
‘7
AD AOG1 1+07 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE——ETC FIG 9/2

NAMING AND SYNCHRONIZATION IN A DECENTRALIZED COMPUTER SYSTEM. (U)
SEP 78 0 P REED N00014—75— C—065t

UNCLASSIFIED MIT/LCS/TR—205 ML

AD
0640

__ ______ p

— - —i

LA BOR ATORY FOR
N

~~~~~~ I!~J4~~~~ F

~~ COM PUTER SCIENC E TECH NOLOGY

NOV 21 1918

~~~~~~~~ U
F MIT/LCS/TR-205

NAMiNG AND SYNCHRONIZATION
IN A DECENTRALIZED

COMPUTER SYSTEM

~~~

~~ I 
~~~~ 

-~~~~~~ ‘:

David P. Reed

This research was supported by the Advanced Research
Projects Agency of the Department of Defense and was

monitored by the Office of Naval Research under
Contract No. N00014-75-C-0661

545 TECHNOLOGY SQUARE , CAMBRIDGE . MASSACHUSETT S 02139

I l L i7
-~ .__ ,.Jt.,~i.STa* M~ 9.*C,14~.,- -~øU4

SECURITY CLA$5IFICATIO$ OF THIS PAGE (lTh.n Dat. Ent.r.c ~ _________________________________

‘E”~
’q “

~~~ E £ i~ 
READ INSTRUCTIONS

is ruic u uu’i..UM NTATIUN r~u BEFORE COMPLETING FORM

12. 
GOVT ACCESSION NO. 3. RECIPIENT’S C A T A L O G  NUMBER

4. TITLE (wd Subtiil•) 5. TYPE OF REPORT & PERIOD COVERED

~~ Naming and SYnchronization in a Decentralizyl/  Ph.D.Thesis — Sept.15, 1978
Computer Systems 6. PERFORMING ORG. REPORT NUMBER

MIT/LCS/TR—205
7 AUTHOR(s) S. CONTRACT OR GRANT NUMBER(S)

~~~~~ ~E~T~T~TTL ~~ l4 75
~~~

Ø661
~X

9. PERFORMING ORGANIZAT ION NAM E AND ADDRESS 10. PROGRAM ELEMENT. PROJECT . TASK

MIT/Laboratory for Computer Science
545 Technology Square /
Cambridge, MA 02139

I I .  CONTROLLING OFFICE NAME AND ADDRESS ~~ Ij . RE~~afl T SATU-

Advanced Research Projects Agency f / ~ ~Septtmb%?’~~~78
Department of Defense ( 4 - -

~~14u0 Wilson Boulevard
Arlington, VA 22209 183

*4 MONITORING AGENCY NAME & AOORESS(U dl fl .,..nt fr om Controlling Oili c•) IS. SECURITY CLASS . (of this t.port)

Office of Naval Research
Department of the Navy Unclassified
Information Systems Program Is.. OECLASSIFICATION/ DOWNGRADING

Arlington, VA 22217 SCHEDULE

IS. DISTRIBUTION STATEMENT (of hi. R port) clIE~IIIII~ -~~— i 
~~ 

--

~~~~

Approved for public release; distribution unlin/iced

*7. DISTRIBUTION STATEMENT (of ih. abstract .nt.r.d In Block 20. if dlfl.r.nt from R.p orS)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Co~ tInu. on r.v•rs• .id. if n.c.ssary id id.ntily by block numb.,)

distributed computer systems
reliability
synchronization

20. AB’~~~RACT (Continua on ,.v.r.. aid. It n.c..aaty and id.ntity by block numb.,)

~~In this dissertation, a new approach to the synchronization of accesses to
shared data objects is developed. Traditional approaches to the synchronization
problems of shared data accessed by concurrently running computations have
relied on mutual exclusion —— the ability of one computation to stop the
execution of other Computations that might access or change shared data

& accessed by that computation. Our approach is quite different. We regard an
object that is modifiable as a sequence of immutable versions, each version is

DD
~~~~~~~ 

‘1473 EDITION OF I NOV 65 IS OSSOLETE

SECU~~IT’~ CLASSIP~’GA35ON OF TIllS PA~~E (RI,.n Data LM.lrif

_ ~g_ f_~*~ 
:~
:-

~
- . ~~~~~~~~~~~~~~~~~ 

— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

SECURITY CLAUIY$CATION OF THIS PASE(WSom, bat. *“ .4)

2O~~~the state of the object after an up~Iate is made to the object. Synchroniza-
tion can then be treated as a mechanism for naming versions to be read
and f or defining where in the sequence of versions the version resulting
from some update should be placed. In systems based on mutual exclusion,
the timing of accesses selects the versions accessed. In the system
developed here, called NAMOS, versions have two component names consisting
of the name of an object and a pseudo—time, the name of the system state to
which the version belongs. By giving programs control over the pseudo—time
in which an access is made, synchronization of accesses to multiple
objects is simp1ified.~~~

NANOS is intended t~ be used in an environment where unreliable
components such as communication lines and processors, and autonomous
control of resources occasionally cause certain objects to become in-
accessible, perhaps in the middle of an atomic transaction. Computations
may also suddenly halt (perhaps as the result of a system crash) never to
be restarted . NANOS provides facilities for recovering from such failures,
grouping updates into sets called possiblities, such that failure of any
update belonging to a possibility prevents all of the other updates in that
possibility. The naming mechanism of NANOS also provides a useful tool for
restoring a consistent state of the system after a failure resulting in
irrecoverable loss of information or a user mistake resulting in an
inconsistent state.

An important motivation for the development of NANOS is the need to
support decentralized development of application systems by combining
existing application systems that deal with shared data. NANOS supports the
construction of modules that locally ensure their own correct synchroniza-
tion and recovery from inaccessibility. Larger modules that use several
separately designed modules can then be constructed, perhaps with additiona
synchronization constraints, without modifying the modules used. In most
systems based on mutual exclusion, such post hoc integration of modules is
difficult or impossible.

7
7.

$ICUNI~ Y CLAISIPICATION OP tHIS PA6S(~~ an bat. ~~~~~~~~~~~~ 

-., -- -- ~~— ~~-., - 
I

- “.. ~~~ -~~ -.-. — -  . - . — -  . . 
-

--— L ~~~~~~~~~~~~~~~~~~~~~~~ 
- _ ,_.4.~ = .-- - -‘- .—-———.~—- -- .• _~



_ _ _  ~~~~~~~ ‘iTT~~T~~ _. j :~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -,

p
MI T/ L~S/ TR-2O3

NAMING AND SYNCHRONIZATION IN A DECENTRALIZED
COMPUTER SYSTEM

by

David Patrick Reed

September, 1978

This research was supported in part by the Advanced Research Projects Agencof the Departm ent of Defense and monitored by the Off ice of Naval Rtsearcunder contract number N00014-75-C-0661.

Massachusetts Institute of Technology

Labora tory for Computer Science

Cambridge, Massachusetts

02139

_ ~~~~~



ACKNOWLEDGMENTS

This dissertation would not have existed were it not for aid and comfort
from many sources. I can hope to mention only a few important people. To all
of the others whose belief in me m ade life worthwhile, please accept my thanks.

Professor Saltzer is one of the m ost helpful critics I have had , and his
dili gence in reading the many drafts always exceeded my expectations.

F Dr. David Clark and Professor Steve Ward , my readers, helped to clarif y
my explanations and by urging m ore work on the mechanisms of NAMOS,
contributed to what I think are significant improvements in my original ideas.

Jim Gray of IBM San Jose Research deserves special mention, for although
I had relativel y few discussions with him , every one led to new clarifications of
my ideas. His insight into The system aspects of concurrency was always clear
and fresh.

All of the members of the Computer Systems Research Group, who
provided a hom e away from home, deserve special thanks for just being who they
are.

Lynn , m y  wife, and Coh n, my son, deserve all the thanks I can give for
helping inc through the grueling phases of this research, particularly the last
month or so. Withou t their help, I probably would never have made it.

j  H

- -.~~~~~~~- — -~~ — - -  - - - -
~~ - .-

~~~~


NAMING AND SYNCHRONIZATION IN A DECENTRALIZED
COMPUTER SYSTEM

by
DAVID PATRICK REED

Submitted to the Departm ent of Electrica l Engineering and Computer Science
on Septemnber 15, 1978 in partial fulfill m ent of the requirements

for the Degree of Doctor of Philosophy.

Abstract

In this dissertation , a new approach to the synchronization of accesses to
shared data objects is developed. Traditional approaches to the synchronization
problems of shared data accessed by concurrently running computations have
relied on mutual exclusion -- the ability of one computation to stop the execution
of other comnputati ons that might access or change shared data accessed by that
computation . Our approach is quite different. We regard an object that is
modifiable as a sequence of imnmutable versions-, each version is the state of the
object after an update is made to the object. Synchronization can then be treated
as a mechanismn for naming versions to be read and for defining where in the
sequence of versions the version resulting from some update should be placed. In
systems based on mutual exclusion, the timing of accesses selects the versions
accessed. In the system developed here , called NAMOS. versions have two
comnpon emit names consisting of the name of an object and a pseudo-time, the
name of the system state to which the version belongs. By giving programs
control over the pseudo-timne in which an access is made, synchronization of
accesses to multip le objects is simplified.

NAMOS is intended to be used in an environment where unreliable
components, such as communication lines and processors, and autonomous control
of resources occasionall y cause certain objects to become inaccessible, perhaps in
the m iddle of an atomic transacti on. Computations may also suddenly halt
(perhaps as the result of a systemn crash) never to be restarted. NAMOS provides
facilities for recovering from such sudden failures , grouping updates into sets
called possibilities , such that failure of any update belonging to a possibility
prevents all of the other updates in that possibility. The naming mechanism of
NAMOS also provides a useful tool for restoring a consistent state of the s~rstem
after a failure resulting in irrecoverable loss of information or a user mistake
resulting in an inconsistent state.

An imnportan t motivation for the development of NA MOS is the need to
support decentralized development of application systems by combining existing
application systems that deal with shared data. NAMOS supports the cons ruction
of m odules that locally ensure their own correct synchronization and recovery
from inaccessibility. Larger modules that use several separately designed modules
can then be constructed , perhaps with additional synchronization constraints,
without m odifying the modules used. In most systems based on mutual exclusion,
such post hoc integration of modules is difficult or impossible.

Keywords: distributed computer systems, reliability, synchronization .

3 . 4
-

-
.~~~~~~~ .

- -
-

-
.

-- -

_ _ -

I
CONTENTS

Acknowled gment s . 2

Abstract 3

Table of Contents 4

Table of Figures 6

Chapter One. Introduct ion •.. s.. 7

1.1 The problem of a usefu l internode interface 9
1.2 Namning Mechanism ~is a Solution 19
1.3 Related Work 24
1.4 Thesis Plan 27

Chapter Two. The communications system and storage system 31

2.1 ReliabiLity of Message Communications 33
2.2 Synchronization of Message Communications 35
2.3 Reliability of Storage System 40
2.4 Synchronization of Storage Systems 41
2.5 Rem otely requested actions 44

Chapter Three. Pseudo-time and Possibilities 47

3.1 Objects 48
3.2 Object Histories 52
3.3 Kinds of references 54
3.4 Pseudo-time and consistency 59
3.5 Programs and Pseudo-timne 60
3.6 Programs with internal parallelis m 67
3.7 But we Can’t k now the entire history! 69
3.8 Generating pseudo-times and pseudo-temporal environments 71
3.9 Failures amid Recovery 73
3.10 Recoverability 79
3.11 Modularity and possibilities 80
3.12 Known Histories Revisited 83
3.13 Summary 84

.4 -

- .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~ 
~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— -- - - - - --- -.—----- - - - — - -- - -- —- -— ---- - . -.----—--- -—- - - - - - , - - - - -

~

--,, -,‘

Chapter Four. Using the 1~iechanisms 85

4.1 Transactions 86
4.2 Backup 97
4.3 Conversational Systemn Interactions 100
4.4 Partiall y Recoverable Operations 101

Chapter Five. Implementation of Possibilities and Tokens 105

5.1 Atomic comm it 106
5.2 Tokens 108
5.3 Possibility i m p lem ented as a single com mit record 110
5.4 Dependent possibilities 113
5.5 Determ ining the right to access a token 114
5.6 Possibilities im plem ented using multi ple commit records as voters 115
5.7 Reclamation of commit records 119
5.8 Summnary 125

Chapter Six. Impl ementation of Objects: Known Histories, Versions, etc. 127

6.1 Representation of Pseudo-times and Pseudo-temporal Environments 128
6.2 Main t ainin g the time - pseudo-time relationship 131
6.3 Known Histories 133
6.4 Non-cell object types 141
6.5 Creation and Deletion of Objects 146
6.6 Deletion of Object Versions 148
6.7 Sm all Objects and “Paging ” 151
6.8 Copying of Object Versions 153
6.9 Reducing the am ount of work aborted 154
6.10 Summnary 156

Chapter Seven. Conclusions and Directions 157

7.1 Concepts 157
7.2 Applicability of the concepts 162
7.3 Limitations 163
7.4 Directions for further research 165

Appendix A. Analysis of Availability of Multi-site Possibility 169

References 175

Biographical Note ...•••.•••••••••••••.•.•.••..••...,•••.••.••.••.••.•• 181

- 5 -

*
— — — — - - —

~~~~~~~
— ~~~~~~~~~~~~~~~~~~~~~~~~ 

- 
- - -

~
--.-

~ -‘— ..-. 
—

~~~~~~~
--- - -

~~
.
~~
— -.

~~~~~
—.—— -

~~~
- --

FIGURES

Fig. 1. Distributed System• 10
Fig. 2. Reorderin g of messages by the message system 37
FIg. 3. Lockable Data Structure . . 43
Fig. 4. Shared Memory Model . 55
Fig. 5. Shared Memory as a Sequence of States 59
Fig. 6. Eduction by creating a new version 70
Fig. 7 Eductio n by lookup of existin g version 71
Fig. 8. Known h istory with Tokens and Possibilities 79
Fig. 9. Object Known 1-history 84
Fig. 10. Reference to I%lulti-site Commit record 118
Fig. 11. Known History Entry 134
Fig. 12. Known History Representation 134
Fig. 13. Communication in a lookup request 136
Fig. 14. New-token request processing 139
Fig. 15. Alternative new-token processing 140
Fig. 16. I-h i story of several queue operations 146
Fig. 17. Object header , revi sed to handle creation and deletion 149
Fig. 18. Graph of “d ali as the number of sites varies 172

I-

- 6 -

___ ____ __ I
- ~~~~~~~~ ~~~ ~~~~~~~~ -~~~~~~

- --
~~

- --
- - -

- - - - - - -~~~~~~ - - - - . ~~~~~~ ~~~- - - - - -~~~~~~

Chapter One

Introduction

With the advent of minicomputers and low-cost computer networking
technology, a new sort of computing technology is becoming quite important. The
basic characteristic of this technology is the development of a decentralized set of
comnput ing resources (computers and terminals) organized to provide computers.
termninals, and storage devices that are located near their ultimate users.
Com puter networks , either of high-bandwidth typical to local network technologies
such as the ETHERNETIMetcaIfe76] or the long-distance networks such as the
ARPANET[Metcalfel3], provide the necessary sharing of data and computational
resources among geographically decentralized but closely related computer
applications.

The termn distributed computing has been used to describe the loosely
coupled system s built using this technology. But like many other fashionable
terms, distributed computing means differ ent things to different users of the term.
It has been applied to parallel computation (in this use, distribution is parallelism),
offloading of comnputation from a mainframe computer to a front-end mini or
intelligent t ermn ina l , construction of computational engines via elaborate
interconnections of microprocessors, and a host of other variations on the theme
of several comnputers tied together by somne comm unications medium. Our use of
the term as defined above specifically emphasizes decentralization as a key
attribute obtainable by introducing communications into a system design . Such
decentralization involves separation of the computers in the system by physical
distance, by boundaries of administrative responsibility for individual computers
and their applications , and by firewalls intended to increase the overall availability
of the systemn as seen by its users in the face of component failures.

One of the mnajor forces in the move to decentralized , distributed
comnput ing is the opportunity for autonomy gained by having direct , physical
control over the source of one’s computing resources. Traditionall y, the
computing resources of a large comnpany or organization have been provided by a
large central computer facility managed by a separate division of the company.

- 7 -

--
- -

- - - -
- - - -~~~

- - -~~~~~~~~ -- - -

The main reasons for this traditional structure have been the large cost benefits
of sharing large computer systems that provide very high price performance, and
the control over com puting usage afforded by the centralization. As pointed out
by d’OliveiralDOliveira7 lj, many organizations have very strong forces that lead to
decentralization , including psychological and economic ones. Given the decrease in
hardware costs for smna !l co ’nput ing facilities , this has led to, and probably will
continue to lead to , more autonomously operated comnputer facilities in the Context
of these organizations. The need for autonomous control of computing resources
seems to he often m ore imnportant than cost.

Although the hardware technology for distributed computing is well
developed , the protocols amid conventions for the design of systems that support
distribution of data and application programs Pare still in their infancy. Perhaps
the major effort in this area has been the resource sharing research carried Out Iii
conjunction with the development of the ARPANET. The most sophisticated
product so far of this research has been the National Software Works[Crocker75j,
a distributed set of application development tools that can transparentl y share files
across a network. Althoug h this sort of research has led to a great deal of insight
on how to distribute an app lication , it has not yet reached the point where the
design of such systems is simp ly t he app lication of well understood methodologies.

Perhaps the greatest proble m in the developm ent of distributed systems is
the development of methods that allow local applications and data bases to be
created autonomously, then integrated with other applications and data accessible
in the distributed system in a post hoc fashion. Evolution of distributed system
applications by integration of existing applications seems to be a natural result of
the reasons for decentralization.

In order for this problem of post hoc integration to be solved , a coherent
set of protocols and standard interface tools must be developed. Then the task of
constructing new systems by integrating existing systems on multiple nodes can be

- - 8 -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--—

~~ 
—-  _ _ _ _



simplified to m atching interfaces specified in the same way. 1 Important factors in
th ese interfaces are data types , namn ing of individual objects , synchronization of
accesses to sharahl e objects and reliability of computation in the face of failures
of individual communications lines and computers. The latter two problems,
synchronization and reliability, form the focus of my thesis. My goal has been to
provide a standard set of mechanisms for the implementation of interfaces that
provide control of computations in an environment that is prone to failure and
has Concurrent com putations. The solution proposed is to extend the object
na m ing mechanis m so that it can be used for proper synchronization and failure
recovery .

1.1 The problem of a useful internode interface

A typical distributed computer system of the kind we want to consider will
look like a collection of autono m ous nodes connected by a communications
network , as in figure 1. These nodes may be individual processors with their own
memory, or they may be multi-processor systems of any variety. For our
pu rposes, they are distinguished because each node behaves like a sing le system --
each node is either completel y availabl e to accesses through the network , or is

completel y unavailable. Further, the resources owned by each node are wholly
controlled by the owner of the node; there is no higher authority that controls
the resources on all nodes of the network.

Nonetheless, there is a great need for the ability to share the use of data
and computational resources among nodes with different owners. For example,
consider a relatively decentralized corporation that has several independently
developed inventory control data bases residing in different computational nodes.
Eventually there will probabl y be pressure to have an information system for

1. It is interesting to note that Backus , in his Turing award lecture ,[Backus78)
has pointed out that he also believes that Construction of systems fr( m pre-existing
modules is a problem not yet prop erly solved. His proposal is somewhat different

— from ours , in that he uses composable m odules athat are pure functions from
inputs to output that are combined into top-level transactions that work on a
shared systemn state. Our proposal allows the composition of transactions out of
existing transactions that are designed themseves in terms of modifying the system
state.

- 9 -



-~ --- -~~~~~~~- -  - - -

~~~~~~~~ ::i -
~~~~

-
~~ 

----

~~

- ----

~~~~~

--- - - -

FIg. 1. Distributed System

node

node Network node

node

overall mn an agemne nt of the divisions owning each node that can look at the ,.tate
of all data bases. Because the cost of replacing existing systems with an overall
system would be prohibitive (as well as infring ing on autonomy - see below), that
system must be built out of the old system by making use of preexisting
interfaces , if possible. It is thus a great advantage if interfaces can be designed so
that they can be later used in unp lanned-for ways. In addition , by providing
interfaces that other nodes can use, a node can offe r and obtain information
about other divisions use of the parts it makes and consumes, thereby obtaining a
greater degree of optim n ization of its own operations.

Well designed , semantical ly clean interfaces that allow for unplanned later
uses seemn to be the key to successful sharing of programs and data in these new
distributed systems. Such interfaces must not interfere with , and we hope will
contribute positivel y to, solutions to problemns that become important in
decentralized system s, such as autonomy, failure management , synchronization ,
and conversational interaction. These issues will be discussed in detail presently.

- 10 -

-_: ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ---~~~ — — -

r
- - - - - - -

~~~~~~~~~

- -

~~~~~~~~~~~

-

~~~~~

— — - - - - - 
- 

-

~~~~~

It is not the goal of the thesis to solve the problem of constructing
distributed applications out of existing (as of 1978) programs and data bases,
under existing operating systems connected by some kind of network (a system
that does attempt part of this goal is the National Software Works
(NSW)[Crocker75j). Many such existing programs and data bases simply don’t
support compatible approaches to synchronization and reliability that are needed
to achieve reasonable results. The primary goal is to provide tools to aid in the
constructiom i of new software for the distributed environment. If these tools are
used , then the task of post hoc integration will be much simpler.

It mn ay turn out to be fairl y easy to adapt some existing programs or data
bases to fit within the scheme developed here in the thesis. If so, then the tools
developed here can certainl y have a more immediate imnpact. The primary impact
that these ideas should have , though , is in the design of future applications either
for distributed systemns or for computers that may eventually become nodes of
distributed systems.

1.1.1 Autonomy

Freedom means
you’re free to do
just whatever
pleases you;
- if, of course
that is to say,
what you please
is what you may.

-- Piet Hem

The nature of a node is captured in the notion of autonomy. That is, a
node is basically free to mnanage its own use of its own resources in any way it
sees fit. That is , a node may be availabl e only occasionally for communications
with other nodes (e.g., because the power is off from 5 P.M. to the following
A.M.)I m uch of the data stored on the node m ay be completely private and never
accessible through the network, other data may be usable only in a laundered
form (for example, onl y statistics of a general sort about a corporate division’s
production may be available outside the division), and the sorts of actions that
can be carried out at a node on behalf of a remote node may be severely
constrained to limit comnputer time resources and/or interference with local
computing tasks.

— 11 —

—- ~~~~- -~~~
-
- - -~~~ -~~~~~~~~ -~~~~~~--~~~~~~ ---

.

-~~-- ~~

Moderating the complete freedom given a node is the need for providing
some kind of reliable sharing of useful data and resources. If a node is to
usefully offer an interface whereby other nodes can access some of its data or
resources, it needs to provide some reasonable guarantees of availability and
proper behavior of the interface. The node does not want to g ive up more
autonomy than necessary, th’)ugh. Consequently, the impact of autonomy on the
design of internode interfaces is the need for interfaces that are the minimal
necessary infringements on node autonomy.

it is interesting to note how the picture of a distributed system with
autono m ous nodes differs fromn the notion of a computer
uti lity [Corhato6 5 ,Frankston74J, a centralized miiarketp lace in which data , progra fns ,
and services can he shared. A comnputer utility might be best defined as a vast
repository of data and programs that can be simultaneousl y manipulated by the
users of the system. The availa bility and integrity of the underlyjng hardware
and software mnechanismns that support the shared data must be as high as that
needed by the most dem anding application using the system. Protection
mnech an ismn s must also exist to ensure that unauthorized sharing of or tampering
with data does not occur. In the distributed system, the network is a marketp lace
for services and data , where the nodes may or mnay not offer services. The major
result of decentralization is that the entire system need not be designed to meet
the mnos t stringent requirem ents of availability and mutual protection. Only those
nodes implementing and using services with stringent requirements must be
specially designed and built to meet such requirements.

1.1.2 Object Interfaces

In order to share data or program s with users outside his node, the owner
of a node must provide somne way for the users to refer to the data and request
execution of the programs. Simply giving out disk addresses and enabling the
ability of re m ote computers to load progra m s into his computer’s memory would
certainly allow remote use of the node’s resources. However, giving such low-level
information may make it difficu lt for the node’s owner to retain much control
over the ways in which the resources are used.

- 12-

—~~——————--——--- ~~~— - ------ - —~~--- - ~~—

Object-oriented programnming languages systems such as CLU[Liskov77a]
and ALPHARD [Wulfl4] provide an object abstraction that limits the view of the
internals of data objects. A data object is just a namned entity wholly
characterized by its behavior in response to operations applied to it. The major
benefit ascribed to object-oriented systems is that the behavior of an object can
be understood , specified , and used without referent~e to the actual implementation
of the object and operations in terms of primitive objects and operations. In
supporting autonomny, a dual benefit of great importance is also obtained by using
object-oriented system s. The behavior of objects can be understood , specified,
and imnp lemnen ted without reference to their eventual use. Since the
im n plemnent ation of objects is hidden fromn the users of the objects, restructuring
the imp lcmnentation is easily done. Protection constraints often are more easily
expressed in termns of allowable uses of abstract operations on particular abstract
objects.

In this thesis , a goal is to support modularity as provided by object-oriented
systemns. In particular , the construction of abstract operations out of simpler
abstract operations and primnitive operations and the construction of abstract
objects out of simpler objects and operations are supported.

There are som e problems in translating the object notion to a distributed
system , however. The primary ones have to do with the opportunity for
concurrent accesses to shared objects, the possibility of failure in the middle of
executing an operation on some resou rce, and the need to accomplish reliable
coordinated operations involving more than one node.

1.1.3 Concurrency

The m ain focus of the thesis is providing reliable interfaces to objects in
the presence of concurrency. Now, concurrency has been a heavil y studied area
of computer science, so the imnmediate question is, why are not the existing
techni ques for manag ing concurrent comnputation adequate for the present
situation? Perhaps the mnajor difference between my assumptions and those
comnmnon to much of the research into concurrent programming is that I am not
willing to assum e that all of the users of a shared interface are designed at the
time a shared interface is designed.

- 13 -

~

______ - - ~~
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -



Consider an object that can be mnanipu lated by some using processes. The
usual approach (using monitor$Hoare74], for example) to defining an interface to
that object is to define operations that reserve the exclusive use of the object to
the calling process, and release exclusive use. Two problems arise in defining this
interface. First, one must be aware that the object might be concurrently
accessed, so that the appropriate synchronization operations can be defined.
Second, one must have a way of enforcing the use of the synchronization
operations in order to prevent unexpected concurrency. If all the users of the
object are designed at or before the ti m e the object’s interface is designed, neither
problem is particularly hard, but in the case of interest , where unplanned sharing
and concurrency are likel y, both probkmns become extremely difficult.

Another synchronization problem in the use of objects is the need for
unplanned comnposite operations on mnu ltip le , independently designed objects. A
sim ple exam np le in the distributed system environment might be where two
inventory control systems are brought together after being independently designed.
Suppose that a new function of the comnbined system is to be the ability to place
an order , involving atomnicall y” checking the supplier system for sufficient supply,
marking the ordered itemns as destined for the supplied system, and adding to the
list of expected shi pments in the supplied system the ordered items and estimated
arrival. Getting this action to be atomic with respect to other concurrent actions
of each inventory system that mnay involve the same parts is quite difficult to do
without risking deadlock. A redesign of the individual systems may even be
required.

The construction of new operations out of existing atomic operations is
pa rticu larl y difficult in a system that uses locking for synchronization. Suppose
that two modules dealing with different sets of data are to be used together to
create a new comuposite operation. It is not sufficient to let each module set and
release its own locks, because then the composite operation would not be atomic --
it would he possible for another concurrent program to observe the state of the
system after executing one module but before starting the second if the second
was somehow delayed for a while. Consequently, in combining atomic operations
that use locking, the com posite mnodule must be aware of the locking conventions
of the combined operations. Since the program invoking the operations being
combined is responsible for properl y setting the locks, suddenly the modules are
not so muodular any more. They are dependent on their caller to properly set

- 14-



~ - -~ - -- -~~~~~~~~~~ ~~~~~
_ - - - ~~~~~~~~~ - - -~~~~~~

- - - - ----
~~~~~~~~~~ 

locks and avoid deadlock. An even more serious problem arises if the locks set by
a mnodule are dependent on the parameters with which it is invoked , because using
such a mnodule in the construction of larger atomic operations would require that
the using programn be aware of the internal construction of the module to an even
greater degree. In the extremne case, the using program would have to execute the
samne steps the mnodule would execute to determine what locks needed to be set
before actually calling the module.

A goal of the thesis is to define a method for handling concurrency that
can be easily and naturall y used in the construction of abstract objects and
operations. The concurrency control mnethod is to be built into an abstraction, so
that concurrent use is never “unexpected ”. The construction of new abstractions
out of existing ones containing their own built-in concurrency control is to be
supported , so that it is rare that a system m ust be entirel y redesigned just because
of a new use in conjunction with somne other system that has its own concurrency
control.

Very few synchronization schemes can handle this requirement for an
unpl anned atomic action composed of predesigned operations. A notable
exception is the concept of a supervisory computer program in the IDA operating
systemn described by Gaines [Gainesl2j , in which relativel y arbitrary programs could
be specified to act atomically. The IDA system idea could not be easily
imnp lemnented on a distributed system because it depends on the centralized
operating systemn notion of a locked” supervisory state.

1.1.4 Need for a Robust Interface

An important class of failures in a decentralized system result in either
temporary or permnanent loss of availability of some set of resources. Examples
include comninunications failure that might cut off access to some set of nodes and
data objects from somne using program , a crash of a computer that might have
simnilar effects in addition to destroying the state of any computations in the
middle of execution , and detected software errors indicating that an object is in
an imnpossible state.

- 15 -

These failures can occur at any time an attempt is made to use some
resource. A program that executes in the distributed environment must always be
prepared to discover that somne resource it is using is suddenly unavailable for
some reason.

Autonom y can also lead to reasons for resources to become suddenly
unavailable. The owner of a node may suddenly turn off his machine, revoke
access rights for a particular set of objects granted to som e program while that
program is using them , etc. Such examnp les are not limited to distributed systems.
In Multics , for example, a comnputat ion m a y at any microsecond of its execution
discover that its right to use a segment it has been reading for the last ten
minutes have been revoked.

Since abstract operations and objects are constructed out of simpler ones,
such that the execution of an abstract operation may involve many steps dealing
wi t h many different resources, there are mnany different points at which loss of
availability can strike the imnp lementat ion. Nonetheless, a desirable feature of
abstractions is that their behavior should not be strongly dependent on the
implementation. Thus , am i attempt to perform an operation on somne abstract
object ought to have a ~vell defined effect if it cannot complete due to some loss
of availability encountered during its execution. This effect should be specified in
termns of the abstract view of the operation, not in terms of the program and data
it uses in it s im plementation.

Abstract operations that modify the (abstract) state of some abstract
object or objects becom e quite difficult to support in an environment where
sudden loss of availability mnus t be expected. Since the imnp lementation of the
abstract . operation mnakes the modification by a number of steps, there may be
points during the execution of these steps where loss of availability of some
resource leaves the imp lemnentatio n at a point that has no meaning in terms of the
abstractions being i m p lemented . Some recovery from this is necessary. The
simplest approach to recovery is to undo the steps already taken in the operation,
so that the operation can be thought of as having no effect if any resource it uses
is unavailable during the operation.

- 16 -

~~~~~~~~~~~~~~~~~~~~~~ ._~~~~~~~~~ _ _ _
-- -

-

-
~~~~~~~~~~~~~~~~~

-
- -~ -~~~~~ - - ,- - - - -

~ —~~~~~ --~~- -- -- ~~~—— ~~ — -~~ - — - ~~~~-~~~~~~~~~~ .- -

Unfortunatel y, in the case of failures undoing what has already been done
is not straightforward. Further loss of availability may make it impossible to
undo what has been done by simply reversing the changes made. If the resource
that becomes unavailable is the processor that is executing the operation, we have
an extreme case of being unable to undo what has been done. We may not even
know what has been done so far.

Correction of failures by undoing results also interacts strongly with
synchronization. In order to properl y undo a computation , one must also ensure
that independent computations do not observe the transient state during which the
abstract operation was attemnpted but not yet undone.

Although the user of an operation may not be in a position to know how
to recover from a failure , the systemn as a whole (all nodes involved in the
operation) can mimai nta in this knowled ge. In order to do this , the system must be
aware of interfaces, and must be able to decide that a computation has failed and
effect the undoing of operations when a failure occurs. The system, in order to
decide that a comnputa ti on has failed , Cannot depend on the program or the user
of the program , since one or both of these may have also failed. Nor can the
systemn depend on being able to access all of the nodes containing objects that
have to be corrected at the timne failure is detected. Consequently, the algorithms
used by the systemn for recovery mnust be very carefull y designed to work correctly
in the face of the samne loss of availability that caused the original failure.

Ami alternative approach that might he taken to handle failures that result
in loss of availability is to build the system so that such failures never show
through to the programs executing on the system. Essentially this approach
amnounts to- guaranteeing availability. It is usually possible to guarantee that
resources are available to computations that use them given either that the
computation can afford to wait , or that enough mnoney is allocated to buy
sufficient redundancy within the systemn to reduce the probability of failure. The
tradeoff is not always possible , however. Money is often in short supply.
Comnputations mnay often be executing in behalf of an interactive user at a
termnina l who cannot afford to wait until some remote node his program had
started to use is repaired. Consequently, the approach of having the system
provide a mechanism that allows undoing of comnputations that fail in the middle
is often the best.

-17 .

V -

The case where the owner of a node decides to make it unavailable differs
slightly fromn the failure case in that by reducing the owner’s autonomy it is
possible to reduce the expectation that loss of availability of this sort interferes in
a bad way with users of shared objects. Nonetheless, the name of the game is to
perm it as mnuch autonomny as possible. Were the owner to discover that a bug was
allowing remote users to access too mnuch of his data , it would be nice if he could
shut off access to his shared objects immediately, even in the middle of “atomic”
actions , should that action not cause his own data ~o come to harm. Analogously,
even in a central system, protection m echanisms that allow for immediate access
revocation can introduce severe m alfunctions into operations on shared data if
invoked at the wrong time.~ Consequentl y, the strong degrees of autonomy allow
actions by owners that look a lot like unpred ictable failures from the user’s poiflt
of view.

As a result of these arguments, object interfaces that can handle sudden
loss of availability are absolutel y essential in the autonomous distributed system
environment.

The m odel of failure recovery we have specified is closely allied with the
termination model of exception handling espoused in the exception handling
mechanisms of the CLU language(Liskovllbj . Upon encountering a failure that
prevents execution of the module , the execution of the module is terminated. In
the CLU termination model, the effect of the module for each type of failure is
specified as part of the interface; in contrast , we have taken the “stronger” view
that a failure is to he mnade equiva lent to never executing the module, unless that
module explicitly chooses otherwise. Because the programmer of a module cannot
be expected to know about all possible failures that may result during the steps of
execution of the m odule , the “stronger ” view is safer , handling unexpected failures
more effectively.

An alternative exception handling mechanism is the resumption model
described by (ioodenough(Goodenough75j and Levin[Levinl7J, in which the
module encountering an error is suspended and possibly resum ed after recovering
from the error. Such a m odel did not seem appropriate for handling failures
resulting in loss of availability because a) the executing module may lose its state,
b) after an availability loss, it is difficult to tell a handler what to do to recover
from the the error, and c) it is hard to design the handler of such errors without

- 18 -

-~ ~~~~-— -~~~~~~~-~~~~- ~~-~~~~~ - V~ --~- —~~~~~~~~~~~~~~~~~~~~ - - - - -~~~-— - -~~~-~~- -~~~~~~~~ --

it having to include detailed knowledge of the internal workings of a module, so
that the level of abstraction of the interface is compromised.

1.1.5 Conversational Interactions with Multiple Machines

Another aspect of the distributed system organization is that it ought to
allow on-line construction of unplanned-for actions determnining the state of shared
objects at several nodes, and possibly even modifying other nodes as the result of
somne decision made by a person sitting at a terminal. An important special case
occurs when the several mnachines are independently designed databases. Here the
prob lemn is that the program and its actions are being created as the program is
executed , and outside the control of the system itself. Synchronization and failure
mnan agemnent techni ques that work when the program is executing completely
under the control of the mnachine m a y not work. In addition , even if programs
can be prevented fromn m aking m istakes by some kind of verification method built
into the system , the user will make mistakes, and should have at hand means to
recover from his mnistakes. If the failure mnanagement techniques built into the
system can generalize to the case of recovering from user mistakes, this would
tremendously aid in conversational use of systems.

1.2 Naming Mechan ism as a Solution

This dissertation describes a system called NAMOS (Naming Applied to
Modular Object Synchronization). NAMOS consists of a unified approach to the
prob lemns of synchronization and reliability just described. Of particular concern
are the problemns of constructing modular systems and the problems of unplanned
concurrency and unexpected failure that we expect to arise in the construction of
distributed systems.

The central idea of the thesis is an unusual view of synchronization of
accesses to shared data. Traditionall y synchronization has been achieved by
mutual exclusion. The approach to synchronization used in NAMOS is based on a
mechanismn for naming states of the system and objects (hence the title of the
dissertation). To understand the difference between the two approaches it is
helpful to use a non-computer analogy in which both techniques are well
developed.

- 19 -

L - - - -
-

_ _ _ _ _ _

V
~~~~~~~~~~~~~~~~~~~~~~



Consider a set of files (say personnel files) kept in a file storage room of
some organ ization. We may think of each file folder, labeled by a person’s name,
as ami object of the database. Occasionally, files must be inspected or updated.
For exam nple , one m ight wish to compute the average salary of women in the
company. Or as a sample update , one m i g ht wish to modify the salaries of the
womnen in the comnpany by an appropriate percentage so that the average woman’s
salary is equal to the average m a n ’s. We impose a rather strong constraint on
these operations that is not usuall y required in such a set of files. The constraint
is that  these “tra nsaCtions ” on the files mnust be atomic operations. That is, during
the computation of the average woman ’s salary, no woman ’s sala ry is changed by
som e other clerk. Simim ilar ly , in updatin g the womnen ’s salar ies, no other clerk is to
change any of the men ’s or the womnen’s salaries , to ensure that equa lity is
achieved. The strong constraint is not normall y required in human-managed
systems because people are good at dealing with inconsistency. Computer
programs using a database , on the other hand , have few checks built in to deal
with inconsistency, so avoiding inconsistency is much more important.

One simp le way to solve the problem of synchronizing the accesses made by
clerks to the database is to allow onl y one clerk into the room containing the files
at a time , and requiring that he remain there until completing the transaction.
This is the basic idea of mutual exclusion. The clerk gai ns exclusive access to the
entire state of the database , and can then make the modifications needed to
construct the next state of the database . A refinemnent can be made to this
approach , because norm ally clerks will need to access only a subset of the
database. The refinement consists of having the clerk go into the room and
collect all of the files he needs to read and update. replacing each file folder with
a note that ind icates that the clerk has taken the file folder to his desk . The
clerk can then work with the set of file folders at his desk in private , and other
clerks c~tm ~ work on different sets of files independentl y. A clerk needing to access
a file folder that has been removed must wait for the folder to be returned. This
approach to synchronizatio n is analogous to locking in the use of a computerized
database . Each clerk performs transactions by gaining exclusive access to the
group of files he needs to access for some period of time.

-20 - 

- —- -~~ -



- -

The approach in NAMOS is quite different. Assume that each file folder
contains only one item , say the salary of the person whose file it is. Instead of
erasing the current salary and replacing it with a new one when the salary is
ch anged , the sa lary of an individ ual is changed by adding to the file a new sheet
of paper with the new salary. Each sheet of paper with a salary is stamped with
the date and timne when the salary becomnes effective. How does this help? First
of all , consider a transaction that only reads the database , such as the one to
comnput e the average salary of all of the women. Instead of having to seize all of
the folders to prevent changes from happening, the clerk can simply take his time
in processing the folders; he simnp ly must choose a date and time for which the
average is to be effective , then go to each woman’s folder and read out the salary
corresponding to that date and time. Concurrently, other clerks may update the
womnen ’s salaries. However , a consistent computation of the average salary does
not interfere with the clerks that are updating salaries.

This strategy is equall y applicable in a distributed database. If the
personnel files of a company are distributed to the company’s many locat ions, it
mnay be unacceptable to gather up all of the files of women employees in order to
send them to company headquarters to compute the average . Instead , company
head quarters can send a menio to clerks at each site with instructions to sumn up
the wom~ns salaries effective as of a common date and time. The key idea here
is that the central head quarters can construct a name (consisting of the effective
date and time itself) for the state of the database at a particular time, and then
use that name to gain access to that state of the database even though the
database is under constant change. NAMOS provides a similar mechanism to
comnputer program ims -- the ability to name particular states of the data stored in
the system along with the ability to use those names to gain access to the values
of data objects in the state.

Synchronizing updates in the salary da tabase is somewha t trick y, however .
The salary adjus tmnen t for the women is per formned by having the clerk decide
upon a timne when the adjustmne nt is to be effective. He then must compute the
average salary of the men and the average salary of the women as of just before
the effective timne of the adjustmnent , to preclude any other changes to individual
salaries happ ening between the computation of the adjustment percentage and the
actual application of the adjustment to the women’s salaries. After computing the

-21 -

— _~~~~~~ V~~~~~ VVV ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - V ~~~~ V• V ~~~~~~ V V
VV



adju stmnen t percentage , the clerk then can go to each file and add a new salary
sheet with the adjusted salary.

The tricky part is in the interaction between the adjustment transaction
and any other clerk’s attemnp t to read salaries. Let T be the time the adjustment
is to he effective , and T-1 be the timne at which the averages are computed in
order to compute the adjustment percentage. Although the adjustment is
effective at T, it mn ay be that the performance of the adjustment is not comnpleted
until sometime after T because the job is so difficult. Then it is possible that
another clerk will want to know the salary of Jane Jones at time T even though it
has not been computed yet. He mnay not even be aware that an update is in
progress. The m ost recent salary of Jane Jones recorded in her folder is that of
an earlier time. If he takes that salary as the value effective at T, and then t he
adjust m ent is completed , then he will be wrong. There are two solutions to this
problem incorporated in NAMOS. First of all , reading a value out of the folder
always includes mn ak ing a notation on the sheet containing the salary read that
indicates the effective time of the read. Thus, if Jane Jones’s salary is read as of
time T. the sheet containing the salary believed to be effective then is noted to
have been read at time T. When the adjustment is applied , it will be discovered
that someone has alread y read a different salary than the one that has been
computed to he effective at time T. The clerk doing the adjustment would then
have no choice hut to undo all of the adjustments to salaries he has made thus
far , choosing a new timne for his adjustment to be effective. This is NAMOS’s
primary solution , guarante eing that each transaction is atomic.

In the case of the salary file , however , aborting the adjustment of all
women’s salaries because somneone at randomn read Jane Jones’s salary is a bit
impractical. The solution does, however , work well in many applications. For
cases l ike the salary adjust men t , thoug h , NAMOS provides a second mechanism as
a refinement (the re finement is not described until chapter six). Essentially the
refine im ient amounts to allowing the clerk to mark all of the wom en’s folders in
adv ance that a change m a y  be made to the salaries as of time T. Thus a clerk
that queries Jane Jones’s file will observe that the most recent salary on file for
Jane Jones is likel y to change as of time T. He can then wait until the change is
made , or he can ignore the notation and read the most recent salary (deciding
that it is effective as of timn e T, and eventuall y aborting the adjustment as
before).

- 22 -

_ _ _ _ _  - V ~~ -~~- - --—— 



-- ~~~~~~~~~~~~~~~~~~~~~~~~~~ - .- - - -~~~~ -~~~~~~~~~

A rather surprising property of the naming approach is that it is not
necessary to predict in advance what records mni ght be accessed. Instead the
na ir ming mech anis m ensures that whenever a particular file is accessed , the proper
version is obtained. In the locking or mutual exclusion approach , a consistent
state is observed by assembling all of the relevant folders on one’s desk at the
same timne. In the namin g approach , one can get a folder at a timne , read the
correct version, and rettmrn it to the files, and still obtain a consistent state of the
system. This property is the essence of NAMOS’s solution for the problem of
constructing new systems from im existing ones. In a locking systemn , comnposition of
a new fun ction from several pr e-existing ones usuall y requires doing all seizing for
the composite operation before any component operation is executed.

NAMOS includes , as well as the namning approach to synchronization , an
approa ch to recovering fromn failures. Essentiall y the proble m can be modeled in
the l ersonnel file case as what happens when a clerk has a heart attack while in
the middle of carrying out a transaction (or in a distributed system, if one of the
planes carr y ing a message to a clerk at a remnote site crashes). Part of the update
mnay have alr ead y been mad e, and no other clerk mnay kn ow how mu ch th e clerk
had actua lly done. In the mutual exclusion case, to prepare for such an
eventual ity, each clerk will have to dili gently record the old value of any salaries
he updates in somne sort of update log. He cannot return any files to the file
room until  he has completed the update , because it might happen that that file
would be picked up by another clerk , used , returned , and then the original clerk
mna y have died. The proble m is that the original clerk then must have his work
erased , but the other clerk has read the output of that work and there is no
record that he has read it.

NAMOS takes a different approach , that has a similar effect. Since an
update generates a new version , it is onl y that version that is affected if the clerk
die s a f ter per f ormn in g part of an update. The solution is to add to the sheet of
paper containing the miew version a note to the effect that “this sheet is part of a
coordinated update being performed by clerk John Jones. To find out if the
up date is completed , call John and ask if update 0987654327 has been completed.”
This has the effect that if John dies , someone will answer the phone and say that
John has died. John then merel y has to record somnewhere what the numbers of
the updates he has performed are , so that when he dies , the person taking over his

- 23 -

L V ~~~~~~~~~~~~~~~~~~~~ _ _ _  V V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- V - VV

job can answer the question. The update in progress when he dies will not be
per formed , which is what is desired.

In some databases , recovery from failure is achieved by recording in a
central place a log, called an update log, of all changes made by transactions. An
entry in the log Consists of a “transaction identifier ” to identify the transaction
t hat changed the value, the name of the object changed , and the old value before
the change. A part ly completed transaction can be undone by searching
backwards through the update log and umidoing all of the changes made. In a
sense, the mnulti p l e versions of objects kept by NAMOS encode the same
inf ormn at ion a~ the update log, but the old versions of objects are also directl y
accessible for tram isact ions to read after chang ing the objects, simplif ying the
synchronization of concurrent transactions. V

With this exam ple the basic elements of NAMOS have been characterized.
In the remn ainder of the thesis , we explore the actual mnechanismns needed to make
the analogy work in real computer systems. This involves some careful definition
of the exact behavior of the synchronization amid reliability mechanisms, and some
engineering tradeoffs in maki ng the system perform well.

What has not been captured in the analog y is the notion of constructing
transactions as mnodul es th ’mt cam i be used in the bu ilding of other transactions. It
was noted above that because synchronization is achieved by naming states of
objects r ather than seizing control of the objects . the NAMOS approach does not
require all resoLmrces used by a mnodu le to be known to its caller. Exploiting this
property requires desi gning in additional structure to the names used for states of
the syste m that is not present in the “date and time effective” name used for
states of the personnel files. The structure needed will be described n chapter
three.

1.3 Related Work

The fields of synchronization and reliability in computer systems are old , so
any attemnpt to list exhaustivel y the related literature would be unfortu nately long.
However. a num nber of relativel y recent developments in these fields have
particular heat - .~g on the problems and approaches described in the thesis.

L ::I~~ V V~~~V V



Distributed systems ~re a more recent phenomnenon , and the related
literature on the kinds of approaches referred to here is very smnall. The idea of
distributed systems that are composed of autonomous nodes integrated only
loosely through agreements to use a com mon mnechanis m for sharing information
and services through the network is best described by d’Oliveira[DOliveira7l) and
Saltzer [Saltzer78]. Related work to develop a system for integration of existing
programs on a set of relativel y autonomnous nodes is to be found in the National
Software Works Project described by Crocker[Crocker75j. Our work differs from
the National Software Works project in that it does not take as a requirement the
fact that existing programs and data need to be integrated , and can thus define a
much imm ore coherent interface to be used by programs to facilitate easy sharing.

The work in develop ing languages to support design of objects and
operations in which infor m ation about the details of the imnplementat ion is largel y
hidden from the user is basic to our approach to defining a system to support
decentralized development of software that is later shared. The languages
CLU [Liskov76 ,Liskov77a J and ALPHARD [Wu1f74], along with the operating
system kernel Hydra[Wulf75], ~re essential precursors of the present thesis.

Our approach to synchronization is derived from two distinct but closely
related ideas. First , the notion of version numbering to achieve synchronization is
closely related to the synchronization mechanism developed by the author and
Kanodia [Reed78]. Maintaining a sequence of versions of an object was insp ired .
by an idea present in both the TENEX file system[Bobrow72j and the ITS file
system[Eastlake69] where multi ple versions of a file can be catalogued with
successive version numbers while accessing a file gets the most recently created
version by default. This provides a primitive synchronization mechanismn among
the accesses to a file , allowing a new version of the file to be written while the
older version is still being read , giving a sort of “read-locking ” for free.

The second related group of ideas involves the use of timestamps for
synchromiization. Johnson and Thomnas[Johnsonl5) suggested the first such
mechanism , which used timnestamps plus an underl ying property of the network
that messages are delivered in order to assure synchronization of a simple
distributed data base . Thomas[Thomasl6j elaborated this approach to allow
somewhat more general operations , while still requiring that the database be
comnp letel y replicated at each node of the systemn. Lamport [Lamportl8j describes

- 2 5 -

-
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~



—~

the use of timne stamps to define an ordering amnong requests that can be used for
synchromiization , and a simnp le algorithmn to achieve mutuall y exclusive execution of
sequences of program in ti m e in a distributed system based on timestamps. The
SDD-l distrih~ited database system developed by Computer Corporation of
Amnerica uses timestamnp s internall y to enforce a locking
strategv(l3ernsteinl7 ,Rothniellj .

The muajor difference between the use of timestamnps to achieve
synchroniz ation by these projects and our use of pseudo-time in NAMOS is that
pseudo -time is a part of the “progra m mer’s box of tools” in NAMOS, whereas
tim u est amup s arc hidden mnecham iism n s in the above approaches.

The notion of designing a progr amn that accesses shared objects by building
i t out of pieces that execute as if they are the sole agents of change to shared
objects has its roots in the concept of a database transaction. The essence of the
database transaction concept is described quite well by Eswaran , et aI.[E swaran l6J .

Two nice overviews of the field of designing reliable systems are
Gray [Gray77] and Randell[Ramidell78j . They define the basic strategy of
backward error recovery used to handle loss of availability within NAMOS.

The i m np lemnentation mechammismn used to support possibilities, the commit
record, is closely related to the intentions list of the algorithm used to achieve
coordinated reliable updates in Lamnpson and Sturg is[Lampsonl6). Also related is
the log mnc cha m i is m n described by Gray [Gray 77] for handling the backwards
recovery of failed transactions in a central data base system. The two-phase
commit protocol describe d by Gray is essentiall y the same as the notion of making
all changes conditional on the eventual state of a commit record in NAMOS.
However, NAMOS suppor ts m odular construction of operations and objects, while
these other sv st emn s do not necessaril y do so.

Lamnpson and Sturg is’s approach to recovery also shares our basic
assumuptions a bout the properties of mnemnory described in chapter two, categorizing
memory into two classes -- stable and volatile.

ft .26 -

L~~~ EI ~~~~~~~~~ T V V T ~ V ~~~~~ TV::~~~~~~~ —— ____  -



-fl

In essence, the NAMOS system developed here differs from other work in
symichroniz ation and reliability because it ties together four related concepts in one
framne ~%’ork -- synchronization, reliability, modular construction of programs, and
decentralized, distributed systems. Not only does this ensure that the solutions
harmnomiize with one another, but in fact each problem is sim pler when solved in
conjunction with the others. The simplification occurs because it is hard to
separate the four areas of synchronization , reliability, modular programming, and
distributed systemus cleanly fromn one another -- one has to think about certain
parts of the other areas in dealing with any one area.

1.4 Thesis Plan

The remn ainder of the thesis is divided into two parts. The first part
Consists of an exp lanation of the object level interfaces , and the semantics of
operations at this level. The second part discusses the issues of imnp lemnenting the
interface on a distributed systemn handl ing low-level failures of communications
and nodes , mnanag ing storage, and so forth. The description is done this way to
adhere to standard top-down design.

In fact , I think it is interesting to note that the actual thinking process was
not top down at all -- I was much mnore concerned with what was implemnentable
than with what to imnplemnen t . Especially when dealing with fault-tolerant
mechanisms , one has to be careful not to ask for too mnuch from a mnechanism --
it may not be achievable. No mn atte r how much one mnay try to sweep the
consequences of failures under the cover of the “system blanket ,” it keeps burning
its way through. Consequently, some notion of the kinds of implemnentations that
are possible shows through in the interface semantics, and I will allude to various
notions in the description of the interface.

Chapter two, then, provides somne back ground in the problems of
imnp lemne ntation. Failures of communications and nodes are described , and an
argument is mna de that low-level error correction (such as link-by-link error
Correction , or reliable stream communication) is insufficient to solve the problem
of failure recovery. Similarl y, some of the interaction between communications
technology of the packet network , reliability mechanisms, and proper
5) nchronization will be discussed.

- 27 -

- - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~ ----  --~~~~ 



Chapter three begins the discussion of the object interface . Three basic
notions , the system history, creation of hypothetical states, and the frozen systemn
states in which comnputatio n s cami be executed (called pseudo-tem~~raI
em f rotunen ts) , are described , and linguistic constructs that reflect these notions are
developed. This chapter is long and involved because it presents all of the aspects
of the interface , which is quite different in some respects from traditional
synchronization mechanisms. Nonetheless , it is essential to the understanding of
the rest of the thesis.

Chapter four discusses several ways in which the object interface can be
used. A v cr v  im nportant case, the creation of multi-nod e transactions (as def ined
by Eswaran et a/.[Eswaran76]), will be shown to be easily handled with the object
interface. More imnport ant l y, the definition of unp lanned transactions , and the
creation of conversational transactions will be shown to be easily accomplished .
Other uses, such as consistent recovery from permanent mistakes or errors
(backup), will be described. Finall y, some “unstructured ” ways to use the
mechanisms will be shown , for two reasons. First , I want to show that even with
my scheme, all is not perfect , and second, if there is no way for a mechanism to
be m isused, one should suspect that there are probably somne perfectly reasonable
uses that it cannot support.

Chapter five begins the discussion of imuplementation , talking about a
mechanism for implementing the hypothetical-ness of hypothetical states of the
system. The basic idea is to build at a low-level in the implementation data
representations that allow operations to be recoverable -- a term used by
Gray[Gray 77] to mean that there is a single instant during their execution when
they “happen”. If a failure occurs before this instant, it is as if nothing had
happened , and if failure occurs afterwards , the operation is guaranteed to appear
to have completed correctl y. A mnechanismn called a commit record that I have
develope d is described , and various implem entations are discussed .

Chapter six continues the discussion of the imnplemnentation, talking about
how the system state is built of states of individual objects related throug h the
concept of pseudo-time , and the representation of object histories. Issues that are
key to the imnplemnentation , such as the necessary synchronization of clocks,
managemnent of storage for objects, and the details of representation of object
histories needed to ensure correct operation ia the face of failure, are discussed.

- 28 -

-  - —- - - --- ---- -- .-



Optimization of performance of the mechanisms, and ways to eliminate deadlock
are also discussed.

Finall y, chapter seven sumnmnari zes the thesis, giving goals and directions for
future work. A particular issue, that of the com~atibility of the mechanisms of
this thesis with specially designed hardware that makes the synchronization of
objects on the same system quite inexpensive , is elaborated in some depth.



Chapter Two

The communications system and storage system

In this chapter 1 want to discuss the interactions of the low-level
comiiponemns of the distributed system with synchronization and failure
mn an agemnen t . The im portant components are the long-term memories of each
node and the message passing network that connects the nodes, allowing them to
call upomi each other for services and access to data. In a sense, the characteristics
of the components Constitute my assumptions about where the technology is and
where it is likely to go.

The mnajor problemns with each comnponent consist of reliability problems
and synchronization problems. In turn , reliability breaks down into availability --
whether the com ponent is available to have data placed into it and taken out of it
-- and integrity -- whether the data entrusted to the component is damaged or not.
Synchronization problemns involve the ability to use the basic properties of both
the muessage sy stem and the storage system to control the order of actions taken
by comnput at ions in the system . Since mnu ltip le computations will be proceeding in
parallel , wit h onl y loose coupling between the computations at best, the order of
actions taken in the systemn is relatively unconstrained. As shall be discussed, the
message systemn and the storages system each add the opportunity for more
unconstrained ordering of actions.

Both the message comnmnunications system and the data storage system are
quite similar in function. In each system, one places data into the system with
some tagging of the intended destination, and then later the data is taken out ,
selecting the data by means of its destination tag. The differences between the
two are basica ll y either technolog ical or in their intended use. Typically the data
sent in a mnessage is intended to be transient , used only once or not at all , and in
any case. used fairl y promnpt l y. In contrast , the data stored in a data record is to
be saved for many potential later uses, that can be separated by quite a long time
from the initial transmission.

- 31 - - 
_______ 

-

_ _ _ _ _  _



—

~~~~~~~~~

It is , in fact , the case that a commnunications system can be built on what
seemns to he a “mmlem ory ” technology; for examuple, networks have been built -by
connecting muultipk processors to a shared bulk memory, such that messages to the
other processors are stored in queues polled by the other processors. The
distinction between such a system and a shared memory multiprocessor system is
slight. The construction of a mnemnory system using communications hardware is
conceivable , hut seemns not to be a viable way to go (although once upon a time,
the cost per hit of delay lines was relativel y quite cheap). Thus we cannot make
the simple argument that com m unications and memory are basically different , and
that we mm iu st therefore distinguish the two.

I do , however , assumne that there are two components, the comnmunications
systemu and the storage systemn. The comnmunications system is an abstraction
designed to capture the notion of data transport. The storage system is an
abstraction designed to capture the notion of long term memory of information.
These abstractions can be thought of as extreme points on a continuum that
contains all real storage and com munications systems.

It is useful to distinguish the two com ponents, given their basic similarity,
for two reasons. First, the autonomy property of the distributed system argues
against treating the shared network as a long-term repository of shared
information. Because the network is shared , it should do as little as possible for
its users in order to reduce user interdependence. Second, in the message
transmission mnechanism , the tradeoff between reliability, cost and delay becomes
very i m por t ant because of the large physical distances involved , whereas in a local
node , reliability can he achieved with relatively little cost and delay.
Consequentl y, the reliability strategies for data storage systems generally achieve a
high degree of reliability in the tran smnission of informnation from source to user,
while a significantl y lesser degree is generally provided by message communication
systems.

Since in a distributed system , mnessages are used to request remnote actions,
the properties of the mnessage system both in terms of reliability and
synchronization have a serious effect on the ability to create actions that are
composed of several subactions initiated at several nodes by messages. Taking no
particular care to ensure reliability and synchronization of the delivery of
messages, the behavior of such an action (its semantics) in terms of its effect at

- 32 -

-

~

i

~

z

~

- -

-

~~~~

the multi ple receiving nodes, and its interactions with other such actions that may
be initiated concurren tly, is extremely complex to describe.

To reduce the comnplexity of describing the behav’or of such actions, a
mnet hod based on numnb ering mnessages can be used to transformn the problems of
lack of integrity, variable delay, and dup lication into a comnmon problem, lost
messages. The problemn of coping with the unusual behavior of the message
systemn is thus red uced to coping with the problemn of coping with lost messages.

2.1 Reliabil i ty of Message Communications

Achieving integrity of the messages sent through the communications
network is not ustm all y a difficult problemn. One can get quite a large amount of
integrity by associating a checksum of an appropriate size with a message,
checking upon recei pt of all messages that the checksum correctly matches the
data in the message. I am assuming that errors within messages are randomn . The
result of the use of checksum s is the transformnation of all message content errors
in to lost mnessage errors (thus transforming a question of the integrity of the data
into a question of the instantaneous availability of the comnmunicat ions path
between source and destination). By the use of encryption of fnessages, one can
also treat attempts to modify messages in transit as random corruption of data in
the unenci phered form of the messages(Kent76J.

Messages are used either to communicate information to, or to cause
actions by, a computation at som e other node. In essence, then , it is unimportant
where unavailabili ty or lack of integrity occurs -- the imnportant thing is that the
systemn as a whole provide reliability from the source computation to the
destination computation ’s use of the muessage. Any guarantee of reliability of the
message systemn alone cannot ensure the reliable functioning of the system as a
whole , unless we m ake the rather unreasonable assumption that the only unreliable
component of the distributed systemn is the mnessage transport mechanism. The
reliability of the message system itself is much less important than the function
the message system provides for coordinating responses to failures both inside and
outside the message system.

-33 -



To detect failure of a requested action, the standard mechanism is positive
acknowledgment , i.e. when the action is per formned , a message is used to inform
the request er th at the action has been performned. Of course, the need to wait for
a positive response can lead to some rather serious problems. The basic problem
lies in the knowledge that the requester has of the state of his action after a
requesting muessage has been sent. If the requester receives a proper response, then
it is sure that the action has been performned. However , if it has received no
response , then the requester only knows that the request may not have been
processed . not that it has not been wholly or partially - processed. Achieving
reliable control of remote actions requires somne tricky design of the remote
actions, so that a request mnav be repeated if no response has been gotten in an
appropriate time, without causing errors due to running the request more than
once (such requests are ideinp oleni). Handling repeated requests will be discussed
shortly.

As a basic assumption , I conjecture that the problem of unexpected loss of
availability can he ch;mracierized by a request uncertainty principle, stated as
follows:

Once a rem ote action has been requested, the requester cannot
always determine, in a bounded time, whether or not it
has occurred.

A program th at requests remote actions mnu st thus always be prepared to somehow
handle the case that it has initiated a remote operation , but cannot determine the
status of its request. In non-distributed systems, this case is usually so rare that it
is not explicitl y considered in the design of software.

Unfortunately, if the requesting node fails , or chooses to give up after a
while, it may he the case that it still does not know whether the request has been
processed. It is important that the system give the requester the option of giving
up without causing the possibly partiall y comnpleted action to leave the system in
an irrecoverable state. The option to give up on a request that has not yet been
completed adds no difficulties that are not alread y present due to the possibility
of a failure of the requester , and adds to the autonomy of the requesting node.

- 34 .

_ _ _ _ _ _ _  -~~~



-- --- -~~~~

It is important to note that a certain part of the unreliability of the
message system cannot be reduced by using mnore reliable components. The
portion I refe r to is that caused by autonomy. The likelihood that a node owner
will disconnect or shut off his mnachine is independent of the innate hardware
reliabi l ity . Also, it is often not econom icall y feasible to provide complete
reliability of the mnessage system , especially where long-distance communication .
with hazards of natural disasters, wars , etc., is involved in the system. For this
reason, the unreliability of the message system must be taken for granted , and
reflected in the application programmning interface.

2.2 Synchronization of Message Communications

The prunary problems with message communications from the point of
view of synchronization of remote actions are duplication and delay. In most
comnm uunica t ion s networks both of these problems arise normnally, as a result of the
internal structure of the networks. Even were the network design specialized to
prevent duplication and varying delay on messages, however , protocols that
attemupt to ensure the reliability of message commnunicati ons will introduce these
factors anywa y.

Duplication and loss of muessages can be characterized quite simply. For
every mnessage sent in the systemn , that mnessage will arrive at its intended receiver
any numiibe r of timnes, from none on up. Delay c~n also be simply characterized
for the purposes of the thesis -- the individual arrivals of the copies of a message
m a y  be at any t imnes later than the sending of the message.

Dup lication is a problem in the use of communications systems because
messages are usuall y used to cause actions at the receiver. Depending on the kind
of action, the repeated performnance of the action requested by a mnessage may be
an error -- for examnple , a message that requests the receiver to subtract one from
somne integer cell will , if no attempt is m ade to prevent repeated execution due to
duplicated mnessages , Cause the cell to be decremented some number of times. One
way to avoid problems resulting from duplication is to rem ember all messages ever
received at the receiver , assum ing that they are distinguishable. If the receivers of
the system all ignore duplicated messages based on this information , then the
behavior of the message sy~temn is simplified to the statement that for every
message sent , it is received at the intended receiver either once or never.

-35 -

L - 
-



_ _ _  -~~~~~~~~

Rememnbering all m essages received is a quite expensive strategy in ter m s of
the amount of memory needed at a node and the amnount of timne needed to
verify that a message is not duplicated. Another strategy that does not require
um mb ot mnd ed mucm nory is to assign an identification number to all messages sent,
where each receiver stores the largest numnber attached to any received message,
and ignores any message that is received whose numnber is less than the number
currently stored at the receiver. In this strategy, all dupli cates are thrown away,
but also nor m -du p licated messages that have a number less than the receiver
numbe r m mm ay he thrown away (somne lost messages can never be resent in this
strategy , since they may have identification numnbers too low. A more expensive
variant of the scheme is to have each receiver remnemnber the highest message
received from each source , so that the source can always retransmnit the last
message sent). To minimiz e the number of mnessages thrown away erroneousl y,
the message identificati on numnbers must be chosen so that messages are numbered
in an order that ascends as th e arrival ti m e of the first copy. In most networks ,
the arrival time of the first copy is correlated strong ly with time of sending, so by
using the clock time of sending as the identification nmnbe r , the number of
messages falsely rejected as potential dup licates can be reduced.

Note well , however , that it is sufficient to number the messages arbitrarily
to achiev e duplicate rejection -- the use of clocks, and mnechanisms that ensure
that two di ff er ent m essages get different identification numbers, are only ways to
ameliorate the false rejection problem.

I have enumnerated these strategies for avoiding duplicate messages here
because they form a basis for the mnechanisms that handle duplication of requests
in the system to he described in the rest of the thesis. An alternative approach to
the one I have tak en would be to eliminate duplicates in a low-level
comnmnunications protocol, then build the system assuming that message
duplications never happen. I have not taken this approach for two reasons. First ,
eliminating message dup lications at a low level Cannot help with the problem of
requests duplicated as a result of retran smnission in an attempt to handle a request
whose status is uncertain. In the system to be described , duplicate requests are
rejected in any case by mnechanisms analogous to the mechanisms used for
duplicate message rejection. Since the only objection to a duplicate message is
that it mn a v lead to a duplicate request , dup licate mnessages will be handled by the
higher level.

-36 -

_ _ _  - -—-~~~- - - - —-— - ---



Vary ing delay of messages can lead to another sort of synchronization
pro b lemmi . Messages can arrive in an order quite different from the order in which
they are sent. The simnplest example is a com putation that sends two mnessages to
the samue receiver. If the first is delayed mnor e than the second , then it m a y  arrive
after the second message has been received and processed. However , this example

Fig. 2. Reordering of messages by the message system

A Site l Site 2 B

lip
send to h~ send to 1

send to 2 receive (from A) .—~~ send to 2

\\ re~~ve kwrn B) *~~~~~ve~~rorn B)/

recemve (from A)

is rather tamne com pared with the one in fi gure 2 where each of two computations
send messages to each of two receivers. At one receiver , the message sent by
computation A arrives first. At the other , the m essage sent by computation B
arrives first. This possible order of arrival can happen no matter what order each
computation chooses to send the mnessages in. The result of this reordering of
mnessages is that it is not at all simple to understand what the result of a set of
actions requested by messages to remote sites will be. In the case shown in the
fi gure . there are four possible outcomnes (assumning that the requests have effects
onl y at their destination site , so that the relative ordering of a pair of requests
destined for different sites can be ignored) -- I) both of A’s requests will be
processed before both of B’s, 2) both of B’s will precede A’s, 3) A will precede B
on site I , but not site 2, or 4) B will precede A on site 1, but not site 2. Given

-37 -

- - -__ —- -~~~~—~~~~~~-“ ~~~~~~~~-- - - —--~~~~ - - --- -~~~~~~~~~~~~~ - - _
~~~~~~~~~-— - - -- - -- - -


n computation s , each sending mnessages to m sites , the nu mber of possible arrival
orderim mgs is (m I !) m m~. Such a large number (if n=mn=5 , there are 25x iø~ orderings)
of possible interactions am ong computations cam m be very hard to comprehend
when writ ing a program n that requests remnote operations. Certainly some strategy
is needed to m ake sure that under all possible arrival orderings , the proper result
is achieved.

Fortunatel y, there are ways to overcomne the complexity resulting fro m
message reordering. The solution used in the thesis is based again on numnbering
m nessages , and accepting at a receiver onl y mnessages that have a larger number
than the ones alread y received. If all m essages intended for a particular receiver
are guaran t eed to have d istinct numnbers , then the possible orders in which
messages can he received at a receiver are li i m m ited to subsequences of the sequence
defined by ordering all messages according to their muessage number. Messages
rejected at the receiver due to a too low mnessage numbe r are indistinguishable ,
from the sender ’s point of view , fromn lost mnessages.

Correl ation between the order of mnessage arrivals at several sites can be
achieved with the same nunthering mechanism. If in the example above , the two
m nessages sent by A have the same number , and the two mnessages sent by B have
the same nu m ber (without loss of generality , greater than the number used by A),
then the possiole orders of arrival of messages can be thought of as having A
arrive before B at both receivers , and the subsequences that can result from loss
of individual m essages in that ordering.

As in the similar scheme t hat allows detection of lost m essages by
numbering messages, the choice of numbers nmay he arbitrary, subject to the
restriction th at different messages intended for the same receiver have different
numbers. However , a completely arbitrary choice of message numbers can exact a
heav pena lty -- many rejections of otherwise acceptable messages. In the
examp le, if A’s mnessagcs are generated and processed long before B even attempts
to send his messages, yet B uses a numbe r less than the one A used , then B will
fail. By choosing mnessage numbers so that they are chosen in an order that
ascends in lime , then the likelihoo d of such unnecessary failures will be reduced .

- 38 -

-~~~~~~~-~~--~~~~~~~ - ~—~~
_ .~~~~~ - -- - -—- -

~~~~- - -~~~-~~~~~~~-



Here we lose a useful property if we “ im prove” the scheme so that each
receiver remnem ubers the hi ghest mimessage numnber received from each sender , and
rejects those mimessa ges that arrive out of the order sent by it sender. The
‘
~imnproved~

’ scheme cannot ensure a correlation among the mnessages sent by two
different senders to two different receivers. Thus , if the two messages sent by A
have the same number , and the two by B also have the same number, all orders
of arrival are still possible , in contrast with the two choices (A first at both sites,
or B first at both sites) achieved with the mnechanism using a sing le highest
num ub er at each receiver.

The mnethod of num iberim ig request mnessages and accepting messages onl y in
increasing order at a receiver is the basis for synchronization of re m ote actions in
the sy ste m developed in this thesis. However , as pointed out above, using the
muethod at the message level without knowledge of the requirements of the higher
level is probably not as good as using the mnethod at the request generation and
pr ocessing level to organize synchronization. At the level of the system concerned
with the actual semantics of the requests , the group ing of requests sent out with
the sam e message num nber can be chosen to have exactly the rig ht effect.
\V ith oti t  sem antic knowledge , the best the m essage level can guarantee is that
messages sen t later wilt be processed later or not at all. A particular advantage of
h andl ing  del ay and dup lication at the request level is that out of order, duplicated,
and delayed messages do not always cause problem us , depending on the semantics
of the actions amid the objects they act upon. For examnple , if one asks for the
balances of two accounts at som e database representing a branch bank , it makes
no difference if the responses are processed in an order different than the order
of the requests. Simnilarl y, if one deposits two checks to one’s account , i t is, in the
long run at least, irrelevant in which order the checks clear. The mechanism
described in the thesis can often tolerate messages that arrive quite out of order.
Duplicated messages that cause no “side-effects ” at th e receiver (such as pure
queries) are always quite acceptable , and reordering such messages may often be
acceptable. Requirin g that such requests be processed in the order they are issued
may cause a significant delay that is often unnecessary.

-39 - 



-~~~-V - --.- -— ---  — . - - - -~~~~~ -

2.3 Reliability of Storage System

As noted earlier , the integrity of storage systems can be made quite high ,
at reasonabl y low cost , by using error correcting/detecting codes. Further , the
availability of information stored on disk or other large scale secondary memory is
usuall y as good or better than the availability of the node to perform
comnpu ta tio n s. Failures of in for m ation to be available are usuall y transient (a disk
pa ck off-line ),  and onl y very rarel y will a node’s storage system (taken as a whole,
including whatever local backup mechanis m keeps extra copies of the state on
tape) lose in formn ation stored in it. Consequentl y, I will generall y assume that a
node never loses informn at ion once it is properly stored on disk. This assumption
is not absolutel y required -- it is possible to correct for loss of informnation by
“turning back the clock” and repeating the actions needed to create the
information. However , the muechanismn developed in the thesis cannot
automn ati call y correct for such loss of informnation , since once the information is
lost, there is no way to regenerate it except by going outside the system.

If the basi c storage mnecha nism is not reliable enough , replication of
information to create redundant copies for the purpose of ensuring availability can
be used. Two possible kinds of rep lication are possible, either multiple copies
wi th in  a node , or mu lti ple copies at several nodes. In the thesis, we assume that
rep lication within a node is the primary means for achieving availability.

~However , in chapter five , a strategy for increasing the availability of a critical
class of system objects , possibilities, by multi-node replication is described. In
chapter si x , a mechanism for encaching versions of objects to increase availability
and decrease delay is also described.

Systems have both long-term and short-term storage. It seemns to be the
case in the real world , thoug h it is not clear what the base cause is, that the more
rapid accesses (stores am id updates) are only possible from storage that tends to
lose information upon failure -- core mnemory is more prone to failure than disk

- 4 0 -



or tape.1 Thus the storage used to hold the frequentl y accessed transient states of
comnpu ta tio ns mnus t be of the m ore volatile sort. Following the approach suggested
by I.amnpson and Stur gis[Lamnpson76] we capture this idea by considering two
kinds of storage im i the nodes, stable storage and volatile storage. Stable storage is
the kind of storage used to hold objects for a long time (across system crashes),
while volatile storage is used to hold intermediate values created as part of
computations. Volatile storage will be thoug ht of as belonging to a computation
t hat uses it , such that failure of the computation or the node running the
comnputation will cause the volatile storage to detectabl y lose its values.

The best definition of volatile and stable storage is in terms of their
interaction with failure. Once a stable storage record has been successfully
wr itten , succeeding reads are guaranteed to return the value stored. Upon a
failure before the completion of an update is signalled , the updated storage
location (record) contains either the old value , the new value , or an unambiguous
indicat ion that it is inconsistent. If an updat e signals its completion , the stable
storage location is guaranteed to contaim i the new value. Our definition of stable
storage is due to Lamnpson and Sturg is[Lamnpson76]. In contrast , once a volatile
storage location has been written, it may lose its value (detectably) at any time.

2.4 Synchronization of Storage Systems

There are two basic problemus of synchronization in the storage systems.
First , there is the problemn of making sure that the representation of data on
stable storage correctly represents the state of the computations that are making
changes to the storage. Second , there is the problemu of mnaking multiple changes
to storage consistently, without other computations at the node being able to
interfere by modif y ing data during the set of changes.

1. Core mem ory is non-volatile , but it is randoml y addressable. If a failure
occurs in the addressing mechanismn , it can destroy any part of the core memnory.
Tape and disk on the other hand , are not so randoml y addressable , and have the
property that only the portion of the tape or disk currently accessible can be
damnaged on a failure. -

- 41-

_ _
_ -



_ _  _ _

The problem of ensuring that the representation of data on stable storage
is correct arises because of the commnon use of virtual mnemnory systems to make
second ary storage look like primary mem ory and because of sophisticated disk
queueing algorithms. Basicall y, in many systems, a write to secondary storage may
not occur imm iumi ediatel y when it is logically requested. Given two successive writes
to secondary storage, one at ti mn e t1 and one at t imne t2 (t1<t2), it is possible that
the one specified at t2 will happen first , amid if a failure occurs, may be the only
one to happen . In the virtual mnemnory case, the reordering of writes arises
because wr ites directl y change the primnary mnemnory (volatile) copy, only later
mmmodi fv in g the secondary storage copy. Thus, if the modified pages of primary
mnem no ry are wri t ten out in a different order than that in which they were written
origin a lly ,  the changes to secondary storage will be mnade in different order. Note
that this is onl y a pr ohl emn when the system encounters failure , since accesses to
objects belonging in stable storage always go throug h primary memnory. In the
case of op t im nhz in g disk qucueing algorithm ii s that reorder the write queue in order
to mnini m ize seek time on movable head disks, the samne problem can occur
because of the reordering. The solution in either case is to provide a mechanism
within the system whereby one can ensure that a particular modification to a
stab le storage object has been completed to the poin t that the copy on stable
storage has been mnodified. In the virtual mnemnory case, a call on the operating
systemm i to “syn ch roniz e” secondary storage can be provided , whose semnant ics is not
to return tmm it il the secondary storage copy is identical to the pri m ary memnory
copy. ~ising a forced disk write if necessary. In the case of optimizing queueing, a
call on the op erating system to wait until a queued write is completed is one way
tO provi(le the desired comitrol. I will assume that such a mnechanis mn is provided at
each node , and is used to insure that writes to stable storage used in the
alg or ithmn s executed at each node are done in the order specified by the algorithmn .

The other probl emn of synchronization within a node is coordination
betweemi several computations that attemnpt to mno dif y mnore than one data record
on that node. This is the local node version of the general synchronization
prohlemn attacked in the thesis. I am going to assumne that the solution provided
in the rest of the thesis is used inside the local node for the general
symm chr oni zatio n case. However , there will be occasions in the construction of an
imn plememitatiomi where the need to synchronize action on a single data structure
composed of imi ulti ple records will arise. This is a simpler case, because there is no

- 4 2 -



r - - 

~~~~~

-- - - -

~~~~~~

-

need to be ~,repared for synchronization constraints that may include any set of
da ta objects on the local node. All that the nodes need to provide is a
mechanis m for creating atomic operations on individual data structures.

To this emid , a node is expected to provide a very simnp le formn of locking.
Associated wi th a data structure of the sort I am concerned with, there will be a
lock. Setting that lock prevents other comnputations from either reading or writing
the data structure. Only one lock may be set at a timne by a comnputation , so that
there is no problem with deadlocks. Now the problemn that mnust be solved is the
im itera ction of failure with the locks . If the comnputation that has the lock set
ternuimiatcs without clearing the lock, then the data object must be presumed to
have been onl partially mnodified. What must happen is that the data structure
beimig modified mn ust he restored to its original state before proceeding, thus
having the effect that the local commiputation that set the lock appears to have
never run. A very simple mechanismu that can be used to implement these
lockable da ta st ruc tLmre s is showmi in fi gure 3.

Fig. 3. Lockable Data Structure
Data Object Pointer ______ —

Process

Current Val- p

Saved Val - ___________

The new value constructed by a process that modifies the data structure is
constructed by copy ing enoug h of the ori ginal value to avoid actually m odif ying
the saved value. Since the saved value is not m odified , resetting the data
structure to the saved value upon salvag ing correctly causes the data structure to
appear as if it never was touched by the failed process.

-43 -

~ 

~—-- - - - -- -~~~~~~~~~~~~



The header contains three parts. The Process field is either null , indicating
that the data structure is not locked, or set to namne a process that has the data
structure locked. If the Process field is non null , then if the named process exists,
only that  process can read or mnodif y the data structure. If the process named
does not exist (since it has failed), then the data structure mnust be salvaged. The
currem it val field is a pointer to the current value obtained by the process that
locks the data structure. The saved val field is set to be equal to the current val
field whem iever the process field is set to a non-null value. The salvaging that
occurs when a process attemnpts to lock the data structure and discovers that the
process field is m i on-m iull and names a failed process consists of copying the saved
val field into ihe current val field.

Ami alternative mecham mismn would be to have the process copy the value to
be modified into another storage area , modify it as needed , and then when done,
switch a poin ter to the modified version in an atomic operation. It is still
necessary u i  this schemne to ensure that other processes updating the object do not
simultaneously make their own copies and mnanipulate them, so a way of
indicating an update in progre ss and a salvag ing mnechanism of somne sort , or a
way of preventing all but one such update are still needed in this mechanism. 

-

The purpose of the locks just described is to provide minimal locking
needed to ensure correct symichron ization of actions at a node. It is intended
therefore that the locks be set for as short a time as possible. A restriction to
hel p emisure this is that no lock can remnain set if the process waits for somne
external evem it . such as sendimig a mnessage or receiving one. If a process does
attemupt to wait while it has a lock set, it will be termninated , thus effectively
freeing the lock after the required salvage is performed .

2.5 Remotely requested actions

As noted earlier , actiomis are rem otely reques ted by means of messages. A
message that requests an action causes a comnputation to be started that performs
the indicated request. The state of this com putation is kept in volatile storage,
and it can request one lock at a time as noted above. Due to duplicate messages,
multi ple instances of a requested action m a y  run simultaneousl y. Actions may
also run in an order different from the order in which the actions are requested .
Further , the computations running actions ina~ fail at any time.

- 44 -

______________________________ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~
.
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- :--:-
~~~~~~~~


_ _ V -

Givem i actions that have such comuplex behavior , it is fairly hard to
construct a working mnulti-node programn. Further, def ining interfaces to such
programs that can be used to interconnect multi ple program s is even harder. The
remainder of the thesis is concerned primn ari ly with the development of
abstra ctions at the next hi gher level that simnp lif y the task of constructing such
progr amn s and imiterfaces. The intent , to be realized in chapters five and six , is to
define a set of abstractions that are realizable in a relatively straightforward way
in terms of the behaviors of remnotel y requested actions that result from the
com plexity of the muessage amid storage system s.

- 43 -

-

Chapter Three

Pseudo-time and Possibilities

In this chapter and the next , I describe a semantic interface for shared
objects and the operations on them. The emphasis in these chapters is on the
behavior of the interfaces, rather than on their implementation. For this reason, I
will take an abstract view of the nodes, objects and computations in the system,
such that the view represents fairly accurately what the “applications programmer”
might imagine the system to look like. Briefly let me outline what will happen.

The key ideas of the thesis are presented in this chapter. Two key
abstractions, pseudo-time, a way of relating and synchronizing the order of actions
at mult iple nodes, and possibilities, groupings of actions that must be done all at
once or not at all, provide the tools by which a programmer can manage the
effects described in the previous chapter. Objects that have indefinite scope and
extent provide the mechanism for information sharing. Basic concurrency control ,
defining the interactions between independently executing computations accessing
the same objects, is done locally at each object , resulting in defining the semantics
of an individual object in terms of an object history. To achieve more global
control of the interactions between computations, particularly exemplified by the
notion of a transaction , pseudo-time is used to relate individual object histories to
obtain a system history. The system history defines the notion of a consistent
state of the system. Programs can then ensure that they observe Consistent inputs
and generate consistent outputs by the use of a pseudo-temporal environment, a
dynamic naming environment that functions to “stop the action” seen by the
program, even though the system is not necessarily stopped.

As noted in the previous chapter , a key problem in distributed
decentralized systems is dealing with the uncertainty resulting from an attempt to
perform a remote action. The basic approach develop ed here to solve this
problem is to make the changes involved in a remotely requested action in two
steps. The first step tentatively performs the computation , such that no other
independent computation can observe it. The changes made to each object are
grouped into a set called a possibility. If the first step goes to completion

-47 -
_ _ _ _ _ _ _

~~~C~DING PA~~ & BLI~JE~NOT ?WUD

-~ - - --~~~~~~~~~~ -- - - - -~~~~~~-- --~~~---
-
~~~~~~ - V -—---- .-- --- --- 


V_ _V~

-

V - — - —--

without a hitch, the computation is confirmed by an act that converts the
possibility into a “reality. ” If not , the possibility safely times out , eliminating the
tentative changes from the system.

Creation of composite actions out of independently designed actions whose
implementation details may be inaccessible to the programmer requires discipline
in synchronizing the component actions and in managing failures , both on the part
of the programmer doing the comnposition and on the part of the programmers
who designed the actions being combined. By using the same pseudo-temporal
environment and possibility with all the actions being combined , easy combination
of parallel actions can be achieved. To allow the construction of such composite
actions in such a way that they are not dependent upon the correct behavior of
their user, the possibility concept is extended to include the notion of a dependent
possibility.

3.1 Objects

Objects are the means by which inf orm ation is shared within the system
between independently executing computations. An object is a named repository
for information. Objects possess a state that can be observed and modified by the
execution of programs that refer to the object as an operand. Objects are
abstract, in the sense that while an individual object may in fact be represented in
terms of a group of lower level objects, the representation is invisible to its users.
The essence of objecthood is possession of a name.

In this thesis, I am concerned with objects used to store information for a
long time (e.g., longer than the time between system crashes, or longer than the
life of an individual console session) and that may be accessed by an unknown set
of users (programs, people). The objects may be catalogued in a file system , such
that the names used by the user programs will be character data , rather than
pointers. The scope and extent of such names are not even deducible from within
the system. Even if the objects are named only by unique identifiers (pointers) .
due to the decentralization of the system there may be no way to determine what
references to an object exist. In a centralized system, by tagging uni que
identifiers stored within objects, mechanisms for finding all references to an
object are possible (e.g. to garbage collect objects no longer referred to). In a
system whose design was centralized (top-down by one person), all potential

- 48 -

interactions are constrained at design time. Neither of these ways to litnit
interactions between computations will always be possible in a decentralized
system whose design evolves in a decentralized way. The lack of constraints on
scope and extent make the job of proper synchronization difficult , because the set
of independent , asynchronous computations that could interact with an object may
not be easily discovered.

The semantics of objects are defined locally to their implementation. In
the abstract , the state of an object reflects the history of operations applied to it.
The implementation of the operations in terms of the underlying representation of
the objecfs state is solely managed by a program called a type manager that is
common to all of the objects of a particular type. Hiding the implementation of
objects within its type manager allows the implementation of objects to be
modified and controlled locally, without the need for users of the objects to be
aware of changes. CLU[Liskovl8] and ALPHARD[Wulf74] provide this kind of
implementation hiding, as do ACTOR S(Hewittl6]. ACTORS in addition provide
local control of synchronization between independently initiated operations on the
same object[Hewitt77j . In this thesis, the basic synchronization of independent
computations also is provided local to the type m anagers of individual objects.
However , the abstractions defined in this chapter allow construction of
synchronization behaviors that involve multiple objects, whereas Actors can handle
multiple object constraints only by the construction of intermediate objects to
mediate accesses to objects requiring symichronization[Atkinsonl8J.

In the rest of the thesis, CLU syntax[Liskovl8j is used to represent
programs and objects. The objects of this thesis, however , are different from
CLU objects in an important sense. They are shared by multiple users and are
used to store information for a long time. NAMOS also allows arbitrary
parallelism , while the current definition and implementation of CLU does not.
CLU is used because the standard languages , such as Algol 60, PL/I , FORTRAN ,
etc. do not provide facilities for the Construction of abstract types and operations,
but we are very interested in explor ing the interactions between abstraction
mechanisms used to build modular systems and parallel execution and long-term
storage of objects. Because the CLU type abstraction mechanism is used to
describe types of objects that are stored for long-term , shared use, we will have no
syntax for describing the short-term , unshared types that CLU’s object abstraction
mechanism provides. This lack of syntax is not troublesome for the purposes of

- 49 -

-- - - -~~-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V

the thesis because we shall have little need -to refe r to such types in examples, but
a real systemn should provide both mechanisms.

Message sending is implicit in the programs we use in examples. Executing
somne part of a program m a y require the sending of a message from the site
currentl y executing the program to another node -- the mechanism by which this
message is generated is not important. The programs themselves are written as
sequences of steps with the exception being the two constructs , either and all,
which execute a group of statements with no predefined order of execution , in
parallel. The all construct is equiva lent to a parbegin block , in that all
statements must finish for the execution of the block to finish. The either
construct finishes whenever at least one statement of the either finishes. The all
construct is primaril y useful for expressing that a group of statements need not be
evaluated in any particular order , while the either construct is useful for
expressing computations where not all of the branches are required to finish
(timneouts are particularly important examples of either). Sequencing amnong
expressions to be evaluated on different nodes may be implemented by a request
and positive acknowledgment mechanism , such that calling a procedure on a
different node involves sending the request and then waiting for a response
signif ying completion and providing results, if any, at the calling node. If an error
occurs, interfering with either the r~quest , the invoked procedure, or the response,
then no response will get to the calling node. Such an error can be detected by a
timeout.

When concurrent execution is introduced into a programming language
(such as CLU), there are two possible ways of thinking about procedures (or
operations of a data type). Since procedures in a von Neumann architecture are

V

executed as a sequence of steps , we could view procedures as executing over a
period of time , and unless otherwise prevented , all of the primitive operations
ultimatel y composing the execution sequences of two concurrent procedure
executions could execute in any arbitrary order. In this thesis, an alternative view
is taken , viewing procedures as abstract “atomic” operations . whose internal steps
are not interleaved with the execution of any procedure. The implementation of

V
such procedures is one of the primary tasks of NAMOS. Either the traditional
view of procedures or the alternative view taken by NAMOS degenerates into the
same semantics, given a single execution point. What is missing in the NAMOS
view is the ability to construct “sequencing control abstractions”, such as a

procedure that at intervals of 10 seconds increments its (by reference) parameter.
Our thesis is that such sequencing control abstractions are best handled by a
separate linguistic construct (perhaps called a subroutine?), leaving the procedure
construct to build abstract operations.

Manipulation of objects is done by operations, requested by transmitting a
message to a node capable of executing the type manager to which the operation
belongs. A natural way to build objects that captures the physical
decentralization of the nodes is to define the idea of an object home. The object
home is a node that contains the type manager for the particular type and the
mapping from the object’s name to the component objects that make up its state.
Implementing an object on a sing le node ensures that all operations that deal with
the object go to a single place to do so, so that one can queue the requests in
some order. There are, however , other imnplementations of objects that do not
require that all accesses to an object go through a common system.

First of all , if an operation on an object does not change its state , but
merely returns some function of its state , there is no inherent need to go to the
homne if a valid copy of the state of the object is obtainable at another node.
Thus , copies of the object can be distributed by a kind of read-only encachement
of the state of the object. The home is then needed only to make sure that
operations that change the state of the object all go through the same place.
There must be a means by which the consistency of an encached copy with the
state of the object at its home can be guaranteed , however.

Second , there is no absolute need for a fixed home location. Consider , for
example, an object whose purpose is to behave like an integer set , for which there
are only two operations -- append , which adds an integer to the set , and member ,
which tests to see if an element is in the set. The append operation need only
send a message to any one of several sites that maintain subsets of the total set
object , whose union represents the entire set. The member object sends messages
to all of the sites containing subsets of the set , requesting each node to test to see
if the integer is a member. If any node responds yes, then the member operation
returns true , while no responses from all nodes indicates that the member
operation should return false. Other distributed implementations of objects exist.
Johnson and Thomas[Johnsonl5j have suggested a strategy by which cells that
contain scalar values can be implemented in a distributed fashion. In chapter five,

- 51 -

V - ~~~ -

_ _ _
V V ~~V -~~~ V ~~~_~~~~~~ V V ~ V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ -~~~~

a distributed implementation of a special kind of “object ” called a commit record ,
used to implement the possibility abstraction , is described.

3.2 Object Histories

Common to the imnplemnentation of objects with fixed homnes and the
various ways of distributing imnp lementatioiis of objects is a fundamental
requirement. Since an object has state, the results of one operation depend on the
parameters to some set of other operations that are app lied to the object.
Normall y, this dependency is derived from the time-ordering of operations applied
to the object. In general , the effect of an operation may depend on all operations
executed before the operation finishes execution. The fundamental requiremnent is
that the implem nentation must execute the operations app lied to the object in somn e
order. With an imnp lemnentation that defines a home node to be where all changes
are made, ensuring that operations are app lied in an order is trivial. However ,
consider an implementation of an integer cell that has two copies, each of which
must be m ultiplied or added to independently. Then if site A tries to multi ply
the cell by 2, while site B attempts to add 4 to the cell, the messages to the two
copies may arrive in opposite orders , giving different results. In this case.
operations were applied to the cell object in no order (of course, the actions
applied to the copies were ordered , but that doesn’t necessarily lead to an ordering
of the operations as a whole). If one were to try to read the value of the cell ,
one might get either answer , depending on the node that the read is attempted at.

Thus a major function of any im plementation of objects is to assign an
ordering to the operations applied to each object. Perhaps the simplest way to
assign an ordering is to use the order of arrival of requests at a home node as the
order in which requests are processed on the object. As noted in the previous
chapter , the arrival ordering of messages may be very hard to control in order to
achieve any form of synchronization among objects with different homes. The
possibility of unpredictable delay leads to lack of control of when requests will be
executed , while the request uncertainty principle leads to the inability to stop a
request once it has been requested.

- 52 -

~~1

Traditional approaches to synchronization of operations on objects attempt
to control the arrival ordering in order to achieve synchronization. The only
control that is usually possible is to delay computations originating requests, so
that there is only one request outstanding to an object at any one time, and only
after that request is known to have been processed can another request be
originated. Use of locks or semaphores provide the mechanism for deciding when
a com putation should be delayed because a request is already outstanding. This
approach is quite indirect -- in order to perform an atomic action on a group of
variables, one must ensure that any other computation that might want to 3ccess
those variables is stopped.

It is not necessary that the arrival ordering be the ordering used to process
operations on an object. A strategy that gives the originator of requests more
direct control of the order in which operations are performed would simplify the
task of constructing programns that need to synchronize operations. To develop
such a strategy, it is necessary to re-examine the concept of updating an object
that has state.

Traditionally, updates have been thoug ht of as m odif ying objects. Another
possibility, almost unexplored, is to think of an object as a sequence of the states
it has assumed and will assume as the result of all updates. The updates, then,
simply create a new element of the group, but do not involve any notion of
modifying any one of the states. Similarl y, reading an object specifies some
element of the group.

With this transformation of the view of objects, synchronization
mechanisms become ways to bind the references that occur at different times in a
computation to particular ele m ents of the group of states of an object. Thus the
synchronization problem is transformued into a naming problem. This viewpoin t

(which I find extremely fruitful) has led rather directly to the approach for
synchronization in distributed systems presented here , and seems to be a rather
nice way to think about synchronization in the desi gn of programs.

To capture the notion of synchronization as naming, some concepts must
be developed. An object can be thought of as a sequence of versions, the states
that the object has assumned and will assume as the result of the computations
that are app lied to it. We will call this sequence the object history. It is a

- 53 -

- - - - -~~~~~~- ~~~~~V_ ~V_ V~~_ V~~~~~ --- - -~~~~~~~~~~

_ _ _ _ _ _ — -- - -_ - - - — - - - ---- --~~~~ - - - ---- -
-,

completely static picture of the object ’s behavior. Since the entire object history
is not known until the system has finished execution , this is clearly a logical
concept , rather than something that has a counterpart in the real system .
Nonetheless , for the next few pages, we will suspend our practical judgement
somewhat , and imagine that a program does execute in an environment where all
the histories of all shared objects are known.

Accessing an object requires a complete specification of which version is to
be accessed (either read or created). The way to think about this is that objects
have two part names consisting of an identification of the object itself comnbined
with informnation that uniquely selects a version in the object history. There are

two issues that must be considered in designing these two part names. First , how
are they used in programs? The ways that programs can generate and use names
influences very strongly the utility of this approach to synchronization. Second,

what is the structure of the mapping from version selectors to versions within an
object history? As we shall see, by carefully choosing this structure we can make

it easy to define a notion of system global state that is not defined in terms of a
snapshot of the distributed system at an instant of time.

Since the entire history of the object is known , the idea of updating an
object in this static view is som ewhat strange. Each version of an object is the
result of an update. Executing an update m ay be best thought of as checking to
make sure that the upda te was preordained to occur by the “god” that set up the
system history. Eventually we wil l modify our view so that the static history is
onl y partially known , so we can view updates as filling in gaps in the already
known part of the static history.

3.3 Kinds of references

The m odel of the memnory that holds shared objects is a mapping from
completely specified names , called version references, to versions. A version
reference is a kind of value supported by the system. It is a two-part name
composed of an object reference and a selector called a pseudo-time (for reasons to
be explained later). The mapping from a version reference v=(o,p) to the proper
version V is done in two stages. o is used to select an object history out of the
memory. p selects a particular version from that object history. An object
history is just a function from pseudo-times to versions. Conceptuall y, then, the

-54 -

_ _ _ _ _ _ _ _ _ _ _ _ ~~~~~~~~~~~~~~~~~~~~~~~~~ -_ _ _ _ _

V

shared mn emmt or v of the system can be thought of as a hierarchy with two layers of
selection , as in fi gure 4.

Fig. 4. Shared Memory Model

02 03

P1 ~2 P3 ~i P2 P3 P1 P2 P3

The entire structure of the memnory represents the system’s history for all time.
The m iddle layer of nodes represent object histories. The leaf nodes represent
versions of objects. The labels on the arcs represent object references (oi, 02,

and 0
1
) and pseudo-times

~P i ’ ~~
and P3).

Object references , p seudo-ti m es, and version references are all types of data
values that can be used by programs. Object references correspond to the pointer
or reference data type. Pseudo-timnes don ’t have an explicit counterpart in any
progr amming language that I know of , but their function , that of selecting a
particular state of an object to act upon, is normall y pro vided by the execution
ordering of progr amn s (they are analogous to array selectors, but have a different
purpose). A version reference corresponds to a single access through a pointer or
reference -- agaimi , not a concept explicitly available to the programmer in existing
languages.

- 55 -

- _
V - V V

_ _
- ~~~~~~ ~V -

_ _ _ _ _ _ _ _ _ _ _ _ V _ _ _ _ _

Unlike pointers in ordinary languages , object references by themselves
cannot be used for access to objects. Instead , a version reference is required to
write or read a value in the memnory. An object reference can , however , be
combined with a pseudo-time to obtain a version reference . As we discuss later in
the chapter , it is most convenient if the pseudo-time combined with an object is
provided by an implicit mechanism we call a pseudo-temporal environment. Here
we descrir,e the operations that mani pulate version references and object
references using explicitly specified pseudo-times. Converting a programn from the

implicit use of pseudo-times to the explicit form shown here is done by a process
of “desugaring ” the syntax , replacing references to objects with code sequences
that choose the pseudo-times to be used and then call on the appropriate functions
to create version references that refer to the proper versions. The functions about
to be defined can thus be thought of as “hidden under the covers” from the

programmer ’s point of view.

The only ways to use object references are as parameters to the following
functions. In describing the implementation of these and succeeding functions,

parameters are labeled by names indicating their type, so that or , or!, or2, etc. are
object references, vr , vr l , vr2 , etc. are version references, pt , pt l , pt2 , etc. are
pseudo-times , boolean is a boolean value , and value is some value of any type
(integer , object reference , array of stacks, etc.). The result or results appear to
the left of an assignmnent operation , and any error signals that can be generated
appear in a list after the word “signals ”. The semantics of each operation is
described in a few sentences following its parameter specifications.

yr : version_ref$freeze (or , pt)
This is a function that generates a version reference
from an object reference and a pseudo-time.

boolean := object_ ref$eq (on , or2)
This is function that tells if two object references refer
to the same object (in the sense of LISP’s eq function or
CLU ’s equal function).

We can think of a version reference as referring to a particular value.
There are three operations specific to version references. Explaining them is
somewhat tricky, because of our static view of mnemory. Obviously in a real
programming language that can be executed , we must make sure that a version

- 56 -

- -

- - ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~ -

actually exists before we can return its value. In this description , however , we
take the omniscient viewpoint that the entire system history is laid out before us.
Later in this chapter the actual behavior of these operations will become much
more clear.

version _ref $define(vr , value) signals(nonexistent _state ,
redefinition)
This operation creates the version specified by the
version reference. It is used in the desugaring of an
update operation on an object. The second parameter is
a value that will be the value of the version referred to
by the version reference, if no error is signalled. The
nonexistent _state error indicates that an attempt to
assign a version that never will exist (no version of the
object exists for that pseudo-time). The redefinition
error indicates that there was already a valid version
associated with the specified version reference. The
version_refSdefine operation can be applied at most once
to a version reference.

value := version _ refSlookup(vr) signals(nonexistent _state)
This operation gets the version associated with a
particular version reference. It is used in the desugaring
of an operation that reads the value of an object. The
nonexistent _state error indicates that the version
reference specifies a state that will never have existed.

or , pt := version _ ref$decompose(vr)
This operation is just the inverse of version_ refSfreeze.

In terms of the static system history, there are two ways in which we can think
about the execution of version _ refSdefine. Since the system history is determined
for all time , we can think of the version _refSdefine operation as succeeding only
when the version specified is the same as the one selected. Thus a failure of a
version_ref$define operation implies that the version specified is alread y defined to
be some other value created at an earlier pseudo-time. Conversely, each value
change associated with an object requires that aim execution of version_ refSdef ine
must have happ ened .

- 57 -

_ _ _ _ _


~~~~~~~~~~~~~~~~~~~~ -— _
~~~- -~~~~~~ -~~ 

- -~~~
—

~~~~
--

~~
_ _- ---- - -- _

Pseudo-times are ordered by a relation *. The formula a*b is read “a
precedes b”. This relation is a total ordering, and in particular a*a (the relation
is reflexive). We also a complementary relation, -., “strictly precedes”, such that
(a~ib)~ —~(b-ea). We require that an object mnust exist (never signal
nonexistent_state) for all pseudo-timnes between an initial pseudo-time of creation
and somne final pseudo-time of deletion. Thus for any object there is a time of
creation tcreate, and a time of deletion tdelete . The nonexistent _state error is V

signalled if and only if the pseudo-time component, t, of the argument to
version ref$define or version_ refSlookup does not satisfy (tcreate l t*tdeletC ).
The creation and deletion of objects is carried out by operations that specify the
create and delete pseudo-times.

or := object _ ref$create(pt)
This operation creates an object reference whose tcreate
is specified by the parameter.

object_refSdelete(or , pt) signals(bad _delete)
This operation deletes the object specified by the first
parameter , by setting the deletion pseudo-time to the
second parameter. The signal bad_delete indicates the
delete operation was not performed because the
specified pseudo-time was inconsistent with the history
of the object. This could be because the pseudo-time
preceded the creation pseudo-time or because a version
corresponding to that pseudo-time exists, or because the
delete pseudo-time has alread y been set to another
value. As in the version_ refSdefine operation , only one
such operation may ever be applied to the particular
object reference.

More than one pseudo-timne may refer to the same version. Essentially, if
we think about all of the version _ref$define operations that correctl y terminate
when applied to a particular object , they can be totally ordered by the
pseudo-time contained in their version reference parameters. Call the set of such
pseudo-times U , the update history of the object. We can then say that if we
have two lookups on the samne object at different pseudo-times p

~ 
and 

~2 that
give different values, then there must be a p3€U such that (P3 -. p1)n(p3
In simpler words, versions only change as the result of version_ref$define.

-58 - 

~~VV~~ — ~~~~~~~~~~~ - -  — - - -—--- - _~



Thus, for all pseudo-tim es h~tween the creation and deletion of an object ,
the object has a defined value. The definition of the value at any particular
pseudo-time, t , is the result of a version _ refSdefine operation whose version
reference contains a pseudo-timne that precedes t.

The concept of describing the state transitions of a system by considering
the sequence of states assumed by a variable was introduced by Van Horn in his
Ph.D. thesis [VanHornô6] in order to compare the various possible execution
sequences of concurrent programs in proofs. NAMOS incorporates the history
idea into the set of mechanisms actuall y used by programs, rather than being
reserved for use in proofs about programs.

3.4 Pseudo-time and consistency

Pseudo-tim e provides a very convenient way to define a consistent system
state. We say that a consistent state of the whole system is the set of all object
versions referred to by version references containing a particular pseudo-time t.

This leads to a different view of our memnory model shown in figure 5.

Fig. 5. Shared Memory as a Sequence of States

~~~~~~~~~~~~~~~~~~~~~~~~~~

01 02 O~ 01 O~ O~ 01 02 03

Here, the diffe rence is that the first selection is on pseudo-time rather than on

-59 -

- - ~~~~ ~~~~~~~~~~~~~~~~~ ._ :~~ ——
- tV - _ --~

object. The pseudo-timnes can thus be thought of as slate references, selecting
Consistent system states, from which object references can select the proper
version of each object.

Since pseudo-times are objects that are used by programs , they give a tool
for programming that allows explicit recognition of consistent states within the
program. In contrast , traditional synchronization mechanisms, such as semaphores.
locking, mnonitors , send-receive, etc. do not give a tool for representing or naming
consistent states -- one can deduce the states assumed by the system by timing
relationshi ps among the execution of steps of programs.

A particular virtue of the model is that it requires that programs always
generate version references to refer to objects. Thus programs that refer to
shared objects must always be written with synchronization in mind. This has a
positive effect , in that it may result in software that is less likely to fail when
used in situations where unanticipated concurrency arises. A typical example of
such a failure would be the use of text files implemented as segments in Multics.
Such files can be concurrentl y accessed by several processes, for example by a text
editor and a printer being used to print the file. If the user editing does not
know of the concurrent use of the file by the printer, it is possible that what gets
printed may see the file while it is being modified. In a system based on
NAMOS, we could queue a specific version of the file to be printed , so that
future versions would not be printed , or alternat it ’ely, as we shall see shortly, the
editor could arrange that the sequence of changes to the file are not observable
by other processes by ensuring that the changes are made in pseudo-timnes that
cannot be referred to outside the editor.

3.5 Program s and Pseudo -time

Since computations must always specify the pseudo-time in which shared
objects are accessed, it is important that this specification not add a significant
burden to the programmer ’s understanding of the programn. One of the main
arguments against the use of semnaphores as a synchronization mechanis m is that
the use of semaphores (or other explicit l ,cking techniques) just add to the
complexity of specifying the algorithm the complexity of understanding the
relationshi ps between the data being accessed and the semaphores that must be set
to prevent inconsistent results, along with the complexity of ensuring that

-60 -

deadlock does not occur and that an adequate degree of parallelism is achieved .
We want to make sure that by explicitly including synchronization mechanisms in
the language we don’t add an enormous burden of complexity in the process.

What locking normally is used for is to insure that during the execution of
some steps of a program, a part iculai object only changes state as the result of
the actions specified in those steps. Thus for those steps, the program need not
concern itself with interactions with other concurrent programs that refer to the
same object. Locking is also used to hide inconsistency that results during the
process of attempting to make some coordinated change to a group of objects.
For example, if two objects represent the state of bank balances , a transfe r of
money requires debiting one account and crediting the other. If these steps are
taken separately, then it may be possible that an observer can observe the
transient inconsistency that money has been either created or destroyed -- the sum
of the balances isn’t constant.

Giving the program the ability to make references to several objects with
the same pseudo-time is the key to obtaining consistency. Pseudo-time is quite
unlike real time in this respect. It is quite imnpossible for a program to guarantee
to be able to access several distinct objects that may be implemented quite
remotely from each other at the same real time.

Thus, for example, it would be possible to write the following program that
accesses a consistent state of the system, adding up three objects to obtain their
value.

obj 1 _vref := value_refSfreeze(obj 1 _ref ,ptime)
obj2_vref value_refSfreeze(obj2_ ref ,ptime)
obj3_vref := value_refSfreeze(obj3_ref ,ptime)
sum := value_refSlookup(objl _vref)

+value_ref S lookup (obj2_vref)+value_ref$look up(obj3_vr ef)

The state to be accessed is specified by the value of the variable ptime. The
three references to the three objects are named obji_ ref for particular I; these are
used to generate three value references with corresponding names.

-61 -

- -

One problem with the example program is that it is rather clumsy to have
to speci f y explicitly which pseudo-time is to be used for each access to an object.
It would be much nicer to be able to write something like:

sum := obj i + obj2 + obj3

where the default is that obj i , obj2 , and obj3 are to be referred to with the samne
pseudo-time. Convenience thus leads to the development of the idea of a
contextual mechanism for specifying the pseudo-times needed to resolve references
to objects. The contextual mechanism is a pseudo-temporal environment.

The pseudo-temporal environment provides a mechanism whereby a
program can ensure that the objects it refers to change only as a result of actions
requested as steps in the program. Thus , we can write a rather ordinary sequence
of progra m steps that refe r to shared objects, reading and modifying them , and
when executed in a particula r pseudo-temporal environment , the sequence of steps
will have the same effect on the state of the shared objects as they would have on
non-shared objects. However , we must be careful not to write any object twice
with the same pseudo-time.

It is quite convenient to be able to write programs that include multi ple
modifications to the same object -- at least because of the need for loops. So, for
example, we might want to execute the following in a pseudo-temporal
environment and gain the advantage of having exclusive control of the objects
during the statements.

dequeue(queue) % get what is in the queue.
enqueue(queue, a l) % put al in queue
enqueue(queue , a2) % put a2 in queue
a3 := dequeue(queue) % take out whatever is in the queue

% (perhaps a!)

It is clear that the intent here is to make four references to the queue object
queue. On carefu l thought , two of the four references are reads followed by
writes (dequeue). and two are writes. To execute this properly, we must refer to
five distinct states of the queue object, the initial state and the state resulting
from each of the fou r queue modifications.

- 62 -

If we want to make this sequence of four steps an atomic operation , so
that the states in between the initial and final states are invisible outside the
operation, we must prevent any other program from interfering with the queue
during the execution of the operation. To say that no other program can
interfere with the queue during the execution of the program means that the
pseudo-temporal environment must provide a means to reserve a range of
pseudo-times for exclusive use of the program , so that no other executing program
can access the queue object in that range of pseudo-times.

We may imagine a pseudo-temporal environment as the generator of a —

sequence of pseudo-time values to be used in the execution of those program steps
executed within its context. We must insure that in the sequential program above ,
each version_ref$define applied to a version of the queue object is applied at a
different pseudo-time, and that they are ordered in a corresponding order to the
order of the statements. In addit ion , the version_ref$lookup operations must be
applied in pseudo-times that fall in the right place in that ordering.

In the way pseudo-temp oral environments are generated and manipulated .
one hopes to capture a modular notion of program construction. When the queue
operation above is constructed, compiled , and executed, the programmer or user
may not be able to provide any information about how many, if any,
version_ref$define operations the enqucue or dequeue operations actually carry out
when invoked. Thus, the actual execution will involve executing the enqueue
ope ration’s implementation in a subrange of the pseudo-times contained in the
program ’s pseudo-temporal environment. We can think of the structure of the
pseudo-times as being hierarchical. The set of all pseudo-times, fl , is broken up
into subranges that begin and end in pseudo-times that are system-wide consistent
states. One of these subranges that corresponds to the execution of a sequential
program is further broken up into subranges that begin and end in pseudo-tim es
that correspond to the states in between execution of operations that are seç~irate
modules. We can call all of these ranges (at all levels) pseudo-temporal
environments. f) is the ~root” pseudo-temporal environment.

Thus we have the following operation that defines pseudo-temuporal
environments as subranges of other pseudo-temporal environments. In defining
this operation , a new ordering relation is introduced . Two pseudo-temporal
environments x and y are ordered if and only if all the pseudo-times in the range

- 63 -

~~~~~~—
-—-



--

of x precede all of the pseudo-timnes in the range of y. This partial ordering is
symbolized by the notation ~

.; the formula x-.y may be read as x strictl y
precedes y. This notation is also extended to the case where either x or y is a
pseudo-time.

pte2 : pte$transaction(ptel)
The pseudo-temporal environment pte2 is a subrange of
ptel . It is guaranteed that the result of two separate
invocations of pteStransaction on the same pte will be
two pte’s x and y such that x-.y or y-.x. That is, x and
y are non-overlapping subranges. Further , after
executing w: pteStran saction(z), w is a subset of z.
pte$transaction can be applied repeatedly. in order to
generate subranges of subranges.

Pseudo-tem poral environments are then used to provide pseudo-times for
version references used imnp licit l y in comnputations. There are two ways to get
pseudo-times from a pseudo-temnporal environmnent. If one is needed for a
version _ ref$lookup operation , there is no need to get one that differs from the
one last used for a version _ refSdefine operation. If one is needed for a
versIon _ ref$defj ne operation , it must be strictly later than any one used previousl y
to define a version of the object. We ensure that by saying that the pseudo-time
used for a version _ refSdefine operation is later than the pseudo-time used for the
last version _ ref Sdef m e  or version _ ref Slookup in the same pseudo-temporal
environment. Two operations are thus used to select the next pseudo-time to be
used in a program. The first, pteScurrent is used only f or desugaring reads into
version_ref5lookup operations, and the second, pteSnext is used only for
desugaring updates into version_ ref$define operations.

pseudo-time := pteScurrent(pte)
If X is the set of pseudo-times returned by pteSnext(y)
operations or contained in pseudo-temporal environments
generated by pte$transaction(y) operations executed
before a:=pte$current(y) is executed , then for all xcX ,
x*a.

-64 -



pseudo-time pte$next(pte)
If X is the set of pseudo-times returned by pteSnext(y)
operations or contained in pseudo-temporal environments
generated by pteStransact ion(y) operations executed
before a:=pteSnext(y), then for all xEX , a-.x.

Now we can give a procedure for desugaring a program that executes in a
particular pseudo-temporal environment p, in order to convert from implicit use of
a pseudo-temnpora l environment to determine the pseudo-time used for each
reference to exp licit code that selects a pseudo-timne for each reference. We must
have a notation to indicate that a particular pseudo-temporal environment is to be
used to control the execution of a statement and any operations invoked in that
statement. This will be the in statement:

in pte do statements end

where pte is sonic pseudo-temporal environment , and statements is a sequence of
statements. To execute the in statement means to execute the statements in its
body, resolving object references to shared objects throug h pte.

Basically, what we do is to change every object reference used to read a
value from x to version _refSlookup(version _ refSfreeze(x ,pteScurrent(pte))), every
assignment to a shared object reference x : y  to
version _ ref$define(version _refSfreeze(x ,pte$next(pte)),y), and any invocation of a
separate module in(params) to m(params ,pte$transaction(pte)). In order to handle
separately defined modules , such modules always get an implicit parameter that
specifies the pte in which they are to execute. The entire text of a module is
implicitl y contained in an in statement that specifies the pseudo-temporal
environment i’~ 

ced as parameter.

In this desugaring of programs, it is important to remember that
pseudo-temporal environments and pseudo-times are not shared objects. They are
merely objects local to the interpreter of the program (as is the instruction
counter , for example).

-65 -

- - -



As a brief example, the desugaring of the following program that sets the
cell c to the sumn of w and b, then calls a module d which divides the cell w by C,

example = proc(w ,b,c)
d = proc(x ,y)

X: x/y;
end d

C: w4- b;
d(w,c);

end example

is (using the dumm y variable p to hold pseudo-times and dummies t 1 to hold
pseudo-timnes to clarif y order of evaluation):

example = proc(w ,b,c,p)
d = proc(x ,y,q)

t4 :=pteScurrent(q);
t5: pte$current(q);
t6:=pte$next(q);
version _ref$define(version _ ref$freeze(x ,t6),

version _refSlookup(version _ refSfreeze(x ,t4)) /
version_ref$lookup(version _refSfreeze(y,t5)))

end d;

t 1 : pteScurrent(p);
t2: pte$current(p);
t 3:=pteSnext(p);
version_ref$define(version_ref$freeze(c,t3),

version_ref$lookup(version_ref Sf ree z e (w,t1))  +

version _ ref$look up(version _ ref$freeze(b ,t2)));
d(w,c,pte$transaction(p));

end example;

When this program is executed , t~~it2, t~-.t3, t 3-’q, t 3..t~~ t 5, and ~~~~~ Given
these relations among pseudo-timnes of reference , it is easy to show, given the
memory mnodel that the program has the effect of setting w on output to
w/(w+b), and c on output to w+b. An important part of showing this is knowing
that the only version_ ref$define operations that might change w, b, or c are those

-66 -



executed with version references derived from the pseudo-temporal env ironmnent
used in calling example. Since example is a module , by convention it is invoked
with a pseudo-temnporal environmnent that is a subrange of its caller ’s
pseudo-temporal environment.

The traditional interpretation of procedures would allow any parallel
computation to modif y the shared cell object w in the examnp le above between any
of its references in the program. So in addition to the functional effect the
procedure would have were there no parallelism and sharing, there are many other
possible behaviors the procedure could have on the state of the objects it refers to
when executed. For examp le, if w is changed between the two statements of the
outer procedure , almost any possible value could wind up in w , depending on the
change m ade to w. In the interpretation of the program that is assigned by
NAMOS, only the functional behavior , equivalent to dividing w by the sum of w’s
initial value and b and assigning to c the sum of w’s initial value and b, can result
from the execution of the examp le procedure.

3.6 Programs with internal parallelism

Not all programs are sequential. In fact in a decentralized system , doing
remnote operations sequentially (i.e. waiting for node A to finish its operation
before starting the next operation , which is to be done at node B) may result in
unnecessary and unsat isfdctory delay -- thus writing parallel programns is
encouraged. Althoug h the pseudo-temporal environment concept is primaril y
intended for handling unanticipated interactions between computations run in
parallel because they were designed and requested independentl y, the concept can
also be quite useful in manag ing the interactions on shared objects resulting from
designed-in parallelism. Two ways to create parallel computations are the either
compound statement , which crcates a set of parallel executions , one for each
statemnent , and terminates whenever one or more of the executions terminate, and
the all compound statement, which creates a set of parallel executions of the
statements that terminates only when all of the parallel executions terminate.
Termination conditions are imnportant once we start discussing the interactions of
failure with the synchronization mechanism.

- 67 - 

-



In order to capture the essence of parallel execution , we have to extend the
pseudo-temporal environment concept somnewhat. It would be somewhat difficult
to define the order of evaluation of pte $next operations in desugaring a parallel
com pound statemnent. By th e defin ;tion of either and all , all of the actions on
shar ed objects caused by th e comnpou nd statement shou ld deal with versions later
in pseud o-ti m e than those accessed by statement s sequentiall y preced ing the
compound statement. Similarl y, all of the actions following the compound
statement must deal with versions later in pseudo-timne than any dealt with by
actions generated by the compound statement.

The individual parallel branches are designed knowing that they are
executing in parallel with other comnputat ions. T hey must therefore specif y
exp licitly within themseives how their accesses to shared objects are to be
synchronized (it may be the case that no shared objects are accessed , in which
case they need not be synchronized at all). This they will accomplish by using - -

pseudo-temporal environ m ents constructed by the pte$transaction operation. But
in order to ensure that we don’t have to think about how the pseudo-temporal
environment is manipulated by concurrent pteStr ansaction operations , etc., ~~
invent an operation that constructs parallel streams of pseudo-time.

ptel. pte2, ... := pteSparacti on(pteO) 
-

pteSparaction returns multi ple value s. The values
return ed are paral le l strea ms of pseudo-time. If w,e
execut e a ,b,c,d:=pteSparaction(e), the set X aubucud is
a subr ange of e that is ordered with respect to all ,dther
subrang es of e generated by pte$transa ctiojl(e ) or
pt eSparaction(e). X is also ordered with r spect to
pseudo-times generated by pte$next(e) and
pteScurrent(e). Further, to capture ~lIe notion of
parallel execution , anb=ø as do the intersections of any
ot her pair of results. Finally, if f:=pteStransaction(a)
and g:=pteStransa ction(b) are executed , then f and g are
non-overlapping: f .g  or g-.f. Thus f gives exclusive
access with respect to the othef environments.

Desugaring a parallel compound statement then just consists of preceding the
compound statement with a pte$par~ction(p) where p is the current environment ,
to produce as many results as there are parallel actions. Then each branch of
execution is surrounded by an imnp l icit in specif ying the result of the pteSparact ion

- 68 - 

-~~- - _ _ -~~~ - _ _ _- _ - - - _
~ - -~~~~- ~~~~

----- _ -- - _
- -



- 
_ - _

~~~--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- _

~

~

- -

~~~~~~

- _ -

corresponding to that branch.

We can also use the tool given by pteSparaction to specif y the parallelism
inherent in independent execution. Each user of the system can be thought of as
executing by default in a pseudo-temnpora l environmne nt that was initially created
by an initial single execution of pte$paraction(n). Thus all independentl y initiated
computations execute in full y parallel streams of pseudo-time in which transactions
are guaranteed to be ordered with respect to transactions that happen in other
streams.

3.7 But we can ’t know the entir e history !

Now is the time to answer the question posed by our static view of system
history. Pseudo-ti m es have been shown to provide a nice way to think about the
synchronization relationships among computations in the system. However , we
have been assuming that any computation can reach out and get hold of or assign
to an object version at any t imn e. Clearl y, if the execution of the the system is to
be physicall y realizable , versions must be defined before they are used.

It is not reall y very difficult to ensure that a version is defined before it is
used. The realization of a version _ ref$ lookup operation is simp ly to wait until  the
version is defined . Because certain versions may not be defined at a particu lar
real-time instant leads us to define the concept of a known history. The known
history of an object at any instant of real time consists of the mapp ing between
version references and versions tha t has been defined so far. Thus the known
history of an object at any time is a subset of the object history. More
importantl y, as rea l t ime passes, more and more of the object history is contained
in the known history. Thus at two different real times , the known history
corresponding to the earlier time is a subset of the known history at a later time.

The known history changes as computations are executed in real timne by a
process called eduction (fromn the verb educe, meaning “to draw out , to elicit ”).
The eduction of a known history just Consists of creating new versions and
extending t he range of pseudo-times that an alread y created version belongs to.
There are two ways in which a known history is educed. First , a
version _ ref$define operation for a version reference not yet defined in the known
history may be executed successfully. This results in creating the versir~I

- 69 -



associated with that version reference.

The second way in which a known history is educed is via the
version _ref$lookup operation. If a version .j efSlookup operation is applied to a
version reference not yet defined , there are two ways that the system can respond
with a version. Either the operation can be made to wait before responding with
a version until some version _ refSdefine operation completes, or a version that has
alread y been defined at somne earlier pseudo-time can be returned. Returning a
version defined at an earlier pseudo-t ime requires that all version references for
that object for pseudo-times between the pseudo-time of definition and the
pseudo-timne of the lookup refer to the same version. Any attempt made at a
later real timne to use version _ ref$define with a version reference that refers to
such an intermediate version must be rejected as a redefinition.

Figure 6 illustrates eduction of a known history by creating a new version.
The labeled boxes are individual versions. The horizontal axis labeled
“pseudo-time ” represents the continuumn of pseudo-times in increasing order.
Versions are connected to pseudo-time by specif ying their ranges of validity -- the
set of pseudo-ti m es for which the object is defined to have that version as its
value. The object A, for example is the value of the object for pseudo-times
between r and q inclusive. B is defined to be a new version of the object by
version_refSdefine(version_ref5freeze(object,p), ...).

Fig. 6. Educt lon by creating a new version
Pseudo-time 

p

Figure 7 illustrates eduction as the result of a lookup executed at pseudo-time v
that returns the version B, where the range of pseudo-times in which the version

- 70 - 

~~~~_~~~~~~~~~ _ - _


referred to was valid previousl y extended only to u.

Fig. 7. Eductlon by lookup of existing version
Pseudo-time

I ~
j
~~~~u~ vj * p

Both kinds of eduction interact strong ly with the failure managem ent
mechanism to be discussed shortl y. Thus , I have been a little imprecise in the
previous paragrap h , but the imnprecision will be corrected later.

Another fact of the real world is that m aintaining the known history of an
object would require the systemn to provide an ever increasing amount of memory
as time goes on. Thus we would like to allow the system to maintain onl y a
subset of the known history of each object. Consequentl y, a version _ refSlookup
or version _ ref$define operation corresponding to a reg ion of pseudo-time for
which the known history has been decided , but which is not maintained in the
system at the time of the operation must be rejected for a new reason,
unavailability. This rejection is signalled as the condition forgotten _state by those
two operations. In chapter six , we consider further the mechanism for choosing
the subset of versions to be mnaint ained. However , the most imnp ortant
requiremnent is that the “current ” version of an object always be maintained (the
one whose pseudo-timne is the greatest within the known history).

3.8 Generating pseudo-time s and pseudo-temporal environments

Pseudo-times have been shown to provide a relationship among the histories
of system objects. In a real system, however , it would also be useful to relate the
systemn history to the history of the systemn ’s interactions with the real world. So
far , we have not made any assumption at all about the relationship between the
rate of increase of pseudo-times in independent , concurrent processes. We have

71 -

-~~~~~ -~-~~ -~~~~~~ ---~~~-~~~~~ ~~~~~~~~~~~
- ---

~~~~ ——--~~~~~~
-

~~~~~~~
---



shown only that pseudo-timne increases or stays the same within a single process, as
a result of executing steps of that process. The simplest way to relate the
pseudo-times in concurrently executing processes is to create a correspondence
between the pseudo-times used and real time.

To understand the anom alous behavior that can result from not relating
the pseudo-times to real time , imagine a system containing the data bases of a
bank , allowing transactions that deposit, withdraw , and transfe r money between
bank accounts. When people step up to bank termuina ls, they invoke a transaction ,
which is executed in a pseudo-temporal environment whose output state is chosen
at random. If we then construct a system history in which each transaction is
executed , it will be, as I have pointed out , a serial schedule, and thus presumabl y
will give correct results. But imag ine the quandary of an individual customer. On
Thursday May 25, 1978, he opens an account , depositing fifty dollars in cash ( his
transaction is executed in pseudo-times between 3276800 and 3276805). On
Friday, he wants to withdraw ten dollars , so he requests a withdrawal (run as a
transaction that reads the account at pseudo-tim e 151970), getting the response
“no such account!”

The problem is obvious. Pseud o-time must be correlated with real time.
First of all , the pseudo-times used for operations must be non-decreasing fromn the
point of view of any user in the system. Further , since users can talk to one
another outside the system about their interactions with the system , whenever
two users are sure that a pair of interactions with the system were not
simnultaneous , the pseudo-timnes used in the interactions to specify output states
mnust be ordered in correspondence with the real-time ordering.

Lamnport [Lamport78j has alread y observed this problem. The system must
assume that if two interactions with the system are not close together in time ,
then they m ust be executed in the order that users will expect. In order to
generate values that are ordered in correspondence with real time , one must have
at each node a way of creating a pseudo-time value that exceeds all previous
values created at that node. The pseudo-ti m e value created must also exceed all
values created at other nodes at significantl y earlier times. In chapter six , I will
discuss how the correlation with real-time is easily achieved by using
approximately synchronized clocks.

- 72 -

_ _



_ _ _ _ _ _ _  ---- - - ---- - -------- -- ---
~~~ 

- -

3.9 Failures and Recovery

In executing any real computation interacting with shared objects, failures
must be expected. As noted in chapter two, the failures we are concerned about
can all be modeled as failures to comnp lete a requested action or group of actions.
Thus, a program being executed may stop due to a crash of its associated
processor , a requested operation may be rejected as inconsistent with the
definition of the object (popping an empty stack , for example), a communications
link needed to request a remote action may fail , preventing the action. Other
occurrences that can be modeled as failures to complete a requested action are
protection exceptions that result from a change in the requesting program ’s access
rights to an object , rejection of a version _ refSdefine operation because the object
referred to has alread y been defined for the specified pseudo-time , and rejection
of version_refSlookup or version _ refSdefine operations due to the forgotten _state
signal , resulting from deletion of out-of-date versions.

We would like to provide a basic mechanism to handle this kind of failure.
None of these failures are preventable , so it is important that the mechanism be
designed to handle such failures gracefull y wherever they occur. Similarl y, none
of these failures can be expected to happen at “nice” places during the execution
of a program. For example, if a program refers to an object several times in
succession (as in the queue example), there is no guarantee that just because the
first access succeeded , later accesses will also succeed. Further , once such a
failure has occurred , it may be imnpossib le for the program to take corrective
action by undoing changes it has made -- if the node containing the programn fails
it certainl y won’t undo its changes , and if the protection status of an object , or
the hardware communications leading to the object have failed , undoing the
changes may be very likely impossible.

The primary problem of failure mnanagemnent is that meaningful operations
on shared objects are constructed out of multi ple operations at a lower level.
Usuall y when executing a meaningful operation (such as a transaction), if some
one of the component operations fails , the result will be some sort of
inconsistency that may not be tolerable, because the level of abstraction at the
operation ’s interface is compromised. For example , if in a bank transfe r of funds
from one account to another , if one account is incremented while another is
decremented , and either the increment or the decrement fails , the bank will either-

-73 -

~

~- --~~~~~~~~~~~~~~~~~~~~ — ~~~ - - — - ---4

_ _

-- ~~~- - -- --- - -

lose track of some money or gain some money. This leads to the need to be able
to manage groups of updates that must either be all done together or not be done
at all.

Because it unlikel y that a set of changes can explicitly by undone in
response to a failure , we would like the system to behave as if they were never
done if in fact a failure occurs. This means that there must be a mechanism for
creating tentative changes in the state of objects that cannot be observed outside
the computation making the changes, such that within the computation making
the changes, those changes will be observable.

We can solve the prob lemn again by taking the omniscient viewpoint. What
a program wants to know when it is about to do an assignment to an object is
whether the group of assignments to which it belongs will properly finish , or
whether some one of the assignmnents will fail. If we could send signals backwards
in time, there would be no problem , since before the operation was begun , it
could query the future about whether the operation will be allowed to complete.
Then the operation would simply halt immediately with no effect if it were about
to run into some kind of failure. In fact , sending signals backwards in time is not
needed.

Instead , we use an old magician’s trick for predicting the future. A
magician produces a sealed envelope for inspection. He claims that written on the
piece of paper inside is the name of the playing card you will pick. You carefully
make sure that the envelope is sealed , by gluing one of about a hundred or so
different postage stamps across the flap. Then the magician holds the envelope
while you shuffle the deck and pick your card -- the Joker. You then take the
envelope from the magician and unseal it. Inside , the paper says “Joker. ”
Amazing !

Not reall y. Look at the envelope closely. There is an imprint in the paper
of the front side that says “joker ” as well. Look in the magician ’s hand. There is
a smnal l metal sty lus taped to his ri ght index finger. Inspect the paper from the
envelope. Sure enough , it is carbonless copy paper that turns dark when pressed
with a stylus. The magician ’s trick becomes clear. He merely waited for you to
pick your card , then inscribed the name of the card on the envelope with a sty lus,
causing the paper inside to contain the name. He may be well schooled at writing

- 74-

L -

r - -

~~~~~~~~~ 

- -  __ __ ___ _  -------

~~~~~~~~~~~~~~~~~~~~~~~~~~~

in concealment with one finger , a noble accomplishmnent , but he hasn ’t predicted
the future.

The essence of the trick lies in the envelope , because it prevented you from
verifying that there was in fact the name of a card written on the paper. Given
that you believed that something was written on the pape r that you could look at
any time you wanted to , you had to conclude that the mag ician knew in advance
the card you would pick. But the m agician knew that he could force you not to
look at the paper until after you picked the card by placing it in an envelope.

We can use a similar trick to implement the kind of “backward ” signalling
in timne that we want. We define a special kind of envelope called a possibility,
that is defined to contain a piece of paper that either has an X written on it or
nothing written on it. One of these envelopes is associated with each group of
updates that is to be per formned . We are told that the group of updates will all
be executed without failure if there is an X on the piece of paper , but if the
paper is blank , then none of the updates is to be executed. In fact , the systemn
holds the envelope . But instead of executing the updates by actually making the
assignments , the system makes a note at each object where an update is attemnpted
that says, in effect, “If there is an X on the paper , the value is <newvalue> .
Otherwise , the value is <oldvalue>.” Actuall y the paper was created blank, but
when we tell the system that all our updates are done, it inscribes an X on the
paper , and says, “see what I mean , I xnew you would be done.” If you ask to see
the paper before all the updates are done, the system opens up the envelope and
says, “see, you aren ’t done.” Once the system opens the envelope the paper inside
cannot be changed , and any further updates are refused by the system , saying,
“I’m sorry, I just can’t do that update for you.”

We represent the envelopes by entities within the system called possibilities.
A possibility contains a boolean value (corresponding to the mark , or lack of it).
This value is exp licitly set to true when the associated set of updates complete. In
the possibility mechanism, we also include a timneout , after which the possibilities
value cannot be set to true. By including a timeout , we allow the system to
bound the time that a group of updates may be in progress. Also, since
prematurel y opening the envelope aborts the group of updates by necessity, the
timeout specifies a time before it is probably not a good idea to open the
envelope.

- 75 -

— ~~———-—_——------—-—- —- -- - — -~~~ - . -

Looked at in real ti m e, there are three important states of a possibility.
Before its value is decided , it is in the wait state , so named because an attempt to
test the value will be forced to wait (at most until the timeout is past). If it is
successfully set to true, it enters the complete state , so named because the group
of changes m ade under it have been completed. If it is explicitl y set to false or if
the timeout is passed without it being set to true , it is in the aborted state.

The operations defining the possibility entity are as follows. The variable
possi stands for some possibility, and time stands for some real time.

p ossi := possibilityScreate(time)
The possibility is created with timeout equal to the
parameter , and put in the wait state.

boolean := possibilityScomnplete(possi)
The possibility parameter is put in the complete state ,
unless it is alread y in the aborted state. The result is
true if the possibility is either alread y complete , or is set
complete.

boolean := possibilitySabort(possi)
The possibility parameter is put in the aborted state,
unless it is alread y in the complete state. The result is
true if the possibility is either alread y aborted , or has
been set aborted.

boolean := possibilityStest(possi)
The possibility parameter is tested to see if it is
complete or aborted. If it is in the wait state , the
operation does not return until the possibility is either
complete or aborted. The result is true if the possibility
parameter is complete, otherwise the result is false

1. The abort operation is logicall y unnecessary, since a possibility will eventuall y
enter the abort state after a timeout anyway. However , delay may be
significantly reduced for operations that do lookups dependent on testing the
possibility if the possibility is aborted as early as possible.

- 76 -

_________ ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~~~---

As with pseudo-temporal environments , it is easier to treat possibilities as
implicit parameters to operations , rather than passing explicit parameters
everywhere. Consequently, we need a statement that binds the possibility to be
used in all computations initiated by the enclosed statement. For this, we have
the were statement.

were possibility do statements end

The were statemnent binds the possibility para m eters to all operations executed
within the body to the specified possibility. All calls on m odules are furnished
with an extra parameter that is imnplicitl y set by use of this possibility. After
completion of operations run under a particular possibility, a progra m mnust
complete the possibility in order to m ake the results of the computation available
to other computations. The same possibility can be used in several were
statements before executing a possibi lityScomplete on it , although such usage
seems unlikel y to be common practice.

We have to modify the version _ refS lookup and version _ ref Sdefine
operations to exp licitl y represent the tentative nature of the version _ refSdefin e
operation. Both operations now have an added parameter , a possibility. When
the version_ref$define operation is executed , a reference to the possibility is
associated with the tentative version being stored. Such tentative versions are
called tokens because of their use as place holders in the known history. A
related concept , that of a write-once cell called a “token ,” has been described by
Henderson[Henderson l5j. 1 One can think of a modifiable object ’s versions as a
grouping together of many of Henderson ’s tokens that each represent an individual
state of the object.

A token in NAMOS thus defines a potential state of an object. Once the
state of the possibility associated with the token becomes known to be true
(complete), the token becomes a version. Since the eventual state of the
possibility is unknown , though, any attempt to access the object in a pseudo-t imne
f or which the token might eventual ly represent a valid version must be forced to
wait until the state of the possibility is determined.

1. Except where explicitly specified otherwise , the word token in this thesis
refers to the tentative versions, not to Henderson’s tokens.

- 77 -

L ____

- - -~~~~~~~- ~~~~~~~~~~~~ - - ~~~~-

There is a problemn, however, because a computation that creates a token
may need to access that value later before the state of the possibility becomes set.
Consider our queue example above. Suppose that all of the queue operations are
executed in the samne possibility. After the first queue operation the queue’s state
will be represented in terms of one or mnore tokens. The second queue operation
should not be forced to wait unti l the state of the possibility is determined ,
because onl y after the fourth operation is comnp leted will the possibilityScomnplete
operation be applied.

The problem is resolved by supplying a possibility paramneter to
version_ ref$lookup. If this possibility parameter mriatche s the one under which the
token was created , then the token may be returned as the version requested. In
this case, the range of validity in pseudo-time is extended just as if the token were
a normal version.

Thus the following redefinitions apply:

value := version_ref$lookup(vr, possi)

version_ref$define(vr, value, possi)

For any particular object , imagine that we can examine the entire set of
version _ refSdefine operations ever applied to it , such that no error signal was
made. Then the subset of version _ refSdef ine operations whose possibilities are
(eventuall y) true is the update history, defining the mapping fromn version
reference to version for all time. However , the results of version _ refSlookup must
be defined in term ns of the entire set , whether the possibilities are true or not.
Add to the subset whose possibilities are true the set of version .. refSdefine
operations that have possibility parameters that match the possibility parameter to
the version_ref$lookup operation , to get a new set. Then the result of the lookup
operation is that version assigned by the version _ ref$define operation whose
pseudo-time is the largest pseudo-time not exceeding the pseudo-time of the
lookup.

- 78 -

_ _ _ 4

_ _ _ _ _ _

_ _ _ _ __

- -

Figure 8 shows how a known history for an object looks, showing tokens
and possibilities.

Fig. 8. Known History with Tokens and Possibilitie s
Pseudo-time

p

In figure 8, possibilities are shown as circles, where the letter W, C, or A indicates
whether the possibility is in the wait complete or aborted state. The value B is
thu s a tok en , because it refers to a possibility in the wait state, while the values A
and C in the fi gure are versions. A version _ refSlookup operation whose version
ref’s pseudo-time is between p and s mi ght have one of several results. If the
possibility paramn eter to the version _ refSlookup operation is the same as the
possibility associated with token B, then B will be returned , whether or not B ever
becomnes a version. On the other hand , if the possibility parameter to the
version _ ref$lookup operation is not the same , then the lookup must wait until the
possibility leaves the wait state. Then either B will be returned as the result if
the possibility is complete, or A will be returned if the possibility is aborted.

3.10 Recoverability

Possibilities allow the construction of recoverable computations. The
concept of recoverability was named by Gray[Gray l7], althoug h the idea has been
kicking around in data base circles for a long time
apparent l y [Davies73,Lampsonl6]. In this work , a useful concept is the recoverable
update set. A recoverable update set is a set of changes to objects that is either
made entirely, or never made at all , from the point of view of any computation
observit~g the objects changed in the update set.

- 7 9 -

- - ---~~~~~~ -- -- - --

All of the changes mnade under the control of a particular possibility formn
a recoverable update set , since any computat ions viewing the objects will either
never see the changes (if the possibility is aborted), or will see all of the changes
eventuall y (if the possibility is comnpleted).

If an operation makes all of its changes under the samne possibility, it has
parti cularly ni ce pr opert ies. I n part ic ular , if the operation finishes , it can be
either t otally aborted or completed , but there is no halfway state in which it can
leave its changes. If the operation does not finish (e.g., because its node crashed),
it can be aborted. Such an operation I call a recoverable operation. Not all
operations are recoverable , nor should they be. In chapter four , I will discuss uses
for operations that are partiall y recoverable.

An atomic transaction has the property that it either happens completel y,
or not at all , as well as the property that when it executes no other operation can
see or change the states of shared objects that it accesses. With the were
statement one can construct an atomic transaction. The simple form of an atomic
transaction is:

in pte$transaction() do
possi:=possibility(timeout);
were possi do statements end
possibility$complete(possi)

end

If the statement does not contain any embedded in or were statements, then it
will be executed as an atomic transacti on.

3.11 Modulari ty and possibilities

So far , we have not dealt with the problemns of modularity in handling
failures. A very common kind of problem that will occur is that a module
executing at a remote site mn ay fail in the mnidd le of execution , leaving its changes
half made. If the mnodu l&s implementation is unknown to its users, it would he
very unwise to allow the users to be able to com plete the possibility that would
enable its changes to become visible. A module must thus be able to locally
ensure that the updates it makes locally are completed all at once or not at all.

- 80 -

_

-

Failures of this kind lead to a need for a kind of self-protection at the
interfaces to operations. For example , consider that a bank may want to offer an
interface to transfe r money between bank account objects. To protect itself
against losing or gaining mnoney, it would like to mnake this operation an atomnic
transaction. Similarl y, a user of the bank system (some bank customer) who also
makes use of an independently programmed checkbook recording system will want
to have an operation built using the two systems that transfers money between his
checking and savings account , recording the fact in his checkbook records. Both
the bank and the user want to assure recoverability, but the bank cannot
completel y trust the user to properly abort the bank transaction upon failure. If
the failure in the bank transact ion is a failure in the middle , leaving onl y one
account changed , the user may choose to complete his possibility anyway, such
that the bank transaction is completed even thoug h onl y one of the accounts has
been changed to reflect the transfer.

The user, on the other hand, does not wish the bank to proceed with the
transaction unless his personal checkbook balance is also updated. Consequently,
the agreement of both the user and the bank that the transaction is to be
completed is required.

Again , the problem is that we would like to use modules in the
construction of still larger modules, while preserving the level of abstraction
provided by the lower level module interfaces. The designer of an operation,
whether or not the module is to be used as a top-level module or many layers of
modules down, would like to assume that the opera~on is recoverable (it is either
completed or is not), in order to assure that the int~.f”~: has simnp le semantics.
An operation defined by a module has very simp le semantics if it is , as a whole ,
recoverable (it either finishes correctl y, or does nothing). However , operations are
built out of smnaller operations that also should be recoverabl e. If the sm aller
operations are designed without knowled ge of their use , they cannot assume that
their users will assist in ensuring recoverabi lity. On the other hand , the smaller
operations cannot make the decision to complete without the consent of the user
operations.

- 81 -

L - _


~~~~~~~~~~ _ - - - - -~~~~~~~~~~~~——-~~~~~~~~~~— - - -- - _--~~~—_ - - - -_ -

By adding somne power to possibilities , the problem of modularity in using
possibilities as a failure recovery mnechanismn can be solved. The idea is to have
the user create a possibility that controls the overall completion/aborting of the
operation. The bank and the checkbook system each create a possibility specific
to its own part of the operation. The bank and checkbook possibilities each
depend on the user ’s possibi l i ty  ir1 the following way. If the bank’s possibility is
waiting or aborted either by timeout or abort operation , the user cannot mnake
versions out of tokens created by the transfer operation by completing the user ’s
possibility . If the bank’s possibility is com plete , then whether the new account
changes becom e versions or not is wholly dependent on the user ’s possibility.

The mnechanism added is a kind of possibility called a dependent possibility.
Dependent possibilities are created by the possibi litySdependent operation:

possi 1 : possibi lity Sdependent(possi2 , ti m eout)
The result of the operation is a possibility that depends
on possi2. The result , possil , enters the complete state
if and onl y if the possibility para m eter is comnpleted and
possibi li ty Scom nplete is applied to the result (nor m all y,
possibi lityScomnp lete is invoked on the resulting
dependent possib ility before the parameter possibility is
completed). If the timeout elapses , possibi litySabort is
applied to th e result , or the parameter possibility is
aborted , then the value of the dependent possibility is
false.

The bank examp le can then be built by having the bank construct a dependent
po~sibility that depends on the one used to ensure recoverabi lity of the whole
action. In general, modules that interact with multiple shar~d objects will
construct dependent possibilities that are used to control the entire group of
actions.

The introduction of dependent possibilities requires a smnall fix to
version~ref $lookup. The problem is easily seen in the queue exa m ple. If the
q~ cue operati ons are each executed in dependent possibilities that depend on the
possibility that rei gns over the whole program , then we have to be careful to
define how successive queue operations see the result of previous operations. Once
possibi lityScomplete h as been app l ied to the dependent possibility created for the
first queue operation, the state of the queue should be made available to a queue

- 82 -



operation that is applied within the overall (not yet completed) possibility. Within
this other queue operation , a new dependent possibility that depends on the
overall possibility is what is passed as parameter to the version _ refSlookup
operation. The way the problem is handled is by properly def ining what it means
to have two possibilities match.

Call the possibility that a dependent possibility depend s on i t s parent

possibility. For a particular token , the possi bility that must be matched is found
by following the parent chain from the possibility used in creation of the token
until the first possibility is found that has not had possi bil ity Scomnplete app lied t o
it. If this pos~ibility, the m atch possibility of t he token , is the same as any
possibility in the parent chain of the possibility parameter to version _ refS lookup .
then the token can be returned as the value. Otherwise, the lookup mnust wait
until possib ility Scoinp lete is app lied to the match possibility , and then the match is
reatte mnpted. (Note: if in searching the token~s chain of possibilities , an aborted
possibility is found , then the token is ignored for the purposes of the lookup, as
before).

3.12 Known Histories Revisited

In fi gure 9, the pictorial notation for a known history is extended to show
dependent possibilities. Dependent possibilities are shown as circles , with a further
link to the possibility upon which they depend. The letter inside a dependent
possibility is either W (indicating that no complete , abort or timneout has yet
occurred to the dependent possibility), C (indicating that a complete has been
applied before the timeout), or A (in dicating that either a timeout or abort  has
occurred at the dependent possibility). The actual state of the dependent
possibility can be determined by looking at the chain of possibilities upon which it
depends. If any possibility in the chain is marked A , the dependent possibility is
aborted. Otherwise , if any are still marked W, the state is wait , else the state is
complete if all are marked C.

In fi gure 9, versio n A was created in a dependent possibility. and that
possibility was successfull y completed. Similarl y, version C was created within an
independent possibility that was completed. Token B is created wi th in  a

-: dependent possibility, and so fa r , both that possibility and its parent are not yet
either complete or aborted.

- 8 3 - 

_ - _ -- - _ 
- _ _ - _ - -_ - _ _ _ - _ _ 

_



_ _  _ _ _

FIg. 9. Object Known History
Pseudo-time

3.13 Summary

In this chapter , I have described the user ’s and app lication programmer ’s
view of the system mechanisms for synchronization , error recovery, and building
composite operations. Pseudo-time , object histories , and computations that are
recoverable are the basic ideas. These ideas are represented concretel y in terms of
pseudo-temporal environments , possibilities , and the known history of objects.
The notion of an operation and its important special case, the transaction , have
been described in terms of these concepts.

The construction of m odular interfaces has been very important in the
design. The concept of a dependent possibility and the hierarchy of
pseudo-temporal environments allow the construction of modules whose internal
implemnentation is not visible outside the interface , even should an unantici pated
failure occur within the m odule or should somne other operation interacting with
shared objects used by the module be executing concurrentl y.

- 84 -



Chapter Four

Using the Mecht~nisms

In the previous chapter . a number of language features and mechanis m s to
be used for synchronization of access to data have been described. Although
some examples were given there, I have not really shown how these facilities can
be used to handle synchronization problems. In this chapter , I will develop some
examp les that show how the language facilities can be used for various kinds of
problems. First , I will discuss the well known problem of controlling database
transactions. A simple example of a bank with distributed accounts is
implemnented with the tools that NAMOS provides , to allow the creation of
account transfer transactions and statistics gathering transactions. An important
point made by the example is that arbitrary transactions can be constructed and
run at any time.

Next , I will contrast the solution using my techni ques with the solutions
possible with locking mechanisms , and the kinds of solutions that are possible by
use of synchronizing processes such as Hewitt ’s serializers. Both of these
alternative approaches require both design-time planning to decide the class of
transactions that may be run and careful disci pline to ensure that the accesses
made during transactions are properly synchronized.

The next problem discussed is the problem of user mistakes or failure
resulting in irrecoverable loss of data. The idea of a consistent state defined by a
particular value of pseudo-time allows easy definition of a backup mnechanism.
The backup mechanism provides the capability of restoring the states of a set of
objects from some earlier consistent state of the system. The problem of
discovering what set of objects to restore to an earlier state is discussed , but no
general mechanism is suggested to solve the general state restoration problem.

The problem of conversational transactions is then discussed , and is shown
to be one of the problems best solved with a partially recoverable operation.
Other problems, such as keeping metering information or “memnoizing ”
(remembering in a cache the result of a hard-to-compute function of a particular

-8 5 - 

~~~~~-
_ - -_ - -- - _ _ ~~~ -_~~~~- -—_ _— -— -~~

—--. .--
~~~~~~~~

_—
~~~~

- _

set of arguments), are also shown to be cases where total recoverability is not
appropriate , but partial recoverability is very useful.

4.1 Transactions

Perhaps the most basic and important synchronization problem is the
achievem ent of multi-site transaction s. The reason for the im portance of such
transactions is that they provide a Convenient approach to defining the consistency
of a database in the face of failures. Further , transactions are easy to design ,
since the program umner need not worry about the problems of synchronization of
his transaction with others that mani pulat e the samne database.

A transaction, according to Gray[Gray 77J, is a p ogram that when run
takes a consistent state of the system into a new consistent state. In other words ,
if a transaction is started with data that is consistent, the changes the transaction
makes will leave the data consistent. During the transaction , after only some of
the changes have been made, the data in the system may not satisfy any
consistency requiremnents. Thus , running a transaction requires that:

1) The data referred to by a transactio n all be from one
consistent state.

2) Other computations that wish to see a consistent state
be prevented from seeing the intermediate states of the
system caused during the transaction.

3) Since a new state is built fromn a previous state by
selectively changing some objects , but leaving most
objects the same, the unchanged objects in the state
containing the input data must still be the same in the
final state constructed by the transaction.

Gray ’s definition of transaction is not complete. It only deals with what I call
internal consistency -- consistency among the objects within the system. Another
aspect of transactions is that they have a notion of external consistency --

consistency between the systemn as a black box and the history of inputs and
outputs of the system. Imagine that upon completion of a transaction, the
transaction printed out somne date and time to indicate when the transaction was
actually executed. It is useful to require that this date and time corresponds to

-86 -

_ _ _ _

some time between the initiation and comnpletion of the transaction. Then the
system will be externall y consistent if it behaves as if the transactions executed
were actuall y executed one at a time in the order indicated by their date and time
values.

4.1.1 Building transactions in NAMOS

By convention , NAMOS is to be used such tha t a particular pseudo-ti m e
corresponds to a consistent systemn state as in Gray ’s definition above. Also , by
convention , the ordering of transactions is by the ordering of the pseudo-te m poral
environments. Consequently, if some pseudo-ti m e in the range selected by the
pseudo-temporal environmnent were printed out as the date and t imne of execution ,
the system will guarantee that the internal state is externally consistent with the
ordering of execution im plied by the tim es printed Out. Note that requiring that
date and time printed out correspond to some timne between initiation and
termination of the transaction places some constraints upon the way pseudo-timnes
are chosen - - I will comne back to this issue in chapter six. The pseudo-timnes
chosen for “top-level” transa ctions , th ose initiated interactively by somne user , must
be reasonabl y close to real time.

As noted in the previous chapter , construction of transactions in this
system is relatively simple. Any computation that mani pulates shared objects can
!~e executed as a transac tion , by

a) Executing it in a pseudo-temporal environment
constructed by the pte$transac t ion primitive , and

b) Making all of the updates conditional on a possibility
that is completed only if no errors occur that prevent
the comnputation from finishing.

Condition a) above ensures that the transaction reads consistent data, and that the
onl y changes made to the state of the system during the range of pseudo-time
comnposing the transaction are those that it initiates. Condition b) ensures that no
matter what kind of error happens, the transaction never shows to the outside
world of other computations any of the intermnediate states that it creates as it
proceeds to make changes.

• 87 -

Now consider an example. Consider a very simplified view of a distributed
bank system. 1 The objects of the system will be account balances, and the
transactions that I desire to implement are of two kinds. Transfers of mnoney
fromn one account to another are one kind of transaction, and another kind of
transaction is a special one used by bank managers called the MIS transaction.
An MIS transaction takes som e subset of the objects, and comnputes som e
statistics , such as m eans and standard deviations , based on the value of the
account balances.

Suppose that we design the programs that imnp lemnent these transactions in
the obv ious way. Let’s say that each account balance is stored as an object
implemented by the account cluster,2 which defines abstract operations to credit
the account , debit the account , and get the account balance. Each of these
operations is implemnented by a program that mani pulates the representation of
accounts; the account representati on is not known outside of the account cluster.
It is not necessary to understand the implementation of the account cluster that
follows; it is included for completeness.

1. NO attempt has been made to incorporate into this example any of the
real-world aspects of banks. More precisely, I do not intend to imp ly th at th e
simple bank systemn can be easil y extended to incorporate the comnplexity of
“float ”, the legal requirements applying to bank systems, or the user interface
semnant ics provided by current bank practices.
2. A cluster is the CLU mnechanism for creating abstract types by specifying an
underlying representation and the operations that are allowed to manipulate the
underl y ing representation to provide the desired semnantic s for the type . Within a
cluster , the reserved symbol rep indicates the type defined by the cluster , the
special mnarker ~:vt is used to indicate a para m eter to an operation whose type is
the one defined by the cluster , but which during the operation is mani pulated as
the underl y ing type . Onl y the operations and procedures contained within the
cluster have the privilege to observe and mani pulate objects of the type via its
underly ing representat ion. For further details , see the references on
CLU[Liskov77a ,Liskovl8].

- 88 -

--

~

~~~~~~~~~~~~
- -----

~ 
—---—-



account = cluster is debit , credit , get_ balance;
rep = record[credits, debits:int];

balance = proc(acct:rep) returns(int);
retu rn(acct .credits-acct.debits);
end balance;

debit = proc(acct:cvt , amnount: lnt) signals(insufficien t _ funds);
if balance(acct) <= amount

then signal insufficient_funds end;
acct.debits := acct.debits + amount;
return;
end debit;

credit = proc(acct:cvt, amount:int);
acct.credits := acct.credits + amount;
end credit;

% get_ balance can be invoked by the shorthand account.balance

get_balance = proc(acct:cvt) return s(int);
retu rn(ba lance(acct));
end get_ balance;

end account;

Then a transfe r between two accounts can be written as follows:

transfer = proc(acct l, acct2:account , amnount: lnt) signals(insufficient _ funds);
dp:possi := po ssibi litySdependent(2); % create a dependent possibility
were d p do

account$credit (acct2 , amount);
accountSdebit(acctl , amount)

except when
insufficient _ funds:

possibilitySabort(d p);
signal insufficient _funds;
end;

end
possibili ty Scomplete(d p);
return;
end transfer;

-89 -

L _ - . - . - -_



F-

When the transfer procedure is called it is executed in its own transaction
pseudo-temnp oral environm ent , and with the caller’s possibility. A new dependent
possibility is created by the procedure to protect against a failure between the
time accountScredit is called, and the time account$debit finishes depositing the
money transferred. If the transfer is successful, the new possibility is comnpleted ,
otherwise it is aborted explicitly if there are insufficient funds, or implicitly by
timeout on the possibility in the case of any other error or in the case that the
comnputer executing the transfer stops in the middle.

Similarl y, we can write a statistical transaction as a procedure , which again
by default e~’.cutes in a consistent unchanging pseudo-temporal environment.
Since the statistical transaction is read-onl y, we need not be concerned with
dependent possibilities. For an examp le , let us consider a procedure that computes
the mean and standard deviations of the balances of a set of accounts specified by
an array of accounts.

summarize = proc(accts: ar ray~accountJ) returns(real , real);
% first result is mnean balance , second is std. deviation

mnean , stdev:real;
sum:int : 0;
sumsq:Int := 0;

for a in array$elements(accts) do
sum := sum + account.balance;
sumsq sumsq + account.ba lance ~ 2;
end

mean := float (sum) / float(array$size(accts));
stdev := float(sumsq) / float(arraySsize(accts)) - mean’2;
return(mean , st dev);
end summarize ;

As in the transfer transaction , the summarize transaction again executes by
convention in an environ m ent that is unchanging.

Now let us consider how these various transactions can interact. There are
two interesting cases. First, there might be two approximate ly simultaneous
executions of transfer s out of the same account (or into the same account , or one
transfer in at about the samne ti m e as a transfer out). Second , there might be
approximatel y simultaneous executions of a sumnmarize transaction and a transfe r

-90 -



_ _ _ _ _ _ _ _ _ _ _ _ _ _  -~~~~~~~

affecting one of the accounts sumnmarized. The following lemn mna is easil y seen t o
be true based on the definitions in the last chapter.

Two pseudo-temporal environments , Pa and 
~~ 

are ordered (that is, 
~~~~or Pb~ Pa~’ if both 

~a ~
imid were created via the pteStransaction operation

and neither Pa IS derived from
~b nor

~b
is derived from Pa~

A
pseudo-temporal environment x is derived from y if x was created by a call
on pte$paract ion or pte$transaction whose argument was y, or x is derived
from som e pte z which was derived from y.

This lemma ensures that if we have two transactions executing, and one was not
invoked on behalf of the other, then the pseudo-temporal environmnents in which
they execute will be ordered.

Now let us consider the first case. If we have two transfer transactions
executing at the same time , they will be executing in two ordered pseudo-temporal
environments. Thus one of the transactions “happ ens first ” in the ordering of
syste m states by pseudo-time (althoug h not necessarily in real timne). Suppose
transaction A runs in the “earlier ” pseudo-temporal environment and B runs in the
later one. Then we also know , by the lemnmna , that the credit and debit
t ransactions executed by A and B are ordered such that A’s credit precedes (in
pseudo-timne) A’s debit which precedes B’s credit which precedes B’s debi t.

Now consider the interaction in real timne on the known histories of the
account being debited by both transactions. If A performs its update on the
account entirel y before B accesses the account , there will be no prob lemn. B will
observe that the initial balance of the account is what was left after A finished
his debit. However , if A’s change to the account follows a successful read by B
of the balance of the account , t hen B will have educed the known history so that
the balance of the account cannot be changed in the range of pseudo-ti m e
available to A. A’s attempt to performn an update will result in an error signal
resulting fromn an attempt to redefine an already known version. This will prevent
A from finishing the debit , and thus prevent the possibility from being completed .
Consequently, the credit performed by A will be aborted , since the possibility
controlling its incorporation into the system history is never completed.

1~~

The case of a sumnmarize transaction in parallel with a transfer is simnilar.
Either the sumnmnarize transaction precedes the transfer in pseudo-timne or the
transfer precedes the summarize in pseudo-ti m e (by the lemn mna). If the summarize
transaction precedes the transfe r in pseudo-timne , the interaction in real ti m e is
re lativ ely si mple. If the sumn mnarize executes first in real time , then the known
history of all of the accounts it references are educed by extending the range of
versi ons to pseudo-times from the sumn mnarize pseudo-temporal environmnent. Then
the transfer further educes the range of its accounts’ versions to the pseudo-times
used to read the balance of the accounts , and creates new versions. If the
summarize does not precede the transfer in real timne , then the transfer will have
first educed the versions of the accounts and done its updates. ~Vhen the
sumumarize is done , the pseudo-ti m es used will refer to the versions of the accounts
that were “current ” pri or to the transfer. Two possible results can occur. If the
version of the account referred to by sum m ari ze has been kept as part of the
known history , it can he used for the computation of the balance. Thus , the
summn arize effectivel y executes as if the transfer has not happened. If the version
referred to has been thrown away (to save storage) , then the forgotten _ st a te err or
is signalled , and the summarize fails. The nor m al case would be to keep old
versions for a sufficient period of time to ensure that it is likely that all
t ransactions that may refer to them have fimiished. Thus , we can trade of f storage
(becomning cheaper as technology im proves) against the probability of aborting a
read only transaction as the result of an update.

In passing , I note that in a syst emn that does not retain old versions requires
t hat a very large read-onl y transaction (one involving many sites and consequently
mnuch delay) lock out up dates to anyt hing it reads for a relativel y long ti m e. In
par t i cular , a systemn based on locking suffers from this problem. The use of
na m ing for ensuring correct synchronization makes it easy to eliminate this fromn
of lockout by retaining suff icient old history of objects likel y to be involved in
read-onl y transactions. The na m ing mim echanis m provides the mnethod for properly
mnanag ing the set of versions retained.

If a transa ction is aborted because of a forgotten _state or redefinition
error, it is quite reasonable to restart it in a new pseudo-temporal en vironmnent .
Restarting transactions is the normal method of recovery for transactions tha t fail
because of these synchronization errors. There are two prob lemns with restar t ing
transactions , however. First of all , there is no guarantee that the r estarted

- 92 -

L - -

-

-_-_-—- .—--—_-- . ~~~- -

tr ans~tction will not also be aborted because of a forgotten _ state or redefinition.
There is thus the possib ility that a particular transactio n m a y encounter starvation ,
never fin ishing because it is always aborted by new transaction s accessing the
samne objects. Such a possibility is unlikely if the likeliho od of two transactions
simnultane ous ly accessing the samne object is low. Nonethe less , it may happen.

Worse than starvation of an individual transaction is dynamni c dead lock ,
where several transactions cause each other to be mutu all y aborted , and upon
each restart , the timing of the transactions causes mutual aborting to re cur. In
dynamic deadlock , no work ever gets done by the transactions involved in the
deadlock. Dyn am ic deadlock is also possible in NAMOS, although it is unlikely
that the deadlock will persist in a distributed system because the exact timing that
resulted in a transaction aborting another is unlikely to recur.

In chapter six , a mnech an i smn involving token reservation s is developed that
can be used to reduce the likelihood of starvation and d yna m ic deadlock where
needed , at the cost of requir ing that a transaction “reserve ” its resour ces in
advance. Where a transaction can pre dict the resources it needs (the resources
used must be knowable without kn owing the values contained in any of the
resources to be used), the token reservatio n mechanism is useful.

4.1.2 Constrast with locking and seria lizer s

Most of the discussion of transactions is couched in the language and
mnechanismns of locking. Gray [Gray 7lJ gives quite a readabl e sumn m ary of the use
of the locking approach in m anag ing a database. In essence , the locking approach
requires that one seize exclusive control of the objects to be read and written for
a period of real time. Exclusive control is granted by

- 93 -

_ _ __ _ _ __ _ _ __ _ _ __ _ _ __ _ _ _ _ - - - -~~~~~-~~~~~~~~~~~~~~~~~~~~

gaining possession of a lock associated with the object , such that only one process
has the lock set at any one timne. Transactions may not read or write any d ata
for which they don’t hold locks.1

In order to guarantee that a Consistent system state is observed during the
execution of a transaction, there must be one point during the transaction where
all of the objects touched by the tran saction are simultaneousl y locked. In
Eswaran , er al. [Eswaran76j this is called a two-p hase transaction (the first phase is
acquiring the locks , and the second is releasing the locks). Eswaran , et a/. show
that trans actions that are not two phase can be executed in such a way that
objects referred to by such transactions can be changed or observed by other
transactions in the mnidd le of the transaction. Further , there must be a
mechanism that guarantees that all updates generated by a transaction are either
completed or not done at all before any other transaction is allowed to read the
updated objects. Thus , by th e time any lock is released , all update s to be ma de
must be k nown to the systemn.

If the objects to be up dated lie on several nodes of a distributed system ,
ensuring that there is a point in tim ne when all locks are held simnultaneous ly can
be very wasteful , because there mn u st be at least one node that knows that all the
1ocks are thus set - - im n p li cit lv then , the delay built into the locking schemne is at
least the ti mne for all nodes involved in the transaction to send messages to a
common node that th e objects at the sending node are locked , followed by
whatever com npu t at ion is to he done , followed by th e timne to signal to all nodes
involved to store whatever changes that have been made , followed by a wait for
co mn mni tmn e nt , followed by messages to all nodes rele asi ng locks and guaranteeing
that all other nodes have comnmit t ed. If a transaction involving a large number
of nodes is executed with the lock ing scheme , it is clear that the period of t im n e
for which other transact ions are prevented from looking at the objects it touches
is potentiall y large. Thus , the likelihood of conflicts between transactions is
inc reased , even und er the assumuption that it is rare that transa ctions involving the

1. As a refinemnent , some sv stemns opt imnize the case of reads of an object by
defining read-onl y and update locking modes. Any number of transactions may
hold read-onl y locks for an object , hut if any transaction holds an up date lock for
an obj ect . no other transaction can hold any lock for that object. This
refinement doesn ’t af fect the arguments that f3llow.

- 94 -

-~~~- —- - —— - -
~~~~~~~~ -~~

--- - - -—- . - - --- - -. _--.--_--

same data are requested from different nodes at the same timne.

In contrast , in my system, I have traded off some space to reduce delay.
The trade off is part i cular ly clear when looking at the interference between
read- only transactions like the sumnmna ri ze transaction above , and updates , su ch as
the transfer transactions. Accessing a very large numnber of account balances to
get statistics has little effect on transfer requests -- by the time the statistics
gathering transaction gets to a particular account , the transfers accessing that
account mnay have m ade a num uber of changes affecting later pseudo-times t han
the one used by the statistics gatherer , but sin ce the statistics gather er specifies
what state of the sy stemn it wants to access , there will be no prob lemn in get t ing
the old version desired by the statistics gatherer. Of course , the imnp licatio n is
that mnu lti ple versi ons of an object have been preserved , rather than just the most
current version , resulting in a cost in space. Quite often, th oug h , space is mnuch
cheaper than the delay resulting fromn a statist ics gatherer locking out all upd ates
in order to get to a point where locks are set on all objects simnu ltaneousl y.

I am not aware of any schemne that  uses locking in a distributed syst emn
that  can execute transactions reliabl y in the face of failures , while preserving th e
nice properties of transactions as described above. This is not to say that  such a
scheme could not eventually be worked out , just that I have not seen one that
simultaneousl y handled all of the prob lemns. The mnost unfortunate kind of results
of failures mnay be th ose that leave objects locked , when the transa ction doing the
locking has long since f ail ed , or on th e other hand , havi ng a lock come unlo cked
in the middle of a transaction , without the node executing the transaction being
aware that the lock was not locked for the whole of the execution of the
tra nsaction.

The use of locks also raises the specter of deadlocks that can result if somne
disci pline is not used in the setting of locks. In a distributed system, the
requir ements of autonomn y preclude setting locks all at once , and mn ay pre clude
defining a lock hierarch y in order to preclude deadlock. The reason is that  the
objects touched by an operation involving objects at multi ple nodes may not be
known or knowable in advance because of the hiding of the imnp le mnen t ati on of
the objects provided to assure autonomy. Consequent ly, somne deadlock detection
and correction mechanism must be develope d that will work in the face of
failures. My systemn has the advantage that there are no locks , and t herefore no

-95 -



AD—A 061 407 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE——ETC F/G 9/2
NAMING AND SYNCHRONIZATION IN A DECENTRALIZED COMPUTER SYSTEM. (U)
SEP 78 D P REED N00014—75—C—o551

UNCLASSIFIED MIT/LCS/TR—205 NL

2
04 407 __________________________________ ___________

END
______________ FIL~~ b

2 -79
00€



--

~~~~

direct source of deadlock . Basically, deadlock is avoided by providing a time
bound on the length of time a possibility can remain in the wait state. Thus ,
transactions may be aborted too often in my scheme, but there is no static
deadlock that can arise. Dynamic deadlock can occur , however, as noted above.

Another problem with locking is that it is hard to add new transactions by
defining new m odules. If we have an existing transaction , it sets whatever locks
are necessary inside the transaction. If we wish to create a new transaction that
consists of executing a sequence of existing transactions, we cannot simply call
them in sequence because that would not result in a two phase transaction when
the locks set and released by each transaction are considered as a whole. Thus,
we must make it possible to seize the locks needed by all of the combined
transactions before executing any one of them, and release all of the locks needed
after the new composite transaction is completed. Thus, in building new
transactions out of existing ones, the locks set by each transaction must be known
outside the modules that require the locks to be set. It is thus hard to ensure
that the locks needed by a module are set properly, since the module now depends
on the caller to do it right.

Another approach to consistency is to design the system such that any two
objects that can be simultaneously accessed by a transaction must be accessed by
requesting the action through a guard process, whose job is to ensure that the
data being accessed is accessed all in a consistent state of the system, and that the
operation is completed before other requested operations involving the same
objects are started . The serializer concept of Hewitt and Atkinson[Atkinson78j
provides this mechanism as a basic synchronization tool. Two basic problems with
serializers do not trouble NAMOS. First, with serializers there is no explicit
mechanism whereby a serializer can handle the problems of errors that occur
m aking the objects protected by the serializers inaccessible. In a sense, the
serializer is in the ri ght place to ensure order , but without the tools that allow
ensuring the order. Second , in a system that has independently designed
mechanistns with autonomous parts, it is unlikel y that a common synchronizing
process will have been designed in from the start , yet without such a common
process, synchronization may be very difficult to achieve. Again , if we allow
construction of new transactions out of previously existing actions, it may be that
two existing actions to be used in a new transaction are not protected by a
common serializer. Such a common serializer would have to be constructed and

- 96 -

users of the objects protected by the new seria lizer would have to be changed to
use the new serializer.

The primary problem with serializers as a synchronization mechanism in
the kind of distributed system I am considering is that thej require foreknowledge
of the kinds of transactions that the user may want to achieve, if the bank
system considered above were designed with serializers, it is fairly likel y that
someone coming up with a later requirement for some statistics not provided
normally through the serializer interface would not be able to get those statistics
reliably until the system had been reimplemnented with a serializer that handled
the new transaction type.

4.2 Backup

An interesting problem that is closely related to synchronization is that of
implementing what I call consistent backup. Suppose that , as a result of user
mistakes , some set of operations that has made changes to the system was in
error. The user may have typed something at a terminal that was wrong, or
whatever , or some processor was temporaril y producing incorrect results. What
would be desirable as a recovery action would be to restore part of the state of
the system to an earlier time. Now this really consists of two parts -- first ,
finding out the part of the state that should be restored , and then restoring the
state of the objects that must be restored.

Finding out the part of the system state that must be restored is often
quite difficult , since it is possible that based on the changes made by the
erroneous computation, a large number of other changes to the objects in the
system have been made. Reversing those changes must be accomplished , as well ,
in order to completely restore the state of the system to a correct one. In order
to do the reversal , the system would have to maintain a dependency graph, where
an edge is present in the dependency graph whenever a version depends on
another version. Such a graph could be maintained in NAMOS, if a list , called
the depends-on-list , would be kept associated with each version. Each entry of the
depends-on-list would be the name of a version of another object that has
depended on the version containing the depends-on-list. Finding the objects that
must be restored based on a computation that has modified some set M of objects
would then involve getting the transitive closure of the depends-on relation, and

-97 -

.
~~~~~~~~~~~

then finding those objects whose current version depends-on the set M.

Keeping the depends-on-list, however, may be quite difficult and expensive.
An alternative would be to have a backup mechanism in which the user would
have to guess what objects should be restored to their original state. It would be
possible to design local depends-on-lists wherever the cost is justified , to help in
discovering this. The result is that restoration of system state after this kind of
error may not be correct, if the user or the modules that figure out the
dependencies are incorrect.

Once the set of objects to be restored is chosen, however, a consistent
restoration of the object states is a quite simple operation. State restoration
simply involves making the version of an object that was defined in the
pseudo-time corresponding to the system state to be restored the version that is
valid in the current pseudo-time. We can define the restoration of an object in
terms of the existing version reference operations:

version_refSdefine(version_refSfreeze(obj 1 ,pt2),
version_refSlook up(version_refSfreeze(obj 1, pt 1)), poss)

will make the version of obji at pseudo-time pt2 the same as that existing at the
earlier pseudo-time ptl. If we execute a group of these operations all under the
same possibility, we can m ake the state of all the objects the same as the state
that existed at pseudo-time pt l , thus reversing all actions taken at pseudo-times
between pt l and pt2. In order that the code above will work , it is necessary that
the version as of ptl still can be gotten without a forgotten_state error resulting
from the system having discarded it. It is also possible that the restoration will
fail as a result of some simultaneous transaction defining the version at p12
through a lookup with a later pseudo-time.

At the language level , it is much more convenient to define a per-type
restore operation , such that ippeSrestore(objl,ptl) when executed in a transaction
whose pseudo-temporal environment provides pt2 from its pseudo-tem poral
environment , will have the effect of restoring obji to the state it had as of p11.
In implementing IypeSrestore for an abstract type, the definer of the type must
make sure to restore the state of all objects in the representation of the object.
The designer of the type must take into account the same issues he must deal
with when defining a copy operation in CLU -- in particular , he must decide



whether objects referred to in the representation are part of the object or not. If
a stack that has been pushed is restored , it certainly should be popped , but the
objects referred to by the stack probably should not be changed by a restore on
the stack (unless the objects referred to were actually changed by the operation
being undone). All primitive types that can be updated , such as records and
arrays, will have restore operations built in, so that abstract types can use these
restore operations to buIld their restore operations.

In addition to a restore operation for each type, we need at the language
level the ability to obtain pseudo-times to pass to the restore operation. A simple
interface would be to have an operation available at the language interface to
obtain a checkpoint to which one can restore objects. The checkpoint operation
would simply involve getting the current pseudo-time by invoking pteScurrent on
the regnant pseudo-temporal environment. We might write this as a statement:

checkpoint C;

where c is a variable whose type is pseudo-time. Desugaring the checkpoint
statement simply results in an assignment into c from an invocation of pteScurrent
on the regnant pseudo-temporal environment.

Of course, certain kinds of failures may still prevent state restoration. In
particular , if the object history for each object is not maintained forever, there
may be a certain point in the past before which the state cannot be restored.
Choosing how much to keep of an object history, then , must be a carefully made
design choice that properly trades off the cost of keeping the old versions against
the value of being able to restore on errors.

As noted , this is only a partial solution to the problem of state restoration,
but the ability to name individual versions of objects makes at least part of the
problem quite simple. In a system without the autonomy constraints assumed in
the thesis, constructing the depends-on relation may be more feasible on a
system-wide basis. In such a case, a complete solution to the problem of
consistent backup may be possible.H ~~~~~~~~~~~~~ 

_ _



However, discovering the true dependencies between object versions is
highLy dependent on the semantics of the computations that generate versions.
The system, in the absence of such information , would have to make assumptions
that are worst case -- e.g. if some process has ever touched object X, all objects
ever touched by that process may depend on X. For example if discovering a
particular value in X is what causes some set of earlier updates to be completed
by completing some possibility, those values depend on version X. Just by seeing
what the process actually did , one cannot discover that the earlier updates would
have been completed in any case, independent of the value of X. Consequently,
in the absence of any other information, the depends-on relation would be very
bushy, requiring a much larger number of backups to recover from an error than
might actually be the minimum required.

Consequently, I suspect that the best approach, whether or not the system
has the autonomy requirements of the distributed systems I have considered , is to
leave keeping up dependencies to a much higher level, and use a mechanism like
mine to do the state restoration, once the set of objects to be restored is known.

4.3 Conversational System Interactions

Unplanned transactions are not the most difficult kind of interaction that
the system may have to support. One factor that unplanned transactions have is
that the code for the transaction is entirely within the system at the time of
execution. In the case of conversational interactions such as those that might be
supported by an interactive database query application, a multi-node debugger, or
an interactive program library system used by multiple people, not even the
program to be executed can be known by the system in advance. Nonetheless,
there is a need in such interactive environments to obtain and act upon data from
a consistent state of the system. Further, there may be a need for running a
particular set of operations, checking to see that the result is correct, and then
either aborting or completing the operations.

It is fairly easy to make a conversational interaction work in my system,
with the use of the tools already present. The entire interaction ought to be

I carried out in a single pseudo-temporal environment , under a single possibility, just
as in a transaction. The timeout specified when the possibility is created must be
large enough to carry out whatever updates are contemplated. The interactive

- 100 -

t

_______ ~~~~~~~~~~~~~~~~~~~~~~~~ -:,~~~~~~~~~1•~;•~ -~~ ~•



•
1

user is then free to pursue whatever interaction he desires to make. Upon
finishing the interaction , the user lets the system know that the interaction is
over, specifying whether or not to complete the possibility.

One basic problem with conversational interactions in any system is that
the user must be prepared to have his interaction aborted. In my system, there
are two kinds of failures - inaccessibility of a particular object version that is to
be read , and aborting the possibility under which the interaction is carried out.
Inaccessibility is a soft failure that the user may want to handle by ignoring it or
by accessing another version. Aborting the possibility is important if updates are
involved -- in which case the user can decide if he wants to try again or not. He
must be aware that other values in the system may have changed , and so may
want to inspect them again in the pseudo-temporal environment in which the retry
is executed. I can imagine a simple kind of assistance that the system could
perform, which would involve warning the user that his possibility is about to
expire so that he can finish his updates, and which would also involve keeping
track of those objects that are touched in the current input state, so that if the
transaction is aborted , the values that change between that state and the retry
state can be identified for the user.

Conversational interactions are much more difficult in a locking based
scheme. One must be sure that all of the locks are set, and that the locks are
properly cleared when the transaction is done. More importantly, since
conversational transactions take a long time, the interference caused by reading of
data with updates may become severe. Because the conversational transaction is
unpredictable in what it will access, the only recourse for handling deadlock is
some sort of deadlock detection and correction scheme. In a locking based
scheme, aborting is at least as difficult as in my scheme.

Serializers allow for no conversational interactions other than the
• preplanned ones packaged up as part of the serializer requests.

4.4 Partially Recoverable Operations

In the previous chapter 1 noted that there is a need for operations that use
multiple possibilities in their execution, making it more difficult to handle failures,
since some of the actions carried out by a partially recoverable operation will not

- 101 -

_______________________



r -

be reversed by aborting a single possibility. I would like to give several examples
to justify this need, and to show how good use may be made of the ability to use
multiple possibilities in an operation.

Perhaps the simplest example I can give is the keeping of metering
information associated with an object. Perhaps it is desirable to keep track of the
number of times attempts (whether or not aborted) to update an object are made.
In order to do this, a way of keeping this count associated with the object
without having it backed up when some failure having nothing to do with the
object itself happens is needed. One simple way to build such a counter into the
operations on the object is to update the counter under a brand-new possibility
that is completed im mediately after the update. In the bank example, one could
build into the transfer transaction the following code:

transfer = proc(acctl , acct2:account , amount , counter:int) signals(insufficient_ funds);
ip:possi := possibllltyScreate(2) ; % create an independent possibility
were ip do counter : counter + 1; end
possi bilIty$complete(ip); % the counter is now permanently incremented

dp:possi := possibility$dependent(2); % create a dependent possibility
were dp do

accountScredit (acct2, amount);
accountSdebit(acct 1, amount)

except wh en
insufficient_funds:

possibllitySabort(dp);
signal insufficient_funds;
end;

end
possl billty$complete(dp);
return ;
end transfer;

This code ensures that any attempt to transfer money results in the parameter
counter being incremented.

It is important to note that the program uses multiple possibilities here, but
did not use a new pseudo-temporal environment. Thus the change made to
debit.count is only visible after the output state of the transaction , whether or not
it is completed . Had a new pseudo-temporal environment been used, it is possible

p
- 102 -

t 
_ _

- . - —  ___________



-‘

that for two transfers, the counting of the transfers would happen in a different
order than the transfers actually happened , and might be actually not visible in
pseudo-time till much later than either of the transfers.

Another important use of local possibilities is in the form of run-time
optimization often called “memoizing.” In this form of optimization , upon each
use of an operation on some object, the results of that operation are rem embered .
along with the state of the parameters that led to the result. Then later , if the
operation is re-requested with the same parameters , or some operation that has
similar parameters is requested. the saved results can be used to more quickly
compute the new results. If all of the updates made by an operation were undone
by aborting the possibility, then such memoizing would only help in cases where
the overall computation that generated the saved results was completed . An
important use of such memoizing might be to reduce recomputation in the case of
failure , however, by detecting the fact that he computation requested is the same.

By computing memoized results under a possibility that is completed once
the saved results are available , the memoization can be completed independent of
the completion of the enclosing computation. Since memoizing can be used in
such a way as not to change the interface behavior of the object operations , the
fact that the memoizing is not recoverable upon failure is not serious.

The common theme among these examples of partially recoverable
operations is that the primary results of operations , that is the changes made by
the operations that are important at the interface, are still recoverable , having
been made under the possibility that is current at the invocation of the operation.
Only secondary changes are made under possibilities that are completed
independent of the overall computation , and in some sense the completion or
non-completion of these secondary changes does not change the important
semantic properties of the interface.

- 103-

- ~~ • 
. ~~~~~~~~~ - - •~~~ --

• 
• - -- - - •- • . 

~~~~~~~~~~~~~~~~~~~~~~


• - - • • - - — — - - - -—---~ • -
• •. . ‘ . -

Chapter Five

Implemen tation of Possibili ties and Tokens

A key notion in NAMOS is the idea of a possibility. So far , a possibility
has been described as a somewhat special entity that has no history in
pseudo-time. The pur pose of the possibility is to represent the ultimate choice
made by a computation of whether or not to make a particular hypothetical set of
changes computed for shared objects real and known to other users of the objects.
In this chapter , we discuss the realization of possibilities in a decentralized system
of the sort described in the first two chapters.

An important problem in the implementation is dealing with multiple kinds
of failures. Two basic kinds of failures are important here. Lack of availability
due to com mu nications failure or node failure (where refusal of a node to
communicate is considered a “failure ”) is one sort of failure. The other sort is the
failure of a com putation som ewhere in the middle. Both of these failures are
really viewed as excessive delay -- the first sort being refusal to communicate for
an overlong time , and the second sort being a long delay in the execution of a
computation. Since long delays look like failures , one can never be sure whether a
computation or communications path has stopped operating or whether it is still
working, but slowly. Consequently, whenever a failure is discovered , the
mechanism s that recover from the failure must not only recover in the case where
the failing component is reall y dead , but they must also handle the case where the
“failing ” component is alive and continuing to attempt to operate on that part of
the system state that has been the subject of recovery.

It is in the handling of failures that the implementation of possibilities and
tokens becomes difficult. The chapter will first discuss the overall problem of
“atomic commit~ that is basic to the implementation. We motivate the idea of a
commit record as the implementation of a possibility, and contrast it with some
similar mechanisms that achieve solutions to the atomic commit problem. After
this discussion, the mechanism by which tokens become versions or aborted
versions is described , and the effects of failures are shown. We then discuss
enhancements to the basic commit record mechanism. Use of the commit record

- 105 -
— y_-.--—— —

•
~~~~~~ X1~~ PA~~ 3&.A1UC-NOT VILJ~~~



to ensure atom ic commitment of tokens introduces problems of delay and
inaccessibility that can be reduced by encaching the state of commit records with
the token. Further reduction of delay can be achieved by enhancing the Commit
record m echanism to automatically distribute changes of state at the earliest
possible timne.

The implementation of possibilities is then described, first for an
implementation where the possibility is represented by a single commit record at a
single site , and then for an imnp lemnentation where the possibility is represented by
mu lti ple commit records “distributed ” among several sites to provide a greater
degree of availability. Finall y, the storage management mechanisms by which the
storage used to implement possibilities can be reclaimed will be discussed.

5.1 Atomic commit

An “atomic commit ” m echanism is one that causes some set of actions to
happen “sinmultaneously ” as far as any outside observers are concerned. In the
case of the decentralized system, the actions that are to be performed
“simmiltaneous l y ” are transformations of somne set of tokens from tokens to
versions. In fact , simultaneity is not the important factor, though it is of ten
discussed in this way. The requirement is that of the two possible results for each
object token , version or aborted version , the same choice gets made eventu ally at
all object tokens. A mistake leading to one token becoming a version and another
one becom ing an aborted version would lead to an inconsistency in the system.

The possibility is the abstract mechanism used for achieving atomic
commit. All of the tokens created associated with a particular possibility form
the set of objects affected by the atomic commit. The possibilityScomplete
operation is an attempt to change all such tokens associated with the possibility
into versions, while the possibilitySabort operation is an attempt to change all
such tokens into aborted versions.

Som e computation in the system will be the causal agent of the atomic
com mit. That is, the causal agent is the com putation that is intended to complete
or abort the possibility. It is im portant that the system protect itself against the
loss of the causa l agent (or alternativel y, excessive delay in deciding what to do.
or a failure of communications between the causal agent and the set of actions to

- 106 -

- •-



be performned). Thus , designed into the interface to possibilities is the idea of a
timeout causing a default decision to abort the possibility, in the case where the
causal agent either fails or takes an excessively long time to act , the possibility
automnatica ll y goes to the aborted state. Then , no matter what action the causal
agent mn ay take (if it has not reall y failed) it cannot reverse the decision to abort.

In my systemn , an atom ic comnmit mechanism is built out of a mechanism
that is specialized to the purpose. This mechanism we call a commit record. A
comnmit record is a piece of reliable storage that is created with a fixed initial
state, then can be changed by an atomic action to either one of two other states.
and can never again be changed. Basically, it is a piece of non-volatile write-once
storage that can be in one of three states. A commit record’s state has one of
three value s at any instant that it is read -- call them waiting, complete and
aborted , in analogy to the states of possibilities. Further, if any read of the
co mnm ii i t record’s state returns either the value comnplete or the value aborted (call
these final values) , then all other observations will return either that value or the
value waiting. It is not necessary that reads be ordered with respect to writes,
althoug h in mnost real imp lemnentations once a final value has been returned , later
reads will never return the value waiting.

Lamnpson and Sturgis(Lamnpson l6j have described a mechanism for achieving
atomic commnit. Their mechanismn differs in some detail from that used in
NAMOS, and uses a slightl y different basic mechanism. Their basic mechanism is
what they call atomic stable storage.1 The prop erty of atomic stable storage is
that it behaves as if any attempt to write the storage either finishes or it doesn’t
start (leaving the storage unchanged). Thus any read returns a value that was
written by the mnost recent write to complete , rather than allowing the possibility
that failing or concurrent writes will cause reads to obtain values that mingle bits
stored by several different writes. Commit records have this property, but in
addition are also write once , and have the range of values restricted.

1. Atomnic stable storage is a further enhancement of the stable storage
described in chapter two. The distinction is that with atomic stable storage there
is no possibility that a modification to the storage will be left partially completed
-- either the modification will never have happened , or it will have been

• completed.

- 107 -



Lamupson amid Sturg is describe a way of achieving atomic stable storage by
using a disk with each record stored twice with an error detecting checksum. The
atom ic property is built by using a clever reading algorithm that reads both
records , checking the checksum amid comuparing the two copies. If the checksum
on th e first record is correct , but it differs fromn the second copy, then the first
copy is correct , and the second copy is old , so it is copied from the first copy. If
the che cksu mim on the first copy is wrong , then the second copy is correct , and is
returned . Otherwise , either copy will be correct. Their algorithm as described
requires that writes be mutuall y exclusive , but this is easil y achievable in a single
comnputer systemn. The lock mne chani sm described in chapter two can be used to
achieve this mu tual exclusion.

This mechanism could also be used in the implementation of Commit
records, by simnp l y ensuring that the commit record is only written once.
However , other implementation strateg ies are possible.

Gra~[Gray 77] has described another mechanism for a centralized system to
achieve atomic comm it. Recovery fromn failure in his system depends on the fact
that the whole system stops upon a fai lure , so that a recovery program can be run
to hack up the state of the variables changed before the failure , while no other
comuput at iom i s can he observing the values created by the failing transaction.
Because it assumes that the whole system is serviced by a centralized recovery
al gor it hmn that always gains control upon failure , and which can know how to
restore all the states of objects touched by failing computations, it is not an
acceptable approach for a decentralized system.

5.2 Tokens

The mn echa n ismn by which tokens become apprised of the change to a
comnmnit record is based on a passive mnechanism. Stored with a token is
inform ima tion sufficient to designate and locate the comnmit record associated with

• the possibility under which it was created. Whenever it is necessary to check
whether a token should really be a version or an aborted version , the system
containing the commnit record sends a query message to the system containing the

• commnit record. The response generated for such a query will be the state of the
commit record - - waiting, complete , or aborted.

- 108 -



Since the Com m it record can never have been in both the complete state
and the aborted state , if the answer to the query is either complete or aborted , all
other queries referring to the same commit record will get either the same final
answer , the answer “waiting ” or no answer. A waiting response has basically the
same information about the state of the token as no response at all. Since a
waiting token is neither completed nor aborted , it is unknown what the final state
of the token will he. Between the time the waiting response was generated and
the timne the site of the token receives the response , the commit record may have
been set to one of the final states. However , once one token has received a final
answer , all other tokens referring to the same comnmit record will receive the same
answer if they wait long enoug h (assuming that the site containing the Commit
record and commnun ica lions to it do not fail permanently).

The mechanis m described so far has a built-in delay, since determining the
state of a token always requires sending a m essage to the commit record and
waiting for a response. In addition , the commit record must occupy storage for a
Long time , since it must always be present to decide for each token whether it is a
version or not. We would like to be able to reclaim the storage for a commit
record relatively quickly. Finall y, for the period that a commit record is
inaccessible , all tokens that refe r to it appear inaccessible as well. Thus the
likelihood of inaccessibility of a token may be very hi gh , even after the token has
become a version. We would like the extra inaccessibility resulting from the use
of commit records to be as small as possible.

To i m prove the commit record mechanism , reducing delay, storage
requir emnen ts . and inaccessibility problemns , we introduce the notion of encaching
the comumnit state in each token. In addition to the location of the commit record ,
the last known state (initiall y waiting) is stored with each token. Call this part of’
the token the ECS (encached comnmnit state). Whenever a response from a commit
record is received , if the response is complete or aborted , that value is stored in
the token ’s ECS. Thus , once the commit record signals a state of complete or
aborte d , no further queries are needed to ascertain the status of a token. In the
absence of errors , each token need wait for only one query and response after the
comm it record is set to the final state. Delay is thus reduced , and for those
tokens that have alread y copied a final state, any inaccessibility of the token is
irrelevant.

- 109 -



There is a basic problemn , however , in that there is always a period of time
between the time the commit record enters its final state and the time that the
tokens dependent upon it know what the final state is. Worse yet , due to the
possibility of errors , this timne cannot be bounded. Thus, even if the token is
accessible some of the time , and the commnit record is accessible some of the time,
the token ’s state mnay he inaccessible for an unbounded period of time.

Is this a bug? Unfortunately not -- it is due to the same basic difficulty
that makes the two generals unable to bound the time needed to make a decision.
If were to accept a non-zero probability of making a wrong decision, the delay
could he hounded . However , given that we always want to make the right
decision , the m ax imum u delay is unbounded.

Delay in encaching the information from the commit record can be further
reduced by eliminating the delay due to the query sent by the token. If the
response is labeled so that recei pt of it before any query can be properly handled ,
then once the commit record reaches a final state , “unrequested responses” to
queries about the status of the comnmit record can be sent to all tokens interested
in the state of the comnmit record. These responses can be viewed as a pure
optim i zation , since ignoring them does not cause incorrect operation of the system.
However , if they are reflected in the E~S of each token that correctly receives
the “unrequested response,” then the delay due to querying the commit record
after it is final will be non-existent.

Keeping track of where the tokens interested in such “unrequested
responses” are can be done in several ways. It turns out that much the same
information is needed to reclaim the storage used by commit records safely, so I
defer the discussion of this to later in the chapter.

5.3 PossibIlity implemented . as a single commit record

The simplest imp lementation of a possibility is based on storing the state of
the possibility as a sing le comnmnit record at a single site. This site serves as an
arbiter , funnelling the mani pulations of a possibiLity through a single queue that
processes each request to mani pulate a particular possibility in The order of arrival.
What , th emi, does a comnmit record look like in such an implementation , and how
is it mani pulated?

- 110 -

- .—-— —-~~~-----~~~•—~—



The commit record is stored in stable storage at the site. Crashes of the
site do miot affect the value of the commit record. As noted in chapter two, such
stable storage is, in practice , not perfectly achievable. However, the probability of
failure of some devices, such as disks, optical memories, and others, can be made
quite low at reasonable Cost by judicious use of redundancy local to the site.

The comnmit record contains at least the following fields:

commit _state: a two bit quantity , set to zero when the
commit record is created. The first bit , commiLstate.c,
is set to one in a possibilityScomplete operation. The
second bit , commit _state.a, is set to one in a
possibilitySabort operation , or upon timeout. The
possible values are:

00 waiting. The initial state.

01, 11 aborted. Aborting takes
precedence over completing.

10 completed.

timeout: a clock time accurate to some precision (say 1
millisecond), set to the time after which the commit
state should be turned from zero to the aborted value ,
if not alread y completed.

The timeout is never changed , once the commit record is allocated . The commit
state is write-once storage , that is written atomicall y. The atomic write property
can be achieved in several ways. As an example, one might use write-once
mem ory built by having a laser burn a hole in a piece of mylar as in the Ampex
terabit memory for each one hit. Another possibility might be to use the same
trick used by Lampson and Sturg is, storing two copies of the commit state on
disk.

There are three types of operations that can be requested for a commit
record -- complete , abort , and test. They are implemented quite simply. The
only detail that I have not mentioned is that the clock used as the standard
against which the timeout is comnpared is the local site clock at the site of the
commit record. It is really quite unimportant what clock is used, as long as the

- 111-



clock will reproduce the intended timeou t reasonably accurately. If timeout
happens earl y or late , the logical correctness of the system is not violated , but
performance may suffer (early timneouts prevent normal completion of operations.
while late timeouts result in delay when checking a token created by a failed
operation). The algorithms are:

complete

0. set commnit _state.c 1

I. return not(commit_state.a)

abort

0. if commnit _state.c=O
then set commit_state.a=1

1. return comnfnit _state.a

test

0. ii timeout > time()
then call abort.

I . return comnmit_ state

In the imnp lemne imt ati on of these operations , mutual exclusion is necessary.
Step 0. of the abort operation mnust be atomic with respect to other complete or
abort operations. A simple way to insure the proper mutual exclusion is by
having a lock that mn ims t be set to gain access to read or write a particular commit

• record. The lock is cleared at the end of operations, and cleared also whenever
the site comnes up after a crash or power-off. The locking mechanism for single
objects described in chapter two is sufficient for this purpose. Since these
operations are short , the overhead of locking need not be great, consequently an
alternative scheme that uses a single lock for all commit records at a site may be

• quite acceptable.

P - 112 -

L — 
.



If the storage to be used by commit records is to be re-used , the addressing
schem e used for commit records should incorporate a mechanism for detecting
dang ling pointers. Consequently, the nam e used to designate a commit record at a
rem imote site mnight include not only information sufficient to designate the storage
address, but also a uni que tag (generated by reading the local site clock, perhaps,
if a clock of sufficient resolution is available). Another field in the commit
record would contain the uni que tag. li the tag in the name for a commit record
does not match that stored iii the commit record , then the commit record has
been deleted. The meaning of a deleted commit record when discovered by a
qu ery from a token will be discussed when we discuss reclamation of commit
records.

If a possibility is imnp lemnented by a commit record stored at a single site,
the continuing accessibility of that site to the sites containing the created tokens
may be a question of some imnportance to the nodes creating tokens, since the
token mnay prevent transactions that mani pulate the object containing the token
froni proceeding if the comnmnit record is inaccessible. For thi s reason, a node may
choose to refuse to create a token based on its lack of trust of the accessibility
(or correct imp lementation) of the commit record based on its location. Nodes
that provide hig hl y accessible , correctly imnp lemented commit records will be one
of the necessary components of the system I propose. These nodes may either be
provided as part of the network , or they may be provided by mutual agreement
among those nodes that have resources that m i ght reasonably be used together.
Assuring the correctness of and availability of such nodes must be done by
observations and agreem ents outside the system.

5.4 Dependent possib ilities

There are at least two ways that dependent possibilities can be
imnplemnente d. In one way, a dependent possibility is a commit record as above
with an additional information field that refers to the possibility depended upon.
The possibililyScomplete and possibilitySabort operations on dependent possibilities
would be exactly the same, mani pulating the cornmit ..state field of the dependent
possibility ’s commit record. The possibiLityStest operation , however , would be
different. The test operation on a dependent possibility that has been completed
must involve testing the state of the depended-upon possibility. If the
depended-upon possibility responds that its state is completed or aborted then the

- 113 -



the dependent possibility can return that value. 1 If the depended-upon possibility
is waiting , then a new kind of response is sent, indicating that the dependent
possibility is completed , and naming the depended-upon possibility. The
depended - upon possibility’s n amne then replaces the dependent possibility’s name in
the token, so that  future tests after waiting bypass the dependent possibility.

An alterm iati ve way to imuplemnent dependent possibilities is to represent the
name of a dependent possibility by a pair of names. The first element of the pair
identifies the comum uit record that is modified by possibilityScomplete and
possihilitvSabort operations , and the second
ekinent identifies the depended-upon possibility. 2 The possibilityStest operation
then consists of testing the comniit record that is first on the list using the basic
test algori thmn defined in the previous section. If waiting or aborted , then the test
finishes inimnediately, returning waiting or aborted. Otherwise, the pair is replaced
by the second element of the pair . and the test is repeated.

The second approach suffers from the need to store potentially rather long
names for possibilities in each token. However , once the token is turned into a
version , there is no need to store the name of any possibility, so the storage is
only required during the window of timne while the token has not yet become a
version. The m ain advantage of the second approach is that the protocol for
dealing with comnmu it records is simple and uniform -- all of the complexity is
localized in the algorithm executed at the token.

5.5 Determinin g the right to access a token

The representation of the nam e of a dependent possibility as a pair
consisting of the name of a commit record and the name of a possibility
(dependent or independent) is very useful in determining whether a computation
may obtain the value stored in a token , however. Recall from chapter three that
a computation that attempts to read a token may obtain the value if the
possibility imi which it is executing is “the samne ” as the one the token was created

1. To reduce delay on successive tests, the dependent possibility can also encache
the state of the depended-upon possibility.
2. li the depended-upon possibility is a dependent possibility, then its name will

be a pair also, amid so on, until an independent possibility ends the chain.

- 1 1 4 -

-
~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ • •~~ ~~~-


in , where “the same” has a very particular meaning. Algorithmically, the phrase
“the sam e” can he understood to m ean “search up the chain of dependent
possibilities fromn the token until the first non-completed possibility is found.
Then if that possibility is a member of the chain of possibilities under which the
computation is executing. the token ’s value may be accessed by the computation.”
As a side effect of either i m p lementation of dependent possibilities, the test
operation causes the token to know the name of the first non-completed
possibility . This na m e can then be checked against the name of the possibility
under which the computation is executing to see if it is a member of the chain,
If the possibility under which we are executing is represented in the pair (or list)
representation, this check is simnp le and local. If only the name of the topmost
dependent possibility is known , then it would be necessary to inquire of that
possibility whether the non-comnp leted possibility matches any in the chain,
possibly requiring a flurry of messages between sites containing the various
commit records.

5.6 Possibilities implemented using multiple commit records as voters

In order to increase availability, one might desire to try to implement
possibilities using several commit records at different sites. A number of
algorithms that attempt to implemnent multi ple-site updates of data stored
redund antl y at multi ple sites are given in the
literat ure [Alsberg76,Johnson7 5 ,Thomnas76), however , these algorithms are too
elaborate for the rather simple properties desired of possibilities. A modification
of the majority rule approach developed by Johnson and Thomas(Johnson75J
seemns to provide an effective approach, however.

The problem is to imnp lemnent an object whose representation does not
require that a particular site be up to read from or store into it. The behavior of
the object must , however , be the samne as a com mit record , in that the complete
and abort operations should be atomic. The essence of the majority rule solution
is as follows. The state of a commit record is a composite of the state of N
voters, commit records stored at N different sites. The state of each voter is
either waiting, comnpleted , or aborted (just as before). When a majority of the N
voters are in either the completed state or the aborted state, then the state of the
possibility is the same as the state of the majority. In order to prevent a tie, the

- 115 -

~

- -~~~

case where exactl y half have voted for the completed state is defined to be a
comnpleted state of the possibility.

Voters are not allowed to change their vote -- thus they have a state that is
write-once. Further, to handle the timeout , if a voter has not decided which state
to vote for after the timeout has been exceeded according to the local site clock,
the voter must vote for the aborted state. Thus, in behavior, a multi-site commit
record is created out of data structures that look just like the single-site commit
record described above.

Testing the state of a mnulti -site comnmit record involves taking a poll of the
N sites. Because onl y a m ajority is needed to m ake a decision, the minimum
numbe r of sites that mnust be accessible to make the test will be LN/2i (in the
case of a decision to complete) or tN/2J+ 1 (in the case of an abort). However,
the mnax im n um n needed to be accessible to make a decision is N. in the unlikel y
circumnstance that the vote is nearl y a tie and the voters are queried in worst-case
order. Thus , we want to mim iimnize the likelihood of a tie.

I will generalize the notion of majority rule a little bit , since there is really
not somne m agic property of N/2 that ensures that the multi-site commit record
works. It is onl y necessary that there be some threshold value ~ (1�.c�N) for the
decision whether the possibility is comnpleted or aborted . If ~ voters are
completed, then the test says completed. If N -øc+ 1 voters are aborted , then the
test s.r,s aborted. Otherwise, the state of the possibility is waiting. I call ~ the
complete tfwesl,o/d and N-sc+1 the abort threshold (if N~ 1, both the thresholds are
required to be 1, so this case is the same as the single commit record
implemnentation).

To execute a possibilitySabort or possibilityScomplete operation on the
multi-site Possibility, the site requesting the abort or complete sends messages to
all of the voters representing the possibility (some messages may be lost, of
course). Each imiessage is processed at the receiving site, and the voter is set to
the comnpleted or aborted state as required , unless it has already been set. The
requesting comnputation does not proceed unt il all voters have been contacted and
have responded , or until a sufficient timeout has expired due to inaccessibility of
one of the voters (the requesting computation retransmits requests to decrease the
probability of lost messages).

- 116 -

-
~~~~~ ______



In the case that the com putation requesting a possibilityScomplete on the
mnulti -sit e possibility fails in mnid-stream , before sending some requests to voters,
each voter independently times out , based on a local clock, entering the aborted
state if no complete request has been received promptly enough. The timeout at
each voter site also handles the case of a site that was inaccessible to a
comnputation that requested a possibilityScomplete. The voter at the inaccessible
site svill eventually enter the aborted state.

There are two cases that lead to a high likelihood of having a near-tie in
the state of the voters. One case is that of near simultaneous abort and complete
operations. If an abort gets to approximately N-K+ 1 of the voters first , while a
complete gets to approxi m atel y ~~, a near tie occurs. In the use of the system, it is
easy to avoid the circumstance. First , the abort operation is logically unnecessary
because of the timeout , so it should only be used in order to speed up the process
of aborting when it is known that no complete operation may be attempted.
Second , in designing programns . it is normall y the case that the execution sequences
that exp licitl y abort will never go through an attempt to complete (as in all the
chapter four examnp les).

The second case is when a complete operation happens to signal the voters
at around the time of timneout. Thus, some of the voters may have timed out
alread y when the com plete arrives. The probability of this circumstance arising
can be drasticall y reduced by a simple trick. If the clocks local to each site are
reasonably synchronized (with somne smnall probability of being more than £

seconds out of synch), and if network delays are roughly bounded (with some
small probability of being more than 6 seconds), then if a complete is attempted
within 6+t seconds of the timeout on the possibility, it should be refused out of
hand at the requesting site, before sending anything to voters (in fact , it may send
aborts just to speed up the aborting process). Thus the probability of a timeout
overlapping a complete can be made small by making the timeout somewhat
bigger than the expected time to complete the operation done under the
possibility.

In order for these aigorithmns to work , the requesting site must have enough
k nowledge to locate each voter of a multi-site possibility separately -- so the name
of a mnulti -site possibility may be somewhat larger than names of objects (that
naturally have a single home). In addition , for the refinement just mentioned, the

- 117 -

- ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :~~~_~ -~~~~ --~~~~~-- -~~~~~ .- ——_——~~~~~~~~ -~~~~~~--



requesting site must be aware of the timeout set on the possibility. Also, the
requesting site must know ~ Thus a reference to a multi-site commit record looks
like figure 10.

FIg. 10. Reference to Multi-sIte Commit record

comnp lete threshold
abort threshold

Timeout

list of sites
— J

In appendix A, an anal ysis of the probability of availability of a possibility
implemented as multi ple voter commit records is given. The basic conclusion is
that as you increase N. two factors affect availability. First , if the probability of
failure during a possibilityScomplete operation is low, the likelihood of a near-tie
decreases as N increases. Opposing the first effect, however, is a second one.
The probability of failure during a possibilityScomplete operation increases as the
numnbe r of sites to be notified increases. This can increase both the likelihood
that a near tie will occur , and the likelihood that the possibility can’t be
completed. In addition , the cost in terms of messages sent, load on the network,
etc. increases as N increases. Thus, there is probably an optimal value of N
which is relatively small, given normal site availability and network reliability.

If g is about half of N, it is equally easy to find out that the possibility is
aborted as completed , whereas as ~ decreases, determining that the possibility is
completed becom es easier and easier. Since the normal case is that operations are
completed , sm aller values of ~ ought to increase performance overall, reducing the
number of responses needed to determine the state of a possibility. Values of i

greater than one half of N don’t seem to be useful, though.

- 118 -



5.7 RecLamat ion of commit records

So far , commit records have been considered to be permanently allocated.
The cost of permanent allocation of com mit records can be very large , since every
transaction or other operation involving shared objects will require a distinct
commit record to represent the possibility associated with the operation.
Consequently a schem e to reclaim commit records when they are no longer needed
is desirable.

Since the state of commit records is eventually encached within the versions
and aborted versions stored as part of the object known history, it is clear that
eventually there will he no references to a com mit record. When there are no
references from tokens still outstanding it is quite safe to delete a commit record.
It is not a good idea to delete a Commit record while it is still in the wait state,
thoug h , sin ce som e computation may still refer to the commit record through the
possibility mechanis m . That computation may yet create new tokens that depend
on the possibility for realization.

The key issues in imp lementing a deletion mechanism for possibilities are:

1. It must be possible to detect or create the situation that
no token exists that has a reference to a particular
commit record.

2. Since computations may refer to commit records
throug h possibilities , t he use of possibilities that refer to
deleted commit records must be prevented. -

It is extremely dangerous to delete a commit record that has not had its state
encached in all of the tokens referring to it. The result of such a deletion would
be to make all such tokens permanently inaccessible, thus blocking read operations
on the known histories containing those tokens. ConsequentLy, any deletion
algorith m should err only by not deleting unneeded commit records, never by
deleting needed commit records.

L~~~ 

119 .



______ -

Because of the modularity of programs, at the time a possibility is
comnpleted the progra m doing the comnp leting may not be aware of the entire set
of references to the commit record that have been generated by operations
invoked in the possibility. For this reason , an explicit delete-commit-record
operation that can be used by application programs is not a reasonable solution.
Even if the program could fi gure out the set of references to the commit record
that exist in objects , the possibility of programming errors in using the explicit
deletion would argue against such a strategy, the cost is quite high if such a
mistake is made.

A commit record must thus contain enough information to allow
determination of when it is safe to delete the commit record. Then the site
containing the commnit record can be responsible for ensuring that the commit
record is deleted only when no references to it exist in tokens. If the commit
record site behaves imnproper lv, deleting it even when the site k nows that
ref erences exist , tokens depending on the comnmnit record will become permanently
locked up. For this reason , a basic tenet of the system is that any site creating a
token um ust trust that the site implementing the commit record associated with the
token does so correctly. If a non-trustworthy site is proposed as the home for a
com mit record , the token may simnp ly not be created , and an error response be
generated.

When a token is created , it is necessary to know that the commit record on -

which it is to depend (a) still exists , and (b) is not completed or aborted . To
insure (a) and (b). the site creating the token must first inquire of the commit
record its state. If either condition is not satisfied , the token is not created , and
an error is returned. Since a message exchange with the commit record is alread y
needed , we can use the mnessage exchange to tell the commit record that a token
referring to the comnmit record is about to be created. Thus, when a commit
record receives such a request , it can record the nam e of the token (object name
together with pseudo-time it is valid from).

It is not too difficult for a commit record to obtain the list of all tokens
that depend on it. To t.se the List , the commit record must be aware when a
token on the list no longer depends on it. This can happen three ways.

- 120 - 



- -

1. A token depending on the commit record successfully
encaches the state of the commit record.

2. A token depending on the commit record is deleted.

3. A token listed as depending on the commit record was
in fact never created (the list is formed before tokens
are created , so a failure after a token was entered on
the list could prevent the creation of the token).

~Vhen a token encaches the commit record state or is deleted , a message can be
sent to the comnmit record indicating that the reference is deleted. However , a
failure in the sending of this message would result in not deleting the commit
record even thoug h it is deletable. Consequentl y, the primary means of checking
the deletab ility of the comnmit record is by polling from the commit record. The
comnmit record , once it reaches a final state can poll the objects named in its
dependency list.

A trick that can he used is to encode an aborted commit record by
im mediatel y deleting it. Any reques t for the state of the commit record after it is
deleted can be answered by saying “no such commit record exists.” If the request
was fromn a token , it knows that the token was not completed , and since commit
records in the wait state are not deleted , it must be aborted. However if the
request for the comnmit record comes as a result of an attempt to create a token,
the token will not be created.

The mnessages between tokens and comnmit records are thus the following.

T->CR create-ref(CR-name , token-name): query to commit
record whether token referring to the commit record
mnay be created. CR-name is the name of the commit
record queried , while token-name is the name to be used
to refer to the token.

CR->T permit-create(CR-name , token-name , ok?): response
to create-ref. If ok? is yes, then the commit record was
in the wait state, and an entry was added to the list of
tokens referring to the commit record. Otherwise , the
commit record was in either the complete or aborted
states. A deleted commit record also returns a U N

- 121 - 

- - — - --- - -~~~~ ~—.---- ~~- - ~~ ~~~ - .4



response. If no response is received , the create-ref may
he retra n smnitted.

T->CR test(CR-name , token-name): message that is sent by
a site containing a token to get the state of a commit
record, in order to decide whether the token value can
be returned as the result of a read or not.

CR->T state(CR-name , token- name , 5): sent either in
response to a test() or when it is desired to delete the
commit record after it has been completed. In the case
of a deleted or aborted commnit record , s is “ b o t d
If the state of the com mit record is complete . then s is
“complete”. If the state is waiting, no state(s) response
is generated.

T->CR no-ref(toke n-narne): sent when a state(”complete”)
message is received , once the token encaches the fact
that the comnmit record is complete or immediatel y if
the token has alread y been deleted (see chapter six for
details about deletion of tokens). The commit-record
deletes the token named token-name from its list of
tokens referring to the com m it record.

The no-ref message allows the deletion of com mit records. All of the other
messages are needed already for the function of commit records, independently
from kktion . Once a comn mit record enters the complete state , it immuediatel y
starts p ol l imig the dependent tokens by sending state(”complete”) messages to all
the tokens on its list , until such tokens are all removed from the list by
no -ref (to ken) messages. Once such tokens are all removed , the commit record can
be d eleted. A nice proper ty of this scheme is that it reduces delay in encaching
the state of commit records into tokens, since an immediate attempt is made to
broadcast the com rm mni t record state to all dependent tokens.

Mu lti-site possibilities can he managed by a m odification of the same
mechanism. However , individual commit records making up the possibility cannot
be deleted until  the possibility as a whole is aborted , or unt il the possibility is
co m p leted (as a whole) and that fact is encached in all tokens referring to the
po csihili ty . The fact that the possibility as a whole is aborted or completed is
nor mmial l y dete cted by some token as the result of a number of messages from
individual voters specif y ing their state. The token will then encache the state of

- 122 -

-4



the i,ossibility. In the single commit record implementation , the token would
respond to the state() request with a no-ref() request to signal that no reference
remnained to the comnmnit record from the token. In the single commit record case,
the mio-ref() request is not needed if the state of the possibility is aborted , since
the com mit record could he imnmnediate l y deleted no matter how many references
existed to it. However, since the token is the only entity with knowledge about
the state of the possibility as a whole , the token must initiate the deletion of the
commit record.

Consequentl y, in the m ultip le commnit record imnplementation , a new request
is required -- the overa ll-state(CR-name , token-name , state) message, sent from the
token discovering the overall-state to at least pne of the commit records (it may
be sent to any numuber as an optimization). As a result of receiving an
overall-state mnessage , the commit record receiving it knows the overall state of the
possibilit y . This knowledge is sufficient to initiate deletion. It also can be used
to optimnize further  requests from tokens -- since the overall state is known at a
com m it record , that commit record can act in behalf of all other commit records
and unilaterall y specif y the state of the entire possibility. We can take advantage
of this optimnization by allowing two additional values to be returned by the
state() request from the commit record to the requesting token -- one meaning
“t he possibility is comp leted overal l” and the other meaning “the possibility is
aborted over all ” . These messages have the effect at the token of immediately
deciding the voting without further tall ying of votes from other voters. Once a
commit record k nows that the possibility is aborted , it can delete itself (thus
discovery of a deleted commit record in a possibility means that the possibility is
aborted overall). However , if the possibility is aborted , all tokens referring to the
possibilit y must he known to have encached the state of the possibility before any
of the commit records are deleted.

The set of tokens referring to commit records representing a possibility is
the union of the private lists m aintained by each individual commit record as the
result of “yes” permit-create responses, minus those tokens that have sent
overall- state() messages to one or more of the commit records. A relatively simple
al gorithm for determining when the commit records can be deleted is to have the
reci pient of an overall-state message poll all other comnmit records to determine
the entire set of tokens that have references to the possibility and to collect the
set of overal l-state mnessagcs so far received at other commit records. Then the

- 123 -

____



- - - - - --- ~~~-~~~~~~~~~~ --- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - . -- -~~~~~ -

~~~~~~~~~,

reci pient of the overal l-state message can poll all of the tokens by sending a
state(”overa ll comnp lete”) message to each token. In response, each site will send
ba ck an overall-stat e(” comnp lete”) message to confirm (note that this always has to
be sent , even if the token has been deleted) that the token has encached the state
and no longer will refer to the possibility. When the set of tokens referring to
the possibility has been determnine d to be emnpty in this manner , then the commit
record that determines it can signal all others to delete themselves and delete
itself. If any of the mnessages are lost at this point the others may not know to
delete th emu selve s. Since no tokens refe r to the comnmit records any more , the
comnm n it records would never be deleted.

To guarantee that all of the commit records are deleted eventually, we
need to have each commit record poll periodicall y to see what the state of the
other comnm iiit records making tip the same possibility is. For this purpose, we can
organize the comnniit records into a “ring ” so that each commit record knows
about a left and right neighbo r commit record. Periodically, each comnmit record
polls both its left and right neighbors with a test operation. If it gets an “overall
aborted” , or a “deleted ” response, it deletes itself. If it gets an overall completed”
response, then it marks itself as knowing the comnmit record is “overall completed”
as well. Any other response can be ignored.

As noted above, when a token is created , it sends out create-ref requests to
all of the voters. Each voter that receives such a request records the name of the
token that mi ght he created (the object id and the pseudo-time of creation) on a
private list to be used in the deletion of the commit record. The
permit -createCyes”) response is returned by a voter if the voter is still in the
waiting state , ot herwise a “no” response is sent. In order for a token to be
created , the possibility as a whole must be in the waiting state. Thus, a token

- 124 -

may be created only if rn ax (N-~+1,~) voters send back “yes” responses. t Each
successful token creation will thus result in at least max(N-K+ 1,~) entries among
the private lists of references mnaintained by the commit records making up the
possibility. Thus , when taking the union of the lists to determine the set of’
tokens referring to the possibility, one need only include those tokens included
mnax(N -K + I ,.) timn es.

5.8 Summary

In this chapter we have discussed the implementation of possibilities in
terms of com nmni t records. Two basic strateg ies have been described -- a single
c o m m i t record imp lemnentation and a multi ple commit record implementation.
The sing le commit record imnp lemnentation is much simnp ler and more efficient ,
though it (t oes have the drawback of decreasing the availability of tokens since
the availability of a token depends both on the availability of the site containing
the token amid the site containing the commit record (and the communications in
between). Althoug h the availability decrease due to use of a commit record can
he mmia de smaller by broadcasting its state once it changes and encaching the state
in the token , still , there is a window during which the availability of the token
depends on the availability of the comnmit record , and the size of this window
cannot he reduced.

The m ulti ple comn init record implementation increases the availability of the
possibility as a whole during that window , at the cost of a more expensive (in
terms of messages sent , storage, and CPU cycles) and more complicated
imnp lemnent ation. We conclude that the multi ple commit record implementation
should only be used when availability is mnore valuable than the costs of
imp lemn enting the multiple com m it record implemnentation. It is possible for both

1. Actuall y, if the permnit-crea t e request were muodified to indicate whether the
present state of the voter was completed , aborted , deleted , or waiting, then the
numbe r of responses needeJ to create could be somewhat reduced -- the token
need onl y prove that the possibility is not yet out of the waiting state. This
optimization is not important , since it only makes things better when the
possibility is in the middle of changing its state to either the completed or aborted
state overall , and the ability to more speedily create a token at the point after its
possibility is being forced into its final state is of dubious value at best.

- 125 -

__

- . - .~~- -~~~~~~~ - - - - - —- - .- --- — - - - - - - - . - - -. - - -— -- - --- . -- - - -.- -- —- - -—- — . - -- --- —

implemnemnat ions to coexist in the same system, with the multi ple commit record
imnpl einentat ion to be used onl y for those operations that deal with objects that
have hi gh availability requirements. It would be perfectly reasonable for a request
to create a token for an object to be rejected by the manager of the object on
the basis that the possibility controlling the Conversion of the token into a version
has not been implemented with sufficient availability guarantees.

1 - 126 -

H
~~~— -- -----‘~~------ —~~~~~~~~~~

.
- — - —------ — --- -  . _- —---— —.- —.- -- — - - — — --- —-- --—- -—- _____



Chapter Six

Implementation of Objects: Known Histories, Versions, etc.

This chapter com pletes the description of imnp lementation of the system. In
chapter three , the behavior of objects was described in terms of known histories
that provide a mapp ing from pseudo-time to versions valid in particular
pseudo-timnes. Many issues that are imnportant in a practical implementation were
not discussed in chapter three , and will be discussed here. Some of the issues are:

* m aintenance of pseudo-time at muLti ple sites.

* mnaintaining the set of versions in the known history.

* creation and deletion of objects.

* storage reclamation of versions that are out-of-date.

* data objects that can have special implementations.

* copying versions of objects (encachement).

* handling related groimps of objects, by “paging.”

* reducing the likelihood of dynamic deadlock.

First , the relationship of pseudo-time to real time, and the mechanisms of
imnplemnentation of pseudo-timne will be explained. The next few issues have to do
with the representation and manipulation of objects at their home node. First a
set of mnech anismns are developed that can imnp lement what I call a cell data type,
or what might be also referred to as a mutable record type. This is a universal
data type , out of which any other type can be built. However, there are possible
better implementations for particular data types -- two of these types in particular
will be discussed , queues and accumulators. Finally, certain enhancements to the
mechanismn that can be used to optimize special performance problems are
discussed -- a space and delay problem due to computations dealing with many
small objects is solved by a grouping called “paging”, a delay problem when

- 1 7 .  

--



dealing with pr imaril y read-only data is solved by encachement of versions of
objects , and a delay problem when there are computations that manipulate the
samne objects close together in ti m e is ameliorated by an optional mechanism
called token reservations.

6.1 Representation of Pseudo-times and Pseudo-temporal Env ironments

In chapter three , we discussed the properties required of pseudo-times and
pseudo-te m poral enviro nmnents. Pseudo-times are values belonging to an ordered
set. Pseudo-te m poral environ m ents are objects that keep track of the progress of
a particular computat ion. We require that the pseudo-times used for updates
executed as part of two sequent ial steps in a computation be ordered , such that if
step A precedes step B. all pseudo-times used in A for updates precede all
pseudo-times used in B for updates. In other words, the pseudo-times given out by
the ~teSm iext operations executed on a pseudo-tem poral environment must be given
out in increasing order.

A pseudo-temporal environment essentially is a way of keeping track of the
largest pseudo-t ime used so far in its associated computation. The pteSnext
operation simply returns a still larger pseudo-time and changes the
pseudo-te m poral environ m ent to reflect the new largest pseudo-time used.

There is further structure to pseudo-time and pseudo-temnporal
environments , however , due to the existence of concurrent computations. We wish
to guarantee that  two concurrent updates to primitive objects do not execute in
the same pseudo-t ime , so that any two updates to the same object are totally
ordered. More strongl y, we wish to guarantee that the pseudo-times used for
updates in two independently executing (possibly concurrent) transactions are
ordered such that all pseudo-timnes used in one transaction follow all pseudo-times
used in the other.

At the top level , there are a set of concurrently executing computations
that are executing independently, that is, with no a prior relationship of’ the
ordering between steps in distinct computations. Each of .these computations has
its own pseudo-tem poral environ m ent from which it gets pseudo-times, by
pteScurrent and pteSnext , and pseudo-temporal environments in which to execute
multi-step transactions. For the moment , let us ignore the complication

- 128 -

- - _~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —— - - -~ -~~~~~ --—--~~- —



r

introduced by mnulti-step transactions , and think about a transaction as dealing
with two pseudo~-timnes, an input state reference which the transaction uses to read
all of inputs , and an output state reference which the transaction uses for all of
the updates it eventuall y makes. What we want is for a transaction executed in a
top-level pseudo-temnporal environment to be atomic with respect to all other
transactions -- that is. the pseudo-times between the input sta te and the output
state are not used for updates by any other transaction.

A top-level pseudo-temnpora l environment is a list of two integers, last-time
and pte id. Each top-level pseudo-temporal environment is assigned a unique value
of pte ld. The last-time field is used to guarantee that the pseudo-times resulting
from successive pteSnext operations in a computation are monotonically increasing.

Pseudo-timnes returned by pteSnext in a top-level environment are obtained
by reading a clock (about which mnore will be said later) , waiting until the clock
value is greater than the value of last-time , then updating last-time to the clock
value , and returning a top-level pseudo-time consisting of a list containing the new
last-time and the pte ld. The pteid guarantees that pseudo-times from pte$next
in different top-level pseudo-temporal environments are distinct.

In general , a pseudo-ti m e is represented by a list of integers. Two
pseudo-timnes are ordered by finding the first position in which the pseudo-times
diffe r (if the Lists are of different lengths, then the shorter list is thought of as
being extended with zeros to the length of the longer), and using the ordering of
the integers at the position of difference. Thus , for example , two pseudo-times
resu lting from different pseudo-tem poral environments by pte$next are ordered
f irst by the ti m es obtained from the clocks read , and if the times happen to be
equal , the tie is broken arbitraril y by using the ordering of pteids.

Now , how are pseudo-temporal environments derived from top-level
pseudo-temnporal environmnents? All pseudo-times obtained from such a derived
pseudo-temnporal environm ent m ust belong to one tick of the top-level clock. The
trick is to add “low order digits” to pseudo-time, such that the increases in
pseudo-tim es returned fro;n a derived pseudo-temporal environment are confined
to these “low order digits”. Thus, all the pseudo-times obtained by pteSnext and
pteScurrent from a pseudo-temporal environment derived using ptestransaction
from a top-level pseudo-temporal environment are four element lists, where the

- 129 - 

-- -:-~~~~~~~



~~—~~~~~- -  -~~~~~~~~~ - —~~~~~~~~ - - --— --— -~~~~~ - - - -- -~~~~~~~~~~~~ ------ - --- --~~— - -

first two elements are the samne for all such pseudo-times, and specify the “instant”
of top-level pseudo-ti m e. The third elemnents of successive pseudo-times derived in
this way are in increasing order. The fourth element is always zero for a
transaction pseudo-temporal environment , but in one of a set of parallel executions
resulting from executing pteSparaction , the fourth element uniquel y identifies the
particular derived pseudo-temporal environmnent.

A derived pseudo-temporal environment has three parts , last-time, pteld ,
and time-derived . The new field , time-derived , specifies the “instant” of
pseudo-time in which the comnput ation carried out in the derived pseudo-temporal
environ m ent executes. For a pseudo-temporal environment derived from a
top-level pseudo-temnporal environment , time-derived is a list of two integers. The
pteSnext operation works as before , but returns a value that consists of
time-derived concatenated with last-time and pteid.

We can handle any depth of derivation with this structure -- time-derived
just is a longer and longer list. To execute pteStransaction in some
pseudo-temporal environment , we get a new timne , L, larger than the last-time
field in the derived-fro m pte. The new pte is constructed by setting its last-time
field to L , its ptcid to zero, and making up a new derived- time by concatenating
the derived-time field of the derived-from pie with (L-1) and the pteld of the
derive d-fromn pte. The pteSp araction operation constructs the derived pte’s in a
simnilar way, such that the derived pte’s diffe r initiall y only in the pteld field.

As a practical mu atter , we can observe that individual steps in a
comnput aiion are unlikel y to execute mnore frequently than once every microsecond
or so. on today’s hardware , so a resolution of one microsecond on the integer
clock values is sufficient. Simnilarl y, it is unlikel y that pseudo-times referring to
the state of objects m ore than a few years in the past will be in use. So the
intege r clock timnes can easil y be encoded in a fixed 48-bit field , by storing the
time in mnicroseconds since som e fixed reference time, modulo 248. With the
exception of top-level pseudo-temnporal environments , the pteid field need be no
more than 8 bits or so to distinguish all of the parallel executions created by one
paract ion call. Top level computations can be uniquely identified by their time of
creation, which can again be encoded in 48 bits. So a pseudo-time could be easily
encoded in 96 + 56n bits where n is the number of levels of derivation. In a
systemn that did not make use of derived levels, i.e. one that does not support the

- 130 -

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _



m odular composition of transactions , a fixed size 96-bit allocation would suffice.

In this representation, if we ignore the mnodulo-248 encoding (by limiting
the lifetime of the system to 248 mnicroseconds), we can think of pseudo-times as
simple binary fractions on the interval [0,1). Pseudo-temporal environments for
two transactions such that one is not derived from the other can be though of as
disjoint subintervals. Two parallel actions created by the same pteSparaction
operation can be each thought of as the union of disjoint subintervals
(corresponding to sub-transactions), such that the union of the parallel action ptes
is a subinterva l of the pte from which it was derived.

6.2 Maintaining the time - pseudo-time relationship

In conventional systems, operations make their changes always to the
“current ” state of the systemn; what is needed is to ensure that a notion of the
current state be embodied in the construction of NAMOS. In NAMOS, the
psetmdo -timnes obtained from top-level pseudo-temporal environments function as
the current state would in the mnore conventional system.

To achieve this behavior , a m echanism is needed for choosing the instant of
pseudo-tune in which a tran saction is executed that is later than the pseudo-times
of operations that execute before the current operation in real time. One possible
mechanis m would be to use a central service that gives out pseudo-time values in
increasing order -- essentially a central sequencer as defined by Reed and
Kanodia[Reedl8J. The problem with this approach is that the sequencer becomes
a bottleneck in the systemn , both in termns of performance , and in terms of hanging
up the system when it hecomnes inaccessible.

It is imnpor t ant to note that the mechanism that chooses pseudo-times need
not perfectl y follow the requirement that pseudo-times be given out in ascending
order -- regardless of the order in which they are chosen, they may actuall y be
used in a different order anyway. For example , transaction A may choose its
in stant of pseudo-time before transaction B does, but there may be some delay
that prevents A from actual ly completing its operation until after B is completed.
If A and B deal with disjoint sets of objects, this switching of execution order will
have no effect on the the transactions or correct operation of’ the system, while on
the other hand if some data is common to them both , the rules for educing

131 -



known histories will prevent inconsistent results, perhap s aborting A to insure
correctness. The system is thus highl y tolerant of pseudo-times for transactions
being chosen out of order.

Since it is m y  basic assum ption that transactions that conflict on their set
of objects to he manipulated will not be likely to happen close together in time, a
mech anismn that chooses output pseudo-times such that two such choices separated
widel y in real ti m e will give pseudo-times that are ordered in correspondence with
the real timne ordering will suffice. The easiest way to do this is to use
approxi m atel y synchronized clocks. By using a set of approximately synchronized
clocks, one per node, one can ensure the property that any time one gets a value
it will he greater than the values obtained at all other nodes at times sufficiently
far in the past.

As noted above , the clocks at different nodes need not be in perfect
synchron ~ . However , if one clock is consistentl y slow, it will have a serious effect
on the Per formance of operations originating at that node. If operations
originating at two different nodes encounter a conflict that causes one of them to
abort, the one whose clock is slow is the one that will be likel y to abort. If the
clock at a site is extremel y slow, it is possible that its updates will a/ways abort ,
resulting in effectivel y preventing that site from hav ing an effect.

Synchronizing the system clocks whenever they come up by using the
operator~s watch will usuall y get the system time accurate within a few minutes.
Depending upon the rate at which clocks drift , and the likelihood of two
operations runni n g within a few mninut es of each other attempting to update the
same data , this mnay be sufficient synchronization. By taking great care, but
without using particularl y expensive technology, clocks that are synchronized
within a few microseconds are possible, using broadcast signals such as those from
station WWV as a time standard , and reasonably stable clock circuits.

Given that we are using these techni ques, one can do still better by using a
techni que proposed by Lampors[Lamnport78j . Essentially the mechanism is this.
Whenever any message is sent between two nodes, it contains the time the
message was sent at the ori ginating node. The receiver of the message inspects
the t imn est amnp, and if the time is in fact greater than his own real time clock , one
of two things is wrong -- either the source’s clock is fast, or the receiver’s clock is

- 132 -



-~~~~ ‘I

slow , in either case by an amount at least as great as the difference between the
message t imnestamp and the receiver timnestamnp. Lamport proposes a strategy that
amnoun t s to adjusting the receiver ’s clock forward in such a case so that whenever
a mnessage is received that originated at time I, the receiver node’s clock is set to I
if it is not already greater than I. This has the effect of synchronizing each clock
to the rate of the fastest clock in the system.

There is a prohl emn with this approach , however. If some clock advances
much too fast , or if it is deliberatel y set far into the future , the node containing
the clock will get priority in all operations, and more importantly, be able to lock
out all updates from other nodes until those nodes advance their clocks. A
mnodified version of Lamnport ’s strategy, in which a mnessage that has a timestamp
very much greater than the receiver’s clock will not be processed , helps to solve
this prob lemn. This technique will also help to solve the problem of incorrectly set
clocks.

6.3 Known Histories

The known history is the mechanism that maintains the relationshi p
between versions and their pseudo-timne of validity. It is realized as a data
structure siored at the hom e of an object. The primary purpose of the data
structure is to keep track of the individual versions , tokens and aborted versions
associated with the object, and to change as operations are applied to the object.
lmnp iemnenta t ion of known histories is fairly straightforward , but it does involve
some sli ghtl y trick y details.

It is assumed , as a basis of robust operation , that once an operation on the
object has signalled its comnp let ion , that the changes made by that operation are
safel y stored away on stable storage. Thus, it is required that all of the versions,
tokens , and the known history data structure itself be stored on stable storage
before signalling the completion of an operation. Further , it is necessary that no
mnat ter where in the process of mani pulating the known history the home node
fails , the known history be left in a consistent state. The local locking mechanism
described in chapter two can be used to achieve this result , by keeping the
previous consistent state of the known history such that it is automatically
restored if the mani pulation fails while the know n history is locked.

- 133 -

I



_ _ _ _  -
~~~~~~

The known histors’ data structure in its simplest form consists of a list of
entries that contain a pointer to the representation of the value of a particular
version , the start and end pseudo-times that define its validity, a reference
(possibly to another node or set of nodes) to a commit record(or records) to
specify the possibility under which the version is created , and the cache for the

Fig. IL. Known History Entry

value
start PT
end PT

commit record
com mit state

previous — —+

comnmnit record’s state (see figure 11). These entries are threaded together as a
singly threaded list in reverse chronolog ical order of pseudo-times. This threading
ensures that it is easy to add a new entry in between any pair of elements by a
single atomni c pointer swap. The object itself is then represented by a cell in
stable storage . called the object

Fig. 12. Known History Representation

Object Header List of Known History Entries

header (see fi gure 12), that contains a pointer to the head of the list of known

- 134 -

- - . ~~~


~~~~~~~~~~~~~~~~~ -~~~ -- -~~~~ -~~~~~~~~ ~~~~~~~~~~-- -
~~

_ - -
~~~~~~~~~~~~~~

-
~~~~

history entries.

The two basic operations on the known history are the basic lookup
operation , which attempts to find the version of the object that corresponds to a
particular pseudo-timne, and the new-token operation , which attempts to make a
new token that is valid from a particular pseudo-time. I will consider these in
turn.

The looku p and new-token operations provide basic tools that allow the
creation of objects represented as cells that contain record values , where the value
of the cell is loaded to inspect the state of the object a~ J the value of the cell is
changed by a store operation to change the state of the object. While cells are in
a sense complete -- they cami be used to construct any kind of mutable object ,
there are somne kinds of objects that may be better represented in a slightly
different way, takin g direct advantage of the constraints provided by the
restriction on the kinds of operations allowed on an object. In this sense, what is
about to be described is a default imnp lemnentat ion strategy that is known to work
for all kinds of mn utab le objects. After this strategy is described , alternative
imnp lemne ntati on for special types of mnuta ble objects will be discussed , with the
exa mple being queues.

6.3.1 Lookup requests

The lookup operation is a search of the known history, looking for the
version or token whose start and end pseudo-times bracket the pseudo-time
searched for. If no such version or token exists , then the version or token whose
start time comes closest to , but does not come after , the specified pseudo-time is
found. If this process results in finding a token , then the state of the commit
record must be queried to deter m ine whether or not the token ’s data can be
returned as the version looked for. If a version is found in the search , then it is
returned. and its end time is extended , if necessary, to include the pseudo-time
specified in the search. Figure 13 illustrates the message passing structures that
can result fromn a lookup request.

- 135 -



- -  ___________

Fig. 13. Communication in a Lookup request

I ( I )
requestor object home

I
_ _ _ _  

1 
_ _ _ _(2) valu e _______________

(a) The version referred to is not a token.

r (1) lookup 
____________

I .

I 
requestor object home ommit recor

I ______ _________________ 

(3) state
- (4) valu e ________________ __________________

(h) The version referred to is a token.

The lookup operation is invoked as a response to a message from some
remote user . in mn a m iy cases, and ther e is a question with regard to how the
waiti ng for a response from a token should be managed. One possibility is that
the action on finding a token is tha t a query is sent from the home node to the
site of the com nm ni t record , and another mnessage is sent to the requesting node,
indicating that  it should try again later. This approach has the advantage that no
memnorv of the pending lookup operation need he maintaine d at the node
containing the object . Since no mu emory is allocated while waiting, if the response
is lost , there is noth ing to clean up. The requester recovers from an error by the
sim i mp le mech anism u of resending the request after a t imneout. At some time in the
future , a response will come fromn the comum it record, and if that response is that
t he com m it record is complete , then the token becomnes a version that can be read
later. This approach , while it simplifies recovery after a lost message, has the
drawba ck that  it may cause a rather large delay in the case where a token is
accessed soon after it is updated.

The other possible approach for handling the waiting is to send the query
to the token ’s c o mnmn i t record , hut not respond to the requesting node until the
c omimmi t record responds either positively or negatively. This mechanism requires
remembering the request at the homne of the object while waiting, to recall what
node the lookup request camne fromn , am id whit pseudo-time was specified as the

- 136 -



r - 

~~~~~~ 

_ . ~~ _;~~~~~~~
,-

~--- --- -

target of the lookup request. However , the advantage is that as soon as the state
of the commit record is known , it can he reflected back to the requester. There
is a disadvantage , however, in addition to the memory required , in that the
requester cannot distingu ish the delay due to querying a commit record from a
delay resulting because the original lookup request was lost before arriving at the
object ’s hom e node. -

Neither of these approaches is completel y satisfactory, but a combination
of the two can solve m ost of the prob lemns of each. Upon receiving a request to
lookup a specifir version , the hom e node responds to the requester imnmediate l y,
either with t he version , or with a message meaning “I have a token to check on.
If this latter m essage is sent, a query is sent to the token, and in volatile storage ,
an entry is m ade that reme m bers the request -- the requester node, the object , and
the pseudo-ti m e -- enabl ing the imnrnediate forwarding of the response from the
commit record hack to the requester. When the comnmit record’s response comes
back , t he volatile storage entry is used to find the particulars about the request ,
and if the token is now a version , the result of the lookup is forwarded to the
requester. If the token is aborted , then it is deleted from the known history, and
th e lookup operation is reinitiated , resulti ng in looking at the next previous entry
of the know n history.

As a general rule in the imp lementation of NAMOS, we may use volatile
storage to hold inf or m ation that allows early forwarding of messages, or for other
per formance enhancements that are not strict ly required for NAMOS to work
correctly.

The comnh ined approach has the advantage that if no error occurs, the
response to a lookup that encounters a token is just about as fast as possible. On
the other hand , because volatile storage is used to remnember the inf orm ation for
forwarding a request , there is no prob lemn in recovering the storage used to
rememnber the state of requests involving tokens , should some failure occur. Let’s
consider the three kinds of failure s that can occur. First , the commit record can
become unavailable , either through loss of the query to the commit record , the
loss of the response fromn the commit record , or loss of availability of the site
containing the commnit record. In this case , the requester node will get no
response other than possibl y the response that says the home has received the
request. After some period of time , the requester will time out and resend his

- 137 -

request. Then , the home node will again query the comnmit record , and the
request will proceed as before.

Second , the requester can fail after making its request. This can occur
either because the requester times out , or because of a crash. Eventuall y, the
home node may send a response to the requester , but there is no awaiting a reply
from n this response , so the requester cannot destroy the system by failing.

Third , the hom e node can fail , losing volatile storage. In this case, the
response from the comnm nit record may never get reflected back to the requester ,
who will then time out amid retry. The response from the query to the commit
record m a y com e back at a timne when it can be reflected in the state of the
token of interest -- this will onl y optim nize a retried request , or the response may
come back while the home node is inaccessible , in which case, the retried request
will perform as if the ori ginal request had not happened.

6.3.2 New-token requests

The m~ w-token request is mnu ch simpler than the lookup request, since the
new-token request does not depend on the state of tokens alread y in the known
history. The j~~rpose of the new-token request is to install a new token in the
known history to reflect a pending change to the object. Parameters to the
new-token request are the value of the new token , the commit record that
represents the possibility under which the token is created , and the pseudo-time at
which the new token is to be valid from. The basic action is to create (if
possible) a new entry in the known history whose start and end times are equal to
that specified in the new-token request.

As noted in the previous chapter , if the commit record must be reclaimed
once it is no longer needed , it is imnportant that before a token is placed in the
known history, the commit record know about the token that may depend on it.
Consequently , a ~reate-ref message is sent to the commit record , and when a
permit-create response is received , the fate of the token is decided. Figure 14
shows the pattern of messages that make up a new-token request.

- 138 -

__________ --~~~~~-- -

Fig. 14. New-token request processing
-

(1) new-token ‘request or

to ~en create

object home
• 3 p e~~~~~~~te

commit node

Again , to h ami dl e the problem of failures at the home node, the requester is
responsible for ultimately causing the retransmissions needed to handle lost
messages and unavailable nodes. While the create-ref message is outstanding, no
response is mna de to the reque ster. An entry in volatile storage is made to handle
the permit-create response when it comnes back. This entry contains the
paramneters of the new-token request.

The new-token request fails if there is alread y a version whose start and
end pseudo-times bracket the pseudo-timne the token is to be valid from. If such a
condition is detected when the token is to be created , then no change is made to
the known history, and am i error response is sent to the requester. This condition
cami he detected either before or after the create-ref/permit-create exchange.

As noted in chapter five , we need not be concerned if the new-token
processing fails after the create-ok message is sent; there is no problem if the
co mnm n it record has a reference to a nonexistent token , since the query from the
comnmni t record to the object will generate a no-ref response indicating that no
token exists that refers to the commit record .

If a token alread y exists that was created at the pseudo-time specified in
the new-token request , then it may be the case that an earlier attempt to perform
the new-token request failed after the token was entered into the known history,
hut before the response reached the requester; the requester may resend a
dup licate request to recover from such an error. It is also possible that the
new-token request was dup licated in the network. In either case, an error
response should not he returned. Instead, the name of the possibility specified in
the token ’s known history entry should be compared with the namne of the
possibility that is specified in the new-token request. If equal, then the message is
a dup licate , and a response indicating the request was successfully performed is
generated , since returning no response would not help the requester in the case of

- 139 -

_ _ _ _

a failure that prompted ret ry of his request. If the possibility is not the same,
then an error response should he generated , since this results from the case where
a requester (or mult i ple requesters) try to create the same version under different
possibilities -- a meaningless th imig to do.

Having discussed the mechan ismn for i m p lem enting the new-token request ,
let us contrast it with an alte rnative mnechanism n that can be used to achieve the
sam e effect , bi mt perhaps with fewer m essages and less delay. The observation
that mn ot i v ates the alterna t ive mnech aim ism is tha t a new token can never be created
before poll ing the comn mn it record to inform it that a possible reference is being
created. This require s a pair of mnessages, increasing the delay significantl y if the
commit record is not local to the node conta ining the object of the new-token
request. On e fewer message can be used by sending the new-token request
throug h the com u mn it record site on its way to the home of the object. When it
passes the co mmim it record , a reference to the new token that might be created is
entered onto the comm it record’s reference list , and a notation that is equivalent
to a create -ok message in infor m ation content would be added to the message
before forwarding it to the home of the object. The new token could then be
i mmediatel y added to the known history of the object, and the response could
then he sent to the requester. The triangular pattern of messages that results is
shown in fi gure 15.

Fig. 15. Alternative new-token processing

req uestor

(1) new-token & create-ref
3) token-created

object home ‘(2) new-token & permnit~ reate ommit recor

- 140 -

_ _ _ _ _ _ ~1l

-~~
-- — - - - -

~~~
- 

~~~~
- - -

~~~~~~

What is wrong with this approach? The basic problem is that it does not
admit of any case where the requester is unaware whether or not the request he is
sending involves the creation of a new token , or any case where the requester
cannot know the na m e of the new tokens that are being created. If objects are
i m p lemented by an interface that hides their internal representation , then very
comumonl y. the n amne used for the object by the requester will be quite different
from the namne(s) used for the object(s) that is(are) a part of the object’s
representation. So. for examnple , an individual’s bank balance may seem at some
level to he a single object that can be changed by certain requests. However,
internall y , the balance may consist of several lower level abstract types of objects
that are located at several nodes. A request to change the bank balance may
involve updates to objects the requester never even dreamed existed, so there is no
way to inform the commit record what objects may refer to it. In some
implemnentations, such a request could involve creation and modifications of new
objects, as well. These new objects would have to be created by the requester in
order to m ake sure the comnmnit record is properly informed .

There are , however , techni ques for reducing the number of individual
create-ref /permit-create exchanges that occur as part of a composite operation,
and thus reducing delay as well as message traffic. These techniques will be
discussed later as part of the section on paging ”.

6.4 Non-cell object types

So far , wish the new-token and lookup operations , we have the basic tools
for imp lem enting cells having load and store operations. Other types of objects,
such as stacks , qu eues, accum ulators , databases , etc. can be implemented using
just cells as their basic tool for achieving mutability, but it may be that more
optimnal rnechanismns can be used when the operations are more complex than
simnple load and store operations.

A general class of object types for which particularl y nice implementation
techni ques exist are called accumula or types. The best example of this kind of
object is an integer cell that has operations like adding a constant to the cell ,
subtracting a constant fromn the cell , and mnu ltip l ying the cell by a constant , none
of which return a value , and another operation to obtain the value of the cell.
Implementing such an object using the mechanism described so far requires that

- 141 -



the operations on an object be performed one at a time, in the order of the
pseudo-limes assigned to the operations. Thus a delayed request to perform an
operation on an object will be aborted if an operation at a greater pseudo-time
was already executed .

It is possible to imnp lemn ent the cell very efficientl y by storing just the
operation (add subtract or multipl y) and the constant operand in each entry of a
modified known history . A new token in the known history contains the
operation and operand with the pseudo-time at which the operation is to be
performed. That token becomes a version when its associated possibility is set to
the comup lete state. The actual comnputation of the values resulting from the
operations c~mn he deferred until  a value is actuall y requested. When the value of
the cell is requested . however , it will be necessary to actually perform the
computations requested by the operations whose pseudo-times precede the
pseu do-t imn e at which the value is requested. First , all tokens must be either
aborted or becom e versions. Then, starting with the oldest (in pseudo-time)
version whose va lue ha s not yet been determined , the values of all versions whose
range of validit y precede the pseudo-ti m e of the value request are computed.
Sin ce each version depends on the previous version , the range of validity of the
previous version mnu st be extended to close any gap in pseudo-time that may exist
bet~veen successive versions.

This imnp lem n en tas ion of the accumulator allows update operations to be
performed without aborting each other if they happen particularl y close together
in time. The onl y time at which the update operations will be aborted in this
scheme is when a value for the accumnu lator is desired. Then , any updates that
have not vet been communicated to the accumulator home, but whose
pseudo —t imii es precede that of the value request . will be aborted.

In general , an accum nulator type is a typ e of object for which there are one
or more operat ions that change the state of the object without returning any
results that  depend on either the old or new state of the object. The technique
just described can always be used to imu p lem nem i t such operations . The advantage is
alway s that the update operations do not delay or abort each other.
Disadvant ages include mnore com plex im plementations of such objects and longer
delay whenever am i operation whose result does depend on the state of the object
is executed.

- 142 -

- ---- —---—



- -  _—~~~ ~~~~~~~~~~~~~

The accumulator i m p lementation strategy is akin to a strategy often used
to process updates like deposits to bank accounts -- the strategy of batching
updates together and performing them during slack time on the system unless
there is an urgent need to determn ine the effect of the updates before such a slack
time (usually overni ght) comnes about. The strategy is also a special case of “lazy
evaluation ” or “call by need” . What NAMOS does is provide a framework for the
synchronization of updates to an object so that the arrival order of update
requests for an object is not significant in assuring that results are consistent.

An interesting variation on the accumulator type is exemplified by the
symbol table type . A symnbot table has three operations , insert , which adds a new
name and associated value to the symnbol table , delete, which removes the entry
corresponding to a name fromn the symbol table, and lookup, which returns the
value associated with a particular name. To m ake the symbol table into an
accumulator type , we mnust define the insert operation when the na m e already
exists in the sym bol table to change the associated value to the one specified in
the insert; if an error were signalled in this case, the insert operation would have
a result that depended on the state of the symbol table (error/no error).
Similarl y, a delete operation on a name that was not present would just return
with no error. The techniques used above could be used to implement the symbol
table as an accumulator; however , another technique could also be used.

Suppose we were to choose a tree representation for the symbol table, with
binary search to do the lookup. Imnag ine the symnbol table as always containing all
of the names ever to be used (inserted , looked-up, or deleted), and have a known
history for each na m e, associating with the (name,pseudo-time) pair a particular
value. Since we don’t know in advance all of the names that will be used , we
sim ply add to the symnbol table tree whenever a new name is looked up, inserted
or deleted. We need a way to symbolize in each known history that at a
particular pseudo-timne the nam e had no associated value (i.e., lookup signals an
error) . A reserved value is used. The insert , delete and lookup operations can be
implemented with this representation in a rather interesting way. All three

• operations begin by finding the known history associated with their name
paramneter (creating it if it doesn’t exist). The insert operation checks to make
sure that another value is not already associated with that name at the insert’s
pseudo-ti m e and if not, makes a new token with the new value (otherwise a
redefinition error , like the one for version...refSlookup, is signalled). The delete

- 143 -



- -~ --~ ---~ --~ - —- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

--

operation is similar , except that instead of a new value, the reserved value
indicating no value exists is to be placed in the known history. The lookup
operation checks to see if either a normal value or the reserved value is associated
with the pseudo-nine of the request (extending the range of validity of an earlier
value if necessary). If such a value exists, lookup returns it. If no version or
token exists for the pseudo-time of the lookup or any earlier pseudo-time, the
Lookup request creates a token with the reserved value as its value, and then
returns the fa ct that the n amne is undefined .

In this symbol table i m p lementation, the arrival ordering of requests
affecting different names is com pletely irrelevant. The only requests that can
abort each other are requests with the samne namne. Were our original mechanism,
or the accumulator enhancement just described , to be used , operations on
different names could cause each other to be aborted. To do a lookup or insert
in a binar y tree composed of individual record objects whose updates are
controlled by NAMOS. the states of all records above the record containing the
name referred to would have to be known , so operations on those names could be
interfered with.

A f inal example of interest is a FIFO queue type, with enqueue and
dequeue operations. We assume that the enqueue operation does not return a
value depending on the state of the queue (so a queue overflow error cannot be
part of the interface). The queue object is an accumulator because of the
enqueue operation , hut , as with the symbol table , there is a better implemnentation.

The il m ip ort a m it observation to mnake about the two queue operations is that
when the dequeue operation executed in pseudo-tim e t’ returns the value enqueued
in pseudo-time t , the only knowledge that can be deduced knowing the results of
dequeue operations thus far is the set of values enqueued in pseudo-times up to
and including t. Imi particular, nothing is known about enqueues that may be
executed between t and t’. This observation and the fact that values are returned
in the order enqueued lead to a nice imnp lemnentation. To represent the history of
enqucue operations we use the sam e structure as a known history, where each
known history entry has as its value part the value enqueued at its start
pseudo-t ime. The enqueue operation is performed by adding a new token to this
enquene known history in the usual fashion. A second known history represents
the history of’ dequeue operations. The values in this known history represent the

- 144-

• •

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~



pseudo-time at which the value dequened was enqueued . Thus, the dequeue at t’
above would result in adding an entry to the dequeue known history whose value
was t , and whose start pseudo-time was t’.

A dequeue operation works by first doing a lookup on the dequeue known
history, to obtain the pseudo-timne the value previousl y dequeued was enqueued.
Themi the enquetme known history is searched to find the entry with the earliest
pseudo-t imne after that pseudo-time. If no entry is thus found, the dequeue
operation returns an emnpty-queue error, recording the pseudo-time of the dequeue
as a new token in the dequeue known history. Otherwise , the entry found
contain s the value to be returned by the dequeue , and the pseudo-time at which it
is enqucued is recorded in the dequeue known history as a token with a start
pseudo-time equal to the pseudo-tim e of the dequeue request. Before returning,
the dequeue operation extends the range of validity of the preceding version in the
dequeue known history to close up any gap.

The resulting queue imple m entation , thoug h complex to describe, allows
emiqucue requests to arrive in quite a different order than the assigned
pseudo-timnes of the enqueues without aborting the enqueues. The queue type is
parti cula rl y nice in this respect.

Figure 16 illustrates the effect of a sequence of transactions on a particular
queue. For simplicity, the pseudo-t imnes in which the queue operations are
executed are rendered as a pair of integers. The first integer is the pseudo-time in
which the input state of the queue would be observed in ordinary imnplementations
of the queue operations , while the second is the pseudo-time associated with the
modification to be m ade to the queue. The enqueue and dequeue known histories
are shown after each operation. The changes are hi ghlighted by under lining. It is
fairly easy to see that the arr ival order of the queue operations is not severely
constrained -- only the final enqueue shown is aborted because it arrives Out of
order with respect to its pseudo-time of execution.

• Of our three examnples , the symbol table example has perhaps the largest
practical imnportance . since our example symbol table could be generalized to any

• associative lookup mechanism, for example a large relational database. All of the
optmiizations described in this section, however , rely on the fact that the obj ect

• im plementation can be exclusively locked for the duration of the execution of an

- 145 -



--- —

Fig. 16. History of several queue operations

Operation State (PT) Value Enqueue Known History
Input Output Dequeue Known History

Enqueue 10 11 A [iL l l .AJ0 ,0,-J [0.0,01
Enqueue 5 6 B [l l , l l , AJ 16,6,BJ0 .0,-J (0,0,0J
Emiqucue 20 21 C [2 L2 1 ,C1 [11 ,11 ,AJ (6,6,BJO,O,-)

10,0,0]
Dequeue 21 22 B [21 ,2 1,CJ (11 ,1 i ,A] (6,6,13) [0.5,-]

(22.22.61 [0,21,0]
Enqueue 24 25 D 125~25,D1 (2l,21,CI [ ll ,11,A] (6,6,B) [0,5,-)

(22,22,6) [0,21,01
Deqimeuc 25 26 A (25 ,25,D] (2 1,21,C] [11,1 1,A) (6,1C).B) [0,5.-)

126.26.111(22 ,25,6] [0,21,0]
Enqueue 7 8 E [25 ,25,D) [21,21,CJ [ll ,1l ,A) [6,l0,B] (0,5,-I

[26,26,11) 122 ,25,6) (0,21,0)
...fails, because there is alread y a version in the enqueue known history valid in 8.

Legend:
Known History Entry

(Start PT, End PT . Value]

operation . so these tricks can be appLied only to single node objects.

6.5 Creation and Deletion of Objects

So far , we haven’t yet discussed the mechanisms by which objects are
created and deleted. In the following discussion, I assume that objects are
explicitl y deleted , so that a means for detecting “dangling references” must be
prov ided. If somne sort of automnat ic deletion of objects based on knowing that
there will never be any references to an object after a particular pseudo-time can
be provided , then the mnechanismn could be sim plified by eliminating the need for
detecting references to an object after it is deleted . Such an automatic deletion
scheme would be hard to provide , however. First of all , NAMOS is intended to
be used in the ciccemitralized mnulti-no de environmnent described in chapter one. It
would be rather difficult , and certainly rather expensive to provide a distributed
garbage-collection algorithmn , although a scheme based on reference counts might

- 146 -

- • - •~~~~~~~~ - 
• •



r

be a good way to begin, were the second complication to be described not to
exist. Second , and perhaps more importantl y, the automatic deletion algorithm
must know, for each object reference to an object , what pseudo-times are to be
used with that reference in order to refe r to a particular version. By taking the
least pseudo-time, L, that can still be used (either because it is still to be past in
some executing comnputation ’s pseudo-temporal environment , or because it is stored
in some check point as suggested in chapter four) with any object reference, the
system could construct the transitive closure of the refers-to relation , where an
object refers to another if some version of the object valid after L refers to the
other object. All objects reachable from executing computations in this closure
caminot be deleted. Any components of the closure that are unconnected to
existing comuputatiom i s could be deleted. This strategy for garbage collection is
both difficult to implemnent in a distributed system, and does not guarantee to
find all deletable objects.

The imuport ant issue in creating and deleting objects is that the creation
and deletion of an object has an effect on the observable behavior of an object in
pseudo-time. Thus , the pseudo-ti mne of Creation of an object defines the earliest
pseudo-timne that the object can ever be assigned a value or read , while the
deletion pseudo-time defines the latest such pseudo-time. Thus the known history
as a whole mnu st keep track of these times , once they are known. Consequently,
the object header must specif y the creation and deletion pseudo-times, once they
are known.

It is possible that an object is created by a composite operation that later
fails. Consequently, t he creation mrnm st be mediated by a commit record. The
protocol mnech anismn for this is simn ple. Creation of an object occurs in a
particular state , by the creation of the first token of a known history. The first
token is special, in that it mnust be committed before any other operation on the
object can be per formed. To allow later tokens to be comnmnit ted would imnply
that the object existed , though it may never be created. This paradox can occur
only if there is a way that the new namne can be passed to another operation
before the current operation finishes -- impl ying two possibilities, one for the

• object that contains the namne , and one for the named object being created. Use
of mn i m l ti ple possibilities is not the normal mode of operation , and as noted in

• chapter four, mnay lead to peculiar results if we are not careful.

- 147 -

L ~~~~~~~~~~~~ •~~~ • •~~~~~~~~ - • ~~~~~~~~~~~ 
•
~~~~~~~~~~~~~~~~~

•
~~~~~~~~~~~~~~~~~~~~~~~



Thus , in addit ion to the creation pseudo-timn e, the object header must
contain a flag indicating whether the object was reall y created , This flag simply
encaches the commit state of the of the initial token. The encachement is
necessa ry to allow the im i iti al version to be eventuall y deleted , by the version
deletion mechanism to he discussed.

Deletion of an object does not imnp ly the freeing of storage of the object ,
since there i m ma y exist requests yet to happe n that will attempt to refer to versions
of the object that correspond to pseudo-times earlier than the pseudo-time
associated with deletion. If storage were immediately freed , then those requests
could not be satisfied , an unfortunate kind of behavior. Consequently, deletion
simn l) ly prevents operations at a later pseudo -timne from the deletion from being
able to access the object. A sel)arate mnechanismn for deletion of individual
versions wil l enable the eventual freeing of storage for the object.

Delet iomi of an object requires care in imnplemnen tation. Deletion of an
object basicall y consists of freezim ig the evolution of the known history at a
parti cular point - - however , the freezing must be mediated by a comnmit record.
Deletion thus marks the object header as “potentiall y deleted ,” and saves the
commit record pointer associated with the deletion and the pseudo-time of
deletion in the object header. Later attempts to access the known history that
would require that  the cursor be advanced are delayed until the deletion is known
to hav e happened (by the commit record entering the complete state) at which
time the requests are denied. If the deletion fails (its commit record goes to the
abort stale), accesses past the pseudo-time of attempted deletion are permitted.

As a result of the mno dificat iomis made to the object header to handle
creation and deletion , it now looks as shown in figure 17. The object header can
be freed once it is successfull y deleted by the above mechanism and all versions
have been also deleted by the mnechanism described in the following section.

6.6 Deletion of Object Versions

• Object versions mn ay be deleted formn the known history, thus reducing the
memory needed to retain the known history. Certain restrictions apply. The
main restriction is that once a version has existed for an object , no other version
can ever be mnade valid in the range of validity of the deleted version.

- 148 -

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  • •  • --~~~



-

Fig. 11. Object header , revised to handle creation and deletion

Object Header List of Known History Entries

delete PT
delete

Comnmnit rec.
delete state

Consequently, there must be somne way to represent in the known history the
ranges of validity of all versions that have ever existed.

An approach that saves somne of the storage associated with versions is to
delete oni y the value associated with a deleted version , while keeping the known
history entries and marking them as deleted. A deleted known history entry
would then just be place holder , prevent ing new tokens from being created there.
This approach is still inadequate because storage required for an object that can
be updated remains unbounded.

Essentially, the result of deleting versions is to save space at the cost of
possibly causing certain operations that are still looking into “old” states to fail.
Depending on the characteristics of use of data , some rather flexible strategies can
be used. For example , one may implement many of the objects in a traditional
large data base such that all versions and tokens (except the most recent version)
whose range of valid ity strictl y precedes N seconds before the current real time
are deleted. This strategy will work quite well if transactions against the data
base are executed in environm uents whose input state corresponds to the real time
the transaction began , and if all the transactions have a hi gh probability of
completing in less than N seconds.

I - _i: I _



p.— •

Imu p lemn en ting this strategy in the known history is quite simple. In the
object header the value N would be stored , and any attempt to create a new
token or lookup a value in a pseudo-time older than the current real time minus
N would he prevented , giving an error message indicating that the version referred
to no longe r can exist. Versions and tokens whose ranges of validity end before
the current real time minus N can he deleted when convenient. One other rule
m nust be app lied , in order to av oid losing the onl y version. The latest version and
tokens with later p seudo-t imn es may not be deleted , even if their ranges of validity
lie before the c~mrr en t real time minus N , unless the object has been deleted.
Thus ~vt ’ are assured that  an atte mpt to get the current value (the value using the
current  real time as the p seudo-tun e of reference) will always succeed unless the
object has been successfully de leted .

A m im ~ re restrictive strategy is to keep only the most recent version and
later tokens. In hi gh update tra ffic where occasionally there are long executing
transactions that  attempt to do a coherent query of many data base records, this
may prevent these large coherent qtmeri e s fr omn being very likely to succeed.
However , this strategy is logically equivalen t to a locking strategy, in that one is
onl~ guaranteed to he able to access the “current ” version. Except in abnormal
cases, only one t oken will exist , so this strategy can be viewed as a complete
methodology for the ( l istr ibut ed locking problem. As I noted in chapter four, I
amn aware of no other methodo logy that handles the problem of mnaintaining
consistency by locking in a distributed data base iii the ease where arbitrary
crashes and loss of messages can occur. Consequentl y, if the advantages of
m aim l t a ini n g mult i ple versions , and supporting interfaces that work in environments
that are unknown at desi gn ti mne , were not considered imnportan t , the methodology
of this thesis still can he of great hel p in designing distributed data bases.

In somt ie imnp le mnentatio ns , old vers ons m i ght never be deleted , but rather
would be moved to som e kind of write-once , low Cost backup storage. Not only
does this provide a comnp lete audit trail of changes to the data base, but , as noted
al ready in chapter four , it makes possible undoing later changes to parts of the
data base where such changes may have resulted from user error. One can simply
use the backup storage versions to retrieve old versions that are consistent in a
par ti cular  state , and install themn as the present state.

- 150 -

_ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Once a version has been copied to backup storage , it doesn’t reall y make
sense for its range of validity to be changed. Consequentl y, to implement this
strategy, the idea of using the value (real timne) -N as a boundary before which
tokens cannot he created and versions cannot have their ranges of validity
changed is still i m portant. This valu e is also used to select versions to move to
b ackup storage. Versions are written into backup storage with associated
infor matio n that  specifies the range of val idity. Since there may be holes between
the versions put in backup storage , at the timne each version is “frozen ” for backup
(wh en its end pseu do-timne is less than (real timne)-N), its range of validity is
extended to include any following hole , in order to make sure that a backup copy
exists for any pseudo -timne that lies in the range from creation to deletion.

If this strategy of keeping old versions in archival storage is used , it may be
inapprop riate to try to retrieve t hemn for ordinary accesses because of excessive
delay . Consequentl y , an appropriate mechanism must be used to distinguish
references that  are prepared to fetch from archival storage when necessary. A
mnech an is ,n that  is somnewha t general is to specify how long a request is to wait
for a value before it is declared inaccessible. The same mechanism would be
useful for controlling the wait for a value that is on a node currentl y inaccessible
du e to a system crash or comntnunications failure s,

It is important to note that appl ying these implementation techni que.s
• bli ndl y to the queue imp lementation described earli er will result in bad behavior.

The version deletion m i-mechanism for the know n history that represents the values
enqueued mnu st recognize that there are references in the known history containing
t he last dequeue pseudo-ti m e that will be left dangling if the (real time)-N
strategy is app li ed blindl y to the enqueued values known history. The proper
approach is to delete onl y those versions in the enqueued value known history that
are not referen ced by the last dequeue pseudo-time known history.

6.7 Small Objects and “Paging ”

An attractive way of ha ndling storage and encachement algor ithms for related
groups of sm all objects is “pag ing ”. Simply put , in pag ing a group of objects are
handled as a single object for the purposes of synchronization and storage
management (including encaching as noted in the previous section).

- 151 -



r • __

In the model proposed here , it is possible to reduce the overhead of storing
ranges of validity with object versions and keeping known histories by sharing
ranges of validity across multi ple objects in a “page.” This strategy is particularl y
invit ing from the space reduction viewpoint when comnposite operations that affect
most or all of the objects in a page are comnmon.

The basic muecha n ism is to mnaintain a known history for the page,
• consist i m m g of p ige rersions and p ace tokens. Every change to any object in the

page causes the gem m eration of a i,t ’w page version (although changes to multip le
objects in the page that  are effective in the samne output state with the same
commit record ~vi ll result in onl y one new page version -- how this is achieved is
described shortl y) . Every attempt to change an object will generate a new page
token unless the Correct one already exists.

The onl y trick is manag ing the page tokens such that mnu lti ple changes to
the page token are allowed. Our earlier protocol description for record objects
would suggest that the second atte m pt to update the page token would be ignored
as a dup li cate request. 1m m fact , we need a mnechanism that allows multi ple writes
to the same page tokem i if the writes are to disjoint objects. Basicall y, with the
page tok en , we m ust keep a list of the objects for which new tokens are created ,
to which objects new update requests should be treated as dup licate messages.
This list , like the pointer to the comnmnit record, is not needed after the page token
is comnm n itted.

Use of pages introduces somime restrictions. For example , creation , deletion,
and relocation of individual objects on a page seems to be possible, but allowing
for it greatl y complicates bookkeeping, and mnay not be worth the trouble to
imp lemnent. However, creating, deleting, and relocating all of the page’s objects as
a group is quite si m p le.

Perhaps the greatest advan tage of the “paging ” strategy in this system is
that in creating a page token and then doing all of the later changes , only one
create-ref /perm it-create exchange need be done. Thus, if a number of objects are
used to repr esent a particular abstraction that are usuall y all changed at the same
time , the mnessage overhead of communication with the commit record on each
new-token request will be drastical ly reduced .

- 152 -



6.8 Copying of Object Versions

Since object versions are i m mutable , they can be freel y copied to nodes
other than their hom e node. One might want to perform such a copy to optimize
perform u am ice , where an operat ion needs to refe r to a parti cular object quite
frequem m t ly , y et the object changes (generating a new version) only rarely. There
are , of course , other considerations that would argue against copying versions of
objects - - in particular, the info rmna t ion hidim ig afforded by keeping the
representation of the object om ml y known at its home node, and the protection
resulting fr omn that  infor m ation hiding that can restrict the ways in which the
object can he inspected. However , given that copying is possible for the particular
object , the system n keeps enough inf orm ation to allow the copying to take place.

We can view the copy ing of an object version as an encachemnent of the
object , since the home of the object still contains the master copy of the versions
of the object. When the object version is copied. it and the range of validity in
pseud o-timne of the object version are tr ansmnitted to the using system. At the
us ing svstemn , whenever a lookup request is requested for that object with a
pseudo-time in the range of validity known to the using system , the copied version
can satisfy the request.

A small detail of the mn echanismn for encachement may not be obvious,
though. In particular , object versions can be copied when the end of their range
of validity is unknown , either because there is a token following it that has not
been committed , or because no read has extended the range of validity up to the
ti m e of the next version. In either case , the full range of validity of the version is
not vet known at the timne of the copy.

If a lookup request for the object is not in the range of an encached
version , the encached version m i ght not be useless. By augmenting the protocol
for doing a rem mi ot e lookup, It is possible to extend the range of validity of the
encached version without the full cost of recopying the entire version. Basically,
we add to the remote lookup request a parameter specifying the final time of the
closest preceding encached version on the requesting site. The handler of the

• request m a y  then need onl y to shi p a special message that says, in effect , “your
version that  started at pseudo-t im e T is valid through time r. ” Although this
may not reduce delay, it certainly can help reduce the volume of network traffic.

- 153 -



1m m f act , this will be a very comumon case , where multipk read operations in
successively later pseudo-times are issued at a site. An optimization that will
reduce delay somnewhat for this case would be to remember at the home site the
locations of emmcached versions , to enable immediate transmission of the updated
range of validit y of encached versions. When new versions are created , the entire
version could he shi pped im i the sam e way to the cache site. When a site no
longer wishes to be a cache site , it should just forget about the encached object
versions . and respond to updates with a no-cache(object) message, signalling the
object hom ne to remn ove fr omn its mnen m ory the existence of the cache.

Some applications of the encaching strategy seem to be extre m ely useful.
For exa mnp le , the strategy seemus to be just what is needed for distributing new
versiom is of l)rogr~mm s. NAMOS is so easil y extended to include encachemnent
because the information needed to synchronize the encached copy with the master
copy is alread y needed for maintaining inter-object consistency and proper
synchronization.  Enc aching writab le data in a database using locking for
synchronizati on would not result in such a uniform mnechanism.

6.9 Re ducing the amount of work aborted

Whcn an operation is aborted due to the failure of a new-token request,
the oper at ion may have done a substantial amn ount of computation that will all
have to he redone. This wasted work results from the fact that tokens are not
created unt i l  it is known tha t  a miew value will be assigned to a particular object,
so another interfering computati on m a y  perform a read that extends the range of
validit y of an earlier version , pre venting the creation of the token.

If it were known in advance that a particular object will be updated by an
operation , then a much better strategy would be to have the operation reserve the
ri ght to create a token im m advance, and abort itself if that reservation cannot be
made. It is not always possible, of course , to know what will be updated by an
operation , so the case where such informnation is available should be treated as an
optional optimniz at ion. A mechanism to make such reservations is fairly easily
added to the system .

- 154 - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


A new kind of entity , a token reservation, is the tool by which such
reservations are m ade. A token reservation is represented by a known history
entry that looks just like a token , but which has no value. A token reservation
refers to a particula r commni t record, and mnay be deleted fromn the known history
at any time -- its purpose is to mark the fact that a token may be created at
so m e later ti m e, but it does not guarantee that the token can be created. Of
course, deleting the token reservation ri ght away without giving the operation a
chance to actual ly create the token obviates the purpose of token reservations.
The tim nes when a token reservation ought to be deleted are (a) when the comnmit
record enters either the aborted or completed state (if no token has been created
by then , the operation will not ever attempt to create a token), or (b) after a
sufficiently long timne - - the timneout can be set to be somne value greater than the
tim n eout on the commnit record , or (c) if the commit record has been deleted.
Case (h) ensures that the token reservation does not depend on the accessibility of
the comnmit record for its deletion , while case (c) ensures that the comnmit record
need not record references to it from token reservations, thus eliminating the need
for create-ref /permni t- crea t e exchanges at the ti m e token reservations are created.

A token reservat ion is converted into a token when a new-token request
specif y ing the samne pseudo-ti m e arrives at the home of the object. At that time ,
the create-ref /permit-create exchange of mnessages occurs. If a different commit
record than the one under which the token reservation was created is specified in
the new-token request , an error is signalled -- while this error signal is unnecessary
(the token reser vation is just an opt imnization), u sing different commit records is a
misuse of the mechanism.

The look up request is affected by the existence of token reservations as if
the token reservation were a token , with two differences. Before querying the
c o mm i m nit record , the local timneo ut on the token reservation is checked, and if
expired , the token reservation is deleted , and the lookup continues with the next
prev ious version or token. Also, if the result of the query is a state(”aborted”) or
a st ate(” comnp let e ”) mnessage , the token reservation is deleted. Thus , a reservation
is onl y held while the comnmnit record remains in the wait state.

• - 155 -

—~~~--~~~~ — - ~~- — ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ -

The use of token reservations can help reduce the likelihood of dynamic
deadloc k imi the system , as well. By making all of the token reservations as
quickl y as possible , the likelihood of hav ing two conflicting operations that run at
nearly the same time is reduced , by our assumption that conflicting operations are
rarel y close together in tune. An even m ore potent strategy that can be used to
pr event dynamic deadloc k would be to define an ordering of objects, and to ask
for the token reservations in all operations in a sequence that is a subsequence of
the order on all objects. As it does in the case where one is requesting locks, this
st rategy would guarantee that in any conflict situation , at least one operation
would be allowed to finish , ev entuall y breaking the dynamic deadlock.

I should reiterate here , however , that the use of token reservations is
entirely optional - - if they are used correctl y they will i m prove the performance of
individua l operations in some cases, perhaps at the cost of reducing the
per formance of other operations. To show how other operations could be
adversel y affected, consider the strategy of obtaining token reservations on all the
objects that an operation tnight want to updat e, rather than just the objects that
we ar e sure will he updated. Eventually, those objects that are not updated by
the operation will delete the token reser vations either due to timeout or detecting
the conip letion of the operation ’s associated commit record . However , while the
token reservations are around , they will slow down responses to lookups by forcing
them to go look at comn mni t records. Consequentl y, other operations that are later
in pseudo-time than the one creating the token reservations may be delayed
excessively as a result. Judicious use of token reservat ions is thus very important
to good per formnance.

6.10 Summary

In this rather long chapter , a number of mechanisms involved in the
impkmnen tat ion of objects in the system have been discussed. The really
imnport ant part of the system design is in the management of clocks and the
generation of pseudo-time , and in the management of the known histories of
objects. Although we have seen a numnber of optional enhancements, such as the
encachemnent of objects, special representations for special types, and token

• reservations , the systemn without optimizations is sufficient by itself to solve a wide
• range of synchronization prob lemns.

- 156 -

-4

r - -

Chapter Seven

Conclusions and Directions

In this dissertation, I have developed a new approach to the synchronization
of accesses to shared data. In this chapter the key concepts, the range of
appli cability, and the lim itations of the new approach are explored. Then possible
directions for further developmnent of this approach are suggested --

implementation , mnodification to remnove limitations , and specialization of the
approach for particular applications.

7.1 Concepts

There are several key concepts that I would like to reemphasize by listing
them u here. They include a new view of the semnantics of updates , the notion that
abstractions must be preserved properl y in an environment where concurrency,
sharing , and failures are unavoidable , the cLose tie between synchronization and
error recovery, and the idea of defining a system-wide state without reference to
an instantaneous snapshot of the entire system.

7.1.1 Synchronization of shared data

In the thesis we have concentrated our attention on one aspect of
synchronization -- control of simultaneous accesses to shared data objects. It has
been traditional to treat such synchronization with the same ideas and mechanisms
as other problems of synchronization , such as disk queue scheduling and
interprocess control communication ,1 even though synchronization of access to
data is a very simnp le and imnp ort ant case. The power of synchronization

1. Interprocess control comnmunicat ion (IPCC) is a generic term for mechanisms
that allow one process to block itself when it has nothing to do, and be awakened
by another process when something for it to do arrives. Althoug h IPCC has been
used in the i m plementation of mechanisms for controlling access to shared data ,
IPCC is mnore generall y useful for controlling the t imning of processes that must
synchrom iize themnse lves for other reasons.

- 157 -

L -.~~~--~~~~~~~~~~~ • • ~~- - • • •~~~~~~~~
. •~~~~~~~

-- - - - - - - • -- - .

mechanisms has been measured by determining what “synchronization pro blems”
they can and cannot solve , where such problems usually have little to do with the
very im portant case of access to data.

As we have seen , by treatin g data synchronization alone , we need not be so
concerned about the timing of programns accessing data , but rather we concern
ourselves svith the more relevant requirement that the program access the correct
states of its data. The division of synchronization into two classes, data access
synchronization and process (timing) synchronization, seems to be a useful and
powerful division.

7.1.2 New update semantics

Our view that a data object really stands for a sequence of states and that
accesses to the object (both read-onl y and update) are operations on that sequence
is rather powerful. By defining a naming mechanism for selecting the point in the
sequence of states to he operated on and allowing programs to use that namning
mechan ism n , programs accessing shared objects can be defined without need to
consider their t imning. Since timing of programs is one of the attributes of
program execution over which the designer has very little control , reducing the
importance of timing in understan ding the execution of programs simplifies the
task of the designer.

This view has also facilitated the ability to manage “out of date” states of
data objects. By keep ing states of a data object older than the current one, the
system im c1m allow more concurrency. In particular , it is not necessary for read
accesses to an object to lock out subsequent writes. In a geographicall y
distr ibuted system , where delays are large, this locking introduces delay, since any
write must delay sufficientl y to determine that no remote computation has
requested a read prior to the write. But since “out of date” versions are kept for
a period of timne , writes can be begun with confidence that read req uests for an
earlier version will not be interfered with.

The ability to manage “out of date ” states of objects also enables the
encachem nent of objects to support frequent remnote reading that was described in
chapter six , and the restoration of old system states for the purpose of recovering
from severe errors.

- 158 -

• - - -V -~ -

It is interesting to note that our semantics is somewhere between the
traditional von Neumann mnachine semantics based on changeable memory
locations and m ore recent “side-effect free” mnachine semantics best illustrated by 11
dataflow machine architectur c[Dennisl5]. Although the objects implemented in
NAMOS can be updated , they are built on a substructure consisting of immutable
object i~ersions that correspond to the structured objects available in a dataflow
mnachim ie. The imnmnutabi l ity of object versions leads to the samne advantage that is
accrued fromn im m utability of objects in a dataf low architecture , that the timing
of concurrent programs is not important to the behavior of the program.
However , by supporting an up date semantics on top of the imm utable versions, we
support a user view of the system as being an extensive memory with state
changing operations, a view that seems to be better for inter-user sharing. Thus
we m a y have gotten the “best of both worlds. ”

7.1.3 Abstraction and parallelism

Updates to objects shared amnong parallel computations make it very
difficult to construct programs out of modular parts. In non-parallel
comnputattons , one can view the execution of a subroutine as an operation whose
internal im up lemnentation is largel y invisible to its user. For example , a sorting
routine can he thoug ht of in terms of a rather simple specification that relates the
states of its input to the ultimate outputs. The implementation of a sorting
routine , on the other hand , can vary quite a bit while satisf y ing the same
specifi ca tion.

In the case of parallel execution on shared data (unavoidable in the case of
a mn u l t i- u ser database or file system), the semantics of a routine depends on the
pattern of accesses made by the implementation of the routine , so it is possible to
“look i nside ” an interface at the imp lementation by executing the routine in
parallel with other computations that access the same data objects. Thus in the
parallel execution of computations , the ability to construct abstract operations is
severel y curtailed.

A partia l solution to the problemn of constructing abstract operations in a
parallel execution environment is to add explicit locking to the language, so that a
routine can gain exclusive control of a set of resources to inhibit concurrent access
to the data it accesses. The solution is only partial , however, since it becomes

- 159 -

— -~

necessary to include in the interface specification of a module what locks it needs
set in order to use that module as part of a larger module that also needs to set
locks. By exposing the set of resources that must be locked outside the module,
the implementation is exposed in a slightl y different way -- one need not try
running comnput ations in parallel to discover the imnp lementation , since much of
the structure of the imp lemnentation may be deduced from the resources it
accesses.

Our thesis is that it is both possible and extremel y desirable to have system
support for modules whose behavior does not depend on the behavior of programs
accessing the same data concurrently. The designer and user of such modules
need not concern themselves with parallel execution , locking, etc. in order to make
sure the m oduLes work as expected. In particular , the transaction pseudo-temporal
environment and the dependent possibility support the imp lementation of such
modules.

Preserving the degree of abstraction afforded by a module interface has
required that Certain problems be solved that are normally very difficult to solve
in a sy stemn that uses locking for synchronization. In particular , our approach to
synchronization can hand le cases where the data objects to be accessed by an
operation ire dependent on the input values to the operation . Predicate locking,
proposed by Eswaran, et’ aI .[Eswar an76J , attacks a similar problem , but still
requires some care in specifying the class of objects that a program may access.

7.1.4 Synchronization and Recovery from Failure s

In a system designed to be used in building mnodular abstract operations,
both the S nchron ization and recovery mechanisms must be designed to preserve
the degree of abstraction provided by a module interface. Failures during the
execution of a mnodu le may cause its imnplemnentation to become important to the
users of the mnodule , while failur e of a module being used to implement part of a
larger transa ction must be reflected to the other parts of the larger transaction --
undoing any changes that mnay have alread y been made if the failure requires that
the larger transaction be aborted.

- 160 -

_ _ _ --~~—-•~~~~- •:

r

Since both failure mnanagemnent and synchronization are tightly tied to the
construction of abstractions , they mnust be carefull y designed to work together.
Most of the at t emnpts to solve the problems of synchronization assume that the
problems of assuring reliability are solved at a lower level. While it is possible
with enough redundancy to construct a system whose reliability is high enough
that the likelihood of hardware failures can be ignored , it may be that the cost of
achieving reliable systems in this way is far higher than the cost of achieving
reliabilit y given knowled ge about which parts of the imnp lemnentation of the system
must he reliable. Sin ce we must alread y cope with unexpected loss of availability
of objects am id computational resources in a decentralized system (because of
aut onomy), handling failures of the comnmnunicat ions system in the same way may
achieve a cost saving by remnoving the need for a separate set of mechanisms to
handle hardware failures.

7.1.5 System-wide state defined independent of time

By defining a correspondence between the states of individual objects , we
have defined a concept of a system-wide state , such that the systemn goes through
a sequence of such states as a result of comnputations executing in the system.
The mechanism for defining the correspondence . using pseudo-time , has the
advantage that it is onl y loosely coupled with the passage of timne. A definition
of sy ste m state that uses time to relate states of individual objects runs into
serious problems for several reasons. First , there is the problem that in a
geogra phicall y distributed system , such a definition of a system state requires that
to observe all the objects in a particular ~tat e, one m ust take a snapshot of all of
t he objects at an instant of t i mn e ~~

- sinc~ commnunica t ion delays in such a system
mna ke prec isely simultaneous observations practica lly impossible, system states thus
defined are not observable inside the systemn .

A second problemu is that the running of transactions concurrentl y in the
sy stem makes it very unlikel y that the system state at any particu lar instant of
time is Consistent with somne external ordering of actions. The result of this is
that it is very hard to use that notion of systemn state in describing the behavior
of programns to ensure that the system’s behavior mnatches some external
specification of correct operation. Such a definition of system state has led to the
uns atis fying notion of defining a systemn as operating correctly in terms of its
behavior after some “quiescing ” action. For example , Thomas claims that his

- 161 -

r ~~~~~~~~~~~~~~~~

-

~~~~~

-

~~~~~~~~~~~~~~~~~~~~~~~

- -

~~~~

algorithm for synchronizing updates guarantees that if new requests to update are
halted (the systemn is quiesced), the system will eventually stop in a state where all
updates have been processed, in the proper order[Thomnasl6j . The problemn with
such a specification of a systemn is that the systemn may never be thus quiesced (an
airlin e reservation system , for examp le , mnay always have several uncompleted seat
reservation transactions for different fli ghts in progress). In fact , a system may
satisf y su ch a specification by entering a correct state only when the system is
quiesced , hut nonetheless processing all requests incorrectl y!

Our definition of systemn state , since it is independent of ti m e, allowed the
definition of consistent systemn-wide states without having to talk about quiescing
the sy stemn. A transaction in progress in the system does not preclude an
observable consistent state within NAMOS, since the transaction does not destroy
the existing consistent state it observes as its input state , it only Creates a new ,
presum nably consistent state.

7.2 App licabil i ty of the concepts

In chapter one, we em phasized that the primnary application of the ideas in
the thesis is to the problems of synchronization and failure management in a
decentralized , possibly geograp hically distributed , computer system comnposed of
multi ple , separatel y mnanaged nodes sharing informnation via a communications
network. Certainl y the decentralized system application was the primary
m otivation for our work , hut the ideas do seemn to have wider applicability.

Our approach to synchronization has been mnotivated by a particular desire
to support mnodu lar design and imn p lementation of pr ogramns , and we believe our
approach is a quite effective way to mnanage synchronization and error recovery
pr ohi emmis in a system where program development is decentralized to the point
that there is no one central designer who specifies the set of atomic transactions
that the systelli will support. Even if the systemn were entirel y confined within a
sing le processor system u . using shared secondary mn em n or y for the shared objects of
interest , NAMOS seemns to be a good way to support modular design. In such an
app li cation of NAMOS, the costs of mnanag ing individual object known histories ,
both in tern is of space and timne, can be controlled somewhat by an
implementation specific to the sing le systemn case. Space can be conserved by
storing only the most current version and at most one token for each object

- 162 -

_ _ _ _ _ _ _ _  _ _  _ _ _  - --- .--~~~~ -~~ -.~ -~~~~~~~~



(requiring that an update arriving at an object with a token outstanding wait until
the token is turned into a version or aborted). In the sing le system case, the
com plex protocols described in chapter five for recovering the storage for cotnmnit
records need not he used because we can assume that the whole system is either
up or down -- thus the comm it record can imnmnedia tely signal all tokens referring
to it when it is completed , aborted or timed out. Similarl y, in a sing le system, the
system usuall y knows when a process is terminated due to some error , so in
norm al failures the aborting of the commnit record(s) associated with a
computation can be mnade to happen sooner by reflecting the failure immnediate l y.

The mechanisms of NAMOS can also be app lied to solve synchronization
problems where none of the problems of m odular system construction exist. An
examnp le would he a “garden variety ” database system used to support some sort of
recordkeep ing application such as accounting, payroll , inventory control, etc. In
such app lications , usually the whole systemn can be designed (by a “databa se
adm i nistrator ”), put into use , and will rem ain virtuall y unchanged for quite a long
time. We certainl y don ’t need the ability to add new transactions dynamically to
the set of transactio n s that  can be executed. The advantages of NAMOS over
other methods in these app li cations are that geograp hicall y dist r ibuted data can be
properl y syn chronized , that both synchronization and error recovery do not
reqtmire as large a design effort as would be needed if exp licit locking and
check poi nting had to be designed in , and that later modifications to add features
to the system , if needed , will not require existing synchronization code (probably
there is some such code in each m odule of the system) to be modified.

For such a database system , NAMOS can be simp lified to reduce its
complexity. Since support for mnodules as abstract operations is not needed in this
app lication , dependent possibilities are unnecessary, and all transactions are created
at the top level. If the database system is not distributed , then the optimizations
noted above for the sing le-processor case can be applied.

7.3 Limitat ions

We cannot cla imu, however , that the ideas described here are universall y
practical. ~Ve have made certain basic assumptions about the environment in
which NAMOS is to be used , and where those assumptions are violated , NAMOS
works poorly, i f at all.

- 163 -



A key assum imption we have mnade is that the likelihood of two transactions
concurrentl y accessing the samne data is reasonabl y smna ll . If th is assumption is not
true , then transa ctions that read values out of objects will with high frequency
cause transactions that performn updates on the sam e objects to be aborted.
Althoug h our assumnption is true in many systemns that all ow sharing of objects ,
some systems do m anage such objects that have hi gh rates of contention; those
systems mn ay need additional mechan ismns to support their concurrency control.
Essentiall y , in the case of hi gh contention , a more efficient way to do business is
to schedule conflicting transactions so that one transaction completes its accesses
to the shared data before any later ones are allowed to proceed. NAMOS’s
mne ch an ism n of token reservations , described in chapter six , serves as a kind of
sch e d t m l im i g mu ech ani sm , hut since it requires reservations to be made for all objects
to he touched it may he quite costl y in termns of comnmnunications overhead. An
alternative , muore centralized , scheduler could he designed that ordered transactions
based on hi gh-lev el knowledge about whi ch transactions are likel y to conflict. Of
course, such a scheduler must he designed to deal with failure of a transaction , so
t hat such a failure does not pre~’ent later transactions from being scheduled.

The mechanisms of NAMOS will still be useful in a system with such a
centra l scheduler. NAMOS ’s recovery m echanisms still provide a good way to deal
with failure of transactions. The synchronization mechanisms of NAMOS can be
thou ght of as dynamic verification that proper synchronization is being achieved
by the central scheduler , such that if the central scheduler erroneously schedules
two transactions acting on the samne data at the same time , the NAMOS
mne cha n ism s will ensure consistenc y or abort one or both of the transactions. In
fact , this suggests an interesting strategy for the design of a central scheduler.
Instead of being conservative , alway s deferring one transaction whenever there is
the slig htest chan ce that two transactions will conflict , the centr al sched uler can
be more optimistic , and onl y defer a transa ction when it has a high chance of
confl ict ing with one alread y executing. The basic mechanisms of NAMOS then
ensure prope r synchronization and recovery, while the central scheduler optimizes
per formance , increasing the chances of proper termnination of transactions.

- 164 -



7.4 Directions for further  research

So far , we have seen a relativel y complete design for a mechanism to
handle the problems of synchronizing and manag ing failures of accesses to objects.
It is , however , onl y a paper design , so many of the aspects of its performance and
usabilit y can be characterized onl y qua litativel y. Constructing a prototype
inip lemnentation for the purpose of evaluating its imnp lemnentabi lity, per formnance ,
and usability seems to be the obvious next step.

The full NAMOS system need not be constructed for some of its attributes
to be evaluated. A first step would be to replace the transaction synchronization
and recovery mechanis m s of som e existing database system with the
synchronization and recovery mechanism s of NAMOS. The objects of the system
would be the data records or relation tup les maintained by the data management
system. The transa ctions of the data management systemn would be implemnented
as comnputa t io rm s executing in a transaction pseud o-temnporal environment. This

serve as a test of the per formnance of NAMOS. An extension along this
dire ction would be to distribute the database (requiring a way to decide where a
particular record or t tmp le is located), so that communications failures , and perhaps
aut 000mny, can be incorporated into the substrate on which the NAMOS
mnechanis m s operate.

A test on an existing database system would not show the usability
afforded by NAMOS’s support of modular construction methodolog ies. To test
t hese features , a more interesting use of NAMOS would be required. One possible
application of NAMOS would be in the Construction of a decentralized network
of “personal comnpu t ers ” where a strong need to share permanentl y stored data is
needed. One kind of data that  mi ght be shared amnong such a set of comnputers
would he use ful user-written and m aintained programs , such as sophisticated
editors , comnp ilers , etc. Small databases , such as files of papers in progress (i.e.
jour nal articles or letters), ann otated bibliographies , etc., might also be structured
objects th .mt are shared. It is reasonable to assume that such shared objects will
occasionally be updated by the provider or users of the objects , so there will be
prc~blcms in manag ing the concurrent accesses to the objects that are likel y to
occur. The mech anism n s of NAMOS can be used to manage such sharing.

- 165 -



Another possible test of the ability to build m odular systems in NAMOS
would he to huild a continuall y mnodified database system (such as, for example , a
system like th at  the M.I.T. registrar uses to keep track of the subjects taken ,
grades . and other information it keeps about each student -- this system needs to
be changed regularly as the rules and structure of M.I.T. change) using NAMOS.
One could then see if the tools provided by NAMOS lead to a simplification of
the task of mnodif y ing t he system to incorporate new features.

A direction for exp lori ng the issues surrounding NAMO S that is more
specula iive is to incorporate the synchronization and failure recovery semnantics of
NAMOS directly in the computati onal model of some computer design. Such a
direction is not without precedent. Rande ll has explored a simnilar direction in
develop ing a hardwar e support for recovery blocks[Randell75], and numerous
hardware desi gns have incorporated synchronization mechanismns such as
sem aphores. The advantage of directly im plementing the NAMOS synchronization
and reliabilit y mechanisms in hardware is performnance. The algorithm that finds
the correct version of an object given a version reference composed of an object
identifier and pseudo-time should execute as fast as possible , sin ce it is used on
ev~ry access to an object. Similarl y, defining a new version must be as fast as
po~siI~le 1m m a distr ibuted system , where the timne to access an object is controlled
primari l y by com mi m n uni cation delay, accessing and up dating objects using the
m echanis m s of NAMOS may not be very costly, but using NAMOS inside a single
systemn for purel y local operations m i ght be rather costly if NAMOS is
imnp lem ent ed entirely in software. The attributes of NAMOS, particularly the
support of modular synchronizatio n and reliability, m ake it otherwise attractive
for synchroniz ation of accesses pur ely local to a sing le system. Incorporating the
basic operatio ns of NAMOS in a comnputer design , using special hardware designed
to optimize the naming of versions , would make NAMOS attractive in such a
case.

Other future research could he directed at rem oving the major limitation
of NAMOS -- that it can ’t handle a high degree of contention among the
transactions acting on a particular object. We have suggested above a strategy
th at  mixes together NAMOS and some sort of centralized transaction scheduling
disci pline. This approach must be exp lored in mnore detail to see if it does fulfill
its promise of supporting hi gh-contention situations. Another related idea that can

- 166 - 

- -——~~~---—- ~~~~~~ ~~-- -.-~~- . - -  -



be exp lored here is the idea suggested in chapter six of delay ing attempts to read
objects to decrease the likelihood of aborting an update not yet received.

- 167 - 

I
—T — —---- --— - — -  ~~~~~~~~~~~~~~~~



Appendix A

Analysis of Availability of Multi-site Possibility

To show that the mnult i-site possibility provides more accessibility than a
single site possibility, an anal ysis of the probability of availability is needed. Here
1 include an anal ysis based on som e simple , but reasonable assumptions about the
availabili ty of sites and reliability of messages. I lu m p site availabili ty and lost
message l)rohahihties together , and assume that all sites behave the same.

First , consider a test of the state of the whole commit record. If the test
does not mna ke a decision within r seconds, the commit record is considered to be
unavailable. Each voter site is assumed to behave similarly when its state is
pol led. pro~iding a response say ing whether the voter is complete or aborted
w ith m t i mm i e r w ith probability q. The value of q includes both the probability of
site inaccessib il ity amid the probabilities of transient loss of messages to and from
t he site.

When a complete or abort operation is attemnp ted , we assume that there is
no problem with interfer ence from local voter timeouts (we assume the probability
of this js neg li gible , because of the trick described above). If some individual site
does not acknowled ge an at t emnpt to complete or abort it within timne r ’, the
request ing site gives tip. The probability that a site does not process a complete
or abort sent to it within ti m e r ’ is p. The probability p again includes both the
pr obability of muessage loss and the probab ility of site failure or inaccessibility.

Finall y, we assumu e that the requesting site sends out the mnessages
sequentiall y , and m a y  fail in between any of the N messages. To characterize the
probability of failure , I assume that with probability 1-~ it will fail before sending
the kth message, given that it has sent the (k-1)st .  Thus we assume that the
numbe r of messages sent before a failure is represented by a geometric
distribution. The value of 4. will be quite close to 1 -- a site with mean time to
failure of one hour and which takes one thousand instructions to send a mnessage
at one mnicrosecond per instruction will have an ~ of about 0.9999997.

- 169 - [
~~~~~LTTII


• —

Now let us consider the problem of accessibility. What we want to know
is the likelihoo d that some atte m pt to test the state of a commit record will be
unable to decide the state of the commnit record within ti m e r. There are two
cases, depending on whether ther e was am i attempt to complete the commnit record
or not. I f a comnp lete was atte m pted , the probability that a tester will not be able
to decide we call

~cfa il ’ and if no complete was attempted , we call the probability
of not deciding P.1f.111. For a sing le-site commit record , ~~~~~~~~~~~~~ For a
mnul t i - site comm mmm ii t record , the situation is m ore comnplex .

“af ail for a multi-site com mit record is the easiest case. To decide that the
com mit record is aborted , at least N-K+ 1 sites must respond. The probability of

N
this is E (~~~

) q1(1~q) (~~
m) . Thus , 1

~afail is the probability that at most N-~i=N ~+l
sites respond.

~afail = ~~
(~~~

‘
) q~~~q) (Ni)~

~cfail is m ore complex. If an attempt to complete the commit record has
been m ade , there is sonic probability distribution am ong the states that the voters
may have rea ched that depends on p and q~. The probability

~cfail can be
expressed as 1

~~C~~A’ where is the probabil ity that the tester will decide that
the co mu mn it record is comnp leted , and is the probability that the tester will
decide that the co m n um it record is aborted (these are clearly mutuall y exclusive , so
with

~cfail the probabilities sumn to I) . Each voter can be viewed as an
in t erm nediate station in a m essage transm nission from the complete request to the
tester of the commit record. The probability that a message sent by the requester
will get to the tester is pq. If we assume that the requester got to send exactly k
messages before failing, then the probability that the tester will decide that the

k
commit record was completed is =

~
(~

) m 1~~~~~
1. The probability that

the requester got to send exactly k mnessages, once deciding to attempt to
comp lete, is 4~

’
~ if k=N , and &‘(1-~) otherwise. Thus ,

N-i
= ~~ QN + E ~,k (14)

~ kk =~
Similarly, given that k mnessages were sent by the requester . the tester has a
certain probability of determining that N-g -s- 1 voters are in the abort state. Now
we have two cases. Amnong the k sites that messages were addressed to, some of

- 170 -

__ _ _

-~~~ -~~~~

r

the sites will enter the aborted state because of messages lost with probability
(l-p) , but will supp ly an answer to the tester. For any of the k sites, this will
happe n with probability (1-p)q. For the other N-k sites, the aborted state is
guaranteed to be entered , and the probability that the tester gets an aborted
response is q. Thus , the probability that the tester gets exactly i aborted responses
is

mnin(i ,N-k) N k kT1 k = (~~
~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
‘ j mnax(0 ,i-k)

So, the probability of getting at least N-K+1 responses that say abort, given k
m essages sent is

N
Rk = ~ ~~~i=N -K+ 1

Consequentl y . we can compute the probability of deciding aborted as
N-i

D _ A . Nt) ~~
.

‘A — q’ “~N + ‘ 
~
‘

k=O
The expression for 

~cfa il is thus quite com plicated , and doesn’t seem to be
amenable to sim plification. However, I have shown by experimentation with
reasonable values of p, q, and 4) that values of N and K other than one (the single
site case) caim give either improvements in availability of the commit record’s state ,
or can reduce availability. A samp le grap h of the variation of 

~cfaij as N varies
over odd miun ihers of sites from 1 to 15 , holding p. q. and 4) all constant at 0.9,
and with K= (N + 1)/ 2 , is shown in figure 18. Im provements result because the
expected n u m b e r of sites to respond completed is about pqN (as it would be if 4
were one), then as N becomnes large , the probability that ~ = ~~N (where ~~<pq)
sites thus respond asymnptotica lly goes to one. Similarly , as K gets sm all relative to
N. PC increases. Reductions in availability result because as N gets large , failures
at the requester begin to take over. These two opposing factors lead to the case
t hat , at least in the sim ple model, there are optimum values of N and ~ which
minimize 1’cfail~

~afai l is not so complicated. The state of a possibility for which no
comnplete is ever attempted is m ore accessible as N gets large, and as K gets large.

- 171 - 

- - - . - 
-

~~ - -~~- 



FIg. 18. Graph of as the number of sites varIes
0.L - x

x
x

x
x x

~cfail

C _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1 3 5 7 9 11 13 15
N

The overall availability of a possibility depends on the likelihood that
operations that are controlled by it will fail to finish before attempting to
complete. This likelihood is strongly application dependent , and Cannot be
determined by the sy st emn. If it were known , however, a reasonably optimum
choice of N and K could be made.

One factor ignored so far is the delay and cost of message traffic needed
to achieve a part icular level of reliability and availability. It is clear that one can
improve p and q by increasing potential delay (by, for example , retransmitting
requests periodically). Similarl y, increasing N can increase the message traffic in
the network , and possibly indirectl y add queueing delay. Varying ~ can reduce or
increase the delay before deciding that a commit record is complete, while
affecting the delay for deciding the same kind of commit record is aborted in the
opposite direction.

- 172 -

_ _  _



- ____ 
. . -

~
- ---- _- 

By keeping K~~N/21, and keeping N small (1,2, or 3), the message delays
and costs can be kept small , and the comnmon case of a completed operation will
be optim ized both in speed and availability.

- 173 -

t 
—.

~~~ 
-

~~~
-_ - _ — —_-  -—-. .—— .

~~~~~~~~~ -~--
‘
~~~~~-



~~~- -  -~~~~~~~~~~~~~- — - ~~~~~~~~~~~~~~~~~~~~~ ,- .
~~~

_ -  
~~~~~~~~~~~~ 

References

[Alsberg 76J Alsberg, P.A., Belford , G.G., Day, J.D., Grapa , E., “Multi-Copy
Resiliency Techniques,” CAC Document # 202, May, 1976.

[Atkinson78] Atkinson , R.A., and Hewitt , C.E., “Specification and Proof
Techniques for Serializers,” Draft , March 20, 1978.

[Backus78) Backus , 3., “Can Program m ing be Liberated from the von Neumann
Sty le? A Functional Style and its Logic of Programs,” 1977 ACM
Turing Award Lecture , published in (ACM 21, 8 (August 1978), pp.
613-64 1.

[BernsteinhlJ Bernstein , P.A., Shipman , D.W., Rothnie, J.B., and Goodman , N.,
“The concurrency control mechanism of SOD-i: A system for
distributed databases (The general Case),” Computer Corporation of
America technical report CCA-77-09, December 15 , 1977.

[Jiobrowl2) Bobrow, D., et al., “TENEX - a paged time sharing system for the
POP- b .” (‘ACM 15, 3 (March 1972), pp. 135-143.

(Corhato65] Corbato , F.J., and Vyssotsky, V.A., “Introduction and overview of
the MULTICS system,” Proceedings of the AFIPS 1965 Fa Il Join t
Co~nputer Conference, Vol. 27, Pt. I, AFIPS Press, Montvale, N.J. pp.
213-230.

[Crocker75j Crocker, S.D., “The National Software Works: A new method for
providing software development tools using the ARPANET.’ Proc
Meeting on 20 years of Computer Science, Pisa, Italy, July 1975.

- 175 - ~~~~~~~~~~~~~~~~~~~~~~~~~~~
— - —_.

~~~C~DD~~ PAGI BL~JIC..~~? VIZIUD

- 
I ~~~~~~~~~~~~~~~~~~~ -~~~~~~~~ —~~~~~~ -~~~~~~~~~ ~~~~~~~

=
~~~~~

- —
~~~~~~~~~~~~

_ _ - _ -



I
[DOliveirallJ d’Oliveira , C.R., “An Analysis of Computer Decentatization ,” M.I.T.

Laboratory for Computer Science Technical Memo TM-90 (October,
1977).

[Daviesl3] Davies, C.T., “Recovery semnantics for a DB/DC system,” Proceedings
of the 1973 ACM National Conference, New York (1973), pp.
136-141.

(Dennis75j Dennis J.B., “First Version of a Data Flow Procedure Language,”
M.I.T. Laboratory for Computer Science Technical Memo, TM-61,
May 1975.

[Eastimke69] East lake . D., et al., ITS 1.5 Reftren ce Manual, M.I.T. Artificial
Intelli gence Laboratory Memno AIM- 161A, ‘uly 1969.

[Eswaran76j Eswaran , Gray, Lon e, Traiger, “The Notions of Consistency and
Predicate Locks in a Database System,” CACM 19, 11 , November ,
1976.

[Frankstonl4j Frankston, KM.,  “The computer utility as the marketplace for
comnputer services,” M.I.T. Laboratory for Computer Science
Technical Report TR-128 (1974).

(Gaines72j Gaines , R.S., “An Operating System Based on the Concept of a
Supervisory Computer ,” CACM 15, 3 (March 1972), pp. 150-156.

[Goodenoug h75] Goodenough , J.B., “Exception Handling: Issues and a Proposed
Notatio n ,” CAC ’M 18, 12 (December 1975), pp.683-696.

[Gray 77J Gray, J.N., “Notes on Data Base Operating Systems,” Operan,,g
Systems: An Advanced Course, in Volume &~ of Lecture Notes in
Computer Science, Springer-Verlag, 1978, pp.393-481.

- 176 - 



[Henderson75j Henderson , D.A., “The Binding Model: A Semantic Base for
Modular Programming Systems,” MIT-LOS TR-145, February, 1975.

[Hewitt76] Hewitt , C., “Viewing Control Structures as Patterns of Passing
Messages,’ M.I.T. Artificial Intelli gence Laboratory, Al .  Memo
#410, December, 1976.

[Hewitt l7j Hewitt , C. and Baker , H., “Laws for Communicating Parallel
Processes,” Proc. IFJP 77, August 1977.

[Hoare74J Hoare , C.A~R., “Monitors: an operating system structuring concept,”
CACM 17, 5 (October 1974), pp. 549-557.

[Johnsonl5] Johnson , P.R. and R.H. Thomas, “The Maintenance of Duplicate
Databases,” ARPANET NWG/RFC #677, January 1975.

[Kentl6] Kent , S. T., “Encryption-Based Protection Protocols for Interactive
User-Computer Comnmnunication ,” MIT-LOS TR-162 , May, 1976.

[Lamport78] Laniport , L., “Timne, Clocks, and the Ordering of Events in a
Distributed System ,” C1ICM 21, 7 (Jul y 1978), pp.558-565.

[Latiipsonl6l Lainpson , B. and Sturgis, H., “Crash Recovery in a Distributed Data
Storage Systemn ,” Xerox Palo Alto Research Center , Ca. November,
1976. To appear in CACM.

[Levin77J Levin , R., “Program Structures for Exceptional Condition Handling,”
Ph.D. Thesis, Departmnent of Computer Science, Carnegie-Mellon
University, June 1977.

[Liskov76j Liskov , B.H., “A note on CLU,” cSG Memo # 136, M.I.T.
Laboratory for Computer Science, February. 1976.

- 177 -



_ _ _ _  ~~~~~~~~ - -~~~~~~~~~~~~~~~~ 

[Liskov77a] Liskov , B.H. , et al., “Abstraction Mechanisms in CLU,” CACM 20, 8
(August 1977), pp. 564-576.

[Liskov77b] Liskov , B.H., and Snyder , A., “Structured Exception Handling,”
M.I.T. Laboratory for Computer Science Computation Structures
Group Memno 155 , Decemnber, 1977.

(Liskov78] Liskov , B.H., et al ., “The CLU Reference Manual ,” CSG Memo #
161 . M.I.T. Laboratory for Comnputer Science, July, 1978.

[Metcalfel3] Metcalfe , R.M., “Packet Communication, ” M.I.T. Laboratory for
Com puter Science Technical Report TR-1 14 (December 1973).

[Metcalfel6j Metcalfe , R.M., et al., “Ethernet: Distributed Packet Switching for
Local Com puter Networks ,” cAC ’M19, No. 7, pp. 395-404, Jul y,
1976.

(Randell7Sl Randell , B., “System Structure for Software Fault Tolerance,” IEEE
Transactions on Software Engineering, SE- I, 2 (June 1975), pp.
220-2 32.

[Rande ll8J Rande ll , B., Lee, P.A., and Treleaven , P.C., “Reliability Issues in
Comnpu tiri g Sy stemn Design ,” ACM Computing Surveys 10, 2 (June
1978), pp.123-166.

EReed78 I Reed , D.P., Sy nchroniza t ion with Eventcounts and Sequencers,” to
appear in (4CM. (Presented at Sixth ACM Symposium on Operating
System Princi ples, November 1977).

[Roihnie7l) Rothnie , J.B., Bernstein, P A., Goodmnan , N., and Papadimnitriou ,
C A., “The Redundant Update Methodology of SOD-i: A System for
Distr ibuted Databases,” Computer Corporation of America
Technical Report, February, 1977.

- 178 -

_ _



—-—---

~~~~~

[Saltzer78] Saltie r , J.H., “Research Problemns of Decentralized Systems with
Large ly Autonom ous Nodes”, Operating Systems Review 12, 1
(January 1978) pp. 43-52.

[Thomas7oj Thomas , R. H., “A Solution to the Update Problem for Multi ple
Copy Data Bases Which Uses Distributed Control ,” BBN Report
#3340, Jul y, 1976.

[Van Horziô6] Van 1-lorn , E.C., “Computer Design for Asynchronousl y Reproducible
Multiprocessing, ” Ph.D. thesis , M.I.T. Department of Electrical
Engineering. Also available as Project MAC Technical Report
TR-34 , from the M.I.T. Laboratory for Computer Science.

[Wulf74I Wuif, \V .A., “ALPHARD: Towards a language to support structured
programmning, ” Carnegie-Mellon University Dept. of Computer
Science , April 1974.

• ~Wul f75J Wu lf , W A., Levin , R. and Pierson , C., “Overview of the Hydra
operating syste m developmnent ”, Proc. Fifth Symposium on Operating
Syste,ns Principles, 131 , Novem ber 1975.

- 179 -

Biographical Note

David Patrick Reed was born on January 31 , 1952 , in Portsmouth , Virg inia.
He grew up in Norfolk , Vi rg in ia , in \Vatertown, Massachusetts , in Kittery, Maine ,
in Jacksonville , Florida , in Edison, New Jersey, in Alexandria , Virg inia , and in
Hiughain . Massachusetts. He graduated from Hing hazn Hi gh School, Hingham ,
Mass. , in 1969. He received botn the Rensel laer Medal Award and the Bausch
~mnd Lomb Science Medal at that time , and was a member of the National Honor
Society.

From 1969 to 1978 he has attended the Massachusetts Institute of
Technology, receiving a host of degrees. His undergraduate education was
supported by a National Merit Scholarship and an American Water Works
Foundation Scholarshi p. He received the B.S. degree fro m the Department of
Electrical Engineering in June , 1973. His B.S. thesis was entitled “Estimation of
Pri iiia ry Memory Req u iremnents for Processes in Multics. ” As a graduate student
at M.I.T., he was supported as a research assistant in the Computer Systems
Research Group of the M.I .T. Laborator y for Com puter Science , and as a
teaching assistant in the Department of Electrical Engineering and Computer
Science. lie received the SM. degree fromn the Dep ar tmnent of Electrical
Eng ineering and Computer Science in August 1975 and the Electrical Engineer
degree in Januar y 1976. His SM. and E.E. thesis was entitled “Processor
Mult i plexing in a Layered Operating Systemn. ” He received the Department of
Electrical Engineering and Comnpu t er Science Teaching Award in May 1975.

As an un d ergraduate student , Mr. Reed , along with a group of three other
stu (Ients , desi gned and i mim p lemnented the Multics version of the MACLISP
interpreter and com piler for the LISP language. He also partici pated in the design
and i m iip kmne nta t i on of the Multics operating systemn carried out at Project MAC
~t t M.I.T. lie has also worked at the IBM San Jose Research Laboratory during
the su mn m u er of 1975.

Mr. Reed is a member of the Association for Comnputing Machinery, and
its special interest groups on Operating Systems , Progra m m ing Languages, and
Cornmnunic .it ions. lie is also a member of the Sigmna Xi scientific honorary
society , mn d the Am erican Association for the Advancement of Science.

In September , 1978 , Mr. Reed assumed the rank of Assistant Professor . of
Computer Science and Eng ineering at the Massachusetts Institute of Technology.
He is married to Lynn Susan Reed , and has one son, Coh n Alexander Reed .

Mr. Reed’s pub 1icatio.~s in clude:

David P. Reed and Raj endra K. Kanodia, “Synchronization with Eventcounts and
Sequencers .” to be published in ~~~~~
David D. Clark , Kenneth T. Pogran , and David P. Reed, “An Introduction to
Local Networks ,” to be published in IEEE Proceedings.

- 181 - (• -—-
~~~~~

_ _ _ _

3 ~~ ECEDIt’~G PAGE BL.&MC-NoT t IU’cED

• 
_ _ • ._

~~~~~~~

-
_ _ _ _ _ _ _

,- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-_ •__

~

OFFICIAL DISTRIBUTION List

Defense Documentation Center Dr. A. L. Slafkosky
Cameron Station Scientific Advisor
Alexandria , VA 22314 Commandant of the Marine Corps

12 cop ies (Code RD—i)
Washing ton , D. C. 20380

Office of Naval Research 1 copy
Information Systems Program
Code 437 Office of Naval Research
Arlington, VA 22217 Code 458

2 copies Arlington, VA 22217
1 copy

Off ice of Naval Research
Branch Office/Boston Naval Electronics Lab Center
495 Summer Street Advanced Software Technology
Boston, MA 02210 Division — Code 5200

1 copy San Diego , CA 92152
1 copy

Office of Naval Research
Branch Office/Chicago Mr. E, H. Gleissner
536 South Clark Street Naval Ship Research & Development Center
Chicago , IL 60605 Computation & Math Department

1 copy Bethesda , MD 20084
1 copy

Otfice of Naval Research
Branch Office/Pasadena Captain Grace K. Hopper
1030 East Green Street NAICOM/MIS Planning Branch
Pasadena, CA 91106 (OP’-916D)

I copy Off ice of Chief of Naval Opera tions
Washing ton , D. C. 20350

New York Area Office 1 copy
715 Broadway — 5th floor
New York , N. Y . 10003 ~ Mr. Kin B. Thompson

1 .opy Techn ical Director
Intormatlon Systems Division

Naval Research Laboratory (OP—91T)
Technical Informa tion Division Office of Chief of Naval Operations
Code 2627 Washington , D. C. 20350
Washing ton , D, C. 20375 1 copy

6 copies
Captain Richard L. Martin , DSP

Assistan t Ch ief fo r Technolog y Command ing O f f i ce r
Off ice of Naval Research USS Francis Marion (LPA—249)
Code 200 FPO New York , N. Y. 09501
Arling ton , VA 22217 1 copy

1 copy

Off ice of Nav~il Research
Code 455
Arl ing ton , VA 22217

1 copy

