
AD AO6S ‘46$ PACIFICA TECHNOLOGY O~L MAR CA F/s 9/2flE INTERAGENCY SOFTWARE EVALUATION GROUP I A CRITICAL STRUC Tt*A—~ETC (U)AUG 78 R E NICKEU. N000fl—fl—C—0575
UNCLASSIFIED PT—U78~ O2l46

a



I

S

A )  
.

L.. ~~~

II I I ~~~
.. ‘~ IIIJI~II 1.8

~I.25 1.4 IllhII.o
— IIIII~~

R~SOLUrION i tSi CH~~1
~~~~ eij~~*u OF ST~~ PARf ~ J963~~



/ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _#ii-iL ui ~ ~~LJIII UUWi~~

~~~~ 

148 • Del Mar California 92014 .TeI (114) 453-2530

‘ L L -~246 J
- I c ~ i — , ,

I~~~~~~j - ~~~~~ i

/
.~ The jnteragency ~oftware Evaluation Group:

A Critical Structural Mechanics Software Evaluation Concept )

Co~ tr ~~~ 
; oo - ;7-~-c~ ;; j

- ~~flt L:i~~~~ ~ - -

b
~
. I-1—I

~1DOC
Robert E./Nickell~ f~)f?f fEDflfli~I~

Paci fi ca Technology / ~~ 24 1918

P. 0. Box 148 UU~~~t~ffU16L~1
Del Mar , California 92014 A

~~~~~~~~~~~~~~~~~~~~~~~
Appzov.d for pub lic ze~*oa~

- Di.~~buti~a LJ~Ii~ it.d

/ 1 1  ~~~~~~ Aug~~t—~4~.4-978 / /L: _ _ _ _ _ _ _  
_ _ _ _ _ _

/ ~
‘ 1’

-

j  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

t - 
- , ABSTRACT

The interagency Software Eval uation Group, composed of representatives
from various United States government research and development agencies ,
including the Army, Navy , Ai r Force , the National Science Foundation , the
Department of Energy , and the Nuclear Regulatory Commission , have initiated
an effort aimed at the critical evaluation of applications computer software.
With active participation from the three armed services, a list of such
applicati ons software in the field of structural mechanics has been derived
and screened. The screening criteri a were based upon actual or potential
use in a multi-laboratory or multi-agency environment. In addition , software
selected for further evaluation was required to meet minimum requirements
with respect to availability , documentation , and veri fication . The codes
deemed to most typify these conditions were NASTRAN , ADINA , STAGS , and SAP.
A family of shell-of- revolution codes was also selected for further study.
Critical evaluation cri teria are discussed in detail.

+ 
I
lls

lai~~%s~~~ D
C

• ,m~n ¶ 
- £Y ~ L

. 4 1



p

P 1. Introduction

The market structure that encompasses the variety of relationships
between the developers and users of applications computer software has received

• a good deal of scrutiny within the past decade. This marketplace was charac-
terized by a university (developer) - industry (user) dialogue during the
evolutionary stages of applications software development some 10-15 years
ago. As the pecuniary advantages were real i zed, however , private industrial

• firms emerged as the principal developers, many supported either directly or
indirectly through research and development (R & D) contracts with the federal
government. In the background, smal l grou ps of specialists at federally-
sponsored laboratories were playing the dual role of developer and user within
their respective organizations. The total cost to the federal government
for both direct and indi rect support is diffi cult to estimate for several
reasons: (1) labor separation between code development and code application
is generally not accounted for in R & 0 organizations ; (2) overhead cnarges
often include software development support ; and (3) the cost of computing
cannot equitably be allocated between an organization that owns its computers
(or has the federal government purchase them as a capital expendi ture) and
an organization that deals in the comercial data center environment.

In spite of these diffi culties , a l ower bound in the range of tens of
millions of dollars per year can be easily derived , based en ti rely upon
extrapol ation of manpower costs from known circumst ances. It i s useful to
note that these are development and maintenance costs, not software applications

costs. The latter are significantly more computer-intensive , but the labor
costs are also staggering because of the number of analysts involved.

Since the cost that is usually associated with the development of a
fairly general purpose software package is on the order of a million dollars ,

the total number of such packages that are available to the analyst is on the
order of a few hundred. This estimate coincides roughly with the survey , under

National Science Foundation sponsorship [1], of civil engineering software,
considering that only a fraction of that software represents documented coding.
Such numbers serve to illustrate the magnitude of the information—retrieval
dimensions of the problem, notwithstanding the cost/benefit aspects.

1 

- -~~~~~~~~~~~~~~~~ --~~~~ . .-. J



It is felt by many that the needs of the user coninunity are not
being met by the current market structure , not only because of the sheer
number s of cho ices that the user must exam ine, but also because of the
technical complexity involved. Both the theory and the coding practice
employed in these packages are specialty subjects, in whi ch the user has
a disadvantage with respect to the developer. Since the user general ly
rel ies upon “sampling ’ procedures - namely, exerc ising the sof tware on
problems such that personal judgement will indicate the correctness of the
resul t - a coord inated user respon se is usua lly nee ded .

The forma l coord ina tion of a grou p of users has resul ted from a need
to share experiences with respect to particular pieces of software. Periodi-
cally, these groups meet to discuss recent applications , elimination of
program ing errors , and additions to capability. In this way , the whole
is , in many respects, greater than the sum of the parts because each user
has an increased understanding that is enriched by the views of other
users. Such users’ groups have evolved around several structural software
packages, incl uding NASTRAN , STR UDL , SAP , and ADINA. Perhaps the greatest
shortcoming of this form of information sharing is parochialism - namely,
the group tends to reinforce favorable perceptions to the exclusion of
adverse criticism , through its lack of independence from the developers
and pseudo-developers .

The most minimal coordinated effort that would not suffer from this
shortcoming would be a sharing of information on applications software, both
on the di sclosing agency’s opera tiona l software and on other , rela ted software
that the disclosin g agency has studied. Some progress on this tack is
documented in r2-4]. Perhaps the most ambitious attempt would be the actual
sharing of executable software on a host computer , either at the disclosing
agency’s computing site or at a commonly-funded centralized computing site.
Both types of implementation are being considered by individual agencies -

namely, NESS (Navy Engineering Software ~ystem) [5] and the computing center
established at the Department of Energy ’s (DOE), Lawrence L ivermore Labora tory
for controlled thermonuclear fusion research computing [6].

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ - . .__ _



As a response to this need for software users’ coordination , a multi-
agency group has been attempting to formu l ate a plan for common action.
This group has consisted of representatives from the armed services, the
Na tional Science Founda tion , DOE (the former Energy Research and Development
Administration), the U.S. Nuclear Regulatory Coniiiission, and other interested
parties. Since the needs of the user comunity range widely, from information
on ava il able software throug h acqu isit ion , documentation , verification, and
production application , the suggested plans have been of varying complexity.

At the present time this group, called the ISEG (Interagency Software
Evaluation Group) has defined for itself an intermediate approach. This
intermediate approach is necessary for at least two reasons: (1) good
intentions are insufficient to render the applications software problem
tractable; a careful , manageable , limi ted scope of effort is needed in order
to determine reasonable success or failure ; (2) the logistics of shared
interest (and funding) among several virtually independent agencies are
tenuous , at best, and the scope of effort should reflect the immediacy of
the common interest. The plan that has evolved is based upon the concept of
software evaluation. For the present , the study will be confined to the
evaluation of structural mechanics software, although It is recognized that
other technical fields may eventually be added to the program. Structural
mechanics software provides an ideal forum for the study because of its
diversity and advanced stage of development. The variety of marketing strate-
gies adopted by developers has also led to a plethora of user problems.

The ISEG has operated under the justification that a more significant
step in information sharing is required - that this step toward improved

software reliabilifl~ and cost/benefit ratio must rely on some standardized

format for the critical evaluation of applications software. In accord wi th
this justification , the ISEG has set itself a purpose - to formalize the
critical evaluation of applications software - and two near-term goals:

(1) to develop the criteria for the critical evaluation process and (2) to

critically evaluate several commonly-used applications software packages
according to these uniform cri teria. Structural analysis applications

software was chosen as the initial area of concern primarily because of the

advanced state of developer-user relationships in this specialty area. For

3

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



example , few applications programs for heat transfer and fluid mechanical
analysis are developed by one individual or organization with the express
intention of serving a wide variety of potential users outside the
developers ’ organization . It is expected that this type of activity will
eventuall y become the rule , rather than the exception.

A procedure has been proposed for converting this concept into practice:
this procedure consists of the selection of the software to be evaluated ,
the identification of desirable evaluator characteristics for both individual s
and groups, and the development of the criteria by which these individuals or
groups would evaluate the selected software. It should be pointed out that
volunteered evaluation exercises in the past have been well-intended, but
hav e produced sh al low resu lts. The ISEG is a departure from th is type of
effort, in that qual ified contractors will be paid to evaluate software
according to a prescribed set of criteria. The possibility of synergism due
to shared information , resources , and techn iques is al so a positi ve factor
to be cons idered .

In the following sections, the evalua tion procedure is descr ibed in
some detail. The procedure has been adopted by the ISEG to the extent that
the three armed serv ice agenc ies , U.S. Army, U.S. Navy, and U.S. Air Force,
have agreed to use the follow ing descript ion as the bas is for the eval uation
Contract negotiations.

4 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.



II. Screening Tests

In order to meet the near-term goals of criteria development and
critical evaluation , the total effort is subdivided into four tasks: (i) the
development and application of screening tests to determine whether a given
software package is suitable for critical evaluation ; (ii) the selection of
ideal evaluator profiles for these studies ; (iii) the evaluations themselves ; and
(iv) the preparation of a sumary document that provides both highlights and
recommendations for future software procurement. In this section the screening
tests are discussed.

The screen in g tests we re di v ided i nto three manda tory requ i rements
(availabilit y , verifiability , and documentation) and two non-mandatory items
(qualifi cation and configuration control). A piece of software which fails
to pass the mandatory screening tests is not subject to further consideration .

Avai lability was defined to include such considerations as: no
inordinate time should be needed to make the source and object files oper-
ational on the contractor ’s computing system; no laborious conversion of
specialized input/output routines or high-level plotting routines; and no
incompatible loader or special overlay structure that requires active system
software specialist support.

Verification is defined to mean those numerical examples whose
purpose is to demonstrate that the theory alleged to be present in the
software is correctly coded. Candidate software should be accompanied by

sample Input data and output solutions for the purpose of verification. Any

code that is unable to reproduce the developer ’s sol utions at the contractor ’s
site will be dropped from consideration.

Documentation is to include, at the minimum , a users’ manual for des-
cribing the input. ana output adequately, and a theoretical manual that describes
the underlying physics and mathematical treatment. The theoretical manual may
be replaced by reference material from the literature.

____  I



_ _  -~~~-~~~~~— ——-~~~~~~~~
--

~~~
--  _ ,

Qualification , which is non-mandatory, describes the process by
which the software is demonstrated to be reliable for production analysis,
and takes into account the size of actual problems , any limitations with
regard to file manipulation , and other features deman ded in a production
mode. For this reason, it is useful if a large number of different organ-
izations with different production analysis requirements have exercised the
code.

Configuration control, also non-mandatory, concerns the ability of the
user to specify the configuration of the code (in-core versus out-of-core
resou rces, num ber of f i les , size of the un labeled common block , etc.) at
execution time. This capability will enable the evaluator to make proper
compar i sons , between different software, with regard to efficiency.

6

L _ _  



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

III. Screening Results

The five general criteri a that were listed in the previous section —

availability , verification , documentation , configuration control , and
qualification — were applied to a large variety of structural software
packages that are subject to widespread use, or where widespread use is
contemplated , within the laboratory/contractor infrastructure of the U.S.
Department of Defense. The results from documented, formal surveys, suc h
as the NESS report [5]; from personal discussions with service laboratory
and information center personnel ; and from telephone conversations with
cognizant individuals were used to establish the initial list of codes.
Of this initial list , the vast majority of codes were in active use by only
one service branch , or one laboratory within a particular service, or by
a sing le individual . Such limited interest was perceived as an immediate
reason for elimination from the list.

Continuing on to the second phase of the screening were a variety of
structural codes, which were then grouped together into five categories.
The first category consisted of the large , general purpose codes representing
tremendous development investment and extensive capability , such as NASTRAN ,
MARC , ANSYS , NEPSAP , STARDYNE , and others. Even the most cursory ~f examin-
ations revealed that NASTRAN was the most wi dely used code wi thin the three
serv ices an d, since all five screening criteria were met, this code was
selected for further evaluation in this category. A second category included
those codes of limited capability which primari ly address the area of
nonlinear dynami cs — a small , but technology-intensive segment of the
structural software market. This category comprised the codes NONSAP ,
ADINA , AGGIE , PETROS , HONDO , and others. It was felt by the ISEG steering
committee that the ADINA package met all of the screening criteria and best
represented this class. However, in terms of further evaluation , the related
code NONSAP and the emerging code AGGIE would be factored into the evaluation
in an unspecific manner. A third category consisted of codes of limited
generality aimed primarily at nonlinear analysis of general shell structures,
and included STAGS, ADINA (again), PLAN S, NEPSAP , and others. Because of its
con ti nue d deve lopmen t, and its present and potential application to aerospace
and nava l struc tures , the code STAGS was chosen by the steering committee for



— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . 
.—~ —.——.—_ _— .—_ —- ,,—-._- -—.—~~ . ._.— ~~~~~~~~~~~~~

this category. Another group included shell-of-revolution codes, regardless
of whether the l oading was axisymmetri c or general ; this category included
BOSOR , DYNAPLAS , KSHELL , and others. It was felt by the steering committee
that vi rtually all of the major shell-of-revolution codes were readily
avai lable, and that evaluation of the entire list was a feasible task. Therefore,
several codes of similar capability will be simultaneously evaluated in this
category.

Finally, a ra ther general category of codes were l isted . Th is grou p
inc luded such codes as SAP an d SAAS , which have had enormously widespread (but
diminishing) use, and codes such as TEXGAP and ORACLE, which have limi ted but
intensive use at scattered locations around the country. The steering committee
felt that the SAP code best typified this class while meeting the majority
of the screening criteria.

Therefore, the structural software that has been selected for further
evaluation includes :

1. NASTRAN (general purpose category)
2. ADINA (with NONSAP and AGGIE as comparisons)
3. STAGS (for aerospace and naval shel l structures)
4. SAP (general linear elastic category)
5. Shell-of-Revolution Codes.

8 

~~~—-  ~~~~~
..—__ -—



IV . Evaluation Procedure

The critical evaluation is to be carried out in three steps, which can
run concurrently. First, the program architecture is to be described by
two of the steps - the ~ nctional description and the programming description.
Both of these steps will depend heavily on adequate documentation . The third
step consists of a series of advanced evaluation exercises, which will be
described in a later section.

IV.A. Functional Description

Good documentation for an applications analysis computer program requires
a discussion of the physical principles , the mathematical embodiments of these
principles , the algorithmi c representations of the mathematics , and the pro-
gramming practices employed to effect the algorithms . In contrast to this
requirement , most program documentation refers the user to selected literature ,
in the form of archived manuscripts , institutional reports, and other documents
with varying stages of retrievability . The self-contained program documentation
may include only the briefest discussion of the theoretical foundations. As a
sign i ficant part of the critical evaluation process, the description of:
(1) the physical principles; (ii) the mathematical statements of these
principles; (iii) the mathematical algorithms , and (iv) the coding practice

are l umped together under the heading of functional descripti on.

An example serves to illustrate the intent of this type of description.
Suppose a program developer claims an elastic-plastic capability . If the

critical evaluator has sufficient documentation available , the physical
principles (conservation of linear and angular momentum or equilibrium ,

conservation of energy, etc.) and the mathematical statements of the principles
may be stated clearly. Special attention should be given to reduced continuum
theories (beams, plates , and shells) and to kinematic assumptions (e.g.
separation of elastic and plastic strains or strain rates in the presence of
finite deformation). Then , the critical evaluator must examine the actual
coding practice together with the remaining documentation , in order to

determine such features as: (1) whether a tangent stiffness , initial stress,

or some other approach is taken ; (2) whether the conve~yence cri teria are

9 



adequate, considering the particular iterativ€~ method chosen ; (3) whether the
plasticity theory is an incremental , deformatioll , or other theory; (4) how
accurately the rate equations are integrated within the load step (mean normal ,
equilibri um load correction); (5) the flow riles allowed; (6) the hardening
rules allowed; and many others. After these descriptions have been completed ,
the algorithms and coding practice will emerge.

The most important of these functions to be described are:
1. The discretization approach - finite element , with its weak
satisfaction of equilibri um and traction boundary conditions , and
its strong satisfaction of energy conservation and kinematics; or
finite difference , which differs in that the kinematic relations
also possess weak solutions; or some other method .
2. The time integration ~ppy~oach - whether modal superposition or
di rect integration, whether the particular approach has unconditional
stability, built-in stability controls, artificial damping, its
order of accuracy, and other factors.
3. The approach for solution of simultaneous equations - (including
procedures for treatment of nonlinear terms) whether by iterative ,

direct, or semi-direct methods; whether pivoting is used ; what the
measures of ill-conditioning are; storage limitations and file
manipulation required; etc.
4. The kinematic approach - the strain-displacement relations
incorporated; kinematic constraints and transformations allowed ;
5. The constitutive approach - the stress-strain relations allowed ;
whether strain-rate effects are included; any limitation s with
respect to anisotropy ; and others.
6. Special Features - an example might be a simultaneous solution
of heat transfer or fluid mechanical fields , or the ability to
interface with such solutions.

These functions are not meant to be all-inclusive. Instead, the critical

evaluator has the responsibility for determining the functions alleged or

~~pl i ed  by the developer , in order to focus upon the four parts of the
description.

10

.—~~~~~~~~~~~~~~ —-—.~-—. —_. .~



~~~~~~~~— - , _ - -~~~~~~~~~~~
_ -~~~~--- —-~~~~ ~~~~~~~~~~

p

IV.B. Programming Description

t 
Irrespective of the structural modeling basis of a software package -

finite element , finite difference, exact solution , or some combination -

the desi gn of the modern packages have evolved into a characteristic form.
The most coarse description of this characteristic form consists of a
pre-processing module, an analysis module , and a post—processing module.
These segments can be simple or sophisticated and , in the early years of
software development , the operations of the current individual modules were
intermingled. As the true, personnel -intensive costs of structural computing
have become more wel l recognized , however, the worth of pre- and post-processors
as instruments of economy has become evident. It is reasonable, in fact,
to estimate that the software development costs associated with pre- and
post—processors for production analysis packages far exceed the costs of
analysis module development.

The pre-processor may include any or all of the fol lowing features:
1. Reading and printing of input data, with possible format
conversion , depending upon the freedom or rigidity of the input

format;
2. Automatic mesh generation , with possible interpolants and
smoothing algorithms designed to provide some control over mesh
condition number (vertex angle acuity) and aspect ratio (in
matter of fact, the combination of mesh aspect ratio and deforma-
tion gradients are needed in order to properly allocate mesh
spacing; the deformation gradients are, of course , unknown at
the pre-processing stage);
3. Creation of data bases for use in the analysis module , such
as material properties or element data subsets;
4. Creation of special file structure required by the input
data , such as restarting, plotting, geometri c data base ,
material data base , coefficient assembly, and/or equation—solving
files; files for communication between two or more distinct
analysis modules would be included in this i tem ;
5. Initialization of constants , flags , logical variables , and
arrays;

11

_ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,. --~~~~-~~~~~~~~~ ,,_m_—*— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-— —~~- ~~~~~~~~~~~~~~~~~~~~~~~ —_ ~~.- _~~~~~~~~~~~~~~~~~~~~~~~~ 
. - —--~~

6. Pre-analysis plotting, aimed at verifying the mesh geometry,
boundary conditions , material properties (constitutive representations ,
such as creep laws or elastic-plastic stress-strain l aws, can be
plotted in order to expose any regions of error or omission), or
other input feature.

Many modern pre-processors are interactive , interrogative , and are self-contained
with respect to documentation . For example, the user may be creating a portion
of the input data base interactively, with the pre-processor interrogating the
user intermittently and providing a display of the necessary documentation at
decision points in the preparatory process.

The analysis module or modules can be generically descri bed as a
series of libraries wi th connective coding. These libraries include , but are
not limi ted to, the following:

1. The geometric library, which consists of the element strain—
displacement library (both linear and nonlinear representations),
the kinematic boundary condition library , coordinate transforma-
tions , and generalized kinematic constraint conditions; additional

features, such as a coordinate update option that enables the program
to handle both full Lagrangi an and updated Lagrangian reference
systems, might be offered ; it should be pointed out that an essential
feature of any general purpose structural code is the ability to
incorporate generalized kinematic constraints between different

portions of the element library (e.g., beam, plate , or she ll el ements
enforcing a plane section constraint on a series of continuum
elements) ;
2. The constitutive library , which consists of the various material
property models available to the user, ranging from linear, isotropic
elasticity to nonlinear , anisotropic elastic-plastic-creep behavior ;
if the constitutive and geometric libraries are kept properly

independent , each constitutive capability will be available for any
geometri c configuration ; one of the underlying principles of general

purpose coding is to maintain this independence ;

3. The procedures library , which contains the range of analysis

options open to the user; typical examples are linear static analysis,

12

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

linear dynamic analysis (either by mode superposition or by a
variety of direct integration operators), eigenvalue extraction
(whether for dynamics or for linearized buckling analysis),
nonlinear static analysis , nonlinear dynamic analysis , linear
elastic fracture mechanics , fluid-structure interaction analysis ,

thermostructural analysis , and limi t analysis; it should be
noted that solution and accuracy-preserving strategies, such as
in-core or out-of-core solution , iteration and equilibrium
load correction , are considered to be part of the procedures
library.

The input/output strategies, including those associated with restarting
and plotting, are considered to be a part of the connective coding that
relates these various libraries to each other. In addition , blank or
l abeled comon, subroutine calls , and logical tests should be treated in
the same vein.

Post-processing modules remain in a relatively primitive state, in
comparison to pre-processing and analysis capabilities. As a convenience to
the user, almost all commercial and many research structural software packages
provide plotting files of stresses , strains, displacements , etc. that can be
accessed by the local plotting devices. In recent years, there has been an
upsurge in the development of post-processors to evaluate the resul ts from
one or more analyses against design allowables , providing the user with a
di rect confirmation of structura l integrity . Some attention has been paid
to printed output formatting, aimed at producing results in a form that can be
put directly into a reporting document. However, very little progress has been
made toward a self-contained evaluation of the analysis results , aimed at
providing the user with a quantitative assessment of the “goodness” of the
structural model . In some cases, however , this type of post-processing is
available and merits special attention in the code evaluation .

13 

-- .  ._- ._--~~--_ - _ _ - _ — .—- .—~~~~~~~~~ - — —, -~~~~~~~~ - . -~~~~~~~~~~~~~~~~~~ .—*.— _ ..- -~



_-_ .~ ._ _
—~~~~~~~

.—
~~~

-
~~~

_
~~~~
- 

~~
_

V. Advanced Evaluat i on

The hi ghly-skilled evaluator with an extensive background in numerical
methods and applications software analysis will discover, in the process of
describing the software functions and programing features, characteristics
that need to be explored further and quantified . The advanced evaluation
exercises are designed to address this need. The extent to which this phase
of the evaluation effort is pursued is dependant upon the actual funding level s
for each contractor and their respective rates of progress.

In spite of these uncertainties , a series of examples will be offered
to point out the methodology to be used. For the pre-processor module
(if it exists), these examples will be l umped under the general category of
discretization checks. Although the use of automatic mesh generation has led
to an easing of the burden of data preparation and an elimination of many
associated errors, modern mesh generators should have an additional capability -

they shoul d be desi gned so that the “condition ” of the mesh is evaluated and
automatically altered , if necessary. The condition of the mesh is related
to the acuity of the vertex angles of the indiv idual elements , which then
determines the possible energy states and convergence characteristics of a
particula r mesh. Pathological examples involving reentrant geometry and
graded boundary mesh are available to test these features of the mesh generator.

For the post-processor module (if it exists), the examples will be
lumped under the heading energy checks. Such checks, together with carefully
selected benchmark problems , will expose errors due to deformation
incompatibility . Also , an energy check can provide information on the
convergence of nonlinear problems (stress states not satisfying flow
cri teria in plasticity , out-of-bal ance forces due to geometric nonlinearities
or creep deformation , etc.). Al so, these energy checks can provide a gl obal
measure of the effort expended by the mesh to deform in accordance with applied
forces. These energy checks are broken up into two categories: (1) internal!
external - where the total (or incremental ) internal energy is compared to
the total (or incremental ) external energy ; for elements that lose energy
(but often ~ppear to converge to exact solutions with small numbers of
elements), selected two-element models should serve to expose such incom-
patible deformation behavior; and (2) internal energy hierarchy - through

L _ 14 

-_ ~ rn ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



- - — -

~~

._ - 

~~~~~~~~~~~~~ _____  ___

p

selective volume integration (centroidal , two-point Gaussian , three-point
Gaussian , etc.), the mesh effort can be determined , based on the energy
partition between constant-straining modes and higher-order element deformation
modes.

For the an alysis module , there are several classes of examples designed
to address questions of convergence, efficiency, and general capability.
After “pseudo-convergence” due to deformation incompatibility has been
eliminated , those programs that remain should be tested with respect to
real convergence. Similar element libraries should converge simi larly;
however , some errors in formulation may be exposed at this level. Also,
convergence of transient and nonlinear solution algori thms, as wel l as
eigenvalue/eigenvector extraction routines , shou ld be exam ined . Par ticul ar
topics of concern are:

1. Convergence rates of elements should be determined to be
correct (bounds are known a priori),
2. Convergence rates of Newton-Raphson , modified Newton-

Raphson , Picard iteration, or other nonlinear solution
algorithm should be tested and deemed to be correct;
3. Transient solution algorithms should be tested for stability

and artificial propagation properties; and
4. Eigenvalue/eigenvector extraction routines should be eval-

uated for multiplicity , separability , deterioration , and

convergence.

Some comparison of efficiency is in order. The most meaningful

comparison would appear to be dual:
1. Compare, for a given benchmark problem , the efficiency of

two programs having the same number of degrees of freedom and

the same bandwidth; the point accuracy of the two solutions

may or may not be the same, but this type of comparison is

aimed at testing equation-solvin g efficiency;

2. Compare, for a given benchmark problem and a given required

solution accuracy, the efficiency of two programs without regard

to numbers of degrees of freedom and bandwidth. This type of

compari son (having elimi nated faulty element libraries earlier)

is aimed at testing element library efficiency.

15

_ _ _  _ _ _ _  _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



In order for any study of program efficiency to be meaningful ,
the individual programs must be evaluated wi th respect to any limitations on
configuration control . In this way, one or another program need not be
penalized due to thoughtless user-defined configuration , unless the
developer has so limi ted the configuration that this penalty is intended.
Therefore , the following Items should be examined : (1) core storage
versus extended core storage or backing storage parameters; (2) equation—
solver parameters; (3) equation-solving options, and (4) file manipul ation
options.

The milestones for evaluators will be determined on an individual
basis, especially for any general capability advanced evaluation , due to
the intricacy of some of the tasks.

16

—._ ,- .. 
~~~~~~. — - - .-— , -, -_----- ---— —._. - _ . --—— —— ~~~~~~~~~ . ,.-. . _- ..._ --_ 

_

~~~
—

~~~~~~
— _...- ._ A



- ..— . ‘—9—, —_.——-—.—..-—_——-————_.- —,—-.——. - ,—_,_ __ _.. ..—.--_ —-._ _ 
~ ,- .--... -— , — _ __ . . , _ ..-.—.

VI. Summary

The summary document i s intended to prov ide the ISEG and the rema inder
of the technical community with the highlights of the critical evaluation
process, plus the views of the various participants with respect to the scope

of effort, the evaluation criteria, and the particular software selected.
The implications of these studies with regard to future software ~ hardware
development and procurement will also be addressed. It is anticipated that
these criteria, or some modifi cation thereof, might be made an adjunct to the

procurement cycle.

Recommendati ons for future study are al so ant icipated.

17

_ _ _ _ _ _ _ _  4



--.-..
~ -—~

-
~

—.—

References

[1] Schelling , D.R., “CEPA/NSF Study” , Presentation at the Sixth National
Conference on Electronic Computation , ASCE , 1974.

[2] Perrone, N., “Project STORE (STructures-Oriented Retrievable Exchange)” ,
in: Use of the Computer in Pressure Vessel Analysis, ed. by Harry
Kraus , ASME, New York , 1969.

[3] Argonne Code Center, Argonne , IL . The Argonne Code Center was establ ished
in 1960 by the Atomic Energy Commission to serve as a central information
agency an d lib rary for compu ter programs of relev ance to AEC program area s.

[4] Aerospace Structures Information and Analysis Center (ASIAC), Wright-
Pa tterson A i r Force Base , OH. The Air Force Flight Dynamics Laboratory
sponsors ASIAC as a central agency to collect and disseminate information
on aerospace structures, inclu di ng structura l software , to Air Force-funded
and other government funded contractors .

[5] Matula , P., “Navy E ngineering Software ~ystem (NESS) and Pre l iminary
Selec tion of Computer Programs ” , TM-l84-77-Ol, Naval Ship Research
and Development Center, Bethesda, Maryland, October 1976.

[6] Personal Communication .

18

L . 
A


