experiment was devised.

Two n-dimensional pattern sets and were constructed,

each containing m/2 patterns. Each pattern x in was generated

by the formula

(x) 1 = u [— 1/2, 1/2] - , i =

where u[- 1/2, 1/2] is a pseudorandom number uniformly distributed

in the interval [ -1/2 , 1/2]. Thus the patterns in are pseudo -

random vectors uniformly distributed in the interior of the unit n-dimen-

sional hypercube H1 
centered at -(? ,. ..,~~) .  Similarly, the patterns

~-~‘ ‘2 were generated by the formula

(x) 1 = u [ - l/2 , l/2] -i- ?~~, i = l , . . . , n

These pseudoran dom vectors are uniformly distributed in the interior

of the unit n-dimensional hypercube H2 
centered at (? ,...,?) .

The situation for n = 2 is illustrated in Figure ( 14 . 6 . 1) .
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For values of the scalar parameter ~ in the interval [0,1/2],

the unit hypercubes H1 
and H

2 
overlap on a cubical region of volume

V~7~) ,  where

v(~) = (1 -

For ~ > 1/2, 11 (A) = 0 since H1 and H2 are disjoint . Thus any

desired fractional overlap a is achieved by the setting

1/n

A [

l _ a  ]
This problem is intended to simulate a stochastic pattern classi-

fication problem with mixture density

f(x) = ~
. f(x IC1) + ~ f(x~C~)

where

i 1 if x € H .
1

x 
~

0 otherwise

A Bayes discriininant for the lowest error rate criterion is easily

verified to be g,~(c) = -e~x. As seen in the two-dimens ional case

Illustrated in Figure (4.6. 1), the discriniinant plane g
0
(x) = 0

separates all of classes C1 = (x H
1

) and C2 = (x C H0) outside

the region of overlap and passes through the center of this region,

misclassifying exactly half of each class there for an overall error

rate of a/2 .
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A series of pattern set pairs ~~ J2 was generated for

various values of the total number of patterns in, the pattern dimension-

ality n, and the fractional overlap a. All combinations of the

parameter values

m = 100, 200, 500, 1000

(14.6.2) a = 1, 2 , 5, 10

a = 0, .2 , .14, . 6, .  8, 1.0

were used for a total of 96 cases. Usually five independent test problems

were run for each case, although only two and in some cases one problem

were run for some of the larger values of m and~ n. Altogether a -

total of 377 independent problems were solved.

For each case, the signed augmented pattern matrix A was

constructed. The LPD problem (4.5.2) with tableau [Ate ] was solved

with the ALPD algorithm, while the dual (4.5.3) was solved by the simplex

method with upper bounds (sMUB). Since the two algorithms use identical

pivot operations for basis changes but differ only in the pivot selection

rules, the total number of pivots (basis changes) required to reach an

optimum solution from the same initial, arbitrarily chosen basis serves

as a convenient basis of comparison. (Thus the ALPD initialization

algorithm given in Section (3. 14) was not used. Rather the (n-i-I) members

of the initial basis were chosen as the signed augmented patterns

corresponding to the first n patterns in and the first pattern

in J 2 .) -
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In all cases except those for which a = 0, the same optimal

basis was achieved by both algorithms. When IJ. 0 trie pattern sets are

linearly separable and several distinct optimal bases may exist.

Frequently the algorithms arrived at different optimal solutions in this

case , although of course each optimal solut ion defined a separating

hyperplane. In general , the error rate achieved on ~ ~ A2 by the

discriminant corresponding to the optimal solution was ~~ually very close

to the Bayes error rate of a/2 with smsll fluctuations about this rate

due to the finite size of the pattern sets.

Average values of the numbers of pivots required by the ALPD and

SMUB algorithms are listed in Table (14.6.3) for each case. Some graphical

representation of this data is provided by Figures (14.(.14) through

(14.6.13) which reveal two clear trends .

First, as seen in Figures (4.6.4) through (4 .6.7), the SMtJB

algorithm is highly sensitive to the fractional overlap a while the

ALPD algorithm is not. For a = 0 the numbers of required SMUB and

PILPD pivots are nearly equal. As a and here the degree of infeas-Lbility

of the system Au > e increases, the number of SMUB pivots increases

very quickly and then levels off while the number of ALPD pivots

remains relat ively constant. For several cases with large values of

a, the relative advantage of the ALPD algorithm in terms of number of pivots

reaches a factor of several hundred. For a given value of a, thi s

factor seems to be an increasing function of the aspect ratio m/(n+1)

of the matrix A.
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Second , as ~ C~ 3I1 in Figures ~~. 6 .8) through ~~~~~~~~ for fixed

values of a and a the number of p ivots appears to be a linearly

increasing function of ~~ Ho~~v~~- , except ,  for the i = 0 case , the

rate of increase is much higher for the SMUB than the ALPD algorithms .

The computational ~di~tntage of tri e A D  algorithm thus appears

most significant for ~robi~~ns in which  the matrix A hac a high aspect

rat io and the underlying iceqJaiity s ,~ tem has a large degree of

in±’easibility. Such problems arise not only in linearly inseparable

patt ern classificat ion rnod e1i~ with large pattern sets but also in the

linear approximation proUlec . (~ .5.6) with norm . i~’or such problems

usually the numbe.r of data points hr.~a~ 1y exceeds th~ number of parameters

to be f it, thus creating the high aspect ratio sYu~~ -:
~~

. Thc Thrr~

degree of infeasibility in the underlyi ng inequa] ity system arises

naturally since it is comprised of the two systems Ax > b and

-Ax > -b.
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CHAPTER 5

PIECEWISE LINEA R DISCRIMINANT S

5.1. Piecewise Linear Discrimjnants

A direct generalization of’ the linear discritninant is the piece-

wise linear discrimjnartt. PiecewIse linear functions f :]R ’~ -IJI~ can

be defined recursively as follows (Chang [ 22 1) :

Definition (5.1.1). Piecewise Linear Function

1. Any linear function f(x) = wx - - 9 is piecewise linear.

2. If f1(x), f2(x) are piecewise linear, then so are

f(x) = max(f
1
(x), f

2
(x))

(5 . 1.1) and
g(x) = min [f

1(x), f2(x))

3. No other functions are piecewise linear.

Piecewise linear functions of arbitrary complexity can be con-

structed by repeated use of rule 2 in (5.1.1). With “V ” and “ A”
represent ing the maximum and minimum operators respect ively, the

following identities are useful for manipulating expressions involving

piecewise linear functions.
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a) f1 A (~2 V f3) = (f1A i’~) V (r 1 A~3 )
b) f1 V (f2 A f) ) = (f1~~ f ; ) A ~ 

V f~
(5.1.2) c) -(f1 V f~) = -f1 A -f 2

d) -(f1 A f2) = -f 1V -
~~~~~

By repeat ed use of the u~i s t ri but~~Ve property a) and the associativity

and commutativity of trie minimum and maximum operators, any piecewise

linear function f can be written in di sjunctive normal fo rm

m i
(5. 1.3) f V ( A  f . .)

i=1 j =l 13

where each f . is linear.
ij

This representation has the following geometrical interpretation

Let ~R (x:f(x) > 0). Then ~ = U where R . is the polyhedral

convex set defined by the linear inequality system

f11(x) > 0

(5. l.1~)

f (x)>oin1 
—

Thus each concave function f. = (A t f1.) in (5.1.3) isolates a convex

region ~~ whose boundaries are defined by the hyperplanes f
11(x) = 0,

f1 
(x) = 0. In a two-class pattern classification problem with

pattern sets and if each region contains patterns only from

and together the regions contain all of the patterns in

then f = V ç is a piecewise linear dlscrtminant that separates
1=1

10~4



21 from J ,~. The situation is illustrated in Fig. (5.1.5).

* • ~ r0 \f~ o
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Figure (5.1.5). The Piecewise Linear Function

- ~11A f
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) V (
~21A~22

) 
~ 

(r31 A r 3~
Separates the Two Pattern Classes.

The disjunctive normal form representation (5.1.3) can be used

to show that piecewise linearity is preserved under the operations

of addition and scalar multiplication.

PROPOSITION (5.1.6). If f1 
and are piecewise linear functions

then crf1 ÷ ~f2 is piecewise linear for all real constants a, ~.
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Proof. It is sufficient to show that and f1 ÷ f~ are piecewise

linear. Let

in n~ r
= V (A 2 .) ,  f2 = V (A mpq)

~~~ ~~~ 
ij p=l q=1

be disjunctive normal form representations.

Scalar multiplicat ion: n
m I

If a > 0 
~~l 

= V ( A a 2. .)
i=i j=i

n.

If a < o  = -(~a~f1) = ~ (V -~a~ 2 . . )
i=l j=l

Addition: n

+ = 
~Y1 ~~~ L~~) 

+ f2

= V (A  (2 i.~~~~2
))

1=1 j = 1 ‘~
Sr p

But + V ( 
~ ~~~ 

+ in ) ) ,  which is piecewise linear. 0
p=l q=l 

pq

5.2. Some Examples.

Many pattern classification schemes implicitly use piecewise

linear discriminants. An example is the minimum distance classifier,

also known as the “nearest neighbor” rule.

io6
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- 
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Let 0’ [p
1, ... , P~~ ~~ = (q~~~

, ... , q~~ ) be sets of prototype

patterns representing classes C
1 and C2, respectively. Let

d1(x) = mm (fix — p1fi2)
(5.2 .1)

d2 (x) = m m  ( lix — q
1

11
2

)

i=l , . . . , k
A minimum distance classifier is defined to be a classification procedure

that implement s the discrirninant function

(5 .2.2) f ( x )  = d (x) - d~(x)

Thus a pattern x is classified into the class of the nearest prototype

pattern as measured by Euclidean distance. This discriininant is piecewise

linear by Propo sition (5.1. 6) since it can be written in the fo rm

(5.2.3) f(x) = mm (_2q~.x + lI~~ l l~ ) — mm (—2p1
.x + llP

~~
ll
~~

)
i=1,...,k

Minimum distance classifiers are particularly effective in

situations where the patterns in each class cluster into isolated

subclasses. If the clusters are sufficient ly far apart , then a single

prototype pattern selected from each subclass ani included in the

appropriate set 0 or ~ will insure good performance of the discriminant

on that subclass. Such multimodal behavior is sufficiently common that

the problem of clustering multidimensional data has received much

attention (e.g. 15], Ch. 6).
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Even in the absence of such clustering behavior, a minimum

distance discriminant can always be found that separates two finite,

disjoint pattern sets and A~. This follows immediately from

the choice (2=  J1~ ~~= a,,. When a minimum distance classifer uses

prototype sets consisting of large numbers of known sample patterns

from classes C1 and C2 , respectively, the terminology “nearest

neighbor rule” is often used to describe the classification procedure.

Cover and Hart [23] show that if the known sample patterns are drawn

from the same mixture distribution that produces th~ test patterns,

the asymptotic error rate on new patterns as the number of known samples

increases without bound is less than twice the error rate of the Bayes

discrimninant . However , this performance is achieved at the very con-

siderable price of a large data storage requirement for the list of

prototype patterns and the computational effort required to identify

the nearest known sample to a test pattern.

Another example of a piecewise linear discrimninant is found

in the layered network of threshold logic units discussed in Section 2.2.

N11s80fl [24 ] shows that if there are k ThU’ s in the first layer, then

a layered machine implements a discriminant of the form

(5. 2. 14) f (x )  = max (f 1(x) )  — max (f
~

(x))
i=l , . . . , j

where each f~ (x) is linear .

In the next section piecewise linear discriminaritsof the form

k
f (x)  

~ 
f~(x)

i=l
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where each f1(x) is linear are considered. Necessary and sufficient

conditions for the existence of a discriminant of this type that separates

two given finite pattern sets are developed. General applicability of

this discriminant to arbitrary finite pattern sets is then demonstrated

by use of a class of pattern space transformations.

5.3. Convex Separability

Let 
~~l’ J 2 be subsets of ~ where ~R is a convex subset

of

Definition (5.3.1). J1 is convex separable from ‘2 if there exists

a continuous convex function f:~ —, such that

f(x) >0 V x€ j~

f(x)<O V x € J 2

PROPOSITION (5.3.2). Let Il = (x 1, ... , xk) be a finite point set

and let be any subset of IRt1. If is convex separable from

12’ then there exists a convex piecewise linear separating function f(x).

Proof. Let g(x) be a continuous convex separating function and let

= (x:g(x) < 0). ~R is an open convex region whose closure ~ contains

12 as a proper subset and does not intersect J~. Thus by the

separat ing hyperpl ane theorem , for each x~ C ‘1 there exists a hyperplane
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v1
.x = which separates x

1 
from 

~~~, i.e. ±‘
~
(x) W

i
•X  - is

k
positive for x = x~ and negative for all x C ~. Then f(x)  = V f i(x)

is a convex piecewise linear function that separates from

0

Proposition (5.5.2) can be used to prov~ the following geometric criterion

for convex separability of f ini te  pattern sets . Let CC~~) denote the

convex hull of

PROPOSITION (5 . 3 .)~ . Let J1, J2 be finite, disjoint pattern sets.

Then is convex separable from 1ff 
~
J i ~ C(J2) çl.

Proof. C(J 2~ 
is a closed convex set . If n 0(J 2 ) = ~‘ then a

convex piecewise linear separating function can be constructed as in the

proof of Proposition (5.3.2). Conversely, if a continuous convex function . -

f separates 11 from f is strictly positive on and

strictly negative on J2. By convexity, f is also str ictly negative

on c(J 2). Hence 
~~l 

11 C(J 2 ) = c~. 0

Figure (5.3.14) demonstrates that convex separability is not a

symmetric relation between 11 and Here n C(~~~ ) = ç/~
but c(~~1) fl ~

Clearly not all disjoint pattern sets are convex separable.

However, the following sufficient condition for convex separability

motivates a class of coordinate transformations that render all finite

disjoint pattern sets convex separable in the transformed space.
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PROPOSITION (5.3.~). Let ‘1 
= (x l,...,xk) ,  

~~2 = (
~~+l~~••~

Xm) be

finite disjoint pattern sets and let f(x)  be a strictly convex function

defined on c (J 1 U J2). If there exists a real constant a such that

f(x)  = a for all x € U 
~~2’ then is convex separable from

and is convex separable from

Proof. Let x € c(J1) . Then there exist non-negative constants

, ~~ such that 1 and x = ~~~ ? ixi. By convexity

of f ,

k
f(x) < x.~ r (x~ ) = a

i=l

By strict convexity of g, f(x) <a if x is not an extreme point of

i.e. if x ~~~ 
Since and A 2 are disjoint and

f(x) = a for all x € 
~~2’ 

c(J1) 1) J~ 0. By invert ing the roles

of 11 and J2, it follows also that fl C(J~) = çI. 0

Geometrically this proposition states that two disjoint pattern

set s distributed on the surface defined by the equation f(x) = a,

where f(x)  is strictly convex, are convex separable from each other.

This follows from the fact that convex hull of each set intersects the

surface only at the points in the set itself . This is illustrated for

the case of a sphere in Figure (5.3.6) .
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Example (5.5.7) .

Disjoint binary pattern sets in !11
, where each pattern component

is either equal to + 1 or -1, Tire convex separable since they satisfy

the hypotheses of Proposition ( .~~.5)  with

n
f ( x) = (x ~~ 9 n I  (~ fl .

i =1

For two general f in i te  disjoint pattern sets 11’ J2 in

]Rn it is possible to define a one-to-one mapping Into sets 
~~~~

‘
1~ ~~~~~~~

in such that ~n J2 are convex separable. Let

gs~~~ —. 1R 1 be a strictly convex function defined on C(J 1 U Let

h:~~
1 ~~~~~ be a strictly convex function with an inverse h~~ :~~~ —,~~ 1

defined on (a - g(x):x C U for some real constant a. For

each x )1 u ‘2’ define the transfo rmed pattern y € by

(5.3. 8) y = (x, h~~ (a - g ( x ) )

Let J~, J be the sets resulting from applying the transformation

(5.3. 8) to the patterns in Ji and respectively.

PROPOSITION (5 .3 .9) . The transformed pattern sets J~
, J 2 are convex

separable from each other.

Proof. The function f: 1
~~~ —~ 1R1 defined by

f(x,~ ) g(x) + h(~ ), x € ]R~, a € ]R1-
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is strictly convex. The set and 12 are disjoint and if

Y E ~~~ U 4~?’
f (y )  = f(x, h~~(a - g(x))

= g(x) + h(h~~(a - g(x)))

and the result follows from Proposition (5 .3.5). 0

The seats 
~~1’ ‘2 

are formed by mapping the patterns in 11
and onto the surface f(y) = a In a one-higher dimensional space.

The following two examples provide pattern space transformations that

are valid for all finite, disjoint pattern sets in

Example (5.3.ioj .

Let g(x) = ~ (x)~ , h(~~) = ~2 Choose a = max [g(x1)).i=l
Then

y = (x , ~a - g(x) )

Is the desired pattern space transformation. In this example the n-dimension

patterns in ‘1 U ‘2 are mapped onto the surface of the (n+l)-dimensional

sphere of radius ~~ centered at the origin. o

Example (5.3.111.

This example works for any strictly convex function g(x), e. g.

g(x) = xCx where C is an n x n positive definite matrix . Choose

h(6) = -tn(~ ). Then the desired pattern space transformation is

1i14
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y = (x, g(x)
)

The strictly convex function

f(x ,~~) = g(x)  - 2n(~~)

is equal to zero for all transformed patterns y . 0

In the next section an algorithm is presented that constructs a

convex piecewise linear discrimiriant by the method suggested in the

proof of Proposition (5.3.2) . An arbitrary pattern is chosen from

and then a linear discriminant separating this pattern from the

entire set is found ~s a solution to a constrained LPD problem.

The problem is designed to encourage the separation of as many as possible

additional patterns in from along with the chosen one. All

patterns In A1 that are separated from are then dropped from

and the process is repeated with new linear discriminants until

is empty.

~.14. An Algorithm for Convex Piecewise Linear Separation

Let = [x 1, . . . ,  x2 ),  
~~2 

= (x ~~1, x )  be finite dis-

joint pattern sets such that is known to be convex separable from

J 2 (e.g. the patterns are binary or have undergone the transformation

described in Section 5.3). An algorithm is now presented that determines

a convex piecewise linear separating function.
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Let

k = iteration number

(k) 
= set of patterns in not yet separated from before

the kth iteration.

= selected element of

= signed augmented pattern matrix corresponding to J,~i~ _ [X(k))

A2 = signed augmented pattern matrix corresponding to ‘2~

a~~~ = signed augmented pattern corresponding to

PILGORITHM (5.L~.ij.~

Step 1. Set k = 1, j~ 1) J~. Go to Step 1.

Step 2. Choose an arbitrary pattern x~~ E j(k) Form the matrix

and solve the constrained LPD problem

nu n e.s

(5)~.2) s.t . 4’~~u + is > e

A u  >e

s > O
n-4-1u = (w,e) E ~

Let ~
(k) 

= (w (k) e(k) ) be an optimal solution to (5.1&.2).
Go to Step 3.

Step 3. Set J
(k+l) 

= € ~~
(k)

~~
(k)

~~ - 0(k) ~ 0).

If 43 (k+l) is empty, go to Step 1~. Otherwise increment k

by I and go to Step 2.
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Step ~. Stop. Let k* be the final value of k . Then the desired

convex piecewise Linear separating function is

f*(x) = 
~/ 

(w(i).x -

i=l

Proof of Algorithm:

Since is assumed convex separable from ‘2’ each indi-

vidual pattern in is linearly separable from e92~ 
Thus the

inequality system

a~~~ .u > 1
(5. li..3) —

A2u > e

is feasible and hence an optimal solut ion ~
(1

~ to (5i~.2) exists by

Proposition (3.5.11) . Since w(1
~~.x (1

~ - e(1c) > 1 1(k+l) is smaller

than ~~~ by at least one element for all k < k*. Thus the aigorithm

must terminate in at rxx st £ iterations. For each x . € J~, there Is

at least one value of k such that ~~~~~~ - 0(k) > 1. Hence

f*(x) > 0 for all x € 4~. Also , since A
2
u~~ > e for k = l,...,k*,

f*(x) <0 for all x 
~ ‘2~

The linear program (5. L~.2) produces a hyperplane that minimizes

the sum of the infeasibilities corresponding to remaining class C1
patterns subject to the constraint that all class C2 patterns and a

specified C1 pattern are on the ‘correct’ side of their respective

margin planes. Hopefully this LPD form of the objective function
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encourages the optimal hyperplane to separate other class C1 patterns

in addition to the specified one at each iteration whenever possible.

Toward this end it has been found that for several test problems of the

overlapping hypercube type discussed in Section (L~.6) ,  replacement of

the constraints A2u > e in (5.Li.2) with A
2
u > ee, where € is a

very small positive number , often reduces the total number of iterations

required. In effect, this change eliminates the margin problem for the

class C2 patterns and forces the optimal hyperplane to pass very close

to the convex hull of 
‘2~ 

Thus for sufficiently small values of € ,

the possibility of a class C1 pattern lying between the optimal hyper-

plane and this convex hull is eliminated. Numerical experience with

this revised form of the algorithm suggests that when the selected

class C1 pattern is part of a cluster of C1 patterns that are

linearly separable from ef2, all or nearly all of the cluster is

separated by the optimal hyperplane. The following example illustrates

this behavior.

Example (5. )4i)~

The overlapping hypercuhe problem discussed in Section (14.6)

was selected as a test case. A total of m 200 patterns of dimension

n 2 were generated, half in each class. The two unit squares overlapped

on an area of a = 0 .20 . To introduce convex separability, the patterns

were mapped onto the surface of a three dimensional sphere by the trans-

formation given in Example (5.3. 10) . The resultant three-dimensional

patterns were separated by a convex function generated by the revised

version of algorithm (5.14.1). The constrained LPD problems were solved
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by the ALPD algorithm after conversion to a weighted LPD format. The

separation sequence is shown in Table (5. 14.5). The problem required a

total of 11 iterations for complete separation. The first iteration

hyperplane succeeded in separat ing a large cluster of 78 clas s C1
patterns, while subsequent hyperplanes separated either isolated patterns

or small clusters. This behavior is consistent with the geometry of the

problem. In the original pattern space (~~2) , the 20% overlap factor

implies that a large fraction of the class C1 patterns should be

linearly separable from 4. Since the mapping of the patterns onto

the sphere in leaves the first two coordinates intact , linear

separability of these patterns is preserved. The remaining class C1

patterns in ~ 2 are uniformly distributed in or near the area of

overlap. Thus the transformed patterns in ]R3 from the overlap area
- - 

~~ ~2 are expected to show little tendency to cluster by class

with only small linearly separable clusters of class C1 
patterns

being formed by chance. [J
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Number of Class
Iteration Remaining Class C1 Patterns

Number C1 Patterns Separated

1 100

2 22 3

3 19 1
14 18 6
5 12 1

6 11 2

7 9 1
8 8 2

9 6 1

10 5 3
11 2 2 

. -

Table (5.14.5). Separation sequence of convex separation algorithm

in Example (5. 14.14)
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UNCLASSIFIED
SICUNITY CLA$5.PICAT$OW OF T MI$ PAGI (~~~~~ Dw. ~~~~~~~

MATHEMATICAL PROGRMNING APPLICAT iONS TN PATF1~R1~ khctx;NITION

Robe r t  11. Leary, 78—1 4

Problems in pattern recognition are treated by the netrio ds of mathematical
programming . In particular tic two—c~as p atti rr~ c i .si1lcat ion model with -

decicion rules based on dis~ rimiuant fin LlQi1 ~ is ciisfd ~ r~a~ w i t h  emphasis
on mathematical  p rograms tha t  de t€ rm~~te iin~ -r and .-c- ’~wi~~e I triear discri—
ml nan t s.

For l inear l y separable pattern S€ :s itI ss iritic ,~ ,ncrr~ aa : can be dete rminec
by selving a system of linear inequa -l~s. This systen ~;erves as the con-
straint set for a class of mathernati ~*1 pro~ rtuis th~ detine separating
l inear dlscrimlnants exhibiting maximum tc ’leu ,iic e to pattern noise. Specific
cases tha t can be modelled as l inear tad qu.~ Irat.le i~ro~ r jrre~ are discussedand a reliability irt t rpretation of thu obj - cr iv e ctiterii,n l~ given.

Application of linear dtscriminants to th ineanl y in s c p , rab le  case leads to
consideration of solution concepts .or possible i n t t n i lc l inear  inequality
systems . The Least Posi t i ve Deviations (l ,P~)) s o l ut i o n  ~ the ~enera1 system
Ax ) h , whe re A is a (in X n) matr x with x E. 1g fl m d  b E ]R 10, is defined
by a Phase I linear programming model .  t n  eqmit vale ’ti t unconstrained minimi—
zation problem with a piecewise linear c~ ect..ive -;t-rvea as the basis for the
development of the Accelerated Lea t Posi v~ Jevi,e ions (ALPD) algorithm
for the solution of the model. T~ algurithm i s  sh ’~w i i  to  he imp lementable
by a sequence of pivot operations c the sans - type as emplo yed by the simplex
method with upper bound s app lied to the dual at  tIlt Phase I problem bu t wi th
a nove l p ivot selection rule and without re gard i the upper bounds. At
each iteration the pivot selection is determined by th e so ution to an uncoil—
strained minimization of a piecewise linear iou ion of a one—dimensional
variable. Like the simp lex method , the ALPD al gorithm converges in a finite
‘~nber of iterations to an opAmal solution . A direct comparison of the
r* Lai ive efficiencies of the simp lix and ALI’l) aI.’,orith:n s c- mi be made in terms
of the number of basis changes required to reach opt inili c y from the same
.-irhl t r -, ry Initial basis. Results of an ex t e n ~~~~ s e ri n u  of numerical tests
are reported which ind ica te  a large  ALPD adv; ’age for Linearly inseparable
classification problems . The advantage apta -s n to imlcr .:aae with the aspect
ratio (rn/n) of the matrix A and time degret ef i ie ;is ih ilf t y of the under—
ly inc’ inequality system.

The LPD proble m is generalized to t h e  weighted and constrained weighted least
deviations problems , which are shown to be directl y solvable by the ALPD algo-
rithm. Examples of such problems are presented f r Ini I inear estimation and
control theory. The general linear programming pri hiem is also formulated as
a constrained weighted least deviations model. Properties of LPD and related
models are explored for classification problems and an asymptotic LPD dis—
crim inant characterization is obtained.

The LPD methodology is extended to piecewise linear discriminants. A class of
pattern space transformations is defined that renders any pair of finite
disjoint pattern sets separable by a convex piecewise linear function. An
algorithm is presented that constructs such a function through the solution
of a sequence of constrained weighted least deviations problems . Results of
a numerical test problem are presented .
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