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ABSTRACT

The underlying purpose of this research was to understand
and predict the response of upper ocean boundary layer
mixing to high frequency oscillations in the atmospheric
forcing attributable to the diurnal heat flux cycle,
unsteadiness in the wind, and other short term changes. To
accomplish this task, a non-stationary, one-dimensional
bulk model of the mixed layer originally proposed by
Garwood (1976, 1977) is generalized by deriving a new
equation for the entrainment buoyancy flux which includes
the unsteady term. To examine the importance of the un-
steady term, a reduced form of the turbulent kinetic energy
equation is solved numerically. The results predict the
high frequency cutoff above which the unsteady term should
not be neglected. The quasi-steady state assumption is
accurate only for low frequency forcing up to this cutoff.
There was also some dependence upon the amplitude of the
imposed forcing. To investigate the asymptotic properties
of the mixed layer model, the full form of the Garwood
model is solved numerically and compared with the solutions
to the de Szoeke and Rhines model. The results of this
research provide a theoretical basis for realistically
applying the mixed layer models to ocean boundary layer

problems on all time scales.
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I. INTRODUCTION

A. PURPOSE OF THE STUDY

The objective of this research was to study the one-
dimensional mixed layer model of Garwood (1976, 1977) in
terms of a possible generalization of the extrainment i
buoyancy flux equation and to examine the responses of the
mixed layer turbulent energy intensity to the different

amplitude and frequencies for wind-shear turbulence prod-

uction. Because of the frequency dependence, the steady
state (-%ﬁg2= o , where <B> is the turbulent kinetic energy
averaged over the mixed layer depth) or quasi-steady state
( _al_aﬁtll a« 0 ) assumption is good in some frequency ranges
but it is not possible in other ranges. Using a constant
dissipation time scale, Garwood (1976) suggested that if
the quasi-steady state assumption is made to facilitate the
solution without filtering the surface boundary conditions,
an incorrect high frequency response will not only be pres-
ent but may bias the mean mixing trend.

A further objective of this study is to critically
examine the asymptotic time regimes of the Garwood model
in comparison with those of the de Szoeke and Rhines (1976)
model. These two tasks will provide a theoretical basis for

realistically applying the mixed layer model to ocean

boundary layer problems on all time scales.
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B. METHOD

The equations of the Garwood (1976, 1977) model are
listed and their derivation is discussed briefly. The
de Szoeke and Rhines (1976) work is also reviewed in
order to provide the background information necessary to
compare the asymptotic properties of the two different
models. To generalize the Garwood entrainment buoyancy
flux equation, the unsteady term of the turbulent kinetic
energy equation at the base of the mixed layer, which was
usually considered to be negligible by earlier investigators,
is parameterized. For the study of frequency-dependent
response to atmospheric forcing, the method applied by
Garwood (1976) in which he used a reduced and nondimensional-
ized form of the turbulent kinetic energy equation, and
solved analytically by using a constant dissipation time
scale, is reviewed. This same form of the equation is
solved numerically by using a non-constant dissipation time
scale, h4&» , provided by Garwood (1976), where h is the
mixed layer depth. In this case, the solutions for non-
dimensionalized frequencies Wh Uez2007, 2an , 2w,
and .02w , where w is the angular frequency of the
normalized wind forcing and u, is the maximum friction
velocity, and amplitudes of fluctuations a = 0.1. 0.5 and
1 for the wind production are compared.

To study the asymptotic properties, the Garwood model

is first solved numerically for different stabilities and

14
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its results are compared with those of de Szoeke and Rhines

by using equivalent calibration constants, boundary con-

ditions and initial conditions.

C. HISTORICAL LITERATURE REVIEW

The vertical fluxes of heat, salt and momentum across
the sea-air interface are the source of almost all oceanic
motions. In the fully turbulent oceanic mixed layer
bounded by the sea-air interface above and by the dynamically
stable water mass below, the vertical fluxes are large.
Below the mixed iayer they are usually negligibly small so
that one can decouple the mixed layer from the underlying
stable, quiescent water mass. The immediate local reaction
of this mixed layer to those fluxes result in a homogeneous
water column, i.e., vertical uniformity in the mean velocity
and density. This adjustment of the density and velocity
structure of the surface layers of the ocean to variable
fluxes has been the subject of a large number of studies
since Ekman (1905)'s treatise where he originated the
concept of a depth, d = 7.5(@:";5"{—“7)‘ (W is the wind velocity
and ¢ is latitude), of frictional resistance for the upper
section of a wind stressed ocean and suggested that any
surface mixed layer by the action of wind has the same
order of this depth. This depth comes from the mathematical
solution to the steady state horizontal momentum equation

in which Reynold's stress is related to the mean shear by

a constant eddy viscosity, K . Rossby and Montgomery (1935)




pointed out that the depth of a surface drift current layer,
heW/§ (§is Coriolis parameter), and Ekman depth are not
necessarily comparable. Both depths are derived by con-
sidering only the momentum budget, neglecting the effects
of buoyancy and the mechanical energy budget.

Munk and Anderson (1948) developed a simul taneous
solution of steady-state heat and momentum profiles by
using a viscosity and an eddy conductivity that depend upon

the gradient Richardson number. They did not recognize the

presence of a sharp interface at the bottom of the mixed
layer and therefore their result is closer to Ekman's
solution than to the physical reality. Kitaigorodsky (1960)
concluded by dimensional analysis that the mixed layer depth
must be proportional to the Obukhov length scale, L. The
basic flaw in his steady state model is the assumption that
the entire ocean mixed layer is analogous to the constant-
flux atmospheric surface layer, because with his constant
flux at the surface the mixed layer temperature and depth
cannot both remain unchanged.

Kraus and Rooth (1961) developed a plausible steady state

model based primarily upon the buoyancy equation. In their
model, steady state is achieved by balancing solar radiation
with a net surface heat loss due to evaporation, conduction w
and long wave back radiation. The unstable density profile j
above the compensation depth is a convective source of the
turbulent kinetic energy for mixing. Recognizing the limi-

tation in Kraus and Rooth model--no provision for a possible

16




downward surface heat flux, no account of mechanical

production of turbulent kinetic energy and the steady state
constraint--Kraus and Turner (1967) improved the one-
dimensional model by considering the turbulent kinetic
energy budget utilizing the two separate equations, the
heat equation and the mechanical energy equation. Because
the frictional generation of heat is negligible, the
vertically integrated heat equation provides a relationship
for the conservation of potential energy. They parameter-
ized the mechanical production rate in terms of the friction
velocity but neglected the viscous rate of dissipation and
the effect of entrainment shear production. From the
examination of observations, Turner (1969) deduced that a
substantial fraction of the part of the work done by the
wind which goes into the drift current is eventually used
to deepen the surface layer.

Miropol'skiy (1970) and Denman (1973) assumed that
dissipation is a fixed fraction of mechanical production
and the remaining turbulent kinetic energy goes to downward
buoyancy flux. Pollard, Rhines and Thompson (1973) apply
the slab approach to the oceanic mixed layer but they com-
plete the entrainment problem with a different mechanical
energy requirement. In this model, the energy for the
entrainment is derived directly from the mean flow and the
intensity of the turbulence is not considered to have an

active role in the entrainment. Niiler (1974) in his three

layer model which is a combination of Kraus and Turner, and




Pollard et al considered that both turbulent kinetic
energy and the mean kinetic energy are important in the
entrainment mechanism. Although he added the entrainment
production term, the surface production minus dissipation
was still parameterized in terms of us . Therefore,
dissipation was not permitted to adjust to other varying
atmospheric conditions or to entrainment shear production.
A more realistic parameterization for dissipation is not
possible without actually computing the mixed layer turbu-
lent kinetic energy intensity<E> . It cannot be done with

only the surface scale ug.

D. REVIEW OF THE RECENT LITERATURE
1. The Garwood Model
Garwood (1976, 1977) developed an ocean mixed layer

model using the Navier-Stokes equation of motion with the
geostrophic component eliminated, the continuity equation
in incompressible water, the heat equation from the first
law of thermodynamics, the conservation of salt equation,
and a linearized equation of state. A summary of the

modeled equations follows:

entrainment buoyancy flux,

-W(’h) - M (1-1)

[




budget for horizontal components of turbulent
kinetic energy,

{ d TV =md - BEW(N o oa va
T vzmud - BB (- 3¢y e
-3 (D™ 4 Fh)<® (1-2)

budget for vertical component of turbulent kinetic
energy,

L 4 (hewmy)z BETER) | hBWEO) 4 (7 -3¢W)(E"

- L (<B4 Fh)(BY (1-3)

conservation of mean buoyancy and mean momentum

d<by . W (- &t -4
hTé?-.Wm 4+ W (-h) + P dz (1-4)
ft-(h«!)): ~TwWie) =~if<Bh (1-5)

"jump conditions" at bottom of mixed layer

Fw (1= al 42 (1-6)
T ()= o $BA (1-7)

with the following notation:

- . — . Va Wa
Ups Wy +Ws ( )aL'_:: L f_%( ) dxdy
C zuU v (e )>=1'.‘ff+.‘ y dz

e . oh/at 20
{o v dh/9t (o

Eawlevie w

ug 2 | TWIia|

E 3 ('O-C) 3/?.
?

i3

h AE
Ri=a aap




To derive the equation (1-1), the equation of the

turbulent kinetic energy per unit mass was derived from

the equation of motion using the Boussinesque approximation,

( )*ax(eul) @)*ucaax -"‘37‘ )

& Faw , y2 () o0 ﬁ,"‘"—' 507

v ?i‘u‘ﬁ;)‘vaxja‘j +UF &is (1-8)

Using the boundary layer approximation and the continuity
equation, and assuming that viscous diffusion and dissi-
pation of the mean kinetic energy are negligible, the

equation (1-8) was written:
’-(}):-1(\71375':)]-[3«7%“; + T R4 TW —¢

a
where i -9 3 (-—ﬁ)

With the assumption that the turbulence of the overlying

(1-9)

mixed layer provides the energy needed to destabilize and
erode the underlying stable water mass. The local (at z=-h)
turbulent kinetic energy budget is the basis ot the entrain-
ment hypothesis. Assuming a quasi-steady state of z=-h,

and that within an active entrainment zone, the most
significant source of energy for mixing is the convergence
of flux of turbulent kinetic energy - -:-Z[W‘(—E +§)] , equation

(1-9) was reduced to:

Bw’ (-h) = %{w'[z*;.)]-h (1-10)




Estimating the time scale, W . required to transport some

of the turbulent kinetic energy.E>.to the viscinity of the

entraining interface,

2 - B .
-5 W'(!z*;,)]-a"?;‘ (1-11)

and assuming that the mixed layer depth is proportional to
distance over which turbulent kinetic energy must be
transported by the vertical component of turbulent velocity,
(WY*, T was taken to beh/AW¥and therefore from (1-10)

| and (1-11).

X . (WD) <8
Bw’ (=h) 3 (1-1)

To get the equation (1-2) and (1-3), the equation (1-9)
was first divided into the horizontal and vertical components
by assuming an isotropic dissipative structure and recalling

that é: %—:=o is included in the equation (1-9),

AW, 5 L (W' vd) U _ W Pauw  Pav _ -
Lt a[w T_]‘W i TSN TE 12)
and
AW 9 T (Wi e B Taw’ 3 (1-

2 %5¢ -u[w (‘.;L +.¢£..)] +§?a—z- +TW - te (1 13)

the equation (1-12) was integrated over the range from zz:-h-{

to 220 (Figure 1)

B Lo ) *; dz=-f0 & [WlEED)) da-f° (@ 8 swwiiz

B ® oV
| SN L0 R NS




Applying Leibnitz's rule and using the assumption (U +V")(=h-8x

0 HUTIV™Y | _ d (° o o R RTETTY L
L..: = RL...-‘“ +vT) dz = S (hTU™SVT)  (1-15)

Defining a dissipation time scale as jA:J.GJz =ﬁ%§ under
the assumption of locally isotropic turbulence and con-
sidering that Te = G + Ga in which T is the
convective time scale of large eddies (proportional tohAEM
and T2 1is the time scale of planetary rotation

(proportion to ¥ ), therefore t;‘:‘.’;}n.‘..} and

5“:.: €dz =<g>‘" + $heg> (1-16)

The vertical integration of the pressure redistribution term
is an important source or sink term for the individual

: ’
turbulent kinetic energy budget even though E;'E U ap,

L VRE-¥ O
Following Rotta (1951), Lumley and Khajeh Nouri (1974), the

equivalent bulk formulation was

° FI 4. .2 (a@y -3¢0 :
5-«-82.9:& dz = <EBX* (@ -3<wi>) (1-17)

(] 7 7 ] -
P ad . v - eRY® -3(Wn %
Therefore, ‘ € ("ax + a,,)clz = ¢EX (@ -34W)  (1-18)

Following Kraus and Turner (1967), Denman (1973) and Niiler

(1975), the shear production term was parameterized:

. ad v PO lacl dh
'L.r(w'ii+wiélz)J‘=u’|:C‘l+%%? (1-19)

where|f G| was the "excess" surface mean velocity in the

direction of the wind stress. In this case, the inhomogeneity

of the mean velocity field cannot be neglected.




g 2 W(EiE) dz=m'w
L,.s[az ( 3 2.)] B nw
If1§&l is proportional to uy, then (1-18) may be combined

with the parameterized net input from breaking waves, less |

the loss to radiating internal waves;

~foel & 2w (E+E))+ 7w W+ 7w 22 Yien ,mu‘a*mat dh Bk

From (1-15), (1-16), (1-18) and (1-20), (1-14) was written as:

L T mulMEL4h @1 (E) -3(wD)- 3 (B + Fh)E> (1-2)

Similarly integrating (1-13) over the range from z:=-h-§ to Z=o0,

d - ’ 3 ¢
£ fCheTDdz -5;_,(W+g?5§)dz- w(E+E)|

+WE| g € 42
and assuming W'se at the surface and vﬂJ&‘ negligible,
the vertical component of turbulent kinetic energy budget

was parameterized by using (1-16) and (1-17);

g—c(h Sy B[ Bw (o) + BW R ]y (< By -3677)) (1-3)
=3 (<RY*+ Fh)<E

From the heat equation, conservation of salt equation

and equation of state, the buoyancy equation was formed. : |
Averaging this buoyancy equation and using the boundary |

layer approximation, the mean buoyancy equation was obtained:

25--&57.23'.' 23 Q

“" (1-21)




To get the equation (1-4), (1-21) was first integrated

over the range from Z=-h-4 to 2z0

fog Ddeaf 2 dz + 42 (0 iz (1-22)

Using the Leibnitz's rule and taking the limit.é.;o .

the term on the left hand side can be written;

S.:,.: %%Jl: %f_:_: bdz - [-b(-h-§)] d(-h-5)
(1-23)

= & (h<®)-Bh-1) 44

Assuming W'(-h-f):o and using AE:(%)-E(—h—S) , (1-21) was

written;
B> y o€y (° ’
h%_-AB%-W (o) + E%;S_hadz (1-24)

To get the jump condition (1-6), *the equation (1-21) was
integrated over the range from Z=-h to Z20 and from Z to
Z=0 , and these two integrated equations were solved

simul taneously to eliminate iﬁ%} . Then the result was

bW’ (2) 2 BW () (1+ &) = (BW -h) +3 f adz)E

(1-25)
qj:“‘

Similarly the integration of the equation (1-21) over the
range from Zs-h-§ to z=-h with dropping the negligible solar
radiation term and assuming Hw'’ (=h-§)=0 and {-‘- approaches

zero led to

j"“ 2542 = bW’ (-h) (1-26)




By applying the Leibnitz's rule,

4 30 2 d(=h) _h-S d &
S.h-saz dz= 3 ]-t- BJ [b(h) -b¢ )—(-;P—- (1-27)

ab ing lim d(&:ﬁ)),.. lim dd-p |
an Y assuming '&'o o~ o and 'é.*

S PN dh dh
WI ) - b{=h- = =
(e B dza (LR -Beh-) = AT A (1-28)
Therefore from (1-26) and (1-28), the jump condition (1-6)

was obtained

“BW (-h) = ab $2p (1-6)

and using this relation the equation (1-24) can be written
in the form of the equation (1-4).

Using the boundary layer approximation and dropping
the negligible viscous terms, the equations of mean

motion were combined into a complex form by using & =TU+iV

at _,;c-ﬂ (1-29)

To get the equation (1-5), (1-29) was integrated vertically

over the range from Z=-h-§ to 220 with the assumption of

E.'TV'(—h-J') =0 ;
‘:—t(h<€>)=—i§h<a> -CwW (o) (1-5)

The Jjump condition (1-7) was obtained in a similar way as

(1-6).




The most important aspect of this model was the
ability to predict the year-around evolution of the mixed
layer depth together with bulk properties. This model
provides not only structural prediction but also predicts
a changing layer depth because the entrainment model pro-
vides boundary conditions at the moving density interface.
41 In addition to the non-linear dependency upon stability,
he found a Rossby number - R, =Us/(fh) - dependence for the
entrainment rate in his nondimensional solution. This
E makes possible a cyclical steady state for the boundary
' layer without requiring unrealistic values of upwelling or
lateral advection in a long term integration.

On short time scales of the order of a few days,

the upper ocean, even at higher latitudes, exhibits

significant baroclinc activity. The importance of shorter-

period fluctuations in the surface buoyancy flux in
modulating the long-term response has demonstrated the
need to know the typical daily heating/cooling cycle, solar

radiation, evaporation, conduction and back radiation as a

function of season and geographical coordinates. Some of
the most fruitful applications of this model lie in the

link-up with other models, for example, joining with an

ocean circulation model.
In summary Garwood suggested in his model that first,
| ‘ the planetary rotation is assumed to influence the dissi-

pat on for deeper mixed layers and enables a cyclical

steady state on an annual basis. Secondly, the rate of '
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entrainment for the stable regime is not accurately
reflected by a linear extrapolation of the unstable
situations. This is particularly important in modeling
the ocean boundary layer. Unlike the atmospheric
boundary case, most of the solar radiation does not
penetrate the layer. Therefore, downward turbulent heat
flux in the oceanic boundary layer is as important as the
upward flux during the course of both diurnal and annual
cycles. The non-linearity of interface entrainment
tendency parameter, which is greatest for stable surface
boundary conditions, results in a modulation of the long-
term trend of mixed layer depth by the diurnal component
of surface heat flux. Thirdly, in this model buoyant
production is somewhat more efficient than shear production
as a source of energy for vertical mixing because of its
unique effect on the vertical component of the turbulent

velocity.




2. The de Szoeke and Rhines Model
The de Szoeke and Rhines (1976) study of initial

mixed layer deepening is reviewed here because the results
will be critically analyzed in a comparison with the

Garwood model. The solution to impulsive initial deepening
is most relevant to this research on high frequency response
of the upper ocean. Following Niiler (1975), de Szoeke and
Rhines (1976) investigated the turbulent energy balance of

a wind-mixed layer (in the absence of solar heating) by
adding a new term which represents the energy to spin-up

the level of turbulence in the increment of the mixed

layer dh in time dt. The equation is

&
{-;-:N‘h*-?-_{tp(l-as&) +c.u:h}%.|% 2 Zm ek’ (1-30)
(A) 8) (<) (v?

where term (A) represents the entrainment damping, term (B)
represents the shear production at the base of mixed layer,
term (C) represents the energy needed to spin-up the level of
turbulence and term (D) is the turbulence production minus
dissipation, in which it is assumed that the dissipation is
a fixed fraction of turbulent production.

The results (using constants and parameter m,=GCz=l ,
Upzl Mysec |, £216% sec™ |, P=N =z 1074 se¢? ) were
i) For slightly later than the initial instant, since
Cos$t = |-@;fl' , the shear production, term (B), can be

reduced toxl,“tz and is negligible compared with other terms.
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Assuming a negligible entrainment damping at this early
stage, the balance (C)~~(D) holds for small t. Initially

it is a linear deepening, i.e., s.Q oc Up and this lasts
for a fraction of a Brunt-Vaisala period (~100 sec). It
attains a depth of 2~7m while the level of turbulence in
the incipient layer spins up. The term (C) here represents
a significant demand on the available turbulent energy only
during the first Brunt-Vdisdla period after initiating the
mixing. After that, it may be safely neglected.

ii) For large t (about 100 sec to 1 hr), a balance holds
between (A) and (D). After it starts deepening by turbulent
energy, the entrainment damping term grows. A tY® deepening
emerges as the turbulent work done by the wind at the
surface erodes heavy fluid from below and mixes it

uniformly through the surface layer, raising the potential
energy. This one-third power deepening proceeds from the
same mechanism that was suggested by Kraus and Turner

(1967)

iii) For still larger t (about 1 hr to 12 hr), a balance
(A)~(B) holds approximately. The mean flow has been
accelerating until after 20 to 120 mins at a depth of 5~20m,
the production of turbulent energy by the shear at the base
of the mixed layer dominate other sources and a tVY? deepening
takes over. This h=tY® was proposed by Pollard, Rhines and
Thompson (1972).

iv) For later times, the Coriolis force swings the mean

motion vector away from the surface stress direction,
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reducing the entrainment shear production (term B) below
the rate u.utz assumed above. As t increases substantially

beyond t=w/$ (corresponding to the lapse of one-half

pendulum day). An approximate balance between (A) and (D)

is established again, leading to tY? development.




II. GENERALIZATIONS OF ENTRAINMENT BUOYANCY
FLUX EQUATION OF THE GARWOOD MODEL

Garwood (1976, 1977) developed the entrainment equation
from the total turbulent kinetic energy budget by assuming
that the turbulence of the overlying mixed layer provides
the energy needed to destabilize and erode the underlying
stable water mass. The total turbulent kinetic energy

equation (1-9) at z=<h is:

J'“ u[‘” (5*5)]4. [W" +Woz <h
*Wl.h -eLh

(2-1)

The importance of the unsteady term in the atmospheric
energy budget was demonstrated by Zilitinkevich (1975) in
the case of weak stratification, and also suggested by
Garwood (1976) for the oceanic planetary boundary layer. A
more detailed study of the importance of this term will be
in the next chapter. For the order of magnitude of the
shear production term, Garwood'(l977) found that shear
production is a fixed fraction of buoyant damping in the
entrainment zone. Zeman and Tennekes (1977) also suggested
in their atmospheric planetary boundary layer model that shear
production is absent if the wind shear across the inversion
base is zero. Even if there is substantial shear, the
effect of this term appears likely to be relatively small

(Mahrt and Lenschow, 1976), because mechanical production
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)
of turbulence tends to be largely balanced locally by
viscous dissipation through the energy cascade mechanism
(Tennekes and Lumley, 1972). Since the position ( z=-h )
of the entrainment zone of the oceanic planetary boundary
layer is defined by the location where the turbulent
kinetic energy vanishes, local dissipation is also assumed
to be a fixed fraction of the flux convergence term,should
it be significant in the energy budget. Therefore, follow-
ing Garwood (1977), a balance holds among the flux
convergence term, buoyancy damping term and unsteady term.

The equation (2-1) is reduced to:

%gl-hz—%z[w'('i'+;,)]-h+wi-h el

Since the boundary erodes and retreats depending on the

level of the intensity of the turbulent kinetic energy,

it may be assumed that the level of turbulent kinetic

energy at the moving interface remains unchanged in the first
approximation. Therefore,

‘j':‘l.». at l-h 2z ot | =0
or (2-3)
g'ﬂ_hz'%%% -h

Assuming that the turbulent kinetic energy decreases
linearly with depth in the mixed layer and using the finite

difference approximation, (2-3) can be written:
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: ey = — (2-4
1 : atle 4z 3t ~ -3-¢h ot A )

{ 3f) _ _ak 3¢h) _ «®1-0) 3h _2d)3h
h

where<E» is the average value through the mixed layer.
Employing the parameterization (1-11), T= -‘%—.ﬂ‘y. , and the

jump condition (1-6),

| 2«3, B , BV | o,
;‘QWA-—WW (‘h)=—r— + bw’(=h)

o Y g A s i 5

h

and this forms

Tw h) = SEX{W™* (2-5)
h +@&Y/ab

This more general equation of entrainment buoyancy flux
replaces the equation (1-1) of the section I.D.1 for the
final closure.

Therefore, the entrainment buoyancy flux,
and the rate of layer deepening from (1-6) are functions
of the bulk values, or overall layer averages, of both
the total turbulent kinetic energy and the relative dis-
tribution of this energy between the horizontal and vertical
components. The advantages are two-fold:

i) The rate of deepening is an integral property--not
just a function of the local properties of the turbulence
field, which may be vanishingly small at Za-h inspite of

a significant rate of deepening. i

.
[y,
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ii) The relative distribution of turbulent energy among

the three geometric components is taken into account.

Being able to include the root-mean-square vertical
velocity, (W)Y, is particularly important in realistically
treating layer "retreat", %% <o0.

In the case where hab XE) , equation (2-5)
returns to (1-1) of the original model. On the other hand,
in the case <{E) M hab which is the case of weak
stratification comparing to turbulent intensity (2-5)
reduces to % a{WMHY? .| That is, if the stratification
is close to the neutral lapse rate, the entrainment proceeds
at a rate proportional to the root mean square vertical
velocity.('\'w_") + The comparable situation in the Zeman
and Tennekes model is that ¥W’ tends to zero as the lapse
rate, ¥ , tends to 0 (adiabatic conditions). Thus the
energy budget in the absence of shear term and dissipation

terms becomes a balance between the unsteady term and
oh

flux convergence term i.e., Y3 x 0w where 6% is
the average standard deviation of vertical velocity within

the mixed layer and will scale with ¢ Wi3y'* .
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ITI. DISSIPATION AND FREQUENCY RESPONSE

A. DISSIPATION AND ITS TIME SCALE

Turbulence is always dissipative and this dissipation
occurs through viscous shear stress doing deformation work,
which increases the internal energy of the fluid at the
expense of kinetic energy of the turbulence. When these
local losses due to dissipation are balanced by the local
inputs of energy, then the turbulent structure in a given
shear flow might be in a state of dynamical equilibrium.
Since the turbulence consists of fairly large velocity
fluctuations governed by nonlinear equations, one may expect
a behavior like that exhibited by simple nonlinear systems
with limit cycles. In a rapid energy transfer situations in
which past events do not dominate the dynamics, one may
expect that this limit cycle type of equilibrium is governed
by the local length scales and time scales of the mean flow.
In this turbulent motion the largest eddies may be as big as
the width of the flow, which may then be an appropriate length
scale in the analysis of the interaction of the turbulent and
the mean flows. Large eddies lose a significant fraction of
their kinetic energy within one "turnover time", but a
negligible fraction is directly dissipated. This implies that

the nonlinear mechanism that makes small eddies out of large

ones is as dissipative as its characteristic time permits.




The nonlinear mechanism is ultimately dissipative because

it creates smaller and smaller eddies until the eddy sizes
become so small that viscous dissipation of their kinetic
energy is dominant (eddy Reynolds number of order one).
Since small-scale motions tend to have small time
scales, one may assume that these motions are statistically
independent of the relatively slow, large scale turbulence
for a sufficiently large Reynolds number for the mean flow.
Therefore, the small-scale motion should depend only on
the rate at which the large-scale motion supplies energy
and on the kinematic viscosity. Thus it is assumed that
this rate of energy supply should be equal to the rate of
dissipation. If the dissipation rate, € , can be related
to the length and velocity sca;es of the large scale tur-
bulence, one can assume that the rate at which large eddies
supply energy to small eddies is proportional to the
reciprocal of the time scale of the large eddies and

therefore viscous dissipation of energy can be estimated

from the large-scale dynamics which do not involve viscosity.

The amount of kinetic energy per unit mass in the large-
scale turbulence is proportional to IE‘ and the eddy time
scale is assumed to be proportional to LAUMY? where 1
represents the size of the largest eddies or width of the
flow. From this general idea, Garwood (1976,1977) derived

va
a total dissipation time scale, ¢ = S!'h)_- +-$- (for




derivation see section I.D.1 and for more detail see

Garwood (1977)) by including the planetary scale of
dissipation. This is the integral time scale of the
turbulence. Depending upon the time scale ( Tg ) of the
surface forcing (variation in atmospheric conditions), an

interaction between two time scales might be expected.

B. SUBJECTIVE EXPECTATION AND ANALYTICAL SOLUTION TO
INTERACTION BETWEEN Te¢ AND %

1. Constant Dissipation Time Scale

Garwood (1976) developed a solution for forcing
period much longer than the integral time scale of the
turbulence. This solution is governed by the dissipation
time scale ( Tg ). For these time scales one can assume a
quasi-steady state so that (1-2) and (1-3) become diagnostic
equations for <w» and (w®+v3? . In this way, the
entrainment buoyancy flux (Fig. 3) can be computed directly
as a function of the surface fluxes of momentum and buoyancy.
However, fluctuations in surface boundary conditions u*z
and BPW'(e) of sufficiently short period require the con-
sideration of the unsteady terms.

A very simple model which can be solved analytically
;}ovides an indication of the importance of this unsteadiness
and how it might be treated. In the simple model, only two
large terms, shear production and dissipation, are balanced

by the time rate change of the turbulent kinetic energy,




AE) +‘g>=%’.(|+asmwt) (3-1)

ot T

where "a" is the amplitude of fluctuation and W= 2w/ ¢
as its frequency. Assuming that the dissipation time
scale is constant and defining a dimensionless time, T=t/T »
a dimensionless turbulent kinetic energy, (= %é%% '
and frequency, w, = Tews=2TT/G ’

(3-1) is written;

-3-524.([): 1+ asSiNn(wet) (3-2)
ot
For cyclical steady state, the analytical solution to (3-2)

is
q”'“'("u{‘?a‘) (SN WeT — W Cos weZ) (3-3)

For the case a=o, ¥ =1 which is the non-cyclical
steady state solution. For finite amplitude, a, the full
solution (3-3) is needed. In terms of frequency, for the
low frequency fluctuations, wy {~.5 (i.e., long period
ccmpared with & ), the approximation of quasi-steady
state is satisfied. Depending upon the Rossby Number
(Rg = We/tfl)) and the mixed layer stability parameter
(He =‘£E§§ﬂl ), this low frequency fluctuation corresponds

to a fluctuation period of several hours or longer. From




the complete solution (3-3), the important aspect is the

relative magnitude of the response associated with the

fluctuating component (fig. 4). For very high frequencies,
W, ¥ 1, the amplitude of the response is negligible. 1In
other words, the high frequencies are filtered out. This
becomes a possible cause of error in using observed winds
to drive a model having an integration time step smaller

than or comparable with T . If the quasi-steady state

assumption is made to facilitate obtaining a solution, but
without filtering or smoothing the surface boundary
conditions, an incorrect high-frequency response will not
only be present but it may bias the mean trend.

2. Non-constant Dissipation Time Scale

In this case the same simplified equation (3-1) is
considered, but the dissipation time scale & is no longer
constrained to be constant. Using the convective dissi-

pation time scale = of Garwood (197%), (3-1) becomes;

y }
k| BV

aE __BV | u
at = bk h

(1+2Sin wt) (3-4)

To examine the significance of the unsteady term, equation

(3-4) is first nondimensionalized by defining

- <B
w- u: )
-(:ﬁh;t- '

f
and Wy = i%f%
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then (3-4) is transformed to:

2 ooy 1 vosin (@) (3-5) :

The equation (3-5) is solved numerically for several

combinations at amplitude (a=0.1, 0.5 and 1), and angular
frequency of forcing ( %%"" 200M ,20Wm ,2W™ ,0.2W, and
0.02m). Initial adjustment was achieved at about 9_%,4 -
There is also a tendency that the higher the forcing
frequency,%£} , the shorter the initial adjustment period
that is needed. At the early stage of the wind forcing, the
change of turbulent kinetic energy is mostly due to the
wind forcing itself. As the energy supply from the wind
continues, and after an initial adjustment is achieved, the
balance among the three terms is changed and becomes a
function of the amplitude and frequency of the forcing.
Different responses of the unsteady term
to different frequencies of forcing are shown in figure

5 a-b for the case of small (a=0.1l) and large (a=1)

amplitude fluctuations. For both amplitudes, there is a

HED :
ot

to vary with frequency even though it is very small. This

tendency for the mean value of the unsteady term, {h

is seen more clearly in the case of small amplitude fluctu=
ation (a=.1) because of the magnified scale for the small
amplitude case. The mean value is a little above zero for
high frequency and it approaches zero as ‘“he frequency is

getting lower. This effect is also shown in figure 6 which

Lo




7]

are plots of the case 1); Sinwt function of the wind
forcing versus wt , case 2); fluctuating component of
dissipation normalized on the amplitude of the wind
production ( (%nu)/a ) versus Wwt for a=1, and
case 3); same as case 2) except a=.1. Comparing the
fluctuating component of dissipation, case 2) and 3), with
the constant wind forcing case 1), for each of three fre-
quencies, one can see that the higher the frequency, the
smaller the fraction of wind production that is dissipated
in the mean. In other words, more energy is stored in the
mean to deepen the mixed layer.

Figure 7 shows the peak-to-peak amplitude of the

HEBD
ot

amplitudes of fluctuation a=1,0.5and 0.1. For each case, the

unsteady termn -e, versus frequency &u% for three

peak-to-peak amplitude is almost a constant close to 2,1

and .2 respectively over the frequency range !%%::zn to

200 T and it is negligibly small for the frequency

range below .02 T . Some interesting transition

cases occur over the frequency range '{Th = .02T to 2m
L

in which the adjustment time scale and forcing time scale
are comparable, and therefore interact. For relatively
low-frequency surface forcing, %!3 < .o2m (nondimensional-
ized period Te = &% 2 100), regardless of magnitude of
oscillation amplitude, the turbulent kinetic energy budget
is in a quasi-steady state, i.e., dissipation is nearly

proportional to the wind shear production as indicated by




the negligible peak-to-peak amplitude of unsteady term,

fLJﬁ!? . Therefore, for this case, (3-4) reduces to
W st
CBY=ul (1+2sinwe)? (3-6)

For relatively small amplitude oscillations (a ¢0.5),
regardless of frequency, it may be reasonable to assume

a quasi-steady state for many cases in which a high degree
of accuracy is not required. But for relatively large
amplitude oscillations, the unsteady term is more clearly
frequency-dependent. For a{ 0.5 and in the transition
frequency range below %E =2.27% y it may not still be
a bad approximation to assume a quasi-steady state and use
(3-6) in an approximate sense. On the other hand, for
a2.5 and frequency %El =.am , this unsteady term is
no longer negligible. Therefore it is strongly suggested
that the full form of equation (3-4) be used to avoid an
incorrect high frequency response.

Figure 8 shows the phase difference between the
wind forcing and the dissipation as a function of the
frequency of the forcing. For the frequency range
there is almost no phase shift. As shown by the negligible
amount of hysteresis in figure 9a, the dissipation is nearly
proportional to the wind shear production after the initial
ad justment period 0¢ %ﬁf <4 . In the other extreme of
high frequency forcing ( G, > 20T ), there is almost a °0°

phase shift between wind production and dissipation. As
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shown in figure 9d, the adjustment period is longer
relative to the forcing time scale, but dissipation
converges to a constant value that is independent of the
frequency and magnitude of the forcing oscillations. For
the frequency range, .02aw (% <207 , in which the two
time scales are comparable, the phase shift increases
nearly from zero at .02W to nearly 90° at 20m . Figure
9b and 9c¢ show that since the adjustment time scale and
the forcing time scale are comparable and interact, this
causes the ellipsoid to achieve a maximum width in this
domain, 1< Tg € 10. An important result is revealed by
figure 9b which shows that the amplitude of the response
cycle is nearly proportional to the amplitude of the
forcing cycle, inspite of the hysteresis. Therefore, if
phase information is not crucial, it is accurate for this

case to assume a quasi-steady state.




IV. ASYMPTOTIC PROPERTIES OF THE GARWOOD MODEL

A. NUMERICAL RESULTS OF GARWOOD MODEL

If quasi-steady state is not assumed, the full prognostic
equations may still be solved numerically. The full
equations of Garwood model, (2-5), (1-2), (1-3), (1-4) and (1-5)
with the jump conditions (1-6) and (1-7) are solved
numerically for about a one-day period using hypothetical
initial conditions, h=1m, <&»=.03 em¥/sec® | (WN) =.0] (M¥sect,
D=0 y V20 and three different cases of ab ( ab=gEx16* ,
pxic? and 5xj0? ¢m/sec ). The size of 4b indicates the
degree of stratification and is related to the lapse rate,T,

as follows}

. Th B g
ab= St - L Twio) dt (4-1)

2R ~ a2 _ ocd -

where M= -~ _dgaz ~ 25& for the simple case of
vertically homogeneous salinity. Assuming the surface
buoyancy flux to be negligible, BTw’(ez0, Abz=5xiot cm/sec?

corresponds to £ = (%¢/250m (i.e. ['= 1075 sec=? ), af=5xig%m/ne

corresponding to £1=1%/a5m (i.e.M210%gec* ). The
constant employed here is m=¢ . To simplify the problem,

the momentum flux UW’(e)=| tm¥/sec?, V'W'ap , the constant
frictional velocity Ug=|¢m/sec ,4=0, Tw'=0 and {:]d" sec™
are also assumed. Using these conditions, three different

curves of each parameter are plotted for each lapse rate.




Figure 10 shows that the stronger the stratification, the
larger the amount of turbulent kinetic energy in the mixed
layer. It starts from (¢ §)= .03 cm¥%eland very rapidly
increases during a short period immediately following an
impulsively applied surface forces. ¢(E> shows a maximum
at t=3~5 hrs., a minimum at t=17~18 hrs. and a second
maximum at t=24~25 hrs. The figure also shows that the
weaker the stratification, the earlier the maximum is
reached. The vertical component of turbulent kinetic
energy shows a similar pattern except for the case of
weak stratification (f—%:l‘c/zsom) in which it decreases
monotonically (fig. 10b). Figure 11 shows <W">A®) versus
time for ﬂ:l'tlz.sm y1%¢/25m and |°¢/agem . Starting with
W ®= 0.33, it reaches 0.15, 0.14 and 0.13 respectively
after a one-day period. These sudden reductions in <§F‘§[§>
occur at a very early stage and then stay nearly constant.
In other words, vertical components of turbulent kinetic
energy relative to total kinetic energy adjust rapidly in
the early stages, and, the stronger the stratification, the
larger will be the vertical component relative to total
kinetic energy.

Figure 12 shows changes in 4% with time. Each a®
increases monotonically, although more rapidly in the case
of stronger lapse rate. Larger values of 4B contribute to

more turbulent damping due to mixing at the interface.




Figure 13 shows the change in current with time, and
indicates that the stronger the stability, the larger will
be its magnitude. With the imposed east wind, the currents
start flowing westward at the initial instant. The west
component reaches a maximum value of 17 cm/sec, with the
northward component current still growing. As the west
component decreases to zero, the north component current
reaches a maximum of 25 cm/sec. This slowly turning current
direction is caused by Coriolis force which deflects the
current direction to the right in the Northern Hemisphere.
After one inertal period, both U and V decrease to zero.

The maximum of U0*+9* occurs at about t=4hrs and the

minimum is at about t=17hrs. Also the figure 13 shows

that the magnitude of each successive maximum value decreases
with time.

Figure 14 shows the monotonically increasing mixed layer
depth with time. All cases start from 1lm and after lossec
the mixed layer depth is 45m for 2% = 1°C/250m, 23m for
4 - 1°C/25m and 11m for 5% = 1°°/2.5m. These indi-
cate that the larger the stability, the lesser the deepening
it is.

Figure 15 a-c show %/('\573)" . %’2‘/“’ (or ﬂ
because Uy= |¢myéeis assumed) and */5)” for each lapse
rate. The middle curve of each figure indicates thatv%%

decreases more rapidly in large stability than in weak

: di ,—
stability. For each case, d{./‘wn’“ ’ “%/U. and */‘3)‘“
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are not parallel prior to about one inertial period, i.e.,
%«(Wa)"‘ and%%mut would not produce the same deepening
even though Pw’(0)sp is assumed. The figures imply that in
general the deepening is not proportional to (W2 ,(EW?

Or U,, but rather depends upon the full form of entrainment
dh _ @@y
dt @ +hab
so thatg%:(w‘?z)*during the early stages (Figure 15d).

equation . An exception occurs if hab=o0
Figure 16 shows the inverse of the bulk Richardson
number changing with time. For t {20 mins, R is large
in the case of weak initial stability because of the small
a% . After 20 mins, the larger values of Ri? occurs for
the cases with larger initial stability. This is due to the
strong mean shear developed at this stage. At one inertial
period, R goes to zero because of the stagnation in
current at this moment. Halpern (1974) suggested that if
local Richardson number (Ru = %E/ 3-5’-213 ) is less than
one-fourth, instability may occur, and if R =1, marginal
stability exists. He also suggested in his experimental
study of Northern Pacific Ocean that Ri =1 is a critical
condition for the occurence of shear instability. Therefore,
for the case of €I =1°/agom, there is an instability at
about t=100sec. If R;T is considered to be an average of
Qu" over the mixed layer depth and therefore Rf')Ral" ’

there may also be an instability at t=4hrs for the case of

%: 1*¢/2.5m - This instability leads to a maximum turbulent

kinetic energy at this time interval.




Therefore, how the turbulence develops with time, as
indicated by equation (1-2) and (1-3), can be summarized.
The total turbulent kinetic energy (fig. 10) «E» jumps
due to impulsively applying surface stress to an initially
resting fluid, whereas the energy produced by any mechanism
is dissipated at a rate proportional m:tgfm . Then, the
shear production is increased to a maximum value even
though the damping also increases. The maximum turbulent

kiretic energy exists at about t=4hrs, and then decreases

toward a minimum mainly due to decreasing shear production
at about one inertial period.
The more detailed, term-by-term study is left for the

next section.

B. ASYMPTOTIC REGIMES IN MIXED LAYER DEEPENING
Combining equations (1-2) and (1-3) of the Garwood
model, the total turbulent kinetic energy budget equation

is obtained.
%ZI: amud+ |az|‘§% + hFw (o) -hAI,g-,'g-z @&+ $he@))

Using hab =4iN*K® . one can write the above equation in the

following order;

-}_-N‘h‘-ﬁ ~lazlq} + ﬂ-’:ﬁm = 2muy -2 (¢EY? 4 Shedd) (4-2)
(A) (8) (e) (D)

The corresponding equation from de Szoeke and Rhines (1976)

may be obtained by dividing equation (1-30) by ne,




a2 y 2 7dh . 3
[-}N‘h o ﬁu-w{t) +Gu ] = 2mus (4-3)

(A) 8) «) O

Equation (4-3) is originally the Niiler model except for
the term (C). The term(A) in both (4-2) and (4-3) is an
entrainment damping term which is a upward buoyancy flux

at the base of this mixed layer. The term (B) in both
equations is the shear production term. The term (C)

in (4-3) is the energy needed to spin up the level of
turbulence, CM: , in the increment of mixed layer dh in
time dt, while the term (C) in (4-2) is the nonstationarity
term which shows the incremental change of the turbulent
energy budget d(h¢&) ) in time dt. The term (D) in both
equations is the wind shear production minus dissipation.
Before analyzing the numerical solutions it might be useful
to examine the characteristics of both equations and their
differences.

i) Both models contain nonlinear equations, i.e., the
Garwood model is a set of six nonlinear differential
equations which can be solved implicitly for each parameter,
while the de Szoeke and Rhines model has one nonlinear
differential equation.

ii) Both models have numerical problems when the zero-

initial condition (h(%t=0)=0) are used, although such

conditions are not likely to occur in nature.




iii) The nonstationarity term in Garwood, d_(%k

‘(i) Jh . a
h Ty -NE)TE is not exactly comparable to Co U 49'
of de Szoeke and Rhines. Even with the assumption of no
surface buoyancy flux.<E/u: does not approach a constant

&7

for Zz=\%¢/2.5m, -:-}:l‘c/:&s'n ari g:rc/zgm up to
one inertial period. After this period.tﬁfu,2= constant
holds approximately, although it is still not exact except
for the case of weak stratification (figure 10a). Even
when the conditiontﬁYu,2= constant holds, there is a
4@>

iv) Term (D) in the Niiler (1975) model is

difference of h between the two models.

parameterized in the manner;

~w (B E)| - [aw St dz - (Sedz =moul

where "d " is the depth of the perturbation energy prod-
uction zone near the surface. This implies that only the
near surface production is dissipated. In other words,
dissipation is a fraction of production term near the
surface. None of the shear production energy at the base
of mixed layer and the surface buoyancy production energy
(this term is not considered for this study) goes to
dissipation. Because of this parameterization, the shear
production at the base of mixed layer has only an interaction
with the entrainment damping term. On the other hand, in
the Garwood model, dissipation is parameterized in a way
that all the production including the entrainment shear

production and the surface buoyancy flux is dissipated.
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Term (D) in the Garwood model is the turbulent production
over the whole depth minus the totél dissipation, i.e.,
the viscous dissipation as well as the planetary scale
dissipation. This second dissipation term is not included
in the Niiler model. If the planetary scale dissipation
is neglected and % = a constant is considered, then
term (D) in the Garwood model approaches term (D) in the
de Szoeke and Rhines equation of the Niiler model within
a constant factor.

~With these characteristics and differences in mind, two
cases of the Garwood model and one case of the de Szoeke and
Rhines model are sclved numerically using the same conditions.

Case 1) The equations (2-5), (1-2), (1-3), (1-4)and (1-5)
with the jump conditions are solved numerically using the
same constants and initial conditions as in the case of
QI =|°¢/25m (r=to"*sec? ) in Section IV.1 (i.e.,
Parameters and boundary conditions: m=¢, Ug=|Wm/sec , §:lo'4$0€'
U'w’ ()= | cm/sec? , Ww’ (=0, BW'(s)z0 and initial conditions:
Rzloocm, <B>=.03cmYsec? « <W2)=.0| cm¥/sect , &b =5x (0™ cm/sec?)

Case 2) is similar to case 1) except that there is no
planetary scale dissipation term in (1-2) or (1-3).

Case 3) Equation (4-3) of de Szoeke and Rhines is solved
numerically using GC=m,=) v Ug=) em/sec » £= 157% gec
and M= Nz |g*sec® .

Each solution is displayed from t=50sec because the

initial values of terms (C) and (D) are large. The three

cases of term (A) are plotted in Figure 17. Maximum
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entrainment damping occurs at t=4~5 hrs and a second
maximum at t=25 hrs for each case. The entrainment damping
of the de Szoeke and Rhines model is twice as large as that
of the Garwood model at the time of the first maximum and
remains larger than that of the Garwood model throughout.
Case 2) of the Garwood model and Case 3) of de Szoeke and
Rhines are very close at time equal to one inertial period.
The entrainment damping of Case 2) (i.e., without planet-
ary scale dissipation) is larger than that of Case 1) of
Garwood model after t=15 mins and the difference increases
with time. For the time interval less than 15 mins, the
planetary scale dissipation term does not make any con-
tribution to the entrainment damping. The large damping of
term (A) in the de Szoeke and Rhines equation compared to
the Garwood model occurs inspite of the large shear prod-
uction in the Garwood Model (Figure 18). This may be due
to the fact that none of the shear production of the

de Szoeke and Rhines equation dissipates. Instead, all

of this energy goes to deepen the mixed layer, and
therefore the entrainment damping grows larger to offset
the larger entraining energy. The reason for larger
damping in case 2) than in case 1) is because there is less
dissipation in case 2) (without planetary scale dissipation)
and thus there is more entraining energy available, against
which entrainment damping grows. Since this planetary scale
dissipation increases with time, the difference in the

entrainment damping betiveen the two cases also increases
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with time. Since the entraining due to entrainment shear
production decreases to zero (Figure 18) at one inertial
period in all cases, the net entraining energy in case 2)
and case 3)‘is the same at this time stage and therefore
the entrainment damping in case 2) and case 3) is almost
the same. Whereas, case 1) has less entraining energy
because of planetary scale dissipation. This leads to less
entrainment damping at this same time stage.

Figure 18 shows term (B) for the three cases. The
figure shows that the entrainment shear production of the
Garwood model is not affected by the planetary scale
dissipation term and the term (B) of the Garwood model
is larger than that of the de Szoeke and Rhines model at
least for one-day period. It also shows that the time of
maximum shear production agrees with the time of maximum

entrainment damping as discussed in term (A). The reason

for the smaller entrainment shear production of the de Szoeke

and Rhines model is because there is no dissipation
attributable to the entrainment shear production, and this
leads to larger deepening in the de Szoeke and Rhines model
than in the Garwood model (Figure 19). Therefore, the term
(B) of the de Szoeke and Rhines model, which is divided by h
shows a smaller value of extrainment shear production.
Figure 20 shows the value of the (C) terms. Again, the
planetary scale dissipation term of the Garwood model does

not affect this term. This term in the Garwood model is




larger than that of the de Szoeke and Rhines, although
the difference between the two models diminishes in time.
The reason for term (C) (Figure 20) being larger in the case
of the Garwood model, and possible for the decrease in the
difference with time is because of the omission of the term,
hfgs? , in the de Szoeke and Rhines model. In addition,
this is also because<§>/u: tends to be large at first and
only becomes nearly constant after about an inertial period.
The last and important (D) terms are plotted in figure
21. The term (D) of de Szoeke and Rhines is equal to 2.0
and thus appears as a straight line. On the other hand,
the term (D) for case 1) and case 2) of the Garwood model
varies with time. After several minutes, the planetary
scale dissipation term starts to act and because of this
action, the term (D) of case 1) is always less than that of
case 2) with larger differences at the maximum and minimum
values. After one inertial period,case 2) and case 3) are
close together, because there is no entrainment shear,
therefore no dissipation of entrainment shear production
(this is always the case for de Szoeke and Rhines) and no
dissipation from planetary rotation in both cases. The
larger differences of the term (D) between case 1) and case
2) at the time of minimum is because of the larger value
of <B> due to large entrainment shear production which

contributes to larger planetary scale dissipation,

The term (D) of the Garwood model shows a negetive value




between tsl.3 hrs and t=10.1 hrs. The reason for this
negative value during this time interval is because the
term (D) is not a net production term, i.e., this
term does not include the shear production at the base of
the mixed layer but does include the dissipation from that
entrainment shear production. Therefore, this term shows
a minimum during this time interval whereas term (B)
(Figure 18) shows its maximum.

To examine the asymptotic regimes, the solutions for
case 1), case 2) and case 3) are plotted for separate
(A), (B), (C), and (D) terms and also for B/A, C/A and
D/A following de Szoeke and Rhines (see also Figure 2).
However, since the results for case 1) and case 2) are al-
most the same, only case 1) will be considered. From the
initial instant to about t=5 mins a balance (C)~ (D) holds

for the Garwood model (Figure 22).

d(h<®))

2t 2m Ul -2 (B 4+ fhEr) (4-is)

This is similar to the balance in the de Szoeke and Rhines
model except that the duration for their model is less than

100 sec. In the de Szoeke and Rhines model

c.u:ﬁ‘-»—zm.u: or %xu, (4-5)
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This (C)~(D) balance for both models implies that the
initial deepening proceeds due to turbulent motion in the
mixed layer.

After this period, approximately from t=5 mins to
t=18 mins, there is no simple balance in the Garwood
solution. Therefore, the full form of the turbulent
kinetic energy equation is required during this period.
However, in the de Szoeke and Rhines model, a balance
between (A) and (D) holds rather clearly from the early
stage to about 1.2 hrs. For the Garwood model, this is
the period that the value of nonstationarity is decreasing
and entrainment shear production is increasing, although
both the entrainment damping and the production minus
dissipation are increasing to offset the value of non-
stationarity and shear production. From t=18 mins to
about t=12hrs, a balance (A)~»(B) holds for the Garwood

model,

-&u‘h'%% ~ lAﬂ‘{%

or

Riz LBl ~ (4-6)
hab

This is the regime in which the bulk gradient Richardson

numbers is nearly constant (R~ ). For this time domain,

the value of nonstationarity is decreasing and the strong

shear production is balanced by the entrainment damping.

In the de Szoeke and Rhines model, this balance (A)~=(B)




[ S R - i

holds from t=1.2 hrs to 8.8 hrs, which is somewhat shorter §

| period compared to the Garwood model. Finally following f

t=12 hrs, a balance (A)~~(D) holds for the Garwood model

a3 3 _ = W2 ™3 fie
e ds ~ 2mul -2 (ET 4+ ShEY) (4-7)

Likewise in the de Szoeke and Rhines model, the same

| balance (A)~(D) holds although this begins earlier at

t=8.8 hrs.

R e e s gl v« .
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V. SUMMARY

The one-dimensional model of the ocean mixed layer of
Garwood (1976, 1977) has been further generalized. The
entrainment buoyancy flux equation in this model is derived
from the turbulent kinetic energy budget at the base of the
mixed layer. In earlier models, the unsteady term
has been considered to be negligible in the derivation of
the entrainment buoyancy flux equation. From the reduced
form of the turbulent kinetic energy equation in which a
balance holds among the shear production, the dissipation
and the unsteady terms, Garwood (1976) nondimensionalized
and solved this equation linearly using a constant dissipa-
tion time scale. He suggested that if the quasi-steady
state assumption is made to facilitate solution, without
filtering the surface boundary conditions, an incorrect
high frequency response will not only be present but will
bias the mean trend. Following these suggestions, the
unsteady term has been included in the parameterization of
entrainment buoyancy flux equation. Even though the entrain-
ment buoyancy flux equation of the Garwood model is sufficient
in most cases, this new generalized equation is necessary
to study the asymptotic regimes.

To examine the importance of the unsteady term in the

kinetic energy equation in more detail, the same reduced form

as the Garwood (1976) equation is nondimensionalized, and
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solved numerically using a nonconstant dissipation time
scale, T = h/¢®&» . Solutions for variable amplitudes of
fluctuation and forcing frequencies were obtained and
their results are as follows. After an initial adjustment
period o¢ E&"-( &y

i) For any amplitude of fluctuations, the quasi-steady
state assumption may be good, ifwWh/u, £0.02m.

ii) In the case where the amplitude of the fluctuation
is smaller than a half of the mean amplitude or Wh/Ue< .27
(i.e., Tg>» 10) the assumption of quasi-steady state may be
possible.

iii) For the frequency Wh/Ue>.2T , or the amplitude
being larger than one-half of the mean amplitude, the
unsteady term should not be neglected.

Following the lead of de Szoeke and Rhines (1976) and
Niiler (1975), the relative contributions of entrainment
damping, entrainment shear production, nonstationarity,
wind shear production and dissipation were examined. The
specific differences between two models are:

i) The Garwood model is computed implicitly for each
term whereas the de Szoeke and Rhines' model is solved
explicitly.

ii) Even with assumption of &B/u} = a constant, an
additional term h%’ is in the Garwood model for the non-

stationarity term (C).
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iii) Dissipation is parameterized in a different

manner, that is, Niiler (1975) parameterized the

dissipation term as a fraction of near-surface production
term, whereas Garwood (1976, 1977) parameterized the
dissipation term in relating to net production. The
numerical solutions of both models indicate that larger
entrainment damping occurs in the de Szoeke and Rhines
case inspite of smaller shear production compared to Garwood.
Also, the solutions indicate that a larger nonstationarity
term occurs in the Garwood model, and that a constant
production minus dissipation term occurs in the de Szoeke
and Rhines model compared to large variation in the
Garwood model including the negative value of this term.

Following the method of de Szoeke and Rhines, each
asymptotic regime is classified for both of the models.

i) From the initial instant to about 5 mins. a balance
between the nonstationarity and the production minus
dissipation holds in the Garwood model, i.e.,

i‘_d_**?l ~ 2mud -2 (B34 $h¢BY)

(C) (D)
This same balance holds in de Szoeke and Rhines with
duration from the initial instant to about less than 100 sec.
ii) From t=5 mins to t=18 mins, a balance holds for the
full form of the turbulent kinetic energy equation, whereas

in the de Szoeke and Rhines model, a balance between the




entrainment damping and the entrainment shear production
holds;

%mﬁk‘ﬂé. ~ |AZV‘€H}

(4) (B)

R T34 )
' hat i

This balance (A)a (B) holds also in the de Szoeke and Rhines
model from t=1.2 hrs to t=8.8 hrs.
iv) Following t=12 hrs, a balance between the entrainment

damping and the production minus dissipation holds;

Nh? %2 ~ 2mu} -2 (&Y $h&>)
(A) (B)

whereas in the de Szoeke and Rhines model, the same balance

(A)~ (D) holds, although this balance occurs a little

earlier, from t=8.8 hrs.
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