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I .  INTRODUCTION 

The important role of gradient drift microstructure 

in the analysis of UHF radio transmission in the high- 

altitude nuclear environment has been recognized for some 

years.  The use of specific microstructure realizations 

to study propagation effects is rather commonplace.  The 

modelling of microstructure using the principles of gradient 

drift physics has not previously been done, however.  It 

may appear paradoxical that the scientific community has 

taken so long to tackle this issue in view of the consi- 

derable research on striation physics in the last several 

years.  The explanation is essentially a question of 

priorities and the perceived needs of the users.  For 

applications which emphasize the early time evolution of 

plasma structure, the propagationists have been satisfied 

with the convenient type of modelling devised by Chesnut 

which is a data fit to experimental results.  Recently, 

this type of approach has been extended by Rino and Sachs. 

Conversely, the phenomenologists have been concentrating 

their energy on understanding and codifying the basic neutral 

and plasma background parameters which drive the fine 

scale development. 

Using a single, simple variable such as  <Sn/n , it 

is possible to link the Chesnut type of modelling to 

background calculations and carry out various types of 

systems studies.  There is, of course, the inherent assump- 

tion that the background physics is not only independent 

of the model details, but, furthermore, even of the existence 

of microstructure. 

The recent interest in conducting studies of plasma 

development over very extended periods of time has, however, 

placed a great strain on the credibility of current 
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computational techniques.  In the first place, there is 

the problem of using data fit models in regimes that are 

not even remotely similar to those corresponding to the 

regimes in which the data was gathered.  Users are no 

longer able to argue that, even if the physics is absent, 

the modelling is a real representation of experimental 

facts.  In the second place, the phenomenologists are 

recognizing that interactive effects with the background, 

such as striation convection and striation decay, cannot 

be investigated without constructing some sort of micro- 

structure model that relates to the real plasma physics. 

Viewed as a general proposition, the construction 

of a first principles microstructure model is one of the 

most challenging tasks faced by the nuclear effects 

community.  The phenomena, like ordinary fluid turbulence, 

does not permit direct numerical simulation.  The range 

of relevant scale sizes is enormous, covering perhaps 

four orders of magnitude in at least a two-dimensional 

space.  Even if one could generate actual full-scale 

plasma realizations, the propagationists would find this 

an unmanageable data and calculational morass.  Particularly 

from a systems analysis standpoint, the direct manipulation 

of total plasma density information is unthinkable. 

Fortunately, it is generally recognized that a 

power spectrum of the plasma density fluctuations, fitted 

to some simple analytic form, is both an adequate description 

and represents the maximum usable information in most 

applications.  Recent work by Wittwer has been invaluable 

in demonstrating this important conclusion.  Insomuch as 

specific realization models are employed, they are not 

claimed to be point-by-point exact simulations of particular 

real world plasma distributions.  They are, in fact, models 

f/^i^^^^^^^^^^^gg^g^ 
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which claim statistical equivalence to actual distributions. 

This equivalence is established by fitting both data and 

model to a common power spectra in the usual case.  Note 

that an autocorrelation of the density fluctuations is 

identical to the power spectrum.  Likewise, statistical 

correlations of the electromagnetic variables are effec- 

tively the same thing, but require an unfolding operation. 

If we only wished to satisfy the propagationists, 

we would build a power spectral model.  Fortunately, 

this is exactly the tool tiat the physics will also require. 

It is, in fact, we believe, the only item that deterministic 

physics can provide with certainty.  All other quantities 

will prove to be statistical correlations of random 

variables. 

There are two key features to the modelling that 

will be presented in subsequent sections.  First, it will 

be carried out in Fourier space.  Second, it will combine 

Fourier modes into a lumped parameter system.  This will 

be similar to the lumping of molecular collision processes 

in defining chemical kinetics.  We believe that the end 

result represents a significant breakthrough in under- 

standing and describing plasma microstructure. 

^ 
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II.  THE CHARACTER OF MICROSTRUCTURE 

While the general deterministic description of plasma 

microstructure is an unresolvable problem, there are a 

series of assumptions which will permit an approximate 

solution.  The plasma evolution begins in a scenario with 

only a limited range of large-scale sizes.  Experience and 

intuition tell us that it is only this range which is 

peculiar or specific to a given example.  The vast majority 

of smaller sizes possess general or statistical properties 

which are not tied to specific scenarios.  Obviously, if 

this were not the case, there would be no point to any 

experimental or numerical simulation short of a real 

detonation.  As an observational fact, we note that the 

overall appearance of gradient drift microstructure is 

similar, regardless of the original source. 

We assume that the general properties of the structure 

are calculable using suitable, approximate physical models. 

Likewise, we assume that these properties are adequate for 

propagation studies.  The nature of the general represen- 

tation is a power spectrum of the plasma perturbations 

(from the mean). 

The plasma power spectrum possesses a number of use- 

ful features which allow the simplicity necessary for 

actually constructing a working model.  The summation or 

integration of power spectral amplitudes is essentially 

a conserved quantity.  This principle underlies model 

construction.  Information concerning "plasma phase" is 

lost in the description.  However, this is not necessary 

for either the hydrodynamics or propagation in the "many 

otriation" limit.  Transfer of power between regimes in 

Fourier spece is governed by gradient drift processes. 

 - 
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The analytic format of the transfer rates is derivable 

from theoretical studies. 

Of considerable importance is the fact that rate 

constants and parameters have a generality analogous to 

chemistry in molecular kinetxcs.  Thus, data can be 

deduced from a variety of external sources including 

field experiments. 

The distribution of power within spectral regimes 

is assumed to obey certain simple monotonic functions. 

This permits a lumped parameter representation of each 

regime.  From experience and for model convenience, we 

have chosen to divide the spectrum into four regimes. 

The first is the macroscopic or exact code regime.  It 

comprises the largest scales which vary in specific patterns 

peculiar to the particular scenario.  This regime is not 

modelled, but does provide the necessary inputs and 

boundary parameters to drive the power spectrum model. 

To clarify the discussion of scale size range, let 

us consider a ray path through a typical battle space grid 

as in Figure 1.  The disturbed (or potentially disturbed) 

portion of the path is the segment, L.  In principle, as 

either a propagationist or a phenomenologist, we wouid 

like a description of the plasma density distribution along 

and in the vicinity of this line.  For the largest sizes, 

we would compute the plasma properties using an "exact 

code".  These macroscopic sizes would depend ultimately 

on the particular scenario and we would desire a completely 

deterministic computation.  Using the terminology of 

"Fourier space", we would require information on the 

"plasma phase".  For purposes of discussion, however, let 

us conceive of creating a plasma power spectrum from the 

data such a code would provide. 

a—«MWiii •  i.  ...» ...n »m  • ii.n» 
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Figure 1.  Propagation in the battle space grid. 
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In Figure 2, we show a power spectral plot that 

might result from the Fourier analysis of the ray path in 

Figure 1.  The "exact code" could generate a nonzero 

spectrum only out to some wavenumber,  k , which 

corresponds to the minimum grid dimension in the macro- 

scopic code.  The spectrum would be generated by analysis 

of the complete ray path segment and provide a result as 

indicated by the curve labeled "all boxes".  The symbols, 
2 

kQ and  f , which characterize the power spectral 

properties are shown for future reference and will not be 

discussed in detail here. 

In practice, the basic grid dimension, as charac- 

terized by  k , is usually no less than 50-100 km.  Thus, 

the plasma data available from the plasma grid itself is 

hardly in the "striation regime". 

The modelling of microstrueture which forms the 

topic of the present paper is concerned with filling in 

the details for each of the small boxes shown in Figure 1. 

In applications, the model will be used to describe the 

particular behavior of plasma in many, many boxes simul- 

taneously.  Turning again to Figure 2, the schematic 

attempts to show the fact that each box will have its own 

local pow^r spectrum.  The microstructure model for each 

volume will generate data only for the wavenumber range 

greater than k .  Of the four Fourier space regimes 

mentioned earlier, three of them are, obviously, the 

components of the micrcstructure model.  The curve labeled 

"Box 1" in Figure 2, is a good example of a spectrum which 

contains power in each of these three lumped parameter 

idealizations.  In the following discussion, we will outline 

the functional behavior that we assume for each of these 

regimes. 

11 
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A connector or "reservoir" regime is defined as a 

convenient artifice to connect the deterministic macroscopic 

scales to the statistical modelling of the true microscopic 

regimes.  Of use primarily in transient processes, it is 

assumed (somewhat arbitrarily) to have a flat noise-like 

spectrum (k ). 

The fully developed or "cascade" regime is assumed 

to dominate whenever the gradient drift process can operate 

without strong transient boundary conditions.  It is the 
2 

classic or fully developed spectrum which varies as  1/k . 

Observed both in experimental data and in numerical simu- 
2 lation results, we believe the 1/k  dependence is the 

consequence of Fourier transforming "sharp edges".  The 

convection of density enhancements relative to density 

rarefactions is the essence of the gradient drift mechanism. 

The process always results in a high density piece of plasma 

flowing away from its neighbors, exposing itself to a low 

density background, and creating a sharp gradient (hence 

the name of instability).  Because the fluid is essentially 

incompressible, very sharp gradients can remain for 

extended periods of time.  The only process that limits 

the growth of gradients is electron diffusion, which is 

significant only at very small scale lengths (very large 

wavenumbers).  In the wavenumber range where diffusion is 

important, it will "eat up" or absorb the plasma power 

leading to a much steeper decline in power versus wavenumber. 

The sink or "diffusion" regime exists for the very 

smallest sizes which are subject to significant crossfield 

diffusion.  It has a steep dependence and is presently 

modelled with a 1/k  variation based on analytic studies 

of Kilb. 

13 
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Figure 3 is a schematic diagram which pictorially 

displays the nature of the various power spectral regimes. 

The function of the microstructure model is to compute the 

Fourier space extent and the total power for each charac- 

teristic regime. 

14 
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Figure 3.  Structure regimes 
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III.  DEVELOPMENT OF THE MODEL 

A.  INCOMPRESSIBILITY AND POWER SPECTRAL SUMMATION 

Our objective is to investigate and model the gradient 

drift mechanics of a volume of plasma in the ionosphere 

according to the usual F-layer approximations.  The volume 

to be modelled is sufficinetly small that the gross, 

macroscopic properties of the plasma and background can be 

assumed locally constant.  Nonetheless, the dimensions of 

this volume will be treated as, typically, orders of 

magnitude larger than the smallest possible striation 

dimensions.  We can conceive of this volume as corresponding 

in size to the minimum grid volume in a macroscopic plasma 

hydrodynamic code, although we will not make a one-to- 

one correspondence with such a volume in the analytic 

development.  The volume will be taken as sufficiently 

local that there is no structure of interest in the 

direction parallel to the magnetic field lines.  Therefore, 

all of the dynamics to be considered are in the plane 

perpendicular to this field. 

We shall assume that the gross plasma velocity in 

the perpendicular plane,  U , is equivalent to  (ExB)/B 

Therefore, as is well known in the F-layer approximation, 

U  is divergence free and the dynamics of the plasma 

density,  n , correspond to incompressible flow. 

and 

V -U = 0 (1) 
J. 

is-« <2> 
As with the density itself, any function of density alone 

is, likewise, a preserved Lagrangian quantity.  Specifically, 

16 
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2 
the square of plasma density,  n , is such a quantity. 

ft2 ' ° <3> 
The divergence free flow (or incompressible flow) 

is equivalent to a statement that an area,  A , in the 

plane defined by marker particles in the plasma is a 

preserved quantity.  Therefore, spatial averages of any 

function of density are, likewise, preserved in a Lagrangian 

sense.  In particular, the average of the density,  n 

n = | ffn  d A (4) 

and the average of the density squared,  n 

"2 = A" Jf» 2 dA 
are preserved 

S-« <5> 
and 

ft - • <e> 

All of the statements above come directly from the 

fact that the gross plasma motion is assumed to be given 

by  (ExB)/B . The other major assumption that will be 

employed in the development, at this point, is a statement 

concerning the plasma power spectrum. 

It is customary for both propagation and phenomeno- 

logical purposes to assume that the one-dimensional plasma 

17 
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power spectrum in the plane perpendicular to the magnetic 

field is locally independent of direction.  There is no 

explicit mathematical proof or approximation based on the 

general plasma equations to substantiate this statement. 

On the other hand, there is also no theoretical reason to 

believe that it is an incorrect concept when applied to 

well-developed plasma structure.  Intuitively, it is an 

attractive hypothesis which draws on analogies to conven- 

tional fluid turbulence and molecular chaos in kinetic 

theory.  From a purely practical standpoint, it is un- 

doubtedly the only avenue available to modellers of gradient 

drift mechanics.  Unless clearly contradicted by new 

theoretical or experimental developments, it is likely to 

be with us for a long time.  From the standpoint of the 

present paper, there would, in fact, be difficulty in 

acceptance or application of the work if this feature were 

not built into the model.  It should be noted in passing 

that an anisotropic spectrum could be employed if the 

general theory were developed and the users were willing 

to apply it. 

Conceptually, a one-dimensional plasma power spectrum 

is created along a trace in any direction,  x , by Fourier 

transforming the distribution of plasma density.  The 

complex spectral amplitude,  g , is given by 
00 

g(k) -  f n(x) eikx dx (7) 
_oo 

where k  is the wavenumber.  The power spectral distri- 

bution (PSD) is given by 

PSD(k) • g g* (8) 

18 
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where g*  is the complex conjugate and the PSD is, of 

course, a real positive number distribution. 

In actual use, either in analyzing data or in per- 

forming numerical simulations, it is convenient to work 

with finite Fourier representations created over some 

span in x of extent  2L .  The plasma density over this 

span is given by a summation as 

Ei9.  ik .x 
r\ e  3 e 3 (9) 

where  f .  is the real polar modulus of a complex amplitude 

and 9.  is the "plasma phase".  A "discrete PSD" can 

be created from (9) of the form 

PSD(k ) = f2 (10) 

It should, of course, be noted that (8) and (10) are 

not identical and, in fact, are not the same dimensionally. 

They can, however, be simply related through the span 

length,  2L . 

PSD(k) = (4L2) PSD(k.) (11) 

where the  k.  are intepreted as points on a continuous 

curve for making the correspondence.  There are, in 

addition, a variety of other ways of normalizing or scaling 

the PSD depending on the application, but the relationship 

is similar in form to (11).  Our objective in the present 

discussion is to establish a connection between the PSD 

parameters and the conserved density parameters.  For 

convenience in this task we will ultimately find it 

desirable to introduce a third form of PSD representation, 

which will be developed in the material below. 

19 
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2 expression for the plasma density squared,  n , over a 

Using the form (9), let us construct a Fourier 

ion for the plasma 

span in x of extent  2L . 

e   *  J  e   * J     (12) n2(x) = J. £ f t fj 
Ä   j 

Now, let us find the average value of the quantity over 

the span as follows 
L 

2 ,    P (x) dx 
2L 

n2 = -=±~- 

Before performing the integration, we should recall 

an important property of the orthogonal Fourier terms, 

namely, 

i (k +k .) x 
e   l     j   dx = 0  ;    for k. + k. j* 0    (14) 

% J L 
Thus, the only terms which will contribute are the ones 

where  k„ = k . . Therefore, the integ] 

(13) results in the simpler expression 

-2   r- - « 1(6.+8 .) 
n    = )  f . f . e  3       D (15) 

£-  j  -j 

Because n  is a real variable, the Fourier coefficients 

also possess another well-known property, namely, 

and (16) 

B . = -6 . 
1 -3 

20 
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Ultimately, then, we obtain the very simple result that 

^=E f2. (17) 

Equation (17) tells us that the average density square in 

the plasma, along a span in  x  of extent  2L , is equal 

to the summation of the discrete PSD terms along the same 

span.  It is at this point, obviously, where we will employ 

the assumption that the PSD is independent of direction. 

We say that we could have placed the span  2L  in any 

direction, at any location in the area,  A , and obtained 

the same result for the average square of the plasma 

density.  Therefore, the result given by (17) must be the 

true average density for the entire area,  A , and does 

not apply just to a specific, arbitrary, one-dimensional 

span.  Using (6), we then obtain the powerful conservation 

principle that 

D 
Dt [?'•] = 0 (18) 

It is convenient to re-express in a different form 

for actual use in model construction or numerical appli- 

cation.  First, it will simplify expressions at a later 

point if  f. is normalized by the local average density, 

n .  Because n is preserved as shown in (5), it can be 

multiplied out of the expression 

f . 
f. S -J (19) 

and 

*[!«] = 0 (20) 

21 



Second, it will be easier to manipulate (20) if we can 

approximate it by an integral expression.  Defining the 

wavenumber interval in the discrete transform as 

k.+1 - k. - Ac - I (21) 

we can convert  f.  to a continuous function  f  as 

follows 

oo 

IS- /i ' f2(k) dk (22) 

For simplicity, let us define a new symbol  F as follows 

oo 

/ 
F = j    f2(k) dk (23) 

Thence 

y z2 = - (24) 

Finally, we obtain the simple desired expression 

DT=° (25> 

It will be convenient to refer to F or components 

of F  as the "power spectral summation".  Note, however, 

that care must be used in actual numerical calculation. 

A characteristic, fixed scale length,  L , is always 

associated with any given problem.  It is usually desirable 

22 
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to fix this quantity at some convenient reference level 

throughout the temporal and spatial evolution of a scenario. 

In a numerical simulation which employs a macroscopic 

hydrodynamic plasma code, this dimension would be of the 

order of the minimum grid dimension (although it need not 

be exactly equivalent).  In interpreting or manipulating 

data, this dimension might be chosen as a span corres- 

ponding to a characteristic dimension in the disturbed 

plasma. 

We will typically display a "power spectral density 
2 

result" by plotting  f   as a function of  k .  The actual 

numbers will, of course, depend on the value of  L  that 

is characteristic of that particular calculation.  Note 

that the summation,  F , must always be multiplied by  L 

to obtain a dimensionless value that is directly related 

to the local average square of the dimensionless density. 

Using the expressions developed in this section, 

we can readily convert any specific PSD or summation,  F , 

to any arbitrary scale length expresssion by simple 

multiplication, thus 

f? = fÜ f (26) 
A    B (Ü) 

and 

(27) 

Note, however, that in a real problem we can never avoid 

the scale length specification,  L .  Letting  L  go to 
2 

infinity, for example, and thus using a "true PSD",  g (k) , 

or a "true summation",  G , is mathematically clean, but 
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will always be ill-defined and indeterminate in an actual 

computation. 

B.  GRADIENT DRIFT RATES 

As discussed in an earlier section, the microstrueture 

model is constructed by lumping plasma spectral power into 

several distinct groups.  The groups are assumed to have 

distinctive statistical features and are organized according 

to their position in Fourier space.  Specifically, let us 

repeat Equation (23) which defines the total spectral 

summation 

00 

/ 
/ f dk 

o 

(23) 

Now let us break the integral into four distinct 

parts 

F =  /  f  dk   macroscale  0 < k < k 
•/ c 

k 

-/ 
f  dk   reservoir  k  < k < k 

(28) 

f  dk   cascade    k  < k < k 

OB 

f dk   diffusion  k < k < 

where F = F^ + F„ + F_ + F^ . O    R    C    D 
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From Equation (25), we establish that F  is a 

preserved Lagrangian quantity in the absence of collisional/ 

diffusion effects.  Crossfield diffusion is generally 

thought of as negligible in the F-layer ionosphere, when 

the usual macroscopic scale sizes are considered.  On the 

other hand, the present microstructure modelling is 

arranged to extend down to very small sizes and, by 

definition, diffusion effects must be considered in the 

largest k  group.  Diffusion, in fact, is a necessary 

ingredient in constructing a complete life cycle history 

for plasma structure.  There is no other hydrodynamic 

mechanism for ultimately removing striations.  The con- 

struction of an appropriate correction term for the conser- 

vation equation will be the subject of the next subsection. 

For the moment, we will merely indicate, in words, the 

presence of such a term. 

Qualified by the statement above on diffusion, we 

can express the basic conservation equation for the total 

spectral summation 

dF dF dF dF 

irr + ~d + mr + ~d = -a«*»»i«» <**> 

The objective of the present subsection is to 

construct rates which define the transfer of power between 

the various spectral groups.  Specifically, we wish to 

construct a matrix of rate expressions of the form 

dF0 
"dF " "ROR " Roc " ROD 

dFR 
dt    OR    RC    RD 
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dt 

dFD 
~dT" 

R0C + RRC " RCD 

R0D + RRD + RCD - diffusion 
(30) 

In transferring power from one wavenumber regime 

to another, we use a symbol,  R  , for the rate, where mn 
m corresponds to the large size regime from which power 

is removed and n  corresponds to the smaller size regime 

to which power is added. 

Simple gradient drift theory has demonstrated that 

mode amplitudes in regime  n grow from gradients in regime 

m with the following rate. 

d f 
 i 

dt 
= -(AU) 

m 
(31) 

where  AU  is the ion-neutral slip velocity and f  is the 

real polar amplitude of a perturbation seed of form 

f eiknX rn e 

Consider a large scale plasma structure over the 

span,  2L , which is describable by a finite Fourier series 

of the form 

m 

as 

i6.  ik.x 
n (x) = nil + )  f . e m m 

(32) 

j-0 

The growth scale given in (31) can then be expressed 

m 

m 
ik . f. 

j 

ie. 
e     * 

ik .x 
e     3 

1 + 

m 

E f. 
3 

ie. 
e     => 

ik .x 
e     * 

(33) 
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We cannot, of course, consider the general nonlinear 

evolution of growth in Fourier space any more easily than 

in physical space.  Thus, we will consider a plasma wherein 

the structured plasma distribution represents only a small 

perturbation from the mean.  This assumption permits us to 

drop the nonlinear term in the denominator of (3 3) 

••    «        ie.ik.x 
±~ - )  ikj f j e   e  D (34) 

Over the span,  2L , which contains the large wave- 

length plasma structure with growth scale distribution, 

d(x) , given by (34), let us insert a single small wave- 

length mode of initial uniform amplitude,  f  .  Locally, no 
as a function of  x , the familiar gradient drift growth 

expression (31) tells us that the amplitude will grow as 

AU  t 

f(x,t) = f  ed(x) (35) n        n o 

As the use of the procedures developed here is for 

ultimate employment in a finite difference, time stepping 

numerical code, we need only follow the growth for "short 

times" with analytical expressions such as (35).  Our objec- 

tive is, thus, to linearize the results of (35) in a con- 

venient finite different format.  We shall expand the 

exponential in (3 5) as a power series of time.  We will 

discover that we must keep terms to second order, however, 

to obtain a net positive average growth. 

V*.«~*n0Mf> + Hf)2*2] (36) 
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The average net growth of  f  across the span is 

given by 

i^Ttr- fn  ll + (AU)t(i)+i (AU)2t2(^) I  (37) 

where 

lö .  lk .x (I)"* J   'I    *>< e  J e  J  dx      (38) 

-L 
and 

/1\   1  f T* T- l(Vei}  i(k.+k )x 

-L  j   1 (39) 

We should note that the character of these inte- 

grations is identical to that of the last subsection and 

lead to analogous results, namely, 

Q) = 0 {4o) 

and 

    m 

We now rewrite (37) as a differential expression 

and drop some of the complicating notation, recognizing 

that, henceforth, all quantities refer to average values 

across the span 

df 

"ST " V    fnt (42) 
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where the growth rate, y  , is 

Vf Y = (AU)-v/ )      k2 f2 (43) 
j  D 

Note that Equation (4 2) remains nonlinear in time 

and will not prove satisfactory for use in constructing 

a viable rate expression.  We, thus, desire to linearize 

(42).  To do this, we must pick some characteristic time 

and the only obvious choice, of course, is the inverse of 

the growth rate itself,  1/Y •  There results our final, 

linear expression for gradient drift growth in Fourier 

format 

fn = y   fn (44) 

The summation shown in (4 3) is not a convenient 

quantity to work with.  Let us, first, cast it in integral 

format similar to (22) and (23) by defining a new para- 

me ter,  H 

m m 

J k2 f2(k> « -1 £ y.] f] Hm     f  ' I--, f? 

Second, let us relate this parameter directly to the 

definition of  F  in (23) by an additional parameter,  k 

(k)2 E_ni (46) m F_ m 

Utilizing k , we can express (44) in terms of 

quantities defined in the last subsection 

dfn n— 
lF=akJ'Fm  

fn (47) 
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Note that (4 7) 

.2 

is equivalent to 

d f 
-^ = AU E dt       m V IT m n (48) 

Again using the definition of (23) , we recall that 
2 

the integration of  f  acrosss its extent in Fourier space 

is given by 

'„- f *2 
n   /   n dk (49) 

We can thus integrate (48) in Fourier space and use (49) 

to simplify the result 

i d F 

i sr = (AU) km V£ F   F m   n (50) 

Equation (50) respresents the rate expression that we 

sought in constructing the general kinetic format of (30). 

Thus, we can write 

mn = 2(AU) k 
a m V* F  F m n (51) 

The subscript a  has been appended to R   to rr mn 
indicate that (51) refers to "seed growth".  That is, it 

represents that type of gradient drift power transfer, 

from regime m  to regime n , which occurs when regime n 

already contains a "seed"—indicated in this instance by 

the presence of F .  Note that, if there were no structure 

in regime n (F = 0) , this class of power transfer would 

not be operative.  We, thus, know that there must be 

other mechanisms for transferring power in addition to 

the specific process that we have modelled here.  Both 

from experiment and from numerical simulation, we observe 
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that power can flow from regime m  to regime  n  in the 

absence of any initial power in regime  n .  We do observe, 

however, that the flow of power can be greatly enhanced 

once a "seed" has been established.  We would conclude 

that, while a rate of the form R    may be dominant, 

it is not the only rate that we will need to model in a 

complete representation. 

Seed growth is the only gradient drift transfer 

process that has proven amenable to any extensive analytic 

or theoretical development.  Thus, by comparison, it has 

been relatively easy and straightforward to model.  None- 

theless, at this point, we must proceed to formulate the 

other type of mechanism, commonly called "bifurcation", 

that is thought to be important. 

To understand bifurcation, it is useful to return 

to the basic plasma convection equation.  Both in observing 

numerical simulations and in the theoretical studies that 

do exist, it appears that the nonlinear mechanics represented 

by this equation are primarily responsible for the power 

transfer from large to small sizes. 

Consider the convection equation in the following 

Eulerian form 

3n    /dn\   /sA 
n "" [a) \>i) (52) 

where ty  is the plasma velocity stream function 

!± = fS (53) 

Let us express both the density,  n , and stream function, 

ty ,    in Fourier form 
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ik^x 

3 
n = V a., e  j 

V    ik*x> 

* = 2^ b2 e (55) 

We will omit some of the fine points of notation in the 

discussion for clarity.  We are merely interested in 

illustrating the qualitative behavior and are not con- 

ducting a mathematical proof.  Note that  a.  represents 

the complex density modal amplitudes, while b  represents 

the similar quantities for the stream function.  Substi- 

tuting (54) and (55) into (52) yields 

j V j ' W '(56) 

The nonlinear operation is  the convolution of  the RHS  of 

(56)   into a  new single  summation 

(__ ik .x\   /_, ik„x\       _. ik  x 

j /   \ I / m (57) 

such that (56) becomes 

or 

I • 
a . 

3 

ik. 
e     => 

X 

L^    m 

ik  x 
e    m 

D m 

• 
aj 

ik 
e 

.X 
J • c m e 

ik x m 

(58) 

(59) 

For clarity, let us now change the index on the time- 

dependent density mode amplitude,  a. , to ä .  Thus, 

32 

1 

 — 



lk x      lk x 
•    n m i crw a„e    = c  e (60) n m 

The first and most important fact to note is that, 

for each term  c , m ' 

k  = k  = k . + k„ (61) n   m    j £ ' 

Thus, the terms must always be combined such that the 

growth of wavenumber index  n  is controlled by a combi- 

nation of modes of index  j  and index %     wherein 

n = j + £ (62) 

Obviously, there is a whole spectrum of combinations which 

meet the condition of (62).  In our lumped parameter 

representation of Fourier regimes, however, there are 

only two classes of groupings.  Let us assume that, in 

all cases, the index  n  refers to the small size regime 

that is growing (that is,  n  is a "large" number index)• 

By definition, both  j  and I     cannot be large or there 

would be no connection to the "small" wavenumber regime 

from which power is flowing.  Therefore, the two cases 

are:  (1) either  j  or  £  is "large with the other "small" 

or (2) both  j  and  £  are "small" but their addition 

makes them "large" or "approaching large". 

We now see that we have a convenient way of cata- 

loguing the two lumped parameter types of transfer process. 

Case (1) is "seed growth", whereas case (2) is "bifur- 

cation growth". 

For example, in the idealized limits, consider for 

case (1) an extremely small scale seed corresponding to an 

extremely large wavenumber index.  Then we see that (62) 
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is satisfied by an expression of the form 

n m j >> I (63) 

In the limit, this is an example of a seed "growing on 

itself". 

On the other hand, consider an example for case (2) 

which might represent "true bifurcation in Fourier space". 

n = 2j = 2 2. (64) 

Note that this process does not necessarily manifest itself 

as an observable "bifurcation in physical space". 

The second important fact to note about the expres- 

sions (56) to (60) is the functional dependence of the 

growth rate (of the coefficient a ) with respect to the 

other parameters 

an - (k.   ay.(£4b£) (65) 

We easily identify k . a.  with the Fourier decomposition 

of  1/d and k „ b. with  (AU) .  Thus, the basic functional 

form of our growth rate, (51), derived for "seed growth" 

is probably valid for all regimes.  We can assume, however, 

that it will not produce as rapid a flow of power out of 

the small  k  regime into the large k  regime.  This is 

merely because it has to cycle many times.  That is, the 

intrinsic convolution process is identical, but the seed 

mechanism produces growth in one time cycle, whereas the 

bifurcation mechanism must cycle many times to increase 

the wavenumber substantially.  Under ideal conditions, the 

bifurcation mechanism can only double the wavenumber each 

cycle. 
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We believe it reasonable to reduce the bifurcation 

rate, as compared to the seed rate, by the ratio of mean 

weighted wavenumber through which the cycling process must 

travel,  k /k .  Otherwise, we shall postulate that it 

ought to have an identical format, thus 

R    = 2(AU) k -v/- F   — F (66) mn m V 7i  m  T-  m 
8 kn 

In concluding this subsection on growth rates, it is 

important to make several features clear.  The rates have 

been formulated with the best current theoretical ideas 

and contain nothing that is known to be contradictory to 

the current data base on gradient drift mechanics, whether 

derived from experiment or numerical solution of exact 

plasma equations.  Nonetheless, a variety of assumptions 

have been necessary to formulate the complete modelling. 

There is, thus, no guarantee that these procedures are 

truly correct.  To compensate for the above, we shall provide 

for modification to the results by multiplicative, adjustable 

coefficients (a and ß).  Experience in testing and applying 

the model may show these to be small constant corrections 

of order unity on the one hand, or large perturbing 

functional relationships on the other hand.  In any event, 

they will provide the vehicle through which this model 

can be made consistent with new theory or new data.  Thus, 

in final form, the rates are expressed as 

and 

R    = 2a (AU) k J-  Fm  F_ 57) 
mn m v " m       n 

Rmn  • 2B M   ^ Jf£   ^ ^m (68) 
k n 
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C.  DIFFUSION RATE 

As indicated in earlier discussions, crossfield 

plasma diffusion is the process which completes the 

dynamical life cycle of the plasma evolution.  It will 

have a significant influence only on the very smallest 

scale sizes (or largest wavenumbers), and, for simplicity, 

we will include the effect only in our defined "diffusion 

regime".  In the simple form, to be considered here, 

diffusion is a purely linear process and, thus, plays no 

role in the cascading of wavenumbers discussed under 

gradient drift rates.  A simple diffusion equation, that 

is not coupled to other plasma dynamical processes may 

be stated as follows 

B - D -2-5 (69) 

where  n  is plasma density and  D  is the classical cross- 

field electron diffusion coefficient.  For a plasma 

composed of Fourier modes of the form 

18   ik 'X 
c       „   n     n  n i new f e   e (70) 

the relation (69) takes the form 

df      - 
n = -YL     D f (71) dt     n   n 

or  equivalently (and dropping the subscript), 

1 ^1 =   -D k2 f2 (72) 
2 dt 

Integrating this expression over some range in Fourier 

space gives 
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I ~    ff2   dk = -D I k2 f2 dk (73) 

or using the definitions of (23) and (45) 

1 d F 

2 -ÖT  = -° Hm <74> 

which is equivalent, using (46) to 

,dP 
7 "7^ • -D k  Fm (75) ^  dt       m m 

We then express the final form of the diffusion rate, 

required by the matrix of conservation relations, (30), 

as 

diffusion = 2e D k2 F (76) m m 

where we have introduced a correction coefficient,  e , in 

the spirit of our other rate expressions.  In practice, 

this correction may be useful for introducing augmented 

diffusion from anomalous plasma turbulence (e.g., drift 

waves) . 

D.  THE WORKING EQUATIONS 

In previous subsections, we have assembled enough 

material to now write down the basic differential equations 

which govern the model.  Substituting the rates of form 

(67), (68), and (76) into (30) gives 

dF /  I k 

I -ar = -(AU) *o FRVi Fo  - h <AU) *o FoVl Fo f 
kR 

-(AU) *o Fc^]T^ ~  <Au) *0 
F
D V^   (77> 
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3 TIT = (AU) ko F
R VF^o " «i <AO) *R FC VF R 

"   «2    (AU>   kR  FD4^
+

   h   (AU)   \)   P0 Vlf F0     r 

'    TT        R       ü 

kR 

"    *2    <AU>    kRFR-V^FR      f <78> 
kc 

I HF =   (AU)   kO FC ^^f^  + ai   (AU)   kR FC VF^ 

-   *3   (AU)    kC   FD V^C~  +   ß2    (AU)   kR  FR V^ C 
kR 

kc 

- ß3(Au) *cFc^|¥:irc^ (79) 
K

D 

I KF =   (AU)   kO   FD VF^  +   a2   (AU)   kR  FD VF^ 

•  a3    (AU)   kc   FD   JYTC   +   ß3    (AD)   kc   Fc ^/T^ -£ 

-  eD k^ FD (80) 

There are, of course, a series of constitutive 

relations needed to complete the total set of working 

equations.  These will be developed below using the various 

definitions from previous subsections. 

It should be noted, in passing, that it is not the 

usual practice to employ Equation (77) in actual numerical 

simulations.  Normally, the properties of the macroscale 

regime are computed and fed into the modelling directly 

from a plasma hydrodynamic code.  In that usual case, the 

following parameters are specified as below 
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ko-jyFo = ^? (from the code) (81) 

k0 - | kR (82) 

In application, the wavenumber  k   is fixed at the 
R 

start of the calculation and not varied thereafter.  It is 

both logical and convenient (though not mandatory), to 

choose this quantity as equivalent to the wavenumber 

associated with the characteristic minimum plasma dimension 

which the macroscopic code is capable of calculating. 

The constitutive relations rely on the assumptions 

made concerning the power spectral distribution in the 

various regimes of Fourier space.  Referring to Figure 3 

for assistance, the distribution of  f  in the reservoir 

regime is constant and equal to  fD , thus 

f(reservoir) = f  = f (83) 

Likewise, in the cascade region,  f  is inversely propor- 

tional to wavenumber, such that 

k 
f(cascade) = -s— f 

and        . (84) 

£ .2f 
C   kC  D 

Finally, in the diffusion regime,  f  is inversely 

proportional to the cube of wavenumber 

.ion) = ^J    fD f (diffusion) = I -j^J  fD (85) 

Performing the integrals indicated in (28) with 

(83), (84) and (85), respectively, gives 
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FR   =   f2R   (kc   -   kR) (86) 

•H kR   = I 3   (kC   +   kR   +   kC   VI (89) 

kc =v^Tc~ (90) 

*D-(!)\ (91) 

Equation (91) completes the set of relations 

necessary to carry out a self-consistent, time-dependent 

solution for all parameters in the model. 

In the usual numerical solution using the model, 

these are time-dependent inputs 

INPUTS:  FQ , AU (92) 

which produce the following time-dependent outputs 

OUTPUTS:  fR = fc , fD , kc , kD , FR , Fc , FD    (93) 

A computer code has been developed which solves the 

working equations.  The code is one part of a large ensemble 

of routines under development for computing nuclear 

phenomenology for military systems analysis.  Neither the 
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Fc = f2 kc (1 - kc/kD) (87) 

FD = 5 fD kD (88) ! 

Likewise, using the definitions of (45) and (46) 

results in 
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details of the code nor its interaction with other related 

routines will be discussed in this report.  In the following 

section, however, various outputs from the code will be 

displayed to illustrate the features of the theoretical 

model. 

One final comment should be made concerning the 

reference length,  L .  This quantity sets the absolute 

values of the PSD and the various power spectral summations. 

As ultimately developed and used in the theoretical basis 

of the model, it is a purely arbitrary quantity.  Thus, at 

this point, we are actually free to specify it as much, 

much larger or much, much smaller than any other dimension 

in a real problem.  It must be fixed and constant in any 

given computation, however. 

The PSD parameter that we shall always display is 
2 the dimensionless quantity,  f .  In displaying experi- 

mental data, however, one frequently encounters the 

expression "power-per-unit wavenumber".  It is convenient 

to have our result identical, from a numerical standpoint, 

to this conventional quantity.  This equivalence will 

occur if we scale our parameters to have an "apparent 

fundamental wavenumber of unity".  That is, if the 

numerical probiere is constructed using kilometers as a 

basic dimension (the usual case for us), the wavenumbers 

will be expressed as inverse kilometers.  We, then, wish 

to scale such that the apparent fundamental wavenumber is 

one inverse kilometer.  Notice, however, that this speci- 

fication has nothing to do with any actual characteristic 

dimension in the problem. 

If the fundamental wavenumber is unity, then the 

corresponding fundamental Fourier length is 2v  , therefore 

we set 

2L = 2TT (94) 
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Explicitly, in the working equations, the specification 

(94) simplifies rate parameters of the form 

V TT m m (95) 

Unless otherwise indicated, we shall always use this 

specification both in the model and in displaying numerical 

results. 

L 
42 
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IV.  EXAMPLE CALCULATIONS AND RESULTS 

Initially we will carry out a series of three runs 

with constant input conditions to demonstrate that the 

model will always achieve the identical saturated state 

regardless of initial conditions. 

Consider a macroscale density gradient of 100 km, 

which is driven by a wind of 1 km/sec.  For convenience, 

we place the leading edge of the microstructure model at 

kR = 10   inverse kilometers (corresponding to a plasma 

code mesh dimension of 62.8 km).  All result plots will 
2 

show the dimensionless PSD,  f , along the vertical axis. 

The horizontal axis is wavenumber in inverse kilometers. 

Recall that our PSD is equivalent, numerically, to power- 

per-unit wavenumber (in kilometers).  In case 1, we place 

no power in the microstructure model to begin.  Figure 4A 

shows the initial condition to be a blank. 

Rather rapidly, however, power flows into the model 

and by 10 seconds, as shown in Figure 4B, measurable power 

is present.  Note that, initially, only a reservoir and 

diffusion zone are created.  This feature has proven 

typical of highly transient states.  By 30 seconds, 

Figure 4C, we obtain the first evidence of a cascade zone 

and by 60 seconds, Figure 4D, this regime is pronounced. 

At 100 seconds, Figure 4E, the cascade is becoming dominant, 

which is typical of the approach to saturation.  By 400 

seconds, Figure 4F, we are close to complete saturation. 

The spectrum will change very little from here on, no 

matter how long we run the program. 

Saturation corresponds to a cascade process that is 

completely in "balance".  That is, power flowing in from 

the macroscale, below k , has become identical to the 
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power being diffused beyond  k .  It should be pointed out 

that the diffusion coefficient for all the calculations to 
-5   2 

be presented is fixed at 2.5*10   km /sec, which is a 

nominal number for the ionosphere in the 180-200 km altitude 

regime.  Note that  k   has been pushed out to inverse 
4 

wavenumbers of 10  (corresponding to less than one meter 

wavelength).  It should also be noted that there is 

negligible power contained at that very short wavelength. 

In case  2, we initialize the computation with a 

quite different power distribution in the microscale regime. 

Figure 5A shows a "highly seeded" arrangement, wherein a 

flat, noise spectrum is inserted out to very large wave- 

numbers.  We would anticipate that such an initial condition 

will allow an approach to saturation that is more rapid 

than case 1.  In Figure 5B, at only 10 seconds, we note 

that a large cascade region has already developed and, 

in Figure 5C, at 200 seconds the computation is rapidly 

approaching saturation. 

In the final example of this class of computations, 

case 3, we start the calculation (Figure 6A) with an 

enormous quantity of power present.  To achieve "balance" 

or saturation, this spectrum must decay significantly. 

Note that in Figure 6B, at 10 seconds, the decay is rapidly 

occurring.  In Figure 6C, at 50 seconds, this case is 

approaching the saturated state of the two previous cases. 

In case 3, however, the approach is from the "top side". 

At 200 seconds, in Figure 6D, the spectrum is essentially 

at an equilibrium condition.  We display a further result 

at 300 seconds in Figure 6E to show how little the picture 

changes. 

Cases 1, 2, and 3 demonstrate that the model will 

produce a common saturated spectrum starting from widely 
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diverse initial conditions.  It likewise demonstrates that 

most of the power will end in the "cascade region" if a 

constant driver is allowed to act for a long period of time. 

The only distinction among these three cases, ultimately, 

is in the time required to reach saturation. 

Persistent saturation at high levels of power is not 

a realistic steady-state picture, however.  Neither the 

wind nor the gross macroscale gradient, through which the 

wind blows, is going to last forever.  It is interesting 

at this point to show the effect of removing each of these 

driving effects separately. 

Case 4, as shown in Figure 7A, begins with the 

former saturated state as an initial condition.  Now, 

however, the wind has been turned off.  There is no further 

cascade and only diffusion is an operative mechanism.  By 

10 seconds, as shown in Figure 7B, decay has begun on the 

large wavenumbers.  By 50 seconds, as in Figure 7C, the 

diffusion has eaten up a considerable volume of high k 

power.  By 100 seconds, Figure 7D, the process has pro- 

gressed about as far as it can go.  Note that by 200 seconds, 

as shown in Figure 7E, there is very little change over 

the previous result.  Of central importance is the fact 

that diffusion is doing nothing to get rid of the larger 

size structure (low k). 

A more realistic, dynamic decay can be simulated 

if we maintain the wind, but allow the driving gradient 

to disappear.  The initial  F , that we employed in all 

of the previous cases, was a constant .04/km, corresponding 

to a gross gradient dimension of 100 km.  The appearance 

of strong microstructure will destroy this gradient 

through the process of striation convection.  We can 

simulate the effect by including Equation (77) in our set 

of relations that is time stepped. 
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1 
Let us begin case 5, as in Figure 8A, by using the 

final spectrum from case 4.  We turn the 1 km/sec wind 

back on, but now allow the driving gradient  F   to decay 

using (77).  In Figure 8B, at 50 seconds, we note that 

the wind is already pushing the spectrum back to the 

familiar saturated state, as shown in Figure 6E.  This 

process tends to "peak out" around 100 seconds, Figure 8C. 

In Figure 8D, at 150 seconds, we note the push to high k 

values for the cascade region is running out of steam and 

some retreat is now evident.  This effect coincides with 

a noticeable decline in the PSD along the leading edge 

at  kR. 

The interesting effect, that has begun to occur 

strongly after 150 seconds for case 5, is the significant 

decay in the gross gradient (as measured by  F ) . 

Figure 8E is a display of  F , corresponding to 

the plasma power in the macroscale regime.  Notice that 

just prior to 200 seconds, the power is essentially all 

removed.  Beyond this time, there is negligible power 

left in the macroscale to "feed" the microscale.  Thus, 

the computation can no longer support (in quasi-equilibrium) 

the large diffusion implied by the combination of an 

extended cascade and high PSD levels.  The withdrawal of 

the power spectrum, to lower k values, in an attempt to 

establish a new quasi-equilibrium is maximum about 200 

seconds, as shown in Figure 8F. 

As the PSD along  k   decays, the cascade is able 
R 

to organize itself again and overcome some of the diffusion 

effect.  This is primarily because the rates are quadratic 

in F and the transfer of power from cascade to diffusion 

is proportionally reduced.  At 250 seconds, in Figure 8G, 

we see much of the cascade reasserting itself at the new, 

lower PSD levels.  Recall that, by this time, the 
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microstructure regime is feeding totally on itself and is 

in a state of continuing decay. 

By 300 seconds, in Figure 8H, the basic cascade 

pattern is completely re-established.  This pattern will 

persist to the very end.  Figure 81 shows the spectrum 

at 1800 seconds, while Figure 8J displays the scenario 

at 17,000 seconds.  Left to run indefinitely, the program 

will push the cascade "into the mud" asymptotically. 

Case 5 is, perhaps, the best demonstration of the 

power of the model to compute late-time behavior of micro- 

structure. 
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V.  CONCLUSION AND APPLICATION 

The gradient drift microstructure model that has 

been developed is capable of spanning many orders of magnitude 

in scale size and includes the important physics of cascade 

and ultimate diffusion.  It is believed to contain all of 

the best, current thinking on gradient drift theory but, 

of necessity, remains an approximation to the solution 

of the basic plasma conservation equations. 

Adjustable coefficients have been provided to tune 

the actual numerical results so as to provide close 

agreement with both the current experimental data base and 

the numerical results of computer simulation of micro- 

structure. 

While the rate expressions and associated consti- 

tutive relations may appear complicated, they are in essence 

only a simple one-dimensional set.  For simple exploratory 

work, a BASIC program which runs on the tabletop Tektronix 

4051 is usually employed.  For use in actual systems 

analysis, an extremely fast program for the CDC 7600 has 

been built.  In actual application, the microstructure 

program is only one routine in a larger matrix of programs 

employed to analyze UHF communication in the nuclear 

environment.  The detailed description of the actual 

application and associated numerics will be the subject of 

future reporting. 
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