
11 ~~~~~~~~~~~ -

I P Sharp Associates

f (i

~~ :~ 19i~ :: ;~

_

— — 0— ~~~
—

~~~
-
~~

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~—~~--~~~~--~~~~i _ _ _ _  

.~~~~~~~~~~~~~~~~~ 
. . -

— — ~~~~~~ 
—

~~~~~~
-
~~--~~~~~: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.______ ________ — . _ _ ___
~ 

.—

_______ 
I L...~ ~~~~~~~~~~

—--
~ 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— ________ — — . . . —

C..) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

- _E 
_ _ _ _ _ _ _

21



_ _ _ _ _ _ _ _ _ _  ~~~~~ ~~~~~~~~~~~~~~~~

Quarterly Technical Report
for

EUCLID Compiler for PDP-ll

N umber 1

PERIOD COVERED: 1 October 77 to 31 March 78

This research was sponsored by the
Defense Advanced Research Projects
Agency under ARPA Order No. 3475
Contract No. MDA 903-78-C-0037
Monitored by Steve Walker
Effective Date of Contract 1 Oct 1977
Contract Expiry Date 31 Mar 1979

A portion of this project is being
sponsored by the Canadian Department
of National Defence , Chief of Research
and Development

The views and conclusions in this document are those of the

author and his associates and should not be in terpreted as

necessarily representing the official  policies , either

expressed or implied, of the Defense Advanced Research

Projects Agency or the United States Government.

David Bonyun
I.P. Sharp Associates Limited
Suite 600 _______-- - -

-‘ 265 Can ing Aven ue I T}UZ c~ 1.

OTTAWA , Canada K1S 2E 1 :d.

78 11 21 Ø4 !~

— ~~~~~~~~



- V V

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Del. Entered)

D
~~~~

r1QT rt rtfi I U ~~kIT A TI(flJ D A r~ READ INSTRUCTIoNs
r~ u ijj’~~i ~~~~~~um II’~ I ~~ I ~~~~ BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER

~~~ T ITLE (en d Subtitl.) 5. TYPE OF REPORT & PERIOD COVERED

Compiler for PDP-11 
1 Quarterly Technica).

A !“~ 
D ~~~p~~I el ~ ~~~~~~~~~~~~~~~~ MUM BER

\fj 
~/IPSA—38l9—~~ l”7. AUTHOR(.) eeNTnfLGT ~~fl 6flArI T L,,~MS~~~(.)

D.A. Bonyun , I.P. Sharp Associates —
~~~~~~~~~~ y~s~

R.C. Holt, University of Toronto 1~~~
MD~~~~ 3-78-C~~,Ø37~ 4ff ~ 4

9. PERFORMING ORGANIZATION NAM E AND ADDRESS $0. PROGRAM ELEM~~~~ .~~MG4~~~ T , TA6$C.
AREA & WORK UNIT NUMBERS

I.P. Sharp Associates Limited
600-265 Can ing Avenue
OTTAWA ,_ Ontario ,_ Canada__K1S_ 2El 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

II. CONTROLLING OFFICE NAME AND ADDRESS 
~ 

4*~~~~~~~~~~T G~~TI

Information Processing Techniques ( )21 Apr~~~~~ 7~~,/Office ~ ~
DARP A ARLINGTON . VA 22209 29

$4. MONITORING AGENCY. N.~ ME & A DORESSOI diU.r. nt Item Controlling Office) $5. SECURITY CLASS. (ol mi. r.port)

~~~~ i~~j V i ~~ ~~~~~~~~~~- . ISa. DECLASSI FICAT ION/ DOWNGRADING
I L. I i SCHEDULE

1 I ~~~~ I 111) ft 
_ _ _IS. ~~4~~R,~~uT eKe TeMrnCl- (..Iih t, R..~,.,t) —

—

17. DISTRIBUTION STATEM ENT (.1 A. ab.(ii~Iint.r •d Sn Block 20. II dlII.reni from Rip ozf) /
Qu art i~r1y tec~tntca1 rept. no. 1~

1. Oct 77—~1 Mar 7’~,

$9. SUPPLEMENTARY NOTES

Part of this project is funded by the Canadian Department
of National De fence

19. KEY WOROS (Conhlnu. on rov.r.e .Id. lIn.c.aI ~ry end identify by block number)

EUCLI D, compiler , computer security

~O.\A 9ST RACT (Continue on r.v.r.. aid. if neceaa.,y end identity by block numb.?)

>~ The work towards a EUCLI D compiler for the PDP-1l is proceeding
satisfactorily although it has changed somewhat as the result
of e f for t  put into stabilizing the language .~~~~

DD , j AN 73 1413 EDITION or I NOV 65 IS OBSOL ETE UNCLASSIFIED
.4~ Q I e7 4~~C9~~ITY CLASSIFICATION OF THIS PAGE (Wt,.n D•te

~_ ) / ~~~. I 
~~~~~~~~~~~

L _ _ _ _ _ _ _ _ _



IV.. ~~~VVV .-~V ____________ . V-, - 
~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 
- 

~V_ ~_ V~V ~ V V

Quarter ly Technical Report #2
EUCLID Compiler .t’roject

• Table of Contents

Page

Report Summary 3

I BACKGROUND 5

II THE APPROACH 5

III LANGUAGE PROBLEMS 7

IV WORKING PAPERS 8

V CONCLUSION 8

APPENDIX A: Progress Report NO 1 9

APPENDIX B: Progress Report No 2 11

APPEN DI X C: ARPANET Communications Concerning 
V

P EUCLID Language 13

APPENDIX D: Minutes - Meeting 20

APPENDIX E: EUCLID Working Paper Notebook 27

Distribution List for Technical Reports 29

1~r~s ~~~ ~n

IDOC .~~~~,i .

I
t 

.

V 

-



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Quarterly Technical Report #1

EUCLID Compiler Project

Report Summary

The purpose of the project is to produce a compiler for the

language EUCLID for the PDP-11 computer. During the six

months of activity since 1 Oct 1977, the implementation team

at the University of Toronto have completed a “transliterator ”

which takes a well-defined subset of EUCLID to the UNIX

language, C. This product was delivered in January to FORD!

SRI and to TRW , the two potential users of EUCLID in the

deve lopment of KSOS , the Kernelized Secure Operating System.

In addition, within the reporting period, much work has been

accomplished in stabilizing the language and in preparing the

second product , the “ translator ” . This will compile full

EUCLID to PDP-ll assembler omitting one or two of EUCLID ’s

particular difficulties especially the handling of legality

assertions.

The techniques employed by the team are essentially those

pioneered and developed by the University of Toronto’s

Computer Systems Research Group. The team is composed of two

professors (Hol t and Wor tman) , one CSRG staff programmer

(Cordy) and two I.P. Sharp people (Crowe and Bonyun). The

strategy is to move through three distinct but unequal phases ,

each with a product (the transliterator , the translator , and

the f ina l  compiler) .

3

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



The work is progressing smoothly and satisfactorily except

that it has fallen behind schedule by one to three months.

The reason is that a great deal of unexpected e f fo r t  has gone

into stabilizing the language which was not as well-defined

and bug-free as had been anticipated when the project began .

Appendix C is a catalogue of communications with the EUCLID

committee on these matters. Appendix D is the printed form

of the minutes of a meeting between the implementation team

and the EUCLID committee at ZEROX PARC in January 1978.

Several working papers have been produced. These are

catalogued in Appendix E.

::
4 A

______________________ ____________ - 
_ V~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~



F~
y
~~ 

.- 

~

V - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ -~~

Quarterly Technical Report #1

EUCLID Compiler Project

I. BACKGROUN D

This work was undertaken at the suggestion of Mr. Steve Walker ,

former ly of the Information Processing Off ice of ARPA, who had

caused the language EUCLID to come into being originally. The

language is designed to permit the coding of programs to be

verified. This was specifically done to permi t the coding of

the security kernel for the UNIX operating system.

Because of the desire of the Canadian Department of National

Defence (DND ) to contribute to and to participate in the work

towards a fully secure , kernelized operating system , the

initial stage and some of the intermediate stages of thi s

project are being funded by them. The work is being done in

Canada by a team composed of people from I.P. Sharp Associates

Limi ted and from the University of Toronto . It is being

monitored , in part , by DND.

II. THE APPROACH

The work being undertaken follows exactly the plan laid out in

the original proposal. Essentially this involves the delivery

of three separate products: a transliterator , a translator and

the final compiler.

The transliterator takes a well-defined subset of EUCLID ,

dubbed “small EUCLID” to the UNIX language , C. The subset was

5 

j

_ _ _ _ _



chosen on two bases: what was required for the compiler (which

is to be written in the subset), and what was easily translated

to C. This transliterator, which permits bootstrapping the

compiler , was completed in 1977 and delivered, at the request

of Mr. Walker, to TRW at Los Angeles, and to FORD/SRI at Menlo

Park. These two are the competetors for the secure UNIX

project. Both agreed that the transliterator delivery was

successfully accomplished .

The translator is the full compiler omitting one or two of the

more complex attributes of the language. In particular the

handling of legality assertions will not be considered until

the full compiler state. It translates the full language

EUCLID into PDP-1l assembler. Although it was to have been

delivered in April 1978, language problems (to be discussed in

paragraph III) have delayed it until July 1978.

The compiler will incorporate all those features requi red by

the language but deferred from the translator. It is

scheduled for delivery by January 1978, but will likely be 1

to 3 months late.

The technology employed throughout the three major stages

identified above is that in constant use by the Computer

System Research Group of the University of Toronto. They have

been successful in a number of previous compilers using the

same basic approach , and their fami liarity with EUCLID

(through Jim Horning who was at U of T while being part of the 
V

6

V _ _ _ _ _ _ _ _



_ _ _ _ _ _ _ _ _ _ _ _ _  

. I

design committee) made them obvious choices to do the work .

The participation of I.P. Sharp is to provide a commerical

basis for continuity and modifications.

III. LANGUAGE PROBLEMS

As has been mentioned above, there have been a number of

diff iculties detected within the language as the work

proceeded. These “instabilities ” have been the cause of a

great deal of ARPANET communication between the compiler team

and the design committee. The communications culminated in a

joint meeting in Palo Alto in January 1978 in which most of

the outstanding issues were resolved. Appendix C is an index

of the ARPANET mail on this subject; Appendix D provides the

minutes of the meeting. It is hoped that a new revised

language report will appear soon which will set into context

all the changes which have occurred.

As an example of issues which have been raised and, for the

most part, satisfactorily resolved, there is the problem of

the “unspeakable assertion” . Although the translator will not

handle assertions , it is clear that an eye must be kept on the

whole list of different features at this stage so that their V

subsequent addition will be neither unduly difficult nor

impossible.

An “unspeakable assertion” is an assertion occurring in a

module and requiring for its statement the use of object names

which have not been explicitly imported to that module. The

V 7 

— . V ~~~~~~~~~~~~~ - —-:--_. . ___ 
~~
.- 

_______ 



solution to the prob lem involves a closure to the imports

list.

The language instabilities have caused the team a great deal

of unanticipated work . For this reason the translator and the

compiler are both likely to be delayed somewhat: the

translator is about 3 months late; the compiler ’s delay is not

yet determinable , but will likely not be more than 3 months .

IV. WORKING PAPERS

Throughout the project a number of working papers have

appeared and continue to be written. Appendix E gives an

index of those appearing within the reporting period . If

anyone requires the full paper , requests ough t to be directed

to David Bonyun , I.?. Sharp Associates Limited , Suite 600,

265 Carling Aven ue , Ottawa K1S 2E1, Canada .

V. CONCLUSIONS

The work continues to go satisfactorily. Although the latter

two products will be a little late , the prime users of these

products do not seem to find a great deal of hardship in the

delay . Summaries of work accomplished so far, as seen by the

University of Toronto subcontractors , occur as Appendices A

and B.

8 1 .

~~~~~~~~~~~
- ,— -.

~~~~- -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~ . ~~~~~~~~~~~~~~~~~~~~ . •~~~~~~~~~ V .~~~~



_ _ _  -~~~~

APPENDIX A

Progress Report No 1
(1 Oct. — 31 Dec., 1978)

This period has been occupied in preparing for the construction

of a Translator ~or the full EUCLID language . The central

aspect of this work has been the production of a Small EUCLI D

Transliterator , which will be one of the primary tools for

building the Translator. The following has been accomplished

during this period.

1. Design and documentation of the Small EUCLID language ,
which is a subset of full EUCLID. The full EUCLID
Translator will be written in Small EUCLID.

2. Maintenance of the Scanner , which makes up part of
the Transliterator and later part of the Translator.

3. Design and implementation of the Parser skeleton ,
which makes up part of the Transliterator and later
part of the Translator.

4. Design, implementation , bootstrapping and distribution
of the Trans].jterator , which maps Small EUCLID
programs into C programs, so they can be run under the
UNIX operating system.

5. Design and implementation of a preliminary I/O support
system under UNIX.

6. Extensive interaction with the EUCLID Language Design
committee via the ARPANET and at a meeting in
California. These interactions have been necessary
because various aspects of the language have continued
to evolve.

During this period, many of the basic design decisions for the

Translator have been made , although detailed design remains to

be done. The implementation team has organized itself into an

efficiently functioning unit. The EUCLID language has shown

9

L ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ . . ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ V ~~~~~



— V V V  . .
_ ~~~~~ . - ~~ . .~~~~ ... ~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ uu~~~

itself to be somewhat more complex and less stable than

originally hoped for.

Not as much was accomplished during this period as was hoped

for. While this may cause slight deferment of the completion

of the project, there seems to be no fundamental difficulty in

V 
carrying out the project in approximately the manner

originally proposed.

11

— p

10

- -. ~~~~~ V~ VV-~-~ _ . - ~~~~~~ VVV~~~~~~ ~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~ ~~~~~ V~~~~~~~_ V  ~~~~~~~~~~ ~~~~~~~~~~~~ _~__~. . V



r
~

r 
- 

. — 
- - ____________________ 

- - _________

APPENDIX B

Progress Report No 2
(1 January 1978 - 31 March 1978)

Progress during this period has been characterized by (1)

continuing implementation of previously designed software and

(2) development of the overall design of the EUCLID

V translator. Our next major delivery of software is to be a

translator for EUCLID that produces PDP-ll code. This

translator should translate itself as its first major task.

We plan to deliver the translator in July 1978, but this date

could possibly slip.

The project is now perhaps three months behind where we had

originally hoped to be. The major delay has been the continu-

ing effort required to disainbiguate the EUCLID language

specifications. This effort is documented in a large notebook

of ARPANET communications that we have had with the EUCLID

committee. This effort was not included as a part of the

original implementation project proposal. Despite this delay ,

no major difficulties are foreseen in completing the project.

In detail, the period ’s progress included:

1. Meeting with the EUCLID language design committee in
January to iron out a number of language
specification problems. H

2. Production, testing and distribution of a parser for
the full EUCLID language.

3. Design of a production I/O system for interfacing to
V UNIX.

4. Design and specification of streams for translator
interpass communication .

11

V . V V ~~~~~~~~ 
-V U ,. V

— ~~~~~--—---- .- -—--~~~— .--- ~~~~~~~~~~ - -~~~-~~ V--~~~~-~~~~~~- 
- ,



-~~~~~~~~ 
--

~~~~~~~~~~~~~~~~~
-.

~~~~~~~~~~~~
- - -- - -- — - -

~~
--- - - - V

5. Allocation of responsibi lities to translator passes .

6. Design of disk-resident structures for symbol table
and type tab le .

7. Design of mechanisms for supporting parameterized
types.

8. Design of type and symbol table mechanisms for the
translator.

9. Preparation of a number of project working papers to
document the design of the translator .

These are overall designs which will evolve somewhat during

detailed design and actual implementation.

12

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--- -

~~ 

,

~~~~~~~~~
. 
~~~~~~~~~~~~~~~~~~~~~~~~~~



V ~~~~~~~~~ V_V - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VVV ~VVV~~~ V~VV~V , V  • .~V V ,V.V.V. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -V

APPENDIX C

ARPANET Communications Concerning EUCLID Language

SECTION 1: Clarification Requests

SUBJECT

CR#l Semicolon rules

CR#2 When can “ = “ be used

CR#3 Uses of “with”

CR#4 Imported enum. types

CR#5 Access to Internal Nodule Variables

CR#6 Literal Tags for Variant Records

CR#7 “Const” vs. “Readonly” for imports

CR#8 “Const” vs. “Readonly” vs. “Var” for modules

CR#9 Allow “containing variable” for “import”

CR#1O End record vs. end indentifier
V 

CR#ll Meaning of “opaque”

CR#12 Forcing import of “readonly ” variables

CR#l3 Meaning of first and last

CR#l4 Finding ordinal of enum. value

CR#15 Functions that do not return values

CR#16 Exporting only some enum. values

CR#l7 Readonly modules that import variables

CR#18 Holes in records

CR#l9 Implicitly importing a collection

CR#2 0 (An official Hard Problem) Naming exported types

13 

:: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~~~~~~~~~~~~~~~~~~ .V • V_~~• V
~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _  

-

SECTION 1: Clarification Requests

SUBJECT

CR#2 1 Aliasing asserts for pointers

CR#22 Generality of returned types

CR#23 Preassertions in type declarations

CR#24 Type compatability rules

CR#25 “Any ” as parameter of C.New

CR#26 Exporting enum . values

CR#27 Passing “size ” to “allocate”

CR#28 Impossible assertions using components of exported
types

CR#29 Subscripts IVfl type names, legality assertions

- 

-
~ CR#30 Components of forinals , assertions

CR#3l Re: details pg. 31—32

CR#32 Pg. 32 line 5 and collections
V 

CR#33 Compat., well—behaved for sets

CR#34 Assertions for missing case e lement

CR#35 Consistency and spelling rules

CR#36 Identifier after module

CR#37 Initialization affects compatibility rules?

CR#38 ItsType for M.D. record fields

CR#39 Consider “ . .“ to be operator?

• CR#40 Dummy Argument in EUCLID

CR #41 Impossible Assert for type actual range

CR#42 A modest proposal for Legality Assertions via”?”

CR#43 Order of destruction of array elements

14

V 

V V V  

V ~~~~~~~~~~~~~~~~~~



_ _ _-_  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - V— V  

~~
-V
~~~~~~ -V -V V~~~~~~~~~~~~~ ~VV~~~~ V 

~1

SECTION 1: Clari fication Requests

SUBJECT

CR#44 Assertion for function at call

CR#45 Assertion for value in return

CR#46 More on returning values

CR#47 Actual values for unknown in New

CR#48 Violation of static need-to-know

CR~49 Evading scope of converters

CR#5O Why export type with type?

CR#51 Position of invariant

CR#52 Use of half-defined collections

CR#53 Generality of type formals

CR#54 Order of case variants

CR#55 Dangling bindings

CR#55a Empty Subranges

CR#56 Record scopes , opening via dot

CR#57 Anomaly on legality of <~~~=

CR#58 Unspeakable assertion for tags

CR#59 Parame terized module types

~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ V_ _  _ _



V _V V~~~~~~~~~~~~~~~ V - V  V-V~~~~~~~~ -V~~~~ 
V

SECTION 2: Interpretations

SUBJECT

Interp#46 Compat of built-in types

Interp#47 When initializa tion is (not) part of type

Interp#48 Use of variables in initialization

Interp#49 Order of ini tialization

Interp#5O Compat. of parameterized modules

Interp#50a m it. of record fields but not array cmpnts

Interp#5l Multiple use of tag assumed illegal

Interpl52 Parameter cmpts of types are not inherited

Interp#53 Variant incrementing of coll. counts

Interp#54 Range of variant tag is manifest

Interp#55 m it. of variant records

Interp*56 Manifest types for structured constants

Interp#57 Examples of record/module scopes -.

Interp#58 No Var . Recs . for struct. consts . - .

Interp#59 Standard components in assertions

Interp*60 Recursion only with explicitly importation - .

Interp#61 Abstraction function considered to be comment

Interp#62 Illegal e.g. , pg. 31 
- .

Interp#63 Naming enum. values , scope rules - .

Interp#64 Li terals , exported types , “Real” example

Interp#65 Error in “Rea l”  example comparison? - .

Interp*66 Definition of manifest  constant 
- -

Interp#67 Use of “ unknown ” - .

18 
-

~

V ~~~~~~~~~~ V~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~-



- - - -- - V  - 
- 

—

I. I

SECTION 2: Interpretations

SUBJECT

Interp#68 Dangling pointers

Interp#69 Error of $N for $$N

Interp#70 Confusion on scope inside “ loop”

Interp#71 Wierd loop on pg. 53

Interp#72 Id. following “module”

Interp#73 Illegal type component e.g.

Interp#74 Missing “ readon ly ” pg. 40

19

- - T - 
V - J



- —-~~ -~~~~~~ -- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

APPENDIX B

Minutes — Meeting
(6-7 January , 1978)

The numbering of issue s in the report matches those in 78- 3 and

78-4 from Wortnian, with a few extra items appended to the end.

I have put them in order of discussion , rather than in numeric

order.

STRINGS

We propose changing the report to use the CSRG-designed string

type in place of the current type . We will change the example

to use them also, except that we may use the current string

type in an example to illustrate how other string-like types

can be defined.

VARIABLES THAT START WITH VI

These are now illegal.

EXPORTED TYPES THAT IMPORT VAR~IABLES

If a (module) type , Inner , inside another module type , Outer ,

imports a VAR, then Inner cannot be exported from Outer.

MAN IFESTNESS OF FORMALS

See RESTRICTIONS ON FORMAL PARAME TERS OF TYPES in this report.

DANGLING POINTERS

1. Add the optional attribute CHECKABLE to a collection type
defini t ion.

2. Add the standard component re fCoun t to dynami c variables
in CHECKABLE or COUNTE D collections.

20

•~~~~~~~ V V~~~ V V -~~ ~~~~~~~~~ V ~~~~~~~~



_______________ -V V~~ V_  
~~~~~~~~~~~~~~~~~~~~~~~ 

VV -V _~ V

3. The appropriate legality assertion for C.Free(v) is
v. re fCount=l .

4. It  is illegal to use C.Free in a checked scope unless C
is CHECKABLE .

Notes: (a) A CHECKABLE collection pays the reference
counting overhead in all scopes , whe ther CHECKED
or UNCHECKED.

(b) The implementation for a CHECKABLE, uncounted
collection , CUC implements a var p as a pointer
to a two-component record (allocated from the
system zone , not from CUC ) with another level
of pointer to the value as one component , and a
reference count as the other.

RETURN VALUES

They will  remain as currently defined in the Report.

RESTRICTIONS ON FORMAL PARAMETE RS OF TYPES

The following rule, proposed by Butler Lampson , was accepted:

“If  you import a parameteri zed type , you mus t also import the

identifiers used in its formal parameter list , exclusive of

its formal parameter identifiers.”

SYNTAX FOR DECLARING TYPE CONVERTERS

The syntax proposed by the implementation team was accepted;

an identifier so-declared obeys normal scope rules.

COMPONENTS FOR EXPRESSIONS

The type of an INTEGER expression is INTEGER. The standard

components f i rs t, last , and size are not defined for type

INTEGER. A ‘value ’ can only be a variable , a constant , or a

function call (not a generalized expression) .

21

- -  ~~~ V~~~~~~ V -V V — — — VT~~~~~~~~~~~~ —~~~~~~~~ -~~~—~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~



V -
~~~~~~

PERVASIVE IMPLIES POTENTIALLY RECURSIVE

Toronto restriction accepted; i .e . ,  PERVASIVE does not imply

automatic importation of type/routine name into its own scope .

ORDER OF FINALIZATION

The order of initialization for an array A is in increased

order from A.IndexType.first through A.IndexType . last; for a

record , the components are initialized in the order ( lef t-to-

right) in which they were written in the record definition .

For both initialization and finalization, a contained variable

is initialized/finalized resp . by in i t ia l iz ing/ f inal iz ing its

component parts. Finalization is done for arrays and records

in the reverse order of initialization. This is consistent

with the order of finalization for the variables and constants

in a given scope , since it is treated as a nested set of micro

scopes, each beginning at a new declaration (thus , the

finalization for the variables looks more like the inside-out

of the rule than the rule of components at the same level)

COUNTED COLLECTIONS

Yes , lots of counting for assignment (145) ; yes, variant record

af fects counting (153) , bindings are treated like pointer

assignment; deallocating pointers into counted collections

requires decrementing reference counts. There is a problem

with module assignment (“ ml := m2” smashes ml but no FINALLY

will be done for it , and two copies of the original value of

m2 will later be finalized) ,  so assignment of modules with

22 - t

- 

— V V - 
•
~ 

- 
V~ V ~~~~~ ~~~~~~~~ ~~~ ~~~~~~~~~~~~~ VV VVJ .~~ V~~~~~~

V
~~~ 

-



4 7

~~~
—

~“--~ ~~~~~~ 
- ---- -..

~
.- ______ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ V_ ~~~~~

FINALLY is prohibited (Jim H. remembers this being decided,

others do not; I think that we should accept it as a decision

anyway) .

VARIANT RECORDS

itsTag standard component accepted. Tag field can be a

literal or expression (use the OTHERWISE label to handle the

possible infinity of leftover cases). Case labels cannot be

non—manifest constants. Three proposals were presented for

initializing the tag of a variant record ((b) was the one

accepted) :

(a) v: T(ANY :=red) (default specified when a variant
record declared, not when the
type is defined)

(b) TYPE T(tag: Color) = RECORD

CASE tag DEFAULT red OF (the “DE FAULT red”
part is optional)

red => .

green =~~ .

END CASE

(c) Do nothing

A new syntax was accepted for the discriminating case state-

ment. Change the syntax on p. 51 of the report.

simpleCase CASE expression caseTail

discrimiriatingCase ::= CASE object caseTail

caseTail : : OF caseBody END CASE

23

~ V _ _ _ _ _



r - 
- V_ __ V V V - r r r  -V -- — — _ V

~
V -~~~ ~~__Z_~

___

If a variant record variable is declared with ANY or with a

non—manifest tag, it must be discriminated to access the

variant components. The labels in a variant record

declaration are restricted to being identifiers , literals or

ranges.

LEGALITY ASSERTION FOR FUNCTION RETURN VALUE

The return-value identifier is now mandatory .

LEGALITY ASSERTION AT POINT OF FUNCTION CALL

The legality assertion is speakable.

EXPORTING THE ABILITY TO POINT TO

Can export WITH

MANIFESTNESS OF STRUCTURED CONSTANTS

Structured constants must be manifest.

WELL-BEHAVED RULE

As specified in message #48 (PARC msg number), 13 SEPT 77.

PROPERTY X

Still a hard problem; CHECKABLE collections may help.

SEPARATE COMPILATION

Report stands unchanged.

24

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- - — - - ~~~~~ V -  —--V— - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ITEMS ADDED DURING THE MEETING:

TRANSITIVE CLOSURE OF IMPORT LISTS

The following syntax was developed (with Mitchell’s strong —

dissent) for the compiler to produce an annotated listing

that would be acceptable compiler input later (and also to

allow a list of import lists instead of just one). The

identifier list after THUS would be supplied by the compiler

in the listing and ignored by it if seen as input:

importClause : := singlelmportClause
{“ ;“ singlelmportClause) I empty

singlelmportClause ::= IMPORTS importList [THUS importList]

importList ::= “ ( “  importltem i” , ” importltem) “)“

Rules about implicitly imported identifiers:

(1) An implicitly imported identifier cannot be
redeclared in any scope into which it is implicitly
imported.

(2) An implicitly imported identifier cannot be used in
any scope in which it is so imported; if it is
needed , it must be imported explicitly .

NEW VERSION OF THE REPORT

The Palo Alto-based contingent of the committee will produce a

new version of the EUCLID report incorporating all known

changes through January 7, 1978 by mid-March , 1978.

MESSAGES ABOUT EUCLID

We will publish a memo saying how we will coordinate messages

and responses by the end of January.

25

VV 

V 

_ __ _  _ _



V .  VV 
-- - 

—-~~~~~~~~~ a~t~ : - -  — - -~~~~~~~~

PROOF RULES

No more changes will be made to the Acta Informatica paper

before it is published .

ASSIGNMENT OF ARRAYS/RECORDS WITH VARIANT COMPONENTS

This will not be allowed , and the report will be changed to

make this clear (especially p. 32)

THE TYPE-SAMENESS RULE

Most of the heat (and little of the light) in the meeting

surrounded this discussion. It was finally voted on with the

outcome in favor of the current rule, revised as indicated in

various places (Votes: for Toronto rule: 2, for Report rule :

6, abstentions: 2). As penance , the committee will write a

complete sameness rule with all the fixes and send it to the

implementation team soon. -

Jim Mitchell

P.S. The implementation team and I have already gone over

these minutes together; this is the final, approved version.

26

_ _ _ _ _ _ _ _ _ _ _ _ _



-V V - _ V -~~~~~ _VV V V~~~~ V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V_

APPENDI X E

EUCLID Working Paper Notebook

NUMBER TITLE

1 On Legality Assertions in EUCLID

2 A Possible EUCLID Compiler Structure

3 Structure of the Scanner and Screener

4 Programming Conventions

5 A Syntax/Semantics Language

6 Small EUCLID

7 The Syntax of Small EUCLID and Small C

8 Screener Output Files

9 Fi l€ Input/Output Routines

10 A Child ’s Guide to Imports and Exports

11 A User-Oriented Syntax of Full EUCLID

12 A Discussion of “ A User—Oriented Syntax of
Full EUCLI D ”

13 Format of the Syntax/ Semantic Tables

14 A Run-Time Mode l for EUCLID

15 EUCLID Language-Defined Identif iers

16 Notes on EUCLID Compiler Structure

17 Procedure Linkage on the PDP-ll
(SUE.8 Working Paper 9)

18 Constant Folding in Postfix Expressions

19 Syntax of the Parser Output for the Full
EUCLID Translator

20 Input/Output in EUCLID

27

~~~~~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- - V__ V -V_V VVVV_ —— 
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

NUMBER TITLE

21 Some Major Tasks for Jan 1 - July 1, 1978
EUCLID Implementation

22 The Sizer - A Part of the Conformance Checker

23 The Dot Interpreter - A Part of the Bui lder

24 The Constant Folder

25 Evaluating Literals and Folding Constants

26 Proposed EUCLID Translator Structure

27 Notes on the Structure of the EUCLID Translator

28 Value Descriptors

29 Type Table - Detailed Description

30 Symbol Table - Detailed Description

31 Variant Records and Discriminating Cases

32 Interface to Disk-Resident Tables

33 Set Operations in Small EUCLID

34 Compiling Parameterized Types

-

~~~~~~~~~~~~~~~ V 

28

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V -  

- 

- -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~ -V



r--
~~ 

- - V

-

Distribution List for Technical Reports

ARPA, Attn: Program Management 2 copies
1400 Wilson Blvd.
ARLINGTON , VA 22209

Dr. G.X. Amey 1 copy
CRAD DST(SE)4
Department of National Defence
101 Colonel By Drive
OTTAWA, Canada K1A 0K2

Defense Documentation Center (DDC) 12 copies
Cameron Station
ALEXANDRIA , VA 22314

Letters of Transmittal sent to:

Mr. Ken Layer
Science Procurement Branch , CCC
llCl Place du Portage , Phase III
11 Laurier Street
HULL, Quebec K1A 0S5

Defense Contract Administration Service
Management Area , Ottawa
219 Laurier Avenue , West
6th Floor
OTTAWA, Canada K1A 0S5

Mr. Steve Walker
OSD-CCCI
The Pentagon
WASHINGTON , D.C. 20310

29

~ 

~~~~~~~~~~~~~~~~~~~~~~ 1_i 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


