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ABSTRACT

The underlying purpose of this research was to understand

and predict the response of upper ocean boundary layer

mixing to high frequency oscillations in the atmospheric

forc ing attributable to the diurnal hea t flux cycle ,

unsteadiness in the wind , and other short term changes. To

accomplish this task, a non-stationary , one-dimensional

bulk model of the mixed layer originally proposed by

Garwood (1976 , 1977) is generalized by deriving a new

equation for the entrainment buoyancy flux which includes

the unsteady term. To examine the importance of the un-

steady term , a reduced form of the turbulent kinetic energy

equation is solved numerically. The results predict the

high frequency cutoff above which the unsteady term should

not be neglected. The quasi-steady state assumption is

accurate only for low frequency forcing up to this cutoff.

There was also some dependence upon the amplitude of the

imposed forcing. To investigate the asymptotic properties

of the mixed layer model , the full form of the Garwood

model is solved numerically and compared with the solutions

to the de Szoeke a~id Rhines n~del. The results of this

research provide a theoretical basis for realistically

applying the mixed layer models to ocean boundary layer

problems on all time scales.
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NOTATION

• = Lt,’:.;~r LI L~~~4 
( )aX 4)’ Hori zontal mean

• o Vertical mean over the<( ) >*f .h ( ) â~~~~ mixed layer

a Amplitude of fluctuation

Buoyancy

c = ~ + c’ . c iu  +~v Velocity in complex form

Specific heat at con—
s tant pressure

d (1) Ekman depth of
fric tional resis tance
for the upper ocean

(2) Depth of surface
energy perturbation
zone

E a U * +v ~~ + W * Total turbulent kinetic
energy per unit mas s

f V Coriolis parameter

g Apparent gravitational
acceleration

h Depth of mixed layer
*H =~~~~~~~~

“ The mixed layer
stability parameter

L Obukhov length scale

1 Size of the large eddies

m , m. Constants

N 
Brunt-V~.isa1a frequenc y

P = pg + P’ Pressure
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Pg Geostrophic pressure
component

Radiation absorption

Ri Bulk gradient Richardson
number

Local gradient Richardson

Frictional Rossby number

T = P + T’ Tempera tur e —

Nondimensionalized
forcing period

t t ime

u. = 
~~ 

ku’. ~ + +~~~) Total instantaneous
velocity (without
geo stroph ic  compon ent ~
Frictional velocity

Ugi Vg Jeostrophic wind velocity

Wi nd veloci ty

x~ ( x, y ,  Rectangular space
coordinates

Thermal expansionL ——..
P. 

~~~~~ 
coeificient 

- 

-

rau 4~. for z <~~-~
Laps e rate of potential
temperature above the
inversion base

Thickness of entrainment
zone

ic. Excess surface velocity

change in mean buoyancy
4

’
~ , a 

~~~~
(—h) .4 (—h-I ) across the entrainment

zone
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Mean velocity dro p
across the density
interface

Rate of viscous
dissipation

Buoyancy at inversion
fl base

9h/~t �O

< 0

u Molecular viscosity

Kinematic viscosity

Instantaneous density of
the sea water

Density for representative
values of saljnity s
and temperature T 0 i~ the
ocean

Average standard
deviation of vertical
velocity within the mixed
layer

T Nondimensiorialized time

I r t ) I ~~e.LL Surface stress

t. Time scale of entrainment

Total dissipation time
scale

Viscous dissipation time
scale

Planetary dissipation
time scal e

Forcing time scale

• Latitude

‘p Nondimensionalized
turbulent kinetic energy

-
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Earth ’s rotation vector

w Angular frequency

• NondimensiorialiZed
WI, angular frequency
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I. INTRODUCTION

A. PURPOSE OF THE STUDY

The objective of this research was to study the one-

dimensional mixed layer model of Garwood (1976 , 1977) in

terms of a possible generalization of the extrainment

buoyancy flux equation and to examine the responses of the

mixed layer turbulent energy intensity to the different

ampl itude and frequencies for wind-shear turbulence prod-

uction. Because of the frequency dependence , the steady

state ( ~~~~~~~ o , where ~~) is the turbulent kinetic energy

averaged over the mixed layer depth) or quasi-steady state

( o ) assumption is good in some frequency ranges

but it is not possible in other ranges. Using a constant

dissipation time scale , Garwood (1976) suggested that if

the quasi-steady state assumption is made to facilitate the

solution without filtering the surface boundary conditions ,

an incorrect high frequency response will not only be pres-

ent but may bias the mean mixing trend.

A further ob~ective of this study is to critically

examine the asymptotic time regimes of the Garwood model

in comparison with those of the de Szoeke and Rhines (i°”~ )

model. These two tasks will provide a theoretical basis for

realistically applying the mixed layer model to ocean

boundary layer problems on all time scales.

- --
~~~~~~~~

-
~~~~~~~~~~~~

- 

- —.- -~~~~~~~~~~-~~~~~~ - --
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B. METHOD

The equations of the Garwood (l9~’o , 1977) model are

listed and their derivation is discussed briefly. The

de Szoeke and Rhines (1976) work is also reviewed in

order to provide the background information necessary to

compare the asymptotic properties of the two different

models. To generalize the Garwood entrainment buoyancy

f lux  equation , the unsteady term of the turbulent kinetic

energy equation at the base of the mixed layer, which was

usually considered to be negligible by earlier investigators , -;

is parameterized. For the study of frequency-dependent

response to atmospheric forc ing , the method applied by

Garwood (19’b) in which he used a reduced and nondimensional-

• ized form of the turbulent kinetic energy equation, and

solved analytically by using a constant dissipation time

scale, is reviewed. This same form of the equation is

solved numerically by using a non-constant dissipation time

scale, ‘
<~~~~ , provided by Garwood (l~ ’h) , where h is the

mixed layer depth . In this case, the solutions for non-

dimensionalized frequencies Wh/~.L.:2OQ11 , 211 , .2W

and .oi ir , where w is the angular frequency of the

normalized wind forcing and u
~ 

is the maximum f r i c t i o n

velocity , and amplitudes of fluctuations a = 0.1. ¼~~.$ and

1 for the wind production are compared.

To study the asymptotic properties , the Garwood mode l

is first solved numerically for different stabilities and

14 
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its results are compared with those of de Szoeke and Rhines

by using equivalent calibration constants , boundary con-

ditions and initial conditions.

C. HISTORICAL LITERATURE REVIEW

The vertical fluxes of heat , salt and mo mentum across

the sea-air interface are the source of almost all oceanic

motions. In the fully turbulent oceanic mixed layer

bounded by the sea-air interface above and by the dynamically

stable water mass below , the vertical fluxes are large.

Below the mixed layer they are usually negligibly small so

that one can decouple the mixed layer from the underlying

stable, quiescent water mass. The immediate local reaction

of this mixed layer to those fluxes result in a homogeneous

water column , i.e., vertical uniformity in the mean velocity

and density . This adjustment of the density and velocity

structure of the surface layers of the ocean to variable

fluxes has been the subject of a large number of studies

since Ekman (1905)’s treatise where he originated the

concept of a depth , d 7.5csec4;~~~~~ (W is the wind velocity

and 4 is latitude), of frictional resistance for the upper

section of a wind stressed ocean and suggested that any

surface mixed layer by the action of wind has the same

order of this depth . This depth comes from the mathematical

solution to the steady state horizontal momentum equation

in which Reynold’s stress is related to the mean shear by

a constant eddy viscosity , K . Rossby and Montgomery (i’)~5)

15 
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pointed out that the depth of a surface drift current layer.

h~~u../
.j U is Coriolis parameter). and Ekman depth are not

• necessarily comparable. Both depths are derived by con-

sidering only the momentum budge t , neglecting the e f fec t s

of buoyancy and the mechanical energy budget.

Munk and Anderson (1948) developed a simultaneous

solution of steady-state heat and momentum profiles by

using a viscosity and an eddy conductivity that depend upon

the gradient Richardson number. They did not recognize the

presenc e of a sharp interface at the bottom of the mixed

layer and therefore their result is closer to Ekman ’s

solut ion than to the physical real i ty . Kitaigo rodsky ( 1°oO)

concluded by dimensional analysis that the mixed layer depth

must be proportional to the Obukhov length scale, L. The

basic flaw in his steady state model is the assumption that

the entire ocean mixed layer is analogous to the constant-

f lux atmospheric surfac e layer, because wi th  his constant

f lux  at the surface the mixed layer temperature and depth

canno t bo th remain unchanged.

Kraus and Rooth (1961) developed a plausible steady state

model based primarily upon the buoyancy equation. In their

model , steady state is achieved by balancing solar radiation

with a net surface heat loss due -to evaporation, conduction

and long wave back radiation. The unstable density profile

— above the compensation depth is a convective source of the

turbulent kinetic energy for mixing. Recognizing the limi-

tation in Kraus and Rooth model--no provision for  a possible

_______ h— - - - -- _ _
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downward surface heat f lux , no account of mechanical

production of turbulent kinetic energy and the steady state

• constraint--Kraus and Turner (1967) improved the one-

dimensional model by considering the turbulent kinetic

energy budget utilizing the two separate equations , the

heat equation and the mechanical energy equation. Because

the frictional generation of heat is negligible, the

vertically integrated heat equat ion provides a relationsh~ o

for  the conservation of potential  energy . They parameter-

ized the mechanical production rate in terms of the f r i c t i on

velocity but neglected the viscous rate of dissipation and

the effect of entrainment shear production. From the

examination of observations , Turner (1969) deduced that a

substantial fraction of the part of the wo rk done by the

wind which goes into the drift current is eventually used

to deepen the surface layer.

Miropol’skiy (1970) and Dertman (19’7)) assumed that

dissipation is a fixed fraction of mechanical production

and the remaining turbulent kinetic energy goes to downward

buoyancy flux . Pollard , Rhines and Thompson (l9”3) apply

the slab approach to the oceanic mixed layer but they com-

plete the entrainment problem with a different mechanical

energy requirement. In this model , the energy for the

• entrainment is derived directly from the mean flow and the

intensity of the turbulence is not considered to have an

active role in the entrainment. Niiler (l9”L~) in his three

layer model which is a combination of Kraus and Turner, and

17
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Pollard et al considered that both turbulent kinetic

energy and the mean kinetic energy are important in the

entrainment mechanism. Although he added the entrainment

production term, the surface production minus dissipation

was still parameterized in terms of ue . Therefore ,

dissipation was not permitted to adjust to other varying

atmospheric conditions or to entrainment shear production.

A more realistic parameterization for  dissipation is not

possible without ac tually computing the mixed layer turbu-

lent kinetic energy intensity -~i) . It cannot be done with

only the surface scale u~ .

D. REVIEW OF THE RECENT LITERATURE

1. The Gprwopd Model

Garwood (1976, 1977) developed an ocean mixed layer

model using the Navier-Stokes equation of motion with the

geostrophic component eliminated , the continuity equation

in incompressible water, the heat equation from the first

law of thermodynamics , the conservation of salt equation ,

and a linearized equation of state. A summary of the

modeled equations follows:

entrainment buoyancy flux ,

~ C~h): 
(1-1)

18
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budge t for  horizontal components of’ turbulent
kine tic energy ,

— “~~ ~~~~~~~~~~~~
(1 2)

budget for vertical component of turbulent kinetic
ene rgy ,

+ h~ ’ ?(0) 
+

(1 3)

conservation of mean buoyancy and mean momentum

4 ~‘~P(-h) + ~ (1-4)

—c’w’(’) — <e>~, 
( 1 - 5)

“jump conditions” at bottom of mixed layer

4~)2A ~ ft 4\ (1-6)

(i- ” )

with the following notation:

U~~a t  +U~ ( )a  ~~;‘~ ,çw 3 
~ ) drd y

~ 2 U 4W (c )) .LJ° ( ) 4z

A f~ ; ~h/at ~.O
- 

~,

, 

~ 
;h/e* < 0

.L? i

19
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To derive the equation (1-1), the equation of the

turbulen t kine tic energy per unit mass was derived from

the equation of motion using the Boussinesque approximation,

~ ~~~~~ ~~
) — y L + ~rv i,

Using the boundary layer approximation and the continuity

equation , and assuming that viscous diffusion and dissi-

pation of the mean kinetic energy are negligible , the

equation (1-8) was written :

~~~~~~~~~~~~~~~~ +~7WjU +V~’~
.€ 

(1-9)
where

I’  %

With the assumption that the turbulence of the overlying

mixed layer provides the energy needed to destabilize and

erode the underlying stable water mass. The local (at ~~-h)

turbulent kinetic energy budget is the basis ci the entrain-

rnent hypothesis. Assuming a quasi-steady state of z=-h,

and that within an active entrainment zone , the most

significant source of energy for mixing is the convergence

of’ flux of turbulent kinetic energy — ~~~~~~~~~~~~~~ equation

(1—9) was reduced to:

V~’(—h): ~~~~~~~~~ ( 1-10)
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Estimating the time scale, ~. required to transport some

of the turbulent kinetic energy.~~~.to the viscinity of the

entraining interface ,

—~~
(
~~P~~)1+ : (1-11 )

and assuming that the mixed layer depth is proportional to

distance over which turbulent kinetic energy must be

transported by the vertical component of turbulent velocity .

<~;i~f* , i~ was taken to beb/~W~~and therefore from (1-10)

and ( 1-li).

~~~~~~~~

‘ (.—b ) - 
(1-1)

To get the equation (1-2) and ( 1 - 3) , the equation ( 1-9)

was first divided into the horizontal and ve rtical components

by assuming an isotropic dissipative structure and recalling
I

that I~ — :0 is included in the equation (1-9),e. ~~

L ’ ~~~~ : 
_
~~~{w

’
~~~ 

3))  

~
_ v +

~~.r~: j G  (1-12)

and

(1-13) 
—

the equation (1-12) was integrated over the range from r :-h -C

to z:o (Figure 1)

_ _ _ _ _  -1-~ ~ c’~~~ -1~~?;;1 
~~~I~JtIz

• +j ~~(~~~+~~~)Jz —~ . S4 e4z (1-14)
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Applying Leibnitz ’s rul e and using the assumption (~~~~”) (-h-~~

L~ ~~~~~~~~ J~ ~~~ 
(u’~.i. v ’3) 4z z ~~( u ’~4.~~)) (1-15)

Defining a dissipation time scale as under

the assumption of locally isotropic turbulence and con-

sidering that : 4’ in which ~~ is the

convective time scale of large eddies (proportional toh,kV’)

and ~~ is the time scale of planetary rotation

(proportion to ~~ ), therefore ~~ : ~~~~~~ .f and

S . ~~Jz ~~~~~~~~~~~~~~~~~~~ (i-i6)

The vertical integration of the pressure redistribution term

is an important source or sink term for the individual

- j turbulent kinetic energy budget even though e~
Following Rotta ( 1 9 5 1) ,  Lumley and Khajeh [‘~ouri (1974), the

equivalent bulk formulation was

Jz ~~~~?~* (~~ > _3<.1i5) (i-i~’)

Therefore, ( ° 
~ ~~~~~~~~~~~~~~~~~~~~~~ (i-is)/_h_r e. ;~

Following Kraus and Turner ( 1967),  Denman ( 19 ”3)  and Ni i l e r

(19 ’5) ,  the shear production term was parameterized :

+ : u I ~~~I 4 1 1  (1-1°)

whereI(~~I was the “excess” surface mean velocity in the

direction of the wind stress. In this case, the inhomogeneity -~ 

-

of the mean velocity field cannot be neglected.
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IflU.I is proportional to u,, then (1-18) may be combined

with the parameterized net input from breaking waves , less

the loss to radiating internal waves;

— 5 ’ s [ 4 W~~ ~j +  ~~~~~~~~~~ 
~~~~~~ z m u  •

~~~~~ J*4L~ (1-20 )

From (1-15), (1-16) , (1-18) and ( 1-20) ,  (1-14) was writ ten as:

~~~
. ~~h vh1* flL44L~~~~~

_ r((b -3 )-~ (~~~+ci,)<I 
(1-2)

Similarly integrating (1-13) over the range fro m L:-~i.-~ to Z~:O.

k$° ~~~~th~~~
WT7

~~) 4 z  : dz-. ~~~

~~.L( ° 
~ dz

%~ ‘4i-( ~~- - ~4
and assum ing w:o at the surface and WI*L t 

negligible,

the vertical component of turbulent kinetic energy budget

was paraineterized by using (1-16) and (1-17);

j  d (k<~~ )..~~~~
. (0) + &~J s ( } ) z((~ > ..3(~~~)) (1-3)

From the heat equation , conservation o± salt equation

and equation of state , the buoyancy equation was formed.

Averaging this buoyancy equation and using the boundary

layer approximation , the mean buoyancy equation was obtained:

(1— a )
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To get the equation ( 1-4) , ( 1-2 1 ) was first integrated

over the range from Z=-h —1 to Z~~o .

(1-22)

Using the Leibnitz ’s rule and taking the limit .~~~p o

the term on the left hand side can he written;

(° ~~~ - 8 r~ tJz r t ,_ t. rr) d (-h-)
~~)-~$ ~~ ~~ ~~)-i~-~ 

~~ ~~~~~~~~~~~~ “ ° ‘~~ dt
(1-23)

:~~ (h(t>) .-’&(_h4 ) 
~~~~~~~~

Assuming 
~~~~~~~~~~~~~~~~~~~ 

and using :<L) -~~(-h-~) , (1-21 ) was

written ;

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(1-24)

To get the jump condition (i-c), the equation (1-21 ) was

integrated ove r the range fro m Zr —ti to Z~ O ari d from Z to

z~o ari d these two integrated equations were solved

simultaneously to eliminate ____ . Then the result was

~~~~ (z): ~~~~~~~~~~~ ~~‘ - ~ ~ — ( ~~~‘~-~
) 

~~~ (1-25)

Similarly the integration of the equation (1-21) ove r the

range from ~*-h4 to zfl-h with dropping the negligible solar

. radiation term and assuming ‘~~ ‘ (— h— ~’)o  and~~. approaches

zero led to

(l- 2c) 

-~~~~~~~~~ ..
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By applying the Leibnitz ’s rule,

J~~ L~z: ~~~ _ [ ;_ h)~~~— —h4 )~ J~-~-1J (1-27)

arid by assuming I<
~

) ) .._ o and 
~~~

~ 
(1-28)

Therefore from (1-26) and (1-28), the jump condition (1-6)

was obtained

-~~~~(-h)~~~~~~ A (l -~
)

and using this relation the equation (1-24) can be written

in the form of the equation (1-4).

Using the boundary layer approximation and dropping

the negligible viscous terms , the equations of mean

motion were combined into a complex form by using ~

(i-~Q)at

To get the equation ( 1 - 5) , (1-29 ) was integrated vertically

over the range from z:—h- 4’ to z:o with the assumption of

~~~~~~ (°) ( i-s)

The jump condition (1-7) was obtained in a similar way as

(1-6).
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The most important aspect of this model was the

ability to predict the year-around evolution of the mixed

layer depth together with bulk properties. This model

provides not only structural prediction but also predicts

H a changing layer depth because the entrainment model pro-

vides boundary conditions at the moving density interface.

In addition to the non-linear dependency upon stability ,

he found a Rossby number - U./(fh) - dependence for the

- entrainment rate in his nondimensional solution. This

-~ makes possible a cyclical steady state for the boundary
L

F 
layer without requiring unrealistic values of upwelling or

lateral advection in a long term integration.

On short time scales of the order of a few days,

the upper ocean , even at higher latitudes , exhibits

H significant baroclinc activity . The importance o±~ shorter-

period fluctuations in the surface buoyancy flux in

modulating the long-term response has demonstrated the

need to know the typical daily heating/cooling cycle, solar

radiation, evaporation, conduction and back radiation as a

- i function of season and geographical coordinates. Some of’

the most fruitful applications of this model lie in the

link-up with other models, for example, joining with an

ocean circulation model.

In summary Garwood suggested in his model that first ,

the planetary rotation is assumed to influence the dissi- t

pat on for deeper mixed layers and enables a cyclical

steady state on an annual basis. Secondly, the rate of

26
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entrainment for  the stable regim e is not accurately

reflected by a linear extrapolation of the unstable

situations. This is particularly important in modeling

the ocean boundary layer. Unlike the atmospheric

boundary case , most of the solar radiation does not

penetrate the layer. Therefore , downward turbulent heat

flux in the oceanic boundary layer is as important as the

upward flux during the course of’ both diurnal and annual

cycles. The non-linearity of interface entrainment

tendency parameter, which is greatest for stable surface

boundary conditions , results in a modulation of the long-

term trend of mixed layer depth by the diurnal component

of surface heat flux. Thirdly, in this model buoyant

production is somewhat more efficient than shear production

as a source of energy for vertical mixing because of its

unique effect on the vertical component of the turbulent

velocity .
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2. The de Szoeke and Rhines Model

The de Szoeke and Rhines (1976) study of initial

mixed layer deepening is reviewed here because the results

will be critically analyzed in a comparison with the

Garwood model . The solution to impulsive initial deepening

is moat relevant to this research on high frequency response

of the upper ocean. Following Niiler (1975), de Szoeke and

Rhi’nes (1976) investigated the turbulent energy balance of

a wind-mixed layer (in the absence of solar heating) by

adding a new term which represents the energy to spin-up

the level of turbulence in the increment of the mixed

layer dh in time dt. The equation is

{ .~ Na h4... ~~S ( I_ C o 5 f t)  + CoU~ hh1 
~~ 

: ZTh.U,~)i
z (1-30 )

(A) (8) CC ) CD)

where term (A ) represents the entrainment damping , term (B)

represents the shear production at the base of mixed layer,

term (C) represents the energy needed to spin-up the level of

turbulence and, term (D) is the turbulence production minus

dissipation , in which it is assumed that the dissipation is

a fixed fraction of turbulent production.

The results (using constants and parameter 1T),:C *I

31 ~~~~ 4 ~ = ~~~~ S~C~ ) were

1) For slightly later than the initial instant , since

the shear production , term (B), can be

reduced to u~
4t2 arid is negligible compared with other terms.
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Assuming a negligible entrainment damping at this early

stage , the balance (C)-~.I(D) holds for small t. Initially

it is a linear deepening , i.e. , ~ I), and this lasts

for a fraction of a Brunt-Vaisala period (~ -iOO sec). It

attains a depth of 2--7m while the level of turbulence in

the incipient layer spins up. The term (C) here represents

a significant demand on the available turbulent energy only

during the f irst Brunt-V~ isäl~ period af ter  initiating the

mixing. After that , it may be safely neglected.

ii) For large t (about 100 sec to 1 hr), a balance holds

between (A) and (D). After it starts deepening by turbulent

energy , the entrainment damping term grows. A tvI deepening

emerges as the turbulent work done by the wind at the

surface erodes heavy fluid from below and mixes it

uniformly through the surface layer , raising the potential

energy. This one-third power deepening proceeds from the

same mechanism that was suggested by Kraus and Turner

(1967)

iii) For still larger t (about 1 hr to 12 hr), a balance

(A)’— .’(B) holds approximately. The mean flow has been

accelerating until after 20 to 120 mins at a depth of 5--.-20 m ,

the production of turbulent energy by the shear at the base

of the mixed layer dominate other sources and a t~
12 deepening

takes over. This h~~t~~ was proposed by Pollard , Rhiries and

Thompson (1972) .

iv) For later times, the Coriolis force swings the mean

motion vector away from the surface stress direction ,

29
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reducing the entrainment shear production (term B) below

the rate u,
4t2 assumed above. As t increases substantially

beyond t= W/~ (corresponding to the lapse of one-half

pendulum day). An approximate balance between (A) and (D)

is established again, leading to t~~ development.
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II. GENERALIZATIONS OF ENTRAINT~~NT BUOYANCY
FLUX EQUATION OF ThE GARWOOD MODEL

Garwood (1976 , 1977) developed the entrainment equation

from the total turbulent kinetic energy budget by assuming

that the turbulence of the overlying mixed layer provides

the energy needed to destabilize and erode the underlying

stable water mass. The total turbulent kinetic energy

equation (1-9) at z: —h is:

(2-1)

The importance of the unsteady term in the atmospheric

energy budget was demonstrated by Zilitirikevich ( 1 9 7 5)  in

the case of weak stratification, and also suggested by

Garwood (1976) for the oceanic planetary boundary layer. A

more detailed study of the importance of this term will be

in the next chapter. For the order of magnitude of the

shear production term , Garwood (1977) found that shear

production is a fixed fraction of buoyant damping in the

entrainment zone. Zeinan and Tennekes (1977) also suggested

in their atmospheric planetary boundary layer model that shear

production is absent if the wind shear across the inversion

base is zero . Even if there is substantial shear, the

ef fec t  of this term appears likely to be relatively small

(Mahrt and Lenschow, 1976), because mechanical production

_ _  
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of turbulence tends to be largely balanced locally by

viscous dissipation through the energy cascade mechanism

(Tennekes and Lumley , 1972). Since the position ( z:-h )
of’ the entrainment zone of the oceanic planetary boundary

layer is defined by the location wh ere the turbulent

kinetic energy vanishes , local dissipation is also assumed

to be a fixed fraction of the flux convergence term, should

it be significant in the energy budget. Therefore , follow-

ing Garwood (1977), a balance holds among the flux

convergence term , buoyancy damping term and unsteady term.

The equation (2-1) is reduced to:

(2-2)

Since the boundary erodes and retreats depending on the

level of’ the intensity of the turbulent kinetic energy,

it may be assumed that the level of turbulent kinetic

energy at the moving interface remains unchanged in the first

approximation. Therefore ,

di _____ — + ~~ 
-

~~~ 0
~t

_l, ‘t -e~ ~~~~~~~~

or (2-3)

dl ~~~~~ez~~t -h

Assuming that the turbulent kinetic energy decreases

linearly with depth in the mixed layer and using the finite

difference approximation, (2-3) can be written : I 
-
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a : — ±1 ~~i : ~~~ !fi ~2i ?Afl (2-4)
at -h 4 Z a t 4.(-h)at h a t

where<~) is the average value through the mixed layer.

Employing the parameterization (i-il), ~~~~= ~~~~~~~~~ , and the

jump condition (1-6),

~~ 
= — ~~~~~~

‘ (-h) = ~~~~~~~~~~~~~~~~~ 
4. ~~ ‘(-h)

and this forms

~~~(-h) :  (2-5)
F:

This more genera]. equation of entrainment buoyancy flux

replaces the equation (1-1) of the section I.D.l for the

f inal closure .

Therefore , the entrainment buoyancy flux ,

arid the rate of layer deepening from ( 1-6) are funct ions

of the bulk values , or overall layer averages , of both

the total turbulent kinetic energy and the relative dis-

tribution of this energy between the horizontal and vertical

components. The advantages are two-fold:

i) The rate of deepening is an integral property--not

just a function of the local properties of the turbulence

field, which may be vanishingly small at zn-h inspite of

a significant rate of deepening.

_______________
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ifl The relative Islili of turbulent  energy among

the thre e geometric components is taken into account .

Being able to include the root-mean-square vertical

velocity~ (~~~~~~)V’*, is particularly important in realistically

treating layer “retreat’ , (0.

In the case where h e~ >~(~~) , equation (2-5)

returns to (1-1) of the original model. On the other hand ,

in the case (~~> ))h i~ which is the case of weak

stratification comparing to turbulent intensity (2-c)

reduces to ~~ . That is, if the stratification

is close to the neutral lapse rate , the entrainment proceeds

at a rate proportional to the root mean square vertical

ve1ocity,<~~~~> . The comparable 3ituation in the :eman

arid Tennekes model is that I’~ tends to zero as the lapse

rate , ) , tends to 0 (adiabatic conditions). Thus the

energy budge t in the absence of shear term and d i s s i p a t i o n

terms becomes a balance between the unsteady term arid

flux convergence term i.e., .~~~~.. oc ~~ where ~~ is

the average standard deviation of vertical velocity within

the mi xed layer and will scale with ~~~~~~~~

______ — —
~~ 

- __

~~~~~~~14
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III. DISSIPATION AND FREQUENCY RESPONSE

A. DISSIPATION AND ITS TI?~ SCALE

Turbulence is always dissipative and this dissipation

occurs through viscous shear stress doing deformation work ,

which increases the internal energy of the fluid at the

expense of kinetic energy of the turbulence. When these

local losses due to dissipation are balanced by the local

inputs of energy, then the turbulent structure in a given

shear flow might be in a state of dynamical equilibrium.

Since the turbulence consists of fairly large velocity

fluc tuations governed by nonlinear equations , one may expect

a behavior like that exhibited by simple nonlinear systems

with limit cycles. In a rapid energy transfer situations in

which past events do not dominate the dynamics , one may

.~xpect that this  l imi t  cycle type of equi l ibr ium is gove rned

by the local length scales and time scales of the mean f l o w .

In this turbulent motion the largest eddies may be as big as

the width of the flow , which may then be an appropriate length

scale in the analysis of the interaction of the turbulent and

the mean flows. Large eddies lose a significant fraction of

their kinetic energy within one “turnover time ” • but a

negligible fraction is directly dissipated. This implies that

the nonline-ir mechanism that makes small eddies out of large

ones ~~3 as flssipative as its characteristic time permits.

_ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The nonlinear mechanism is ultimately dissipative because

it creates smaller and smaller eddies until the eddy sizes

become so small that viscous dissipation of their kinetic

energy is dominant (eddy Reynolds number of order one).

Since small-scale motions tend to have small time

scales , one may assume that these motions are statistically

independent of the relatively slow , large scale turbulence

for a sufficiently large Reynolds number for the mean flow.

Therefore , the small-scale motion should depend only on

the rate at which the large-scale motion supplies energy

and on the kinematic viscosity . Thus it is assumed that

this rate of energy supply should be equal to the rate of

dissipation. If the dissipation rate , 
~ , can be related

to the length and velocity scales of the large scale tur-

bulence, one can assume that the rate at which large eddies

supply energy to small eddies is proportional to the

reciprocal of the time scale of the large eddies and —

therefore viscous dissipation of energy can be estimated

from the large-scale dynamics which do not involve viscosity .

The amount of kinetic energy per unit  mass in the large-

scale turbulence is proportional to arid the eddy time

scale is assumed to be proportional to where 1

represents the size of the largest eddies or width of the

flow. From this general idea, Garwood (1976 ,1977) derived

a to tal dissipation time scale, ~~~~ 
~ 

~~~ 
4 (fo r

36
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derivation see section I.D.l and for more detail see

Garwood (1977)) by including the planetary scale of

dissipation. This is the integral time scale of the

turbulence. Depending upon the time scale ( T~ ) of the

surface forcing (variation -in atmospheric conditions), an

interaction between two time scales might be expected.

B. SUBJECTIVE EXPECTATION AND ANALYTICAL SOLUTION TO
INTERACTION BE~~1EEN t. AND tç

1. Constant Dissipation Time Scale

Garwood (1976) developed a solution for  forcing

period much longer than the integral time scale of the

turbulence. This solution is governed by the dissipation

time scale ( ?~ ) .  For these time scales one can assume a

quasi-steady state so that (1-2) and (1-3) become diagnostic

equations fo r  (
‘
~~~~“) and <u’~ +v~> . In this way, the

entrainment buoyancy flux (Fig.  3) can be computed directly

as a function of the surface fluxes of momentum and buoyancy .

However, fluctuations in surface boundary conditions u ,~.
2

and V ’(i) of sufficiently short period require the con-

sideration of the unsteady terms.

A very simple model which can be solved analytically

provides art indication of the importance of this unsteadiness

and how it might be treated. In the simple model , only two

large terms , shear production and dissipation, are balanced

by the time rate change of the turbulent kinetic energy ,
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~~~ +�i~~~~~~~I+ - a s i~w t )  (3-1)
at r~ h

where “a” is the amplitude of fluctuation and u)= zu/ r~
as its frequency. Assuming that the dissipation time

scale is constant and defining a dimensionless time , ~:t/r~
a dimensionless turbulent kinetic energy , 4I~~ ~~~~~~--~~~~~~

and frequency,  w~ : w = i n

(3—1) is written;

4 I + ~~S~~1( W .t ) (3-2)

For cyclical steady state , the analytical solution to (3-2)

is

~j : t + ’ (  
~ ÷~-) (S~~w~r— w . cos w.~ ) (

~ — 3 )

For the case a=o , ‘P =1 which is the non-cyclical

steady state solution. For finite amplitude , a, the full

solution (3-3) is needed. In terms of frequency , for the

low frequency fluctuations , w~ <-. . . 5  (i.e., long period

ccmpared with r, ) ,  the approximation of quasi-steady

state is satisfied. Depending upon the Rossby Number

(R~ =U~./(4~)) and the mixed layer stability parameter

(H~ = ~ 
) ,  this low frequency fluctuation corresponds

to a fluctuation period of several hours or longer. From
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the complete solution (3-3) , the important aspect is the

relative magnitude of the response associated with the

fluctuating component (fig, ~4-) . For very high frequencies,

)) 1, the amplitude of the response is negligible. In

other words , the high frequencies are filtered out, This

becomes a possible cause of error in using observed winds

to drive a model having an integrat ion time step smaller

than or comparable with T~ . If the quasi-steady state

assumption is made to facilitate obtaining a solution , but

without filtering or smoothing the surface boundary

conditions , an incorrect high-frequency response will not

only be present but it may bias the mean trend.

2. Non-constant Dissipation Time Scale

In this case the same simplified equation (3-1 ’
~ is

considered, but the dissipation time scale Z~ is no longer

constrained to be constant. ‘ising the convective dissi-

pation time scale ; _
~~~~~~~~~ of ~arwood (i~m), (3-1) becomes;<

~~~~~~ :— <~~~~~ .~- .~~~(~ 4aS;11 wt)

To examine the 3ignificance of the unsteady term , equation

(3-4) is first nondimerisionalized by defining

wh
and

~39
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then (3-4) is transformed to:

I + b S i f l ( C 4 . t )  (3 - 5 )

The equation (3-5) is solved numerically for several

combinations at amplitude (a= O. l , 0 .5  and 1), and angular

frequency of forcing ( ~~b 20011 ,20 11 ,211 ,O.21T, and

O.O2Tt). Initial adjustment was achieved at about

There is also a tendency that the higher the forcing

frequency ,~~~ , the shorter the initial adjustment period

that is needed, At the early stage of the wind forcing , the

change of turbulent kinetic energy is mostly due to the

wind forcing itself. As the energy supply from the wind

continues, arid after an initial adjustment is achieved, the

balance among the three terms is changed and becomes a

function of the amplitude and frequency of the forcing .

Different responses of the unsteady term

to different frequencies of forcing are shown in figure

5 a-b for the case of small (a=O.1) and large (a=1)

amplitude fluctuations . For both amplitudes, there is a

tendency for the mean value of the unsteady term , 
~~~~~~~~~~~~~~~~~~~

to vary with frequency even though it is very small . This

is seen mo re clearly in the case of small ampl i tude f lu c tu~
ation (a=.1) because of the magnified scale for the small

amplitude case. The mean value is a little above zero for

high frequency and it approaches zero as the frequency is

getting lower. This e f f e c t  is also shown in f igure  o which
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are plots of the case 1); S n W t  funct ion of the wind

forcing versus Wt , case 2 ) ;  f luctuating component of

dissipation normalized on the amplitude of the wind

produc tion ( (~~~~~~~
‘

.i)/& ) versus Wt for a=l , and

case 3); same as case 2) except a= .l. Comparing the

fluctuating component of dissipation, case 2) and 3),  with
the constant wind forcing case 1), for each of three fre-

quenc ies, one can see that the higher the frequency, the

smaller the fraction of wind production that is dissipated

in the mean . In other words , more energy is stored in the

mean to deepen the mixed layer.

Figure 7 shows the peak-to-peak amplitude of the

unsteady term versus frequency ~~ for three

amplitudes of fluctuation a=l,O.5 and 0.1. For each case , the

peak-to-peak amplitude is almost a constant close to 2,1

and . 2 respectively over the frequency range if to

Zoo it and it is negligibly small for the frequency

range below . 021! . Some interesting transition

cases occur over the frequency range ~~ ~~~~~~~~~~~ 
to ZTT

in which the adjustment time scale and forcing time scale

are comparable, and therefore interact. For relatively

low-f requeT~cy surface forcing , !~ h 
~~~~~~~~~~ 

(nondimensional-

ized period 
~~~ 

= ~. 100), regardless of magnitude of

oscillation amplitude , the turbulent kinetic energy budget

is in a quasi-steady state , i.e., dissipation is nearly

proportional to the wind shear production as indicated by
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the negligible peak-to-peak amplitude of’ unsteady term ,

h a)~~ . Therefore , for this case , (3-4) reduces to
ujat

<~~)=  u ( i +  ~ s~n Wt )211 
(3-6)

For relatively small amplitude oscillations (a<O .5),

regardless of frequency , it may be reasonable to assume

a quasi-steady state for many cases in which a high degree

of accuracy is not required. But for relatively large

amplitude oscillations , the unsteady term is more clearly

frequency-dependent. For a40.5 and in the transition

frequency range below b .l’ff , it may not still be

a bad approximation to assume a quasi-steady state and use

(3-b) in an approximate sense. On the other hand , for

a 2. . ~ and frequency W.b :. , this unsteady term is
U.

rio longer negligible. Therefore it is strongly suggested

that the full form of equation (3-4) be used to avoid an

incorrect high frequency response.

Figure 8 shows the phase dit’t’erence between the

wind forcing and the dissipation as a function of the

frequency of the forcing. For the frequency range

there is almost no phase shift. As shown by the negligible

amount of hysteresis in figu re 9a, the dissipation is nearly

proportional to the wind shear production nft -er the initial

adjustment period O~ <4  . In the other extreme of

high frequency forc ing ( ~~ ) ZO 1T ), there is almost a

phase s h i f t  be tween wind p roduc t ion  and d i s s i p a t i on .  As
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shown in figure 9d, the adjustment period is longer

relative to the forcing time scale , but dissipation

converges to a constant value that is independent of the

frequency and magnitude of the forcing oscillations. For

the frequency range , .O T < ~~~~<2OW , in which the two

time scales are comparable , the phase shift increases

nearly from zero at .021T to nearly 900 at 201~ . Figure

9b and 9c show that since the adjustment time scale and

the forcing time scale are comparable and interact , this

causes the ellipsoid to achieve a maximum width in this

domain, 1< Tç < 10. An important result is revealed by

f igure  9b which shows that the amplitude of the response

cycle is nearly proportional to the amplitude of the

forcing cycle, inspite of the hysteresis. Therefore , if

phase information is not crucial , it is accurate for this

case to assume a quasi-steady state .
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IV. ASYMPTOTIC PROPERTIES OF TI-fE GARWOOD MODEL

A. NU~~RICAL RESULTS OF GAR~1OOD MODEL

If quasi-steady state is not assumed , the full prognostic

equations may still be solved numerically. The full

equations of Garwood model , (2-5), (l-2)~ (1-3), (i-&’-) and (1-5)

with the jump conditions (1-6) and (1-7) are solved

numerically for about a one-day period using hypothetical

initial conditions , h=lrn , ~).o3 Crfl2/SSC2 ,

fl:o , and three different cases of At (Ab:S~c;6
4

~~~~~~-$ and 5~~o~ cn~,/ ~~~’ ). The size of 4t indicates the

degree of stratification and is related to the lapse rate • r.
as follows ;

(4-i)

where r~~~~~~~~ a~~~~~ .254~ for the simple case of

vertically homogeneous salinity . Assuming the surface

buoyancy flux to be negligible, V~ ’( .).o, 4b: X%o 4 CmfceC2

corresponds to 1 C/250Th (i.e. r~ ;o~ ~ c’~ ),4:5xi ,ii/~~’

corresponding -to (i.e. r: io 4cec~ ). The

constant employed here is m :€ . To simplify the problem ,

the momentum flux ~~~~~ ‘®
-= ( C,n~’~ec’, ~T~”ao , the constant

frictional velocity U~~~~- i C m / ~~~ c ,4:o,~~~’=o and c:io
4 sec~

are also assumed. Using these conditions , three different

curves of each parameter are plotted for each lapse rate.
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Figure 10 shows that the stronger the stratification, the

larger the amount of turbulent kinetic energy in the mixed

layer. It starts from ~ ~~~ .o3 cm%~~and very rapidly

increases during a short period immediately following an

impulsively applied surface forces. LE) shows a maximu m

at t=3—..5 hrs., a minimum at t=17-...l8 hrs. and a second

maximum at t= 24—~25 hrs . The figure also shows that the

weaker the s t ra t i f ica t ion, the earlier the maximum is

reached. The vertical component of turbulent kinetic

energy shows a similar pattern except for the case of

weak stratification (~j = IC/ a5om) in which it decreases

mono tonically (fig. lob). Figure 11 shows <~~~>/~~> ve rsus

time for  ~~~ :/i,;p~ , I’C/zSrn and . Starting with

(‘~~b= 0 .3 3 ,  it reaches 0.15, 0.14 and 0.13 respectively

after a one-day period. These sudden reductions in (~~1>4>

occur at a very early stage and then stay nearly constant .

In other words , vertical components of turbulent kinetic

energy relative to total kinetic energy adjust rapidly in

the early stages , and , the stronger the stratification, the

larger will be the vertical component relative to total

kinetic energy.

Figure 12 shows changes in4~ with time . Each A’&

increases monotonically, although more rapidly in the case

of stronger lapse rate . Larger values of At contribute to

more turbulent damping due to mixing at the interface.
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Figure 13 shows the change in current with time , and

indicates that the stronger the stability , the larger will
— ‘be its magnitude . ‘~Iith the imposed east wind , the currents

start flowing westward at the initial instant. The west

component reaches a maximum value of 17 cnVsec, with the

northward component current still growing. As the west

component decreas es to zero , the north component current

- :  reaches a maximum of 25 cnVsec. This slowly turning current

direction is caused by Coriolis force which deflects the

current direction to the right in the Northern Hemisphere .

F 
After  one inertal period,  both ~ and ~ decrease to zero .

The max imum of’ 1~~49a occurs at about t=4hrs and the

minimum is at about t~17hrs. Also the figure 13 shows

that the magnitude of each successive maximum value decreases

with time . -

Figure 14 shows the monotonically increasing mixed layer

depth with time . All cases start from un and after lO5sec

the mixed layer depth is 45m for = l0C/2SOm , 23m fo r

= l0C/25m and llm for  l0C/2. 5m.  These indi-

cate that the larger the stability , the lesser the deepening

it i.s.

Figure 15 a-c show , (or 
~~

because LI ~~~~Cn~~~~is assumed) arid for each lapse

rate. The middle curve of each figure indicates that 4~
.

decreases more rapidly in large stability than in weak

stabil i ty . For each case, , and
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are not parallel prior to about one inertial period , i. e . ,

4~~~ 
~~~~~~~~ and would not produce the same deepening

even though ~~~~Co) o is assumed. The figures imply that in

general the deepening is not proportional to <~~7r2>V2 ~~~~~~~~

or u ~~-, but rather depends upon the full form o±~ entrainment

equation . An exception occurs if ki’b~~ Oat (
~~~>+ k A;

so that~~ .~~<~~Tz>~ during the early stages (Figure l5d).

Figure 16 shows the inverse of the bulk Richardson

number changing with time . For t (20 mins, Ri” is large

in the case of weak initial stability because of the small

At . After 20 mins , the larger values of R~ occurs for

the cases with larger initial stability. This is due to the

strong mean shear developed at this stage. At one inertial

- period, Rf’ goes to zero because of the stagnation in

current at this moment. Halpern ( 1974) suggested that if

local Richardson number (Rn ) is less than

one-fourth , instability may occur, arid if Rn =1, marginal

stability exists. He also suggested in his experimental

study of Northern Pacific Ocean that Ru =~ is a critical

condition for the occurence of shear instability. Therefore ,

for the case of :1c/35b m ,there is an instability at

about t=lOOsec. If R~ is considered to be an average of

over the mixed layer depth and therefore ,

there may also be an instability at t=4hrs for the case of

~~~ 1 C.fa5,n . This instability leads to a maximum turbulent

kinetic energy at this time interval.
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Therefore , how the turbulence develops with time, as

indicated by equation (1-2) and (1-3), can be summarized.

The total turbulent kinetic energy (fig. 10) ~~ jumps

due to impulsively applying surface stress to art initially

resting fluid , whereas the energy produced by any mechanism

is dissipated at a rate proportional . Then , the

shear production is increased to a maximum value even

though the damping also increases. The maximum turbulent

kire~c energy exists at about t=4hrs, arid then decreases

toward a minimum mainly due to decreasing shear production

at about one inertial period.

The more detailed, term-by-term study is left for the

next section.

B. ASYMPTOTIC REGI~~S IN MIXED LAYER DEEPENING

Combining equations (1-2) and (1-3) of the Garwood

model , the total turbulent kinetic energy budget equation

is obtained.

Jil cbL am u~ + + h’V~
(o) —h4~~ — 2  (~V~+ ch<i>)

Using h4~ kii~I~’ 
, one can write the above equation in the

following order;

kN h2.4~ f4~J~~~ + d~~~~ = 2Th (4-2)

(B) (.C) (.D)

The corresponding equation from de Szoeke and Rhines (19”6)

may be obtained by dividing equation (1-30 ) by h2.
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~~~~~ ( t — C ~s~~ ) -~ c.u ~ Z n 1.u~ (4- 3)

(A) (6) (C) (.P)

Equation ( 4 - 3)  is originally the Niiler model except for

the term (C). The tertn (A)in both (4-2) and (4-3) is an

entrainment damping term which is a upward buoyancy flux

at the base of this mixed layer. The term (B) in bo th

equations is the shear production term . The term ( C )

in (-~.-3) is the energy needed to spin up the level of

turbulence, Cu~ , in the increment of mixed layer dh in

time dt, while the term (C) in (4-2) is the nonstatioriarity

term which shows the incremental change of the turbulent

energy budget d (hCb ~ in time dt. The term CD) in bo th

equations is the wind shear production minus dissipation.

Before analyzing the numerical solutions it might be useful

to examine the characteristics of both equations and their

differences .

i) Both models contain nonlinear equations , i.e., the

Garwood model is a set of six nonlinear differential

equations which can be solved implicitly for each parameter,

while the de Szoeke arid Rhines model has one nonlinear

differential equation.

ii)  Bo th models have numerical problems when the zero-

initial condition (h(t=O)=O) are used, although such

conditions are not l ikely to occur in nature .
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iii) The ncnstationaritv term in Garwood,

is not exactly comparable to C.t4~’ 4~~
of de Szoeke and Rhines .  Even with the assumption of no

surface  buoyancy f1ux ,~~ YU~ does not approach a constant

for ~~ at’c/2.5pn . ~~ xic/25n~ ar~ ~~~~. I Cf2~ Om up to

one i ne r t i a l  period.  Af te r  this period , ‘~Vu *
2= cons tan t

holds approximately , although it is still not exact except

for the case of weak stratification (figure lOa). Even

when the condit1On (~~
’u~

2= constant holds , there is a

difference of between the two models.

iv) Term (D) in the N i i l er  ( 19 ’5) model is

parameterized in the manner;

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
P
~
’.L4

where ‘4 - , is the depth of the  p e r t u r b a t io n  -~ner~ y pro d-

uc t ion  zon e near the surface. ‘his inplies that only the

near su r face  pro d u c t i o n  is d i s s ipa t ed .  n o th e r  words ,

i i s si p a t io r t  is a fr a c t i o n  of pro duc t ion  term near the

s u rf a c e .  No n e of the shear p roduc t i on  ener~~’ a t  the base

of mixed layer and the su r face  buoyancy product ion energy

( t hi s  term is not considered for this study) goes to

dissipation. Because of this par~atneterization , the shear

production at the base of mixed layer has only an interaction

wi th the ent rainment damping term . On the o t h e r  hand, in

th e Carwood model , dissipation is parameterized in a way

that all the producti on including the entrainment shear

p r o d u c t i o n  and the surface buoyancy f l u x  is d is s i pa ted .
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Term (D) in the Garwood model is the turbulent production

over the whole depth minus the total dissipation, i.e.

H the viscous dissipat ion as well as the planetary scale

dissipat ion.  This second dissipation term is not included

in the Ni i l e r  model . If the planetary scale dissipation

is neglected and = a constant is considered, then

term (D) in the Garwood model approaches term (D) in the

de Szoeke and Rhines equation of the Niiler model within

a constant factor.

~ ‘.‘lith these characteristics and differences in mind , two

cases of the Garwood model and one case of the de Szoeke and

Rhines model are solved numerically using the same conditions .

Oase 1) The equations (2-5), (1-2). (1-3), (l_L ~)and J-5)

with the jump conditions are solved numerically using the

same constants and ini t ia l  condit ions as in the case of

~~-~~Ic/35 m ( p o ~~sec 2 ) in Section IV. l  ( i . e . ,

Parameters and boundary con d i t i on s ;m = G , U~~~IC$~/~ec •~~~~Io
’
~~SQ~

and in i t ia l  condi t ions :

h~~loo c~n .  ~~~~)~~~~. o3 cm*/s~~~2 ~~~~~~~~~~~~~~~~ .

ease 2) is similar to case 1) except  that there is no

pl anetary scal e diss ipat ion term in (1-2) or (1-3) .

Case 3) Equation (4-3) of de Szoeke and Rhines is solved

numerically using C.=m.~ I , u~ i ci,~f ~~c ‘ gee’

and ~i~~p42~ Io~~~~c~ .

Each solution is displayed from t=~Osec because the

i n i t i a l  values of terms (C)  and (D) are large . The three

cases of term ( A )  are p lo t ted  in Figure F’. Max imum
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entrainment damping occurs at t=4- ’~-5 hrs and a second

maximum at t=25 hrs for each case. The entrainment damping

of the de Szoeke and Rhines model is twice as large as that

of the Garwood model at the time of the first maximum and

remains larger than that of the Garwood model throughout.

Case 2) of the Garwood model and Case 3) of de Szoeke and

Rhines are v~-ry close at time equal to one inertial period.

The entrainment damping of Case 2) (i.e. , without planet—

ary scal e dissipation) is larger than that of Case 1) of

Garwood model after t=15 mins and the difference increases

with time . For the time interval less than 15 mins , the

planetary scale dissipation term does not make any con-

tribution to the entrainment damping. The large damping of

term (A) in the de Szoeke and Rhines equation compared to

the Garwood model occurs inspite of the large shear prod-

uction in the Garwood Model (Figure 18). This may be due

to the fact that none of the shear production of the

de Szoeke and. Rhines equation dissipates. Instead , all

of this energy goes to deepen the mixed layer, and

therefore the entrainment damping grows larger to offset

the larger entraining energy. The reason for larger

damping in case 2) than in case 1) is because there is less

dissipation in case 2) (without planetary scale dissipation)

and thus there is more eritraining energy available , against

which entrainment damping grows . Since this planetary scal e

dissipation increases with time , the difference in the

entrainment damping be tWeen the two cases also increases
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with time . Since the entrairiing due to entrainment shear

production decreases to zero (Figure 18) at one inertial

period in all cases , the net entraining energy in case 2)

and cas e 3) is the same at this time stage and therefore

the entrainment damping in case 2) and case 3) is almost

the same. Whereas , case 1) has less entraining energy

because of planetary scale dissipation. This leads to less

entrainment damping at this same time stage .

Figure 18 shows term (B) for the three cases. The

figure shows that the entrainment shear production of the

Garwood model is not affected by the planetary scale

dissipation term and the term ( B )  of the Garwood model

is larger than that of the de Szoeke and Rhines model at

least f o r  one-day period.  :-t also shows that the time of

maximum shear production agrees with the time cf maximum

entrainment damping as discussed in term LA) . The reason

for the smaller entrainment shear production of tho de S:oek~

and Rhines model is because there is no dissipation

at t r ibutable  to the entrainmen t shear p r o d u ct i o n ,  ~nd t h is

leads to larger deepening in the de Szoeke and Rhines  model

than in the Garwood model (Figure 19). Therefore , the term

( B )  of the de Szoeke and Rhines model , which is divided by h2,

shows a smaller value of extrainmen t shoar production.

Figure 20 shows the value of the (‘) terms . Again , the

planetary scale diss ipat ion term of the ~a~~vood model does

not affect this term. This term in the Garwood model is
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larger than that of the de Szoeke and Rhines , although

the difference between the two models diminishes in time .

The reason for term (C) (Figure 20) being larger in the case

of the Garwood model, and possible for the decrease in the

differt-’nce with time is because of the omission of the term ,

, in the de Szoeke and Rhines model . In addition,

this is also because~~~>/U. tends to be large at first and

only becomes nearly constan t a f t e r  about an inertial period.

The last and important (D) terms are plotted in figure

21. The term (D) of de Szoeke and Rhines is equal to 2.0

and thus appears as a straight line . On the other hand,

the term (D) for case 1) and case 2) of the Garwood model

varies with time . After several minutes , the planetary

scal e d i s sipa t ion  term starts to act and because of th is

act ion,  the term ( D )  of case 1) is always less than that ;  of

case 2) with larger differences at the maximum and min imum

values. A f t e r  one iner t ia l  per iod , case 2) and case ~) are

close together, because there is no entrainment shear,

therefore no dissipation of entrainment shear produ otieti

(this is always the case for do S~oeke and Rhines) and no

dissipation from planetary rotation in both cases. The

larger differences of the term (D)  between case 1) and case

C) at the t ime of m i n i m u m  is because of the larger value

of ~1) due te large entrainment shear production which

contributes to larger planetary scale diss i pation ,

The te rm (D) of’ the (‘rarwood model shows a ~~~~
‘,~~;‘ tive va1u~

— - - 1_  
-- - -
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between t .l .3 hrs and t= l0 . l  hrs . The reason for  this

negative value during this time interval is because the

term (D) is not a net production term , i.e. , this

term does not include the shear production at the base of

the mixed layer but does include the dissipation from that

entrainment shear production. Therefore , this term shows

a minimum during this time interval whereas term (B)

(Figure 18) shows its maximum.

To examine the asymptotic regimes , the solutions for

case 1), case 2) and case 3) are plotted for separate

(A), (B), (C), and (D) terms and also for B/A , C/A and

D/A following de Szoeke and Rhines (see also Figure 2).

However, since the results for case 1) and case 2) are al-

most the same, only case i) will be considered. From the

in i t ia l  instan t to about t= 5  mins a balance ( C ) — ~- ( D )  holds

for the Garwood model (Figure 22).

i i  
_____

-
~~~~ Z m U,j — 2 ( t ~~~~44~~~ ) (L ~~L~)

This is similar to the bal ance in the de Szoeke and Rhines

mo del except that the duration fo r  the i r  model is less than

— 100 sec. In the de Szoeke and Rhines model

or -~~~ocU~ ( L ~~~c S)
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This (C)~.~(D) balance for both models implies that the

initial  deepening proceeds due to turbulent motion in the

mixed layer.

Afte r  this period , approximately from t=5 mins to

t=l8 mins , there is no simple balance in the Garwood

solution. Therefore , the full form of the turbulent

kinetic energy equation is required during this period.

Howeve r, in the de Szoeke and Rhines model , a balance

between (A) and (D) holds rather clearly from the early

stage to about 1.2 hrs. For the Garwood model , this is

the period that the value of nonstationarity is decreasing

and entrainment shear production is increasing , al though

both the entrainment damping and the production minus

dissipation are increasing to offset the value of non-

stationarity and shear production. From t=18 mins to

about t=l2hrs , a balance (A),~~(B) holds for the Garwood

$ - 
model ,

~~.Pl 2k2~~~~ ~~~~~~~~~~~~~~

or

- R — ~~~~~ (4 -6)

This is the regime in which the bulk gradient Richardson

numbers is nearly constant (R~~1 ) .  For this time domain ,

the value of nonstationarity is decreasing and the strong

shear production is balanced by the entrainment damping.

tn the de Szoeke and Rhines model , this balance (A).—.(I~
)
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holds from t=l.2 hrs to 8.8 hrs, which is somewhat shorter

period compared to the Garwood model . Finally following

-‘ t=l2 hrs , a bal ance ( A ) - ~’(D ) holds for  the Garwood model

- 

~~~. z mu -Z ( (~t~ -1 4h~i)  (4-7)

Likewise in the de Szoeke and Rhines model , the same

balance (A)~ .’(D) holds although this begins earlier at

t=8.8 hrs.
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V. SUMMARY

The one-dimensional model of the ocean mixed layer of

Garwood (1976 , 1977) has been further generalized. The

entrainment buoyancy f lux equation in this model is derived

from the turbulent kinetic energy budge t at the base of the

mixed layer. In earlier models , the unsteady term

has been considered to be negligible in the derivation of

the entrainment buoyancy flux equation. From the reduced

form of the turbulent kinetic energy equation in which a

balance holds among the shear production , the dissipation

and the unsteady terms , Garwood (1976) nondimensionalized

~nd solved this equation linearly using a constant dissipa-

tion time scale. He suggested that if the quasi-steady

state assumption is made to facilitate solution, without

filtering the surface boundary conditions , an incorrect

high frequency response will not only be present but will

bias the mean trend . Following these suggestions , the

unsteady term has been included in the parameterization of

entrainment buoyancy flux equation. Even though the entrain—

tnent buoyancy flux equation of the Garwood model is sufficient

- H in most cases , this new generalized equation is necessary

to study the asymptotic regimes.

To examine the importance of the unsteady term in the

kinetic energy equation in mo re detail , the same reduced form

as the Garwood (1976) equation is nondimensiorialized , and
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solved numerically using a nonconstant dissipation time

scale, ~~~ h/ ({>
’
~ . Solutions for variable amplitudes of

fluctuation and forcing frequencies were obtained and

their results are as follows. After an initial adjustment

period o<~~~ .<4 *

1) For any amplitude of fluctuations , the quasi-steady

state assumption may be good, ifWh/U~ <0.02ff.

ii) In the case where the amplitude of the fluctuation

is smaller than a half of the mean amplitude or UJh/U,<.21T

(i.e. , ‘~‘~~~~~ 10) the assumption of quasi-steady state may be

possible.

iii) For the frequency UIh/U~)’.2Tf , or the amplitude

being larger than one-half of the mean amplitude , the

unsteady term should not be neglected.

Following the lead of de Szoeke and Rhirtes (1976) and

Nijier (1975), the relative contributions of entrainment

damping, entrainment shear production, nonstatioriarity ,

wind shear production and dissipation were examined. The

specific differences between two models are s

i) The Garwood model is computed implicitly for each

term whereas the de Szoeke and Rhiries ’ model is solved

explicitly.

ii) Even with assumption of4,~ ”i4 a constant , an

additional term is in the Garwood model for the non-

stationarity term (C).
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iii) Dissipation is parameterized in a different

manner, that is, Niiler (1975) parameterized the

dissipation term as a fraction of near-surface production

term , whereas Garwood (1976 , 1977) parameterized the

dissipation term in relating to net production. The

numerical solutions of both models indicate that larger

entrainment damping occurs in the de Szoeke and Rhines

case inspite of smaller shear production compared to Garwood.

Also , the solutions indicate that a larger nonstationarity

term occurs in the Garwood model , and that a constant

production minus dissipation term occurs in the de Szoeke

and Rhines model compared to large variation in the

Garwood model including the negative value of this term.

Following the method of de Szoeke and Rhirtes , each

asymptotic regime is classified for both of the models.

1) From the initial instant to about 5 mins. a balance

between the nonstationarity and the production minus

dissipation holds in the Garwood model, i.e.,

-~~ 2m u.,~—Z (
~~~~~~11~~~~~~~~~~~ ))

(C) (D)

This same balance holds in de Szoeke and Rhines with

duration from the initial instant to about less than 100 sec.

ii) From t—5 miris to t=18 mins , a balance holds for the

full form of the turbulent kinetic energy equation , whereas

in the de Szoeke and Rhines model , a balance between the
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entrainment damping and the entrainment shear production

holds ;

__ ~ zt2

(A) (B)

or

This balance (A).t..(B) holds also in the de Szoeke and Rhines

model from t=l.2 hrs to t=8.8 hrs.

iv) Following t=12 hrs , a balance between the entrainment

damping and the production minus dissipation holds ;

kNTha .~~ -
~~~ 2mu~~-z(~~~~

2
+~~~~~>)

(A )  ( B )

whereas in the de Szoeke and Rhines model , the same balance

(A)~—.(D) holds , although this balance occurs a little

earlier , from t=8.8 hrs.
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Figure 1. Idealized model for ocea.n mixed layer (—---) . Mixed layer depth

is (h)-;(g) is the thickness of the interface or entrain~erit zone.

(Garwood (3976))
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Figure  2 3 .  N u m e r i c a l  s o l u t i o n  f o r  the Garwood m odel

wi thou t t he  p l a n e t a r y  s c a l e  d i s s i p a t i o n

term ( a )  in  te rms of A , P , C ind 1) sepa r a t e ly ,

and (b) in terms of B/A ,C/~ and 1)/A.

Parameters and conditions are t h e sa me as

in f i g u r e  2 2 .
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