
/ AO -AO b1 ‘455 MI CHIGAN (RII V ANN ARBOR GRADUA l, : SCHOOL OF OUS I NESS—flC F/S 9/2MICHIGAN TRANSLATOR PROGRAM LOGIC MANUAL. VERSION 118. RELEASE •—ETC(IJ)SiP 77 C E SURPEE. 0 OESMITH, L A HUTCHINS DCAIOO— 75—C—0064UNCLASSIFIED WP—77—OT—3. 7 Saic—*o—cioo 110 MI.

flit
ENJ D

DA T E_______________
F ILM E D

2 —79
bOO

(QLEVEL ~
MICHIGAN TRANSLATOR PROGRAM LOGIC MANUAL

Version IIB, Release 1

by

Charles E. Burpee
Donald DeSmith

Linda A. Hutchins
Eric L. Kintzer
Kenneth Moore

Michael Stolarchuk
C..) Gregory J. Wo lfe

~~L~J

—

Working Paper 77 DT 3.7

September 1 977

D D C

_

CIautb~dcm U~flmit.d

.~~~~Databue..Sy~tems R~~ arch ~rou~(
~raduate School of Business Mm{nistratT~~)ir~~The Uni versTty of MfchT~IW~~~~~’~Ann Arbor , Michigan 48109

(313) 763—1100

t

iS 11 09 037
— - — -— -

Unclassified
S!CU CLASSIFICATION or T H I S P A G E (I+7. .n D . I . Eni.r •d) -

~~~~~~~~~~~~~~ 

DOCUMENTATION PAGE READ INSTR U CTIONS

- 
BEFORE COMPLETING FORM

_________ 12. GOVT ACCESSION NO R EC I P I E NV S  C A T A L O G  NUMB ER

king DT 3.7 ....— 

- — ___________________

( TT~ LE (an d SobIit I9) - •--—-- —
~ ‘ 

-—___________________________

5. T Y P E  OF REPORT & PERIOD COVERED

MICHIGAN TRANSLATOR PROGRAM LOGIC MANUAL.( ~#?~ Version flB, Relea~è 1 Technical Report

t ~~tflt~~1 ~~~~~ RG. REP ORT NUMBER

7.~~~~~~~OR ° 

.

~ 

.

~~

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~-DT~3.7 /_~—
‘
~

harles E.IBurpee, Don~i~7beSmith , I ,~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Linda A. )Hutchins , Eric L.jKintzer Kennetk ~~~ 
) DCA

I ~Moore ?‘flchdel $tolarchuk &-Gr~gO1~~L WolfeL 
~~~~ tKr -~~~M lNG O R G A N I Z A T I O N  N A M E  AND A D D R E S S  IC. PROGRAM ~~~~~~~~~~~~~~~~~~~~~ TASK 

-

Database Systems Research Group A REA , 6 WORK UN

276 Business Administration 320jiK- 2~4O0 , 27402~-.

II . CC~~T R O L L I NG OFF ICE NAME AND ADDRESS 1i lZ~~~~~P~~~T ~~-T&

Univ. of Michi gan , Ann Arbor, MI 48109

pf~~~~
-

~~~~~~~~~~ i--~~w.~ ~~~~~~~~~~ c z~— Sept 1177 /
NUMOtI’  Lrr r~~jcj

~~~~~~~~~ ‘ - v ’~ O .D.~~. 83
14, MONITORING A G E N C Y NAME & AD O RESS(i I dif l . r . n (trom Conuelldn6 Offi c .) IS. SECURITY CL A SS. (of (hi. ,.port)

1

~~~~ 
unclassified 

_____

IS.. O E C L A S S I F I C A T I O N / D O W N G R A D I N G
SCHEDULE

IS. D I S T R I B U T I O N  S T A T EMENT (of (hi. Raport)

Th~is documant-4&--f~et-yet appr-ove4-..for--pu-~14e--celease .
0 fl 64 ).Pf.’I ~~~~~~~~~~~~~~~~~~~~ / ~~

, ~~~~~~~~~ r,
~~JDt5TB1)UT~ON BTAThMI2ff A

Appeavsd fo~ public releaIs1
17. D I S T R I B U T I O N  S T A T E M E N T  (of lb. ab.I,.ct .nt.,.d in Block 20. if dlff .r.mi from R.poit) ~~~ bseou Unli~ It.d

N/A --
~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _

I~~. S U P P L E M E N T A R Y  N O T E S

none

19. KEY W ORDS (Confinu. on r.c• ra• aid. if n.c.aa.zy and idrn(ily by block numb.r)

Data Transla tor, Reader, Writer , Restructurer , Sof tware mai ntenance

20. A e s T R A c T  (Continu. on rarera • aid. if n.c.asary and ldeniify by block numb.,)

L > ‘This Program Logic Manual provides the information for maintai ning the
software for the Version IIB , Release 1 Data Translator. It is d irected
toward two gr~ups of people users of the Data Translator who desire some
insight into how it works’1 and programmers who will main tain the software.
The manual is written in a manner that it could be understood by people with
no prior experience with data translation . However, the reader should have a
firm grasp of database concepts and tei~mlno1oa~’ and should be knowl edoeabl e
~ f Honeywel l software systems (especially iosiT.~ The reader should aTso

r~r, FORM
~~~~ 1 J A N 73 1473 ~r EoI~~Io~ior ‘ NOV 65 IS OBSOLETE Unclassified

SECURITY CLASSIF ICAT ION OF THIS PAGE (I4~~.n Oaf. yn,.,.d)

-

_ _ _ _ _ _ _ _ -
i8 ii O 9 IL~ ’1

_ _ _ _ _ _ _ _ ___ -~~~- - -~~~

S E C U R I TY C L A S S I F I C A T I O N OF THIS PAGE (PTh an Data EnI.r.d)

/
20.4have some familiarit y with the facilities of the World Wide Data

Management System (WWDMS).

;;~‘~/

L~ :j~ i~:

SECURITY CLASSIFICATION OF THIS PAGE(W1I.n Data Ent.,.d)

1.
-.- — -

~~
—

MICHIGAN TRANSLATOR PROGRAM LOGIC MANUAL

Version IIB , Release 1

by

Charl es E. Burpee
Donald DeSmith

Linda A. Hutchins
Eric L. Klntzer
Kenneth Moore

Michael Stolarchuk
Gregory J. Wolfe

Working Paper 77 DT 3.7

September 1977

Prepared for
Defense Coninunlcatlons Agency

Coniiiand & Control Technical Center
WWMCCS ADP Directorate
Reston, Virginia 22090

DCA 100-75-C-0064

I
- - - . - --—- .- . - - - —--.-— - —- --- . - - .- --~ C ~~~

TABLE OF CONTENTS

1.0 Introduction 1-1
Li History and Overview 1-i
1.2 Database Description 1-5
1.3 Data Translator Execution 1-6

2.0 IDS Anal yzer 2-1
2.1 Introduction 2—1

2.1.1 Purpose 2—1
2.1.2 TermInology and Concepts 2-1

2.2 Functional Overview 2~6
2.2.1 Inputs/Outputs 2—6
2.2.2 IDS Analyzer Components 2—9

2.3 Component Program Logtc 2-9
2.3.1 MAIN Link 2-15
2.3.2 INIT Link 2—15
2.3.3 IDSAN Link 2-15
2.3.4 BLDPK Link 2—1 5
2.3.5 REPORT Link 2-16

3.0 TDL Analyzer 3-1
3.1 IntroductIon 3—1

3.1.1 Purpose 3—1
3.1.2 Terminology and Concepts 3-1

3.2 Functional Overview 3..2
3.2.1 Input/Output 3-2
3.2.2 Module Components 3—3

3.3 Component Program Logic 3-3
3.3.1 Control Component 3—4
3.3.2 Syntactic Component 3—4
3.3.3 Semantic Component 3—4

4.0 Reader . . ., 4-1
4.1 Introduction 4-i

4.1.1 Purpose 4-1
4.1.2 Terminol ogy and Concepts 4-1

4.2 Functional Overview 4-1
4.2.1 Input/Output 4—1
4.2.2 Reader Components 4-3

4.3 Component Program Logic 4—3
4.3.1 MaIn Program 4-3
4.3.2 SRIF DDL Wri ter 4—3
4.3.3 Table Initializer 4—6
4.3.4 Data Movement 4-6
4.3.5 RelatIon Linker 4-6
4.3.6 Accessor 4-7
4.3.7 Wrapup and SRIF Dump 4—7

. .-- - -—-- - .
~~~

- - --, I -~~~~~~~~~~~~~
I. - - —_________ ~~~~ ,, , - - — -  -



5.0 Restructurer . 5-1
5.1 IntroductIon 5—1

5.1.1 Purpose 5—1
5.1.2 Terminol ogy and Concepts .  .  ..  5—1

5.2 Functional Overview . . *  .. *   5—2
5.2.1 Input/Output  a a a 5~2
5.2.2 Major Components 5-5

5.3 Component Program Logic 5-8
5.3.1 MaIn Control 5-8
5.3.2 Run-Time Parameter Processor 5—9
5.3.3 Stack Bui lder 5—9
5.3.4 Source Accessor 5—10
5.3.5 QualifIer 5—10
5.3.6 Constructor 5-i l
5.3.7 Statistics and Wrapup 5— il

6.0 Writer  6-1
6.1 Introduction 6—1

6.1.1 Purpose 6-1
6.1.2 Terminology and Concepts 6-2

6.2 Functional Overview of Writer 6-3
6.2.1 Inputs and Outputs 6—3
6.2.2 Writer Components 6-10

6.3 Component Program Logic 6-11
6.3.1 Main 6—li
6.3.2 SETUP Link 6-12
6.3 .3 DWTR Link 6—12
6.3.4 ASDDLA Link 6—12
6.3.5 INIT1 Link 6— 12
6.3.6 INIT2 Link 6— 13
6.3.7 PHASE1 Link 6— 13
6.3.8 PHASE2 Link 6— 13
6.3.9 PHASE3 Link 6—14

7.0 Front End 7—1
7.1 Introduction 7-1

7.1.1 Purpose 71
7.1.2 Terminology and Concepts 7-1

7.2 Functional Overview 7-1
1.2.1 Input/Output 7—i
7.2.2 Module Components 7-3

7.3 Component Program Logic 7-3
7.3.1 MaIn Program 7—3
7.3.2 Initial Ization 7—3
7.3.3 Control Card Drivers 7-3
7.3.4 Control Card Generator 7-3

8.O ADBMS 8—1
8.1 Introduction 8-1

8.1.1 Purpose 8-1
8.1.2 Terminology and Concepts 8—i

8.2 Functional Overview 8-3
8.2.1 Input/Output 8—3
8.2.2 Module Components 8-3

-_______ _ _ _  - . ‘~~~~~~~~ ‘ T I~~~ ~~~~~ 

C ,  ~~~~~~
.- -*. .--



8.3 Component Module Logic  8-3
8.3.1 DDLA/DBINT 8-3
8.3.2 User Level Routines 8-6
8.3.3 Mid Level Routines 8-6
8.3.4 Table Access Routi nes 8—6

9.0 ASP 9-1
9.1 Introduction 9—1

9.1.1 Purpose 9— 1
9.1.2 Terminology and Concepts 9-1

9.2 Functi onal Overview 9—2
9.2.1 Input/Output 9—3
9.2.2 Module Components 9—4

9.3 Component Module Logic 9-5
9.3.1 ASDDLA 9-5
9.3.2 User Level Routi nes 9-6
9.3.3 Mid Level Routines 9-6
9.3.4 Table Access Routines 9—6

- -‘~ ~~~~~~~~~~~~—— ‘ T’ -



1.0 INTRODUCTION

The Database Systems Research Group at the University of Michi gan
has developed a Data Translator which is capabi e of reorganizing WWDIIS
databases (Sequential , ISP, and IDS) by altering the logical and physical
structure. The work was completed on a Honeywell 6060 computer under a
contract from the Coninand and Control Technica l Center WWMCCS ADP Director-
ate (Code 400) of the Defense Comunications Agency. The Data Translator
i s a complex and sophi sticated software package, yet is understandable
and easy to use. Thts manual describes the high—level components and
program logic for each Data Translator module.

This program logic manual is directed toward two groups of people:
users of the Data Translator who desire some insight into “how it works”
and prograniners who will maintain the software. The manual is wri tten in
a manner that it could be understood by people with no prior experience
with data translation . However, the reader shoul d have a finn grasp of
database concepts and terminology and should be knowledgeable of Honeywell
software systems (especially IDS/1). The reader should al so have some
familiarity wi th the facilities of the World Wide Data Management System
(WWDMs).

1.1 History and Overview

This Data Translator Is the product of many years of research and
development. Previous Translators lacked the features and performance
of the current release. Refer to Table 1-1 for a compari son of Data
Translator features. The Version I was devel oped to show the feasibility
of a generalized Data Translator. Version II was an extension of Version
I since It was capabl e of handling tree-type data structures. The Version
h A  Rel ease 1 was designed in response to demand for a restructuring Data
Translator. The Release 2 had improved performance and more features
than the Release 1 Data Translator. Version 118 Release 1 offers still
more improved performance and more features than Version h A  Release 2.

As diagramed In Figure 1— 1 , the data translation process consists
of six separate steps. The first two steps involve writing descripti ons
of the source and target databases using their MD sections and l evel
61 extensions. Those descriptions should be run through the IDS Analyzer
to produce sourc e and target SDDL (Stored Data Definition Language) tabl es .
(The terms source and target refer to the old and new databases. ) The
third step is encoding the source—to—target transformation in the TDL
(Translation Definition Language) and running the TDL Analyzer to produce
TDL tables. The fourth step, Reader execution , creates the Restructurer
Internal Form (RIF) of the source database(s). The Restructurer produces
the Relational RIF database in the fifth step. The target database(s) is
produced by running the Writer.

Overal l , the basic steps of the translation process can be divided
into two disti nct phases - data description and translator execution . The
remainder of this section describes the steps in more detail. 

- -. - - - -  - . . 
~~~

~~~~~~~

--  - - -  .



1-2

a, tø

1 4)4-) a, 5-
I ~~u N W

u—I I U W  — 
.4-)

wi I E li) —

~ I I c,i —~~~ 5-

L~ _ _ _ _  _ _ _ _

a, —J- W I ’ t ° I
I I  :~~~u~ I

— I
~ I ~~~I-. I— a, /

_________________________I

_  
f 

a,
S.-

4-)
U
U
4)
•1~~

U
C’) LC) a, I_

S.-
J o  5.- I—

4-)•,- a,
4.) N

_ _ _ _  
a,‘ _ J g ~ . _ _ _ S.- W I n4.), * — 5_

U)U C

~n a, C).—
9.- a,a,

C

~ A
1 

~

0
‘I -
U)
5-.

I I S- Li..
I I —

a, U, a, 

) 
a,

U~ I— V ~~‘ a,
.0

C

ov, I~ I I 

/

~ >. 

S.-

0.
a,
4-)
U,

~I~ .2 ‘
~~S-)I • 4-) 4) a,

_ _  _ _ _  

L L~~ I C I J  N S..
I a i w Ii) >, a,

~~~~
, ~~- ~~~~~p-

P ~~~~~~C a,

- • ‘~ — — -- -

1—3
I-
to 10
U U ,—
9- 9- ‘0 ‘0.C .0 C C

10 U U .~~~ .~~~ 0 .~~~ 0
C 5- 5- 5- ., S.. .

~~5- i— ‘0 ‘00) 1 0 W 5- 5- ~4) 4) a, 4) 4) 4-’ CC to - O .
~~~ 9- a, G I C W  W C W

Z 4 0~~~ ~~~~~~~~~

a...-
.— C .— .— .-- to
‘0 0 to 10
4.) ...- 4.) 4.) 4 )4 )
C 4.) C W C 5 . .

a,
E W~~~a,

a, a, U S-  0. 5.- 0 .5 - U
UI - to C C EL )

0 0
0. u-- C C LI) ‘-. C.) — C..) — LI)

In
a,~~..C) U
I ON

CS,- ~ J I -~~C to I ~~ 1/) ..-J C/) —J 1/) -J
to C ~~ I
J .~~ LI) I LI) — I- ~~- I— ‘-~ I~

U) .)~C 5 . - I
C 0 0 (1)

5.. 40 4-i 4 ) 1 0
W I -

4) .p..~~~~~ ~~ I.- U) a, a,
o .C~~~. C 4) 4)

0 0  r . . W 0  a, a,
5- 5- 4.. U) .~

...
4.) a, 10( 1)  4.~~’ 0 4)  0. 0.

~ S - C  5-.O to
W 10 E  0.... 5.. 4.) 5.. 

~) ~~)0 1 00

a,
I-
10 .0
9- ‘04-) LI) I—4-)

a,
C)V) LI) I Z ~~ *I~ Z 0. I Cl) (I) 

~~ C~ 0.
to ~~ — I ~~ U LI)
I- ~~ I — — 1/)

I— I— a , a ,
to to tO

9- 9- 10- to4.) 4)1/) 4) (/)
a, C~~~ 0) 0)
U — U) a, v) a, ‘—‘ LI) a, — C C
I. LI) LI) Z ~~ I ~~~ Z — to to

o ~~ — 0) I ~~ ~~~4/) ~~~ Cl)
0.

~~~~~~ 

I LI)

(I)
~~ 1/) I — ~~ LI) ~~ (I) — C C

0 0
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ •1~~ 9-

4) 4-)
9- 9-
C C
9- 9-

dO 4~ ‘4- 4-
C S.. 0) 0)

4.) 4..) a, a, a,
a, C C .0

0) 0. C’) 9- .— U ‘0 ~0 4’ 04-) r.... i~~
Id) 4) 0. C N. U N. .— 10~~~~CS U ,~~ 0 E CS U as ~~ Cs 4)

1/) —Z — ‘~~ r- ~~~ to

S . C
0 1 0S.. — — — — 4.1 1.o — — — — — CsJ — p.. V) P

4-)
to C C C U C U C U I I

0 0 0(1)
U) 9- 9- ~~~ 10 10 -~~ to —I

IO U) In U) 0) (A U (A U
4’ 10 1- 5.. 5-.- 5-.- 5-.-
1 0 5- 0) 0) W a , 0) 0) 0) 0) (1) 1—
C I-. >. >-

— - - - - -- - - I- -

1-4

_)
I~ I
I I I- ..J r— I

~~~.0 41 ~fl
‘I  0~~~~to 

) 

(\
\ a, w

V I- C) -J
I I  5.-~~~~.0S I  ~~~~~~~~V I- LI) I-

____________________________________ ____________________________________ 

j

> I I N I
.- I >, I

I (/) 10 • I .- I
I~~~~~~C I I U ) ’ o  II —•

~ I Io ~~ I
C

_ _ _ _  

1_ < I

I 

_ _ _ _

to
.0 4’  4)
C~4 G )  C’4 10C~%J U

- IS . I C)

______ 0
______ 

to ‘4-
WI— a , eU U)
S. I.S..

I -~ to 9- 10I U C ~~~ a, L ~~ ~~

0)4.) C)4-3

I-o w o ~~ 5. Ia ,  C~~~ S.. 0
u-.— c. 1-~ ~ ~ C

10) 5— 4’ I C W . ~ ~5 10
I 4 Q  I J W C ) 4 )  1

C
I x o o .j  j  .. 1 4 ) 5 - u  I .. a)

C W I— Cl)1W U) U)  0) 1X t O W )o _ _ _ _ _ _  I- (I)
0. 0. 0.
U G) a,4.) 4-) 4-’
U ) U )  U)

(0 1 I t n
1(1)

— 1 4 1  a , I C

> 1 w  OJ I E

i 4-’14.) 0I  ~
~~~I4J<I’,, <Iv ,

I U)C I I U) C I
I o o ~ ~~~~~I ~~~~9— S I ~I I ~I ~~~~ 14 ’ U \

‘ W a , \4/) 1 0)1/) II I S - I
~~~~~ J 1 1 0 0  II L~

z 
~
, ~~~~~~~~

-
~~ ~~~~~~~~~~~~~~ 

- -



1.2 Database Description

The Data Translator is a description—driven process. The Translation
modules must know the format of the source and target databases and the
rul es for creating records and chains in the target database from the
records and chains in the source database .

The descriptions of the source and target databases are the source
and target MD sections and additional information needed to restructure
the database. If the source or target database is IDS, no new MD secti on
i s necessary. If the source or target database is WWDMS Sequential or ISP ,
however, an lOS MD which describes the database will have to be written .
After the MD sections have been collected or written , and additiona l infor-
mation encoded as special l evel 61 statements, the extended MD5 are ready
to be used. The IDS Anal yzer uses the extended MD sections to produce
source and target SDDL tables. These first two steps are shown in Figure
1— 2.

The SDDL tables are databases which hold information descri bi ng the
source or target database. SDDL tabl es are analogous to the IDS Definition
Structure which describes IDS databases. Even if multiple source or target
databases have been described , there will be only one source and one target
SDDL table file. The IDS Analyzer is documented in Section 2.

The final description to be wri tten details the transformation between
the source and target databases. That description must be wri tten in the
Translation Definition Language (TOL). The TDL describes how to create
target records using the source records and chains. It is imperative that
the TOL description be correct and validated. If the user does not wri te
the TDL description properly, the output of the Translator will be invalid
and the Restructuri ng will have to be repeated .

The thi rd step of the Translation process is running the TDL descrip-
tion through the TDL Analyzer to produce TDL tables . The TDL tables cannot
be created until both source and target SDDL tables have been created. The
TDL tabl es are an internal representation of the TDL description which the
Restructurer can conveniently use. TOL analysis is shown in Figu re 1-3 and
described in Section 3.

cri~~io~j  H Ana lyzer ~~~~~ les

Source Target
SDDL SDDL
Tables Tables

Figure 1-3
Step Three - Creating TDL Tables

-4



1-6

1.3 Data Translator Execution

The final three steps involv e the execution of the Data Transl ator,
thereby translating the source data to its target form. The Reader,
Restructurer, and Writer modules are executed in sequence. The Reader
converts the source database(s) into a logicall y equivalent ADBMS database
cal led the Source RIF. (See Section 7 for a description of ADBMS). The
Restructurer converts all or part of the Source RIF into an ADBMS database
cal l ed the Relationa l RIF. Finall y, the Writer produces the desired
database(s) from the Rela tional and Source RIFs .

The Reader

There i s one Reader module for WWDMS Sequential , ISP, and IDS file
systems. It sequentially accesses the source database(s) and produces a
log ically equival ent Source Restructurer Internal Form database (SRIF).
Figure 1-4 shows the Reader process and the Reader is described in Section 4.

The Restructurer

The heart of the Data Translator is the Restructurer module. It uses
information stored in the TDL tables to create a Relational RIF from the
data in the source RIF. The Restructurer is described in Section 5 and
Figure 1—5 shows the Restructurer process. 

-

The Writer 
-

The last step of the translation process is running the Writer . The
Wri ter populates the target database(s) using the target (source + relational )
RIF and the target SDDL tables. The Wri ter is shown In Figure 1—6 and the
Writer i s documented i n Section 6. -

- - --

~ 

- r-. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - -



1— 7

oLly)

_______________ 
Reader 

__________________ 
Source

Source
Seq.
ataba s

Figure 1— 4
Step Four: Creating the Source RIF

-~~~ — - - - -  - -- - - - --~~ - 4~- V — — - -—



1-8

Ece 
~
Eucturer. R

~~
ion

- Fi gure 1-5
Step Five: Creating the Relational RIF

V ~~~~~~~~~~
~-



1-9

Target RIF

Target

I _ _ _ _ _ _ _ _  
Database

fl~ r~:t IDS

I 
(IDS only)

+ 

I Ta rget
Wri ter 

~~

-

RelationI al RIF

I I
I J (Seq. ) -

\~atabasy

—

FIgure 1— 6
Step Six: Creating the Target Database(s)

-- - - — —  - - -, V
.- , 

. 

— — - -



2.0 IDS ANALYZER

The first module of the translation process is the lOS Analyzer
which takes the user sdescription of the source or target database and
converts it to the Data~ Translator Stored Data Definition Language (SDDL)tables. The SDDL tables are subsequently used by all remaining translation
modules , e.g. the entire translation process is table driven .

2.1 Introduction -

This section describes the capabilities of the IDS Analyzer as wel l
as some of the relevant terminology .

2.1.1 Purpose

The role of the IDS Analyzer is to compile/analyze statements in a
user friendly language into the Internal tables used to drive the transla tion
process (e.g. SDDL tables). Two tables (SDDL) exist, one for the source
database(s) and one for the target database(s); e.g. if the user has three
source databases that are to be combi ned into one target database, the
source SDDL tables describe all three input databases and the target SDDL
tables describe the output database.

The Input database descriptions to the 1DS Analyzer are an augmented
105 MD section. Extension is necessary because certain information needed
by the Data Translator algorithms is unobtainable from a “straight” IDS
MD section. If the database being described Is IBS, the MD section already
exists, but for ISP or sequential files the MD section must be written ac-
cording to specific rules aiven in Section 3.7 of the Version IIB R.l
User Manual . All extensions to the MD section are accomøllshed by adding a
new level to the language, e.g. the 61 level . A sample extended MD section
prototype is shown in Figure 2—1.

A list of the required extensions to the MD section is (terms defined
In Section 2.1.2):

- 
a) Primary key definition (the unique identifiers for records)
b) Contained-in-repeating group identification
c) Phantom pointer relation Identification
d) Match-key relation identification
e) ISP/sequential record type identification
f) Special data types

2.1.2 Termi nology and Concepts

The following is a list of most major terms used In describing the
function and algorithm of the IDS Analyzer.

_______________ — — - - -. - - - - 
- 



2-2

01 record entry
02 field entry
02 field entry
02 group entry

03 group entry
61 extension

04 field entry
04 field entry

61 extension
02 field entry
61 extension
61 extension
61 extension
61 extension

98 chain entry
98 chain entry

01 record entry
02 field entry
61 extension
02 field entry

Figure 2—1
Prototype Extended IDS MD Section

- —~ 
--- — ---

~~~~
- -

~~1

2-3

IDS Data Query - A Honeywel l package used to convert the extended
lOS MD section into an Intermediate database, the
IDS Data Query File. This is used as input to the
IDS Anal yzer. The Data Query File is an IDS data-
base which contains the extended lOS MD section
as Its data.

Extended lOS MD section - An IDS MD section describing the user ’s databases
but augmented wi th level 61 statements. -There are
two extended IDS MD sections, one for the source
and one for the target.

SODL tables — An ADBMS database containing a Data Translator
useable description of the source (source SDDL
tables) database or target (target SDDL tables)
database. A complete data definition of the SDDL
tables is given in Section 11.0 of the Version IIB
R.l Low Leve l PLM. -

-

Contained-in-repeating group (CIRG) - Certain record types have repeating
groups wi thin the physical confines of the record.
Figure 2-2 ‘Is an example of a CIRG . -

Phantom pointer relations - A technique of implementing an IDS chain wi th—
-

-

out IDS knowing about it. The user sel ects a
field and places reference codes In ft which point
to other records. No 98 level chain is used to
define the relation. An example is shown In Figure
2— 3.

Match key relations - Another technique for implementing relati ons with-
out IDS control. Two records are related together
by having i tem values match. The parent, dependent
and key items must be described using level 61
statements. Figure 2—4 Is an example.

Primary keys - Each record Instance must be uniquely identifiable
from all other instances of its type. Thi s is
accomplished by designating Items In the record as
primary keys . It ‘Is possible that a record may not
have the primary key items in the record itsel f ,
instead Item values from owner record types ass i st
in the composition of the primary key.

Set—significant items - These are additional items added to the records to
implement the Restructurer algorithm . A set—signi-
ficant item Is created In a member Instance to
correspond to all owner primary key items . Set-.
significant i tems may be primary keys. Their use
in restructuring is completely explained in Section
2 of the Version IIB R.l User Manual .

- -‘

-~

2-4

01 STATES-IN-UNION TYPE IS- 5 RETRIEVAL VIA CALC CHAIN.
02 STATE-NAME PlC X(lO) .
02 URBAN SIZE 336.

(03 CITY-DATA OCCURS 14 TIMES.
CIRG 04 POPULATION-OF-CITY PlC 9(8) COMP-l .

L 04 CITY NAME PlC X(lO).
98 CALC CHAIN DETAIL RANDOMIZE ON STATE-NAME.

- Figure 2—2
Sample Contained-in-Repeating Group (CIRG)

Record type A, reference code =2013
-

3127 CH~IN POI:NTERS j

user fields
phantom

-

pointer
Record type B, reference code = 3127

$ V

.

~

pp1
-

~~

CF~AIN F
~
0INTERSI

user fields

Figure 2-3
Sample Phantom Pointer

- - — - - - - -
V “~~~~~~~~

- ___________ — -

2-5

Record type FIGHTER

TOMCAT CHAIN POINTERS

~~~ - f ie lds

/“ match-\ Record type SQUADRON

/ relatjon\
Fighter-name TOMCAT CHAIN. IPOINTERS

’

lane—type 
-

Figure 2-4
Sample Match-key Relation

____________ ____ - —  - 

- 
l~~ 

~~~~~~~~~~~~~~~~~ 

— . — -

-

2-6

2.2 Functional Overview -

This section describes the lOS Analyzer environment , the input and
output files and the components that make up the University of Michigan
suppl ied object code (e.g. °the lOS Analyzer ”).

2.2.1 Inputs/Outputs -

Figure 2—5 is a grand overview of the IDS Analyzer process. There are
three programs - that must be run in-order to p~roduce SDDL tabl es; ini tial iza- -

tion of the lOS Query Dictionary database, population of the Query Dictionary ,
and finally executing the IDS Analyzer. It is important to realize- that
the Query Dictionary is being used for -a completely different role than
origi nally des igned for. For the Vers ion IIB R.l , the Query Dictionary is
a machine-encoded , structured representation of the contents of the extended
lOS MD sec tion and hence is su itable for input to the lOS Ana lyzer.

-

A more detailed view of the lOS Analyzer environment is depicted in
Figure 2-6. The file codes for each file are given in the l ower left-hand
corner. Examples of output can be found in Section 5.1 of the Version IIB
R.l User Manual. Each component not prev’Iou~Iy described is detailed as follows .

-
-

Extended MD/database - Since the SDDL tab les can descr ibe up to five user
and combined extended databases, an extended MD section must be prepared
MD sec tion for each database. These are merged together by

the user (resolv ing duplicate names and record id ’s) -

into one input file , the - combined lOS extended MD
secti-on. -

IDS Translator in query mode — The COBOL—lOS compiler ($ lOS) modified to
- build the lOS Query Dictionary (see lOS Data Query,

0046, 0047)

lOS QUTI - - Utility program to initialize 105 databases.

lOS Analyzer R* - Object code of the program that constructs the SDDL
tables . Written by the University of Michigan.

Run-time parameters - Defines all record types and the database to which
they belong -(there being no other way of telling
them frQm the combined extended MD section)

$001 tables - AOBMS output database

SODL DBTF - ADBMS table file that descri bes the SOOL table l ayout
prior to populating the database. The role of
ADBMS table files is fully described in Section 7
of this manual .

d’ , ~~— “ f ’

-

2-7

_ _ _

U I
v~~~

’I- I

4

V— u, C -

C C -
04) — —

- C
.2
4.’ -

‘ -
- - ‘0U

- S.. -
•

-
(_ ,.

‘ 0) - -
I.-— Lt)~~~

- - $ 4 0
- c5.J I—

- U _.J

~1~41
0

C V
— 0)

00

—.‘

~

5’ _ __5_V____

2-8

I

-

Qg~~~~
)

I 1- w

0

I I ~
~ ‘ V L~~

__J
~ ~

___-
~~

------~J
E U

10 Q..
I A ‘%,

I I
.p... 41I \

0

II
10

I I~ C
1

0) 1 0 1 0

1 I I

0 4-

I

015,- U

(1) 1—Fl
4.’ 0 U
~CX -~~~L~J

_ _ _ _ _ _ _- _ _ _ _ _ _ _ _ _ _ _ _ _

2-9

In ternal Wor k database - Ano ther ADBMS database used for a var iety of
V

uses by the lOS Analyzer. It contains tables for
- keeping track of symbols encountered
- collec ti ng informa ti on on whi ch records bel ong
to which databases

- primary key information as described by the user.

Work DBTF - Sim i lar to the SDDL DBTF except that it defines
the structure of the Internal Work database

Scratch i nput file - Null input

Initialization report - A brief page containing messages of ADBMS database
initialization.

Error report - All lOS Anal yzer error messa ges pr i nted .

User dump output - A useful report sumarizing in easy-to-read format
the contents of the SDDL tables . It serves as a
reference when wr iti ng TDL .

2.2.2 IDS Analyzer Components

The most convenient breakdown of the lOS Analyzer is by the way it is
stored in memory. Each component occupies a separate link overlay and at any
given time only one link plus the main link is in core. Each component is:

1. Main link - Control structure
2. INIT link - Database initialization
3. IDSAN link - Constructs SDDL tables except for set-significant items

and primary keys
4. BLDPK link - Finishes SDDL tables by adding primary keys and set-

significant i tems.
5. REPORT link - Wri tes the 10$ Analyzer user-readable SDDL table dump

report.

2.3 Component Program Logic

The essence behind the algorithm of the lOS Analyzer is the transfer of
data from the IDS Query Dictionary to the SDDL tables . To understand the
process, the database schemas of the Query Dictionary and SDDL tables are
shown in Fiqures 2-7 and 2-8.

Only a partial schema diagram is shown in Figure 2-7 for the SDDL
tables , complete details are given in section 11 of the Version IIB R .l
Low Level PLM. A brief definition of the contents of each record type is as
follows :

DB - One i nstance per user database bei ng descr ibed . I t has the name
and type (IDS, ISP , SEQ) stored within.

GROUP - Each user 01 record plus all contained-in-repeating groups have
their own instance of a GROUP record .

~~~~~~~- - - - _ _ _ _ _



2-10

(SYSTEM I)

CDB D
GRPSIN RELS

RELOWN
- r  __

( GROUP 

~
) (_ RELAY )

RELMEM

ITEMS

(
__

ITEM HASSIG

Figure 2—7
Par tial SDDL Table Schema

—
‘V ~~~~~~~~~~~~~ 

— ~ —_

-~~~



2-11

RELAY - Each 98 l evel chain , phantom pointer relation , match-key relation ,
rela tion between the con ta inj i~ and contained-in group and all
entry point relations (e.g. SYSTEM to CALC records) have their own
RELAY recor d ins tances

ITEM - Every field plus all set-significant items are represented by
ITEM records

The sets in the SDDL tables have the following functions :

GRPSIN - Each group (e.g. record or CIRG) is attached along GRPSIN to the
database that it belongs to.

RELS - All rel ations whose owner record is in the same database are
col lected together alon g RELS.

ITEMS — All user and set-significant items belongi ng to the same group
are attached to the corres pon di ng GROUP record a long ITEMS .

RELOWN - Each re l ation that a grou p owns is found alon g RELOWN . Simil arl y,
gi ven a rela ti on , the owner group is identified by ‘heading ’ the
RELOWN set.

RELMEM - Same as RELOWN except for relations that a group is a member of.

HASSIG - All set-significant items that were derived from the same relation
are col l ected togethe r along HASSIG.

The lOS Data Query Dictionary has a structure slow n in Figure 2-8.
Only the portions of the structure actually used by the lOS Analyzer are
displayed . The contents of the records are briefly described here, a more
complete explanation is given in IDS Data Query Installation 0047.

Record-Definition - One for every 01 record type

Field-Definition - One for every 02 field -

Validation - One for every 02-49 entry

Description - One for every level 61 entry

Master-Definition - One for every 98 chain master entry.

Detail-Definition - One for every 98 chain detail entry.

As can now be seen , the extens ions to the lOS MD secti on tha t are
coded by the user are stored internally as Description records. The Descrip-
tion records for CIRG definition are l ocated Imediately beneath the Validation
record that defines the CIRG. Primary key, match—key and phantom pointer
relation information are always coded directly following a special field in
every record, 02 TRANSLATION-INFORMATION SIZE 0. An example extended MD
section is given in Figure 2-9 with the corresponding IDS Query Dictionary
contents shown in Figure 2-10.

—S.



2-12

Record
Defin iti on

Fl ELD-CHA
I2
/ MASTER-CHAIN

Field— { 1 Master-
- 

DefinitionJ )ETAIL-CHAIN Definition

VAL IDATION-CHA
,,
~,~/
” 

______ 

- 
~,,•/

X~~IN_cHAIN

[~etail
I - Definition

Val ida tion -

DESCRIPTION-CHAIN -

Descri pti on

Figure 2-8
“Used” Portions of the Query Dictionary

— . - ___5S ~~~~~ S.’ —



2-13

lOS QUERY
01 CITY TYPE IS 1 RETRIEVAL VIA CALC CHAIN.

02 CITY—NAME PlC X(15).
02 DEPARTMENTS SIZE 100.

03 CITY-DEPTS OCCURS 10 TIMES SIZE 100.
61 OCCURS 10 TIMES .

04 DEPT-NAME PlC X(lO).
61 EOG.

other 02-49, 61 entries
98 CALC CHAIN DETAIL RANDOMIZE ON CITY-NAME.
98 HAS—OFFICIALS CHAIN MASTER CHAIN-ORDER IS AFTER.

01 OFFICIALS TYPE IS 2 RETRIEVAL VIA HAS—OFFICIAL S CHAIN. -

02—49 + 61 entries
98 HAS-OFFICIALS CHAIN DETAIL SELECT CURRENT MASTER.

Figure 2—9
Sample Extended lOS MD Section



2-14
0

0

“ I

z

J O1 <  _ _ _ _ _ _ _ _ _ _

—

— C. I —p

I

! j 
- - - 5 - . ~~~~~~~~~~~~~~~~~~~~~



2-15

2.3.1 MAIN Link

This component is very small , serv ing onl y to l ink  in the other
three components.

2.3.2 INIT Link

The two ADBMS databases , SDDL tables and Internal Work database are
initialized using the contents of their respective ADBMS table files.

2.3.3 IDSAN Link

Ninety percent 0f all processing takes place wi thin this component.
Conceptually, the algorithm is simple. 1-he program traverses the LOS Query
Dictionary building the appropriate SDDL table records as it plods along.
The actual transformations between the Query Dictionary and SDDL tables are
as follows :

Record-Definition => Group records

Field-Definition => ITEM records -

Val idation => GROUP (CIRG ) or ITEM records or RELAY (CIRG re-
la tions ) -

Master-Definition , => RELAY records
Detail-Definiti on

Descri ption => GROUP (CIRG), RELAY (match-key or phantom pointer
relations)

Additionally, Description records that identify primary keys are entered
in a di fferent format wi thin the Internal tables for use by the next link.

2.3.4 BLDPK Link

Set-significant items can only be created once every group ’s primary
keys have been defined and since set-significant items may also be primary
keys, all processing related to these entities is deferred until this com-
ponent which is executed upon the completion of the IDSAN link.

The basic algorithm is to locate groups whose primary -keys are solely
user items and indicate that in the SDDL tables . Given this it Is now possible
to generate set-significant items for record types whose owner record types
have already had their full primary key built. The process Is repeated
recurs ively until all set-significant items and all primary keys have been
generated. The process can be visualized as working from the top of the
database downwards . 

- - ‘V 
- 

j ’ , “.. .“_‘,_ ‘  - —



2-16

2.3.5 REPORT Link

The SOOL tables, by now completely constructed are traversed so that
a report suninarizing the contents is produced. By database, every group is
listed (with each of its items and with each relation that it is an owner
or member of). Then all relations with owner and member groups are suimnarized .

- V.. -
~~~~~~~~~~~~~~~~~~ 

- -- - - - -

3.0 TDL ANALYZER
-

3.1 Introduction

After the SDDL tables have been successfully constructed using the lOS
Analyzer , the user must specify his desired restructuring in a translator-
recognizable form. This user—written restructuring specification is called
the TDL (Translatton Definiti on Language) description . Using the TDL, the
user directs the construction of target records by specifying a traversal
of the sou rce records in the source RIF. Thi s TDL Description is then
analyzed and tables are produced which drive the translator.

3.1.1 Purpose

The purpose of the TDL Analyzer is to process the user-suppl ied TDL
Descripti on and produce the TDL tables. These tables are then used to
drive the translator duri ng the execution phase.

3.1.2 Terminology and Concepts -

The terminology used in the TDL Analyzer- section is briefly described
below.

TDL - Transla tion Defin iti on Lan gua ge
A language used to descri be the translati on from - source to target.

TDL Tables - An encoded version of the TOL description which is produced
by the TOL Analyzer

SDDL - Stored Data Definition Language
A language used to describe the source and target databases. -

Gramar - The structure and rules that descri be the syntax of the language.

Reserved Wo rd - A word in the language that has specifi c semantics associated
wi th it, and hence is unsuitabl e for use as a user word.

Token - A basic symbol in the language such as a wo rd or punctuation.

The legal syntax of sentences in the TDL is defined by a graninar wri tten
in Backus—Naur Form (BNF). This BNF graninar is processed by a gramar
ana lysis program which produces a set of parsing tables . It is this set of
tables that drives the TOL Analyzer as it analyzes a TDL description. All
of the legal sentences of the language are encoded in these pars i ng tables.

—5--——- - - — S - -
~1

3-2

3.2 Functional Overview

3.2.1 Input/Output

The input/output relationshi ps for the 101 Analyzer are depicted in
-

Figure 3-1.

Description -

- TDL
Parsing

- Tables
Tables

- Ana1~~er

File

Source -

SDDL
Tables L i sti ng and

- Diagnostics

Target
SDDL

Tables

Figure 3— 1 -

The inputs to the TDL Analyzer consist of the user-wri tten 101 description,
the parsing tables , source and target SDDL tables, and the TDL tables database
table file. The TDL descripti on describes the translation to be performed in

—- - —
V . , ,r’” - — - —

. 5 -.
-~~~

3—3

a translator—recognizable form. The parsing tables are a set of tables
deri ved from the TDL graninar rules which define the l egal sentence forms.
The sourc e an d targe t SDDL tables are output from the IDS Anal yzer , and
the TDL tabl es database table file is used to initialize the TOL tables
databases which are produced during the TDL Analyzer run.

The output from the TDL Analyzer consists of the TDL tables and a
l ist ing of the TDL descr iption. The TOL ta bles - are then inpu t to the
translator execution phase. The listi ng of the TDL description will have
error/warning messages where appropriate and a set of timi ng statistics
at the end. - -

3.2.2 Module Components

Functionally, the TDL Analyzer consists of three ma in componen ts.
The Con trol , Syntactic , and Semantic modules make up the major componen ts.
The Control Component performs Initialization and wrapup. The Syntactic
Component is responsibl e for analyzing the syntax of -the TDL description , -

while the Semantic Component analyzes the semantics of the TOL description
and constructs the TDL tables. The relationship of these three components
is depicted in Figure 3-2, and their functions are described in greater - - -

detail in Section 3.3. -

T Control
Component -

Syntactic
Component

Semantic
Component

Figure 3—2

3.3 Component Program Logic

The function of the TDL Analyzer is to take as Input the parsing
tables and a 101 descriptIon and produce a set of 101 tables containing the
i nformation from the description. The TOL Analyzer consists of three main
components as shown in Figure 3—2.

3-4

3.3.1 Control Component - -

The control component performs initialization and wrap—up functions
for each Analyzer run. System dependent variables are initialized by a
FORTRAN BLOCK 3ATA section at l oad time . TOL Granrar dependent variables
are set by an i n iti al i za tion rou ti ne as the pars i ng tables are read into
storage. After completely processing a TDL description , the Control-
Component provides wrap—up functions, which include closing all databases
and providing timing statistics.

3.3.2 Syntactic Component

The Syntactic Component reads the TDL description as a sequential
stream of characters and separates it into the basic symbols of the language
cal led tokens. These tokens ca-n be a user name, a reserved word , an
i nteger , a l iteral , or a float. The Syntac tic Componen t takes the tokens
and the grammar rules encoded in the parsing tables and makes a call to
the Sema ntic Componen t whenever a phrase of the l angua ge i s recogn ized . -

This process continues until the entire TDL. description has been processed. -

The Syntactic Component uses the MSP(2:l;l:1) syntactic parser described
by McKeeman et.al.[GG1]. The parser is driven by the grammar tables
and based on a set of parallel stacks. Each incoming token is examined to
determine whether it should be added to the parse stack or not. - The
decision is made by consulting the grammar tables and considering , at most,
the top two tokens on the stack and the incoming token (i.e. ,(2,l) context).
When the token is stacked , the next token from the input is evaluated in
the same manner. When a token is found which is not to be stacked
immediately, the list of legal reductions of the grammar is examined to
find the reduction(s) which match the top of the stack. If more than one
match is found , the grammar tables allow a (1 ,1) context check. The
potential resul t. of each of the matching reductions is considered in
relation to the token that would be immediately bel ow it on the stack if
the reduction were made and the incoming token were stacked. Illega l
combinati ons are rejected. After the correct reduction has been determined ,
the appropriate semantic routi ne is cal led to process the grammar rule
being applied. The parse stack is then reduced and the process is
continued with another stacking decision for the incomi ng token. When all
the input tokens have been processed and the parse stack has been reduced
to a single token (called the goal symbol), syntactic processing is complete
and control is returned to the Control component.

3.3.3 SemantIc Component

The Semantic Component builds the 101 tables . The Semantic Component
is called by the Syntactic Component with a parameter indicating what
reduc tion Is bei ng made, and also which tokens are on top of the stack.
There also ex i st severa l assoc iated stac ks in paral le l wi th the parse
stack. They contain information from the description related to the
corresponding token on the parse stack. For names and literals, the
associated stacks contain the index Into free storage of the’ charac ter
string and a flag to Indicate whether this is the first time the name has

3—5

been used . For i ntegers , the assoc iated stacks con ta in the va lues. These
values are set by the Syntactic Component when it stacks a token. The
Semantic Component manipulates the values in the associated stacks and
uses them to build the Output tables.

- - ~ .
.

S~~~~—
- - --- -_

4.0 READER

4.1 Introduction

The Reader i s the first module of the Data Transla tor to access the
user ’s database. It can read any combination of up to five lOS—I , ISP or
WWDMS sequential databases. It can be run incrementally and its progress
can be controlled through a job status file. The Reader is driven by
i nformation stored In the source SODL tables.

4.1.1 Purpose

The Reader produces the source Restructurer Internal Form CRlF)
database from the user ’s source da tabase (s) . The source RIF database i s
logically equivalent to the sum of the data in all source databases. -

4.1.2 Terminol ogy and Concepts

Reader - The Reader is physically represented by two software modules
called the Phase 1 and Phase 2 Readers. For each database,
the Phase 1 Reader mus t be run before the Phase 2 Reader can
be run.

-

Source Da tabase - The user ’s database which will be translated . The Reader
can accePt three types of source databases: -WWDMS
sequential , ISP , and IDS.

SRIF - (Source Restructurer Internal Form) - An ADBMS database which
is logically equivalent to the source database(s). It is
passed along to the Restructurer and Writer modules.

CIRG — (Contained-in—Repeating-Group) - A named collection of i tems
in a record. In COBOL, a CIRG is defined as any field wi th
an OCCURS clause.

Phantom Pointer Relation — A set or relation in an IDS database which is
maintained by the user. Set membership is based on IDS
reference codes stored in user , data fields.

4.2 Func tiona l Overv iew

4.2.1 Inp~ut/Output

The Phase 1 and 2 Readers do not have the same inputs and outputs .
This section describes the files for Phase 1 and 2 which are Inputs ,
outputs, or both .

4-2

Inputs:

Source Database (PHi and PH2) - The source database is needed in both
Reader phases. Sequential databases may be on tape, ISP databases
require the ISP index file , and 105 databases must include all
subfil es.

Source SDDL Tables (PH1 and PH2) — The description of the source data—
base is stored in the source SDDL tables. It is an ADBMS database
produced by the lOS Analyzer.

Run-time Parameters (PHi and PH2) - The run—time parameter file contains
the name of the database to be read , the num ber of records to be
read, the name of the job status file and how often it should be
updated and Keywords specifying whether this will be the first, las t,
or an intermediate run.

Accessor ’Object (PH1 and PH2) — The Accessor (lOS , ISP or SEQ) is compiled
before every Reader run. This is done so that the lOS structure
tables for the database being read will be available for the IDS
Accessor. The ISP an d Sequen ti a l Accessors are also compil ed a lthou gh
they never change.

Outputs:

Report (PHi and PH2) — The Reader produces a report which contains the
run— time parameters, Initialization i nformation and selected record
dump of the SRIF. All error messages are also on this report.

Source RIF (PHi and PH2) - The primary output of the Reader is the source
RIF. It is the log ical representation of the source databases and
is input to the Restructurer.

Inputs and Outputs:

Dele ted Records - The Phase 1 Reader produces a f il e of SRIF keys of al l
records which were logically deleted in the source database(s).
Those records are deleted from the SRIF at the end of Phase 2.

Internal File (PHi and PH2) - The Reader’s internal file is used to maintain
information needed by the Reader between increments of a database and
between Phase 1 and Phase 2.

Other In puts and Ou tputs:

The Reader uses some other inputs and outputs during only the first
run of the Phase 1 Reader. The Work Database used by the SRIF DLL Writer
is initialized using the ADBMS Database Tables File (see Section 7.0). The
SRIF DDL Writ er produces the ADBMS ODL for the SRIF , which is then used
by the AOBMS DOL Analyzer to initialize the SRIF file.

4-3

4.2.2 Reader Components

Phase 1 Reader

The Phase 1 Reader has six modules (see Figure 4- 1).

1. Main Program — Performs major Reader initialization and controls the
link overl ays.

2. SRIF DOL Writer — The SRIF DOL Writer produces the ADBMS DDL state-
ments for the SRIF using informati on stored in the source ~DDL tables .

3. Table Initializer - The Reader ’s i n—main memory tables are initialized
by this module. The internal tables a l lo w the Rea der to access da ta
stored in the SODL tables in less time than going through the SDDL
tables.

4. Data Movement - Thi s module transfers the data from the source data-
base to the source RIF.

5. Accessor - There are three Accessors , one eac h for sequen tial , ISP,
and IDS databases. The Accessor retrieves every record from a data-
base and returns it to the Data Movement module.

6. Wrapup and SRIF Dump — When the Data Movement module is done , the
Wrapup module sets up the Reader for the next run and then a few records
from the SRIF are dumped .

Phase 2 Rea der

The Phase 2 Reader (see Figure 4-2) has five modules of which four
(Main Program , Tab ie Initialization, Accessor , and Wrapup /SRIF Dump) are
essentially the same as in Phase 1. The only difference is the Relation
Linker wh ict ’ l i n k s a l l the records toge ther i n the SRIF i n the same
manner in which they were linked in the source database .

4.3 Component Program Logic

4.3.1 Main Program

The Main Programs for both Reader phases are very similar. They read
and analyze the run-time parameters and set up internal variables before
calling ei ther the Data Movement or Relation Linker modules . The Main
Programs also control the link overlay structure for the Reader.

4.3 .2 SRIF DDL Wr iter

The first module to be executed after the Phase 1 Main Program is the
SRI F OOL Wr iter. It produces the ADBMS DOL for al l of the records , items

- -

-
5_V--S

- -g

4-4

a)

.
~~~0

~~~
. %_

a)
a) .w

.—

U
(/,

-~~~

a)
U
~. L~~

(/,

~~~



4-5

/ 7~Ei~

~~~ 
ii *.___ fT ÷__ K

~

.~~~~~~~~

I——

- — — - , — ‘ V.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—



4-6

an d sets i n the source RIF.  The records , items and sets in the source
RIF correspond to logically equivalent records, fields and chains in the
source database. The SRIF OOL Wr iter i s execu ted onl y once ( dur i ng the
first Phase 1 Reaier run). After the SRIF DOL Writer is finished , the
SRIF file is initialized by the ADBMS Database Initializer.

4.3.3 Table Initializer -

Processing time for the Reader is minimized by getting all the informa-
tion the Reader requ i res ou t of the source SDDL tables once for al l  records
rather than getting the information about one record each time a record
of tha t type is being processed . Both Phase 1 and Phase 2 Readers have
a tabl e which contains all record and CIRG information and a table which
is an index into the record-CIRG table. The Phase 1 Readers record-CIRG
table is connected to table with item information for each record or CIRG .
In the place of the item table , the Phase 2 Reader has a tab l e with set
information fo-r each record or CIRG .

The Table Initializer goes through the SDDL tables by finding all
record information and then all i tem or set information for the record .
Then al l CIRGs are processed an d then the nex t record i s processed un ti l
all records have been compl eted.

4.3.4 Data Movement

The Data Movement module is essentially the control module for the
Phase 1 Reader. It calls the Accessor for a record from the source
database. After determining the record ’s type, a record of the corresponding
type is created in the SRIF and the data moved to it. Any necessary data
conversion is performed before ‘inserting the data in the SRIF. Any CIRGs
in the source record are moved to records in the SRIF. CIRGs which
contain only nul l data are not moved to the SRIF.

4.3.5 Relation Linker

The Relation Linker is the major module of the Phase 2 Reader. It
creates in the SRIF all relati ons which were present in the source databases.
For Sequen tial an d ISP databases , the algori thm is very simple. For each
record retrieved by the Accessor, the record is made the curren t owner of
all sets in which it is an owner and added as a member to all sets in which
it is a member. The algori thm is simple because the records are retrieved
in hierarchical order.

The IDS (network) relation linker is significantly more complex than
the ISP/sequential linker. It connects the records in the SRIF together
in the same order as they were along the lOS chain NEXT fields. Phantom
pointer and match—key relations are also constructed by the Relation Linker .

--,- - - -5- - -- --- 5 - -



4-7

4.3.6 Accessor

There are three Accessors ; one each for sequential , ISP , and lOS
databases . The sequential and ISP Accessors are FORTRAN programs which
retieve all records in a straight-forward manner (an unfo rmatted read for
sequential databases, a call to GETSEQ for ISP databases). The IDS
Accessor Is an IDS-COBOL-GMAP program which is compiled before every Reader
run with the MD section for the database being read. It uses information in
the SICT (Slave lOS Control Tables) and the IDS common area .QWRA to
get every record in the database using the IDS RETRIEVE DIRECT verb.

4.3.7 Wrapup and SRIF Dump

Both phases of the Reader dump the first and last records of every
SYSTEM owned set so data values can be roughly val idate. The Reader’s
internal file is updated so succeeding Reader runs will know where to
start in the database (if the Reader was not ‘finished). The ADBMS set
and record tables are written back to the SRIF to maintain currency across
runs.



5.0 RESTRUCTURER

The Restructurer is the second of the three major modules of the
Data Translator. It must be executed after the Reader has completed and
before the Writer can begin.

5.1 Introduction

This section defines the purpose of the Restructurer and some of
the term inolo gy needed to unders tand the al gor ithm exp lana tions .

5.1.1 Purpose

After’the Reader has converted the user ’s source database(s) into
a standar d physical format known as the source R IF database , the Restructurer
is called upon to perform the logical transformations specifi ed by the
user ’s TDL description . The TDL description specifies how the source
data i s to be trans formed into the des i red target format. The Restructurer

- onl y crea tes target data records that are different from all source data
records; any parts of the source database which will be in the same form
in the targe t database as i n the source database are no t transfo rmed , but
remain in the source RIF database. Target data records created by the
Res truc turer are stored in ano ther standard physical format, the relational
RIF database. The Writer then uses the data from the source and relational
RIF databases to wr ite out the user ’s target database(s).

5.1.2 Terminology and Concepts

This section gives definitions of the terms and concepts used in the
descriptions of the Restructurer algorithms .

Access path - A hierarchical substructure of the source RIF database
which defines a representation of a target record type
in the source RIF. An access path must begin at the
SYSTEM record of the source RIF schema.

ADBMS - The internal DBMS used by the Restructurer and other
modules of the Data Translator. -

ADBMS DBTF - (ADBMS Database Tables File) A sequential file which
conta ins the database tables for an ADBMS database. Thi s
file is output by the 001 Analyzer and contains a
description of the database schema In tabular format.

ADBMS DDL Statements (ADBMS Data Description Language Statements) - Textual
statemen ts used to descr ibe the schema of an ADBMS
database. They serve as input to the DDL Analyzer.

Compatible - An access path Is said to be “compatible below” a second
access path if It shares a subtree, starting at the
SYSTEM record, from which the pr imary key data values are

- . ‘
- ~~~~~~~~~~~~~~~~~~~

--- -- - -S .5 -



5—2

drawn for the target record represented by the
secon d access path . I f thi s cond iti on holds , it
becomes advantageous to process both access paths
simul taneousl y, since the same recor d instances
are used by both of them.

Database Initializer - A program that initializes a file so that it can be
used as an ADBMS database.

DOL Analyzer - A language anal yzer that accepts as inpu t ADBMS 001
Statements and produces the ADBMS DBTF.

DDL Writer - A program that scans SDDL tables and produces ADBMS
DDL Statemen ts descr i b ing the da tabase , suitable for
input to the DDL Analyzer.

Node - Each record on an access path is referred to as a node
of the access path.

Primary key - A. col l ection of data items in an ADBMS record type
whose combi ned values un iquel y ident ify an instance of
that record type from all other instances of that record
type.

RIF - (Restructurer Internal Form) - The name given to the
standard physical format database on which the Restructurer
opera tes. - All user databases mus t be conver ted to th i s
form before they can be restructured.

Stack - The Stack Builder module takes access paths from the
101 tables an d sets up a data structure , simi lar to a
stack , wh ich is used by the Source Accessor to retr ieve
source record instances from the source RIF database.
While somewhat more complex than a simple stack , this
data structure wi l l  stil l be referred to as simp ly a stack
throughout this section.

SYSTEM record - Each ADBMS database has one instance of a record type
known as SYSTEM placed in it by the Database Initializer.
The SYSTEM record defines the “top” of the database
schema; entry into the data structure via ADBMS sets
(relationships between record types) starts at the
SYSTEM record. All access paths must also start at the

p SYSTEM record .

5.2 Func ti ona l Overv i ew

This section describes the inputs and outputs of the Restructurer, along
with its major components.

5.2.1 Input/Output

Figure 5—1 illustrates the inputs required and the outputs produced
by the Restructurer. A brief explanation of each follows .



5—3

TOL TARGE1
TABLES T~B1E!ES( penn erm

WORK
DATABASE

TABLES FIL
“NAMES” “POINTER TARGET
DL TABLE DL TABLE SDDL

( temp) (temp) TABLES
~temp ) -

RESTRUC-
TURER

WORK OB

RESTRUCTURER

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ LATI0NALRUN-TIME
PARAMETERS DDL TEXT

RELATIONAL
RIF TABLESRESTRUCTURER FILEREPORT

RELATION RELATIONS~~~CE S~~~CE
AL RIF

DB (penn) DB (temp DB (temp ~~b ~~~~

Figure 5— 1: Restructurer Inputs and Outputs

- — — - -—--- ------— —- - — -— - - -——--- - — - - -
V

_ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _- - 5 -~~__ _ _ _ _ _ _ _ _ _

5-4

RESTRUCTURER Dr i ven by the transla tion informati on i n the
TDL tables, the Restructurer builds the relational
R I F database from the da ta i n the source RIF
database.

RUN-TIME PARAMETERS User-supplied statements that control various
aspects of the Restruc turer execu tion.

TDL TABLES (perm) An ADBMS database , output by the TDL Analyzer , in
which are stored the translation specifications
from the user ’s TDL descri ption .

“POINTERS” TDL TABLES A copy of the TOL tables , residing on a temporary
(temp) fi le , in whi ch all ADBMS names have been replace d

with symbolic pointers . The necessary processing
is performed by the Restructurer prior t.o the actual

-

restructuring of the database. This copy of- the’
TDL tables is used to avoid having to interpret
the same ADBMS l iterals over an d over aga i n each
time a target record is crea ted or a source - record -

accessed . Thi s saves cons idera bl e process i ng time
dur ing the Restructurer execu tion. -

“NAMES” TDL TABLES A copy of the TDL tables , residing on a temporary
- (temp) file. AOBMS names remain unchanged , as in the per-

manen t fi le.
SOURC E RIF DATABASE An ADBMS database , ou tpu t by the Reader , which is

(perm) logically equivalent to the-user ’s or ig ina l source
database(s).

SOURCE RIF DATABASE A copy of the source R I F database res id ing on a
(temp) temporary file.

RESTRUCTURER REPORT A report of the Res truc turer execu ti on.
RELATIONA L RIF DATABASE An ADBMS database i n whi ch the target recor d instances

(penn) built by the Restructurer are stored. This database
is then used by the Writer in producing the user ’s
target database(s).

RELATIONAL RIF DATABASE A copy of the relational RIF database, residing on
(temp) a temporary file.

TARGET SDDL TABLES An ADBMS database , output by the 105 Analyzer, that
(penn) describes the data structure of the user ’s tar get

database(s).
TARGET SODL TABLES A copy of the target SDDL tables database , residing

(temp) on a temporary file.
RESTRUCTURER WORK DATABASE An ADBMS database used by the DOt. Writer to

produce ADBMS DOL text .
WORK DATABASE TABLES FILE A sequential file containing the ADBMS DBTF for

- the Restructurer Work Database. ~This file is used
to initialize the work database before it is used
by the DDL Writer. -

—
5- - - - -‘ -

-
~~

5—5

RELATIONAL RIF DDL TEXT A sequential file, produced by the ODL Writer ,
containing ADBMS DOL statements for the relational
RIF database. It also serves as input to the 001
Anal yzer.

RELATIONAL RIF TABLES FILE A sequen ti al fi le , produced by the DDL Analyzer ,
containing the information from the relational
RIF DDL text in tabular format. Also ser ves as
input to the Database Initializer .

USER-HASH INPUT
-

A sequential file produced by the Restructurer
while processsing the run-time parameters. If user-
hash statements were given in the run-time parameters,
they are rewritten to this file and serve as Input
to the Database Initializer.

The inputs to and outputs of the Restructurer can by summarized as
follows :

In~its: 1) TDL tables database -

2) target SODL tables database
3) sou rce RIP database

- 4) relational RIF database file
5) Restructurer Work Database file
6) Work Database tab les file
7) run-time parameter statements

Outputs 1) source RIF database
2) relational RIP database
3) Restructurer Work Database
4) Restructurer report

5.2.2 Major Components -

The Restructurer is implemented as a main control program and six major
components. The relatiVonships between the components are Illustrated in
Figure 5—2 , with the arrows indicating the direction of the flow of execution.
A brief explanation of each component is given below .

MAIN CONTROL D i rects the execu ti on of the other Restructurer
components; controls most of the link-overlaying
of the code; performs general housekeeping functions.

RUN-TIME PARAMETER PROCESSOR Reads in the user ’s run-time parameter state-
ments and executes the appropriate initialization s -, etc.

STACK BUILDER Retr ieves access pa ths from the TDL tables an d sets
up a data structure, similar to a stack, which is

- - later used to drive the Source Accessor.
SOURCE ACCESSOR Dr iven by the stack produce d by the Stack Bu i l der , it

retrieves the Indicated records from the source RIF
database and moves the data Into the Restructurer ’s
buffers for subsequent processing .

- - - . -
—

.. - --~~--~.~~~~~
S —

5—6

C~
START

~
‘Lv

_ _ _

MAIN RUN-TIME
CONTROL PARAMETER -

-

t
~~~~~~~~~~~~~~~~~~~

ACCESSOR __________ 

QUALIFIER

CONSTRUCTOR

Figure 5-2: Major Components of the Restructurer

— 
I ~~‘ 

—



5-7

QUALIFIER Decides whether or not each record instance retrieved
by the Sourc e Accessor ful fi l l s the requ i remen ts
specified in the user ’s TDL description.

CONSTRUCTOR Retr ieves the app ropr iate da ta va l ues from the
Res tructurer buffers , constructs target record
ins tances , and stores them in the relational
RIP database.

STATISTICS AND WRAP—UP Writes out a summary of the Restructurer execution
from data accumulated duri ng the run.

The Restructurer execution can be considered to be a two phase
process. Phase I is controlled by the Main Control program and the
Run-time Parameter.Processor, and coisists mainly -of general housekeeping
func tions. In general , the Restructurer will always attempt to recover from
errors and continue executing in order to find as many errors as possible
i n each run. However , the Main Control program also has the repsonsibility
of termina ti ng Phase I earl y if a severe error occ~rs.

The Run-time Parameter Processor is called by .-the Main Control program.
It reads in textual statements, written by the user, whi ch con trol var ious
aspects of the run: e.g., whether or not the rela ti onal RIF database is
to be initialized for the fi rst of a series of incremental runs , whe ther or
not debug output is to be produced , etc. When finished , it returns con trol
to the Main Control program, along with a flag indicating whether or not
any errors were detected in the run-time parameters. The Main Control program
will terminate the run at this point i f  errors have- occurred.

When Phase I has success fu l ly compl eted, Phase II begins with the
Main Control program calling the Stack Builder. The Stack Builder remains
in control until either all restructuring has been completed , or a ser ious
error forces premature termination of the run . The Stack Builder is resp-
onsibile for setting up a data structure, referred to as a “stack ,” for
groups of compatible access paths from the 101 tables . When a stack has
been set up, it is passed to the Source Accessor , which uses it to retrieve
record ins tances from the source RIF database. When al l  recor d instances
represented by a particular stack have been retrieved , the data structure
is discarded , an d con trol returns to the Stack Bu i l der. The Stack Bu i l der
then sets up a stack for the next group of access paths , and the cycle con-
tinues until all access paths have been used . Control then passes back to
the Main Control program.

The Source Accessor , driven by the stack , accesses the source RIF
database and retrieves the source records needed to construct the cor-



5-8

respond ing targe t records . As each source record instance i s retr ieved,
it  is passed to the Qualifier. The Qualifier consults the TDL tables
and tests the source data to see if it sa tisfies al l (if any) qualification
criteri a specifi ed in the user ’s TDL descr i ption. If the record ins tance
passes qualification , the Source Accessor con ti nues by retr iev ing an
instance of the next record type on the’ stack. If the record instances fails
one or mo re qual ifi ca tions , the nex t i ns tance of the same record type
on the stack is retrieved and the above process is repeated .

When a complete set of record instances for an access path on the
stack has been retr i eved , the Constructor is called . The appropriate
sou rce data values are moved from the Restructurer ’s bu ffers into a
newly created target record instance; any required data type conversions
are also performed at th is time. Du pl icate record i nstances are di scarded
by the Constructor and are not stored in the relational RIP database.
When all target record instances that can be built using the current
sou rce record ins tances have been cons truc ted , control is returned to the
Source Accessor , wh ich then retr ieves the nex t set of sourc e record
instances so that new target record-instances can be created.

When al l  source record ins tances for a stack have been exhaus ted ,
the Source Accessor returns to the Stack Builder. Similarly, when al l
access paths have been used , the Stack Builder returns to the Main
Con trol program , which then calls the Statistics and Wrap-up routines .
A report of the execution is written , all fil es are closed, and the
Res truc turer term i na tes.

5.3 Component Program Logic

Section 5.2.2 gave an explanation of the interaction of the various
Restruc turer com ponen ts. In th i s section , an expl antation of the
processi ng that occurs withi n eac h module Is g i ven .

5.3.1 Main Control

The Main Control program oversees the Rest’ructurer execution and
control s most of the link overlays that keep the memory requirements to
a minimum. It is a simple module that performs the followi ng tasks se-
quential ly:

(1) Sets up the abort wrap-up procedure;
(2) Makes temporary copies of the TDL tabl es database and the

target SDDL tables database ;
(3) In iti al i zes ADBM S;
(4) Opens the temporary “Names ” and “Pointers ” TDL tables databases;
5) Calls the Run—time Parameter Processor;
6) Opens the source and rela tiona l R IP databases ;
(7) Calls the name-to—pointer conversion routine that produces the

“PoIn ters ” 101 tables from the “Names ” 101 tables;
(8) I-f no errors have occurred in Phase I, initiates Phase II of the

Restructurer execution by calling the Stack Builder;

- _ _ _ _  -~~~ - - S 

- —



5-9

(9) When the Stack Builder finishes , calls the Statistics and
Wrap—u p routi nes; and

(10) If the run was successful , cop ies the resul ts back to the
source and relationa l RIP database fil es.

5.3.2 Run-Time Parameter Processor

In order to vary certain parameters at run-time , the user must write
Restructurer run-time parameter statements. The options controllable via
these statements are:

( 1) tota l vs. incremen tal Restructurer runs ;
(2) production of debug output ;
(3) which access paths are to be processed during the run;
(4) labelling the output with a “translation name” ;
(5) whether or not temporary copi es of the source and rela tional RIF

databases should be used , as opposed to operating directly on the
permanen t database f i les ;

(6) altering the hashing algorithm used to store records in the
rela tional RIF database; and

(7) the use of the Restructurer job-status file and job-status report.

These statements are read and ana lyzed for consistency by the Run-Time
Parame ter Processo r. Var ious switches an d fl ags are set, depending upon
those options requested via the run-time parameter statements. In particular ,
if the user requested the use of temporary copies of the source and rel ational
RIF databases , they are prepared now , ‘including initialization of the relational
RIF database. A flag is returned to the Main Control program indi~atThgwhether any errors were detected while processing the run-time parameters.

5.3.3 Stack Builder

To make the definition of “access path” presented in section 5.1.2
somewhat easier to understand , we can say that an access path is simply a
tree struc ture withi n the source RIP database schema . Si nce stacks are
very wel l suited to processing trees, a data structure very similar to
a stack is set up by the Stack Builder (using FORTRAN arrays) for use by
the Source Accessor.

The Stack Builder retrieves an access path from the TDL tables and
all’ other access paths compatible below it. Since each access path is a
tree, and since compatible access paths share subtrees among them , the
combined access paths (taking into account those parts that are shared, or
“overlap ”) are also a tree. This larger , combined tree, representing one
or more access paths, is used to set up a stack—like data structure that
can be used to exhaustively access the source record instances represented
by the combined access paths. The modifi ed stack structure contains
pointer s and fl ags , In di cati ng each access pa th of whi ch a source recor d
is a node, for exam ple. Al so , each source record type i s alloca ted
space in the ADBMS work area; this storage is used to keep a copy of
each current source record instance in main memory so that it can be refer-
enced without additional accesses to mass storage.



5-10

When the Source Accessor has finished with a stack , the stack storage
and internal buffer space are released , and the next stack is set up. If
an access path is compatible below more than one other access path , it is
only processed once; i.e., it may be skipped over later on when the
second access path with which it is compat ible is used to start a new stack.
When all access paths in the TDL tables have been used in a stack , the
Stack Bu i l der returns to the Ma i n Con trol program.

5.3.4 Source Accessor

The Source Accessor uses the data structure set up by the Stack
Builder to drive the record retrieval process. In order to understand
the internal logic of this component , the reader must fi rst be familiar
with the standard method of processing a tree structure using a stack.
While the data structure set up by the Stack Builder is more comp licated
than a traditional stack , the standard method of processing a tree with
a stack can be easily extended to a Restructurer stack having only one
access path on it. The idea of compatibility , however , introduces further
complexities into the algorithm : ‘in general , eac h access path on a stac k
will not include all source record types on the stack. The extension of
the algorithm to inculde multiple access paths is not trivial , and is
beyond the scope of this document. However , it should be noted that this
capability is not vital to the Restructurer ’s ability to perform restructuring,
but simply increases its efficiency .

5.3.5 Qual ifi er

Each record instance retrieved by the Source Accessor is passed to
the Qualifier to determine if it satisfies all the qualifications specified
in the user ’ s TDL description. The Qualifier consults the TDL tables
and tests all data item values in the source record instance that must be
qualified for the access path currently being processed by the Source
Accessor. Qualifications are of four basic types:

(1) Comparison of a source data i tem and a constant value (e.g. data
I tem not ~ ual to zero);

(2) Compar i son of a source da ta item with another data item somewhere
on the access path . If the record instance containing the
comparison data va l ue has not yet been pushed onto the stack , the
qualification is considered successful . It will actually be
performed later when the other data item becomes available on the
stack;

(3) Acceptance or rejection of a “n ul l record ins tance ” : the user can
specify that a target record instance may be built even though cer-
tain source record instances do not exist. If so specified , a
“nul l ins tance ” is allowed . However, if any other qualifications
have been specified , but no source record instance exists , the
record fails qualificati on ;

(4) User qualification : the user may supply a FORTRAN subroutine to
perform unusual qualifications (e.~ ., table look-up). Any such
routines are dynamically loaded and executed by the Qualifier.



5— 11

5.3.6 Constructor

When the Constructor is called by the Source Accessor , it is passed
a pointer indicating for which access path a target record instance is to
be constructed . The Constructor retrieves the needed sou rce data va l ues
from its buffers , performs any required conversions , and stores the data
in the appropriate target i tems. The user may also provide a FORTRAN
subroutine to perform unusual data conversion functions ; any such routines
are dynamicall y loaded and executed by the Constructo~ When all target
i tems have been assigned , the record is stored in the relational RIF
database ; dupl icate record instances (i.e., i nstances whose pr imary
key i tem values are the same as those of a previously stored record
instance) are discarded .

5.3.7 Statistics and Wrap-up

When all restructuri ng to be performed during the run has been
completed , the Main Control program calls the Statistics and Wrap—up
routi nes to wri te out a report of the execution. During the run,
several subroutines are used to keep track of various types of information ,
such as the number of target record instances of each type that were

- created. This data is written out as part of the Restructurer report
in a user-friendly tabular format. Al so, two record ins tances of eac h
type stored in the relational RIF database are written out to allow
the user to examine the data for possibl e errors.

- - - ‘ ---- - - -- -~~~~~~~~--~ - - - - -- - -



6.0 WRITER PROGRAM LOGIC -

The fina l module of the translation process is the Writer. Its
function is to produce the target database for subsequent normal use by
the database administrator who initiated the whole translation process.

6.1 Introduction

This section descri bes the features of the Writer available to the
user and defines some terms which will be referenced later on ‘in Section 6.

6.1.1 Purpose

The most importan t role of the Wr iter i s to produce a target da tabase
according to the user ’s specifications. Two types of databases may be
produced ; lOS/i and sequential (unsorted ) file. The sequential file is
su bsequen tly sorted by SORT/MERGE to yi eld a standard WWDMS sequen tia l
database , or if ISP is desired , the utility XUTIL is loaded to generate
an ISP database. - 

-

In producing a target database, two goals must be met by the Writer .
These are: -

1. Preserve the logical relationships present in the internal form
databases produced by the Reader and Restructurer. All of the
transformations specifi ed in the TDL between the SRIF and RRIF
must have their effect remain intact when the user ’s target
database is wri tten .

2. For IDS i~tabases, the target database must, of course , be a
legal IDS f i le , but perhaps equally important, the Wri ter will
not produce (or propagate) poor database design techniques;
specifically, contained—in—repeating groups , phantom pointers !
chains and match-key relations are not allowed in a target
database.

Some of the more detailed Writer features are listed below :
1. Because target databases can be enormous-, it is not always

possible to write an entire, database ‘in one bloc k of computer
time. Hence , the target database can be written incrementally,
each run can be broken off at the completion of a certain number
of user—speci fied record types.

2. The Data Translator internal form databases can hold up to five
user target databases which may be of differing types. Although
the Writer can only output one database at a time,it has the
ability to select any one of the databases wi thin the internal
form (RIFs) based on user selection.

3. A debug feature is provided which enables the user to obtain
a snapshot look at every record instance wri tten . This facilitates
the checking of the TDL wi thout resorting to WWDMS or application
programs .

- ____5 —- -



6-2

6.1.2 Terminol ogy and Concepts

The follow i ng is a formal list of most of the major terms used in
the Program Logi c Manual in reference to the Wr iter.

Wr iti n g - A ver b used to ind icate the process of trans ferr i ng records
from the TRIP (see be l ow) to the targe t (user)  da tabase .

TRIF - Target RIF , a logical concept composed of two physical data-
bases, the SRIF and RRIF. As mentioned in Section 5.0, if
records in the SRIF are unchanged ‘in their final target data-
base form , there is no need to res truc ture them. Hence , the
Wr iter wil l retr ieve i ns tances of chan ged recor ds from the RRIF
and unchange d records from the SRIF.

ASDDL — Aggregate Schema Data Definiti on Lan gua ge. A spec ial DOL ,
created by the DWTR (see below) which is a super-set of the
DOLs tha t ind ividual l y descr ibe the SRIF and RRIF. I t serves
as the l i nk between the user target record , item and set names
an d the RIP recor d, item and set names. An example is given in
Figure 6—1 .

< RECORD ADMINISTRATION IS ADMINI IN RRIF
< ITEM
< ADMINISTRATION-NUMBER

IS A DM INI ;
< ITEM
< MONTH-INAUG
< IS MONTH—
< ITEM
< DAY-INAUG
< IS DAY-IN
< ITEM -

< YEAR- INAUG
IS YEAR- I

<

< SET SERVED-WITH-CONGRESS IS SERVED IN SRIF
< OWNER IS PRES IDEN T

MEMBER IS RELATOR—PRES-CONG ;

Figure 6—1
Sample ASDDL

ASDOLA - Aggregate Schema DDL Analyzer. A program that accepts input
ASDDL statements and produces a set of tables used by the
Aggregate Schema Processor (ASP, see below). The tables contain
al l  the informa tion needed by the Wr iter to correc tly loca te
in the SRIF or RRIF the record and set instances needed in the
target database.

- --5 ‘ -- - - -



6-3

ASP - Aggregate Schema Processor , a collection of routines which
lo gi call y sit on top of ADBMS rou tines. The Wr iter uses ASP
routines to retrieve record instances , item val ues or to
traverse sets . ASP in turn determines wh ich ADBMS cal ls  mus t
be made (remember that the SRIF and RRIF are ADBMS databases)
in order to satisfy the requests.

DWTR - DDL Wr iter , Tar get RI P .  Th i s componen t writes the ASDDL
statements.

Direct Reader to Writer - A mode of translation ‘in which the Restructurer
and TDL play no part. It is used for simple database reformatting
jobs suc h as re-calcing of records, changing the page size,
dele ting I tems. Comple te ru l es for Direc t Rea der to Wr iter
translations can be found in Sections 2.6 and 5.5.3 in the Version
II B rel ease 1 User Manual .

IDS Structure Table - A common area (.IDS..) produced by the lOS Translator
($IOS) from the target lOS MD section. It is modified at
runtime to “trick” lOS into processing as the Writer wishes.

Mas terless records - For IDS databases onl y, the wr iti ng process is broken
down into two steps, writing record types which are details
of no chains (except CALC chains) and wri ting out all remaining
record types. The former class of records is known as mas ter—
less records. -

6.2 Func tional Overv i ew

This section descri bes the input and outpu t fil es to the entire
Writer as wel l as the major components of the “Wr iter ” (e.g., the object
file of code wri tten by the University of Michigan).

6.2.1 Inputs and Outputs

There are three modes to the Writer and one wrapup mode for ISP!
sequential target databases. Each is defined below wi th a reference to
the accompanying figure.

1. IDS target, Reader-Restructurer-Writer translation (Figure 6—2).
This is the regular mode for target lOS databases; e.g., record
or relation instances were changed substantially enough to
warrant using 101.

2. lOS targ et, Reader-Wri ter translation (Figure 6—3).
Used for Direct Reader to Writer translations , it is the same as
#1 except for input files which would have been created by the
Res tructurer or TDL Anal yzer an d hence do not ex i st i n thi s
configuration.



PS-

6-4

4
+3

I 

0
4-’

(.1,

I 
-

-I

V 
~~
I I . .

I I- .,

-

W 4-’
I _ _ _ _ _ _ _

= 5..I 
- 

4-,
‘I,
CI

t 
S.. 

CI

4-,
0 

- 

x

4) 

4 ) U

0
— =

S.-

I -

~~~ I

[I u
r 0

_ _ _ I
~~~~~~~ I

_

~~
(I,

CI CI

I~~~~~

_
0

_ _  

~~~~~~0 

_ _

— ~~~x

—i-

ui ~
I

‘

~~I
_ _ _ _

CI
C,~

— 5_

I
~~

_ _

C,,

_ _ _ _ _ _ _ _ _
0 V -

~~

(I-,

I
‘~~CICI
S..5..

-

~~~ 4’
4-) 

zC’4

CI
— S_

p.-



6-5

1 1  
~~~~~ 

1 4.’I I ~~~~~~~~~~ 1.4- 5. 5.• 0 0
O r -.. CI I.

uJ

‘.0 N..
U,

CIS.E C IA~Jfl
.p
~ 4.’

I I P E
S- 0 .o i —

% I ~~~~~~~

~1-)

41 U, 0.

=
4-’

11= 0.0 1.4- 0
C,)~~~~ /~ CI

OJ n C I 4 1 -
43

4J~~~~ c#Th.. 05 . .
C’) U W

r
c’.J S.-

S..
CI CI4’
.,.. 5 .435.

~1~~

4-’
=
U
CI

w

5-

ar- C~.J_ .,— a
C.’- —

CI >~ _______

(n ‘~
~~~~~~~ p.
—~~~ >. 

_ _ _ _ _ _ _ _4) • I0 I~~ cl~~ 0I I .p.

I I  4 ’—~~~4 , , I ,  0~~~
CI
_  \ L d‘I

-. ._ ---~~~~_.- --  - - - - - - - ‘
.

• —~~~~~~ - . -



6-6

A \ ’43 U) S.. ~ S...
CI.-J W 0 \ 0

0. \ 0.
CI 41

I- l- ’.0 I ‘.0
— ‘.0k 0

0J

U, .~~~

- 

I4.)
.p. 43~~~~~~~~~~ .p. C’) a
S.. W~~~~ V) L&.

0.
~1c CI 4.’

=0

S..
CI
4)
.,-
5-

S.. CI)~~~Cn .~~~5. 41 4’
~~~~ ~~~
~~~.

.p_ (\.~E U..
CI
In ~~ 

- 
4’

‘0 >- =• U
• 0)0  • U

‘0 0
0

4k

- - — -- — - - --5 - . - 5-’~ _ - - 
,.. —

5 - -5- 5— ---- — 5—



6-7 -

3. ISP/sequential target, Reader—Restructurer—Writer translation
(Figure 6-4).
Regardless of whe ther or no t the user wishes an ISP or sequen tial
target database , the Wr iter wi ll  ou tpu t an unsor ted sequen tial
file. It is the user ’s responsibility to ensure that record
instances have the correct sort key values via the TDL (and
probably user routines).

4. Sorting (and ISP only, loadi ng an ISP file) the sequential output
(Figure 6—5 ).
For sequential output, the file must be sorted. This may then
be used to l oad an ISP database. Although the programs used
to perform these functions are Honeywell utilities , the Da ta
Translator provides the control cards to run the utilities .

The major components shown in Figures 6-2, 6—3 , 6—4, and 6—5 are explained
in detail below. -

lOS Database — The target file(s). It may consist of multiple areas, or
multiple subfiles . Created by the user with the desired page
ran ges , page sizes, inventory, etc.

QUTI — The first activi ty of the writing process. For the initial
incrementa l run only, the IDS database must be initialized by
the QUTI activity. A separate activity is required for each
area .

lOS Translator - The COBOL-lOS compiler , I t compiles the target IDS MD
- 

section plus a skeleton COBOL-IDS program into a B* file which
is loaded into the next activity .

Target IDS MD section — Wr itten by the user , it is the DDL for the target
database. All records, i tems and cha ins are defined exac tly as
the user wishes them to be in the database. Physical design
parameters chosen in the target MD section are basically
i rrevocab le once the Wr iter has execu ted.

Part I & II IDS—WTR - COBOL-lOS source code for the Writer. It is
a skeleton only with no executable code and is provided solely to
compile the IDS MD section wi th. Part I is the IDENTIFICATION ,
ENVIRONMENT and DATA divisions, Par t II is the PROCEDURE
divi sion.

Wr iter - An R* f i le , it contains the Writer object code which is assisted
by the Translator libra ry (not shown). Its components are
descr ibed i n deta i l in succeed ing sections .

Rela tiona l RIF (RRIF) — Output ADBMS database from the Restructurer. It
conta ins al l  “changed” record instances. This file is not
present for Direct Reader to Writer transl ations.

Source RIP (SRIF) — Output AOBMS database from the Reader. All source
database(s) record ins tances are presen t here .



— - _____

6-8

_ _ _ _ _  _ _ _  

d 
_ _ _

5 - U  C’)

o~~~~~~~~ 

_ _ _  _ _ _

- 

0

1 
5. 

5- 

I

0.’ 
0.

E LI.. 
— 

c i 0
CI 

0- 0 
_ _ _ _ _  

_ _ _

414.)
= =

U 
00

v

=o .41_i 

CI
5.0

‘.0 _ _ _ _ _ _ _ _ _I. 

-

_ _ _ _ _ _ _ _ _

0 

,~~~ 

U ~
_ _ _ _  _ _ _ _

U _J
5 . 0  ____________ ____________o w - 

_ _ _ _  _ _ _ _

0
Q ’.f)
C,,

______________________________ 

______________________ 

______________________________ ______________________________

.4.) .~..- 5.. ~~

I- ~~~ 4J 0

~~~~~~ 

CI

4,
~ 3 5 - -0

X S _
—
‘ 0) 0 —

41

- 0.CI
4-’.p.43
=4 3 W
0S E -

U
I—S.. L~~= —

c..J
=

(I)
— _ _ _ _ _ _

____________ CI
=0~4)0

_ _ _ _ _ _ _ _

C I . .

o w
_ _ _

_ _

.p.‘0

43

—

5. 5.

~~~~~~~~~ 
~~~4J

1~~~ I I

> —
:)

L& S..

~~~~~~~~~

U1I CI CI

_ _ _ _ _ _ _ _  43

U 
z = >_
W~~~~V I L ~ —

C)

0)
=
43

U
CI

U.’

—.5-S ~- — -



6-9

~~r

_

L 
NJ

op~~~~~ 

°

~~~~~~~f~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

5-
<

~~~~~~~~~~

~’



6-10

Source & Target SDDL Tables - Outpu t ADBMS databases from the lOS Analyzer.
The Source SDDL tables are used by the DWTR while the Target SDDL
tables are used by almos t a ll Wr iter componen ts.

Restructurer Work Database - Output ADBMS database from the Restructurer.
This file is used by the DWTR and is not present in Direct Reader
to Wr iter runs .

TDL Tabl es - Output ADBMS database from the TDL Analyzer . Used as input
to the DWTR. It is not present for Direct Reader to Writer runs.

Temporary Files - The file attached to filecode 19 is the output ASDOL
from the DWTR (and hence input ASDOL to the ASDOLA). The file
attached to filecode 23 is used to hold all of the Aggregate
Schema names so as to avo id pl ac i ng them in core.

Between Runs Save File - Used to implement incremental Wri ter runs . It
contains information as to which record types have been written
an d when.

Run-time Parameters - Filecode 14 has the main set of run—time parameters
suc h as database name , switch settings , etc., whereas the run-time
parame ters on f i leco de 21 are str ictly for use by the ASDOLA .

Report - Wri ter execution report detailing the past history of previous
i ncremen tal runs , a summary of the records to be wr itten on the
current run and the results of storage (time, num ber of ins tances)
for each recor d type.

Errors - Wr iter error repor t.

Dummy B* Compilation - A B* file is necessary for correct l oading of the
Sequential/ISP Writer so a dummy FORTRAN program must be
compi l ed.

Sequential Output — A linked file or tape used to wri te a sequential
(unsorted) database. A separate physical file is required for
each incremental run. These are shown again in Figure 6—5 as
fi lecodes SA.. .SP.

Sort and ISP Load Components — See the respective manuals (ISP, 0038 and
Sort/Merge DDO9).

6.2.2 Wr iter Components

The major componen ts of the Wr iter (e. g . , the Writer R* file) occupy
a separa te l ink overl ay for eff icient memory u ti l izat ion. Onl y the ma in
l ink  and one other link are core resident at any one time. The Writer
components are executed sequentially as listed below with the main program
han d l ing all con trol .

Ma i n Program - Control s all  l i nk over lays. Dec ides whether or not to
con tinue whe n errors occur.

5- - S- ---~~~~~~~~~~~~~~~~~ - - 5-~~~~~~~~-- _ _ _ _ _ _



6—11

Link Overlays -

1. SETUP - Reads some of the run time parameters .

2. DWTR - Wr ites the ASDOL.

3. ASDDLA - Analyzes the ASDDL to produce ASP tables .

4. INIT 1 - Opens al l  ADBMS data bases an d loca tes the correc t data base.

5. INIT2 — Opens the target file(s), initializes the data structures,
han d les setu p for incremental writing and modifies the
IDS Structure Table.

6. PHASE 1 — Wr ites ou t a l l mas terless record s (IDS ) or all  record types
(seq/ ISP).

7. PHASE2 - Wri tes out remaining record types (IDS).

8. PHASE3 - Closes all files and writes a new copy of the between runs
save file.

Each component is described in further detail in Section 6.3.

6.3 Component Program Logic

This section highlights the algori thms and methods of the Wri ter.
For the case of sequential file output, writing presents no diff iculties ,
the records retrieved from the TRIP are simply passed to the standard
GFRC I/O routines . Since the records presumably have the correct sort
key values , the order of record i ns tances ou tputted i s i rrelevan t as they
must be su bsequen tly sorted anyway. However , for IDS databases, it is a
different problem . The Wr iter lets IDS do the ac tual physical storage of
recor d ins tances . Simi larl y lOS does all the chain linking . Because lOS
is doing the low level work , the Writer must insure that all lOS routines
are “guided” into executing as desired . This means that a considerable
effort is made by routines that modify the lOS Structure Table dynamically
prior to executi ng the IDS subroutines . Normally, 105 is used in a COBOL
program wi th the record storage areas occupying a section of the object
code in the IDS Section. Any reference to an lOS record or chain is made
expl icitly in the source program . In the Writer, a general ized program
usable for any lOS database, speci f ic recor d names canno t be coded into
the source code as their values are not known unti l run—time . The solution
used was to modify the lOS Structure Table so that records are retrieved
from a Wri ter buffer before storage and that currency of chains is set by
plac ing the correct reference codes directly into the IDS Chain tables .

6.3.1 Main

The function of the main program (in reality a set of programs always
core resident) is to provide a controlling structure to the entire writing

5—.-—



6-12

process. Each link is called into core sequentially replacing the preceding
l i nk . After each rou tine is called and has returned , its return code is
checked. The main program attempts to forge ahead wi th Writer execution
despite errors in an attempt to discover as many mistakes as possible
in one run. If this is not possible due to the severity of the mi stake,
the Writer is shut down .

6.3.2 SETUP Link

The SETUP link solely reads the first three lines of Wri ter runtime’
parameters which consist of:

a) database name
b) job-status—file information
c) flags determining whether

- Wr iter i s on a first or subse quen t incremen ta l run
- How much of the database is to be written (ALL or PART)
- Is it a Direct Reader to Wri ter run
- Is the debug output to be produced

6.3.3 DWTR Link

As previously mentioned , the DWTR writes ASDDL which defines where
target records, sets, and items are located (e.g., SRIF or RR I F) .  The
DWTR opera tes in two modes , normal and Direct Rea der to Wr iter. In
norma l mode, the ASDDL statements are written by first getting a name from
the target SDDL tables and then using the TDL tables and Restructurer
Wor k da tabase to ascer ta in where the cons truc t for th is name re sides
(SRIF or RRIF) .  In D irect Reader to Wr iter mode, al l records , sets, and
items are by defaul t in the SRIF and hence onl y a corres pondence between
target names and thei r SRIF names is needed . All ASDDL statements are
written to a temporary file for use by the next link.

6.3.4 ASDOLA Link

The Aggregate Schema DDL Analyzer (ASDDLA) Is fully described in
Section 9.0 of this manual. The Writer calls the ASODLA to analyze the
ASDDL produced by the DWTR . Upon completion , everything is ready for
use by the ASP .

6.3.5 INIT1 Link

Two smal l functions are performed in this component:
1. The target SDDL tables database is re—opened for new use by the

Wri ter.
2. The database name supplied as a runtime parameter is checked

against legal database names in the target SDDL tables .

—
5——,-— - - -5- -



6-13

6.3.6 INIT2 Link Program Logic

All fina l initial i zation functions are performed here as detailed
below.

a) Target database is opened for writing.
b) The Wri ter common areas are initialized . This mainly consists

of transferring data from the target SDDL tables to an in-core
forma t for qu ick access.

c) The past history of all prior incrementa l runs is printed for
the user , the information being obtained from the Between Runs
Save File. All setup necessary to tell the PHASE1 and PHASE2
links about which record types should be written on the current
run is also performed .

d) The LOS Structure Table is modified as follows :
- All pointers to field locations are al tered to point to a
Wri ter record image buffer. When lOS stores a record , it
follows the pointers to get the field values unaware that it is
retrieving data from the same buffer area irrespective of record
type.
- All Select Unique Master bits (except for CALC chains) are
changed to Select Current Master bits. Thi s trickery is allowed
since the Writer will insure before storing a detail record that
the currency i s properl y set, obviati ng the need for lOS
processing of match key fields.

Additionally, the addresses of records within the lOS Structure Table
are obta ined for qu ick use i n la ter process i ng .

6.3.7 PHASE1 Link Program Logic

Thi s component stores all masterless record types for 105 and all
record types for seq/ISP. Each record type is completely stored before
any instances of other record types are stored . Because each record type
is linked together along one SYSTEM—owned set in the TRIF , retrieval
is easy. Record instances are built a data item at a time because i tem
convers ion may have to be perform ed . Once the record i s construc ted , the
appropr iate rou tine (IDS = .QSTOR , seq = .GPUT ) i s calle d to do the
actual storage. For lOS. databases only, the reference code of the just—

• stored record is placed back into the TRIP within the current record
instance. This facilitates the setting of currency for storage of
deta i l recor d types i n PHASE 2.

6.3.8 PHASE2 Link Program Logic

Only IDS databases have this component executed . The procedure is to
selec t a record type whose mas ters hav e al l  been prev iousl y stored . Thi s
restriction is due to the 105 Store verb constraint which requires that
if a record instance is going to be stored , all of its master instances
must exist In the database. As in PHASE1 , a record instance is bu ilt a
data i -tern at a time . However, one additiona l substep is performed , the
currency setting of all master instances which were previously stored into



6-14

the TRIF after they were stored . Using the reference codes, PHASE2
places the val ues into the lOS Chain tables. The record is then stored
via .QSTOR , linking being done automatically by LOS. And , as before,
the stored record ’s reference code is pl ace d back i n to the TRIF.

6.3.9 PHASE 3 Link

Some final wrapup steps are performed , listed bel ow :
a) A new Between Runs Save File is written wi th the history of all

inc remental runs to date.

b) The target database is closed (.QCLOS for I~S, .GCLSE for seq/ISP).



7.0 FRONT END 
-

7.1 Introduction

7.1.1 Purpose

The Front End module is an interact ive program i n tended to increase
the user-friendliness of the Data Translator. The Front End provides a
means to automati cally build control card files for the lOS Analyzer ,
TDL Analyzer, Reader , Res truc turer , an d Wr iter.

The control card files needed for an enti re translation may be built
i n one term i nal sess ion or i n a ser i es of term i na l sess ions.

7.1.2 Terminology and Concepts

ADBMS - A Data Base Mana gemen t ~ystem
The DBTG-like database management system used internally by the
Front End .

MPCCF - Modifi ed Prototype Control Card Files
The AOBMS database is partially populated wi th MPCCF. The lines of

- 
MPCCF have both lines of control cards that need substi tutions and
lines that are used purely for control pu rposes.

7.2 Funct ional Overv iew

7.2.1 Input/Ou~put

The Front En d rece ives inpu t from two sources; the ADBMS da tabase ,
and the user ’s responses at the terminal . The database contains both
MPCCF an d other informatic~n tha t i s used either in crea ting f i les or
providing data to the Cotitrol Card Drivers . The user is prompted only
for information that is actually needed for the given translation .

The output of the Front End consists of one or more control card
file(s). The control card files are ready to run without modification ,
except for conversion from BCD to ASCII. Diagnostics are also
produced.

- ~- , S —



7—2

~t AI N
PROG RA M

I INITIALIZA-1 I I CONTROL CARD
I TION 4 )‘f ADBMS 4 

~
j DRIVERS

- I [~~ MOOULES

I _ _

E 

CONTROL CARD
GENERA TO R

ATABASE [

Figure 7—1 -

Overview of Front End Components

---5---—— . ~~. .- _____5 _ -5- —- 5 -



7-3

7.2.2 Module Components

The Front End consists of four major logical components; the Main
Program , the Initialization routine , a g roup of Con trol Card Dr ivers , and
a Con trol Card Genera tor.

The Ma i n Pro gram does some bookkee pi ng an d con trols the ove rall flow
of the Front End . The Initialization routine is called only once for
each Translation. There is a Control Card Driver component for each of
the five Translator modules ; 105 Analyzer , TDL An alyzer , Reader, Restruc-
turer , and Writer. The components in thi s group prompt the user for
information particular to the respective module. Each Control Card
Driver calls the last major component, the Con trol Card Genera tor , to
actually generate the control card file. A more detailed description of
each component is contained in subsequent Sections.

7.3 Component Program Logic

7.3.1 Main Program

The Main Program serves three main functions. The first is to
interact wi th ADBMS and determine if initialization has been previously
accomplished , and if not, to cal l the In iti al i za tion rou tine. The secon d
function is to determine the Translator module for which the user
desires to build control card file(s). The last main function is to
print on the terminal a list of the control card files that the Front End
has built.

7.3.2 Initialization

The Initialization routine serves two main functi ons. The first is
to request information from the user that will be used in all of the control
card files . The second main function is to create files that will be
needed for the translation and to print a list of these files. The
Initialization routine is called only once for a translation since the
information is stored in the AOBMS database and is used In subsequent
terminal sessions.

7.3.3 Contro l Card Drivers

There are five Control Card Drivers, one for each Translator module ,
but the functions they perform are basically the same. A Driver puts
the information needed by the Control Card Generator into the form it
can use , an d then cal ls  the Genera tor to pu t the con trol cards into a
temporary file. The Driver then creates a permanent file and copies the
control cards into it.

-



- 7-4

As input , the Drivers use both the ADBMS database and user responses
to prompts. The output of a Driver is one or more control card file(s).

7.3.4 Control Card Generator

The input to the Generator is provided by the Driver. The MPCCF database
contains all of the MPCCF5 that can be called (there are approximately 20
different MPCCFs in the database). The call to the generator contains
information about which MPCCF to use. After the proper MPCCF is selected,
a card-Image Is read in, and the variables appearing in the line are substituted.
Then the card is written to a temporary file. -

-- -—
~~

—
~~ 

-— - - 5 5-. — ____5 - -- - .  -- - - — .5- - -



8.0 ADBMS

8.1 Introduction 
-

ADBMS is a database management system which facilitates the creation ,
maintenance and accessing of simple and complex data structures. It con-
sists of a collection of FORTRAN-CALLable subroutines whose purpose is to
create databases from a user ’s data structure description , and to serve as
an interface between the user and these databases. The followi ng components
make up the environment in which ADBMS is used :

a) The database itself, containing the data which is to be accessed
and a tabular representation of its schema.

b ) The database control system , 44DBMS.
c) The user ’s database access program , containing CALLs to ADBMS

routines which access the database.

8.1.1 Purpose

ADBMS is used by the Data Trans l ator as follows :

IDS Analyzer -

a) creates SDDL tables (AOBMS database)
b ) uses In ternal Wor k Database (ADBMS database) interna l ly

TDL Anal yzer -

a) retrieves information from source and target SDDL tables (ADBMS
databases)

b) creates TDL tables (ADBMS database)
Reader

a) uses source SDDL tables (ADBMS database) as input
b) crea tes sou rce R IF (ADBMS database)
c) uses DOL wri ter work database (AOBMS database)

Res truc turer
a) retrieves data from source RIF (ADBMS database)
b) stores data In relational RIF (ADBMS database)
c) accesses TDL tables (ADBMS database)
d) uses DDL wri ter work database (ADBMS database)

Writer
a) uses target SDDL tables (ADBMS database) as input
b) uses relational RIP (ADBMS hash database) and source RIP as input
c) uses TDL tables (ADBMS database)

8.1.2 Terminology and Concepts

The terminology and concepts of ADBMS are described below :

—-5- - - - - - - - - - - 
- - 

- -5- -- -



8-2

Currency - ADBMS currency indicators are used as place markers
to keep track of the state of the i nterface between
the user program and the database.

Database - An initialized ADBMS database is a random file con-
sisting of formatted physical pages on which all
information -in the database is stored. The database
tables are stored on the first page(s) of the database.
The remaining pages are initial ized to a specific format.

Oatabase Key - The unique identifier which distinguishes a record in-
stance from al l other record ins tances i n the same
database by specifying the page and displacement
with in tha t page where the recor d i nstance is stored.

DBT (Database Tables) - Tabular form of the logical description of a data-
base accord ing to i ts ODL . The database tab les ex ist
physically in two forms:
1) on the first page(s) of the corresponding initialized

database random file, and
2) as a separate sequential database tables file.

DBTF (Database Tables File) - The intermediate sequential form of the data-
base tables , used wi thin the ODLA/DBINT .

DDL (Da tabase Descr ipti on Language) - A lan gua ge used to descr ibe the schema
of an AOBMS database in terms of records, items, and
sets. A specific database description written in this
language is also called a DDL.

DDLA/DBINT (DOL Analyzer/Database Initializer) - The utility module used to
- create ADBMS databases. It analyzes the DDL and if

there are no syntax errors or inconsis tenc ies , initializes
an ADBMS database according to the DOL description .

Hash Database - A database whose schema includes at least one hash record
type.

Hash Input - A series of statements optionally input to the DDLA/DBINT
which cause user-specified values to override default
values of hashing function parameters.

Hash Record - The storage l ocation of an instance of a hash record
type is determined by randomizing its primary key
items (defined in the DDL) via a hashing function.

Item - The eleme ntary data un it in the database; used to
represent specific data as a number , a str ing of
characters, a lo gical tru th value , etc.

Match- key set - The member-to-owner relationship for a match-key set
Is established when the user stores the primary key
items of the owner of the set in the set significant
items of the member. A match-key set instanc e is defi ned
as an owner record instance and all the member record
instances whose set signif icant items hash to the owner
Instance.

-- - - - —
- -5 - -- --



8-3

Multiple Databases - ADBMS has the capability to manage multiple databases
simu l taneously, i.e., opera tions can be performed
first on one database and- then another without closing
the first database and opening the second database
between operations .

Non-Hash Database - A database whose schema does not allow any hash record
types.

Non-Hash Record - Non-hash record instances may be stored either in the
next ava i labl e space i n the database , as determ ined
by ADBMS , or in a region specified - by the user when
the record is created.

Ordered Set - The member-to-owner relationship for an ordered set
i s establ ished when a member i s “added” to the set,
an operation requested by the user but implemented and
maintained by ADBMS. The sequence of retrieval of
member records an d the l in kage of new member records
in the set are controlled by the set ordering criterion
(specified in the ODL).

Primary Key - The set of items in a hash record which are hashed
to determine the location of the record instance in the
database.

Record - A named collection of data items used to represent the
major entities of an appl icat ion.

Schema - The description of the logical structure of a database .

Set - A named collec tion of record types wh ich spec i f ies an
ordering or relation among the records within it.

SYSTEM record - A predefined non-hash record tyne which is imolicitly
included in every database schema descr ipti on.

Work Database - A pseudodatabase used to hold images of i nd iv idua l
physical records in core until they are moved back to
a database page. Its purpose is to minimize time
spent changing pages in and out of core when records
on many different pages in the database are being accessed.

8.2 Functional Overview -

8.2.1 Input/Output

The input/output relationship s for running the DDLA/DBINT are given
in Figure 8-1 . The DOL consists of statements which express the schema of
an ADBMS database in a form recognizable to the ODLA/DBINT. The hash input
consists of statements whi ch cause user-specified values to override default
values of hashing function parameters. The DDL and optional hash input are
input to the ODLA/DBINT which produces an Initialized database file and ,
optionally, the sequential database tables file.

-~ 

- - 
—

-—-‘.5--- - - — — - - -5 - -- 

- —A



8-4

[
DDL J~ ~~~~~~~~ database

_ 
~~~~~~~ es

I hashinput ~~optional)

DDLA/DBINT
~~~~~~~~~ base

Figure 8-1 DDLA/OBINT

The AOBMS scenar io for runn ing a user ’s data base access orogram i s
given in Figure 8—2. User database access programs contain CALLs to ADBMS
rou ti nes whi ch perform the actual data base access func tions requested.

user database -

access program

ADBM S

AOBMS ADRMS
data- data-
base base

1 N

Figure 8-2 ADBMS Scenario

— - - . - - - , ( •  _—,—---- - - —  — 5-  —— - -



8-5

8.2.2 Module Components

ADBMS cons i sts bas ica l ly of four modules , the DDLA/DBINT , User
Level Rout i nes , Mid Level Routines , and Low Level , or Tab l e Access Rou tines.
The relationships among these modules are given in Figure 8-3.

DDLA/DBINT User Level
____________ 

Rou tines

Mid l evel
Rou tines

Table Access
Rou tines -

Figure 8-3

The User Level Routines, of which the DDLA/OBINT is a subset, provi de
the user interface to ADBMS. The tabl e Access Routines provide the interface
between ADBMS and the database tables . The intra-ADBMS rel ationships among
the t~odu les are somewhat looser, with access to the database being performed
at all levels.

8.3 Component Module Logic

8.3.1 DDLA/DBINT

The DDLA/OBINT exists primarily as two routines, DDLA and DBINT .
These routines may be executed Independently of or in conjunction with
each other , and in ei ther stand—alone or subroutine—callable mode. The
ODLA stage reads the DDL, recogn i zes i nd i vidual statements, an d bu i lds
the appropriate control blocks in the database tables to store and main-
tain the information specified in the DDL. The output of the DDLA module
I s the DBTF. The DBTF and the op tiona l hash i npu t are the in pu ts to the
DBINT stage of the DOLA/DBINT. The OBINT produces an initialized database
ready for the storage and accessing of data.

- 
-

- 
.- - - - ~~~~~~~~~~ -5 -



8-6

8.3.2 User Level Rou ti nes

The interface between the user and the database in ADBMS is accom-
pl ished v ia CALLS from the user program to a set of ADBMS rou tines des igna ted
as bei ng “user l evel .” Each user l evel routine corresponds to an accessing
function which the user may request to be performed on the database. Each
routine translates this high level request into physical input/output
operations on the database, using i nformation stored in the database tables
and the database itself. In general , the actual interface with the
database and database tables is accomplished via the routines in the mi d—
level and table access modules.

8.3.3 Mid-Level Routines

Mid—Level routines in AOBMS perform such functions as database
sto rage allocati on, mana gi ng database pa ges in and out of core as they are
accessed , ma i ntai n ing currency an d set order ing as records are accessed an d
members added to and retr ieved from sets, etc. While much of the interface
with the actual data in the database is accomplished by the Mid—Level
Rou tines , al l  access to the database tables i s accom pli shed v ia Tab le
Access module routines.

8.3.4 - Table Access Routines

Each rou ti ne i n the table access module of ADBMS i s respons ible for
the retrieval or storage of data in one field of the- database table control
blocks. Th i s iso l ates the higher l evel ADBMS rou tines from any des ig n
change in the physical structure of the database tables .

- - -- ----—-— r~~~~~ 
-- -



9.0 ASP

9.1 Introduction

The ASP is an extens ion of ADBMS wh ich , when used in conjunction
with ADBMS , allow s the user to view an aggregation of subsets of one or
more ADBMS databases as one Aggregate Schema (AS) database and thus
access mul tiple databases as one database .

The ASP env i ronmen t, then , cons i sts of the follow i ng el ements:
a) several ADBMS databases , each con ta in ing the data to be accessed

and a tabular represen tati on of its schema
b) ADBMS
c) the AS Oa tabase Tables , a tabular representation of the AS

Database ’ s logical description .
d) the Aggregate Schema Processor (ASP), consisting of a col l ection

of FORTRAN CALLable subroutines whose purpose is to map AS database
access requests into ADBMS database access requests , based on the
information stored in the AS database tables.

e) the user ’s database access program , con ta i n ing CALLs to ASP
routines.

9.1.1 Purpose

The Data Transla tor uses the ASP i n the wr iter module to fac ilitat e
access ing the source RIF and re lat ional RIF ADBMS databases.

9.1.2 Terminol ogy and Concepts

The terminology and concepts of the ASP are described below . Many
ADBM S terms an d concepts are also fundamen ta l to the ASP , while other
terms have different meanings in the two contexts; reference to Section
8.1.2 may be hel pful . -

AS Oatabase (Aggregate Schema Oatabase) - a logical “view ” of one or
more physical databases. The term is used in a physical
sense to refer to the compos ite of a) severa l ADBMS
databases , and b) the ASDBT

AS Database Key - the unique identi fier which distinguishes an AS record
ins tance from a ll other record i ns tances i n the same AS
database by specifying the ADBMS database and the page
and di splacemen t with in tha t page where the record i ns tance
is stored.

ASOBI (AS Database Tables) — tabular form of the logical description of an
AS database according to its ASDDL and ASDNDDL.

—5----- - - - - - - - - - —5--- -~ -_ _ _ _  - -~~~



9—2

ASDDL (AS Data Defin iti on Language ) — a language used to descr ibe an AS

database v i ew i n terms of sets , records , i tems,an d
their map pi ngs to correspond ing ADBMS da tabase cons truc ts.
A specific AS database descri ption written in this l anguage
is also called an ASDDL .

ASDOLA (ASDDL Anal yzer) - a utility module used to create AS databases.
It analyzes the ASDDL and if there are no syntax or
seman tic errors , produces the ASDBT according to the ASDDL
descr i ption.

ASDNDDL (AS Da ta base Name DDL ) — a ser ies of statemen ts whi ch iden tify the
ADBMS databases involve d in an AS database.

Assi gned Record - a one—to-one correspondence between the AS record type
and a schema (ADBMS) record type, such that the schema record
is viewed directly through the AS assigned record type.

Assigned Set - a one-to—one correspondence between the AS set type and
a schema (ADBMS) ordered set type.

Couplec~ Record - a coupl i ng of two schema (ADBMS) record types such that
the AS coupl ed record type is viewed as a merge of the
two schema record types.

Currency - the ASP uses ADBMS currency indicators in addition to its
own currency indicators to keep track of the state of the
interface between the user program and the database.

Item - AS i tem types defined in an AS record type specify which
schema (ADBMS) items in the corresponding schema (ADBMS)
records are to be included in the AS database view of the
record and how they are to be viewed .

Match-key set - AS match-key set types are parallel to AOBMS match-key
set types, but allow the owner and member record types to
reside i n d ifferen t ADBMS databases .

Record - AS record types specify which schema (ADBMS) record types
are to be inc l uded in the AS da tabase v iew of how they are
to be viewed .

Set - AS set types define which schema (ADBMS) sets are to be
included in the AS database view and how they are to be
viewed. They may also define new match-key sets which are
not defined at the schema (ADBMS) l evel .

Set Significant Items - similar to ADBMS set significant items .

9.2 Func tiona l Overv i ew

-4



9-3

9.2.1 Input/Output

The input/output relationships for running the DDLA/DBINT are given
in Figure 9-1. The ASOOL consists of statements which describe the
Aggregate Schema database view of its underlying ADBMS databases. The
ASDNDOL consists of statements which identify each ADBMS database involved
i n the AS database. The ASDDL i nputs both the ASDDL and the ASDNDDL and
references the database tables of each of the underlyi ng ADBMS databases
to produce the ASDBT as ou tpu t.

ASDDL rASDNDDL ADBM S

I ASODLA 

/ base

Figure 9—1
The ASDDLA

The scenar io for runn i ng a user ’s database access program un der the
ASP is given In Figure 9—2. User database access programs contain CALLs
to ASP rout ines . These rou tines use the i nfo rma tion stored in the ASDBT ,
the ASDNDDL , and the individual ADBMS databases themselves to perform
the actual da taba~e access func tions reques ted.



~1

9-4

ASDBTluser databas~
11Laccess progra

I

ASP

_ 
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ADBMS

I data— Idata— I base Ibase
I LtJ

Figure 9—2
ASP Scenario

9.2.2 Module Components -

The ASP cons i sts bas ical ly of four modu l es , the ASDDLA , User Leve l
Rou ti nes , Mid-Level Routir~s, an d Low Level or Ta b le Access Rou ti nes .
The relationships among these modules are given in Figure 9-3.

[LASDDLA User Level I

Routines

41
‘Jr

I Mid—Level
L~~

utines
Access

Routines]
Figure 9—3

.5
~~~~~~~~~~~ 

— --—-—- 5 —5



9—5

The User Level Rou ti nes , of which the ASDDLA is a subset, provide
the user interface to the ASP. The Table Access Routines provide the
interface between the ASP and the ASDBT. The intra—ASP relationships
among the modules and the relationships between the ASP modules and
ADBMS are somew ha t l ooser ; access ing of the actual ADBMS databases takes
place at all levels , with and without the aid of ADBMS .

9.3 Component Module Logic

9.3.1 ASDDLA -

The ASDDLA i s a compiler type ana lyzer consisting of the five
c”mponents shown in Figure 9-4.

- ASDDL A
Initializer

Scanner Error
Mes sages

Parser

AS
Stack

Semantics Error
Messa ges

ASDDLA
Wrapup

Figure 9—4



9-6

The ASDDLA In iti al izer is the con troll ing pro gram for al l  of the
ASDDLA modules. It initializes arrays and prepares the scanner for input.
The scanner and parser identify ASDDL constructs and resolve the ASDDL
into various productions. Once a production has been isolated the appro-
priate semantic routine is called. The semantic routines build the AS
database tables and check for internal consistency . The ASDDLA wrap-up
module prints out a review of all table blocks generated and statistics
for the analyzer run.

9.3.2 User Level Routines

The interface between the user and the AS database in the ASP is
accomplished vi-a CALLs from the user program to a set of ASP routines
designated as being “user level . ” Eac h user level rou tine corres ponds
to an accessing function which the user may request to be performed on
the AS database. Each routine translates this high l evel request into an
ADBMS-l evel acces~ing request using information stored in the AS and
underly ing databases themselves . Th is transla ted reques t is performed
by ADBMS routines or routines in the mi d-l evel and table access modules
of the ASP.

9.3.3 Mid-Level Routines

Mid-Level Routines aid in translating requests from AS terms to
ADBMS terms an d in the actual execu tion of these reques ts.

9.3.4 Tabl e Access Routines

Each routine in the table access module of the ASP is responsible
for the retrieval or storage of data in one field of the AS database table
control blocks . This isolates the higher level ADBMS routines from any
design change in the physical structure of the AS database tables .


