f/AD-Aﬂél 407 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE==ETC F/G 9/2
NAMING AND SYNCHRONIZATION IN A DECENTRALIZED COMPUTER SYSTEM.(U)
SEP 78 D P REED NOOO14=75=C=0661

UNCLASSIFIED MIT/LCS/TR=205

I
i
|
I

ADA0 61407

LABORATORY FOR % g st
COMPUTER SCIENCE TECHNOLOGY

((-

£ COPY

b o

[A
- OQ& MIT/LCS/TR-205

NAMING AND SYNCHRONIZATION

IN A DECENTRALIZED

COMPUTER SYSTEM
David P. Reed (5 ae

This research was supported by the Advanced Research
Projects Agency of the Department of Defense and was
monitored by the Office of Naval Research under
Contract No. N00014-75-C-0661

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

wa 11 1 ¢

SRR L el e w8

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

w“—? 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
IT/LCS/TR-2 gs v

. TITLE (and Subtitle) 5.

TYPE OF REPORT & PERIOD COVERED
Naming and Synchronization in a Decentralifyd /’ Ph.D.Thesis - Sept.15, 1978

Computer Systemg 5. pen;oaauu?c ORG. REPORT NUMBER
. e S A MIT/LCS/TR-205

AUTHOR(s)

" 8. CONTRACT OR GRANT NUMBER(s)
b David R« ,Reedl 5:/“00014'75'(3-?661 i/

(.l_\

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGR A ELEMENTT- PROBJEECT. TASK
MIT/Laboratory for Computer Science i A B i
545 Technology Square
Cambridge, MA 02139

11. CONTROLLING OFFICE NAME AND ADDRESS "‘;/
Advanced Research Projects Agency , September~¥978
Bartment og Df ensg :
1son Boulevar
Arlington, VA 22209 183

4 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) | 15. SECURITY CLASS. (of thia report)
Office of Naval Research '
Department of the Navy Unclassified
Information Systems Program T5a. DECL ASSIFICATION/DOWNGRADING
Arlington, VA 22217 it s

e ——
16. DISTRIBUTION STATEMENT (of this Report) @ l 7 9 _{

Approved for public release; distribution unli

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Doc’\’oxm\ Tktavs,

it e

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

distributed computer systems
reliability
synchronization

20. ABNIACT (Continue on reverse side If necessary and identity by block number)

In this dissertation, a new approach to the synchronization of accesses to
shared data objects is developed. Traditional approaches to the synchronization
problems of shared data accessed by concurrently running computations have
relied on mutual exclusion -- the ability of one computation to stop the
execution of other computations that might access or change shared data
accessed by that computation. Our approach is quite different. We regard an
object that is modifiable as a sequence of immutable versions, each version is A

DD , an'5s 1473 EOITION OF 1 NOV 68 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data lnlw.f)

HOT 648 o

B

T e e i R R s e o e i ——

SECURITY CLASSIFICATION OF THIS PAGE(When Date Batered)

zdfﬁﬂthe state of the object after an update is made to the object. Synchroniza-
‘ tion can then be treated as a mechanism for naming versions to be read

i and for defining where in the sequence of versions the version resulting

| from some update should be placed. In systems based on mutual exclusion,
the timing of accesses selects the versions accessed. In the system
developed here, called NAMOS, versions have two component names consisting
; of the name of an object and a pseudo-time, the name of the system state to
i which the version belongs. By giving programs control over the pseudo-time
I in which an access is made, synchronization of accesses to multiple

f objects is simplified.

NAMOS 1is intendedvté‘be used in an environment where unreliable
components such as communication lines and processors, and autonomous
control of resources occasionslly cause certain objects to become in-
accessible, perhaps in the middle of an atomic transaction. Computations
may also suddenly halt (perhaps as the result of a system crash) never to
be restarted. NAMOS provides facilities for recovering from such failures,
grouping updates into sets called possiblities, such that failure of any
update belonging to a possibility prevents all of the other updates in that
possibility. The naming mechanism of NAMOS also provides a useful tool for
restoring a consistent state of the system after a failure resulting in
irrecoverable loss of information or a user mistake resulting in an
inconsistent state.

T ——

An important motivation for the development of NAMOS is the need to
support decentralized development of application systems by combining
existing application systems that deal with shared data. NAMOS supports: the
construction of modules that locally ensure their own correct synchroniza-
tion and recovery from inaccessibility. Larger modules that use several
separately designed modules can then be constructed, perhaps with additiona
} synchronization constraints, without modifying the modules used. In most
systems based on mutual exclusion, such post hoc integration of modules is
difficult or impossible.

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

i ii" im at POy e . . ——

o e e Y O B N R B s P ———

| .
MIT/LCS/TR-205

'NAMING AND SYNCHRONIZATION IN A DECENTRALIZED
COMPUTER SYSTEM

E by

David Patrick Reed

September, 1978

This research was supported in p
of the Department of Defense and monito,
under contract number N00O14-75-C-0661.

Massachusetts Institute of Technology

Laboratory for Computer Science
Cambridge, Massachusetts

02139

TSR RS A

art by the Advanced Research Projects Agenc
red by the Office of Naval Researc

BT

T e e Py

Gliss e o

ACKNOWLEDGMENTS

This dissertation would not have existed were it not for aid and comfort
from many sources. I can hope to mention only a few important people. To all
of the others whose belief in me made life worthwhile, please accept my thanks.

Professor Saltzer is one of the most helpful critics I have had, and his
diligence in reading the many drafts always exceeded my expectations.

Dr. David Clark and Professor Steve Ward, my readers, helped to clarify
my explanations and by urging more work on the mechanisms of NAMOS,
contributed to what I think are significant improvements in my original ideas.

Jim Gray of IBM San Jose Research deserves special mention, for although
I had relatively few discussions with him, every one led to new clarifications of
my ideas. His insight into the system aspects of concurrency was always clear
and fresh.

All of the members of the Computer Systems Research Group, who
provided a home away from hoine, deserve special thanks for just being who they
are.

Lynn, my wife, and Colin, iy son, deserve all the thanks I can give for
helping me through the grueling phases of this research, particularly the last
month or so. Without their help, I probably would never have made it.

T T e

P
o

NAMING AND SYNCHRONIZATION IN A DECENTRALIZED
COMPUTER SYSTEM

by
DAVID PATRICK REED

Submitted to the Department of Electrical Engineering and Computer Science
on September 15, 1978 in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy.

Abstract

In this dissertation, a new approach to the synchronization of accesses to
shared data objects is developed. Traditional approaches to the synchronization
problems of shared data accessed by concurrently running computations have
relied on mutual exclusion -- the ability of one computation to stop the execution
of other computations that might access or change shared data accessed by that
computation. Our approach is quite different. We regard an object that is
modifiable as a sequence of immutable versions; each version is the state of the
object after an update is made to the object. Synchronization can then be treated
as a mechanism for naming versions to be read and for defining where in the
sequence of versions the version resulting from some update should be placed. In
systems based on mutual exclusion, the timing of accesses selects the versions
accessed. In the system developed here, called NAMOS, versions have two
component names consisting of the name of an object and a pseudo-time, the
name of the system state to which the version belongs. By giving programs
control over the pseudo-time in which an access is made, synchronization of
accesses to multiple objects is simplified.

NAMOS is intended to be used in an environment where unreliable
components, such as communication lines and processors, and autonomous control
of resources occasionally cause certain objects to become inaccessible, perhaps in
the middle of an atomic transaction. Computations may also suddenly halt
(perhaps as the result of a system crash) never to be restarted. NAMOS provides
facilities for recovering from such sudden failures, grouping updates into sets
called possibilities, such that failure of any update belonging to a possibility
prevents all of the other updates in that possibility. The naming mechanism of
NAMOS also provides a useful tool for restoring a consistent state of the system
after a failure resulting in irrecoverable loss of information or a user mistake
resulting in an inconsistent state.

An important motivation for the development of NAMOS is the need to
support decentralized development of application systems by combining existing
application systems that deal with shared data. NAMOS supports the construction
of modules that locally ensure their own correct synchronization and recovery
from inaccessibility. Larger modules that use several separately designed modules
can then be constructed, perhaps with additional synchronization constraints,
without modifying the modules used. In most systems based on mutual exclusion,
such post hoc integration of modules is difficult or impossible.

Keywords: distributed computer systems, reliability, synchronization.

A3 .

il e T S SOy e Uy e e s e e gy e

BT = SEESE SIS SR ——

ACRROWINEEINERIE ciiiiiiieininniosinisninnivibosioasnsbasaesosnsebosnerass 2
P R L DU S RO R T S UV AP SR PR P Y 3
Table of Contents O P e ein Ayl 4
TR UL RIS inciivvn. oo Sasimntsss i ks sinvnnsints suasd s dpesfos s vpa it smmis s 6

Chapter On.l]ntroduction 000 7

1.1 The problem of a useful internode interfacecoovvviiiienninne, 9
1.2 Naming Mechanisin as a Solutionccoeviiiiiiiiiiiiiiiiiiieeens 19
o3 RN WO 110y o G R st b M R s A SRS e 03 AN 4 24
T SR [R RGN I WY I, SRR S SR AR e 27

Chapter Two. The communications system and storage system 31

2.1 Reliability of Message Communicationscccoviinniiieennnnnns n
2.2 Synchronization of Message Communicationscceveuvuiienens 35
28 "ReliaDility oF SIOrMEe BySlem '.....vovioviiiioniiiiiiiiosnisisssveissssins 40
2.4 Synchronization of Storage Systemscoiiiiiiiiiiiiinnnnnees 41
2.5 Remotely requested aCtionscccovviiiiiiiiniiieecieieisennnnees 44

Chapter Three. Pseudo-time and Possibilitiescccceeecerccecccrccccececcs 47

Gl v @ R SN B TR TR W B AR SRR B 48
RE. CIONET SEIIONIEE. .. vt o 80 6000 e nicn wihiah st myETS Lhv i LIRS LEEEEIRE SOSN8 610 52
3.3 KIS OF PRICTORCES ...vvivivneiiuvrioniinmsusms vamnasisnsavptisnsss s snsuals 54
34 Pseudo-time and CONSIStENCYocvviiiiiiiiiiiiiiiiiiiiiiiiiieieeinnns 59
3.5 Programs and Pseudo-thnecoociiiiiiiiiiniaiiniisiinisiieians 60
3.6 Programs with internal parallelismoooiiiiiiiiiiiiiiin 67
3.7 But we can't know the entire history!cciiiiiiiiiiiiiiiiiiinn 69
3.8 Generating pseudo-times and pseudo-temporal environments 71
39 Fallores and RODOVELYiiiiiiiviiiiasiinvesinisessssonises dnssssunissos 73
IO ROCOVERIDIBEY 0. viieciiisronbintvervievbsasiovenvivesvssosnsenssvivesiiiie 79
311 Modularity and possibilitiesc.cooeeiiiiiiiiiiiiiiiiiiiiiin 80
312 Known Histories Revisitedc.cviiviiiiiiiiiiiiiiiiiiiinan 83
S0 DIREIIEY . ooooicrorcrsoinrrnsinensiorvnssbionssssssssesssonesesssessesssssvns 84
-

Chapter Four. Using the MechaniSms ...ccicovieeieeccceresccsossoccsscasses 89
R T T T T e i K 86
O 1 R IR TR . & 0 D B R e I L ST 97
4.3 Conversational System Interactionsoovvveveerinnnieennnnn. 100
4.4 Partially Recoverable Operationscccoviiiiiiinnnnneennenennnns 101
Chapter Five. Implementation of Possibilities and Tokensceeceeeeee. 105
R COIOINC COMMINE L. .o i s s v S s siin s SR ants b le AR A 0l W s 106
52 Hokons . RIS e SR Y 108
5.3 Possibility implemented as a single commit record 110
1 3.4 . . .Depenslent possibilities: . .o i aitalianih i sl dinat itk v nn g 113
‘ 5.5 Determining the right to access a tokenccoeevuvveennnnnn. 114
5.6 Possibilities implemented using multiple commit records as voters 115
5.7 Reclamation of commit recordsoocvviiiiiiiiiiiiiiniiiieenens 119
T SUMBREY .\ +¢vi b bt bnsar s B e A SO E i s o 125

E Chapter Six. Implementation of Objects: Known Histories, Versions, etc. 127
6.1 Representation of Pseudo-times and Pseudo-temporal Environments .. 128
6.2 Maintaining the time - pseudo-time relationship 131
08 . Koowor BRSO 58, 1 b L s R it e el 48 s s R e Sk A S B % 133
G4 Nol-Celh OBIeCt WOt . Lol it SIS o siled s o oo A5 S bbb suin 141
1 6.5 Creation and Deletion of Objectsccoceviiiiiiiiiiiiiinnnnnnnn. 146
0.6 Deletion of Object VErSIONS ..c.ccocvvvvivimmivinionsisoivinsonacssesosss 148
‘ 0.7 Swall ODeets and "PaRIlR” .. occomviivinisisnnatsiinnsmsnsnnsioins sones 151
08 Copying of DDJECT VERHONE .- oiocoimsaviniisiscsvvsnmncasvansssnssmewoss 153
6.9 Reducing the amount of work abortedccoevviiiniiiinnnes 154
Y SRIREY ¢ i v ici b e b R TR B A TR 5 5 A B e A 156

;

Chapter Seven. Conclusions and Directionsccceeeveeeccnecccssccsces 157
7 RS v ISR S WEEI S S SR L O RS RS 157
7.2 Applicability of the cConCeptsc.cociviiiiiiiviiivinsrisivsassssnossns 162
B HRTIRINID 's . 5500000 b o WS KRR v Sk s M S e W s SR A S 163
74 Directions for further research .. c...covviiiiniiviiiiransrsrccsinscsassss 165

Appendix A. Analysis of Availability of Multi-site Possibility 169
Refcrences 9000000000 0000000000000 000u0000000000000000000000000COPIOIIRIOIOLOIRPOIRNOIRTIRIRMDYS 175

Bio“raphical Note 0000000000000 0000000000000000000000000000000 000000000000 000 lsl

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. S
Fig. 6.
Fig. 7.
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

FIGURES

Distributed SyStemcicivicnsinssesvssssssssassisssesossssossessos A
Rceordering of messages by the message systemcceceececeee 37
Lockable Data Structurec.cceeeeecccseeccccssccccsccssssscscsscscs 43
Shared Memory Model e e e Y Ty Wte YT ANV |
Shared Memory as a Sequence of Statesceeeeeeecvccccocecsces 59
Eduction by creating & new Versionccceceececcccecscscsccccsse 70
Eduction by lookup of existing versioncccceeevee. R e)
Known Ilistory with Tokens and Possibilitiescccoveececcccccees 79
Object Known HiStoryc.cveeecececesecsccccsccscscccsessscsssscscse 84

Reference to Multi-site Commit recordccoececeecscncscscs 118
Known History Entry A alee e s b el SR ok hcnis vale 134
Known History Representationccceceecececececnes Seavsciveser 134
Communication in a lookup request Sossinsessnesinesose 136
New-token request processSing ...oceecesececceosecscccs dessossesee 139
Alternative new-token processingececeeee Sensuensaehsendeses 140

History of several queue operationscccccceeeececcsvcsccscss 146
Object header, revised to handle creation and deletion 149
Gl‘ﬂph 0‘ PCfI“ as the Illlmbel' Of S“es Vlrles ®0ccccccecssvsccee 172

e w—— e T —. = T AR

Chapter One

Introduction

With the advent of minicomputers and low-cost computer networking
technology, a new sort of computing technology is becoming quite important. The
basic characteristic of this technology is the development of a decentralized set of
computing resources (computers and terminals) organized to provide computers,
terminals, and storage devices that are located near their ultimate users.
Computer networks, either of high-bandwidth typical to local network technologies
such as the ETHERNET[Metcalfe76] or the long-distance networks such as the
ARPANET([Metcalfe73), provide the necessary sharing of data and computational
resources among geographically decentralized but closely related computer
applications.

The termn distributed computing has been used to describe the loosely
coupled systems built using this technology. But like many other fashionable
terms, distributed computing means different things to different users of the term.
It has been applied to parallel computation (in this use, distribution is parallelism),
offloading of computation from a mainframe computer to a front-end mini or
intelligent terminal, construction of computational engines via elaborate
interconnections of microprocessors, and a host of other variations on the theme
of several computers tied together by some communications medium. Our use of
the term as defined above specifically emphasizes decentralization as a key
attribute obtainable by introducing communications into a system design. Such
decentralization involves separation of the computers in the system by physical
distance, by boundaries of admrinistrative responsibility for individual computers
and their applications, and by firewalls intended to increase the overall availability
of the system as seen by its users in the face of component failures.

One of the major forces in the move to decentralized, distributed
computing is the opportunity for autonomy gained by having direct, physical
control over the source of one's computing resources. Traditionally, the
computing resources of a large company or organization have been provided by a
large central computer facility managed by a separate division of the company.

T

T T Y T RISy

T —

The main reasons for this traditional structure have been the large cost benefits
of sharing large computer systems that provide very high price performance, and
the control over computing usage afforded by the centralization. As pointed out
by d'Oliveira|DOliveira77], many organizations have very strong forces that lead to
decentralization, including psychological and economic ones. Given the decrease in
hardware costs for small computing facilities, this has led to, and probably will
continue to lead to, more autonomously operated computer facilities in the context
of these organizations. The need for autonomous control of computing resources
seems to be often more important than cost.

Although the hardware technology for distributed computing is well
developed, the protocols and conventions for the design of systems that support
distribution of data and application programs are still in their infancy. Perhaps
the major effort in this area has been the resource sharing research carried out in
conjunction with the development of the ARPANET. The most sophisticated
product so far of this research has been the National Software Works[Crocker75],
a distributed set of application development tools that can transparently share files
across a network. Although this sort of research has led to a great deal of insight
on how to distribute an application, it has not yet reached the point where the
design of such systems is simply the application of well understood methodologies.

Perhaps the greatest problem in the development of distributed systems is
the development of methods that allow local applications and data bases to be
created autonomously, then integrated with other applications and data accessible
in the distributed system in a post hoc fashion. Evolution of distributed system
applications by integration of existing applications seems to be a natural result of
the reasons for decentralization.

In order for this problem of post hoc integration to be solved, a coherent
set of protocols and standard interface tools must be developed. Then the task of
constructing new systems by integrating existing systems on multiple nodes can be

simplified to matching interfaces specified in the same way.! Important factors in
these interfaces are data types, naming of individual objects, synchronization of
accesses to sharable objects and reliability of computation in the face of failures
of individual communications lines and computers. The latter two problems,
synchronization and reliability, form the focus of my thesis. My goal has been to
provide a standard set of mechanisms for the implementation of interfaces that
provide control of computations in an environment that is prone to failure and
has concurrent computations. The solution proposed is to extend the object
naming mechanism so that it can be used for proper synchronization and failure
recovery.

1.1 The problem of a useful internode interface

A typical distributed computer system of the kind we want to consider will
look like a collection of autonomous nodes connected by a communications
network, as in figure 1. These nodes may be individual processors with their own
memory, or they may be multi-processor systems of any variety. For our
purposes, they are distinguished because each node behaves like a single system --
each node is either completely available to accesses through the network, or is
completely unavailable. Further, the resources owned by each node are wholly
controlled by the owner of the node; there is no higher authority that controls
the resources on all nodes of the network.

Nonetheless, there is a great need for the ability to share the use of data
and computational resources among nodes with different owners. For example,
consider a relatively decentralized corporation that has several independently
developed inventory control data bases residing in different computational nodes.
Eventually there will probably be pressure to have an information system for

1. It is interesting to note that Backus, in his Turing award lecture[Backus78)
has pointed out that he also believes that construction of systems frcm pre-existing
modules is a problem not yet properly solved. His proposal is somewhat different
from ours, in that he uses composable modules athat are pure functions from
inputs to output that are combined into top-level transactions that work on a
shared system state. Our proposal allows the composition of transactions out of
existing transactions that are designed themseves in terms of modifying the system
state.

BT S P T T R PRI BT TR e

‘ hai. o SITEE

Fig. 1. Distributed System

Network

overall management of the divisions owning each node that can look at the :tate
of all data bases. Because the cost of replacing existing systems with an overall
system would be prohibitive (as well as infringing on autonomy - see below), that
system must be built out of the old system by making use of preexisting
interfaces, if possible. It is thus a great advantage if interfaces can be designed so
that they can be later used in unplanned-for ways. In addition, by providing
interfaces that other nodes can use, a node can offer and obtain information
about other divisions use of the parts it makes and consumes, thereby obtaining a
greater degree of optimization of its own operations.

Well designed, semantically clean interfaces that allow for unplanned later
uses seem to be the key to successful sharing of programs and data in these new
distributed systems. Such interfaces must not interfere with, and we hope will
contribute positively to, solutions to problems that become important in
decentralized systems, such as autonomy, failure management, synchronization,
and conversational interaction. These issues will be discussed in detail presently.

-10 -

It is not the goal of the thesis to solve the problem of constructing
distributed applications out of existing (as of 1978) programs and data bases,
under existing operating systems connected by some kind of network (a system
that does attempt part of this goal is the National Software Works
(NSW)[Crocker75]). Many such existing programs and data bases simply don't
support compatible approaches to synchronization and reliability that are needed
to achieve reasonable results. The primary goal is to provide tools to aid in the
construction of new software for the distributed environment. If these tools are
used, then the task of post hoc integration will be much simpler.

It may turn out to be fairly easy to adapt some existing programs or data
bases to fit within the scheme developed here in the thesis. If so, then the tools
developed here can certainly have a more immediate impact. The primary impact
that these ideas should have, though, is in the design of future applications either
for distributed systems or for computers that may eventually become nodes of
distributed systems.

1.1.1 Autonomy

Freedom means
you're free to do
just whatever
pleases you:

- if, of course
that is to say,
what you please
is what you may.

-- Piet Hein

The nature of a node is captured in the notion of autonomy. That is, a
node is basically free to manage its own use of its own resources in any way it
sees fit. That is, a node may be available only occasionally for communications
with other nodes (e.g., because the power is off from 5 P.M. to the following
AM.), much of the data stored on the node may be completely private and never
accessible through the network, other data may be usable only in a laundered
form (for example, only statistics of a general sort about a corporate division's
production may be available outside the division), and the sorts of actions that
can be carried out at a node on behalf of a remote node may be severely
constrained to limit computer time resources and/or interference with local
computing tasks.

-11 -

e B e s St e i, i n it

Moderating the complete freedom given a node is the need for providing
some kind of reliable sharing of useful data and resources. If a node is to
usefully offer an interface whereby other nodes can access some of its data or
resources, it needs to provide some reasonable guarantees of availability and
proper behavior of the interface. The node does not want to give up more
autonomy than necessary, though. Consequently, the impact of autonomy on the
design of internode interfaces is the need for interfaces that are the minimal
necessary infringements on node autonomy. '

It is interesting to note how the picture of a distributed system with
autonomous nodes differs from the notion of a computer
utility[Corbato65,Frankston74], a centralized marketplace in which data, programs,
and services can be shared. A computer utility might be best defined as a vast
repository of data and programs that can be simultaneously manipulated by the
users of the system. The availability and integrity of the underlying hardware
and software mechanisms that support the shared data must be as high as that
needed by the most demanding application using the system. Protection
mechanisms must also exist to ensure that unauthorized sharing of or tampering
with data does not occur. In the distributed system, the network is a marketplace
for services and data, where the nodes may or may not offer services. The major
result of decentralization is that the entire system need not be designed to meet
the most stringent requirements of availability and mutual protection. Only those
nodes implementing and using services with stringent requirements must be
specially designed and built to meet such requirements.

1.1.2 Object Interfaces

In order to share data or programs with users outside his node, the owner
of a node must provide some way for the users to refer to the data and request
execution of the programs. Simply giving out disk addresses and enabling the
ability of remote computers to load programs into his computer’s memory would
certainly allow remote use of the node's resources. However, giving such low-level
information may make it difficult for the node's owner to retain much control
over the ways in which the resources are used.

12 -

Object-oriented programming languages systems such as CLU[Liskov77a)
and ALPHARD[WuIf74] provide an object abstraction that limits the view of the
internals of data objects. A data object is just a named entity wholly
characterized by its behavior in response to operations applied to it. The major
benefit ascribed to object-oriented systems is that the behavior of an object can
be understood, specified, and used without reference to the actual implementation
of the object and operations in terms of primitive objects and operations. In
supporting autonomy, a dual benefit of great importance is also obtained by using
object-oriented systems. The behavior of objects can be understood, specified,
and implemented without reference to their eventual use. Since the
implementation of objects is hidden from the users of the objects, restructuring
the implementation is easily done. Protection constraints often are more easily
expressed in terms of allowable uses of abstract operations on particular abstract
objects.

In this thesis, a goal is to support modularity as provided by object-oriented
systems. In particular, the construction of abstract operations out of simpler
abstract operations and primitive operations and the construction of abstract
objects out of simpler objects and operations are supported.

There are some problems in translating the object notion to a distributed
system, however. The primary ones have to do with the opportunity for
concurrent accesses to shared objects, the possibility of failure in the middle of
executing an operation on some resource, and the need to accomplish reliable
coordinated operations involving more than one node.

1.1.3 Concurrency

The main focus of the thesis is providing reliable interfaces to objects in
the presence of concurrency. Now, concurrency has been a heavily studied area
of computer science, so the immediate question is, why are not the existing
techniques for managing concurrent computation adequate for the present
situation? Perhaps the major difference between my assumptions and those
common to much of the research into concurrent programming is that I am not
willing to assume that all of the users of a shared interface are designed at the
time a shared interface is designed.

-3

Consider an object that can be manipulated by some using processes. The
usual approach (using monitors[Hoare74}, for example) to defining an interface to
that object is to define operations that reserve the exclusive use of the object to
the calling process, and release exclusive use. Two problems arise in defining this
interface. First, one must be aware that the object might be concurrently
accessed, so that the appropriate synchronization operations can be defined.
Second, one must have a way of enforcing the use of the synchronization
operations in order to prevent unexpected concurrency. If all the users of the
object are designed at or before the time the object's interface is designed, neither
problem is particularly hard, but in the case of interest, where unplanned sharing
and concurrency are likely, both problems become extremely difficult.

Another synchronization problem in the use of objects is the need for
unplanned composite operations on multiple, independently designed objects. A
simple example in the distributed system environment might be where two
inventory control systems are brought together after being independently designed.
Suppose that a new function of the combined system is to be the ability to place
an order, involving "atomically” checking the supplier system for sufficient supply,
marking the ordered items as destined for the supplied system, and adding to the
list of expected shipments in the supplied system the ordered items and estimated
arrival. Getting this action to be atomic with respect to other concurrent actions
of each inventory system that may involve the same parts is quite difficult to do
without risking deadlock. A redesign of the individual systems may even be
required.

The construction of new operations out of existing atomic operations is
particularly difficult in a system that uses locking for synchronization. Suppose
that two modules dealing with different sets of data are to be used together to
create a new composite operation. It is not sufficient to let each module set and
release its own locks, because then the composite operation would not be atomic --
it would be possible for another concurrent program to observe the state of the
system after executing one module but before starting the second if the second
was somechow delayed for a while. Consequently, in combining atomic operations
that use locking, the composite module must be aware of the locking conventions
of the combined operations. Since the program invoking the operations being
combined is responsible for properly setting the locks, suddenly the modules are
not so modular any more. They are dependent on their caller to properly set

i

o B e N

locks and avoid deadlock. An even more serious problem arises if the locks set by
a module are dependent on the parameters with which it is invoked, because using
such a module in the construction of larger atomic operations would require that
the using program be aware of the internal construction of the module to an even
greater degree. In the extreme case, the using program would have to execute the
same steps the module would execute to determine what locks needed to be set
before actually calling the module.

A goal of the thesis is to define a method for handling concurrency that
can be easily and naturally used in the construction of abstract objects and
operations. The concurrency control method is to be built into an abstraction, so
that concurrent use is never "unexpected”. The construction of new abstractions
out of existing ones containing their own built-in concurrency control is to be
supported, so that it is rare that a system must be entirely redesigned just because
of a new use in conjunction with some other system that has its own concurrency
control.

: Very few synchronization schemes can handle this requirement for an
F unplanned atomic action composed of predesigned operations. A notable
] exception is the concept of a supervisory computer program in the IDA operating
system described by Gaines[Gaines72], in which relatively arbitrary programs could
be specified to act atomically. The IDA system idea could not be easily
implemented on a distributed system because it depends on the centralized
operating system notion of a "locked” supervisory state.

1.1.4 Need for a Robust Interface

An important class of failures in a decentralized system result in either

temporary or permanent loss of availability of some set of resources. Examples

{ include communications failure that might cut off access to some set of nodes and

data objects from some using program, a crash of a computer that might have

similar effects in addition to destroying the state of any computations in the

middle of execution, and detected software errors indicating that an object is in
an impossible state.

-15 -

T St 8 PRI

D e — o e e g — e e T TR v e R o e e " S

These failures can occur at any time an attempt is made to use some
resource. A program that executes in the distributed environment must always be
prepared to discover that some resource it is using is suddenly unavailable for
some reason.

Autonomy can also lead to reasons for resources to become suddenly
unavailabie. The owner of a node may suddenly turn off his machine, revoke
access rights for a particular set of objects granted to some program while that
program is using them, etc. Such examples are not limited to distributed systems.
In Multics, for example, a computation may at any microsecond of its execution
discover that its right to use a segment it has been reading for the last ten
minutes have been revoked.

Since abstract operations and objects are constructed out of simpler ones,
such that the execution of an abstract operation may involve many steps dealing
with many different resources, there are many different points at which loss of
availability can strike the implementation. Nonetheless, a desirable feature of
abstractions is that their behavior should not be strongly dependent on the
implementation. Thus, an attempt to perform an operation on some abstract
object ought to have a well defined effect if it cannot complete due to some loss
of availability encountered during its execution. This effect should be specified in
termns of the abstract view of the operation, not in terms of the program and data
it uses in its implementation.

Abstract operations that modify the (abstract) state of some abstract
object or objects become quite difficult to support in an environment where
sudden loss of availability must be expected. Since the implementation of the
abstract. operation makes the modification by a number of steps, there may be
points during the execution of these steps where loss of availability of some
resource leaves the implementation at a point that has no meaning in terms of the
abstractions being implemented. Some recovery from this is necessary. The
simblest approach to recovery is to undo the steps already taken in the operation,
so that the operation can be thought of as having no effect if any resource it uses
is unavailable during the operation.

.

= e g e

oA, o kT R wet e B ET e R e, S

R

el Lo

P

Unfortunately, in the case of failures undoing what has already been done
is not straightforward. Further loss of availability may make it impossible to
undo what has been done by simply reversing the changes made. If the resource
that becomes unavailable is the processor that is executing the operation, we have
an extreme case of being unable to undo what has been done. We may not even
know what has been done so far.

Correction of failures by undoing results also interacts strongly with
synchronization. In order to properly undo a computation, one must also ensure
that independent computations do not observe the transient state during which the
abstract operation was attempted but not yet undone.

Although the user of an operation may not be in a position to know how
to recover from a failure, the system as a whole (all nodes involved in the
operation) can maintain this knowledge. In order to do this, the system must be
aware of interfaces, and must be able to decide that a computation has failed and
effect the undoing of operations when a failure occurs. The system, in order to
decide that a computation has failed, cannot depend on the program or the user
of the program, since one or both of these may have also failed. Nor can the
system depend on being able to access all of the nodes containing objects that
have to be corrected at the time failure is detected. Consequently, the algorithms
used by the system for recovery must be very carefully designed to work correctly
in the face of the same loss of availability that caused the original failure.

An alternative approach that might be taken to handle failures that result
in loss of availability is to build the system so that such failures never show
through to the programs executing on the system. Essentially this approach
amounts to- guaranteeing availability. It is usually possible to guarantee that
resources are available to computations that use them given either that the
computation can afford to wait, or that enough money is allocated to buy
sufficient redundancy within the system to reduce the probability of failure. The
tradeoff is not always possible, however. Money is often in short supply.
Computations may often be executing in behalf of an interactive user at a
terminal who cannot afford to wait until some remote node his program had
started to use is repaired. Consequently, the approach of having the system
provide a mechanism that allows undoing of computations that fail in the middle
is often the best.

il -

—

The case where the owner of a node decides to make it unavailable differs
| slightly from the failure case in that by reducing the owner's autonomy it is
k possible to reduce the expectation that loss of availability of this sort interferes in
{ a bad way with users of shared objects. Nonetheless, the name of the game is to
permit as much autonomy as possible. Were the owner to discover that a bug was
allowing remote users to access too much of his data, it would be nice if he could
shut off access to his shared objects immediately, even in the middle of "atomic”
actions, should that action not cause his own data to come to harm. Analogously,
even in a central system, protection mechanisms that allow for immediate access
revocation can introduce severe malfunctions into operations on shared data if
invoked at the wrong time- Consequently, the strong degrees of autonomy allow
actions by owners that look a lot like unpredictable failures from the user's point
of view.

As a result of these arguments, object interfaces that can handle sudden
loss of availability are absolutely essential in the autonomous distributed system
environment.

The model of failure recovery we have specified is closely allied with the
termination model of exception handling espoused in the exception handling
mechanisms of the CLU language[Liskov77b]. Upon encountering a failure that
prevents execution of the module, the execution of the module is terminated. In
the CLU termination model, the effect of the module for each type of failure is
specified as part of the interface; in contrast, we have taken the “stronger” view
that a failure is to be made equivalent to never executing the module, unless that
module explicitly chooses otherwise. Because the programmer of a module cannot
be expected to know about all possible failures that may result during the steps of
execution of the module, the "stronger” view is safer, handling unexpected failures
more effectively.

An alternative exception handling mechanism is the resumption model
described by Goodenough{Goodenough75] and Levin[Levin77]), in which the
module encountering an error is suspended and possibly resumed after recovering
from the error. Such a model did not seem appropriate for handling failures
resulting in loss of availability because a) the executing module may lose its state,
b) after an availability loss, it is difficult to tell a handler what to do to recover
from the the error, and c) it is hard to design the handler of such errors without

AR NS

it having to include detailed knowledge of the internal workings of a module, so
that the level of abstraction of the interface is compromised.

1.L.5 Conversational Interactions with Multiple Machines

Another aspect of the distributed system organization is that it ought to
allow on-line construction of unplanned-for actions determining the state of shared
objects at several nodes, and possibly even modifying other nodes as the result of
some decision made by a person sitting at a terminal. An important special case
occurs when the several machines are independently designed databases. Here the
problem is that the program and its actions are being created as the program is
executed, and outside the control of the system itself. Synchronization and failure
management techniques that work when the program is executing completely
under the control of the machine may not work. In addition, even if programs
can be prevented from making mistakes by some kind of verification method built
into the system, the user will make mistakes, and should have at hand means to
recover from his mistakes. If the failure management techniques built into the
system can generalize to the case of recovering from user mistakes, this would
tremendously aid in conversational use of systems.

1.2 Naming Mechanism as a Solution

This dissertation describes a system called NAMOS (Naming Applied to
Modular Object Synchronization). NAMOS consists of a unified approach to the
problems of synchronization and reliability just described. Of particular concern
are the problems of constructing modular systems and the problems of unplanned
concurrency and unexpected failure that we expect to arise in the construction of
distributed systems.

The central idea of the thesis is an unusual view of synchronization of
accesses to shared data. Traditionally synchronization has been achieved by
mutual exclusion. The approach to synchronization used in NAMOS is based on a
mechanism for naming states of the system and objects (hence the title of the
dissertation). To understand the difference between the two approaches it is
helpful to use a non-computer analogy in which both techniques are well
developed.

-19 -

[S T T —

" —

Consider a set of files (say personnel files) kept in a file storage room of

some organization. We may think of each file folder, labeled by a person's name,
as an object of the database. Occasionally, files must be inspected or updated.
For example, one might wish to compute the average salary of women in the
company. Or as a sample update, one might wish to modify the salaries of the
women in the company by an appropriate percentage so that the average woman's
salary is equal to the average man's. We impose a rather strong constraint on
these operations that is not usually required in such a set of files. The constraint
is that these "transactions” on the files must be atomic operations. That is, during
the computation of the average woman's salary, no woman’s salary is changed by
some other clerk. Similarly, in updating the women's salaries, no other clerk is to
change any of the men's or the women's salaries, to ensure that equality is
achieved. The strong constraint is not normally required in human-managed
systems because people are good at dealing with inconsistency. Computer
programs using a database, on the other hand, have few checks built in to deal
with inconsistency, so avoiding inconsistency is much more important.

One simple way to solve the problem of synchronizing the accesses made by
clerks to the database is to allow only one clerk into the room containing the files
at a time, and requiring that he remain there until completing the transaction.
This is the basic idea of mutual exclusion. The clerk gains exclusive access to the
entire state of the database, and can then make the modifications needed to
construct the next state of the database. A refinement can be made to this
approach, because normally clerks will need to access only a subset of the
database. The refinement consists of having the clerk go into the room and
collect all of the files he needs to read and update, replacing each file folder with
a note that indicates that the clerk has taken the file folder to his desk. The
clerk can then work with the set of file folders at his desk in private, and other
clerks can work on different scts of files independently. A clerk needing to access
a file folder that has been removed must wait for the folder to be returned. This
approach to synchronization is analogous to locking in the use of a computerized
database. Each clerk performs transactions by gaining exclusive access to the
group of files he needs to access for some period of time.

-20 -

. w - e —————

AR R BT

The approach in NAMOS is quite different. Assume that each file folder
contains only one item, say the salary of the person whose file it is. Instead of
erasing the current salary and replacing it with a new one when the salary is
changed, the salary of an individual is changed by adding to the file a new sheet
of paper with the new salary. Each sheet of paper with a salary is stamped with
the date and time when the salary becomes effective. How does this help? First
of all, consider a transaction that only reads the database, such as the one to
compute the average salary of all of the women. Instead of having to seize all of
the folders to prevent changes from happening, the clerk can simply take his time
in processing the folders; he simply must choose a date and time for which the
average is to be effective, then go to each woman's folder and read out the salary
corresponding to that date and time. Concurrently, other clerks may update the
women's salaries. However, a consistent computation of the average salary does
not interfere with the clerks that are updating salaries.

This strategy is equally applicable in a distributed database. If the
personnel files of a company are distributed to the company's many locations, it
may be unacceptable to gather up all of the files of women employees in order to
send them to company headquarters to compute the average. Instead, company
headquarters can send a memo to clerks at each site with instructions to sum up
the women's salaries effective as of a common date and time. The key idea here
is that the central headquarters can construct a name (consisting of the effective
date and time itself) for the state of the database at a particular time, and then
use that name to gain access to that state of the database even though the
database is under constant change. NAMOS provides a similar mechanism to
computer programs -- the ability to name particular states of the data stored in
the system along with the ability to use those names to gain access to the values
of data objects in the state.

Synchronizing updates in the salary database is somewhat tricky, however.
The salary adjustment for the women is performed by having the clerk decide
upon a time when the adjustment is to be effective. He then must compute the
average salary of the men and the average salary of the women as of just before
the effective time of the adjustment, to preclude any other changes to individual
salaries happening between the computation of the adjustment percentage and the
actual application of the adjustment to the women's salaries. After computing the

w3 -

adjustient percentage, the clerk then can go to each file and add a new salary
sheet with the adjusted salary.

The tricky part is in the interaction between the adjustment transaction
and any other clerk’s attempt to read salaries. Let T be the time the adjustment
is to be effective, and T-1 be the time at which the averages are computed in
order to compute the adjustment percentage. Although the adjustment is
effective at T, it may be that the performance of the adjustment is not completed
until sometime after T because the job is so difficult. Then it is possible that
another clerk will want to know the salary of Jane Jones at time T even though it
has not been computed yet. He may not even be aware that an update is in
progress. The most recent salary of Jane Jones recorded in her folder is that of
an earlier time. If he takes that salary as the value effective at T, and then the
adjustment is completed, then he will be wrong. There are two solutions to this
problem incorporated in NAMOS. First of all, reading a value out of the folder
always includes making a notation on the sheet containing the salary read that
indicates the effective time of the read. Thus, if Jane Jones's salary is read as of
time T, the sheet containing the salary believed to be effective then is noted to
have been read at time T. When the adjustment is applied, it will be discovered
that someone has already read a different salary than the one that has been
computed to be effective at time T. The clerk doing the adjustment would then
have no choice but to undo all of the adjustments to salaries he has made thus
far, choosing a new time for his adjustment to be effective. This is NAMOS's
primary solution, guaranteeing that each transaction is atomic.

In the case of the salary file, however, aborting the adjustment of all
women's salaries because someone at random read Jane Jones's salary is a bit
impractical. The solution does, however, work well in many applications. For
cases like the salary adjustment, though, NAMOS provides a second mechanism as
a refinement (the refinement is not described until chapter six). Essentially the
refinement amounts to allowing the clerk to mark all of the women's folders in
advance that a change may be made to the salaries as of time T. Thus a clerk
that queries Jane Jones's file will observe that the most recent salary on file for
Jane Jones is likely to change as of time T. He can then wait until the change is
made, or he can ignore the notation and read the most recent salary (deciding

that it is effective as of time T, and eventually aborting the adjustment as
before).

-1 -

A rather surprising property of the naming approach is that it is not
necessary to predict in advance what records might be accessed. Instead the
naming mechanism ensures that whenever a particular file is accessed, the proper
version is obtained. In the locking or mutual exclusion approach, a consistent
state is observed by assembling all of the relevant folders on one's desk at the
same time. In the naming approach, one can get a folder at a time, read the
correct version, and return it to the files, and still obtain a consistent state of the
system. This property is the essence of NAMOS's solution for the problem of
constructing new systems from existing ones. In a locking system, composition of
a new function from several pre-existing ones usually requires doing all seizing for
the composite operation before any component operation is executed.

NAMOS includes, as well as the naming approach to synchromization, an
approach to recovering from failures. Essentially the problem can be modeled in
the personnel file case as what happens when a clerk has a heart attack while in
the middle of carrying out a transaction (or in a distributed system, if one of the
planes carrying a message to a clerk at a remote site crashes). Part of the update
may have already been made, and no other clerk may know how much the clerk
had actually done. 1In the mutual exclusion case, to prepare for such an
eventuality, each clerk will have to diligently record the old value of any salaries
he updates in some sort of update log. He cannot return any files to the file
room until he has completed the update, because it might happen that that file
would be picked up by another clerk, used, returned, and then the original clerk
may have died. The problem is that the original clerk then must have his work
erased, but the other clerk has read the output of that work and there is no
record that he has read it.

NAMOS takes a different approach, that has a similar effect. Since an
update generates a new version, it is only that version that is affected if the clerk
dies after performing part of an update. The solution is to add to the sheet of
paper containing the new version a note to the effect that "this sheet is part of a
coordinated update being performed by clerk John Jones. To find out if the
update is completed, call John and ask if update 0987654327 has been completed.”
This has the effect that if John dies, someone will answer the phone and say that
John has died. John then merely has to record somewhere what the numbers of
the updates he has performed are, so that when he dies, the person taking over his

«23 -

job can answer the question. The update in progress when he dies will not be
performed, which is what is desired.

In some databases, recovery from failure is achieved by recording in a
central place a log, called an update log, of all changes made by transactions. An
entry in the log consists of a "transaction identifier” to identify the transaction
that changed the value, the name of the object changed, and the old value before
the change. A partly completed transaction can be undone by searching
backwards through the update log and undoing all of the changes made. In a
sense, the multiple versions of objects kept by NAMOS encode the same
information as the update log, but the old versions of objects are also directly
accessible for transactions to read after changing the objects, simplifying the
synchronization of concurrent transactions.

With this example the basic elements of NAMOS have been characterized.
In the remainder of the thesis, we explore the actual mechanisins needed to make
the analogy work in real computer systems. This involves some careful definition
of the exact behavior of the synchronization and reliability mechanisms, and some
engineering tradeoffs in making the system perform well.

What has not been captured in the analogy is the notion of constructing
transactions as modules that can be used in the building of other transactions. It
was noted above that because synchronization is achieved by naming states of
objects rather than seizing control of the objects, the NAMOS approach does not
require all resources used by a module to be known to its caller. Exploiting this
property requires designing in additional structure to the names used for states of
the system that is not present in the "date and time effective” name used for
states of the personnel files. The structure needed will be described in chapter
three.

1.3 Related Work

The fields of synchronization and reliability in computer systems are old, so
any attempt to list exhaustively the related literature would be unfortunately long.
However, a number of relatively recent developments in these fields have
particular bea: ag on the problems and approaches described in the thesis.

S34 .

Distributed systems are a more recent phenomenon, and the related
literature on the Kinds of approaches referred to here is very small. The idea of
distributed systems that are composed of autonomous nodes integrated only
loosely through agreements to use a common mechanism for sharing information
and services through the network is best described by d'Oliveira[DOliveira77) and
Saltzer[Saltzer78]. Related work to develop a system for integration of existing
programs on a set of relatively autonomous nodes is to be found in the National
Software Works Project described by Crocker[Crocker75]. Our work differs from
the National Software Works project in that it does not take as a requirement the
fact that existing programs and data need to be integrated, and can thus define a
much more coherent interface to be used by programs to facilitate easy sharing.

The work in developing languages to support design of objects and
operations in which information about the details of the implementation is largely
hidden from the user is basic to our approach to defining a system to support
decentralized development of software that is later shared. The languages
CLU[Liskov76,Liskov77a] and ALPHARD[Wuif74], along with the operating
system kernel Hydra|Wulf75], are essential precursors of the present thesis.

Qur approach to synchronization is derived from two distinct but closely
related ideas. First, the notion of version numbering to achieve synchronization is
closely related to the synchronization mechanism developed by the author and
Kanodia[Reed78). Maintaining a sequence of versions of an object was inspired .
by an idea present in both the TENEX file system[Bobrow72] and the ITS file
system[Eastlake69] where multiple versions of a file can be catalogued with
successive version numbers while accessing a file gets the most recently created
version by default. This provides a primitive synchronization mechanism among
the accesses to a file, allowing a new version of the file to be written while the
older version is still being read, giving a sort of "read-locking” for free.

The second related group of ideas involves the use of timestamps for
synchronization. Johnson and Thomas[Johnson75] suggested the first such
mechanism, which used timestamps plus an underlying property of the network
that messages are delivered in order to assure synchronization of a simple
distributed data base. Thomas{Thomas76] elaborated this approach to allow
somewhat more general operations, while still requiring that the database be
completely replicated at each node of the system. Lamport[Lamport78] describes

L

the use of timestamps to define an ordering among requests that can be used for
synchronization, and a simple algorithm to achieve mutually exclusive execution of
sequences of program in time in a distributed system based on timestamps. The
SDD-1 distributed database system developed by Computer Corporation of
America uses timestamps internally to enforce a locking
strategv[Bernstein77,Rothnie77].

The major difference between the use of timestamps to achieve
synchronization by these projects and our use of pseudo-time in NAMOS is that
pseudo-time is a part of the "programmer's box of tools” in NAMOS, whereas
timestamps arc hidden mechanisms in the above approaches.

The notion of designing a program that accesses shared objects by building
it out of pieces that execute as if they are the sole agents of change to shared
objects has its roots in the concept of a database transaction. The essence of the
database transaction concept is described quite well by Eswaran, er a/[Eswaran76).

Two nice overviews of the field of designing reliable systems are
Gray[Gray77] and Randell[Randell78]. They define the basic strategy of
backward error recovery used to handle loss of availability within NAMOS.

The implementation mechanisin used to support possibilities, the commit
record, is closely related to the intentions list of the algorithm used to achieve
coordinated reliable updates in Lampson and SturgisiLampson76). Also related is
the log mechanism described by Gray[Gray77] for handling the backwards
recovery of failed transactions in a central data base system. The two-phase
commit protocol described by Gray is essentially the same as the notion of making
all changes conditional on the eventual state of a commit record in NAMOS.
However, NAMOS supports modular construction of operations and objects, while
these other systems do not necessarily do so.

Lampson and Sturgis's approach to recovery also shares our basic
assumptions about the properties of memory described in chapter two, categorizing
memory into two classes -- stable and volatile.

iPh -

In essence, the NAMOS systemn developed here differs from other work in
synchronization and reliability because it ties together four related concepts in one
framework -- synchronization, reliability, modular construction of programs, and
decentralized, distributed systems. Not only does this ensure that the solutions
harmonize with one another, but in fact each problem is simpler when solved in
3 conjunction with the others. The simplification occurs because it is hard to
separate the four areas of synchronization, reliability, modular programming, and
distributed systems cleanly from one another -- one has to think about certain
parts of the other areas in dealing with any one area.

1.4 Thesis Plan

The remainder of the thesis is divided into two parts. The first part
consists of an explanation of the object level interfaces, and the semantics of
operations at this level. The second part discusses the issues of implementing the
interface on a distributed system, handling low-level failures of communications
and nodes, managing storage, and so forth. The description is done this way to
adhere to standard top-down design.

In fact, I think it is interesting to note that the actual thinking process was
not top down at all -- I was much more concerned with what was implementable
than with what to implement. Especially when dealing with fault-tolerant
mechanisms, one has to be careful not to ask for too much from a mechanism --
it may not be achievable. No matter how much one may try to sweep the
consequences of failures under the cover of the "system blanket,” it keeps burning
its way through. Consequently, some notion of the kinds of implementations that
are possible shows through in the interface semantics, and I will allude to various
notions in the description of the interface.

Chapter two, then, provides some background in the problems of
implementation. Failures of communications and nodes are described, and an
argument is made that low-level error correction (such as link-by-link error
correction, or reliable stream communication) is insufficient to solve the problem
of failure recovery. Similarly, some of the interaction between communications
technology of the packet network, reliability mechanisms, and proper
synchronization will be discussed.

A e

Chapter three begins the discussion of the object interface. Three basic
notions, the system history, creation of hypothetical states, and the frozen system
states in which computations can be executed (called pseudo-temporal
environments), are described, and linguistic constructs that reflect these notions are
developed. This chapter is long and involved because it presents all of the aspects
of the interface, which is quite different in some respects from traditional
synchronization mechanisms. Nonetheless, it is essential to the understanding of
the rest of the thesis.

Chapter four discusses several ways in which the object interface can be
used. A very important case, the creation of multi-node rransactions (as defined
by Eswaran et al.[Eswaran76]), will be shown to be easily handled with the object
interface. More importantly, the definition of unplanned transactions, and the
creation of conversational transactions will be shown to be easily accomplished.
Other uses, such as consistent recovery from permanent mistakes or errors
(backup), will be described. Finally, some “unstructured® ways to use the
mechanisms will be shown, for two reasons. First, I want to show that even with
my scheme, all is not perfect, and second, if there is no way for a mechanism to
be misused, one should suspect that there are probably some perfectly reasonable
uses that it cannot support.

Chapter five begins the discussion of implementation, talking about a
mechanism for implementing the hypothetical-ness of hypothetical states of the
system. The basic idea is to build at a low-level in the implementation data
representations that allow operations to be recoverable -- a term used by
Gray[Gray77] to mean that there is a single instant during their execution when
they "happen”. If a failure occurs before this instant, it is as if nothing had
happened, and if failure occurs afterwards, the operation is guaranteed to appear
to have completed correctly. A mechanism called a commit record that 1 have
developed is described, and various implementations are discussed.

Chapter six continues the discussion of the implementation, talking about
how the system state is built of states of individual objects related through the
concept of pseudo-time, and the representation of object histories. Issues that are
key to the implementation, such as the necessary synchronization of clocks,
management of storage for objects, and the details of representation of object
histories needed to ensure correct operation in the face of failure, are discussed.

<98 .

Optimization of performance of the mechanisms, and ways to eliminate deadlock
are also discussed.

Finally, chapter seven summarizes the thesis, giving goals and directions for |
future work. A particular issue, that of the compatibility of the mechanisms of
this thesis with specially designed hardware that makes the synchronization of
f objects on the same system quite inexpensive, is elaborated in some depth.

Chapter Two

The communications system and storage system

In this chapter I want to discuss the interactions of the low-level
components of the distributed system with synchronization and failure
management. The important components are the long-term memories of each
node and the message passing network that connects the nodes, allowing them to
call upon each other for services and access to data. In a sense, the characteristics
of the components constitute my assumptions about where the technology is and
where it is likely to go.

The major problems with each component consist of reliability problems
and synchronization problems. In turn, reliability breaks down into availability --
whether the component is available to have data placed into it and taken out of it
-- and integrity -- whether the data entrusted to the component is damaged or not.
Synchronization problems involve the ability to use the basic properties of both
the message system and the storage system to control the order of actions taken
by computations in the system. Since multiple computations will be proceeding in
parallel, with only loose coupling between the computations at best, the order of
actions taken in the system is relatively unconstrained. As shall be discussed, the
message system and the storages system each add the opportunity for more
unconstrained ordering of actions.

Both the message communications system and the data storage system are
quite similar in function. In each system, one places data into the system with
some tagging of the intended destination, and then later the data is taken out,
selecting the data by means of its destination tag. The differences between the
two are basically either technological or in their intended use. Typically the data
sent in a message is intended to be transient, used only once or not at all, and in
any case, used fairly promptly. In contrast, the data stored in a data record is to
be saved for many potential later uses, that can be separated by quite a long time
from the initial transmission.

3l -

It is, in fact, the case that a communications system can be built on what
seems to be a "memory” technology; for example, networks have been built by
connecting multiple processors to a shared bulk memory, such that messages to the
other processors are stored in queues polled by the other processors. The
distinction between such a system and a shared memory multiprocessor system is
slight. The construction of a memory system using communications hardware is
conceivable, but seems not to be a viable way to go (although once upon a time,
the cost per bit of delay lines was relatively quite cheap). Thus we cannot make
the simple argument that communications and memory are basically diiferent, and
that we must therefore distinguish the two.

I do, however, assume that there are two components, the communications
system and the storage system. The communications system is an abstraction
designed to capture the notion of data transport. The storage system is an
abstraction designed to capture the notion of long term memory of information.
These abstractions can be thought of as extreme points on a continuum that
contains all real storage and communications systems.

It is useful to distinguish the two components, given their basic similarity,
for two reasons. First, the autonomy property of the distributed system argues
against treating the shared network as a long-term repository of shared
information. Because the network is shared, it should do as little as possible for
its users in order to reduce user interdependence. Second, in the message
transmission mechanism, the tradeoff between reliability, cost and delay becomes
very important because of the large physical distances involved, whereas in a local
node, reliability can be achieved with relatively little cost and delay.
Consequently, the reliability strategies for data storage systems generally achieve a
high degree of reliability in the transmission of information from source to user,
while a significantly lesser degree is generally provided by message communication
systems.

Since in a distributed system, messages are used to request remote actions,
the properties of the inessage system both in terms of reliability and
synchronization have a serious effect on the ability to create actions that are
composed of several subactions initiated at several nodes by messages. Taking no
particular care to ensure reliability and synchronization of the delivery of
messages, the behavior of such an action (its semantics) in terms of its effect at

592

the multiple receiving nodes, and its interactions with other such actions that may
be initiated concurrently, is extremely complex to describe.

To reduce the complexity of describing the behavior of such actions, a
method based on numbering messages can be used to transform the problems of
lack of integrity, variable delay, and duplication into a common problem, lost
messages. The problem of coping with the unusual behavior of the message
system is thus reduced to coping with the problem of coping with lost messages.

2.1 Reliability of Message Communications

Achieving integrity of the messages sent through the communications
network is not usually a difficult problem. One can get quite a large amount of
integrity by associating a checksum of an appropriate size with a message,
checking upon receipt of all messages that the checksum correctly matches the
data in the message. I am assuming that errors within messages are random. The
result of the use of checksums is the transformation of all message content errors
into lost message errors (thus transforming a question of the integrity of the data
into a question of the instantaneous availability of the communications path
between source and destination). By the use of encryption of messages, one can
also treat attempts to modify messages in transit as random corruption of data in
the unenciphered forim of the messages(Kent76].

Messages are used either to communicate information to, or to cause
actions by, a computation at some other node. In essence, then, it is unimportant
where unavailability or lack of integrity occurs -- the important thing is that the
system as a whole provide reliability from the source computation to the
destination computation’s use of the message. Any guarantee of reliability of the
message system alone cannot ensure the reliable functioning of the system as a
whole, unless we make the rather unreasonable assumption that the only unreliable
component of the distributed system is the message transport mechanism. The
reliability of the message system itself is much less important than the function
the message system provides for coordinating responses to failures both inside and
outside the message system.

-3

e e — -

To detect failure of a requested action, the standard mechanism is positive
acknowledgment, i.e. when the action is performed, a message is used to inform
the requester that the action has been performed. Of course, the need to wait for
a positive response can lead to some rather serious problems. The basic problem
lies in the knowledge that the requester has of the state of his action after a
requesting message has been sent. If the requester receives a proper response, then
it is sure that the action has been performed. However, if it has received no
response, then the requester only knows that the request may not have been
processed, not that it has not been wholly or partially processed. Achieving
reliable control of remote actions requires some tricky design of the remote
actions, so that a request may be repeated if no response has been gotten in an
appropriate time, without causing errors due to running the request more than
once (such requests are idempotenr). Handling repeated requests will be discussed
shortly.

As a basic assumption, I conjecture that the problem of unexpected loss of
availability can be characterized by a request uncertainty principle, stated as
follows:

Once a remote action has been requested, the requester cannot
always determine, in a bounded time, whether or not it
has occurred.

A program that requests remote actions must thus always be prepared to somehow
handle the case that it has initiated a remote operation, but cannot determine the
status of its request. In non-distributed systems, this case is usually so rare that it
is not explicitly considered in the design of software.

Unfortunately, if the requesting node fails, or chooses to give up after a
while, it may be the case that it still does not know whether the request has been
processed. It is important that the system give the requester the option of giving
up without causing the possibly partially completed action to leave the system in
an irrecoverable state. The option to give up on a request that has not yet been
completed adds no difficulties that are not already present due to the possibility
of a failure of the requester, and adds to the autonomy of the requesting node.

w34 -

@

It is important to note that a certain part of the unreliability of the
message system cannot be reduced by using more reliable components. The
portion I refer to is that caused by autonomy. The likelihood that a node owner
will disconnect or shut off his machine is independent of the innate hardware
reliability. Also, it is often not economically feasible to provide complete
reliability of the message system, especially where long-distance communication,
with hazards of natural disasters, wars, etc., is involved in the system. For this
reason, the unreliability of the message system must be taken for granted, and
reflected in the application programming interface.

2.2 Synchronization of Message Communications

The primary problems with message communications from the point of
view of synchronization of remote actions are duplication and delay. In most
communications networks both of these problems arise normally, as a result of the
internal structure of the networks. Even were the network design specialized to
prevent duplication and varying delay on messages, however, protocols that
attempt to ensure the reliability of message communications will introduce these
factors anyway.

Duplication and loss of messages can be characterized quite simply. For
every message sent in the system, that message will arrive at its intended receiver
any number of times, from none on up. Delay can also be simply characterized
for the purposes of the thesis -- the individual arrivals of the copies of a message
may be at any times later than the sending of the message.

Duplication is a problem in the use of communications systems because
messages are usually used to cause actions at the receiver. Depending on the kind
of action, the repeated performance of the action requested by a message may be
an error -- for example, a message that requests the receiver to subtract one from
some integer cell will, if no attempt is inade to prevent repeated execution due to
duplicated messages, cause the cell to be decremented some number of times. One
way to avoid problems resulting from duplication is to remember all messages ever
received at the receiver, assuming that they are distinguishable. If the receivers of
the system all ignore duplicated messages based on this information, then the
behavior of the message system is simplified to the statement that for every
message sent, it is received at the intended receiver either once or never.

> 35 -

Remembering all messages received is a quite expensive strategy in terms of
the amount of memory needed at a node and the amount of time needed to
verify that a message is not duplicated. Another strategy that does not require
unbounded memory is to assign an identification number to all messages sent,
where each receiver stores the largest number attached to any received message,
and ignores any message that is received whose number is less than the number
currently stored at the receiver. In this strategy, all duplicates are thrown away,
but also non-duplicated messages that have a number less than the receiver
number may be thrown away (some lost messages can never be resent in this
strategy, since they may have identification numbers too low. A more expensive
variant of the scheme is to have each receiver remember the highest message
received from each source, so that the source can always retransmit the last
message sent). To minimize the number of messages thrown away erroneously,
the message identification numbers must be chosen so that messages are numbered
in an order that ascends as the arrival time of the first copy. In most networks,

the arrival time of the first copy is correlated strongly with time of sending, so by
using the clock time of sending as the identification number, the number of
messages falsely rejected as potential duplicates can be reduced.

Note well, however, that it is sufficient to number the messages arbitrarily
to achieve duplicate rejection -- the use of clocks, and mechanisms that ensure |
that two different messages get different identification numbers, are only ways to
ameliorate the false rejection problem.

I have enumerated these strategies for avoiding duplicate messages here
because they form a basis for the mechanisms that handle duplication of requests
in the system to be described in the rest of the thesis. An alternative approach to
the one 1 have taken would be to eliminate duplicates in a low-level
communications protocol, then build the system assuming that message
duplications never happen. I have not taken this approach for two reasons. First,
eliminating message duplications at a low level cannot help with the problem of
requests duplicated as a result of retransmission in an attempt to handle a request

g whose status is uncertain. In the system to be described, duplicate requests are
rejected in any case by mechanisms analogous to the mechanisms used for
duplicate message rejection. Since the only objection to a duplicate message is 1

that it may lead to a duplicate request, duplicate messages will be handled by the
higher level.

- 36 -

Varying delay of messages can lead to another sort of synchronization
problem. Messages can arrive in an order quite different from the order in which
they are sent. The simplest example is a computation that sends two messages to
the same receiver. If the first is delayed more than the second, then it may arrive
after the second message has been received and processed. However, this example

Fig. 2. Reordering of messages by the message system

A Site 1 Site 2

B
send to l send to 1
send to 2 receive (t'rom A) / send to 2
+ /
receive (from B) 4 receive (from B)

l\ receive (from A)

is rather tame compared with the one in figure 2 where each of two computations
send messages to each of two receivers. At one receiver, the message sent by
computation A arrives first. At the other, the message sent by computation B
arrives first. This possible order of arrival can happen no matter what order each
computation chooses to send the messages in. The result of this reordering of
messages is that it is not at all simple to understand what the result of a set of
actions requested by messages to remote sites will be. In the case shown in the
figure, there are four possible outcomes (assuming that the requests have effects
only at their destination site, so that the relative ordering of a pair of requests
destined for different sites can be ignored) -- 1) both of A's requests will be
processed before both of B's, 2) both of B's will precede A's, 3) A will precede B
on site 1, but not site 2, or 4) B will precede A on site 1, but not site 2. Given

37 -

n computations. each sending messages to m sites, the number of possible arrival
orderings is (n!)™. Such a large number (if n=m=5, there are 25x10° orderings)
of possible interactions among computations can be very hard to comprehend
when writing a program that requests remote operations. Certainly some strategy
is needed to make sure that under all possible arrival orderings, the proper result
is achieved.

Fortunately, there are ways to overcome the complexity resulting from
message reordering. The solution used in the thesis is based again on numbering
messages, and accepting at a receiver only messages that have a larger number
than the ones already received. If all messages intended for a particular receiver
are guaranteed to have distinct numbers, then the possible orders in which
messages can be received at a receiver are limited to subsequences of the sequence
defined by ordering all messages according to their message number. Messages
rejected at the receiver due to a too low message number are indistinguishable,
from the sender’s point of view, from lost messages.

Correlation between the order of message arrivals at several sites can be
achieved with the same numbering mechanism. If in the example above, the two
messages sent by A have the same number, and the two messages sent by B have
the same number (without loss of generality, greater than the number used by A),
then the possivle orders of arrival of messages can be thought of as having A
arrive before B at both receivers, and the subsequences that can result from loss
of individual messages in that ordering.

As in the similar scheme that allows detection of lost messages by
numbering messages, the choice of numbers may be arbitrary, subject to the
restriction that different messages intended for the same receiver have different
numbers. However, a completely arbitrary choice of message numbers can exact a
heavy penalty -- many rejections of otherwise acceptable messages. In the
example, if A's messages are generated and processed long before B even attempts
to send his messages, yet B uses a number less than the one A used, then B will
fail. By choosing message numbers so that they are chosen in an order that
ascends in time, then the likelihood of such unnecessary failures will be reduced.

Here we lose a useful property if we "improve” the scheme so that each
receiver remembers the highest message number received from each sender, and
rejects those messages that arrive out of the order sent by it sender. The
“improved” scheme cannot ensure a correlation among the messages sent by two

; different senders to two different receivers. Thus, if the two messages sent by A
have the same number, and the two by B also have the same number, all orders
| of arrival are still possible, in contrast with the two choices (A first at both sites,
or B first at both sites) achieved with the mechanism using a single highest
number at each receiver.

The method of numbering request messages and accepting messages only in
increasing order at a receiver is the basis for synchronization of remote actions in
the system developed in this thesis. However, as pointed out above, using the i
method at the message level without knowledge of the requirements of the higher
level is probably not as good as using the method at the request generation and
processing level to organize synchronization. At the level of the system concerned
with the actual semantics of the requests, the grouping of requests sent out with
the same message number can be chosen to have exactly the right effect.
Without semantic knowledge, the best the message level can guarantee is that
messages sent later will be processed later or not at all. A particular advantage of
handling delay and duplication at the request level is that out of order, duplicated,
and delayed messages do not always cause problems, depending on the semantics
of the actions and the objects they act upon. For example, if one asks for the
balances of two accounts at some database representing a branch bank, it makes
no difference if the responses are processed in an order different than the order
of the requests. Similarly, if one deposits two checks to one's account, it is, in the
long run at least, irrelevant in which order the checks clear. The mechanism
described in the thesis can often tolerate messages that arrive quite out of order.
Duplicated messages that cause no "side-effects” at the receiver (such as pure
queries) are always quite acceptable, and reordering such messages may often be
acceptable. Requiring that such requests be processed in the order they are issued

may cause a significant delay that is often unnecessary.

g 11

2.3 Reliability of Storage System

As noted earlier, the integrity of storage systems can be made quite high,
at reasonably low cost, by using error correcting/detecting codes. Further, the
availability of information stored on disk or other large scale secondary memory is
usually as good or better than the availability of the node to perform
computations. Failures of information to be available are usually transient (a disk
pack off-line), and only very rarely will a node’s storage system (taken as a whole,
including whatever local backup mechanism keeps extra copies of the state on
tape) lose information stored in it. Consequently, I will generally assume that a
node never loses information once it is properly stored on disk. This assumption
is not absolutely required -- it is possible to correct for loss of information by
"turning back the clock” and repeating the actions needed to create the
information. However, the mechanism developed in the thesis cannot
automatically correct for such loss of information, since once the information is
lost, there is no way to regenerate it except by going outside the system.

If the basic storage mechanism is not reliable enough, replication of
information to create redundant copies for the purpose of ensuring availability can
be used. Two possible kinds of replication are possible, either multiple copies
within a node, or multiple copies at several nodes. In the thesis, we assume that
replication within a node is the primary means for achieving availability.

However, in chapter five, a strategy for increasing the availability of a critical

class of system objects, possibilities, by multi-node replication is described. In
chapter six, a mechanism for encaching versions of objects to increase availability
and decrease delay is also described.

Systems have both long-term and short-term storage. It seems to be the
case in the real world, though it is not clear what the base cause is, that the more
rapid accesses (stores and updates) are only possible from storage that tends to
lose information upon failure -- core memory is more prone to failure than disk

or t:lpe.'

Thus the storage used to hold the frequently accessed transient states of
computations must be of the more volatile sort. Following the approach suggested
by Lampson and Sturgis[Lampson76] we capture this idea by considering two
kinds of storage in the nodes, stable storage and volatile storage. Stable storage is
the kind of storage used to hold objects for a long time (across system crashes),
while volatile storage is used to hold intermediate values created as part of
computations. Volatile storage will be thought of as belonging to a computation
that uses it, such that failure of the computation or the node running the

computation will cause the volatile storage to detectably lose its values.

The best definition of volatile and stable storage is in terms of their
interaction with failure. Once a stable storage record has been successfully
written, succeeding reads are guaranteed to return the value stored. Upon a
failure before the completion of an update is signalled, the updated storage
location (record) contains either the old value, the new value, or an unambiguous
indication that it is inconsistent. If an update signals its completion, the stable
storage location is guaranteed to contain the new value. Our definition of stable
storage is due to Lampson and SturgisfLampson76]. In contrast, once a volatile
storage location has been written, it may lose its value (detectably) at any time.

2.4 Synchronization of Storage Systems

There are two basic problems of synchronization in the storage systems.
First, there is the problem of making sure that the representation of data on
stable storage correctly represents the state of the computations that are making
changes to the storage. Second, there is the problem of making multiple changes
to storage consistently, without other computations at the node being able to
interfere by modifying data during the set of changes.

1. Core memory is non-volatile, but it is randomly addressable. If a failure
occurs in the addressing mechanismn, it can destroy any part of the core memory.
Tape and disk on the other hand, are not so randomly addressable, and have the
property that only the portion of the tape or disk currently accessible can be
damaged on a failure.

-8 -

it DU . e i i

The problem of ensuring that the representation of data on stable storage
is correct arises because of the common use of virtual memory systems to make
secondary storage look like primary memory and because of sophisticated disk
queueing algorithms. Basically, in many systems, a write to secondary storage may
not occur immediately when it is logically requested. Given two successive writes
to secondary storage, one at time t; and one at time ty (t;<t,), it is possible that
the one specified at t5 will happen first, and if a failure occurs, may be the only
one to happen. In the virtual memory case, the reordering of writes arises
because writes directly change the primary memory (volatile) copy, only later
modifying the secondary storage copy. Thus, if the modified pages of primary
memory are written out in a different order than that in which they were written
originally, the changes to secondary storage will be made in different order. Note
that this is only a problem when the system encounters failure, since accesses to
objects belonging in stable storage always go through primary memory. In the
case of optimizing disk queueing algorithms that reorder the write queue in order
to minimize seek time on movable head disks, the same problem can occur
because of the reordering. The solution in either case is to provide a mechanism
within the systemm whereby one can ensure that a particular modification to a
stable storage object has been completed to the point that the copy on stable
storage has been modified. In the virtual memory case, a call on the operating
system to "synchronize” secondary storage can be provided, whose semantics is not
to return until the secondary storage copy is identical to the primary memory
copy, using a forced disk write if necessary. In the case of optimizing queueing, a
call on the operating system to wait until a queued write is completed is one way
to provide the desired control. I will assume that such a mechanism is provided at
each node, and is used to insure that writes to stable storage used in the
algorithms executed at each node are done in the order specified by the algorithm.

The other problem of synchronization within a node is coordination
between several computations that attempt to modify more than one data record
on that node. This is the local node version of the general synchronization
problem attacked in the thesis. I am going to assume that the solution provided
in the rest of the thesis is used inside the local node for the general
synchronization case. However, there will be occasions in the construction of an
implementation where the need to synchronize action on a single data structure
composed of multiple records will arise. This is a simpler case, because there is no

. 42 -

S

need to be prepared for synchronization constraints that may include any set of
data objects on the local node. All that the nodes need to provide is a
mechanisin for creating atomic operations on individual data structures.

To this end, a node is expected to provide a very simple form of locking.
Associated with a data structure of the sort I am concerned with, there will be a
lock. Setting that lock prevents other computations from either reading or writing
the data structure. Only one lock may be set at a time by a computation, so that
there is no problem with deadlocks. Now the problem that must be solved is the
interaction of failure with the locks. If the computation that has the lock set
terminates without clearing the lock, then the data object must be presumed to
have been only partially modified. What must happen is that the data structure
being modified must be restored to its original state before proceeding, thus
having the effect that the local computation that set the lock appears to have
never run. A very simple mechanism that can be used to implement these
lockable data structures is shown in figure 3.

Fig. 3. Lockable Data Structure
Data Object Pointer

Process

Current VaH———»

Saved Val +———»

The new value constructed by a process that modifies the data structure is
constructed by copying enough of the original value to avoid actually modifying
the saved value. Since the saved value is not modified, resetting the data
structure to the saved value upon salvaging correctly causes the data structure to
appear as if it never was touched by the failed process.

The header contains three parts. The Process field is either null, indicating
that the data structure is not locked, or set to name a process that has the data
structure locked. If the Process field is non null, then if the named process exists,
only that process can read or modify the data structure. If the process named
does not exist (since it has failed), then the data structure must be salvaged. The
current val field is a pointer to the current value obtained by the process that
locks the data structure. The saved val field is set to be equal to the current val
field whenever the process field is set to a non-null value. The salvaging that
occurs when a process attempts to lock the data structure and discovers that the
process field is non-null and names a failed process consists of copying the saved
val field into the current val field.

An alternative mechanisin would be to have the process copy the value to
be modified into another storage area, modify it as nee<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>