AD-A061 440 ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND ABERDETC F/G 19/1 BLAST LOADING ON MODEL EARTH COVERED MAGAZINES.(U) AUG 78 C N KINGERY UNCLASSIFIED ARBRL-TR-02092 SBIE-AD-E430 123 NL												
	1 of 2 AD 61440	CINA CINA CINA CINA CINA CINA CINA CINA	Branching .			T transformation of the						
									And See American And And See American And And	A	$\begin{array}{c} F_{1} = 1 \\ \\ F_{1} = 1 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
		in the second se				ilinita.					遗;遗)	
	國憲								A	The second secon		
	A No.			\$. A	·		antifican.				a the second sec	
-	4	- Internet	-	-		-	The second secon	ALL CONTRACTOR	-		The second secon	
-		-	-	- H	-	-	1	-		#	-	

(12) LEVEL 7 AD AO 61440 AD-E430123 **TECHNICAL REPORT ARBRL-TR-02092** BLAST LOADING ON MODEL EARTH COVERED MAGAZINES FILE COPY Charles N. Kingery DDC टललगारा 0 August 1978 NOV 22 1978 300 GLAGGUUL US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND, MARYLAND Approved for public release; distribution unlimited. 78 10 27 065

Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report by originating or sponsoring activity is prohibited.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trude numes or manufacturers' names in this report does not constitute indorsement of any commercial product.

REPURT-DUCUMENTATION FAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER TH	0. 3. RECIPIENT'S CATALOG NUMBER
TECHNICAL REPORT ARBRL-TR- #2092	5
4. TITLE (and Subtitie)	S. TYPE OF REPORT & PERIOD COVERE
BLACT LOADING ON MODEL PADTH COVERED MACAZINES	Final rept-
BLAST LOADING ON MODEL EARTH COVERED MAGAZINES	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(+)	8. CONTRACT OR GRANT NUMBER(*)
Charles N. Kingery	CE-BRL-77-1
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TAS
U.S. Army Ballistic Research Laboratory	
(ATTN: DRDAR-BLI) Aberdeen Proving Ground, Maryland 21005	12/1300
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
U.S. Army Ballistic Research Laboratory	AUGUST 19/8
(ATTN: DRDAR-BL)	134
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
Department of Defense Explosive Safety Board Forrestal Building GB-270	UNCLASSIFIED
Washington, DC 20314	154. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	- DDC
Approved for public release; distribution unlimi	
Approved for public release; distribution unlimi	
Approved for public release; distribution unlimi	
Approved for public release; distribution unlimi Distribution STATEMENT (of the obstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES This work was performed for and funded by the De Safety Board	ted. NOV 22 1978 From Report)
Approved for public release; distribution unlimi	ted. NOV 22 1978 From Report) B B partment of Defense Explosive
Approved for public release; distribution unlimi	ted. NOV 22 1978 from Report) B B partment of Defense Explosive
Approved for public release; distribution unlimi	ted. NOV 22 1978 from Report) B partment of Defense Explosive
Approved for public release; distribution unlimi Approved for public release; distribution unlimi Distribution STATEMENT (of the ebstreet entered in Block 20, if different 17. DISTRIBUTION STATEMENT (of the ebstreet entered in Block 20, if different 18. SUPPLEMENTARY NOTES This work was performed for and funded by the De Safety Board 19. KEY WORDS (Continue on reverse elde if necessary and identify by block numb Munition Magazines Scaled Model Tests Scaled Model Tests Scaled Model Tests Structure Loading Explosive Safety Free Field Blast	ted. NOV 22 1978 from Report) B partment of Defense Explosive
Approved for public release; distribution unlimi Distribution STATEMENT (of the obstract entered in Block 20, if different 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES This work was performed for and funded by the De Safety Board 19. KEY WORDS (Continue on reverse elde II necessary and identify by block numb Munition Magazines Scaling Techniques Scaled Model Tests Structure Loading Explosive Safety Free Field Blast	ted. NOV 22 1978 from Report) B partment of Defense Explosive
Approved for public release; distribution unlimi Distribution STATEMENT (of the obstract entered in Block 20, if different 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES This work was performed for and funded by the De Safety Board 19. KEY WORDS (Continue on reverse elde if necessary and identify by block numb Munition Magazines Scaled Model Tests Scaled Model Tests Scaled Model Tests Scaled Model Tests Structure Loading Explosive Safety Free Field Blast 20. AbsTRACT (Continue on reverse elde if necessary and identify by block number This report contains the results obtained from a designed to determine the blast loading on scale munition storage magazines. A 1/30th scaled (no	<pre>ted. NOV 22 1978 from Report) USUUU partment of Defense Explosive</pre>
Approved for public release; distribution unlimi Distribution STATEMENT (of the obstract entered in Block 20, if different 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES This work was performed for and funded by the De Safety Board 19. KEY WORDS (Continue on reverse elde II necessary and Identify by block numb Munition Magazines Scaling Techniques Scaled Model Tests Structure Loading Explosive Safety Free Field Blast 20. AbSTRACT (Continue on reverse elde II necessary and Identify by block number This report contains the results obtained from a designed to determine the blast loading on scale munition storage magazines. A 1/30th scaled (no to three charge weights (.454, .908 and 1.135 kg exposed to a .454 kg charge weight. The objecti	<pre>ted. NOV 22 1978 from Report) from Report) from Report) from Report from</pre>
Approved for public release; distribution unlimi Distribution STATEMENT (of the obstract entered in Block 20, if different 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES This work was performed for and funded by the De Safety Board 19. KEY WORDS (Continue on reverse eide if necessary and identify by block numb Munition Magazines Scaling Techniques Scaled Model Tests Structure Loading Explosive Safety Free Field Blast 20. AbsTRACT (Canthue an reverse eide if necessary and identify by block number This report contains the results obtained from a designed to determine the blast loading on scale munition storage magazines. A 1/30th scaled (no to three charge weights (.454, .908 and 1.135 kg exposed to a .454 kg charge weight. The objecti configuration and stand-off distance for an unco produce the pressure and impulse loading obtaine	<pre>ted. NOV 22 1978 from Report) SUSSILIS B partment of Defense Explosive B "' (mba) series of high explosive test d models of earth covered n-responding) model was expose) and a 1/45th scaled model to ve was to determine the weigh vered TNT charge that would d from the explosion of a</pre>

Ŕ

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

(Item 20 Continued)

Separation distance. A 1/30 scaled model exposed to a 1.135 kg hemispherical pentolite charge at a stand-off distance of 1.6m gave the best model simulation. This will scale, for a full-size test, to a hemispherical charge of TNT weighing 34,050 kg placed 47.2 m from the center line of the acceptor structures.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

TABLE OF CONTENTS

		Participant and the second	age
	LIS	T OF ILLUSTRATIONS	5
	LIS	T OF TABLES	7
Ι.	INT	RODUCTION	9
	Α.	Background	9
	В.	Objectives	9
	c.	Approach	9
11.	TES	T PROCEDURE	10
	Α.	Model Magazine Design	10
	В.	Test Charges	10
		1. Type of Explosive	10
		2. Charge Configuration	14
		3. Charge Weights	14
	c.	Test Instrumentation System	14
		1. Pressure Transducer	14
		2. Tape Recorder System	14
	D.	Test Layout	14
		1. Full Size Magazine	14
		2. Scale Model Magazine	18
	Ε.	Test Series	18
		1. Test Series I	18
		2. Test Series II	18
		3. Test Series III	18
		4. Test Series IV	25
III.	RES	ULTS	25
	Α.	Scaling Blast Parameters	25
		1. Standard Atmospheric Conditions	25
		2. Altitude Corrections	29

TABLE OF CONTENTS (Continued)

Dean

		rago
	В.	Blast Loading on a 1/30 Scale Model Magazine
		1. Charge Weight 0.454 kg (1 lb) Pentolite
		2. Charge Weight 0.908 kg (2 1b) Pentolite
		3. Charge Weight 1.135 kg (2.5 1b) Pentolite
	c.	Blast Loading on a 1/45 Scale Model Magazine 40
IV.	DIS	CUSSION AND RECOMMENDATIONS
	A.	Comparison of Results
	Β.	Shock Reflection and Diffraction
		1. Mach Reflection Pressure on Front Slope 49
		2. Shock Diffraction Pressure on the Roof
		3. Shock Diffraction Pressure on the Rear Slope 57
		4. Discussion of Theory and Experiment
	c.	Predicted Pressure and Impulse for Eskimo V
	ACK	NOWLEDGMENTS
	APP	ENDIXES
	Α.	Series I - Model Scale 1/30 Charge Weight 0.454 kg Pentolite
	Β.	Series II - Model Scale 1/30 Charge Weight 0.908 kg Pentolite
	c.	Series III - Model Scale 1/30 Charge Weight 1.135 kg Pentolite
	D.	Series VI - Model Scale 1/45 Charge Weight 0.454 kg Pentolite
	DIS	TRIBUTION LIST

LIST OF ILLUSTRATIONS

Figure		Page
1.	Standard Munition Storage Magazine	11
2.	1/30 Scale Model Munition Storage Magazine	12
3.	1/45 Scale Model Munition Storage Magazine	13
4.	Instrumentation System	15
5.	Gage Locations on Full Size Magazine	16
6.	Gage Locations on 1/30 Scale Model Magazine	19
7.	1/30 Scale Wood Model - Instrumented	20
8.	1/30 Scale Sand Model - Instrumented	23
9.	1/45 Scale Concrete Model - Instrumented	26
10.	Pressure and Impulse Distribution on Full Scale Magazine - Series I	35
11.	Pressure and Impulse Distribution on Full Scale Magazine - Series II	38
12.	Pressure and Impulse Distribution on Full Scale Magazine - Series III	42
13.	Pressure and Impulse Distribution on Full Scale Magazine - Series IV	45
14.	Comparison of Results from ESKIMO III and Test Series III, Scaled to 34,050 kg TNT	48
15.	Mach Reflection and Diffraction Pattern	50
16.	Overpressure Ratio versus Scaled Distance	51
17.	Input Pressure Ratio versus Mach Reflection Pressure Ratio	52
18.	Input Pressure Ratio versus Diffracted Shock Pressure Ratio	56
19.	ESKIMO V Test Layout	59
20.	Predicted Peak Overpressure Contour for ESKIMO V	60
21.	Predicted Overpressure Impulse Contour for ESKIMO V	61

LIST OF TABLES

Table			Page
г.	Gage Positions on Full Size Magazine		17
п.	Gage Distances - Series I Model Tests		21
111.	Gage Distances - Series II Model Tests		22
IV.	Gage Distances - Series III Model Tests		24
٧.	Gage Distances - Series IV Model Tests		27
VI.	Test Matrix		28
VII.	Average Overpressure (psi) versus Time (msec) - Series I		31
VIII.	Average Impulse (psi-msec) versus Time (msec)	•	33
IX.	Summary of Results on 1/30 Scale Model Magazine		34
х.	Average Overpressure (psi) versus Time (msec) - Series II		36
XI.	Average Impulse (psi-msec) versus Time (msec) - Series II		37
XII.	Average Overpressure (psi) versus Time (msec) - Series III		39
XIII.	Average Impulse (psi-msec) versus Time (msec) - Series III		41
XIV.	Average Overpressure (psi) versus Time (msec) - Series IV		43
XV.	Average Impulse (psi-msec) versus Time (msec - Series IV		44
XVI.	Comparison of Results from ESKIMO III and Test Series III		47
XVII.	Mach Reflection and Diffraction - Theory and Experiment		53
XVIII.	Predicted Pressures and Impulses at Suggested Gauge Locations for ESKIMO V		58

1. INTRODUCTION

A. Background

The Department of Defense Explosives Safety Board (DDESB) has for the past five years sponsored scale model studies at the Ballistic Research Laboratory $(BRL)^{1,2}$. This work was sponsored in an effort to supplement and complement, as well as aid in the design of, full scale field tests. It was shown in Reference 2 that blast parameters from scaled models as small as 1/50 the full size storage magazines could be correlated directly with results from full scale tests. With this background knowledge and experience the present test program was planned and executed.

B. Objectives

The primary objective of this project is to furnish information that will aid in the design of a large scale field test. The objectives of the large scale field test are (1) to demonstrate the safety of explosive storage in economically constructed non-circular steel and concrete arch magazines at a minimum side-to-side separation distance and (2) to use a smaller uncovered charge to produce the blast loads generated from a much larger explosive source contained in a standard earth-covered storage magazine similar to the one used in the ESKIMO III test³. The planned full-size field test is designated ESKIMO V.

C. Approach

The approach to meet the primary objective was first to meet the following secondary objectives:

- 1. Design the scale model structure.
- 2. Establish the charge configuration.
- 3. Establish the charge.
- 4. Establish the instrumentation system.
- 5. Conduct the test series.

¹R. E. Reisler, L. Giglio-Tos, G. D. Teel, "Air Blast Parameters from Pentolite Cylinders Detonated on the Ground," Ballistic Research Laboratories Memorandum Report No. 2471, April 1975. (AD #B003883L)

²C. N. Kingery, G. A. Coulter, G. T. Watson, "Blast Parameters from Explosions in Model Earth Covered Magazines," Ballistic Research Laboratories Memorandum Report No. 2680, September 1976. (AD #A031414)

³F. H. Weals, "ESKIMO III Magazine Separative Tests," Naval Weapons Center Report TP-5771, February 1976.

6. Recommend charge weight and location.

7. Predict blast loading on the full-size structures to be exposed on ESKIMO V.

II. TEST PROCEDURE

The test procedures followed to meet the primary objective were those required to meet the secondary objectives noted under Approach.

A. Model Magazine Design

The standard munition storage magazine being scaled for this test series is shown in Figure 1. The overall width is 27.43 metres (90 feet), length 35.05 metres (115 feet) and height 4.88 metres (16 feet). In ESKIMO III the distance between the center line of the donor magazine to the center line of the acceptor magazines was 34.75 metres (114 feet).

From preliminary calculations it appeared that a 13,620 kg (30,000) pound TNT charge would give the required pressure of 5.37 to 6.55 bars (78-95 psi) and impulse 44.83 bar-msec (650 psi-msec) over the top of the structure. Based on these preliminary estimates the model scale was established as 1/30. This implies that a .454 kg (1 pound) charge would simulate 12,259 kg (27,000 lb) of explosive. The 1/30 scale model, as designed for this test series, is shown in Figure 2.

In the later phase of the test series it appeared desirable to simulate a 41,370 kg (91,125 lb) TNT charge. Therefore a 1/45 scale model was designed so that blast loading could be simulated with a .454 kg (1 lb) pentolite charge. The dimensions of the 1/45 scale model are shown in Figure 3.

B. Test Charges

Before the test charges could be cast it was first necessary to establish (1) the type of explosive required, (2) the configuration most appropriate, and (3) the weights required.

1. Type of Explosive. The BRL has over the past 25 years established a wealth of basic blast data from pentolite charges. Pentolite is relatively insensitive to shock, making it safe to handle and it gives good repeatability from shot to shot. Although TNT is planned for the full scale test it does not have the repeatability required of the small charge weights. Therefore, pentolite which has a TNT equivalency⁴ of 1.17 was selected for use on this program.

⁴T-M 5-1300, "Structure to Resist the Effects of Accidental Explosions," Army Manual, June 1969.

2. <u>Charge Configuration</u>. The charge configurations first considered were a hemi-cylinder as used in Reference 2 or a cylindrical charge as used in Reference 1. After plotting the shock profile (iso-pressure and iso-impulse contours) along the 0, 45, 90, 135 and 180 degree lines it became apparent that the loading on a structure would be quite nonsymmetric. Therefore, a recommendation was made to the DDESB that a hemispherical charge be considered for the full-size test.

3. <u>Charge Weights</u>. The recommendation for hemispherical charges as the donor configuration was accepted and an order for three charge weights was issued. These charge weights were 0.454, 0.908 and 1.135 kg or 1, 2 and 2.5 pounds of pentolite. The amount of explosive these charges will simulate and the location from the centerline of the acceptor magazine are discussed in later sections of this report.

C. Test Instrumentation System

The test instrumentation system consisted of (1) the pressure transducer, (2) the tape recorder with amplifiers, calibration and timing.

1. Pressure Transducer. Piezo-electric gauges were used throughout the series of tests. Two types were used. One type was the Susquehanna Instruments Model ST-4 with tourmaline sensors and the second type was a PCB Electronics Inc., Model 113A24 which has a quartz sensing element and a built-in source follower.

2. Tape Recorder System. The tape recorder consisted of three basic units - the power supply and voltage calibrator, the amplifier and the FM recorder. The FM tape recorder used was a Honeywell 7600 having a frequency response of 80 k Hz. Once the signal was recorded on the magnetic tape it was played back and recorded on a Honeywell Model 1858 Visrecorder. This oscillograph has excellent frequency response and the overpressure versus time recorder at the individual positions were read directly from the oscillograph playback. The overall instrumentation system is shown in Figure 4.

D. Test Layout

The test layout depended primarily on the selection of the model scale and charge weight because the gage locations on the model are fixed. The charge weight then governs the distance from the charge to a specific model scale.

1. Full Size Magazine. The locations of the gages on the full-size structure exposed on ESKIMO III are shown in Figure 5. The distances from the gauge locations listed in Table I are measured along the ground surface to the geometric center of the interior of the donor structure. Also listed in Table I are the peak overpressures and impulses recorded at similar positions on the two acceptor magazines. These values are

Figure 5. Gage Locations on Full Size Magazine

16

13 🖸

			Pea	ak			
Position	Dista	nce	Overpre	essure	Impulse		
No.	m	ft	bar	psi	bar-msec	psi-msec	
2	22.6	74	7.59 8.28	110 120	- 55.4	- 804	
5	28.7	94	-	-	7	-	
6	31.7	104	5.52	80 85	36.5	529 806	
11	37.8	124	5.38	93 78	42.9	622	
12	43.9	144	2.76	85 40	44.3 33.4	642 484	
13	53.0	174	- 3.45	- 50	- 45.0	- 652	
10A	33.8	111	5.17 3.79	75 55	42.5	616 600	
10B	39.6	130	4.14	60 40	54.8	795	

Table I. Gage Positions on Full Size Magazine

NOTE: Position 10A and 10B bracket Position 10 on the Model Structure.

> Distance between center lines of Donor and Acceptor Magazine is 34.7 metres (114 feet).

First value is from Magazine A Second value is from Magazine B

bar x 100 = kPa

taken from the full scale test ESKIMO III report, Reference 3. The gage locations have been given position numbers to correspond with those used in the scaled model.

2. <u>Scale Model Magazine</u>. The locations of the gage positions on the 1/30 scale model are shown in Figure 6. Not all positions were instrumented on each shot. A maximum of 13 positions and a minimum of 7 positions were instrumented during the series of tests. The relative positions of the gages remained constant for a particular model scale but the distance between the charge center and the center line of the model was varied for each charge weight used.

E. Test Series

There were four series of tests. In series I, II, and III the model size was held constant while the charge weights were changed. In the series IV tests the model scale was changed. Each series is described in the following sections.

1. Test Series I. In test series I a 1/30 scale wooden model was instrumented as shown in Figure 7. The objective of this test series was, through the use of a scaled model, to determine the peak overpressure and impulse that might be expected on a full size storage magazine when subjected to a 13620 kg (30,000 lb) hemispherical charge of TNT placed at a distance of 34.7 metres from the centerline. The method used to determine the scaled distances of the gage positions relative to the charge center is presented in Table II.

2. Test Series II. In test series II the full size magazine is assumed to be subjected to the blast load from 27240 kg (60,000 lb) of TNT. Since the charge weight was doubled then the distance from the model centerline to the charge center must be increased by $2^{1/3}$ or 1.26. Therefore the 34.74 metres for series I must become 43.77 metres for series II. The method for calculating the scaled distances for the increased charge weight is presented in Table III. In test series II it was desirous to obtain the same peak overpressure but increase the positive impulse.

3. Test Series III. In test series III the same scaled model 1/30 was used but it was formed with sand. A photograph of the instrumented model is presented in Figure 8. The record quality improved considerably when the sand model was used. Based on the results from test series II there was still a need to increase the positive impulse. Therefore, a charge weight of 34050 kg (75,000 lb) was selected as a candidate for the full scale test. The procedure as noted in Tables II and III was used again to determine the scaled distance to place the small charge. The method is presented in Table IV along with the full

10

6 Z

Figure 6. Gage Locations on 1/30 Scale Model Magazine

Figure 7. 1/30 Scale Wood Model - Instrumented

Position	Full Scale I	Distance	Scale	Distance
No.	m	ft	m	ft
1	18.3	60	.62	2.03
2	22.6	74	.77	2.51
3	26.2	86	.89	2.92
4	26.2	86	.89	2.92
5	28.7	94	.97	3.19
6	31.7	104	1.08	3.53
7	38.7	127	1.31	4.31
8	35.4	116	1.20	3.93
9	35.4	116	1.20	3.93
10	36.9	121	1.25	4.10
11	37.8	124	1.28	4.20
12	43.9	144	1.49	4.88
13	53.0	174	1.80	5.90
14	25.6	84	.87	2.85
15*	34.7	114	1.18	3.87

Table II. Gage Distances - Series I Model Tests

Given: $W_2 = 13620 \text{ kg} (30,000 \text{ lb}) \text{ TNT}$ R₂ = 34.7m (114 ft)

Determine: Scale distance R_1 for W_1 equal to .531 kg (1.17 1b) TNT.

 $R_{1} = \text{Scale distances from Charge Center to Model Center Line}$ $R_{2} = \text{Full scale distance from Charge Center to Magazine Center}$ $R_{1} = R_{2} \left(\frac{W_{1}^{1/3}}{W_{2}^{1/3}} \right)$ $R_{1} = 34.7 \quad (0.03391)$ $R_{1} = 1.18m$

NOTE: TNT Equivalency of Pentolite = 1.17 *Center line distance, R₂

Position	Full Scale	Distances	Model Scale	Distances
No.	m	ft	m	ft
1	27.3	89.6	.93	3.04
2	31.6	103.6	1.07	3.51
3	35.1	115.3	1.19	3.91
4	35.1	115.3	1.19	3.91
5	37.7	123.6	1.28	4.19
6	40.7	133.6	1.38	4.53
7	47.0	154.1	1.59	5.21
8	44.2	145.0	1.50	4.92
9	44.2	145.0	1.50	4.92
10	45.4	149.0	1.54	5.05
11	46.8	153.6	1.59	5.21
12	52.9	173.6	1.79	5.89
13	62.1	203.6	2.10	6.90
14	34.6	113.6	1.17	3.85
15*	43.8	143.6	1.48	4.87

Table III. Gage Distances - Series II Model Tests

Given: $W_2 = 27240 \text{ kg} (60,000 \text{ lb}) \text{ TNT}$

 $R_2 = 43.8 \text{ m} (143.6 \text{ ft})$

Determine: R_1 , Scale distance for W_1 equal to 1.062 kg (2.34 lb) TNT

 R_1 = Scale distance from Charge Center to Model Center Line R_2 = Full scale distance Charge Center to Magazine Center Line

 $R_{1} = R_{2} \left(\frac{W_{1}^{1/3}}{W_{2}^{1/3}} \right)$ $R_{1} = 43.8 \ (0.03391)$ $R_{1} = 1.48m$

Position	Full Scale	Distances	Model Scal	e Distances
No.	m	ft	m	ft
1	30.7	100.7	1.04	3.41
2	35.0	114.7	1.19	3.89
3	38.5	126.3	1.31	4.28
4	38.5	126.3	1.31	4.28
5	41.1	134.7	1.39	4.57
6	44.1	144.7	1.50	4.91
7	50.1	164.5	1.70	5.58
8	47.5	156.0	1.61	5.29
9	47.5	156.0	1.61	5.29
10	48.8	160.0	1.65	5.43
11	50.2	164.7	1.70	5.59
12	56.3	184.7	1.91	6.26
13	65.4	214.7	2.22	7.28
14	38.0	124.7	1.29	4.23
15	47.2	154.7	1.60	5.25

Table IV. Gage Distances - Series III Model Tests

Given: $W_2 = 34050 \text{ kg} (75,000 \text{ lb}) \text{ TNT}$ $R_2 = 47.2 \text{m} (154.7 \text{ ft})$

Determine: Scale distance R_1 , for a W_1 equal to 1.328 kg (2.925 1b) TNT = W_1

R₁ = Scale distance from Charge Center to Model Center Line
R₂ = Full scale distance from Charge Center to Magazine Center
Line

$$R_{1} = R_{2} \left(\frac{W_{1}^{1/3}}{W_{2}^{1/3}} \right)$$
$$R_{1} = 47.2 \quad (0.03391)$$
$$R_{1} = 1.60m$$

and model scale distances.

4. Test Series IV. Although test series III gave the desired pressure and scaled impulse it was decided to conduct one series with a smaller model 1/45 and one of the previously used charge weights. A sand model similar to the one shown in Figure 8 was used on the first shot and a concrete model as shown in Figure 9 was used for the second and third shots. The method for calculating the distances from the charge center to the structure center line of the full scale and model structure is presented in Table V.

III. RESULTS

The results will be presented primarily in tabular form with selected overpressure versus time histories to show the loading at pertinent gauge locations. The major portion of the tests was conducted using a 1/30 scale model and three different charge weights. Only one charge weight was fired against the 1/45 scale model. The shot matrix is presented in Table VI.

A. Scaling Blast Parameters

1. <u>Standard Atmospheric Conditions</u>. The Hopkinson scaling law⁵ was used in this report to design the model test layout, select the charge weights and predict the blast loading that might be expected on a full-scale munition magazine. Scaling laws allow the prediction of blast wave properties from small scale experiments to any other scale, provided the type of explosive source, the geometry of the source, and atmospheric conditions are identical.

Theoretically, a target located a distance R_1 from the center of an explosive source of weight W_1 will be subjected to a blast wave with a peak overpressure of amplitude P, a duration t_{+1} and a positive impulse I_1 . Now the Hopkinson scaling law states that the distance R_2 at which a target must be placed to receive the same peak overpressure, from a different charge weight W_2 , is a function of the cube roots of the charge weights. The relationship is given by

$$\frac{R_1}{W_1^{1/3}} = \frac{R_2}{W_2^{1/3}}$$
$$R_2 = R_1 \left(\frac{W_2}{W_1}\right)^{1/3}$$

and

⁵B. Hopkinson, British Ordnance Board Minutes 13565, 1915.

Figure 9. 1/45 Scale Concrete Model - Instrumented

Position	Full Scal	le Distance	Model Scal	le Distance
No.	m	ft	m	ft
1	33.8	111	. 79	2.60
2	38.1	125	.89	2.93
3	41.5	136	.97	3.18
4	41.5	136	.97	3.18
5	44.2	145	1.03	3.39
6	47.2	155	1.11	3.63
7	53.1	174	1.24	4.07
8	50.6	166	1.18	3.89
9	50.6	166	1.18	3.89
10	51.8	170	1.21	3.98
11	53.3	175	1.25	4.10
12	59.4	195	1.39	4.56
13	68.6	225	1.61	5.27
14	41.1	135	.96	3.16
15	50.3	165	1.18	3.86

Table V. Gage Distances - Series IV Model Tests

Given: 41370 kg (91,125 lb) TNT = W_2 R₂ = 50.3 m (165 ft)

Determine: Scale distance R_1 for W^1 equal to 0.531 kg (1.17 lb) TNT

 $R_1 = Scale distance from Charge Center to Model Center Line$ $<math>R_2 = Full scale distance from Charge Center to Magazine Center Line$ $<math>R_1 = R_2 \left(\frac{W_1^{1/3}}{W_2^{1/3}} \right)$

$$R_1 = 50.3 (.02341)$$

 $R_1 = 1.18 m$

Shot	Charge kg	Weights 1b	Model Scale	Model Type	Series	Remarks
1	0.449	0.99	1/30	Wood	I	*
2	0.451	0.99	1/30	Wood	I	
3	0.897	1.98	1/30	Wood	11	
4	0.897	1.98	1/30	Wood	II	
5	0.903	1.99	1/30	Wood	II	**
6	0.898	1.98	1/30	Wood	II	
7	0.451	0.99	1/30	Wood	I	
8	0.901	1.98	1/30	Wood	II	
9	0.896	1.97	1/30	Wood	II	
10	0.449	0.99	1/30	Wood	I	
11	0.902	1.99	1/30	Sand	II	
12	0.451	0.99	1/30	Sand	I	
13	0.452	0.99	1/45	Sand	IV	
14	1.135	2.50	1/30	Sand	III	
15	1.134	2.50	1/30	Sand	III	
16	1.125	2.48	1/30	Sand	III	
17	1.136	2.50	1/30	Sand	III	
18	0.447	0.98	1/45	Concrete	IV	
19	0.448	0.99	1/45	Concrete	IV	

Table VI. Test Matrix

AVERAGE WEIGHTS

1/30 Mode1	2w, 7w, 10w, 125	-	0.451 kg	(0.99 1	b)
1/30 Model	3w, 4w, 6w, 8w, 9w, 11	-	0.899 kg	(1.98 1	b)
1/30 Model	14s, 15s, 16s, 17s	-	1.133 kg	(2.50 1)	b)
1/45 Model	13s, 18c, 19c	-	0.449 kg	(0.99 1	b)
*Shot 1 -	Data not usable				

**Shot 5 - Misfire

For similar conditions then

Impulse I₂ = I₁
$$\left(\frac{W_2}{W_1}\right)^{1/3}$$

and

Duration
$$t_{+2} = t_{+1} \left(\frac{W_2}{W_1}\right)^{1/3}$$
.

Note that the scaling factor required to scale the 1/30 model results to the full size structure is $(W_2/W_1)^{1/3}$ or 29.49. Results from the 1/45 scale model must be scaled by a factor of 42.72.

2. Altitude Corrections. When blast parameters are scaled from standard sea level conditions to altitudes where the ambient atmospheric conditions are appreciably different then corrections must be made⁶. The correction for overpressure is

$$p_{a} = p_{o} \left(\frac{P_{a}}{P_{o}}\right)$$

where

 p_a = overpressure at altitude

 p_{o} = overpressure at sea level

 P_a = ambient pressure at altitude

 P_{o} = ambient pressure at sea level.

The corrected value for distance (R) for the new overpressure level is given by

$$R_{a} = R_{o} \left(\frac{W_{2}}{W_{1}}\right)^{1/3} \left(\frac{P_{o}}{P_{a}}\right)^{1/3}$$

⁶R. G. Sachs, "The Dependence of Blast on Ambient Pressure and Temperature," BRL Report No. 466, Aberdeen Proving Ground, Md. 1944. (AD #ATI 39393)

 R_a = distance at altitude R_o = distance at sea level W_2 = charge weight - full scale W_1 = charge weight - model scale.

For impulse at altitude, the relationship is

$$I_{a} = I_{o} \left(\frac{W_{2}}{W_{1}}\right)^{1/3} \left(\frac{P_{a}}{P_{o}}\right)^{2/3} \left(\frac{T_{o}}{T_{a}}\right)^{1/2}$$

where

where

 T_{a} = temperature at altitude - degrees K

 T_{c} = temperature at sea level - degrees K.

B. Blast Loading on a 1/30 Scale Model Magazine

The dimensions of the 1/30 scale model magazine are shown in Figure 2. The locations of the airblast gages are shown in Figure 6 with their distances from ground zero or charge center given in Tables II, III, and IV.

1. Charge Weight 0.454 kg (1 1b) Pentolite. In planning the test layout the pentolite charge was assumed to represent 1.17 that amount of TNT. Therefore, in the scaling relationship W_1 was equal to 0.531 kg (1.17 lb) TNT. The tests conducted with this scale model and charge weight are noted in Table II as Series I Model Tests. Although the model was constructed with 1-inch thick plywood and heavy internal bracing the results were dissappointing. Some gage positions received excessive accelerations which were superimposed on the record of overpressure versus time. During this series Positions 3, 4, 8 and 9 were removed and Positions 14 and 15 were added. (See Figure 6).

On shot 12 a 1/30 scale sand model was instrumented and tested. Positions 1, 7, 8, 10, 12, 13, 14, and 15 were instrumented as shown in Figure 8. The results from the sand model were excellent and all but two of the following shots were conducted with sand models.

The records of pressure versus time for each position were tabulated at equal time increments and an average overpressure versus time established. These averages for each position are listed in Table VII.

2 2335 24 2 20 2 2 2 2 2 2 2 2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2 3 4 5 2 3 4 5 335 248 216 177 215 160 170 124 121 140 70 87 84 80 50 62 73 60 35 41 52 50 25 42 338 5 5 23 34 15 8 24 338 5 5 33 338 5 5 22 338 5 5 22 338 5 5 22 338 5 5 22 338 5 5 22 20 0 26 38 21 0 26 112 7 0 0 21 7 0 0 21 7 0 0 21 7 0 0 21 17 0 0
2 3 215 160 121 140 84 80 73 60 73 60 73 60 73 60 73 24 73 50 73 50 73 50 73 50 73 50 74 15 73 50 20 25 38 5 20 25 38 5 20 25 38 5 20 25 38 5 20 25 20 25 20 25 20 25 20 25 21 15 22 0 23 5 24 15 25 0 26 0 27 0 28 5 <tr< td=""></tr<>

From the average overpressure versus time tabulations, impulse versus time was calculated and these calculations are listed in Table VIII. At the bottom of each column the total impulse is noted. The total impulse values from the model were scaled up to full size and are also listed in Table VIII. The gage calibrations are for pounds per square inch (psi) and therefore the listings in Table VII and VIII are overpressure in psi and impulse in psi - msec.

The results from the Series I tests are summarized in Table IX where the pressure and impulse values are listed in both psi, bar and psi-msec, bar-msec. The values listed in Table IX are presented in Figure 10 to show the peak overpressure (bars) and impulse (bar-msec) distribution of the various positions over the full scale munition storage magazine exposed to a 13620 kg (30,000 lb) hemispherical TNT charge.

The peak overpressure recorded at Position 15 was satisfactory but the overpressure impulse was too low, 30.9 bar-msec vs the required 44.8 bar-msec. Therefore, the charge weight was doubled and another test series was conducted.

2. Charge Weight 0.908 kg (2 1b) Pentolite. These tests are designated as Series II and in Table III it is noted that the pentolite charge is assumed to represent 1.062 kg (2.34 lb) TNT. A 1/30 scale model was instrumented and as noted in Series I not all gage positions were instrumented on all shots. Average values of the overpressure versus time recorded at the various positions are listed in Table X. The average values of overpressure versus time were used to calculate the impulse versus time at each gage position. The impulse versus time calculations are listed in Table XI and the total impulse is listed at the bottom of each column for the scale model with a second value for the impulse to be expected on the full size magazine. The peak overpressure and total positive impulse values from Series II are listed in Table IX. The values listed in Table IX are presented in Figure 11 to show the pressure and impulse distribution to be expected over a full scale munition storage magazine exposed to a 27240 kg (60,000 lb) hemispherical TNT charge.

The peak overpressure meets the established criterion but again the overpressure impulse is too low - 41.2 bar-msec versus 44.8 barmsec. The charge weight was increased 2.5 times the series 1 charge weight and a third test series was conducted.

3. Charge Weight 1.135 kg (2.5 lb) Pentolite. These tests were designated as Series III and in Table IV it is noted that the pentolite charge is assumed to represent 1.328 kg (2.927 lb) of TNT. A 1/30 scale sand model was used for Shots 14, 15, 16, and 17. The instrumented positions are given in Table XII where the average values of overpressure versus time are listed. The average values of overpressure versus time were used to calculate impulse versus time at each gage Table VIII. Average Impulse (psi-msec) versus Time (msec) - Series I

15			15.19	118
14		$\begin{array}{c} 11.5 \\ 6.63 \\ 5.38 \\ 5.38 \\ 5.50 \\ 2.55 \\ 1.00 \\ 1.13 \\ 1.00 \\ 1.$	36.45	1074
13		$\begin{array}{c} 1 \\ 1 \\ 3 \\ 3 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	9.88	162
12		$\begin{array}{c} 1 \\ 2 \\ 3 \\ 3 \\ 3 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 6 \\ 3 \\ 5 \\ 5 \\ 6 \\ 3 \\ 5 \\ 5 \\ 6 \\ 3 \\ 5 \\ 5 \\ 5 \\ 6 \\ 3 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	8.38	247
11		2.68 2.15 2.15 1.75 1.75 .90 .90 .60 .60 .60 .58 .58 .58 .58 .58 .58 .58 .58 .58 .58	14.43	426
10		$\begin{array}{c}1.41\\1.78\\1.65\\1.65\\1.03\\1.65\\1.03\\1.65\\1.65\\1.22\\00\\1.0\\00\end{array}$	12.05	355
6		2 2 4 3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	14.01	413
œ		$\begin{array}{c} 2.95\\ 2.50\\ 1.95\\ 1.95\\ 1.35\\ 1.35\\ .83\\ .65\\ .48\\ .35\\ .35\\ .45\\35\\10\\ 00\\ 00\\ \end{array}$	14.49	427
7		$\begin{array}{c} 1.85\\ 1.38\\ 1.38\\ 1.28\\50\\56\\56\\45\\45\\35\\$	10.75	317
9		$\begin{array}{c} 3.55\\ 1.83\\ 1.38\\90\\90\\30\\28\\28\\28\\28\\28\\28\\28\\28\\28\\28\\28\\20\\$	9.50	280
S		7.53 3.73 3.73 2.60 2.10 2.10 2.10 2.10 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73	34.40	1014
4		9.65 5.00 3.00 1.13 .88 .63 .63 .45 .33 00	25.70	758
3		8.70 7.50 3.550 7.50 7.50 7.50 7.50 1.63 1.00 1.63 .13	35.46	1046
7		$\begin{array}{c} 12.1\\ 8.40\\ 5.13\\ 3.93\\ 3.13\\ 3.13\\ 3.13\\ 3.13\\ 3.13\\ 1.40\\ 1.40\\ 1.80\\ 1.80\\ 1.80\\ 1.90\\ 1.10\\$	45.84	1352
-		$\begin{array}{c} 10.1 \\ 4.73 \\ 2.78 \\ 1.33 \\ 1.33 \\35 \\38 \\$	24.18	713
Position	Time msec	$\begin{array}{c} .00\\ .05\\ .05\\ .05\\ .05\\ .25\\ .35\\ .35\\ .35\\ .35\\ .35\\ .35\\ .35\\ .3$	Model	Full Scale

•

Table IX. Summary of Results on 1/30 Scale Model Magazine

		Se	eries I			Seri	es II			Seri	es III	
	Pe	eak	Tot	tal	Pe	sak	Tota	l	Pe	ak	Tot	al
	Overpi	ressure	Impu	ulse	Overpr	essure	Impu	lse	Overpr	essure	Impu	ılse
Position	psi	bar	psi-msec	bar-msec	psi	bar	psi-msec	bar-msec	psi	bar	psi-msec	bar-msec
1	284	19.6	713	49.2	214	14.8	1158	6.67	181	12.5	962	66.3
5	335	23.3	1352	93.2	293	20.2	1864	128.5	260*	17.9*	1450*	100*
м	248	17.1	1046	72.1	224	15.4	1053	72.6	•	,	,	•
4	216	14.9	758	52.3	211	14.6	944	65.1	,	•	•	•
S	177	12.2	1014	6.9	167	11.5	1205	83.1	160*	11.0*	1088*	75.0*
9	26	6.69	280	19.3	101	6.97	241	16.6	92	6.34	360	24.8
7	44	3.03	317	21.9	58	4.00	447	30.8	62	4.28	601	41.4
80	63	4.34	427	29.5	69	4.76	447	30.8	78	5.38	624	43.0
6	63	4.34	413	28.5	80	5.52	546	37.7	1	•	,	,
10	46	3.17	355	24.5	39	2.69	494	34.1	60	4.14	585	40.3
11	59	4.07	426	29.4	67	4.62	474	32.7	67	4.62	587	40.1
12	24	1.66	247	17.0	29	2.00	402	27.7	34	2.34	522	36.0
13	29	2.00	291	20.1	36	2.48	428	29.5	37	2.55	386	26.6
14	245	16.9	1074	74.1	212	14.6	1119	77.2	211	14.6	1233	85.0
15	76	5.24	448	30.9	76	5.24	598	41.2	87	6.00	661	45.6
	= ´M	13620 kg	g (30,000 11	os)	м, =	27240 k	g (60,000	lbs)	= ^c M	34050 k	g (75,000 1	(bs)

*Extrapolated values.

0 19.6

O 49.2

Figure 10. Pressure and Impulse Distribution on Full Scale Magazine - Series I
	15		36	0 5	49	39	25	19	17	19	17	17	15	13	10	S	4	м	б	S	0												+
	14		616	182	132	96	70	41	39	29	17	13	12	80	0																		*
es II	13		72	00	25	22	19	17	15	13	11	10	9.2	7.3	6.8	6.2	6.0	4.7	3.8	3.0	2.3	1.8	1.7	1.4	1.1	.82	.70	.35	.65	0			******
- Seri	12		00	26	22	20	17	15	12	13	11	9.0	7.8	6.4	4.7	3.3	2.3	2.2	2.3	2.4	2.3	3.5	3.4	3.2	3.4	2.3	2.1	2.0	1.8	1.5	1.0	0	*
nsec)	11		- 5	23	43	36	32	29	25	21	17	12	6	9	ы	0																	*****
Time ()	10		02	37/56	36	31	25	23	21	17	16	14	12	6	80	S	S	4	1	2	0												*
versus	6		08	65	50	38	23	19	13	11	11	18	14	13	8	7	9	0															**
psi) v	æ		60	25	39	31	24	17	13	80	. 11	10	10	S	4	9	9	б	0														*** *
ure (J	7		85	40	28	23	21	19	17	15	15	13	10	6	80	7	S	ю	7	0													****
rpressi	9		101	37	24	22	18	12	0																								*****
ige Ove	S		167	135	111	75	58	55	50	42	37	33	28	20	13	2	8	0															****
Avera	4		116	160	110	61	58	42	32	31	24	16	0																				**
ble X.	3		100	139	155	123	95	64	26	0																							**
Та	5		206	187	117	92	93	49	63	45	52	41	31	24	30	25	20	24	19	15	10	0											*****
	-		110	121	17	55	40	30	26	31	31	34	36	22	19	13	11	9	S	3	0												*****
	osition	Time Msec	00.	.10	.15	.20	. 25	.30	.35	.40	.45	.50	.60	.70	.80	06.	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2				

	13 14 15			3 1.63 9.85 3.33	0 1.35 7.85 2.65	5 1.18 5.70 2.20		3 1.03 4.15 1.60	5 1.03 4.15 1.60 0 .90 2.78 1.10	5 1.03 4.15 1.60 0 .90 2.78 1.10 3 .80 2.00 .90	3 1.03 4.15 1.60 0 .90 2.78 1.10 8 .80 2.00 .90 5 .70 1.70 .90	5 1.03 4.15 1.60 0 .90 2.78 1.10 8 .80 2.00 .90 5 .70 1.70 .90 0 .60 1.15 .90	8 1.03 4.15 1.60 9 2.78 1.10 8 2.00 .90 8 .70 1.70 .90 9 .70 1.70 .90 9 .53 .75 .85	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 1.03 4.15 1.60 90 2.78 1.10 8 .80 2.00 .90 8 .70 1.70 .90 90 .53 .75 .85 1 .60 1.15 .90 1 .60 1.15 .90 1 .63 .85 .85 2 .48 .65 .80 1 .83 1.00 1.40 5 .66 .40 1.15	8 1.03 4.15 1.60 90 2.78 1.10 8 200 20 90 8 70 1.70 90 90 5.3 .75 .85 90 .53 .75 .85 1 .60 1.15 .90 90 .65 1.10 1.40 1 .83 1.00 1.40 1 .66 .40 1.15 9 .65 0 .75	8 1.03 4.15 1.60 90 2.78 1.10 80 2.00 90 80 2.00 90 90 5.70 1.15 90 90 .53 .75 .85 90 .53 .75 .85 90 .66 1.15 .90 91 .66 1.15 .90 92 .65 0 1.40 93 .66 .40 1.15 93 .61 .75 .45	8 1.03 4.15 1.60 90 2.78 1.10 80 2.00 .90 80 2.00 .90 80 2.00 .90 90 .53 .75 .85 90 .53 .75 .85 91 .66 1.15 .90 92 .66 1.15 .90 93 .65 .75 .85 93 .66 .40 1.15 93 .61 .75 .85 94 .65 0 .75 95 .65 .40 1.15 93 .61 .75 .45	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 1.03 4.15 1.60 90 2.78 1.10 80 2.00 90 80 2.00 90 80 2.00 90 80 2.00 1.15 80 53 .75 .85 90 .53 .75 .85 91 .60 1.15 .90 92 .66 .40 1.15 93 .66 .40 1.15 93 .61 .75 .85 94 .65 0 .75 95 .43 .75 .45 96 .40 1.15 .45 97 .54 .75 .40 1 .36 .40 .40 1 .36 .40 .40 1 .36 .40 .40 1 .36 .30 .30 1 .37 .30 .30 1 .36 .40 .40 1 .36 .40 </th <th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th> <th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th> <th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
eries II	1 12			00 1.38	40 1.20	98 1.05	70 .93	53 .80		35 .08	35 .00 15 .63	35 .08 15 .63 95 .60	35 .08 15 .63 95 .60 73 .50	 35 .08 15 .63 95 .60 95 .60 43 .42 	 35 .008 15 .63 95 .60 95 .60 43 .71 45 .71 	35 .000 95 .60 73 .50 73 .50 73 .50 71 45 .71 30 .56	 35 35 95 63 95 63 73 73 74 45 71 45 71 46 71 47 42 44 44 45 46 47 47 48 47 48 48 49 40 <	355 008 95 058 73 500 73 50 42 42 42 10 56 10 56 10 28	355 058 955 058 73 0560 73 0560 443 055 10 0560 10 0560 10 0560 23	355 058 955 058 955 050 735 050 445 051 10 056 10 056 10 056 23 23 23 23 23	355 058 955 650 955 650 73 550 73 550 73 71 10 56 71 10 28 23 23 23 23 23 24 23 23 23 23 23 23 24 23 23 23 23 23 23 23 23 23 23 23 23 23	35 115 95 73 45 71 45 71 10 26 73 71 10 26 71 23 71 23 24 23 23 23 23 23 23 23 23 24 27 20 20 20 20 20 20 20 20 20 20	35 115 95 75 63 63 63 63 63 63 63 63 63 63	35 95 95 75 75 75 75 70 10 71 10 56 71 10 56 71 10 56 50 56 50 50 50 50 50 50 50 50 50 50 50 50 50	35 95 95 73 73 70 71 10 71 10 71 10 71 10 56 71 10 56 50 55 50 55 50 55 50 55 50 55 50 55 50 55 50 55 50 55 50 50	35 95 95 15 95 15 10 10 10 10 10 10 10 10 10 10 10 10 10	35 115 15 15 15 10 10 10 10 10 10 10 10 10 10	35 95 95 73 845 30 310 10 10 10 10 10 110 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 124 125 125 126 127 128 129 120 121 121 121 122 123 123 123 123 123 123 123 123 123 124 125 125 123 123	235 115 155 10 10 10 10 10 10 10 10 10 10	235 242 245 245 250 245 255 255 255 255 255 255 255	35 35 95 63 95 63 30 71 30 50 30 50 30 50 30 50 30 50 30 50 30 50 30 50 30 50 30 50 30 50 30 50 30 50 30 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50	35 95 95 95 10 10 11 12 13 14 15 15 12 13 14 15 15 15 16 17 17 18 19 12 12 12	25 25 25 25 25 25 25 25 25 25	35 95 95 10 10 11 12 13 14 15 15 12 12 12 12 13 14 15	35 35 95 73 95 50 30 57 30 56 30 56 30 56 30 56 30 56 30 56 30 56 30 56 30 56 30 56 30 56 30 56 30 56 30 56 30 56 30 56 30 56 30 57 30 57 30 57 310 57 323 57 333 57 333 57 333 57 333 57 333 57 333 57 533 57 533 57 533 57 533 57 533 57 </td <td>35 35 50 95 73 50 73 50 57 30 10 45 30 56 56 30 56 56 30 56 56 30 56 56 30 56 53 310 23 23 325 23 23 335 23 23 335 23 23 335 23 23 335 23 23 335 23 23 335 23 23 335 23 23 335 23 23 335 33 33 335 33 33 335 34 35 34 35 36 35 36 37 36 37 37 37 37 37 37 37 37 37 37</td>	35 35 50 95 73 50 73 50 57 30 10 45 30 56 56 30 56 56 30 56 56 30 56 56 30 56 53 310 23 23 325 23 23 335 23 23 335 23 23 335 23 23 335 23 23 335 23 23 335 23 23 335 23 23 335 23 23 335 33 33 335 33 33 335 34 35 34 35 36 35 36 37 36 37 37 37 37 37 37 37 37 37 37
msec) - S	10 1			1.90 3.	2.30 2.	1.68 1.	1.40 1.	1.20 1.	1.10 1.		.1 66.	. 83 L.	. 75 . 75	. 43 . 75 . 65	. 45 1. . 83 . 75 . 65 	. 45																				
us Time ()	6			3.48	2.73	2.20	1.53	1.05	. 80	.60		.55	. 73	. 55 . 73 . 80	.55 .73 .80 1.35	.55 .73 .80 1.35 1.03	.55 .73 .80 1.35 1.03	.55 .73 .80 .73 1.03 .73 .65	.55 .73 .80 .1.35 1.03 .73 .65 .30	.55 .73 .80 .80 1.03 .73 .65 .30	.55 .73 .80 .80 1.03 .73 .65 .30	.55 .73 .80 1.03 .73 .65 .30	.55 .73 .80 1.03 .73 .65 .30	.55 .73 .80 1.03 .73 .65 .30	. 55 . 73 . 73 1. 35 . 73 . 65 . 30 . 30	. 55 . 73 . 73 1. 03 . 73 . 65 . 30 . 30	. 55 . 73 . 73 . 73 . 73 . 65 30 30	. 55 . 73 . 73 . 73 . 65 30 30	. 55 . 73 . 73 . 73 . 65 30 30	. 73 . 73 . 73 . 73 . 73 . 65 30 30		. 55 . 73 . 73 . 73 . 65 30 30 30	. 73 . 73 . 73 . 73 . 73 . 65 30 30			. 55 . 73 . 73 . 73 . 65 . 65 . 65 . 65 . 30 . 30 . 30 . 30 . 30 . 30 . 30 . 30
c) versu	80			3.03	2.28	1.75	1.38	1.03	.75	.53	. 48		.53	.53	.53 .50 .75	.53 .50 .45	.53 .50 .45 .50	.53 .75 .45 .60	.53 .57 .75 .50 .50 .60	. 15 . 15 . 45 . 45 . 45 . 45 . 45 . 45 . 15											0 15 0 0 15 0 0 15 0 0	0 15 0 15 0 0 15 0 0		0 15 15 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 15 15 15 15 15 15 15 15 15	0 15 15 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 15 15 15 15 15 15 15 15 15	
nem_red)	7			2.45	1.70	1.28	1.10	1.00	.90	.80	.75		.70	.58	.70	.70 .58 .95 .85	.70 .58 .95 .85	.70 .58 .95 .75 .75	.70 .58 .95 .75 .75 .40	.70 .58 .95 .75 .40	.75 .58 .58 .75 .60 .60 .25	.70 .58 .95 .95 .95 .95 .95 .95 .05 .10 .10	.70 .58 .95 .95 .95 .95 .95 .05 .00 .10 .10	.70 .58 .95 .75 .75 .75 .75 .75 .75 .75 .75 .75 .7	.70 .58 .95 .75 .75 .75 .75 .75 .75 .75 .75 .75 .7	.70 .58 .95 .75 .75 .75 .75 .75 .75 .75 .75 .75 .7	.70 .58 .95 .75 .75 .75 .75 .75 .75 .75 .75 .75 .7	.70 .58 			.70 .58 	.70 .58 				.70 .58 .95 .75 .75 .60 .40 .10 .10
Arrada	9			3.45	1.53	1.15	1.00	.75	.30	0																										8.18
1	S			7.55	6.15	4.65	3.34	2.84	2.63	2.30	1.98		1.75	1.75	1.75 1.53 2.40	1.75 1.53 2.40 1.65	1.75 1.53 2.40 1.65 .95	1.75 1.53 2.40 2.40 1.65 .95	1.75 1.53 2.40 2.40 1.65 .95 .74 .74	1.75 1.53 2.40 1.65 .95 .74 .40	1.75 1.53 2.40 1.65 .74 .74 .74 .74	1.75 1.53 2.40 2.40 1.65 .74 .74 .74	1.75 1.53 2.40 2.40 1.65 .74 .74 .74	1.75 1.53 2.40 2.40 1.65 .74 .74 .74	1.75 1.53 2.40 1.65 1.65 .74 .74 .74 .70	1.75 1.53 2.40 1.65 .74 .74 .74	1.75 1.53 2.40 1.65 1.65 .74 .74 .74 .70	1.75 1.53 2.40 1.65 1.65 .74 .74 .70 .40	1.75 2.40 1.65 1.65 .74 .74 .74 .740	1.75 2.40 1.65 1.65 .74 .74 .74 .740	1.75 2.40 1.65 1.65 .74 .74 .70 .70	1.75 2.40 1.65 1.65 .74 .74 .74 .70	1.75 2.40 1.65 1.65 .74 .74 .74 .70	1.75 2.40 1.65 1.65 .74 .74 .74 .740	1.75 2.40 1.65 1.65 .74 .74 .74 .740	1.75 2.40 1.65 1.65 .95 .74 .40
	4			9.28	6.75	4.28	2.98	2.50	1.85	1.58	1.38		1.00	1.00	1.00 .40 0	1.00 .40 0	1.00 .40 0	1.00 .40 0	1.00 .40 0	1.00 .40 0	1.00 .40 0	1.00 .40 0	1.00 .40 0	1.00 .40 0	1.00 .40 0	1.00 .40 0	1 .00 .40	1 .00 .40	1.00 .40 0	1 .00 0.40	1.00 0.40	1 .00 0.40	1 .00 .40	1 .00 .40	1 .00 0.40	1.00 0.40 32.00
	3			9.08	7.35	6.95	5.45	3.98	2.25	.65	0																									35.71
	2			12.0	7.50	5.23	4.63	3.55	2.80	2.70	2.43		2.33	2.331.80	2.33 1.80 2.75	2.33 1.80 2.75 2.70	2.33 1.80 2.75 2.75 2.75	2.33 1.80 2.75 2.75 2.75 2.75	2.33 1.80 2.75 2.75 2.25 2.25 2.25	2.33 1.80 2.75 2.75 2.75 2.25 2.25 2.15	2.33 1.80 2.75 2.75 2.75 2.75 2.75 2.15 2.15 2.15	2.33 1.80 2.75 2.75 2.75 2.75 2.25 2.15 2.15 1.70 1.25	2.33 1.80 2.75 2.75 2.75 2.75 2.25 2.15 2.15 2.15 2.15 2.15 2.15 2.1	2.33 1.80 2.75 2.75 2.75 2.75 2.25 2.15 2.15 2.15 2.15 0.50	2.33 1.80 2.75 2.75 2.75 2.75 2.25 2.15 2.15 1.70 1.25 0.50	2.33 1.80 2.75 2.75 2.75 2.75 2.75 2.25 1.70 1.25 0.50	2.33 1.80 2.75 2.75 2.75 2.75 2.75 2.75 2.75 2.75	2.33 1.80 2.75 2.75 2.75 2.75 2.75 2.75 2.75 2.75	2.33 1.80 2.75 2.75 2.75 2.75 2.25 2.25 1.70 1.25 0.50	2.33 2.75 2.75 2.75 2.75 2.75 2.75 2.75 2.75	2.33 2.75 2.75 2.75 2.75 2.75 2.75 2.75 2.75	2.33 2.75 2.75 2.75 2.75 2.75 2.25 2.25 0.50 0.50	2.33 2.75 2.75 2.75 2.75 2.75 2.75 2.25 2.25	2.33 2.75 2.75 2.75 2.75 2.75 2.75 2.75 2.75	2.33 2.75 2.75 2.75 2.75 2.75 2.75 2.75 2.75	2.33 2.75 2.75 2.75 2.75 2.25 2.25 2.25 1.70 0.50 63.22
	n I			8.38	4.95	3.30	2.38	1.75	1.40	1.43	1.55		1.63	1.63	1.63 1.75 3.40	1.63 1.75 3.40 2.55	1.63 1.75 3.40 2.55 1.60	1.63 1.75 3.40 2.55 1.60 1.20	1.63 1.75 3.40 2.55 1.20 .87	1.63 1.75 3.40 2.55 1.60 1.20 .87 .58	1.63 3.40 2.55 1.20 1.20 .87 .58	1.63 3.40 2.55 1.60 1.60 1.20 .87 .87 .58 .58	1.63 1.75 3.40 2.55 1.60 1.20 .87 .87 .58 .58 .15 .15	1.63 1.75 3.40 2.55 1.60 1.20 .87 .87 .58 .15 .15 .15	1.63 1.75 3.40 2.55 1.60 1.20 .87 .87 .58 .58 .15 .15 0	1.63 3.40 3.40 1.75 2.55 1.60 1.20 .87 .87 .58 .15 .15 .15	1.63 3.40 3.40 1.75 2.55 1.60 1.20 .87 .58 .58 .15 .15 0	1.63 3.40 3.40 2.55 1.60 1.20 .87 .58 .58 .58 .15 0	1.63 3.40 3.40 1.75 2.55 1.60 1.20 .87 .58 .58 .15 .15 0	1.63 3.40 2.55 1.20 1.60 .87 .58 .58 .42 .15 0	1.63 3.40 2.55 1.20 1.60 .87 .58 .58 .58 .15 0	1.63 3.40 2.55 1.20 1.60 .158 .58 .58 .158 .158 .158	1.63 3.40 2.55 1.20 .87 .58 .58 .42 .15 0	1.63 3.40 2.55 1.20 .87 .87 .58 .15 .15 0	1.63 3.40 2.55 1.20 .87 .87 .58 .15 0 .15 0	1.63 3.40 3.40 2.55 1.60 1.60 1.60 1.60 1.20 3.40 .67 .67 .63 .63 .64 .65 .65 .65 .65 .65 .65 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75
	Positio	Time Msec	.00	.05	.10	.15	.20	.25	.30	.35	.40		.45	. 45	.45	.45 .50 .60	.45 .50 .70 .80	.45 .50 .60 .70 .80	.45 .50 .50 .70 .80 .90	.45 .50 .50 .70 .70 .80 .90	.45 .50 .50 .60 .70 .80 .80 .90 .1.1	.45 .50 .50 .60 .70 .80 .80 .10 .1.1	.45 .50 .60 .70 .70 .80 .10 .11 .12 .12 .12	.45 .50 .60 .70 .70 .80 .1.1 .1.2 .1.2 .1.2 .1.3 .1.5 .1.5 .1.5	.50 .50 .60 .70 .70 .70 .70 .70 .70 .70 .70 .70 .7		.50 .50 .60 .70 .70 .70 .70 .70 .70 .70 .70 .70 .7	.50 .50 .60 .60 .70 .60 .70 .60 .70 .70 .70 .70 .70 .70 .70 .70 .70 .7	.50 .50 .60 .70 .60 .70 .60 .70 .70 .70 .70 .70 .70 .70 .70 .70 .7							.45 .50 .50 .60 .70 .80 .70 .70 .70 .70 .70 .70 .70 .70 .70 .7

PEAK OVERPRESSURE bor © 2.48

O 14.8

bar-ms

O 29.5

0 79.9

Figure 11. Pressure and Impulse Distribution on Full Scale Magazine - Series II

	Table	XII.	Average	Overp	ressure	(psi)	versus	Time	(msec)	Series	III
P	osition	1	6	7	8	10	11	12	13	14	15
r	ime mse	ec									
	.00	181	71	62	78	42	67	34	37	211	87
	.05	118	53/92	45	62	38/60	55	28	31	165	70
	.10	78	31	36	53	43	44	25	26	132	53
	.15	60	26	32	47	33	43	23	23	100	43
	.20	42	19	28	35	29	31	19	20	73	32
	.25	33	17	22	27	27	33	18	18	51	27
	.30	32	14	22	23	22	29	16	16	38	22
	.35	28	9.5	19	20	20	23	15	13	28	18
	.40	20	4.7	16	18	19	22	13	11	23	16
	.45	22	5.0	16	15	16	20	12	8.7	20	15
	.50	17	3.6	12	13	14	17	11	7.7	16	13
	.60	12	2.6	11	10	13	11	8.	8 6.5	13	10
	.70	9.	0 0	9.6	8.4	8.7	5.5	7.	1 5.0	11	8.9
	.80	8.	0	7.8	6.6	6.3	2.8	5.	5 3.6	7.3	8.4
	.90	6.	3	6.4	3.3	5,5	0	5.	0 4.8	4.5	6.4
	1.0	4.	5	4.4	2.1	4.1		3.	2 3.5	3.3	4.7
	1.1	3.	8	2.9	1.0	3.6		3.	6 2.5	. 50	3.2
	1.2	2.	0	2.7	.5	3.3		5.	1 1.7	0	1.5
	1.3	1.	8	2.7	0	2.2		4.	8 1.1		.80
	1.4	2.	0	4.9		1.0		4.	9.80)	0
	1.5	1.	0	3.3		.10)	4.	7.58	3	
	1.6	•	75	1.4		.50)	4.	3 .8	7	
	1.7	•	25	1.5		0		3.	8 .8	7	
	1.8		13	2.2				3.	5 .2	2	
	1.9	0		0				3.	2 0		
	2.0							2.	6		
	2.1							1.	9		
	2.2							1.	3		
	2.5							1.	Г Г		
	2.4							•	5		
	2.5								5		
	2.0							0			
		****	*	***	* * *	****	*	****	****	* ****	***

•

position. The impulse versus time calculation are listed in Table XIII with the total impulse noted at the bottom of each column. The peak overpressure and total positive impulse values from Series III are listed in Table IX. They are presented in Figure 12 to show the pressure and impulse distribution to be expected over a full scale munition storage magazine exposed to a 34,050 kg (75,000 lb) hemispherical charge of TNT.

On test series III the peak overpressure criterion was satisfied at Position 15 with 6.0 bars (87.0 psi). The requirement was from 5.37 to 6.55 bars (78 - 95 psi). The overpressure impulse requirement was 44.8 bars (650 psi-msec) and at Position 15 an overpressure impulse of 45.6 bars (661 psi-msec) was obtained. Therefore, a recommendation for the full scale test was a 34,050 kg (74,000 lb) hemispherical charge of TNT placed 47.2 m (155 ft) from the center line of the acceptor magazines.

C. Blast Loading on a 1/45 Scale Model Magazine

The dimensions of the 1/45 scale model magazine are shown in Figure 3. A photograph of the instrumented model is presented in Figure 9. This test series (Series IV) was conducted to determine the blast loading to be expected from a 41,370 kg (91,125 lb) TNT charge placed 50.3 m (165 ft) from the centerline of the full size munition storage magazine. As noted in Table VI, on Shot 13 a sand model was used while on Shots 18 and 19 a concrete model was used. The gage position and charge weight are given in Table V.

Values of the average overpressure versus time for the three shots are listed in Table XIV for all positions instrumented. These average values of overpressure versus time were used to calculate values of average impulse versus time which are listed in Table XV. The total positive impulse for each position is listed at the bottom of each column. The second value in the column is the scaled up value of total impulse to be expected at the same location on a full size structure.

The distribution of peak overpressure and impulse to be expected over a full size magazine is shown in Figure 13.

Although the full-scale charge weight for Test Series IV would be approximately 22 percent greater than the 34050 kg (75,000 lb) considered for Test Series III, there was very little difference in the scaled up overpressure impulse values on the top of the structure. Compare the overpressure impulse values presented in Figure 12 versus Figure 13.

Position	1	6	7	8	10	11	12	13	14	15
Time-msee	c									
. 00										
05	7 48	3 10	2 68	3 50	2 00	3 05	1 55	1 70	9 40	3 93
10	4 91	3 08	2.00	2 88	2.58	2 48	1 33	1 43	7 43	3 08
.15	3.44	1 42	1 70	2.50	1 90	2.18	1.20	1.73	5.80	2.40
.20	2.54	1.11	1.50	2.05	1.55	1.85	1.05	1.08	4.33	1.88
.25	1.88	.91	1.25	1.55	1.40	1.60	.93	.95	3.10	1.48
.30	1.64	.78	1.10	1.25	1.23	1.55	.85	.85	2.23	1.23
. 35	1.49	.56	1.03	1.08	1.05	1.30	.78	.73	1.65	1.00
.40	1.19	. 36	.88	.95	.98	1.13	.70	.60	1.28	.85
.45	1.04	.24	.80	.83	.88	1.05	.63	.49	1.08	.78
.50	.98	.22	.70	.70	.75	.93	.58	.41	.90	.70
.60	1.48	.31	1.15	1.15	1.35	1.40	.99	.71	1.45	1.15
.70	1.06	.13	1.03	.92	1.09	.83	.80	.58	1.20	.95
.80	.85	0	.87	.75	.75	.42	.63	.43	.92	.87
.90	.71		.71	.50	.55	.14	.53	.42	.59	.74
1.00	.54		.54	.27	.48	0	.41	.42	.39	.56
1.1	.41		.37	.16	. 39		.34	.30	.04	.40
1.2	.30		.28	.08	.35		.44	.21	.03	.24
1.3	.20		.27	.03	.28		.50	.14	0	.12
1.4	.19		.38	0	:.16		.49	.10		.04
1.5	.15		.41		.06		.48	.07		0
1.6	.09		.24		.03		.45	.07		
1.7	.05		.15		.03		.41	.09		
1.8	.02		.19		0		.37	.06		
1.9	0		.11				.34	.02		
2.0			0				.29	0		
2.1							.23			
2.2							.16			
2.3							.12			
2.4							.08			
2.5							.05			
2.6							0			
Mode1	32.64	12.22	20.37	21.15	19.84	19.91	17.71	13.09	41.82	22.4
Full Scale	962	360	601	624	585	587	522	386	1233	661

Table XIII. Average Impulse (psi-msec) versus Time (msec) - Series III

PEAK OVERPRESSURE bar © 2.55

bar-ms ⊙ 26.6

O 66.3

Figure 12. Pressure and Impulse Distribution on Full Scale Magazine - Series III

	15		81	50	45	36	30	18	15	12	9.5	7.8	6.5	3.7	6.0	3.5	3.0	1.5	0						**
5 T	14		156	126	96	63	43	32	25	19	14	10	7.3	6.3	4.0	2.0	0								**
1100 (13		36	29	23	18	15	12	11	9.4	8.6	8.3	8.0	5.2	4.2	2.8	2.2	1.2	.6	.4	0				***
	12		31	28	25	20	16	15	12	9.2	7.8	8.4	6.5	5.3	5.0	4.0	5.5	4.6	4.2	3.6	3.4	3.0	1.8	6.	*
	11		70	45	42	38	30	21	16	9.7	7.0	5.3	2.9	2.0	0										*
· (tech)	10		55	48	36	31	26	21	18	18	14	12	8.7	7.3	4.4	3.8	4.1	1.3	1.8	1.8	1.0	0			***
A month	7		57	45	29	24	22	20	17	15	13	11	8.9	6.5	4.4	3.7	3.2	1.2	1.0	0					***
200	9		96	39	25	15	14	9.3	3.8	4.3	3.6	3.6	2.8	0											*
	S		147	103	74	68	50	31	21	14	11	11	10	8	0										*
	2		347	150	113	72	41	30	21	15	10	S	3	0											**
	1		172	96	61	43	31	24	23	26	16	13	12	8.0	5.3	4.0	3.0	2.3	0						* * *
	Position	Time msec	00.	.05	.10	.15	.20	. 25	.30	.35	.40	.45	.50	.60	.70	.80	06.	1.0	1.1	1.2	1.3	1.4	1.5	1.6	

Table XIV. Average Overpressure (psi) versus Time (msec) - Series IV

		fable XV.	Average	Impulse	(psi-ms	ec) vers	us Time	(msec) -	Series	IV	
Position	-	2	S	9	7	10	11	12	13	14	15
Time											
msec											
.00											
.05	6.70	12.4	6.25	3.38	2.55	2.58	2.88	1.48	1.63	7.05	3.28
.10	3.93	6.58	4.43	1.60	1.85	2.10	2.18	1.33	1.30	5.55	2.38
.15	2.60	4.63	3.55	1.00	1.33	1.68	2.00	1.13	1.03	3.98	2.03
.20	1.85	2.83	2.95	.73	1.15	1.43	1.70	.90	.83	2.65	1.65
. 25	1.38	1.78	2.03	.58	1.05	1.18	1.28	. 78	.68	1.88	1.20
.30	1.17	1.28	1.30	.33	.93	.98	.93	. 68	.58	1.43	.83
.35	1.23	06.	.88	.20	.80	.90	.64	.53	.51	1.10	.68
.40	1.05	.63	.63	.20	.70	.80	.42	.43	.45	.83	.54
.45	.73	.38	.55	.18	.60	. 65	.31	.41	.42	.60	.43
.50	.63	.20	.53	.16	.50	.52	.21	.37	.41	.43	.36
.60	1.00	.15	06.	.14	77.	.80	.24	.59	.66	.68	.52
.70	.67	0	.40	0	.49	.59	.10	.45	.47	.52	.49
.80	.47		0		.41	.41	0	.48	.35	.30	.48
.90	.35				.35	.40		.51	.25	.10	.33
1.0	.27				.22	.27		.44	.17	0	.23
1.1	.12				.11	.16		. 39	60.		.08
1.2	0				. 05	.18		.35	.05		0
1.3					0	.14		.32	.02		
1.4						.05		.24	0		
1.5						0		.14			
1.6								.05			
								0			
Model	24.15	31.76	24.40	8.50	13.86	15.82	12.89	12.52	06.6	27.1	15.51
Full Scale	1032	1357	1042	363	592	676	551	535	423	1157	663

PEAK OVERPRESSURE bar © 2.48

O 11.9

OVERPRESSURE IMPULSE bar-ms O 29.2

Figure 13. Pressure and Impulse Distribution on Full Scale Magazine - Series IV

IV. DISCUSSION AND RECOMMENDATIONS

The results from test Series III met the requirement for an impulse load of 44.8 bar-msec (650 psi-msec) on the earth cover at the apex of the arch of the acceptor magazine. A comparison of the data from ESKIMO III and Test Series III will be made in this section. The predicted values for ESKIMO V will also be presented.

A. Comparison of Results

The peak overpressure and impulse obtained at the gauge location shown in Table I and the scaled-up values recorded at similar positions on the model, as presented in Table IX, are listed in Table XVI for a direct comparison. The peak overpressure and overpressure impulse values obtained on ESKIMO III and the values obtained on Test Series III scaled up to 34050 kg (75,000 lb) TNT are presented in Figure 14. There is very good correlation of peak overpressure from Position 5 through Position 13. The reason for the large difference in peak overpressure at Positions 2 and 14 is believed to be caused by the difference in the angle of the slope of the earth cover and the shock front generated from two different explosive configurations.

The covered explosive charge from ESKIMO III would produce a curved shock front propagating downward toward the slope, probably producing a regular reflection at the toe of the slope. The bare hemispherical charge used in Test Series III produces a vertical shock front starting up the toe of the slope which in turn produces a Mach reflection, and a Mach stem moves up the slope.

The overpressure impulse shows the same trend except the model values are higher at all three front slope positions than recorded on the ESKIMO III front slope positions.

Although the peak overpressures recorded at Position 6 show excellent correlation there is a dramatic drop in the overpressure impulse obtained from the scaled model. Here again it appears to be a function of the explosion sources and the angle of the shock relative to earth cover on the structures. As the shock front moves up the front slope of the model magazine a Mach stem is formed; and when the Mach stem reaches the top of the slope and moves across the top surface of the structure a vortex forms behind the Mach shock front causing a lowering of pressure within the shock wave. This lowering of overpressure versus time will of course generate less impulse than a shock wave without the influence of a vortex. The angle of the shock front impinging the full size structure on ESKIMO III apparently did not form a Mach stem up the front slope nor a vortex across the top of the structure. Therefore, the impulse is lower than the model up the slope and higher at Position 6.

ŝ
ē.
·
54
O
S
-
4
S
e
F
Р
E
B
H
-
-
-
2
2
\Box
10
C
5
2
£
-
S
Ľ.
-
3
S
e
à
4
0
F
0
S
•=
5
5
D
Ξ
0
C
-
>
×
e
ole
ble
able

No.	bar	amera	bar-n	usec	rear overpr	ameea	psi ms	ec
	ESKIMO III	Mode1	ESKIMO III	Mode1	ESKIMO III	Model	ESKIMO III	Model
1	,	12.5	T	66.3	1	181	,	962
2a	7.59	17.9*		100*	110	260*		1450*
2b	8.28	1	55.4	1	120	,	804	1
14	•	14.6		85.0		211		1233
5a	1	11.0*	,	75.0*		160*	1	1088*
Sb	11.4	1	45.7	•	165	•	662	•
6a	5.52	6.34	36.5	24.8	80	92	529	360
6b	6.55	1	55.6	1	95	•	806	•
15	•	6.00	•	45.6		87	•	661
11a	5.38	4.62	42.9	40.1	78	67	622	587
11b	5.86	•	44.3	•	85	١	642	•
8	•	5.38	•	43.0		78	1	624
7		4.28		41.4		62	•	601
10a	4.48	ı	41.9	•	65		608	•
10	1	4.14	•	40.3		60	1	585
10b	3.45		47.8	•	50	1	694	,
12a	2.76	2.34	33.4	36.0	40	34	, 484	552
12b		,		1		,		•
13	3.45	2.55	45.0	26.6	50	37	652	386

Designation a and b are for Magazine A and B on ESKIMO III. Values from the model test series III are listed with the a designation.

* Indicates extrapolated values based on other test series.

Figure 14. Comparison of Results from ESKIMO III and Test Series III Scaled to 34050 kg TNT

Other positions show very good correlation of both peak overpressure and overpressure impulse with the exception of position 13 where the impulse from ESKIMO III is higher than recorded on test Series III.

B. Shock Reflection and Diffraction - Theory and Experiment

The theoretical treatment of shock reflection and diffraction presented in this section was taken from Reference 7. It contains a summary of methods for predicting the effects of terrain on blast wave propagation.

1. Mach Reflection Pressure on the Front Slope. The peak Mach reflection overpressure up the center of the front slope of the model structure can be determined from two-dimensional theory. A typical Mach reflection pattern is shown in Figure 15. Here the incident shock pressure ratio Z is P_s/P_o , where P_s is the peak incident overpressure and P_o is atmospheric pressure. The pressure ratio for the Mach reflected shock Z_m is P_m/P_o , where P_m is the peak Mach overpressure and P_o is atmospheric pressure. The pressure ratio for the Mach reflected shock Z_m is P_m/P_o , where P_m is the peak Mach overpressure and P_o is atmospheric pressure. The angle 0 in Figure 15 is 26.6 degrees.

The incident shock pressure ratio Z for a hemispherical pentolite surface burst is plotted versus scaled distance in Figure 16. This curve was developed from data presented in Reference 1. When Z is determined for a selected scaled distance up the front slope then the Mach reflection ratio Z_m can be determined from Figure 17 where Z_m is plotted as a function of Z for a slope angle of 26.6 degrees. This curve was developed from data presented in Reference 7.

The values of Z_m determined up the front slope for selected scaled distances have been plotted in Figure 16 and listed for the gauge positions 2, 14, and 6 in Table XVII. The Mach pressure ratio Z_m values were converted to P_m values for a direct comparison with experimental values of P_m .

2. Shock Diffraction Pressures on the Roof. When a rising slope changes to a falling slope then the Mach reflection process changes to a shock diffraction. The process is reversed and the pressure on the surface becomes less than the input pressure. This condition is shown in Figure 15 where Z_m becomes the input shock ratio and the diffracted shock pressure ratio is noted as Z_T which is P_T/P_0 where P_T is the overpressure on the top of the structure and P_0 is the atmospheric pressure. A plot of Z_T as a function of Z_m for 0 equal to 26.6° is presented in Figure 18. Based on the assumption that the diffraction process is a reversal of the reflection process the overpressure ratio Z_T across the top of the model structure becomes equal to Z, the incident overpressure ratio shown in

Figure 16. The values of Z_{T} , determined from Figure 18 have been plotted

[']R. J. Arave and N. R. Wallace, "Dynamic Pressure from Blast Waves: Methods for Predicting the Effects of Terrain," URS Corporation, URS 649-6, February 1966.

Figure 16. Overpressure Ratio versus Scaled Distance

Table XVII. Mach Reflection and Diffraction-Theory and Experiment

Position Number	Scaled Distance	Z	Z _m	Mach O	Peak verpressure
	λ			Theory	Experiment
	$ft/lbs^{1/3}$			psi	psi
2	2.51	15.0	23.0	338	338
14	2.85	11.4	17.6	259	245
5	5.19	8.7	13.6	199	177
	3.43	/.3	11.4	168	-
		^Z m	Z _T		
6	3.53	10.8	6.9	100	97
15	3.87	8.9	5.6	82	76
11	4.20	7.4	4.6	67	59
	4.31	7.0	4.3	63	-
		z _T	Z _R		
12	4.88	3.2	1.8	27	24
		Serie	es II		
		Z	z _m		
2	2.79	12.0	18.5	272	293
14	3.06	9.6	14.9	219	212
5	3.33	7.8	12.2	179	167
*	3.52	7.0	11.0	162	-
		Z _m	Z _T		
6	3.60	10.4	6.6	97	101
15	3.87	8.9	5.6	82	76
11	4.14	7.6	4.7	69	67
	4.22	7.3	4.5	66	
		^Z T	Z _R		
12	4.67	3.6	2.1	30	29

Series 1

Table XVII. Mach Reflection and Diffraction-Theory and Experiment (Continued)

Position Number	Scaled Distance	Z	2 _m	Mach O	Peak verpressure
	λ			Theory	Experiment
	$ft/lbs^{1/3}$			psi	psi
2 14 5 *	2.87 3.12 3.37 3.55	11.0 9.0 7.8 6.8	17.0 14.0 12.2 10.7	250 206 179 157	260 211 160
		Z _m	Z _T		
6 15 11 **	3.62 3.87 4.12 4.19	10.3 8.9 7.7 7.4	6.5 5.6 4.8 4.6	96 82 70 68	92 87 67
		Z _T	Z _R		
12	4.61	3.7	2.1	31	34

Series III

Table XV11. Mach Reflection and Diffraction-Theory and Experiment (Continued)

osition Number	Scaled Distance	Z	Z	Mach O	Peak verpressure
	λ			Theory	Experiment
	ft/16s ^{1/3}			psi	psi
2	2.93	10.6	16.4	241	347
14	3.16	8.9	13.9	203	156
5	3.39	7.6	11.9	175	147
*	3.43	7.3	11.4	168	-
		Z _m	Z _T		
6	3.63	10.0	6.3	93	96
15	3.87	8.9	5.6	82	81
11	4.10	7.8	4.9	71	70
**	4.31	7.0	4.3	63	-
		^Z T	^Z R		
13	4.56	3.9	2.3	33	31
13	4.56	3.9	2.3	33	3

Series IV

*Top of front slope.

**Rear edge of roof.

NOTE:

 $Z = P_s/P_o$ $Z_m = P_m/P_o$ $Z_T = P_T/P_o$ $Z_R = P_R/P_o.$

WHERE:

P _s	=	Peak	incident overpressure
P _m	=	Peak	mach overpressure
Р _Т		Peak of	overpressure on top structure
P _R	н	Peak slo	overpressure on rear
-			

 $P_{o} = Atmospheric pressure.$

in Figure 16. The values determined at scaled distances for gauge positions 6, 15, and 11 are listed in Table XVII for direct comparison with measured values of peak overpressure.

3. Shock Diffraction Pressure on the Rear Slope. When the shock wave passes over the top surface of the structure and starts down the rear surface, a second shock diffraction occurs as shown in Figure 15. The diffracted shock ratio Z_T now becomes the input pressure ratio and the pressure ratio down the rear slope becomes Z_R which is P_R/P_o , where P_R is the peak overpressure on the rear slope and P_o is the atmospheric pressure. A plot of Z_R versus Z_T is presented in Figure 18. Values of Z_T for scaled distances down the rear slope were determined from Figure 18 to determine values of Z_R which are plotted in Figure 16. A value of Z_R determined for Position 12 on the rear slope is listed in Table XVII and converted to P_p for a direct comparison with measured values.

4. Discussion of Theory and Experiment. The determination of peak overpressures on the front slope, top and rear of the model structure was made for the complete series of tests using the theory developed in Reference 7. The comparisons of the theoretical values with measured values is quite good. The overall variation of theory versus experiment is less than ± 5 percent.

C. Predicted Pressure and Impulse for ESKIMO V

Two munition storage magazines will be exposed to a hemispherical TNT charge consisting of 9,376, 8-pound demolition blocks making a total weight of 34,054 kg (75,008 lbs). The structure will be placed equidistant 47.2 metres (155 feet) from ground zero (see Figure 19). The suggested gauge locations, distances, predicted peak overpressure, and impulses are listed in Table XVIII. The peak overpressures to be expected on structures A and B are presented as iso-pressure contours in Figure 20. The predicted overpressure impulse values for the full scale test are presented as iso-impulse contours in Figure 21.

The distances and impulse predictions have been scaled for charge weight only and not for the atmospheric pressure or temperature that might be expected at the test site because the test date for ESKIMO V has not been established at this time. The values are noted in both bars and psi for planning convenience and gauge calibration.

Note that the gauge locations on the full size structure do not correspond directly with the gauge locations on the 1/30th or 1/45th scaled models.

Impulse			
Msec			
62			
50			
04			
33			
04			
88			
60			
01			
24			
61			
24			
85			
87			
30			
22			
86			

Table XVIII. Suggested Gauge Locations, Predicted Pressures and Impulses for ESKIMO V

*Common to Structures A and B

NOTE: Gauge positions on ESKIMO V structure not all equivalent to gauge positions on Models.

1	=	
2		1
	=	2
3	; =	3
4	=	14
5	=	4
6	=	5
7	=	6
8	=	7
9	=	8
10	=	15
11	=	9
12	=	10
13	=	11
14	=	-
15	=	12
16	=	13

Figure 20. Predicted Peak Overpressure Contours for ESKIMO V

ACKNOWLEDGMENTS

The author wishes to acknowledge the following individuals and their specific contributions. First, Mr. George Coulter, as field project officer, guided the day to day activities on the test site. Mr. G. T. Watson operated the recording trailer and Mr. Vincent King and Mr. Kenneth Holbrook constructed, instrumented, and placed the models. Mr. King was also the explosive handler. Mr. William Matthews assisted in the design of the models and did the art work presented in the report.

APPENDIXES

PRESSURE VERSUS TIME DATA

The Appendixes show the average overpressure versus time recorded at the gage positions instrumented on the 1/30 and 1/45 scale models. They are divided into four sections for presenting the different charge weights and model scales. The divisions are as follows:

> Appendix A - Model Scale 1/30 - Charge Weight .454 kg Pentolite Appendix B - Model Scale 1/30 - Charge Weight .908 kg Pentolite Appendix C - Model Scale 1/30 - Charge Weight 1.135 kg Pentolite Appendix D - Model Scale 1/45 - Charge Weight .454 kg Pentolite.

All plots of overpressure versus time are presented in units of bars versus milliseconds, where the bar is obtained by dividing pounds per square inch (psi) by 14.5. The bar multiplied by 100 is equivalent to one kilopascal.

APPENDIX A

Series I - Model Scale 1/30 Charge Weight 0.454 kg Pentolite

APPENDIX A - LIST OF ILLUSTRATIONS

igure																	Page
A~1	Overpressure	versus	Time,	Position	1												67
Δ-2	Overpressure	versus	Time,	Position	2	•											68
A-3	Overpressure	versus	Time,	Position	3	•											69
A-4	Overpressure	versus	Time,	Position	4												70
A-5	Overpressure	versus	Time,	Position	5	•					•		•				71
A-6	Overpressure	versus	Time,	Position	6												72
A-7	Overpressure	versus	Time,	Position	7		•	•	•	•						•	73
A-8	Overpressure	versus	Time,	Position	8										•	•	74
A-9	Overpressure	versus	Time,	Position	9				•				•				75
A-10	Overpressure	versus	Time,	Position	10)	•		•	•			·		•		76
A-11	Overpressure	versus	Time,	Position	11				•	•			•	•			77
A-12	Overpressure	versus	Time,	Position	12	2	•		•		•						78
A-13	Overpressure	versus	Time,	Position	13	;											79
A-14	Overpressure	versus	Time,	Position	14	ł						•					80
A-15	Overpressure	versus	Time,	Position	15	;											81

Figure A-4. Overpressure versus Time, Position 4

Figure A-15. Overpressure versus Time, Position 15

Figure A-15. Overpressure versus Time, Position 15

APPENDIX B

Series II - Model Scale 1/30 Charge Weight 0.908 kg Pentolite

APPENDIX B - LIST OF ILLUSTRATIONS

Figure																	Page
B-1	Overpressure	versus	Time,	Position	1												85
B-2	Overpressure	versus	Time,	Position	2											•	86
B-3	Overpressure	versus	Time,	Position	5					•							87
B-4	Overpressure	versus	Time,	Position	6	•			•		•		•				88
B-5	Overpressure	versus	Time,	Position	7	•	•	•			•	•		•	•	•	89
B-6	Overpressure	versus	Time,	Position	8				•					•	•		90
B-7	Overpressure	versus	Time,	Position	9	•		•		•	•	·		•		•	91
B-8	Overpressure	versus	Time,	Position	10)	•	•			·			•			92
B-9	Overpressure	versus	Time,	Position	11					•			•	•		•	93
B-10	Overpressure	versus	Time,	Position	12	2		•	•			•	•			•	94
B-11	Overpressure	versus	Time,	Position	13	5	•	•	•	•	•				•	•	95
B-12	Overpressure	versus	Time,	Position	14		•	•		•		•				•	96
B-13	Overpressure	versus	Time,	Position	15	;											97

APPENDIX C

Series III - Model Scale 1/30 Charge Weight 1.135 kg Pentolite

AD-A061 440	ARMY ARM BLAST LO AUG 78 AF	MAMENT DADING C N KI	RESEAR ON MOD INGERY R-02092	CH AND EL EART	DEVELOF H COVER	MENT CORED MAGA	OMMAND AZINES.	ABERD-	-ETC F	/G 19/1		
2 OF 2 AD61440		-tal		- m-	-	-	1			-	and the second s	
	-						4			-		
and a second sec				A CONTRACTOR		四國行動	END DATE FILMED 2 - 79 DDC					
												/

APPENDIX C - LIST OF ILLUSTRATIONS

igure														Page
C-1	Overpressure	versus	Time,	Position	1			•						101
C-2	Overpressure	versus	Time,	Position	6				•					102
C-3	Overpressure	versus	Time,	Position	7	•		•	•					103
C-4	Overpressure	versus	Time,	Position	8						•			104
C-5	Overpressure v	versus	Time,	Position	10					•				105
C-6	Overpressure v	versus	Time,	Position	11							•		106
C-7	Overpressure v	/ersus	Time,	Position	12		•							107
C-8	Overpressure v	ersus	Time,	Position	13			•		•				108
C-9	Overpressure v	ersus	Time,	Position	14			•					•	109
C-10	Overpressure v	ersus	Time,	Position	15									110

APPENDIX D

Series VI - Model Scale 1/45 Charge Weight 0.454 kg Pentolite

APPENDIX D - LIST OF ILLUSTRATIONS

:	igure																	Page
	D-1	Overpressure	versus	Time,	Position	1		•	•				•			•		113
	D-2	Overpressure	versus	Time,	Position	2	•		•						•	•		114
	D-3	Overpressure	versus	Time,	Position	5					•							115
	D-4	Overpressure	versus	Time,	Position	6						•		•	•	•		116
	D-5	Overpressure	versus	Time,	Position	7									•		•	117
	D-6	Overpressure	versus	Time,	Position	10)			•			•	•	•			118
	D-7	Overpressure	versus	Time,	Position	11		•										119
	D-8	Overpressure	versus	Time,	Position	12	:	•		•					•			120
	D-9	Overpressure	versus	Time,	Position	13	;	•		•	•	•	•			·		121
	D-10	Overpressure	versus	Time,	Position	14							•		•			122
	D-11	Overpressure	versus	Time,	Position	15					•							123

No. of	
Copies	Organization

No. of

12 Commander Defense Documentation Center ATTN: DDC-TCA Cameron Station Alexandria, VA 22314

- 1 Director Defense Advanced Research Projects Agency 1400 Wilson Boulevard Arlington, VA 22209
- 1 Director of Defense Research & Engineering Department of Defense Washington, DC 20301
- 1 Director Weapons Systems Evaluation Gp. ATTN: CPT Donald E. McCoy Washington, DC 20305
- 3 Director Institute for Defense Analyses ATTN: Dr. J. Menkes Dr. J. Bengston Tech Info Ofc 400 Army-Navy Drive Arlington, VA 22202
- 1 Office Secretary of Defense Director of Defense Rsch & Eng. ATTN: Mr. J. Persh, Staff Specialist, Materials and Structures Washington, DC 20301
- 1 Assistant Secretary of Defense (MRA&L) ATTN: ID (Mr. H. Metcalf) Washington, DC 20301
- 1 Assistant to the Secretary of Defense (Atomic Energy) ATTN: Document Control Washington, DC 20301

Copies

1 Director Defense Communications Agency ATTN: NMCSSC (Code 510) Washington, DC 20305

Organization

2 Director Defense Intelligence Agency ATTN: DT-1C, Dr. J. Vorona DIR-4C3, R. Sauer Washington, DC 20301

- 2 Director Defense Nuclear Agency ATTN: Mr. J. F. Moulton, SPAS Dr. E. Sevin, SPSS Washington, DC 20305
- 4 Director Defense Nuclear Agency ATTN: SPTL Tech Lib (2 cys) APSI (ARCHIVES) LGLS, Mr. E. L. Eagles Washington, DC 20305

1 Commander Field Command Defense Nuclear Agency ATTN: Tech Lib, FCWS-SC Kirtland AFB, NM 87115

- 1 Chief Las Vegas Liaison Office Field Command TD, DNA ATTN: Document Control P. O. Box 2702 Las Vegas, NV 89104
 - 1 DNA Information and Analysis Center TEMPO, General Electric Co. Center for Advanced Studies ATTN: DASIAC 816 State Street Santa Barbara, CA 93102

No. of		No. of	
Copies	Organization	Copies	Organization
	Defense Civil Preparedness Agen ATTN: David W. Benson Washington, DC 20301	icy l	Director US Army Air Mobility Research and Development Laboratory Ames Research Center
5 (1 1	Chairman DOD Explosives Safety Board Room 856-C, Hoffman Bldg. I 2461 Eisenhower Avenue	1	Moffett Field, CA 94035 Commander US Army Electronics Research
2 (Chairman Joint Chiefs of Staff		ATTN: DELSD-L Tech Support Activity Fort Monmouth, NJ 07703
1	J-5, Plans & Policy (R&D Division) Washington, DC 20301	1	Commander US Army Communications Rsch and Development Command ATTN: DRDCO-SGS
2 1	Director Joint Strategic Target Planning Staff ATTN: JLTW TPTP Offutt AFB, Omaha, NB 68113	4	Fort Monmouth, NJ 07703 Commander US Army Missile Research and Development Command ATTN: DRDMI-R
	Commander US Army Materiel Development and Readiness Command ATTN: DRCDMD-ST 5001 Eisenhower Avenue Alexandria, VA 22333	1	DRDMI-RSS, Mr. B. CODD DRDMI-RX, Mr. W. Thomas DRDMI-RR, Mr. L. Lively Redstone Arsenal, AL 35809 Commander US Army Missile Materiel
	Commander US Army Materiel Development and Readiness Command ATTN: Mr. W.G. Queen, DRCSF 5001 Eisenhower Avenue Alexandria, VA 22353	2	ATTN: DRSMI-AOM Redstone Arsenal, AL 35809 Commander US Army Tank Automotive Research & Development Cmd
1 (Commander US Army Aviation Research and Development Command ATTN: DRSAV-E 12th and Spruce Streets St. Louis, MO 63166	1	ATTN: DRDTA DRDTA-UL Warren, MI 48090 Commander US Army Mobility Equipment Research & Development Cmd ATTN: DRDFB-ND Fort Belvoir, VA 22060

No. of	E	No. of	E
Copies	Organization	Copies	Organization
3	Commander US Army Armament Research and Development Command ATTN: DRDAR-TSS (2 cys)	1	Commander Iowa Army Ammunition Burlington, IA 5250
2	DRDAR-LC Dover, NJ 07801	1	Commander Joliet Army Ammunit Joliet, IL 60436
4	US Army Armament Materiel Readiness Command ATTN: DRSAR-LEP-L, Tech Lib DRSAR-SA	1	Commander Kansas Army Ammunit Parsons, KS 67357
-	Rock Island, IL 61299	1	Commander Lone Star Army Ammun Texarkana TX 7550
5	US Army Armament Materiel Readiness Command ATTN: Joint Army-Navy-Air Force Conventional Ammunitio Prof Coord Gp/ E. Jordan	1 n	Commander Longhorn Army Ammun: Marshall, TX 75671
1	Rock Island, IL 61299 Commander	1	Commander Louisiana Army Ammu Shreveport, LA 7110
1	US Army Rock Island Arsenal Rock Island, IL 61299 Commander	1	Commander Milan Army Ammunitic Milan, TN 38358
	Dugway Proving Ground ATTN: STEDP-TO-H, Mr. Miller Dugway, UT 84022	1	Commander Radford Army Ammunit Radford, VA 24141
1	Commander US Army Watervliet Arsenal Watervliet, NY 12189	1	Commander Ravenna Army Ammunit Ravenna, OH 44266
1	Commander Pine Bluff Arsenal Pine Bluff, AR 71601	1	Commander US Army Harry Diamor ATTN: DELHD-TI
1	Commander Cornhusker Army Ammunition Play Grand Island, NE 68801	nt	2800 Powder Mill Roa Adelphi, MD 20783
1	Commander Indiana Army Ammunition Plant Charlestown, IN 47111	1	Commander US Army Materials an Mechanics Research ATTN: DRXMR-ATL Watertown, MA 02172
	12	7	

Ammunition Plant n, IA 52502

my Ammunition Plant L 60436

my Ammunition Plant KS 67357

- Army Ammunition Plant , TX 75502
- Army Ammunition Plant TX 75671
- Army Ammunition Plant t, LA 71102
- y Ammunition Plant 38358
- rmy Ammunition Plant VA 24141
- rmy Ammunition Plant OH 44266
- arry Diamond Labs LHD-TI er Mill Road MD 20783
- aterials and cs Research Center XMR-ATL MA 02172

No. of Copies Organization

- 1 Commander US Army Natick Research and Development Command ATTN: DRXRE, Dr. D. Sieling Natick, MA 01762
- Commander
 US Army Foreign Science and Technology Center
 ATTN: Rsch & Data Branch
 Federal Office Building
 220 - 7th Street, NE
 Charlottesville, VA 22901
- 1 Director DARCOM Field Safety Activity ATTN: DRXOS-ES Charlestown, IN 47111
- Director DARCOM, ITC ATTN: Dr. Chiang Red River Depot Texarkana, TX 75501
- 1 Commander US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL, Tech Lib White Sands Missile Range NM 88002
- 1 Director US Army Engineer School Fort Belvoir, VA 22060
- 1 Commander US Army Nuclear Agency 7500 Backlick Rd, Bldg 2073 Springfield, VA 22150
- 1 HQDA (DAMA-CSM-CA) Washington, DC 20310
- 2 HQDA (DAMA-AR; NCL Div) Washington, DC 20310

No. of

Copies Organization

- 1 Office of the Inspector General Department of the Army ATTN: DAIG-SD Washington, DC 20310
- 1 HQDA (DAMO-ODC, COL G. G. Watson) Washington, DC 20310
- 1 HQDA (DAEN-MCE-D, Mr. R. Wright) Washington, DC 20314
- 1 HQDA (DAEN-MCC-D, Mr. L. Foley) Washington, DC 20314
- 1 HQDA (DAEN-RDL) Washington, DC 20314
- 1 Division Engineer US Army Engineer Division Fort Belvoir, VA 22060
- US Army Eng Div ATTN: Mr. Char P. O. Box 1600 Huntsville, AL 35809
- Commander
 US Army Construction Engineering
 Research Laboratory
 P. O. Box 4005
 Champaign, IL 61820
- Director
 US Army Engineer Waterways
 Experiment Station
 ATTN: WESNS, Mr. J. M. Watt
 P. O. Box 631
 Vicksburg, MS 39180
- Commander US Army Research Office P. O. Box 12211 Research Triangle Park NC 27709

No. of <u>Copies</u> <u>Organization</u> 1 Director US Army Advanced BMD

- Technology Center ATTN: M. Whitfield Huntsville, AL 35807
- Commander
 US Army Ballistic Missile
 Defense Systems Command
 ATTN: J. Veeneman
 P. O. Box 1500, West Station
 Huntsville, AL 35807
- 1 Commander US Army Europe ATTN: AEAGB (S&E) APO New York 09403

4 Chief of Naval Operations ATTN: OP-41B, CPT S.N.Howard OP-411, J. W. Connelly OP-754 OP-985FZ Department of the Navy Washington, DC 20350

- 1Assistant Secretary of the Navy3Commander(Research & Development)Naval SurNavy DepartmentATTN: DrWashington, DC 20350Dr
- Commander Bureau of Naval Weapons ATTN: Code F121, H. Roylance Department of the Navy Washington, DC 20360
- 1 Commander Naval Air Systems Command ATTN: AIR-532 Washington, DC 20361

No. of Copies

1 Commander Naval Ordnance Systems Command ATTN: Code ORD-43B Mr. Fernandes Washington, DC 20360

Organization

- 2 Commander Naval Sea Systems Command ATTN: SEA-04H, Mr. C.P. Jones SEA-0333 Washington, DC 20360
- 2 Commander David W. Taylor Naval Ship Research & Development Ctr ATTN: Mr. A. Wilner, Code 1747 Dr. W.W. Murray, Code 17 Bethesda, MD 20084
- 3 Commander Naval Surface Weapons Center ATTN: CT-23 Mr. J. C. Talley Dr. W. Soper Dahlgren, VA 22448
 - Commander Naval Surface Weapons Center ATTN: Dr. Leon Schindel Dr. Victor Dawson Dr. P. Huang Silver Spring, MD 20910
- 2 Commander Naval Weapons Center ATTN: Code 0632 China Lake, CA 93555
- 1 Commander
 Naval Weapons Support Center
 ATTN: NAPEC
 Crane, IN 47522

No. of	f
Copies	Organization
2	Commander Naval Explosive Ord Disposal Facility ATTN: Code 501, L. Wolfson Code D Indian Head, MD 20640
1	Commander Naval Ship Research and Development Ctr Facility ATTN: Mr. Lowell T. Butt Underwater Explosions Research Division Portsmouth, VA 23709
1	Commander Naval Weapons Evaluation Facility ATTN: Document Control Kirtland AFB Albuquerque, NM 87117
1	Commander Naval Civil Engineering Lab ATTN: Code L51 Port Hueneme, CA 93041
1	Commander Naval Research Laboratory ATTN: Code 2027, Tech Lib Washington, DC 20375

- 2 Superintendent Naval Postgraduate School ATTN: Tech Reports Sec Code 57, Prof. R. Ball Monterey, CA 93940
- 1 HQ USAF (AFNIE-CA) Washington, DC 20330
- 4 HQ USAF (AFRIDQ; AFRDOSM; AFRDPM; AFRD) Washington, DC 20330

No. of Copies Organization

- 1 AFSC (DSCPSL) Andrews AFB Washington, DC 20331
- 1 HQ AFSC (IGFG) Andrews AFB Washington, DC 20334
- 1 AFRPL (M. Raleigh) Edwards AFB, CA 93523
- 1 ADTC (ADBPS-12) Eglin AFB, FL 32542
- 2 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542
- 1 AFATL (DLYV, R. L. McGuire) Eglin AFB, FL 32542
- 1 USAFTAWC (OA) Eglin AFB, FL 32542
- 1 Ogden ALC/MMWRE
 ATTN: Mr. Ted E. Comins
 Hill AFB, UT 84406
- 3 AFWL (WLA; WLD; WLRP, LTC H. C. McClammy) Kirtland AFB, NM 87117
- 5 AFWL (DEO, Mr. F.H. Peterson; SYT, MAJ W. A. Whitaker; SRR; WSUL; SR) Kirtland AFB, NM 87117
- 1 Director of Aerospace Safety USAF/IGD/AFISC (SEV) COL G. J. Corak Norton AFB, CA 92409
- 1 AFCEC-DE (LTC Walkup) Tyndall AFB Panama City, FL 32401
- 130

No. of	Organization	No. of	Organization
copies	<u>organization</u>	copres	organization
1	AFFDL (FBE, Mr. R.M. Bader) Wright-Patterson AFB, OH 45433	3	Institute of Makers of Explosives ATTN: Mr. Harry Hampton Graybar Building. Rm 2449
2	AFLC (MMWM/CPT D. Rideout; IGYE/K. Shopker) Wright-Patterson AFB, OH 45433	3	420 Lexington Avenue New York, NY 10017
		2	Battelle Columbus Laboratories
4	AFML (MAMD, Dr. T. Nicholas; MAS; MANC, Mr. D. Schmidt; MAX, Dr. A.M. Lovelace) Wright-Patterson AFB, OH 45433	5	ATTN: Dr. L. E. Hulbert Mr. J. E. Backofen, Jr. 505 King Avenue Columbus, OH 43201
1	FTD (FTD)	1	Director
İ	Wright-Patterson AFB, OH 45433	5	Lawrence Livermore Laboratory Technical Information Division
1	Headquarters		P. O. Box 808
	Energy Research and		Livermore, CA 94550
	Dept of Military Applications	1	Director
	Washington, DC 20545		Los Alamos Scientific Laboratory ATTN: Dr. J. Taylor
1	Director		P. O. Box 1663
	Division of Operational Safety Energy Research & Development	r	Los Alamos, NM 87544
	Administration	2	Sandia Laboratories
	Washington DC 20545		AIIN: INTO DIST DIVISION
1	Albuquerque Operations Office		Albuquerque, NM 87115
	Energy Research and	2	Director
	Development Administration		Lewis Directorate
	ATTN: ODI		US Army Air Mobility Research
	P. U. Box 5400		and Development Laboratory
	Albuquerque, MM 87115		ATTN: Mail Stop 77-5
1	Research Director - Pittsburgh	1	21000 Brookpark Road
	Mining and Safety Research Center		Cleveland, OH 44135
	Bureau of Mines, Department	1	Director
	of the Interior		National Aeronautics and
	4800 Forbes Avenue	1	Marshall Space Elight Center
	Pittsburgh, PA 15213		Huntsville, AL 35812
		131	

No. of Copies

Organization

- 2 Director National Aeronautics and Space Administration Aerospace Safety Research and Data Institute ATTN: Mr. S. Weiss Mail Stop 6-2 Mr. R. Kemp Mail Stop 6-2 Lewis Research Center Cleveland, OH 44135
- 1 Director National Aeronautics and Space Administration Scientific and Technical Information Facility P. O. Box 8757 Baltimore/Washington International Airport, MD 21240 1 Hercules, Inc.
- 1 National Academy of Sciences ATTN: Mr. D. G. Groves 2101 Constitution Avenue, NW Washington, DC 20418
- 1 Aeronautical Research Assoc. of Princeton, Inc. ATTN: Dr. C. Donaldson 50 Washington Road Princeton, NJ 08540
- 1 Aerospace Corporation P. O. Box 95085 Los Angeles, CA 90045
- 1 Agbabian Associates ATTN: Dr. D. P. Reddy 250 N. Nash Street El Segundo, CA 90245
- 2 AVCO Corporation Structures and Mechanics Dept. ATTN: Dr. William Broding Mr. J. Gilmore Wilmington, MA 01887

No. of

Organization Copies

- 1 Black & Veatch Consulting Engineers ATTN: Mr. H. L. Callahan 1500 Meadow Lake Parkway Kansas City, MO 64114
- 2 The Boeing Company Aerospace Group ATTN: Dr. Peter Grafton Dr. D. Strome Mail Stop 8C-68 Seattle, WA 98124
- 1 General American Research Div. General American Trans. Corp. ATTN: Dr. J. C. Shang 7449 N. Natchez Avenue Niles, IL 60648
- ATTN: Billings Brown Box 93 Magna, UT 84044
- 1 J. G. Engineering **Research Associates** 3831 Menlo Drive Baltimore, MD 21215
- 2 Kaman-AviDyne ATTN: Dr. N. P. Hobbs Mr. S. Criscione Northwest Industrial Park 83 Second Avenue Burlington, MA 01803
- 3 Kaman Sciences Corporation ATTN: Dr. F. H. Shelton Dr. D. Sachs Dr. R. Keefe 1500 Garden of the Gods Road Colorado Springs, CO 80907

No. of Copies

No. of Copies

- Organization
- 1 Knolls Atomic Power Laboratory ATTN: Dr. R. A. Powell Schenectady, NY 12309

Organization

- 2 Martin Marietta Laboratories ATTN: Dr. P. F. Jordan Mr. R. Goldman 1450 S. Rolling Road Baltimore, MD 21227
- Mason & Hangar-Silas Mason Company, Inc.
 Pantex Plant - ERDA ATTN: Director of Development
 P. O. Box 647 Amarillo, TX 79177
- McDonnell Douglas Astronautics Western Division ATTN: Dr. Lea Cohen 5301 Bolsa Avenue Huntington Beach, CA 92647
- Monsanto Research Corporation Mound Laboratory ATTN: Frank Neff Miamisburg, OH 45342
- 1 Physics International 2700 Merced Street San Leandro, CA 94577
- R&D Associates ATTN: Mr. John Lewis P. O. Box 9695 Marina del Rey, CA 90291
- Science Applications, Inc.. 8th Floor
 2361 Jefferson Davis Highway Arlington, VA 22202

- Brown University Division of Engineering ATTN: Prof. R. Clifton Providence, RI 02912
- 1 Georgia Institute of Tech ATTN: Dr. S. Atluri 225 North Avenue, NW Atlanta, GA 30332
- 1 Lovelace Foundation ATTN: Dr. E. R. Fletcher P. O. Box 5890 Albuquerque, NM 87115
- Massachusetts Institute of Technology Aeroelastic and Structures Research Laboratory ATTN: Dr. E. A. Witmer Cambridge, MA 02139
- Ohio State University Dept of Engineering Mechanics ATTN: Prof. K. K. Stevens Columbus, OH 43210
- 3 Southwest Research Institute ATTN: Dr. H. N. Abramson Dr. W. E. Baker Dr. U. S. Lindholm 8500 Culebra Road San Antonio, TX 78228
- 1 Stanford Research Institute ATTN: Dr. W. Reuland 306 Wynn Drive, NW Huntsville, AL 35805
- Texas A & M University Dept of Aerospace Engineering ATTN: Dr. James A. Stricklin College Station, TX 77843

No. of Copies

1

Organization

- University of Alabama ATTN: Dr. T. L. Cost P. O. Box 2908 University, AL 35486
- University of Delaware Department of Mechanical and Aerospace Engineering ATTN: Prof. J. R. Vinson Newark, DE 19711

Aberdeen Proving Ground

Dir, USAMSAA ATTN: Dr. J. Sperrazza Mr. R. Norman, GWD
Cdr/Dir, USA CSL, EA ATTN: DRDAR-CLJ-L
Office of the Program Manager for Demilitarization and Installation Restoration ATTN: DRXDC-T
Cdr, USATECOM ATTN: DRSTE-SG-H