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Abstract

This paper generalizes the Barr-Shaftel auctioning model

in several ways. (a) It shows that the dual solutions they

choose for prices and buyer surpluses is also the maximum

buyer surplus solution. (b) It shows that this solution can

easily be found by means of a perturbation technique and re-

lates the solution to core solutions of assignment market

gaines , in the sense of Shapley and Shubik. (c) It extends

these models and theoretical results from an assignment to

a transportation model. (d) By adding seller reservation

bids the syninetry of the auction process is increased in

that it becomes pareto optimal for sellers as well as buyers.

(e) It proposes a “fair bid” auctioning process which has

pareto optimality properties for both buyers and sellers,

and which can be solved rapidly for problems having hundreds

or thousands of buyers and sellers. (f) Finally, it suggests

that practical applications of these models to real auction-

ing situations is possible. Such applications could redu~
the transaction costs and improve the speed of auction

processes.

1. Introduction

Each year trillions of dollars worth of goods are exchanged by

auctions procedures throughout the world. The number of different

kinds of auctions and the variety of settings in which they occur is

Thu report was prepared as part of the activities of the Management
Sciences Research Group, Carnegie-Mellon University, under Grant No.
N00014-75-C-0621 with the U. S. Office of Naval Research.
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enormous. Many auction mechanisms are inefficient and costly to run;

for instance those that require bringing together to the same physical

location the buyers, the sellers and the objects for sale. Although

auctions are undeniably economic processes and huge in magnitude, no

mention of them is made in current textbooks, and there are but few

theoretical treatments in the economics literature.

In the introductory paper of a recent volume [1] of collected

papers on auctions and bidding, A. Schotter [91 speculates on the rea-

sons for this omission. He suggests the following description : “Auc-

tions are exchange mechanisms without a tat~nnement or recontracting

provision in which the seller is relatively passive and goods are often

indivisible.” He then notes that each phrase of this definition con-

tradicts a well-known assumption of economic theory , and hence concludes

that auctions “are not theoretically convenient to study in terms of

traditional economic processes.”

An early paper , Vickery [15] (see also [16]) proposed a pareto

optimal model of a dutch auction which he believed was lin4ted to the

case of a single seller offering a single unit of a coumodity . In (2]

Barr and Shaftel showed that the model could be extended to the sale of

several different kinds of goods and several buyers. They constructed

a model in which a single seller (the auctioneer) offers one unit each

of several different commodities to a group of bidders each of whom

wishes to buy one unit. Each bidder makes a sealed bid on each of the

objects being auctioned. The auction mechanism used by Barr and Shaftel

was essentially that of finding a basic optimal solution of a maximiz-

ing assignment problem whose cost entries were the bids of the buyers

for the objects being sold. The primal solution determines the actual

sales of goods to the buyers, while a certain special solution of the

dual problem was selected to determine selling prices and buyer sur-

pluses.

After reading [2] I became interested in extending the Barr-

Shaftel model and noted that their rather clumsy mechanism for select-

ing the dual solution could be replaced by the perturbation (P1) de-

scribed in Section 3 below. I also noticed that their model was for-

aaiiy equivalent to an assignment market game, in the sense of Shapley
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and Shubik [10]. It can be said that the present paper is based on

these two excellent papers.

One of the results in [10) is that the core of an assignment mar-

game’ has two distinguished points, the “maximum buyer surplus” and the

“maximum seller surplus” points. In [14] I generalized this observa-

tion to transportation market games, shoved that these two points could

be computed by applying perturbations (P1) and (P2) (see the defini-

tions in Sections 3 and 6.). I also gave an algorithm for finding the

skeleton of core of the market game. I also noted, at that time that

the Barr-Shaftel solution involved the price mechanism determined by

the “maximum buyer surplus” point of the core.

The present paper offers the following improvements to and exten-

sions of the Barr-Shaftel auction model. First, the use of the pertur-

bation technique (P1) makes the determination of the prices and buyer

surpluses much easier than the technique given in their paper. Second ,

the process is extended to a transportation model so that it is possible

to consider auctions in which sellers and buyers can offer and buy

multiple units of each kind of good. Third , by explicitly permitting

sellers to also be buyers so that they can enter reservation bids , the

symmetry of the auction procedure is improved and also it can be shown

that it is pareto optimal for sellers to enter as reservation bids

their true evaluations of the goods they offer for sale. Fourth, we

show that with these extensions the price mechanism is that the “highest

unsatisfied bidder” determines the selling price. Finally, we note

that with modern computers and codes for the transportation problem ,

the possible use of these models for solving large auctions is now a

practical reality. Such an application would be able to reduce trans-

actions costs and decrease the time required to complete the auction

process.

2. Notation and Problem Statement

The index set of the sellers is denoted by

I’ [l,2,...,m) (1)

and the index set of buyers is denoted by

— (l,2,...,n} . 

‘ 

(2)
We assume that seller i€I ’ has .

a~~> O  
‘ (3)
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(integer) units of a good to sell , and that buyer je J’ wants to buy

b
3

> O  (4)

(integer) units of that good. We assume buyer i bids

c
ij

� O (5)
for one uni t of seller j’s goods, i.e., we are considering a bid
auction in which the buyer is active and the seller is passive. The

nonnegativity requirement means that seller I can dispose of his goods
without charge in case no one bids a positive amount for them.

In order to account for the possibility that the total amount of.

fered may be unequal to the total amount demanded we introduce a dummy
seller , in-fl, and a dummy buyer , n-fl. Our index sets become

I t •
~ r

I = I U tm+lj = tl ,2,...,m,m+l1 (6)

= j ” U (n+1) [l,2,...,n,n+l1 . (7)
We define bids for these dummy persons as

c = 0  for jeJ (8)
in+1,j

C
1 +1 = 0 for ieI (9)

and note that (8) can be interpret (8) as a “free gift” option for the

buyers , and (9) as a “free disposal” option for the sellers. We also

def ine
S Z ai 

and T E b (10)
jell 

35.1’ i•

and use them in turn to define the dummy sales and demands as

~ [IT-S) + (T-S)) (1].)

b~~1 f [~ S-T~ + (S-T)] . (12)

It is easy to see that at least one (and possibly both) of a~~1 and

b is 0. Also if the a ‘s and b ‘s are integers then so will be an+l i 3 mi-I
and bn+l

We now use the above definitions to state a transportation problem

whose solution will be used to determine the outcome of the auction

Maximize E E ~~~~~ (13)
ieI .$.1 -‘ 3

Subject to

E x~ = a ~ for is! (14)
jsJ

E x~ — b  for 313 (15)
ii ’ ~
• x~3~~~O. 

:16)
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Because of definitions (11) and (12) it can be shown that solutions to

this maximization problem always exist. If x1 > 0 we say seller i

sells x13 units to buyer 3 . Note that (13) says that the total value
of all goods exchanged should be maximum; (14) says that all seller i’s

good s will be sold (to the dummy buyer, n+l, if no one else); (15)

says that all buyer 3’s demands will be met (by the dummy seller ,m+l,

if no one else); and (16) says that all exchanges are from seller to
buyer. Recall that if the at

’s and b
a
’s are integers, then so will be

the x
13

’s; hence all property exchanges are in discrete numbers of units.

The dual transportation problem to (l3)-(l6) is

Minimize ( E u~a~ + E v b ) (17)
111 jeJ

Subj ect to

ui + V3 ~ 
c
13 

for id , j eJ  . (18)

We will also add the nonnegativity requirements

u~ ~ 0 for iS! and v
3 � 0 for jCJ . (19)

It can be shown, see [14), that solutions to (17)-(19) always exist.
Our solution to a bidding and auctioning problem proceeds as fol-

lows: First collect the data as outlined by (l)-(5). Then use the de-

finitions in (6)-(12) to set up the transportation problem ii’s (13)-(l6)

and its dual in (17) and (18). Solve this problem. The primai solu-

tion , the x
13

’s, will determine the exchanges of goods between sellers
and buyers. The dual solutions u~ and v

3
, which can be shown to satis-

fy (19), determine the unit paces, u1 
for seller i, and the unit buyer

surpluses, V
3 
for buyer 3. If x

~3 
> 0, that is, seller i sells to

buyer 3, then it is well-known by the complementary slackness condition
that (18) is tight, so that

v
3

c~3 
- u~~. (20)

In other words, if buyer 3 actually buys from seller 1, then his unit
surplus is the difference between his evaluation of seller 3’s good
and the price he has to pay for it. This makes economic good sense.

All of this sounds quite straightforward. However, there are dif-

ficulties with the approach due to possible degeneracies in the problem

data .
First of .ll, the problem may be dual degenerate, that is (18) may

be tight for nonbasia cells , indicating the possibility of alternate

_ _ _ _  ~--— - ---.--~~------—— ~~~--.. -~~ - . - .~~~~~~ .- 
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optimal primal solutions to the problem, and hence al terna te ways of
exchanging goods. We shall , for purpose s of this paper , assume away
this dif f i c ulty by making the assumption that the bids, the c

ii
’s, are

such that the problem is not dual degenerate; in other words , the pri-

mal solution is unique. It is well known that a slight perturbation

of the bids is sufficient to rule out dual degeneracy .

The second dif f iculty is that the problem may be primal degener-
ate, that is, some x

13 
= 0 when (i,j) is a basis cell. This difficulty

cannot be ass umed away because it depends on the “rim conditions” (3)
and (4). Suppose, for example, m = n, a~ = 1 for id , and b

3 
= 1 for

3eJ; then the transportation problem in (13)-(18) is an assignment

problem which is known to have massive primal degeneracy .

The problem stated above is called a marke t game, see [10] and
[14). The set of all dual solutions to (17)-(19) is called the core

of the market game. An algorithm for determining all points in the

core was given by the author in [14]. We shall get around the problem

of primal degeneracy by selecting one of the extreme points of the

cor e, the so-called maximum buyer surplus point , and use it to define
our “recommended ” or “fair bid” solution to the auctioning problem.

This generalizes a similar solution concept for assignment auctions

proposal by Barr and Shaftel in 121 .
3. Mathematical Results

We now state some mathematical theorems which will be needed for

characterizing the solution to the bid auction. All but one (Theorem

3) of these theorems were proved in [14].

By the auction core we shall mean the set of all nonnegative

solutions to the dual transportation problem of the preceding section;

that is, the auction core is the set of all solutions to (17), (18),

and (19).

Theorem 1. The auction core is a non-empty bounded, convex , pol y-
hedral set. All core solutions satisfy u~~1 

v1~4~ 0.

Proof. See (14].

We shall denote the auction core by C — (C(U),C (V) ) where C(U) is
the set of row dual solutions which we call the seller core, and C(V)

is the set of all column dual solutions which we call the buyer core.

Let us apply the following perturbation to the transportation

~
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problem and its dual given in (l3)-(18):

a - a  +cfor ieI” , a -‘a
I i rn-fl in-fl

(P1) b
3 
-‘ b

3 
for jef , b +l 

-. b
+i + 

mc

where 0 < C < 2(m+l)
As is well-known the perturbed problem is primal non-degenerate; also

the primal solution X(e) to the perturbed problem, when scientifi~a1ly
rounded , yields an optimal integer primal solution to the original

problem.

Theorem 2. The dual solutions (u°,v°) to (l7)-(l9) after the

perturbation (P1) has been applied belong to the auction core and also

satisf y
Mm u . (21)

Uc (U) ~.

0
= Max v4 - (22)

~ V€ (V) ‘

Proof. See [14].

Because of (22) we shall call this solution the maximum buyer

surplus solution.

Consider the solution of the primal transportation problem (13)-

(16) after perturbation (P1) has been applied . Let X(e) be the opti-

mal solution to the perturbed problem, and let x .,. be the optimal ship-

ping amount for cell (i,j). Define R(x~~) to be an integer equal to

the scientifically rounded value of X
jj 

and define

= x
ii 

- R(x~3
) . (23)

If 
~~~ 

> 0 for any 1 and 3 , we shall say that cell (i,j) is an unsat-
isfied cell, since the integer solution obtained by scientifically

rounding X(e) gives cell (i,j) less than x~3
. Otherwise cell (i,j)

is a satisfied cell.

Theorem 3. Let X(e) be the optimal solution to (l3)-(16) after

perturbation (P1) has been applied ; then in each row id ’ there is
exactly one unsatisfied cell; moreover , price uj~ which is equal to

U
I 

— c~ 3 
- V

3 
(24)

is determined from (24) by the bid c
13 

and buyer surplus v
3 

at the un-

satisfied cell.

Proof. Let B be the optimal basis for X(e), i.e., B is a set of
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rn-fn+1 cells of the transportation tableau , and C = (I U J,B) is a tree
(see [5,6)). A basis cell which is unique in its column or its row

corresponds to a pendant node of C. Every tree having more than one

node has a pendan t node, that is a node having exactly one edge of the
tree adjacent to it. Consider a basis cell which is unique in its col-

umn, so that the column is a pendant node. Since b~ is an integer

we must have R(x . .)  = b
3 

= x ,3 so that (i,j) is a satisfied cell. Re-

place a. by a. - x . .  and b . by b . - x .. and cross out column 3 .  The
3. 1 13 3 3 13

result is a transportation problem with one fewer column and whose

solution indicated by the remaining basis cells still optimal. Repeat

this process until no columns remain having only one basis cell. Now

either all rows and columns of the problem have been crossed out or

else there is a row with a unique basis cell (i,j) ,  i.e., i is a pen-
dant node . It is easy to see that if ieI’ then cell (i,j) is an unsat-

isfied because of the form of the original perturbation. In the latter

case replace a. by a. - x . and b . by b .- x . and cross out row i.
1 3. iJ 3 3 13

Continue this process until all rows and columns of the problem have

been crossed out , then stop . Since every row and every column is

crossed out exactly once and since all pendant columns correspond to

satisfied cells , and each row id ’ corresponds to an unsatisfied cell ,

we see that in each row id ’ there is exactly one unsatisfied cell.

The fact that the price u~ is determined by the unsatisfied cell in

row I follows from the fact that in the tree C = (I U J,B) the path

from row rn-fl for which U 0 and row i includes the unsatisfied cell
mi-i

(i ,j) and no other basis cell in row i. This completes the proof.

If we say that 3 is an unsatisfied buyer provided cell (i,j) is an
unsatisfied cell for any i, we can interpret Theorem 3 as follows:

Each seller sells to some satisfied buyers and exactly one unsatisfied

buyer; moreover, each seller ’s price is determined 
~~ 

net bid (c.3-v .)
of his unsatisfied buyer.

4. The Fair Bid Auction

As we have seen , the solution to the primal transportat ion problem
(l3)-(16) determines the exchanges of goods in the auctioning procedure

described above . For purposes of expository simplicity we assume the
primal solution is unique, but this assumption is not essential. To

find the actual exchange prices we must select one of a possibly huge
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number of solutions to the dual problem (17)-(19).

In the present section we shall propose an eas ily computable pro-

cedure which yields a solution to an auction having a number of desir-

able properties from both the seller ’s and the buyer ’s points of view.

It generalizes in several ways the Barr-Shaftei auction model presented

in [2). Although it is an ad hoc procedure in many respects , an effort

was made in its design to balance each advantage of a buyer by one of

a seller , and vice versa. These advantages are listed after the de-

scription of the auction procedure is given.

The Fair Bid Auction Procedure.

(1) Determine the set of sellers I’ and the set of buyers J’, where it

is assumed that every seller is also listed as a buyer in order

that each seller can make reservation bids on the goods he has for

sale.

(2) Determine the amounts for sale , a. for id ’
, the amoun ts demanded ,

b
3 

for jeJ ’, and the bids C .. by buyer jcJ ’ for the goods seller

id ’ has for sale.

(3) Set up the transportation problem (13)-(16) with costs c
13 

and

rims a1 
and b

3
; add the slack row and column ; perform perturba-

tion (P1) and solve using any transportation algorithm such as the

MOD! method ([5,6]).

(4) Announce the solution :

(a) For each idI ,JCJ such that x.,. > 0 announce R(x
13
) which gives

the exchanges of goods between selir i ai~d buyer j ; if

seller i and buyer 3 are the same person , then the seller
has “sold ” himself his own goods for his reservation bid ;

i.e. he keeps his goods; otherwise there is an actual physi-

cal exchange of goods.

(b) Announce the selling prices u . which the successful buyer

must pay the seller .

(c) In order to show that the auction mechanism is “honest ” it

may also be desirable to announce the “highest unsatisfied

buyer” for each seller ’s goods, and have him ver ify the cor-

rectness of the selling price . 
- 

-

(d) Sometimes , but probabl y not usually, it may also be desir-

able to announce the buyer and seller surp luses. 

~~~~
-

~~~~
- - - -— ~~~~ - - . -~~~
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— The first -remark concerning the fair bid auction procedure just

described is that it is a practical procedure for auctions having hun-

dreds or thousands of buyers and sellers. Once the data stated in (2)

has been collected the solution of the transportation problem (13)-(16)

can be carried out in a few seconds or minutes using one of the recent

fast codes [4,7,12] and a modern computer.

The important characteristics of the fair bid auction are listed

in Figure 1. Note that buyers and sellers have parallel characteris-

tics. The correctness of properties (b), (c), and (d) for both was

discussed in Section 3. However , the pareto optimal properties listed

in (a) of both columns in Figure 1 deserve further comment.

Let us expand on the assertion that buyer i should make the quan-

tity c. - be his true evaluation of good j. The argument is contraposi-
3.3 

* *
tive; for suppose buyer i’s true evaluation is c . . and he bids c . <C . ..

13 13 13

Buyers Sellers

(a) It is pareto optimal for each (a) it is pareto optimal for each

buyer to bid his true evalua- seller to enter his true reser-

tion of each good offered for vation price for each good he

sale. sells.

(b) The solution to the fair bid (b) The solution to the fair bid

auction maximize the total auction maximizes the total

value of all buyer surpluses. valuation of all objects sold.

(c) No buyer pays more than his (c) No seller sells a good for less

evaluation for any good he than his reservation price for

buys. that object

(d) Some buyers don ’t buy all (d) Some sellers don ’t sell all

that they want. that they offer.

Figure 1. Properties of the Fair Bid Auction

It Is then possible for another buyer , say buyer k, to bid c . for

good i, where c~3 
< Cik < c~3, and buy good i at a price u~ ~~

cik<c~j
which is less than buyer 3’s true evaluation for good i. A similar

argumen t holds if buyer 3 b ids c~3 
> c~3~ 

except that in this case he

may be forced to pay more than his true evaluation of good i.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - -~~~~ --~~~ -~—~~~~ - --~---~~~~~~~~~ - - -~
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Although no organization presently exists to carry out auctions by

the fair bid method , it is possible that some day one will be set up to

do so. The purpose of this paper is to point out that it is currently

practical and it may be desirable to do so.

5. Example

We illustrate the auction mechanism of the previous section by

solving the “house buying” example of Shap ley and Shubik [10]. The

problem Concerns three sellers and three buyers of houses. Their re-

spective valuations of each house are shown in Figure 2.

Seller ’s Buyer ’s EvaluationsHouses -Evaluation Buyer 1 Buyer 2 Buyer 2

Seller 1 $18 ,000 $23,000 $26 ,000 $20,000
Sell er 2 15 ,000 22,000 24,000 21,000

Sell er 3 19 ,000 21,000 22,000 17,000

Figure 2. Buyer and seller evaluations of houses for the

Shapley-Shubik examp le in [10].

The corresponding transportation problem , with reservation bids by the
sellers and perturbation (P1) applied with C = .01, is shown in Figure

3. Note that the optima l basis cells with corresponding shi pp ing
Buyers Sellers Slack

—i r ~~~~~
—

~~~~
- 

~

v1=2 v2
.5 v

3
=l v

4
=0 v

5
=0 v

6
=O v

7=0

1
u1

2l ~~~~~ ~j
l 

20 18 0 0 0 1.01

Sellers ~ u2
20 

~~ •
‘
~:, 
.01 24 © 1 0 15 0 0 1.01

1 u3 19 © .98 22 17 ~ 
.03 

0 1.01

Slack u.=0 0 o ~ ~~~ ®
1 

~~~~~~~~~~~ 

~~~O3 
~

1 1 1 1 1 1 .03

Figure 3. Transportation tableau for. house buying example.

amounts are marked on the tableau. The optimal exchange is: seller 1

sells •to buyer 2 for a price of $21,000 giving selle r 1 a surp lus of
$3,000 and buyer 2 a surp lus of $5 ,000 ; seller 2 sells to buyer 3 giving

-- ~~~- - - —  -~~~~ - - .-~~~~-~~~~ -~~~~~rn ~~~~~~~~~~-~~~~~~~~~~- - ~~~~~~~ - - - .  ~~~~~~~~~~~ — - ~~~~~~~~~~-—-
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seller 2 a surplus of $5,000 and buyer 3 a surplus of $1,000; and sell-

er 3 sells to buyer 1 giving seller 3 a surp lus of $0 and buyer I a

surplus of $2,000. Note that buyer 1 is the unsatisfied buyer for sell-

ers 1 and 2, while seller 3, by means of his own reservation bid , is

his own unsatisfied buyer!

The reader may wish to change the valuations by various buyers and

sellers and see how the solution changes. It is particularly interest-

ing to raise one or more of the seller ’s reservation bids so high that

he is unable to sell his house.

6. Other Auction Mechanisms

The “Fair Bid” auction mechanism is only one of a huge number of

price mechanisms which is consistent with the transportation auction

model. The convex set of all extreme points of the auction core can be

generated by the algorithm given by the author in [14]. For instance ,

the auction core for the example in Section 5 has 6 extreme points [10,

14], only one of which is shown in Figure 2.

Another auction core solution that may be preferred by the sel ler s

is the maximum seller surplus solution which can be obtained by app ly-

ing the following perturbation to the transportation problem in (13)-

(16)

a. a , for id ’
, a a + nem+l mi-l

(P2) b . -. b~ + c for jeJ’, b +l 
-. b

-fl

where 0 < € < 2(n+l)

Properties similar to those derived in Section 3 can be shown to exist

here, see [14]. Moreover , this solution would be particularly applic-

able to an “offer” auction in which the c.3 ’s in (5) are offers by the

seller to the buyer. Here the buyer is passive and the seller is ac-

tive. Such “auctions” occur frequently in the bidd ing for construction

projects.

Clearly if the auction is being managed by the sellers , they may

wish to impose the maximum seller surplus solution, while an auction

being run by buyers may wish to impose the maximum buyer surplus solu-

tion.

Some auctions are run by governments, and they may wish to avoid

either of these two extreme solutions in order not to antagonize any of
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their constituency. They could , for instance , choose the mid point of

the line segment connecting the maximum buyer and seller solutions ; and

many other choices are also possible .

The problem here is not in showing that auction solutions exist ,

but rather in the selection , from the many possible.such solutions, one

that satisfies other desirable criteria .

7. Applications

Since computational techniques exist (see [4,7,12)) for solving

very large transportation problems very quickly, the auction mechanisms

proposed in this paper are immediately applicable to a large variety of

auctioning situations where they are not presently being used . For

instance , it would be possible to develop specific auction procedures

for exchanging stocks , bonds , real estate , commodities , etc . The dif-

ficulty in making such an application is that of getting the buyers and

sellers to agree on the use of this exchange mechanism . The advantages

of doing so are many and include rapidity of exchange , pareto optimal

solutions in some cases , low cost of operation of the auctioning mecha-

nism , etc.

Another problem also exists to determine whether any existing auc-

tion mechanisms are , in fact , one of those discussed in this paper.

This is a descriptive rather than a normative question . One candidate

for such an auction is the Dutch flower market where single lots of

flowers are sold by a “clock” that starts at a high price and works its

way lower. The first rejected bid price mechanism is used .

Given the fact that the Canadian government already uses a highly

mechanised system for selling hogs ([8]), it is entirely possible that

the auction models proposed here may some day be put into practical

use in a normative as well as a descriptive sense.
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