~ AD=AD61 455 MICHIGAN UNIV ANN ARBOR GRADUAY. SCHOOL OF BUSINESS==ETC F/6 9/2
MICHIGAN TRANSLATOR PROGRAM LOGIC MANUAL. VERSION I1IBr RELEASE ==ETC(U)
SEP 77 C E BURPEEs» D DESMITHs L A HUTCHINS DCAL100=75=C=0064

| UNCLASSIFIED WP=T7=0T=3.7 SBIE=-AD-E100 110 NL

-

FILE copY

DOC

ADAO61455

ADE o0 1D

DLEVE

MICHIGAN TRANSLATOR PROGRAM LOGIC MANUAL

Version IIB, Release 1

by

Charles E. Burpee
Donald DeSmith
Linda A. Hutchins
Eric L. Kintzer
Kenneth Moore
Michael Stolarchuk
Gregory J. Wolfe

Working Paper 77 DT 3.7
September 1977

_——Database Systems Research Group
[Graduate School of Business Administration)/—

e University o chigan™
Ann Arbor, Michigan 48109
(313) 763-1100

(8 11 (_):-9«ng7 |

| Linda A. JHutchins, Eric L. Kintzgg_lj(gﬂﬁg}h__,
[_u!?ore (o] . Wolfe

Unclassified

S!C%‘CLASSH’ICAT!ON OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE ' ! BRE I T D TIONE

MBE 0 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

——

- TINLE (and Subtitle) - 5. TYPE OF REPORT & PERIOD COVERED

MICHIGAN TRANSLATOR PROGRAM LOGIC MANUAL. | rocpnical Report

““Version I1B, Release 1, -
o S J g /¢ Rt WTNG ORG. REPORT NUMBER

> au

o rres £ o P

~ AUTHOR e ok o :

= harles E_/Burpee’ DOna]d?DeSm‘ith, (8. CONTRATT OR GRANT umg;g/()
15) DCA_1§9-75-C-gpi6a / —

F—PERFOR 5
e Sl R R
276 Business Administration < 32017k5 27400, 27802~
Univ. of Michigan, Ann Arbor, MI 48109 1/11;; e

11. CONTROLLING OFFICE NAME AND ADDRESS Wﬁz —
DEPELSE cCarmom toniclT-ani [Flircy € 41 \ Septamper 1977 /

)) - ; » IO EE R OP P ROES
WAIH ~¢Go v D&, ,)?d‘;cj‘, S 83

14. MONITORING AGENCY NAME & ADDRESS({f different {rom Controlling Oflice) 15. SECURI:I’Y-CLASS. (of thies report)

—

(unclassified
\ 1Sa. DECL ASSIFICATION/DOWNGRADING
SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)
This—decument—is not yet-approved for—public-release.—

CelENRrenD FPog oL N /Ju/g“‘,,/u.// 2., ST Qe r;cg/_‘__{ﬁil_:’_lzt"_b_______i_
DISTRIBUTION STATEMENT A

Distribetion Unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report,

N/A /ot = 2 PR —
fceze Q////w-fjw 140

Approved for public release;

18. SUPPLEMENTARY NOTES

none

19. KEY WORDS (Continue on reverse aide if necessary and identily by block number)

Data Translator, Reader, Writer, Restructurer , Software maintenance

20. ABSTRACT (Continue on reverse side If necessary and Identify by block number)

%This Program Logic Manual provides the information for maintaining the
software for the Version IIB, Release 1 Data Translator. It is directed
toward two grgups of people: users of the Data Translator who desire some
insight into "how it works” and programmers who will maintain the software.
The manual is written in a manner that it could be understood by people with
no prior experience with data translation. However, the reader should have a
firm grasp of database concepts and tenmino1o? and should be knowledgeable
of Honeywell software systems (especially IDS/T).

The reader should also —}°

DD , :2:“!,, 1473 ’(EDITION OF 1 NOV 65 1S OB;OL&TIE Unclassified

g7 39

AB

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

‘8 11 09 037 _

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

-
20. ®have some familiarity with the facilities of the World Wide Data
Management System (WWDMS).

+1

~/

MICHIGAN TRANSLATOR PROGRAM LOGIC MANUAL

Version [IB, Release 1

by

Charles E. Burpee
Donald DeSmith
Linda A. Hutchins
Eric L. Kintzer
Kenneth Moore
Michael Stolarchuk
Gregory J. Wolfe

Working Paper 77 DT 3.7
September 1977

Prepared for

Defense Communications Agency
Command & Control Technical Center
WWMCCS ADP Directorate
Reston, Virginia 22090
DCA 100-75-C-0064

TABLE OF CONTENTS

INErOdUCEION . o ¢ v o e e s sl ae es sl e el e e 1-1
1.1 History and Overviem. < « « « s « s« o o 5 » « » » & s s 1-1
1.2 Database Description. . « « « « « ¢ o o o o o » & = o 1-5
1.3 Data Translator Execution 1-6
IDGE PROIVERE . . 2 v < o 0 2 & % 6 % & 5 5 @ A s spe s 2-1
251 Introduction: e o a R b e e e e e e e e e 2-1
0.1 TUFDOEE: » -« v ¢ o ws s R s e e a e 2-1
2.1.2 Terminology and Concepts 2-1
2.2 Functional Overview . . « « « ¢ ¢« ¢« ¢« ¢« ¢ ¢ o o o o o & 2-6
2.2.1 Iopubs/Outputs . = o + o s « « o % & & e w5 A 2-6
2.2.2 IDS Analyzer Components. « « . « . . 2-9
2.3 Component Program Logic . . . « « ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o & 2-9
CO R B TR RSP T L S R e 2-15
230 MM EINE 2 5 v s s e 2-15
2:3.3 BHSAIBEINK - =« « = « o % @ & % & m % @ & & &% @ 2-15
2.3.8 BIDPK LIRE o . o« o v o s o m % 5w e heww 2-15
2:.3.5 REPORT LInK: « v o v v ois = 5 o wim s % s s = 2-16
DB AN IV ZE s R e R s e e el e e e 3-1
3.1 Introductiony s eI R sy s e e e . 3-1
Foll PUPPOSE. . i olv cimim s b % & 5 W o8 4w & s 3-1
3.1.2 Terminology and Concepts 3-1
3.2 Functional Overview « « « ¢ ¢ ¢ ¢ v ¢« ¢« o o o & 3-2
3.2.0 INpUt/QUEDHE ;. - « & 5 w4 % 5 % & owox s s ow . 3-2
3.2.2 Module Components. « « ¢ « ¢ ¢ ¢« v o« o & 3-3
3.3 Component Program Logic R SR
3.3.1 Control Component. . « « « ¢ « o o o ¢ o o « « « 3-4
3.3.2 Syntactic Component. e R e R g
3.3.3 Semantic Component « .. §on % ow w w S
REAAEY = i v ¢ e v o el cnne ol o g% w it el a ¥ ot S 4-1
4.1 Introduction. . « « & « & ¢« e % @ w5 e AT PR 4-1
B 0.1 PUHONE: & oo o b 3ie b @ % % v 8 8N b o8 % 4-1
4.1.2 Terminology and Concepts ¢ . .. 4-1
4.2 Functional Overview R 4-1
8.2.7 InpUt/OULDUE '« . « + &« o « o 4 5 s o8 e 84w 4-1
4.2.2 Reader Components. . . . « « ¢« ¢ ¢ ¢ ¢ & o o o 4-3
4.3 Component Program Logic « « « ¢ ¢ ¢« o v o . 4-3
8.3, MRID PIOOYIN + s s « 5 v 6 ¢ » % 5 s % ¢ & 5 & % 4-3
B 3.2 SHIF DOLVWEIREE. o o v « & o' « 5 % v 8 % ¥ % % 4-3
4.3.35 Table Imtializer. « + v & i v v w8 o o8 w s 4-6
3.3.4 Data Movemant. . « « v & v « v o 8 5 v 8w A% b 4-6
4. 3.9 REIBLION LINKEY. v .« v s 5 .+ % & & 56 5 @ &5 & 4-6
3.3.0 BCCUSSOE « v v v v v v v s e e e A e 4-7
4.3.7 Wrapup and SRIF Dump ¢ . « & « v ¢ v o 4-7

RTINS WA= 0

oy

. B e B

§.0 ResStructurer . . « o s o o @ o o 6 siie s e etie e e e e 5-1
§. 1 Introduction: : o . S 0 s i e e e e e wow e e 5-1
B.Y.l PUNDOSE, « v « & 5 o o'd 4% ¢ w4 p.w 5w 5-1
5.1.2 Terminology and Concepts . « . « « + « = « « . 5-1
5.2 Functional Overview ., . . « ¢ « « « & « « + « s+ + + 5°2
5-2.] Input/output e o o o & e a o e a4 o & & s 8 g 5"2
5.2.2 Major Components « « ¢ ¢ ¢« « o o o 5-5
5.3 Component Program Logic« . « ¢« . . 5-8
6351 MainiCanEroll Lo 2 e ohh e deiei et b 5-8
5.3.2 Run-Time Parameter Processor 5-9
B.3.3 Stack Builder: . . . - 5. o i e el e et s 5-9
§5.3:4 Source ACCESSON. « '« - & foiiel v o c e el e e e 5-10
B35 QUATITVIRE. « o s & o o tw o e & 5w le s e n 5-10
§.3:6 CONSEPUCEAT: o s o o o s vor haitiorte Satnioilon o) & 5-11
5.3.7 Statistics and Wrapup. . . « « ¢ ¢ « ¢ ¢ o . . 5-1
60" Nriter . o 0 v Gl o il e e e e e s 6-1
6.1 Introductiions o o s s aNEs SR L e e 6-1
6. 0.% POFPOSE: v v wid s e R s G e A 6-1
6.1.2 Terminology and Concepts 6-2
6.2 Functional Overview of Writer 6-3
6.2.1 Inputs and Qutputs« .« .. 6-3
6.2.2 Writer Components. « 6-10
6.3 Component Program Logic« . .. 6-11
@ 3] A s e e L e T R e B e e 6-11
Gl SEILARK & siviv 4 6w 2% a5 % % & & » 6-12
6:3:.3 DIRLIOE. .5 « o o o m 5o o & % 5 & % & & 6-12
6.3.4 ASDULA LIOK. - « c 5 % 4 s o 5 % v & %% » & = 6-12
A | e e L W 6-12
6326 PINETSI IRk EE S Fes e e v e B e 6-13
6.3.7 PHRSEV ETRAR: i & o » 5% s 5 v da o o 5 % = 6-13
6.3.8 PHASES LInR. . : - o v v ¢ v % o 56 a2’ & 6-13
6:.3.9 PHASES BINR. . & « v« v 5 v v s wa « w® % & 6-14
7.0 - ErontaEnd s o u it e B S S R RS e e 7-1
Tol IEROAUEtION: oo 5 isr % o os e v v o e o e e 7-1
T:0.) PUIDOMR: v 5 2+ v & v % % o w5 & & ® ® 7-1
7.1.2 Terminology and Concepts 7-1
7.2 Functional OVErview « « o s w o o & o s o s @ 7-1
7.8, Input/Output v ¢ « s ¢ ¢ o o s & o o o 7-1
7.2.2 Module Components. Sl R e 7-3
7.3 Component Program Logic v Feg
7:.3.1 MaIn Program . . « ¢ « o &« o o &« &« s 3 o & & s 7-3
143.2 INTLYAVI28tHON o o v o v & 5 5 5 o % a PRE T | |
7:3.3 COontrol CArd DrIvers . . « « o o o « & o ¢ « 7-3
7.3.4 Control Card Generator « « « « « . 7-3
B0 M. « .« o 4 v v r e e E e e e W E e 8-1
St IRCYOGUEEIMN G o 6 v o v e b e e e W e 8-1
O:):] PEPOIE: ¢ 5 ¢ o v v s 5 5 65 % 5% 8 5 % 8 & 8-1
8.1.2 Terminology and Concepts 8-1
8.2 Functional Overview « « ¢« ¢ v ¢ v ¢« ¢« ¢« o 4 & 8-3
8.2.1 IMpUb/OMEINL o « ¢ o v v 0 v v e s s e 8-3
8.2.2 Module Components. . . . « « « v v« o o o o 8-3
e — PRp— - P, e — —

i~ = b e e ..

9.0

8.3

Component Module Logic« « ¢« « ¢ o . . 8-3
83 DDA DB ENT o sl i ar s e o, dhiheREeH fasta tal e e 8-3
8.3.2 User Level Routines « « « v ¢ &« o & 8-6
8.3.3 Mid Level Routines. « ¢« v ¢« « « . 8-6
8.3.4 Table Access Routines « . « « « « . 8-6
........................... 9-1
IntrodUCtion o ¢ o v o oiis @ o s e e S e 9-1
gLl Punposel ool s e s D e e e e . 9-1
9.1.2 Terminology and Concepts. « « 9-1
Functional Overview. . . « « ¢ v ¢ ¢ ¢« ¢ « o o o o« & 9-2
ge2:1 Input/0utbuts o ¢ ol e e 9-3
9.2.2 Module Components « « ¢ « ¢« ¢ « « & 9-4
Component Module Logic « « v v o . . 9-5
QeIal ASDDBAY o v R T L e e e e e 9-5
9.3.2 User Level Routines « ¢ ¢« « « . . 9-6
9.3.3 Mid Level Routines. 9-6
9.3.4 Table Access Routines 9-6

— . . - P—~ . -

1.0 INTRODUCTION

The Database Systems Research Group at the University of Michigan
has developed a Data Translator which is capable of reorganizing WWDMS
databases (Sequential, ISP, and IDS) by altering the logical and physical
structure. The work was completed on a Honeywell 6060 computer under a
contract from the Command and Control Technical Center WWMCCS ADP Director-
ate (Code 400) of the Defense Communications Agency. The Data Translator
is a complex and sophisticated software package, yet is understandable
and easy to use. This manual describes the high-level components and
program logic for each Data Translator module.

This program logic manual is directed toward two groups of people:
users of the Data Translator who desire some insight into "how it works"
and programmers who will maintain the software. The manual is written in
a manner that it could be understood by people with no prior experience
with data translation. However, the reader should have a firm grasp of
database concepts and terminology and should be knowledgeable of Honeywell
software systems (especially IDS/1). The reader should also have some
{aw;&iirity with the facilities of the World Wide Data Management System

5)«

1.1 History and Overview

This Data Translator is the product of many years of research and
development. Previous Translators lacked the features and performance
of the current release. Refer to Table 1-1 for a comparison of Data
Translator features. The Version I was developed to show the feasibility
of a generalized Data Translator. Version II was an extension of Version
I since it was capable of handling tree-type data structures. The Version
IIA Release 1 was designed in response to demand for a restructuring Data
Translator. The Release 2 had improved performance and more features
than the Release 1 Data Translator. Version IIB Release 1 offers still
more improved performance and more features than Version IIA Release 2.

As diagrammed in Figure 1-1, the data translation process consists
of six separate steps. The first two steps involve writing descriptions
of the source and target databases using their MD sections and level
61 extensions. Those descriptions should be run through the IDS Analyzer
to produce source and target SDDL (Stored Data Definition Language) tables.
(The terms source and target refer to the old and new databases.g The
third step 15 encoding the source-to-target transformation in the TDL
(Translation Definition Language) and running the TDL Analyzer to produce
TDL tables. The fourth step, Reader execution, creates the Restructurer
Internal Form (RIF) of the source database(s). The Restructurer produces
the Relational RIF database in the fifth step. The target database(s) is
produced by running the Writer.

Overall, the basic steps of the translation process can be divided
into two distinct phases - data description and translator execution. The
remainder of this section describes the steps in more detail.

PRSI

J3qunu dajs - u

1-2

u
94N30931Yddy | 9Sed|3Y FI] UOLSUIA
-1 a4nbi4
\/
ﬁ\\|||llJ £t |
Bk o 324n0g
: ¢ T J34N3INUISAY | J3peady
S - v
aseqey eg T
mmmwmcu
136uae]
salqel
e sa|qel 1aL sa|qel
1aas 1aas
39buey 324N0S
e s)
43z | euy 492K | euy 43z | euy
2 Sal ¢ 101 Sal
L
A
uot3o3s (W uor3diaasag uoL323S W
pajuawbny 1aL pajuawbny

13949V1 324n0S

1-3

L-L @lqel
abenbue] uorjiuiyag uorjeqsuea) - Al
abenbuey uoijtutjag ejeq paaols - 100S«
Leuotle|ay Letjsed suwos SaI°dSI Sa1“dsI
pue /| RIUBWRADU 1aL LeL3uanbag LeLjuanbag LL61 | 9sea|ay
JA0om]aN 933 dwo) aW SaI 939 dwo) SWOMM SWAMM AIne | 911 uoisaap
Leuotieay SaI‘dSI
pue [eJudWRAIU | al ¢ LeL3uanbas 9/61 2 9sea|dy
}JA0MI3aN 333 duo) aw Sal 3131 dwo) Sal SWOMM J3QuRd9Q | YII UOLSABA
1al
LeJUBWIUOU] aw Sal SHTLS 961 | aseaay
A A0M3 BN 3wos Jgas || ~Svedl sseqeiRyg Sal sal aunp | YII UOESUIA
¥40M33N |NSAdMOd

pajuaus |duf
Ledtyd4eud Ly auou --<- |SUOljPUMO}SURIL ———- -— JON [1 UOLSUBA

Ledtyaseuaty paub sag

Lel3uanbag LeL3uanbag

SWAMM SWAMM
LedLydJeuaLH auou 1aas auios SdIN ‘SdIN €L61 I UOLSJ3A
LaPOKW uorje|suea] | ys4dzAeuy | buranionuaysay Swaa SWaa pa3a|dwo) Jojejsueda)
ejeQ LeLyaed abenbue 38bue] 924N0S ajeq eieqg

Leuadju] / L eJuawaudu]

s ———

T

1-4

——

&

sa|qel
1aas
33bue]

<=

sa|qe]

g, —

324Nn0g

uolje|suea] eieq 4o om] pue auQ sdais

2~1 24nbL4

sd|qel 70aS 39bae] 9jeau) :omy dals

qz-| 34nb14

49zA | euy uo13995

SjusWal ©YS

QW 396ue]
papualx3

Sal

sa|qel 7@aS 324n0§ ajead) :auQ d93s
eg-| a4nbi4

L9 L2A97 PPY

SjusWR} LIS

uo13935 QW
sal 39bae]

uo1399s
492K | euy ¢ W 994N0S
sl Papus}x3

19 13A37 ppy

01333 QW
S@I =3%4no0S

e e e e . g

1-5

1.2 Database Description

The Data Translator is a description-driven process. The Translation
modules must know the format of the source and target databases and the
rules for creating records and chains in the target database from the
records and chains in the source database.

The descriptions of the source and target databases are the source
and target MD sections and additional information needed to restructure
the database. If the source or target database is IDS, no new MD section
is necessary. If the source or target database {s WWDMS Sequential or ISP,
however, an IDS MD which describes the database will have to be written.
After the MD sections have been collected or written, and additional infor-
mation encoded as special level 61 statements, the extended MDs are ready
to be used. The IDS Analyzer uses the extended MD sections to produce
source and target SDDL tables. These first two steps are shown in Figure
1-2.

The SDDL tables are databases which hold information describing the
source or target database. SDDL tables are analogous to the IDS Definition
Structure which describes IDS databases. Even if multiple source or target
databases have been described, there will be only one source and one target
SDDL table file. The IDS Analyzer is documented in Section 2.

The final description to be written details the transformation between
the source and target databases. That description must be written in the
Translation Definition Language (TDL). The TDL describes how to create
target records using the source records and chains. It is imperative that
the TDL description be correct and validated. If the user does not write
the TDL description properly, the output of the Translator will be invalid
ard the Restructuring will have to be repeated.

The third step of the Translation process is running the TDL descrip-
tion through the TDL Analyzer to produce TDL tables. The TDL tables cannot
be created until both source and target SDDL tables have been created. The
TDL tables are an internal representation of the TDL description which the
Restructurer can conveniently use. TDL analysis is shown in Figure 1-3 and
described in Section 3.

R ——e®
TDL > TDL TDL
Description Analyzer Tables

Target
SDDL
Tables

Figure 1-3
Step Three - Creating TDL Tables

—

e

a

1-6

1.3 Data Translator Execution

The final three steps involve the execution of the Data Translator,
thereby translating the source data to its target form. The Reader,
Restructurer, and Writer modules are executed in sequence. The Reader
converts the source database(s) into a logically equivalent ADBMS database
called the Source RIF. (See Section 7 for a description of ADBMS). The
Restructurer converts all or part of the Source RIF into an ADBMS database
called the Relational RIF. Finally, the Writer produces the desired
database(s) from the Relational and Source RIFs.

The Reader

There is one Reader module for WWDMS Sequential, ISP, and IDS file
systems. It sequentially accesses the source database(s) and produces a
logically equivalent Source Restructurer Interrial Form database (SRIF).
Figure 1-4 shows the Reader process and the Reader is described in Section 4.

The Restructurer

The heart of the Data Translator is the Restructurer module. It uses
information stored in the TDL tables to create-a Relational RIF from the
data in the source RIF. The Restructurer is described in Section 5 and
Figure 1-5 shows the Restructurer process. '

The Writer

The last step of the translation process is running the Writer, The
Writer populates the target database(s) using the target (source + relational)
RIF and the target SDDL tables. The Writer is shown in Figure 1-6 and the
Writer is documented in Section 6. '

Source
1DS
Database

1-7

(

Source IDS
MD Section

(IDS only)

Reader

Step Four:

Figure 1-4
Creating the Source RIF

Source
RIF

1-8

gggrce > Restructurer|.

A

Y

TOL
Tables

. Figure 1-5
Step Five: Creating the Relational RIF

1-9

~ Target RIF
-~
) ~
€ R
N //
S I
Target IDS
l | MD Section
Source
| RIF |
| (IDS only)
| I
|
I ; \/
| I
P Writer
Database|
B '
| I
Relation-
| fa1 RIF |
| M '
l l
L J
#
~ 7

Figure 1-6
Step Six: Creating the Target Database(s)

— - . » et — Y~
—— S 0§ S—

2.0 IDS ANALYZER

The first module of the translation process is the IDS Analyzer
which takes the user'sdescription of the source or target database and
converts it to the Data® Translator Stored Data Definition Language (SDDL)
tables. The SDDL tables are subsequently used by all remaining translation
modules, e.g. the entire translation process is table driven.

2.1 Introduction

This section describes the capabilities of the IDS Analyzer as well
as some of the relevant terminology.

2.1.1 Purpose

The role of the IDS Analyzer is to compile/analyze statements in a
user friendly language into the internal tables used to drive the translation
process (e.g. SDDL tables). Two tables (SDDL) exist, one for the source
database(s) and one for the target database(s); e.g. if the user has three
source databases that are to be combined into one target database, the
source SDDL tables describe all three input databases and the target SDDL
tables describe the output database.

The input database descriptions to the IDS Analyzer are an augmented
IDS MD section. Extension is necessary because certain information needed
by the Data Translator algorithms is unobtainable from a "straight" IDS
MD section. If the database being described is IBS, the MD section already
exists, but for ISP or sequential files the MD section must be written ac-
cordina to specific rules given in Section 3.7 of the Version IIB R.1
User Manual. A1l extensions to the MD section are accomplished by adding a
new level to the lanquage, e.q. the 61 level. A sample extended MD section
prototype is shown in Fiqure 2-1.

A list of the required extensions to the MD section is (terms defined
in Section 2.1.2):

a) Primary key definition (the unique identifiers for records)

b) Contained-in-repeating group identification

c) Phantom pointer relation identification

d) Match-key relation identification

e) ISP/sequential record type identification

f) Special data types

2.1.2 Terminology and Concepts

The following is a 1ist of most major terms used in describing the
function and algorithm of the IDS Analyzer.

2-2

01 record entry

02
02
02

02
61
61
61
61

field entry

field entry

group entry

03 group entry

61 extension
04 field entry
04 field entry

61 extension

field entry

extension

extension

extension

extension

98 chain entry
98 chain entry

01 record entry

02
61
02

field entry
extension
field entry

Figure 2-1

Prototype Extended IDS MD Section

IDS Data Query

2-3

- A Honeywell package used to convert the extended
IDS MD section into an intermediate database, the
IDS Data Query File. This is used as input to the
IDS Analyzer. The Data Query File is an IDS data-
base which contains the extended IDS MD section
as its data.

Extended IDS MD section - An IDS MD section describing the user's databases

SDDL tables

- but. augmented with level 61 statements. .There are
two extended IDS MD sections, one for the source
and one for the target.

- An ADBMS database containing a Data Translator
useable description of the source (source SDDL
tables) database or target (target SDDL tables)
database. A complete data definition of the SDDL
tables is given in Section 11.0 of the Version IIB
R.1 Low Level PLM. b

Contained-in-repeating group (CIRG) - Certain record types have repeating

groups within the physical confines of the record.
Figure 2-2 is an example of a CIRG.

Phantom pointer relations - A technique of 1mp1ementing an IDS chain with-

Match key relations

Primary keys

Set-significant items

out IDS knowing about it. The user selects a
field and places reference codes in it which point
to other records. No 98 level chain is used to

2-3.

- Another technique for implementing relations with-
out IDS control. Two records are related together

by having item values match, The parent, dependent

and key items must be described using leyel 61
statements. Figure 2-4 is an example.

- Each record instance must be uniquely identifiable
from all other instances of its type. This is
accomplished by designating items in the record as

primary keys. It is possible that a record may not

have the primary key items in the record itself,
instead item values from owner record types assist
in the composition of the primary key.

- These are additional items added to the records to

implement the Restructurer algorithm. A set-signi-

ficant item is created in a member instance to
correspond to all owner primary key items. Set-
significant items may be primary keys. Their use

in restructuring is completely explained in Section

2 of the Version IIB R.1 User Manual.

define the relation. An example is shown in Figure

2-4

01 STATES-IN-UNION TYPE IS 5 RETRIEVAL VIA CALC CHAIN.
02 STATE-NAME PIC X(10).
02 URBAN SIZE 336.

03 CITY-DATA OCCURS 14 TIMES.

CIRG

98 CALC CHAIN DETAIL RANDOMIZE ON STATE-NAME.

Figure 2-2

04 POPULATION-OF-CITY PIC 9(8) COMP-1.
04 CITY NAME PIC X(10).

Sample Contained-in-Repeating Group (CIRG)

Record type A, reference code =2013

" T]
3127 CHAIN POINTERS
p \ &
e S
=SNG
user fields
phantom '
pointer :
Record type B, reference code = 3127
T
» l CHAIN POINTERS
— 1

~

user fields

Figure 2-3
Sample Phantom Pointer

e ————

2-5

Record type FIGHTER

T
O
1 ' L)

' ' '
TOMCAT CHA}N PO}NTERS

J

user fields

\ :
Record type SQUADRON

match-\
]ke¥ .\\ H 7 v
relation ' . ' ;
Fighter-name TOMCAT CﬂAIN4FOINTERS
(. J
Iane-type'“
Figure 2-4

Samplie Match-key Relation

v ——— - - - —~—

2-6

2.2 Functional Overview

This section describes the IDS Analyzer environment, the input and
output files and the components that make up the University of Michigan
supplied object code (e.g. "the IDS Analyzer").

2.2.1 Inputs/Outputs

Figure 2-5 is a grand overview of the IDS Analyzer process. There are
three programs that must be run in .order to produce SDDL tables; initializa-
tion of the IDS Query Dictionary database, population of the Query Dictionary,
and finally executing the IDS Analyzer. It is important to realize that
the Query Dictionary is being used for a completely different role than
originally designed for. For the Version IIB R.1, the Query Dictionary is
a machine-encoded, structured representation of the contents of the extended
IDS MD section and hence is suitable for input to the IDS Analyzer.

A more detailed view of the IDS Analyzer environment is depicted in
Figure 2-6. The file codes for each file are aiven in the lower left-hand
corner. Examples of output can be found in Section 5.1 of the Version IIB
R.1 User Manual. Each component not previously described is detailed as follows.

Extended MD/database - Since the SDDL tables can describe up to five user

and combined extended databases, an extended MD section must be prepared
MD section for each database. These are merged together by

the user (resolving duplicate names and record id's)
into one input file, the combined IDS extended MD
section. :

IDS Translator in query mode - The COBOL-IDS compiler ($ IDS) modified to
' ‘ build the IDS Query Dictionary (see IDS Data Query,
DD46, DD47)

IDS QUTI : - Utility program to initialize IDS databases.

IDS Analyzer R* - Object code of the program that constructs the SDDL
tables. Written by the University of Michigan.

Run-time parameters

Defines all record types and the database to which
they belong (there being no other way of telling
them from the combined extended MD section)

SDDL tables - ADBMS output database

SDDL DBTF - ADBMS table file that describes the SDDL table layout
prior to populating the database. The role of
ADBMS table files is fully described in Section 7
of this manual.

————————y S

2-7

- —

U0}3PIU) B[qRL 0CS JO MBLAISAQ

gt ey

-2 danbiy

i

:] wIzawwy
s3ngyL [Ty sal
100s

,AI|4 . 3nduj A43nd

*1210

SaI

!

Sjusullejq *

(euo131ppy

S

1nd1no

300W
A43ND ¥ol
-VISNWIL Sal

uo1323s QW
SaI papuaixl

!

pranayiy
breays)

uo1323s
GW saI

2-8

— - —

3nd3ng
dunp Jasp

solqel
1aas

€0

gy

3J40daY U0UUAT

SY |
sJdd3aweded

awl}-uny

€0 A3y

4140
A40M

\I’/
Sl
aseqejep

A40M
LeuJdju]

—

x4

J9zheuy Sq [<€—

J43zf|euy S@I ay3 buiyndax3
9-Z dunbL 4.

9Lt}
andul

S0

yojeuaos

S

a

aseqejep
yoea 404

apualx3

)
Kae
-uotldLa
Kaanp W —— 1nd
Sal Sal
apoy Auand
ut 20 Aoy
loje|suea] SqI
(PauLquod)
uoL3dssS W
SQI Ppapuaix3

2-9

Internal Work database Another ADBMS database used for a variety of
uses by the IDS Analyzer. It contains tables for
- keeping track of symbols encountered
- collecting information on which records belong

to which databases

- primary key information as described by the user.

Work DBTF - Similar to the SDDL DBTF except that it defines
the structure of the Internal Work database

Scratch input file Null input

Initialization report A brief page containing messages of ADBMS database

initialization.
Error report - A11 IDS Analyzer error messages printed.
User dump output - A useful report summarizing in easy-to-read format

the contents of the SDDL tables. It serves as a
reference when writing TDL.

2.2.2 IDS Analyzer Components

The most convenient breakdown of the IDS Analyzer is by the way it is
stored in memory. Each component occupies a separate link overlay and at any
given time only one link plus the main link is in core. Each component is:

Control structure

Database initialization

Constructs SDDL tables except for set-significant items
and primary keys

Finishes SDDL tables by adding primary keys and set-
significant items.

Writes the IDS Analyzer user-readable SDDL table dump
report.

1. Main link
2. INIT link
3. IDSAN link
4

. BLDPK Tink

5. REPORT Tink

2.3 Component Program Logic

The essence behind the algorithm of the IDS Analyzer is the transfer of
data from the IDS Query Dictionary to the SDDL tables. To understand the
process, the database schemas of the Query Dictionary and SDDL tables are
shown in Fiqures 2-7 and 2-8.

Only a partial schema diagram is shown in Figure 2-7 for the SDDL
tables, complete details are given in section 11 of the Version IIB R.1
Low Level PLM. A brief definition of the contents of each record type is as
follows:

0B - One instance per user database being described. It has the name
and type (IDS, ISP, SEQ) stored within.

GROUP - Each user 01 record plus all contained-in-repeating groups have
their own instance of a GROUP record.

SRR SRR

SYSTEM

i { DB) \
GRPSIN RELS
RELOWN
GROUP RELAY
RELMEM

ITEMS

HASSIG F

ITEM

d

Figure 2-7
Partial SDDL Table Schema

—y—

2-1

RELAY - Each 98 level chain, phantom pointer relation, match-key relation,
relation between the containing and contained-in group and all
entry point relations (e.g. SYSTEM to CALC records) have their own
RELAY record instances

ITEM - Every field plus all set-significant items are represented by
ITEM records

The sets in the SDDL tables have the following functions:

GRPSIN - Each group (e.g. record or CIRG) is attached along GRPSIN to the
database that it belongs to.

RELS - A1l relations whose owner record is in the same database are
collected together along RELS. ‘

ITEMS - A1l user and set-significant items belonging to the same group
: are attached to the corresponding GROUP record along ITEMS.

RELOWN - Each relation that a group owns is found along RELOWN. Similarly,
given a relation, the owner group is identified by 'heading' the
RELOWN set.

RELMEM - Same as RELOWN except for relations that a group is a member of.

HASSIG - A1l set-significant items that were derived from the same relation
are collected together along HASSIG.

The IDS Data Query Dictionary has a structure shown in Figure 2-8.
Only the portions of the structure actually used by the IDS Analyzer are
displayed. The contents of the records are briefly described here, a more
complete explanation is given in IDS Data Query Installation DD47.

Record-Definition

One for every OJ record type

Field-Definition One for every 02 field
Validation - One for every 02-49 entry
Description - One for every level 61 entry

Master-Definition

One for every 98 chain master entry.

Detail-Definition One for every 98 chain detail entry.

As can now be seen, the extensions to the IDS MD section that are
coded by the user are stored internally as Description records. The Descrip-

tion records for CIRG definition are located immediately beneath the Validation

record that defines the CIRG. Primary key, match-key and phantom pointer
relation information are always coded directly following a special field in
every record, 02 TRANSLATION-INFORMATION SIZE 0. An example extended MD
section is given in Figure 2-9 with the corresponding IDS Query Dictionary
contents shown in Figure 2-10.

e vy

FIELD-CHAIN

Field-
Definition

VALIDATIO

N-CHAI

Validation

DESCRIPTION-CHAIN

Description

Defini

Record

tion

DETAIL-CHAIN

Yy

Detail

‘| Defini

tion

Figure 2-8
"Used" Portions of the Query Dictionary

MASTER-CHAIN

Master-
Definition

HAIN-CHAIN

IDS QUERY

01

98
98

01

98

CITY TYPE IS 1 RETRIEVAL VIA CALC CHAIN.
02 CITY-NAME PIC X(15).
02 DEPARTMENTS SIZE 100.

03 CITY-DEPTS OCCURS 10 TIMES SIZE 100.

61 OCCURS 10 TIMES.
04 DEPT-NAME PIC X(10).
61 EOG.

other 02-49, 61 entries
CALC CHAIN DETAIL RANDOMIZE ON CITY-NAME.

HAS-OFFICIALS CHAIN MASTER CHAIN-ORDER IS AFTER,

OFFICIALS TYPE IS 2 RETRIEVAL VIA HAS-OFFICIALS CHAIN.

02-49 + 61 entries

HAS-OFFICIALS CHAIN DETAIL SELECT CURRENT MASTER.

Figure 2-9
Sample Extended IDS MD Section

—

2-14

NOILINI43Q Y3ILSVW

6-2 4n6LJ 4O UOLID3S QW PAPUIXI WOJH (NG AURUOLYOLQ A4anD ST

NOILINI43G 11V1i3a

XQv3In-39vd

NIVID
~NIVHD

0l-2 3@4nbL4

NIVHI-NOT1d1¥IS3d

SIUIL
0l SuNJIQ

NOTLVG LA E NIVID-NOI LdI¥DS 30

S 440

NIVID
-11v13d

NIVHI-YILSVKW

NOILINI430-0¥0I3y

SIN3WLYVd3a

NIVHD
-NOILVAITVA

NIVHI-aT314

JHWVN-ALID NOILVQITVA

1
NTVIOINOT LVOT VA

NOILIN

IVN-ALID } 1 330-0731 4

-

2.3.1 MAIN Link

This component is very small, serving only to link in the other
three components.

2.3.2 INIT Link

The two ADBMS databases, SDDL tables and Internal Work database are
initialized using the contents of their respective ADBMS table files.

2.3.3 IDSAN Link

Ninety percent of all processing takes place within this component.
Conceptually, the algorithm is simple. The program traverses the IDS Query
Dictionary building the appropriate SDDL table records as it plods along.
The actual transformations between the Query Dictionary and SDDL tables are
as follows:

Record-Definition => Group records
Field-Definition => ITEM records

Validation => GROUP (CIRG) or ITEM records or RELAY (CIRG re-
: ' lations) '

Master-Definition, => RELAY records
Detail-Definition

Description => GROUP (CIRG), RELAY (match-key or phantom pointer
relations)

Additionally, Description records that identify primary keys are entered
in a different format within the Internal tables for use by the next link.

2.3.4 BLDPK Link

Set-significant items can only be created once every group's primary
keys have been defined and since set-significant items may also be primary
keys, all processing related to these entities is deferred until this com-
ponent which is executed upon the completion of the IDSAN link.

The basic algorithm is to locate groups whose primary keys are solely
user items and indicate that in the SDDL tables. Given this it is now possible
to generate set-significant items for record types whose owner record types
have already had their full primary key built. The process is repeated
recursively until all set-significant items and all primary keys have been
generated. The process can be visualized as working from the top of the
database downwards.

2.3.5 REPORT Link

The SDDL tables, by now completely constructed are traversed so that
a report summarizing the contents is produced. By database, every group is
listed (with each of its items and with each relation that it is an owner

or member of).

Then all relations with owner and member groups are summarized.

3.0 TDL ANALYZER

3.1 Introduction

After the SDDL tables have been successfully constructed using the IDS
Analyzer, the user must specify his desired restructuring in a translator-
recognizable form. This user-written restructuring specification is called
the TDL (Translation Definition Language) description. Using the TDL, the
user directs the construction of target records by specifying a traversal
of the source records in the source RIF. This TDL Description is then
analyzed and tables are produced which drive the translator.

3.1.1 Purpose

The purpose of the TDL Analyzer is to process the user-supplied TDL
Description and produce the TDL tables. These tables are then used to
drive the translator during the execution phase.

3.1.2 Terminology and Concepts

The terminology used in the TDL Analyzer section is briefly described
below.

TDOL - Translation Definition Languagé
A language used to describe the translation from source to target.
TDL Tables - An encoded version of the TDL description wﬁich is produced
by the TDL Analyzer

SDDL - Stored Data Definition Language
A language used to describe the source and target databases.

Grammar - The structure and rules that describe the syntax of the]angu&ge.

Reserved Word - A word in the language that has specific semantics associated
with it, and hence is unsuitable for use as a user word.

Token - A basic symbol in the language such as a word or punctuation.

The legal syntax of sentences in the TDL is defined by a grammar written
in Backus-Naur Form (BNF). This BNF grammar is processed by a grammar
analysis program which produces a set of parsing tables. It is this set of
tables that drives the TDL Analyzer as it analyzes a TDL description. All
of the legal sentences of the language are encoded in these parsing tables.

3-2

3.2 Functional Overview

3.2.1 Input/Qutput
The input/output relationships for the TDL Analyzer are depicted in

Figure 3-1.
TDL
Description
_ — TDL
Parsing Tables
Tables
e i i
TDOL
atabase —>~
PTable Analyzer
File
A
s ie®
Source
SDDL
Tables Listing and
L\§___’,) Diagnostics
Target
SDDL
Tables
Figure 3-1

: The inputs to the TDL Analyzer consist of the user-written TDL description,
the parsing tables, source and target SDDL tables, and the TDL tables database
table file. The TDL description describes the translation to be performed in

3-3

a translator-recognizable form. The parsing tables are a set of tables
derived from the TDL grammar rules which define the legal sentence forms.
The source and target SDDL tables are output from the IDS Analyzer, and
the TDL tables database table file is used to initialize the TDL tables
databases which are produced during the TDL Analyzer run.

The output from the TDL Analyzer consists of the TDL tables and a
listing of the TDL description. The TDL tables are then input to the
translator execution phase. The listing of the TDL description will have
error/warning messages where appropr1ate and a set of timing statist1cs
at the end.

3.2.2 Module Components

Functionally, the TDL Analyzer consists of three main components.
The Control, Syntactic, and Semantic modules make up the major components.
The Control Component performs initialization and wrapup. The Syntactic
Component is responsible for analyzing the syntax of -the TDL description,
while the Semantic Component analyzes the semantics of the TDL description

and constructs the TDL tables. The relat1onsh1p of these three components -

is dep1cted in Figure 3-2, and their funct1ons are described in greater
detail in Section 3.3.

Control
Component

Syntactic
Component

Semantic
Component

Figure 3-2

3.3 Component Program Logic

The function of the TDL Analyzer is to take as input the parsing
tables and a TDL description and produce a set of TDL tables containing the
information from the description. The TDL Analyzer consists of three main
components as shown in Figure 3-2.

3-4

3.3.1 Control Component

The control component performs initialization and wrap-up functions
for each Analyzer run. System dependent variables are initialized by a
FORTRAN BLOCK DATA section at load time. TDL Grammar dependent variables
are set by an initialization routine as the parsing tables are read into
storage. After completely processing a TDL description, the Control
Component provides wrap-up functions, which include closing all databases
and providing timing statistics.

3.3.2 Syntactic Component

The Syntactic Component reads the TDL description as a sequential

stream of characters and separates it into the basic symbols of the language

called tokens. These tokens can be a user name, a reserved word, an
integer, a literal, or a float. The Syntactic Component takes the tokens
and the grammar rules encoded in the parsing tables and makes a call to
the Semantic Component whenever a phrase of the language is recognized.-
This process continues until the entire TDL description has been processed.

The Syntactic Component uses the MSP(2:1;1:1) syntactic parser described
by McKeeman et.al.[GG1]. The parser is driven by the grammar tables
and based on a set of parallel stacks. Each incoming token is examined to
determine whether it should be added to the parse stack or not. The '
decision is made by consulting the grammar tables and considering, at most,
the top two tokens on the stack and the incoming token (i.e.,(2,1) context).
When the token is stacked, the next token from the input is evaluated in
the same manner. When a token is found which is not to be stacked
immediately, the 1ist of legal reductions of the grammar is examined to
find the reduction(s) which match the top of the stack. If more than one
match is found, the grammar tables allow a (1,1) context check. The
potential result of each of the matching reductions is considered in
relation to the token that would be immediately below it on the stack if
the reduction were made and the incoming token were stacked. Il1legal
combinations are rejected. After the correct reduction has been determined,
the appropriate semantic routine is called to process the grammar rule
being applied. The parse stack is then reduced and the process is
continued with another stacking decision for the incoming token. When all
the input tokens have been processed and the parse stack has been reduced
to a single token (called the goal symbol), syntactic processing is complete
and control is returned to the Control component.

3.3.3 Semantic Component

The Semantic Component builds the TDL tables. The Semantic Component
is called by the Syntactic Component with a parameter indicating what
reduction is being made, and also which tokens are on top of the stack.
There also exist several associated stacks in parallel with the parse
stack. They contain information from the description related to the
corresponding token on the parse stack. For names and literals, the
associated stacks contain the index into free storage of the character
string and a flag to indicate whether this is the first time the name has

,.,_.4

3-5

been used. For integers, the associated stacks contain the values. These
values are set by the Syntactic Component when it stacks a token. The

Semantic Component manipulates the values in the associated stacks and
uses them to build the output tables.

Bk

4.0 READER

4.1 Introduction

The Reader is the first module of the Data Translator to access the
user's database. It can read any combination of up to five IDS-I, ISP or
WWDMS sequential databases. It can be run incrementally and its progress
can be controlled through a job status file. The Reader is driven by
information stored in the source SDDL tables.

4.1.1 Purpose
The Reader produces the source Restructurer Internal Form (RIF)

database from the user's source database(s). The source RIF database is
logically equivalent to the sum of the data in all source databases.

4.1.2 Terminology and Concepts

Reader - The Reader is physically represented by two software modules
called the Phase 1 and Phase 2 Readers. For each database,
the Phase 1 Reader must be run before the Phase 2 Reader can
be run.

Source Database - The user's database which will be translated. The Reader
can accept three types of source databases: WWDMS
sequential, ISP, and IDS.

SRIF - (Source Restructurer Internal Form) - An ADBMS database which
is logically equivalent to the source database(s). It is
passed along to the Restructurer and Writer modules.

CIRG - (Contained-in-Repeating-Group) - A named collection of items
in a record. In COBOL, a CIRG is defined as any field with
an OCCURS clause.

Phantom Pointer Relation - A set or relation in an IDS database which is

maintained by the user. Set membership is based on IDS
reference codes stored in user.data fie1ds.

4.2 Functional Qverview

4.2.1 Input/Qutput

The Phase 1 and 2 Readers do not have the same inputs and outputs.
This section describes the files for Phase 1 and 2 which are inputs,
outputs, or both.

4-2

Inputs:

Source Database (PH1 and PH2) - The source database is needed in both
Reader phases. Sequential databases may be on tape, ISP databases
require the ISP index file, and IDS databases must include all
subfiles.

Source SDDL Tables (PH1 and PH2) - The description of the source data-
base is stored in the source SDDL tables. It is an ADBMS database
produced by the IDS Analyzer.

Run-time Parameters (PH1 and PH2) - The run-time parameter file contains
the name of the database to be read, the number of records to be
read, the name of the job status file and how often it should be
updated and Keywords specifying whether this will be the first, last,
or an intermediate run.

Accessor ‘Object (PH1 and PH2) - The Accessor (IDS, ISP or SEQ) is compiled
before every Reader run. This is done so that the IDS structure
tables for the database being read will be available for the IDS
Accessor. The ISP and Sequential Accessors are also compiled although
they never change.

Outputs:

Report (PH1 and PH2) - The Reader produces a report which contains the
run-time parameters, initialization information and selected record
dump of the SRIF. A1l error messages are also on this report.

Source RIF (PH1 and PH2) - The primary output of the Reader is the source

IF. It is the logical representation of the source databases and
is input to the Restructurer.

Inputs and Qutputs:

Deleted Records - The Phase 1 Reader produces a file of SRIF keys of all
records which were logically deleted in the source database(s).
Those records are deleted from the SRIF at the end of Phase 2.

Internal File (PH1 and PH2) - The Reader's internal file is used to maintain
information needed by the Reader between increments of a database and
between Phase 1 and Phase 2.

Other Inputs and Qutputs:

The Reader uses some other inputs and outputs during only the first
run of the Phase 1 Reader. The Work Database used by the SRIF DLL Writer
is initialized using the ADBMS Database Tables File (see Section 7.0). The
SRIF DDL Writer produces the ADBMS DDL for the SRIF, which is then used
by the ADBMS DDL Analyzer to initialize the SRIF file.

———

_ad

4-3

4.2.2 Reader Components

Phase 1 Reader

The Phase 1 Reader has six modules (see Figure 4-1).

1. Main Program - Performs major Reader initialization and controls the
link overlays.

2. SRIF DDL Writer - The SRIF DDL Writer produces the ADBMS DDL state-
ments for the SRIF using information stored in the source SDDL tables.

3. Table Initializer - The Reader's in-main memory tables are initialized
by this module. The internal tables allow the Reader to access data
stored in the SDDL tables in less time than going through the SDDL
tables.

4. Data Movement - This module transfers the data from the source data-
base to the source RIF.

5. Accessor - There are three Accessors, one each for sequential, ISP,
and IDS databases. The Accessor retrieves every record from a data-
base and returns it to the Data Movement module.

6. Wrapup and SRIF Dump - When the Data Movement module is done, the

Wrapup module sets up the Reader for the next run and then a few records
from the SRIF are dumped.

Phase 2 Reader

The Phase 2 Reader (see Figure 4-2) has five modules of which four
(Main Program, Tabie Initialization, Accessor, and Wrapup/SRIF Dump) are
essentially the same as in Phase 1. The only difference is the Relation
Linker which links all the records together in the SRIF in the same
manner in which they were linked in the source database.

4.3 Component Program Logic

4.3.1 Main Program

The Main Programs for both Reader phases are very similar. They read
and analyze the run-time parameters and set up internal variables before
calling either the Data Movement or Relation Linker modules. The Main
Programs also control the link overlay structure for the Reader.

4.3.2 SRIF DOL Writer

The first module to be executed after the Phase 1 Main Program is the
SRIF DDL Writer. It produces the ADBMS DDL for all of the records, items

4-4

S3|Npol J3peay | aseyqd
=t 94nbL4

aseqejeq
904nog

EDR| sajqel
324N0g

40SS320Y 5. dapeay
'

dung 41yS
pue dndeupm

JUBWIAOY

43z L[BL3LU] 497 LM
eyeQ .

Ilqe} 100 4I¥S

weabouy
utrey
L 9seyqd

414
324Nn0S

Y

dung 41¥S
pue
dndeuapy

S| Npol uapeay gz aseyd
2~ 34nb14

40SS322y

JyuL]
uolje|ay

weuaboug
urey
¢ 9seyq

sa|qe}
5, J9peay

oLjezijerytug

alqey

™

4-6

and sets in the source RIF. The records, items and sets in the source
RIF correspond to logically equivalent records, fields and chains in the
source database. The SRIF DDL Writer is executed only once (during the
first Phase 1 Reader run). After the SRIF DDL Writer is finished, the
SRIF file is initialized by the ADBMS Database Initializer.

4.3.3 Table Initializer

Processing time for the Reader is minimized by getting all the informa-
tion the Reader requires out of the source SDDL tables once for all records
rather than getting the information about one record each time a record
of that type is being processed. Both Phase 1 and Phase 2 Readers have
a table which contains all record and CIRG information and a table which
is an index into the record-CIRG table. The Phase 1 Readers record-CIRG
table is connected to table with item information for each record or CIRG.
In the place of the item table, the Phase 2 Reader has a table with set
information for each record or CIRG.

The Table Initializer goes through the SDDL tables by finding all
record information and then all item or set information for the record.
Then all CIRGs are processed and then the next record is processed until
all records have been completed.

4.3.4 Data Movement

The Data Movement module is essentially the control module for the
Phase 1 Reader. It calls the Accessor for a record from the source
database. After determining the record's type, a record of the corresponding
type is created in the SRIF and the data moved to it. Any necessary data
conversion is performed before inserting the data in the SRIF. Any CIRGs
in the source record are moved to records in the SRIF. CIRGs which
contain only null data are not moved to the SRIF.

4.3.5 Relation Linker

The Relation Linker is the major module of the Phase 2 Reader. It
creates in the SRIF all relations which were present in the source databases.
For Sequential and ISP databases, the algorithm is very simple. For each
record retrieved by the Accessor, the record is made the current owner of
all sets in which it is an owner and added as a member to all sets in which

it is a member. The algorithm is simple because the records are retrieved
in hierarchical order.

The IDS (network) relation linker is significantly more complex than
the ISP/sequential linker. It connects the records in the SRIF together
in the same order as they were along the IDS chain NEXT fields. Phantom
pointer and match-key relations are also constructed by the Relation Linker.

4-7

4.3.6 Accessor

There are three Accessors; one each for sequential, ISP, and IDS
databases. The sequential and ISP Accessors are FORTRAN programs which
retieve all records in a straight-forward manner (an unformatted read for
sequential databases, a call to GETSEQ for ISP databases). The IDS
Accessor is an IDS-COBOL-GMAP program which is compiled before every Reader
run with the MD section for the database being read. It uses information in
the SICT (Slave IDS Control Tables) and the IDS common area .QWRA to
get every record in the database using the IDS RETRIEVE DIRECT verb.

4.3.7 Wrapup and SRIF Dump

Both phases of the Reader dump the first and last records of every
SYSTEM owned set so data values can be roughly validate. The Reader's
internal file is updated so succeeding Reader runs will know where to
start in the database (if the Reader was not finished). The ADBMS set
and record tables are written back to the SRIF to maintain currency across
runs.

5.0 RESTRUCTURER

The Restructurer is the second of the three major modules of the
Data Translator. It must be executed after the Reader has completed and
before the Writer can begin.

5.1 Introduction

This section defines the purpose of the Restructurer and some of
the terminology needed to understand the algorithm explanations.

5.1.1 Purpose

After the Reader has converted the user's source database(s) into
a standard physical format known as the source RIF database, the Restructurer
is called upon to perform the logical transformations specified by the
user's TDL description. The TDL description specifies how the source
data is to be transformed into the desired target format. The Restructurer

.only creates target data records that are different from all source data

records; any parts of the source database which will be in the same form
in the target database as in the source database are not transformed, but
remain in the source RIF database. Target data records created by the
Restructurer are stored in another standard physical format, the relational
RIF database. The Writer then uses the data from the source and relational
RIF databases to write out the user's target database(s).

5.1.2 Terminology and Concepts

This section gives definitions of the terms and concepts used in the
descriptions of the Restructurer algorithms.

Access path - A hierarchical substructure of the source RIF database
which defines a representation of a target record type
in the source RIF. An access path must begin at the
SYSTEM record of the source RIF schema.

ADBMS - The internal DBMS used by the Restructurer and other
modules of the Data Translator.
ADBMS DBTF - (ADBMS Database Tables File) A sequential file which

contains the database tables for an ADBMS database. This
file is output by the DDL Analyzer and contains a
description of the database schema in tabular format.

ADBMS DDL Statements (ADBMS Data Description Language Statements) - Textual
statements used to describe the schema of an ADBMS
database. They serve as input to the DDL Analyzer.

Compatible - An access path is said to be "compatible below" a second
access path if it shares a subtree, starting at the
SYSTEM record, from which the primary key data values are

e~ —

5-2

drawn for the target record represented by the
second access path. If this condition holds, it
becomes advantageous to process both access paths
simultaneously, since the same record instances
are used by both of them.

Database Initializer - A program that initializes a file so that it can be
used as an ADBMS database.

A language analyzer that accepts as input ADBMS DDL
Statements and produces the ADBMS DBTF.

DDL Writer - A program that scans SDDL tables and produces ADBMS
DDL Statements describing the database, suitable for
input to the DDL Analyzer.

DDL Analyzer

Node - Each record on an access path is referred to as a node
of the access path.
Primary key - A collection of data items in an ADBMS record type

whose combined values uniquely identify an instance of
that record type from all other instances of that record
type.

RIF - (Restructurer Internal Form) - The name given to the
standard physical format database on which the Restructurer
operates. - A1l user databases must be converted to this
form before they can be restructured.

Stack - The Stack Builder module takes access paths from the
TDL tables and sets up a data structure, similar to a
stack, which is used by the Source Accessor to retrieve
source record instances from the source RIF database.
While somewhat more complex than a simple stack, this
data structure will still be referred to as simply a stack
throughout this section.

SYSTEM record - Each ADBMS database has one instance of a record type
known as SYSTEM placed in it by the Database Initializer.
The SYSTEM record defines the "top" of the database
schema; entry into the data structure via ADBMS sets
(relationships between record types) starts at the
SYSTEM record. Al1 access paths must also start at the
SYSTEM record.

5.2 Functional Qverview

This section describes the inputs and outputs of the Restructurer, along
with its major components.

5.2.1 Input/Qutput

Figure 5-1 illustrates the inputs required and the outputs produced
by the Restructurer. A brief explanation of each follows.

et ——

5-3

“NAMES"

DL TABLES
(temp)

TARGET
DDL
TiBLEs

—— —— m—

WORK -
DATABASE
TABLES FIL§

Figure 5-1: Restructurer

—
USER-HASH
| RESTRUCTURER g o
RUN-TIME RELATIONAL
PARAMETERS RIF DOL TEXT
RELATIONAL '
RESTRUCTURER RIFIIQBLES
REPORT
SOURCE SQURCE RELATION
RIF R AL RIF gELA}}O"
DB (perm) DB (temp DB (temp perm

Inputs and Outputs

5-4

RESTRUCTURER Driven by the translation information in the
TDL tables, the Restructurer builds the relational
RIF database from the data in the source RIF

database.

RUN-TIME PARAMETERS User-supplied statements that control various
aspects of the Restructurer execution.

TDL TABLES(perm) An ADBMS database, output by the TDL Analyzer, in

which are stored the translation specifications
from the user's TDL description.

"POINTERS" TDL TABLES A copy of the TDL tables, residing on a temporary
(temp) file, in which all ADBMS names have been replaced
with symbolic pointers. The necessary processing
is performed by the Restructurer prior to the actual
' restructuring of the database. This copy of the
TDL tables is used to avoid having to 1nterpret
the same ADBMS literals over and over again each
time a target record is created or a source record .
accessed. This saves considerable process1ng time
during the Restructurer execution.

"NAMES" TDL TABLES A copy of the TDL tables, residing on a temporary
(temp) file. ADBMS names remain unchanged, as in the per-
manent file. ‘
SOURCE RIF DATABASE = An ADBMS database, output by the Reader, which is
(perm) logically equivalent to the user's original source
database(s).
SOURCE RIF DATABASE A copy of the source RIF database residing on a
(temp) temporary file.
RESTRUCTURER.REPORT A report of the Restructurer execution.
RELATIONAL RIF DATABASE An ADBMS database in which the target record instances
(perm) built by the Restructurer are stored. This database

is then used by the Writer in producing the user's
target database(s).

RELATIONAL RIF DATABASE A copy of the relational RIF database, residing on

(temp) a temporary file.
TARGET SDDL TABLES An ADBMS database, output by the IDS Analyzer, that
(perm) describes the data structure of the user's target
database(s).
TARGET SDDL TABLES A copy of the target SDDL tables database, residing
(temp) on a temporary file.

RESTRUCTURER WORK DATABASE An ADBMS database used by the DDL Writer to
produce ADBMS DDL text.

WORK DATABASE TABLES FILE A sequential file containing the ADBMS DBTF for
the Restructurer Work Database. .This file is used
to initialize the work database before it is used
by the DDL Writer.

5-5

RELATIONAL RIF DDL TEXT A sequential file, produced by the DDL Writer,
containing ADBMS DDL statements for the relatlonal
RIF database. It also serves as input to the DDL
Analyzer.

RELATIONAL RIF TABLES FILE A sequential file, produced by the DDL Analyzer,
containing the information from the relational
RIF DDL text in tabular format. Also serves as
input to the Database Initializer.

USER-HASH INPUT A sequential file produced by the Restructurer
while processsing the run-time parameters. If user-
hash statements were given in the run-time parameters,
they are rewritten to this file and serve as input
to the Database Initializer.

The inputs to and outputs of the Restructurer can by summarized as
follows:

TOL tables database

target SDDL tables database
source RIF database

relational RIF database file
Restructurer Work Database file
Work Database tables file
run-time parameter statements

Inputs:

NoOOOhEHEwWwN —~

source RIF database °
relational RIF database
Restructurer Work Database
Restructurer report

Qutputs

W N -
~— s — P e e

5.2.2 Major Components

The Restructurer is implemented as a main control program and six major
components. The relationships between the components are jllustrated in
Figure 5-2, with the arrows indicating the direction of the flow of execution.
A brief explanation of each component is given below.

MAIN CONTROL Directs the execution of the other Restructurer
components; controls most of the link-overlaying
of the code; performs general housekeeping functions.

RUN-TIME PARAMETER PROCESSOR Reads in the user's run-time parameter state-
ments and executes the appropriate initializations, etc.

STACK BUILDER Retrieves access paths from the TDL tables and sets
up a data structure, similar to a stack, which is
later used to drive the Source Accessor.

SOURCE ACCESSOR Driven by the stack produced by the Stack Builder, it
retrieves the indicated records from the source RIF
database and moves the data into the Restructurer's
buffers for subsequent processing.

START

5-6

% RUN-TIME
cm#:m PARAMETER
~<———— PROCESSOR
STATISTICS
- AND
STACK WRAP-UP
»| BUILDER
& SOURCE
pt ACCESSOR || QUALIFIER
CONSTRUCTOR

Figure 5-2: Major Components of the Restructurer

5-7

QUALIFIER Decides whether or not each record instaqce retrieved
by the Source Accessor fulfills the requirements
specified in the user's TDL description.

CONSTRUCTOR Retrieves the appropriate data values from the
Restructurer buffers, constructs target record
instances, and stores them in the relational
RIF database.

STATISTICS AND WRAP-UP Writes out a summary of the Restructurer execution
from data accumulated during the run.

The Restructurer execution can be considered to be a two phase
process. Phase I is controlled by the Main Control program and the
Run-time Parameter.Processor, and consists mainly of general housekeeping
functions. In general, the Restructurer will always attempt to recover from
errors and continue executing in order to find as many errors as possible
in each run. However, the Main Control program also has the repsons1b111ty
of terminating Phase I early if a severe error occirs.

=

The Run-time Parameter Processor is called by .the Main Control program.
It reads in textual statements, written by the user, which control variaous ' ’
aspects of the run: e.g., whether or not the relational RIF database is
to be initialized for the first of a series of incremental runs, whether or
not debug output is to be produced, etc. When finished, it returns control 3
to the Main Control program, along with a flag indicating whether or not
any errors were detected in the run-time parameters. The Main Control program
will terminate the run at this point if errors have occurred.

When Phase I has successfully completed, Phase II begins with the
Main Control program calling the Stack Builder. The Stack Builder remains
in control until either all restructuring has been completed, or a serious
error forces premature termination of the run. The Stack Builder is resp-
onsibile for setting up a data structure, referred to as a "stack," for
groups of compat1b1e access paths from the TDL tables. When a stack has
been set up, it is passed to the Source Accessor, which uses it to retrieve
record instances from the source RIF database. When all record instances
represented by a particular stack have been retrieved, the data structure
is discarded, and control returns to the Stack Builder. The Stack Builder
then sets up a stack for the next group of access paths, and the cycle con-
tinues until all access paths have been used. Control then passes back to
the Main Control program.

The Source Accessor, driven by the stack, accesses the source RIF
database and retrieves the source records needed to construct the cor-

5-8

responding target records. As each source record instance is retrieved,

it is passed to the Qualifier. The Qualifier consults the TDL tables

and tests the source data to see if it satisfies all (if any) qualification
criteria specified in the user's TDL description. If the record instance
passes qualification, the Source Accessor continues by retrieving an

instance of the next record typeé on the stack. If the record instances fails
one or more qualifications, the next instance of the same record type

on the stack is retrieved and the above process is repeated.

When a complete set of record instances for an access path on the
stack has been retrieved, the Constructor is called. The appropriate
source data values are moved from the Restructurer's buffers into a
newly created target record instance; any required data type conversions
are also performed at this time. Duplicate record instances are discarded
by the Constructor and are not stored in the relational RIF database.

When all target record instances that can be built using the current
source record instances have been constructed, control is returned to the
Source Accessor, which then retrieves the next set of source record
instances so that new target record instances can be created.

When all source record instances for a stack have been exhausted,
the Source Accessor returns to the Stack Builder. Similarly, when all
access paths have been used, the Stack Builder returns to the Main
Control program, which then calls the Statistics and Wrap-up routines.
A report of the execution is written, all files are closed, and the
Restructurer terminates.

5.3 Component Program Logic

Section 5.2.2 gave an explanation of the interaction of the various
Restructurer components. In this section, an explantation of the
processing that occurs within each module is given.

5.3.1 Main Control

The Main Control program oversees the Restructurer execution and
controls most of the link overlays that keep the memory requirements to
a minimum. It is a simple module that performs the following tasks se-
quentially:

1) Sets up the abort wrap-up procedure;
2) Makes temporary copies of the TDL tables database and the
target SDDL tables database;
3) Initializes ADBMS;
4) Opens the temporary "Names" and "Pointers" TDL tables databases;
5) Calls the Run-time Parameter Processor;
6) Opens the source and relational RIF databases;
7) Calls the name-to-pointer conversion routine that produces the
“"Pointers" TDL tables from the "Names" TDL tables;
(8) If no errors have occurred in Phase I, initiates Phase II of the
Restructurer execution by calling the Stack Builder;

'_._.n

T

5-9

(9) When the Stack Builder finishes, calls the Statistics and]
Wrap-up routines; and
(10) If the run was successful, copies the results back to the ’
source and relational RIF database files. 1

5.3.2 Run-Time Parameter Processor

In order to vary certain parameters at run-time, the user must wri?e i
Restructurer run-time parameter statements. The options controllable via
these statements are:

Pounee

1) total vs. incremental Restructurer runs;

2) production of debug output;

3) which access paths are to be processed during the run;

4) labelling the output with a "translation name";

5) whether or not temporary copies of the source and relational RIF b
databases should be used, as opposed to operating directly on the
permanent database files;)

(6) altering the hashing algorithm used to store records in the 1

relational RIF database; and 4

(7) the use of the Restructurer job-status file and job-status report. ‘

These statements are read and analyzed for consistency by the Run-Time J
Parameter Processor. Various switches and flags are set, depending upon

those options requested via the run-time parameter statements. In particular,
if the user requested the use of temporary copies of the source and relational
RIF databases, they are prepared now, including initialization of the relational
RIF database. A flag is returned to the Main Control program indicating
whether any errors were detected while processing the run-time parameters.

5.3.3 Stack Builder

To make the definition of "access path" presented in section 5.1.2
somewhat easier to understand, we can say that an access path is simply a
tree structure within the source RIF database schema. Since stacks are
very well suited to processing trees, a data structure very similar to

a stack is set up by the Stack Builder (using FORTRAN arrays) for use by
the Source Accessor.

The Stack Builder retrieves an access path from the TDL tables and
all other access paths compatible below it. Since each access path is a
tree, and since compatible access paths share subtrees among them, the
combined access paths (taking into account those parts that are shared, or
"overlap") are also a tree. This larger, combined tree, representing one
or more access paths, is used to set up a stack-like data structure that
can be used to exhaustively access the source record instances represented
by the combined access paths. The modified stack structure contains
pointers and flags, indicating each access path of which a source record
is a node, for example. Also, each source record type is allocated
space in the ADBMS work area; this storage is used to keep a copy of
each current source record instance in main memory so that it can be refer-
enced without additional accesses to mass storage.

When the Source Accessor has finished with a stack, the stack storage
and internal buffer space are released, and the next stack is set up. If
an access path is compatible below more than one other access path, it is
only processed once; i.e., it may be skipped over later on when the
second access path with which it is compatible is used to start a new stack.
When all access paths in the TDL tables have been used in a stack, the
Stack Builder returns to the Main Control program.

5.3.4 Source Accessor

The Source Accessor useS the data structure set up by the Stack
Builder to drive the record retrieval process. In order to understand
the internal logic of this component, the reader must first be familiar
with the standard method of processing a tree structure using a stack.
While the data structure set up by the Stack Builder is more complicated
than a traditional stack, the standard method of processing a tree with
a stack can be easily extended to a Restructurer stack having only one
access path on it. The idea of compatibility, however, introduces further
complexities into the algorithm: 1in general, each access path on a stack
will not include all source record types on the stack. The extension of
the algorithm to inculde multiple access paths is not trivial, and is
beyond the scope of this document. However, it should be noted that this
capability is not vital to the Restructurer's ability to perform restructuring,
but simply increases its efficiency.

5.3.5 Qualifier

Each record instance retrieved by the Source Accessor is passed to
the Qualifier to determine if it satisfies all the qualifications specified
in the user's TDL description. The Qualifier consults the TOL tables
and tests all data item values in the source record imnstance that must be
qualified for the access path currently being processed by the Source
Accessor. Qualifications are of four basic types:

(1) Comparison of a source data item and a constant value (e.g. data
item not ~4ual to zero);

(2) Comparison of a source data item with another data item somewhere
on the access path. If the record instance containing the
comparison data value has not yet been pushed onto the stack, the
qualification is considered successful. It will actually be
performed later when the other data item becomes available on the
stack;

(3) Acceptance or rejection of a "null record instance": the user can
specify that a target record instance may be built even though cer-
tain source record instances do not exist. If so specified, a
“null instance" is allowed. However, if any other qualifications
have been specified, but no source record instance exists, the
record fails qualification;

(4) User qualification: the user may supply a FORTRAN subroutine to
perform unusual qualifications (e.y., table look-up). Any such
routines are dynamically loaded and executed by the Qualifier.

5.3.6 Constructor

When the Constructor is called by the Source Accessor, it is passed
a pointer indicating for which access path a target record instance is to
be constructed. The Constructor retrieves the needed source data values
from its buffers, performs any required conversions, and stores the data
in the appropriate target items. The user may also provide a FORTRAN
subroutine to perform unusual data conversion functions; any such routines
are dynamically loaded and executed by the Constructor. When all target
items have been assigned, the record is stored in the relational RIF
database; duplicate record instances (i.e., instances whose primary
key item values are the same as those of a previously stored record
instance) are discarded.

5.3.7 Statistics and Wrap-up

When all restructuring to be performed during the run has been
completed, the Main Control program calls the Statistics and Wrap-up
routines to write out a report of the execution. During the run,
several subroutines are used to keep track of various types of information,
such as the number of target record instances of each type that were
-created. This data is written out as part of the Restructurer report
in a user-friendly tabular format. Also, two record instances of each
type stored in the relational RIF database are written out to allow
the user to examine the data for possible errors.

At

e

6.0 WRITER PROGRAM LOGIC

The final module of the translationprocess is the Writer. Its
function is to produce the target database for subsequent normal use by
the database administrator who initiated the whole translation process.

6.1 Introduction

This section describes the features of the Writer available to the
user and defines some terms which will be referenced later on in Section 6.

6.1.1 Purpose

The most important role of the Writer is to produce a target database
according to the user's specifications. Two types of databases may be
produced; IDS/1 and sequential (unsorted) file. The sequential file is
subsequently sorted by SORT/MERGE to yield a standard WWDMS sequential
database, or if ISP is desired, the utility XUTIL is loaded to generate
an ISP database.

In producing a target database, two goals must be met by the Writer.
These are:

1. Preserve the logical relationships present in the internal form
databases produced by the Reader and Restructurer. All of the
transformations specified in the TDL between the SRIF and RRIF
must have their effect remain intact when the user's target
database is written.

2. For IDS databases, the target database must, of course, be a
legal IDS file, but perhaps equally important, the Writer will
not produce (or propagate) poor database design techniques;
specifically, contained-in-repeating groups, phantom pointers/
chains and match-key relations are not allowed in a target
database.

Some of the more detailed Writer features are listed below:

1. Because target databases can be enormous, it is not always
possible to write an entire database in one block of computer
time. Hence, the target database can be written incrementally,
each run can be broken off at the completion of a certain number
of user-specified record types.

2. The Data Translator internal form databases can hold up to five
user target databases which may be of differing types. Although
the Writer can only output one database at a time, it has the
ability to select any one of the databases within the internal
form (RIFs) based on user selection.

3. A debug feature is provided which enables the user to obtain
a snapshot Took at every recoerd instance written. This facilitates
the checking of the TDL without resorting to WWDMS or application
programs.

r

6.1.2 Terminology and Concepts

The following is a formal list of most of the major terms used in
the Program Logic Manual in reference to the Writer.

Writing - A verb used to indicate the process of transferring records
from the TRIF (see below) to the target (user) database.

TRIF - Target RIF, a logical concept composed of two physical data-
bases, the SRIF and RRIF. As mentioned in Section 5.0, if
records in the SRIF are unchanged in their final target data-
base form, there is no need to restructure them. Hence, the
Writer will retrieve instances of changed records from the RRIF
and unchanged records from the SRIF.

ASDDL - Aggregate Schema Data Definition Language. A special DDL,
created by the DWTR (see below) which is a super-set of the
DDLs that individually describe the SRIF and RRIF. It serves
as the link between the user target record, item and set names
and the RIF record, item and set names. An example is given in
Figure 6-1.

RECORD ADMINISTRATION IS ADMINI IN RRIF ;
ITEM
ADMINISTRATION-NUMBER
IS ADMINI ;

ITEM

MONTH-INAUG

IS MONTH- ;

ITEM

DAY-INAUG

IS DAY-IN ;

ITEM

YEAR-INAUG

IS YEAR-I ;

SET SERVED-WITH-CONGRESS IS SERVED IN SRIF
OWNER IS PRESIDENT
MEMBER IS RELATOR-PRES-CONG ;

AAANAAAAANAANANANANANANANANANA

Figure 6-1
Sample ASDDL

ASDDLA - Aggregate Schema DDL Analyzer. A program that accepts input
ASDDL statements and produces a set of tables used by the
Aggregate Schema Processor (ASP, see below). The tables contain
all the information needed by the Writer to correctly locate
in the SRIF or RRIF the record and set instances needed in the
target database.

6-3

ASP - Aggregate Schema Processor, a collection of routines which
logically sit on top of ADBMS routines. The Writer uses ASP
routines to retrieve record instances, item values or to
traverse sets. ASP in turn determines which ADBMS calls must
be made (remember that the SRIF and RRIF are ADBMS databases)
in order to satisfy the requests.

DWTR - DDL Writer, Target RIF. This component writes the ASDDL
statements.

Direct Reader to Writer - A mode of translation in which the Restructurer
and TDL play no part. It is used for simple database reformatting
jobs such as re-calcing of records, changing the page size,
deleting items. Complete rules for Direct Reader to Writer
translations can be found in Sections 2.6 and 5.5.3 in the Version
IIB release 1 User Manual.

IDS Structure Table - A common area (.IDS..) produced by the IDS Translator
($IDS) from the target IDS MD section. It is modified at
runtime to "trick" IDS into processing as the Writer wishes.

Masterless records - For IDS databases only, the writing process is broken
down into two steps, writing record types which are details
of no chains (except CALC chains) and writing out all remaining
record types. The former class of records is known as master-
less records.

6.2 Functional Overview

This section describes the input and output files to the entire
Writer as well as the major components of the "Writer" (e.g., the object
file of code written by the University of Michigan).

6.2.1 Inputs and Qutputs

There are three modes to the Writer and one wrapup mode for ISP/
sequential target databases. Each is defined below with a reference to
the accompanying figure.

1. IDS target, Reader-Restructurer-Writer translation (Figure 6-2).
This is the regular mode for target IDS databases; e.g., record
or relation instances were changed substantially enough to
warrant using TDL.

2. IDS target, Reader-Writer translation (Figure 6-3).
Used for Direct Reader to Writer translations, it is the same as
#1 except for input files which would have been created by the
Restructurer or TDL Analyzer and hence do not exist in this
configuration.

6-4

IndIng SQI :497L4M 3Y3 Bulndaxy

Y1M-SaI

2=9 dunbyy I1 ed
uoL323S QW
SaI 39buey
Y1M-Sal1
Je
e
9
493 LUM J0je|sued] eady YN i eaJy puz ‘ eaJdy 3s|
x4 N1 1nd 11nd 11nd
g . RaUY YIN
-3 14qng S
i
. . L
A.'l e i e e e q _.Iw_._..u.a= ﬁ@&(ﬂ:N
s
aseqejeq SQI
; L
S -3 14qng OTEG]
-

6-5

e vl
sJdajauweded

awt] -uny

S4044]

INdINQ SQI 493 LM 3y} Buirnoaxy
(Py3u02) 2-9 aunbL4

e
L4
aAeg
suny

TEETIVEY

*d

4}

> 4Id

324nog

433 LUM

sa|qel
0L

s9|qel
1aas
j39bue]

sa|qe]
1aas
324n0S

UA =" LA0

G i . e 3
aseqe}

Sar

6-6

90
340d3y

90

Ju40day

J33 1M 03 Japedy 303J4LQg ‘3IndInQ SAI :43ILJ4M 3yl Bulindex3

YA 2N
SJ9)3leded
awl]-uny

€-9 dunbyLy4

£l €2°6
L4
e
uaamyag JAeaodws |

e
91

sa|qel
10as
313bue]

—_—

o

sa|qe]
7aas
924N0§

S

xd

497 LA

UA® DA

aseqejeq
Sal

cl
41y
324n0S
R —? .
abed 35|
A A g—— i —

2-9 24nb14 wouq

6-7

3. [ISP/sequential target, Reader-Restructurer-Writer translation
(Figure 6-4).
Regardless of whether or not the user wishes an ISP or sequential
target database, the Writer will output an unsorted sequential
file. It is the user's responsibility to ensure that record
instances have the correct sort key values via the TDL (and
probably user routines).

4. Sorting (and ISP only, loading an ISP file) the sequential output
(Figure 6-5).
For sequential output, the file must be sorted. This may then
be used to load an ISP database. Although the programs used
to perform these functions are Honeywell utilities, the Data
Translator provides the control cards to run the utilities.

The major components shown in Figures 6-2, 6-3, 6-4, and 6-5 are explained
in detail below. :

IDS Database - The target file(s). It may consist of multiple areas, or
multiple subfiles. Created by the user with the desired page
ranges, page sizes, inventory, etc.

QUTI - The first acfivity of the writing process. For the initial
: incremental run only, the IDS database must be initialized by
the QUTI activity. A separate activity is required for each
area.

IDS Translator - The COBOL-IDS compiler, it compiles the target IDS MD
section plus a skeleton COBOL-IDS program into a B* file which
is loaded into the next activity.

Target IDS MD section - Written by the user, it is the DDL for the target
database. All records, items and chains are defined exactly as
the user wishes them to be in the database. Physical design
parameters chosen in the target MD section are basically
irrevocable once the Writer has executed.

Part I & II IDS-WTR - COBOL-IDS source code for the Writer. It is
a skeleton only with no executable code and is provided solely to
compile the IDS MD section with. Part I is the IDENTIFICATION,
E?V!RQNMENT and DATA divisions, Part II is the PROCEDURE
vision.

Writer - An R* file, it contains the Writer object code which is assisted
by the Translator library (not shown). Its components are
described in detail in succeeding sections.

Relational RIF (RRIF) - Qutput ADBMS database from the ReStructurer. It
contains all "changed" record instances. This file is not
present for Direct Reader to Writer translations.

Source RIF (SRIF) - Qutput ADBMS database from the Reader. A1l source
database(s) record instances are present here.

L0

SA0UU]

3nding
-bas J0
90
j40d3ay
€26l
SaL L4
xgm;anmL

S

= Ob)

3nd3ing
el3uanbag

Qe

o

e

aseqejeq
H4A0M

burany

-2Nu3SaY

S e

8L

s3|qe]
0L

433 LM
33Nn29x%3

=

< uotje| Ldwod

Ind3nQ |erjuanbas :ua3LuM 3y3
-9 84nby4
12°vl
sJdjaweded
Wiy -uny
R
el
L4
aAeg
suny
uaamlag

-

L A3tAL30y

»8 Auming

but3noax3

vy

6-9

peoy dsI sn(d 3nd3nQ 43314M |eLIUBNbAS BuLjLos

G-9 3unbLy
= sadel u0
Fm———————
_ | P A e
At) e _ .
| 437 LUM 433 LUM
| | wou § g T wou
_ _ Inding : 3nding
ejeQ Xapu]
| dSI dSI | rnnuuuuv
— —
_ _.
| |
e
r
_ i A Y
| J1LNX I :
0 najin J40
| w1 [H R[] oy [F] 0 8 [poromessy awel < unsbosg s
| _
| _ ——
_ _
| J
T T T TFLuQ gS1_3°bue]
usg LS
safts | ~c| saLid
uotje| 0] uorje| (0]

0

R —— - e

6-10

Source & Target SDOL Tables - Output ADBMS databases from the IDS Analyzer.
The Source SDDL tables are used by the DWTR while the Target SDDL
tables are used by almost all Writer components.

Restructurer Work Database - Qutput ADBMS database from the Restructurer.
This file is used by the DWTR and is not present in Direct Reader
to Writer runs.

TOL Tables - Qutput ADBMS database from the TDL Analyzer. Used as input
to the DWTR. It is not present for Direct Reader to Writer runs.

Temporary Files - The file attached to filecode 19 is the output ASDDL
from the DWTR (and hence input ASDDL to the ASDDLA). The file
attached to filecode 23 is used to hold all of the Aggregate
Schema names so as to avoid placing them in core.

Between Runs Save File - Used to implement incremental Writer runs. It
contains information as to which record types have been written
and when.

Run-time Parameters - Filecode 14 has the main set of run-time parameters
such as database name, switch settings, etc., whereas the run-time
parameters on filecode 21 are strictly for use by the ASDDLA.

Report - Writer execution report detailing the past history of previous
incremental runs, a summary of the records to be written on the
current run and the results of storage (time, number of instances)
for each record type.

Errors - Writer error report.

Dummy B* Compilation - A B* file is necessary for correct lcading of the
Sequential/ISP Writer so a dummy FORTRAN program must be
compiled.

Sequential Qutput - A linked file or tape used to write a sequential
(unsorted) database. A separate physical file is required for
each incremental run. These are shown again in Figure 6-5 as
filecodes SA...SP. :

Sort and ISP Load Components - See the respective manuals (ISP, DD38 and
Sort/Merge DDO09).

6.2.2 Writer Components

The major components of the Writer (e.g., the Writer R* file) occupy
a separate link overlay for efficient memory utilization. Only the main
link and one other link are core resident at any one time. The Writer
components are executed sequentially as listed below with the main program
handling all control.

Main Program - Controls all link overlays. Decides whether or not to
continue when errors occur.

Link Overlays

1. SETUP - Reads some of the runtime parameters.

2. DWTR - Writes the ASDDL.

3. ASDDLA - Analyzes the ASDDL to produce ASP tables.

4. INIT1 - Opens all ADBMS databases and locates the correct database.
5. INIT2 - Opens the target file(s), initializes the data structures,

handles setup for incremental writing and modifies the
IDS Structure Table.

6. PHASET - Writes out all masterless records (IDS) or all record types
(seq/ISP).

7. PHASE2 - Writes out remaining record types (IDS).

(o]

PHASE3 - Closes all files and writes a new copy of the between runs
save file.

Each component is described in further detail in Section 6.3.

6.3 Component Program Logic

This section highlights the algorithms and methods of the Writer.
For the case of sequential file output, writing presents no difficulties,
the records retrieved from the TRIF are simply passed to the standard
GFRC I/0 routines. Since the records presumably have the correct sort
key values, the order of record instances outputted is irrelevant as they
must be subsequently sorted anyway. However, for IDS databases, it is a
different problem. The Writer lets IDS do the actual physical storage of
record instances. Similarly IDS does all the chain linking. Because IDS
is doing the low level work, the Writer must insure that all IDS routines
are "guided" into executing as desired. This means that a considerable
effort is made by routines that modify the IDS Structure Table dynamically
prior to executing the IDS subroutines. Normally, IDS is used in a COBOL
program with the record storage areas occupying a section of the object
code in the IDS Section. Any reference to an IDS record or chain is made
explicitly in the source program. In the Writer, a generalized program
usable for any IDS database, specific record names cannot be coded into

the source code as their values are not known until run-time. The solution

used was to modify the IDS Structure Table so that records are retrieved
from a Writer buffer before storage and that currency of chains is set by
placing the correct reference codes directly into the IDS Chain tables.

6.3.1 Main

The function of the main program (in reality a set of programs always
core resident) is to provide a controlling structure to the entire writing

process. Each link is called into core sequentially replacing the preceding q
link. After each routine is called and has returned, its return code is
checked. The main program attempts to forge ahead with Writer execution }

despite errors in an attempt to discover as many mistakes as possible
in one run. If this is not possible due to the severity of the mistake,
the Writer is shut down.

6.3.2 SETUP Link ’ 7

The SETUP 1link solely reads the first three lines of Writer runtime
parameters which consist of: 4

a) database name
b) job-status-file information

c) flags determining whether
- Writer is on a first or subsequent incremental run 1
- How much of the database is to be written (ALL or PART)
- Is it a Direct Reader to Writer run
- Is the debug output to be produced

6.3.3 DWTR Link

As previously mentioned, the DWTR writes ASDDL which defines where
target records, sets, and items are located (e.g., SRIF or RRIF). The
DWTR operates in two modes, normal and Direct Reader to Writer. In
normal mode, the ASDDL statements are written by first getting a name from
the target SDDL tables and then using the TDL tables and Restructurer
Work database to ascertain where the construct for this name resides
(SRIF or RRIF). 1In Direct Reader to Writer mode, all records, sets, and
items are by default in the SRIF and hence only a correspondence between
target names and their SRIF names is needed. A11 ASDDL statements are
written to a temporary file for use by the next link.

6.3.4 ASDDLA Link

The Aggregate Schema DDL Analyzer (ASDDLA) is fully described in
Section 9.0 of this manual. The Writer calls the ASDDLA to analyze the
ASDDL produced by the DWTR. Upon completion, everything is ready for
use by the ASP.

6.3.5 INITI Link

Two small functions are performed in this component:

1. The target SDDL tables database is re-opened for new use by the
Wri ter.

2. The database name supplied as a runtime parameter is checked
against legal database names in the target SDDL tables.

P S T SR —

6-13

6.3.6 INIT2 Link Program Logic

A1l final initialization functions are performed here as detailed
below.

a) Target database is opened for writing.

b) The Writer common areas are initialized. This mainly consists
of transferring data from the target SDDL tables to an in-core
format for quick access.

c) The past history of all prior incremental runs is printed for
the user, the information being obtained from the Between Runs
Save File. A1l setup necessary to tell the PHASE1 and PHASE2
links about which record types should be written on the current
run is also performed.

d) The IDS Structure Table is modified as follows:
- A1l pointers to field locations are altered to point to a
Writer record image buffer. When IDS stores a record, it
follows the pointers to get the field values unaware that it is
retrieving data from the same buffer area irrespective of record
type.
- A11 Select Unique Master bits (except for CALC chains) are
changed to Select Current Master bits. This trickery is allowed
since the Writer will insure before storing a detail record that
the currency is properly set, obviating the need for IDS
processing of match key fields.

Additionally, the addresses of records within the IDS Structure Table
are obtained for quick use in later processing.

6.3.7 PHASE1 Link Program Logic

This component stores all masterless record types for IDS and all
record types for seq/ISP. Each record type is completely stored before
any instances of other record types are stored. Because each record type
is linked together along one SYSTEM-owned set in the TRIF, retrieval
is easy. Record instances are built a data item at a time because item
conversion may have to be performed. Once the record is constructed, the
appropriate routine (IDS = .QSTOR, seq = .GPUT) is called to do the
actual storage. For IDS. databases only, the reference code of the just-
stored record is placed back into the TRIF within the current record
instance. This facilitates the setting of currency for storage of
detail record types in PHASE 2.

6.3.8 PHASE2 Link Program Logic

Only IDS databases have this component executed. The procedure is to
select a record type whose masters have all been previously stored. This
restriction is due to the IDS Store verb constraint which requires that
if a record instance is going to be stored, all of its master instances
must exist in the database. As in PHASEl, a record instance is built a
data item at a time. However, one additional substep is performed, the
currency setting of all master instances which were previously stored into

the TRIF after they were stored. Using the reference codes, PHASE?2
places the values into the IDS Chain tables. The record is then stored
via .QSTOR, linking being done automatically by IDS. And, as before,
the stored record's reference code is placed back into the TRIF.

6.3.9 PHASE 3 Link

Some final wrapup steps are performed, listed below:

a) A new Between Runs Save File is written with the history of all
incremental runs to date.

b) The target database is closed (.QCLOS for IDS, .GCLSE for seq/ISP).

7.0 FRONT END

7.1 Introduction

7.1.1 Purpose

The Front End module is an interactive program intended to increase
the user-friendliness of the Data Translator. The Front End provides a
means to automatically build control card files for the IDS Analyzer,
TDL Analyzer, Reader, Restructurer, and Writer.

The control card files needed for an entire translation may be built
in one terminal session or in a series of terminal sessions.

7.1.2 Terminology and Concepts

ADBMS - A Data Base Management System
The DBTG-1ike database management system used internally by the
Front End.

MPCCF - Modified Prototype Control Card Files

The ADBMS database is partially populated with MPCCF. The lines of
MPCCF have both lines of control cards that need substitutions and
lines that are used purely for control purposes.

7.2 Functional Overview

7.2.1 Input/OQutput

The Front End receives input from two sources; the ADBMS database,
and the user's responses at the terminal. The database contains both
MPCCF and other informaticn that is used either in creating files or
providing data to the Cortrol Card Drivers. The user is prompted only
for information that is actually needed for the given translation.

The output of the Front End consists of one or more control card
file(s). The control card files are ready to run without modification,
except for conversion from BCD to ASCII. Diagnostics are also
produced.

7-2

MAIN
PROGRAM

INITIALIZA-
TION
ROUTINE

e ADBMS

DATABASE

CONTROL CARD
DRIVERS
(5 MODULES)

CONTROL CARD
GENERATOR

b

Figure 7-1

Overview of Front End Components

7-3

7.2.2 Module Components

The Front End consists of four major logical components; the Main
Program, the Initialization routine, a group of Control Card Drivers, and
a Control Card Generator.

The Main Program does some bookkeeping and controls the overall flow
of the Front End. The Initialization routine is called only once for
each Translation. There is a Control Card Driver component for each of
the five Translator modules; IDS Analyzer, TDL Analyzer, Reader, Restruc-
turer, and Writer. The components in this group prompt the user for
information particular to the respective module. Each Control Card
Driver calls the last major component, the Control Card Generator, to
actually generate the control card file. A more detailed description of
each component is contained in subsequent sections.

7.3 Component Program Logic

7.3.1 Main Program

The Main Program serves three main functions. The first is to
interact with ADBMS and determine if initialization has been previously
accomplished, and if not, to call the Initialization routine. The second
function is to determine the Translator module for which the user
desires to build control card file(s). The last main function is to
print on the terminal a list of the control card files that the Front End
has built.

7.3.2 Initialization

The Initialization routine serves two main functions. The first is
to request information from the user that will be used in all of the control
card files. The second main function is to create files that will be
needed for the translation and to print a list of these files. The
Initialization routine is called only once for a translation since the
information is stored in the ADBMS database and is used in subsequent
terminal sessions.

7.3.3 Control Card Drivers

There are five Control Card Drivers, one for each Translator module,
but the functions they perform are basically the same. A Driver puts
the information needed by the Control Card Generator into the form it
can use, and then calls the Generator to put the control cards into a
temporary file. The Driver then creates a permanent file and copies the
control cards into it.

-

7-4

As input, the Drivers use both the ADBMS database and user responses
to prompts. The output of a Driver is one or more control card file(s).

7.3.4 Control Card Generator

The input to the Generator is provided by the Driver. The MPCCF database
contains all of the MPCCFs that can be called (there are approximately 20
different MPCCFs in the database). The call to the generator contains
information about which MPCCF to use. After the proper MPCCF is selected,

a card-image is read in, and the variables appearing in the line are substituted.
Then the card is written to a temporary file.

8.0 ADBMS

8.1 Introduction

ADBMS is a database management system which facilitates the creation,
maintenance and accessing of simple and complex data structures. It con-
sists of a collection of FORTRAN-CALLable subroutines whose purpose is to
create databases from a user's data structure description, and to serve as
an interface between the user and these databases. The following components
make up the environment in which ADBMS is used:

a) The database itself, containing the data which is to be accessed
and a tabular representation of its schema.

b) The database control system, ADBMS.

c) The user's database access program, containing CALLs to ADBMS
routines which access the database.

8.1.1 Purpose
ADBMS is used by the Data Translator as follows:

IDS Analyzer ‘
a) creates SDDL tables (ADBMS database)
b) uses Internal Work Database (ADBMS database) internally

TDL Analyzer :
a) retrieves information from source and target SDDL tables (ADBMS
databases)
b) creates TDL tables (ADBMS database)

a) uses source SDDL tables (ADBMS database) as input
b) creates source RIF (ADBMS database)
¢) uses DDL writer work database (ADBMS database)

Restructurer
a) retrieves data from source RIF (ADBMS database)
b) stores data in relational RIF (ADBMS database)
c) accesses TDL tables (ADBMS database)
d) uses DDL writer work database (ADBMS database)

Writer
a) uses target SDDL tables (ADBMS database) as input
b) uses relational RIF (ADBMS hash database) and source RIF as input
c) wuses TDL tables (ADBMS database)

8.1.2 Terminology and Concepts

The terminology and concepts of ADBMS are described below:

Currency - ADBMS currency indicators are used as place markers
to keep track of the state of the interface between
the user program and the database.

Database - An initialized ADBMS database is a random file con-
sisting of formatted physical pages on which all
information in the database is stored. The database
tables are stored on the first page(s) of the database.
The remaining pages are initialized to a specific format.

Database Key - The unique identifier which distinguishes a record in-
stance from all other record instances in the same
database by specifying the page and displacement
within that page where the record instance is stored.

DBT (Database Tables) - Tabular form of the logical description of a data-
base according to its DDL. The database tables exist
physically in two forms:

1) on the first page(s) of the corresponding initialized
database random file, and
2) as a separate sequential database tables file.

DBTF (Database Tables File) - The intermediate sequential form of the data-
base tables, used within the DDLA/DBINT.

DDL (Database Description Language) - A language used to describe the schema
of an ADBMS database in terms of records, items, and
sets. A specific database description written in this
language is also called a DDL.

DDLA/DBINT (DDL Ana]yzer/Database Initializer) - The utility module used to
create ADBMS databases. It analyzes the DDL and if
there are no syntax errors or inconsistencies, initializes
an ADBMS database according to the DDL description.

Hash Database - A database whose schema includes at least one hash record
type.
Hash Input - A series of statements optionally input to the DDLA/DBINT

which cause user-specified values to override default
values of hashing function parameters.

Hash Record - The storage location of an instance of a hash record
type is determined by randomizing its primary key
items (defined in the DDL) via a hashing function.

Item - The elementary data unit in the database; used to
represent specific data as a number, a string of
characters, a logical truth value, etc.

Match-key set - The member-to-owner relationship for a match-key set
is established when the user stores the primary key
items of the owner of the set in the set significant
items of the member. A match-key set instance is defined
as an owner record instance and all the member record
instances whose set significant items hash to the owner
instance.

8-3

Multiple Databases - ADBMS has the capability to manage multiple databases
simultaneously, i.e., operations can be performed
first on one database and then another without closing
the first database and opening the second database
between operations.

Non-Hash Database

A database whose schema does not allow any hash record
types.

Non-hash record instances may be stored either in the
next available space in the database, as determined
by ADBMS, or in a region specified by the user when
the record is created.

Ordered Set - The member-to-owner relationship for an ordered set
is established when a member is "added" to the set,
an operation requested by the user but implemented and
maintained by ADBMS. The sequence of retrieval of
member records and the linkage of new member records
in the set are controlled by the set ordering criterion
(specified in the DDL).

Non-Hash Record

Primary Key - The set of items in a hash record which are hashed
to determine the location of the record instance in the
database. .
Record - A named collection of data items used to represent the
major entities of an application.
Schema - The description of the logical structure of a database-
Set - A named collection of record types which specifies an
ordering or relation among the records within it.
SYSTEM record - A predefined non-hash record type which is implicitly
included in every database schema description.
Work Database - A pseudodatabase used to hold images of individual

physical records in core until they are moved back to
a database page. Its purpose is to minimize time
spent changing pages in and out of core when records

on many different pages in the database are being accessed.

8.2 Functional Overview

8.2.1 Input/Output

The input/output relationships for running the DDLA/DBINT are given
in Figure 8-1 . The DDL consists of statements which express the schema of
an ADBMS database in a form recognizable to the DDLA/DBINT. The hash input
consists of statements which cause user-specified values to override default
values of hashing function parameters. The DDL and optional hash input are
input to the DDLA/DBINT which produces an initialized database file and,
optionally, the sequential database tables file.

| —————

g

R R g P —— P USSR, o —

I S e i g

database
tables

DoL o e R
hash " |
input DBINT
(optional)
DDLA/DBINT

: “*i*database

Figure 8-1 DDLA/DBINT

The ADBMS scenario for running a user's database access program is

given in Figure 8-2. User database access programs contain CALLs to ADBMS

routines which perform the actual database access.functions requested.

ADBMS
data-
base

user database
access program

vy

ADBMS

<y

—

ADRMS
data-
base

Figure 8-2 ADBMS Scenario

R

8-5

8.2.2 Module Components

ADBMS consists basically of four modules, the DDLA/DBINT, User
Level Routines, Mid Level Routines, and Low Level, or Table Access Routines.
The relationships among these modules are given in Figure 8-3.

DDLA/DBINT User Level
Routines

Y

Mid level
Routines

\ Taple Access

Routines

Figure 8-3

The User Level Routines, of which the DDLA/DBINT is a subset, provide
the user interface to ADBMS. The table Access Routines provide the interface
between ADBMS and the database tables. The intra-ADBMS relationships among
the modules are somewhat looser, with access to the database being performed
at all levels.

8.3 Component Module Logic

8.3.1 DDLA/DBINT

The DDLA/DBINT exists primarily as two routines, DDLA and DBINT.
These routines may be executed independently of or in conjunction with
each other, and in either stand-alone or subroutine-callable mode. The
DDLA stage reads the DDL, recognizes individual statements, and builds
the appropriate control blocks in the database tables to store and main-
tain the information specified in the DDL. The output of the DDLA module
is the DBTF. The DBTF and the optional hash input are the inputs to the
DBINT stage of the DDLA/DBINT. The DBINT produces an initialized database
ready for the storage and accessing of data.

P

8-6

8.3.2 User Level Routines

The interface between the user and the database in ADBMS is accom-

plished via CALLS from the user program to a set of ADBMS routines designated

as being "user level." Each user level routine corresponds to an accessing
function which the user may request to be performed on the database. Each
routine translates this high level request into physical input/output
operations on the database, using information stored in the database tables
and the database itself. In general, the actual interface with the
database and database tables is accomplished via the routines in the mid-
level and table access modules.

8.3.3 Mid-Level Routines

Mid-Level routines in ADBMS perform such functions as database
storage allocation, managing database pages in and out of core as they are
accessed, maintaining currency and set ordering as records are accessed and
members added to and retrieved from sets, etc. While much of the interface
with the actual data in the database is accomplished by the Mid-Level
Routines, all access to the database tables is accomplished via Table
Access module routines.

8.3.4 .Table Access Routines

Each routine in the table access module of ADBMS is responsible for
the retrieval or storage of data in one field of the database table control
blocks. This isolates the higher level ADBMS routines from any design
change in the physical structure of the database tables.

9.0 ASP

9.1 Introduction

The ASP is an extension of ADBMS which, when used in conjunction
with ADBMS, allows the user to view an aggregation of subsets of one or
more ADBMS databases as one Aggregate Schema (AS) database and thus
access multiple databases as one database.

The ASP environment, then, consists of the following elements:

a) several ADBMS databases, each containing the data to be accessed
and a tabular representation of its schema

b) ADBMS

c) the AS Database Tables, a tabular representation of the AS
Database's logical description.

d) the Aggregate Schema Processor (ASP), consisting of a collection
of FORTRAN CALLable subroutines whose purpose is to map AS database
access requests into ADBMS database access requests, based on the
information stored in the AS database tables.

e) the user's database access program, containing CALLs to ASP
routines.

9.1.1 Purpose

The Data Translator uses the ASP in the writer module to facilitate
accessing the source RIF and relational RIF ADBMS databases.

9.1.2 Terminology and Concepts

The terminology and concepts of the ASP aredescribed below. Many
ADBMS terms and concepts are also fundamental to the ASP, while other
terms have different meanings in the two contexts; reference to Section
8.1.2 may be helpful. :

AS Database (Aggregate Schema Database) - a logical "view" of one or
more physical databases. The term is used in a physical
sense to refer to the composite of a) several ADBMS
databases, and b) the ASDBT

AS Database Key - the unique identifier which distinguishes an AS record
instance from all other record instances in the same AS
database by specifying the ADBMS database and the page
and displacement within that page where the record instance
is stored.

ASDBT (AS Database Tables) - tabular form of the logical description of an
AS database according to its ASDDL and ASDNDDL.

9-2

ASDDL (AS Data Definition Language) - a language used to describe an AS
database view in terms of sets, records, items, and
their mappings to corresponding ADBMS database constructs.
A specific AS database description written in this language
is also called an ASDDL.

ASDDLA (ASDDL Analyzer) - a utility module used to create AS databases.
It analyzes the ASDDL and if there are no syntax or
semantic errors, produces the ASDBT according to the ASDDL
description.

ASDNDDL (AS Database Name DDL) - a series of statements which identify the
ADBMS databases involved in an AS database.

Assigned Record - a one-to-one correspondence between the AS record type
and a schema (ADBMS) record type, such that the schema record
is viewed directly through the AS assigned record type.

Assigned Set - a one-to-one correspondence between the AS set type and
a schema (ADBMS) ordered set type.

Couplec Record - a coupling of two schema (ADBMS) record types such that
the AS coupled record type is viewed as a merge of the
two schema record types.

Currency - the ASP uses ADBMS currency indicators in addition to its
own currency indicators to keep track of the state of the
interface between the user program and the database.

Item - AS item types defined in an AS record type specify which
schema (ADBMS) items in the corresponding schema (ADBMS)
records are to be included in the AS database view of the
record and how they are to be viewed.

Match-key set - AS match-key set types are parallel to ADBMS match-key
set types, but allow the owner and member record types to
reside in different ADBMS databases.

Record - AS record types specify which schema (ADBMS) record types
are to be included in the AS database view of how they are
to be viewed.

Set - AS set types define which schema (ADBMS) sets are to be
included in the AS database view and how they are to be
viewed. They may also define new match-key sets which are
not defined at the schema (ADBMS) level.

Set Significant Items - similar to ADBMS set significant items.

9.2 Functional Overview

v

9.2.1 Input/Qutput

The input/output relationships for running the DDLA/DBINT are given
in Figure 9-1. The ASDDL consists of statements which describe the
Aggregate Schema database view of its underlying ADBMS databases. The
ASDNDDL consists of statements which identify each ADBMS database involved
in the AS database. The ASDDL inputs both the ASDDL and the ASDNDDL and
references the database tables of each of the underlying ADBMS databases
to produce the ASDBT as output.

ASDDL ASDNDDL ADBMS
data-
\ / base
1

ASDDLA

ADBMS
: data-
ASDBT base

Figure 9-1
The ASDDLA

The scenario for running a user's database access program under the
ASP is given in Figure 9-2. User database access programs contain CALLs
to ASP routines. These routines use the information stored in the ASDBT,
the ASDNDDL, and the individual ADBMS databases themselves to perform
the actual database access functions requested.

User databas
access progra

ASP ASDNDDL
ADBMS
ADBMS ADBMS
data- data-
base e base
TR L
Figure 9-2

ASP Scenario

9.2.2 Module Components

The ASP consists basically of four modules, the ASDDLA, User Level
Routines, Mid-Level Routinus, and Low Level, or Table Access Routines.
The relationships among these modules are given in Figure 9-3.

ASDDLA User Level

Routines

Mid=Level

Routines
\ Table Access
Routines

Figure 9-3

e e

e Al e e . . e e SORCE e

9-5

The User Level Routines, of which the ASDDLA is a subset, provide
the user interface to the ASP. The Table Access Routines provide the
interface between the ASP and the ASDBT. The intra-ASP relationships
among the modules and the relationships between the ASP modules and
ADBMS are somewhat looser; accessing of the actual ADBMS databases takes
place at all levels, with and without the aid of ADBMS.

9.3 Component Module Logic

9.3.1 ASDDLA

The ASDDLA is a compiler type analyzer consisting of the five
compenents shown in Figure 9-4.

ASDDLA
Initializer

Scanner Error
Messages
/ Parser

AS
Stack

Semantics Error
Messages

ASDDLA
Wrapup

Figure 9-4

9-6

The ASDDLA Initializer is the controlling program for all of the

ASDDLA modules. It initializes arrays and prepares the scanner for input.
The scanner and parser identify ASDDL constructs and resolve the ASDDL
into various productions. Once a production has been isolated the appro-
priate semantic routine is called. The semantic routines build the AS
database tables and check for internal consistency. The ASDDLA wrap-up
module prints out a review of all table blocks generated and statistics
for the analyzer run.

9.3.2 Uﬁer Level Routines

The interface between the user and the AS database in the ASP is
accomplished via CALLs from the user program to a set of ASP routines
designated as being "user level." Each user level routine corresponds
to an accessing function which the user may request to be performed on
the AS database. Each routine translates this high lTevel request into an
ADBMS-level acces$ing request using information stored in the AS and
underlying databases themselves. This translated request is performed
by ADBMS routines or routines in the mid-level and table access modules
of the ASP.

9.3.3 Mid-Level Routines

Mid-Level Routines aid in translating requests from AS terms to
ADBMS terms and in the actual execution of these requests.

9.3.4 Table Access Routines

Each routine in the table access module of the ASP is responsible
for the retrieval or storage of data in one field of the AS database table
control blocks. This isolates the higher level ADBMS routines from any
design change in the physical structure of the AS database tables.

