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ABSTRACT

Equations of yaw, sway, roll and rudder motions are formulated to
represent realistic maneuvering behavior of high-speed ships such as
destroyers. Important coupling terms between yaw, sway, roll and rudder
were included on the basis of recent captive model test results of a high-
speed'ship. A series of computer runs was made by using the equations of
yaw, sway, roll and rudder motions. Results indicate substantial coupling
effects between yaw, roll, and rudder, which introduce changes in maneuver-
ing characteristics and reduce course stability in high-speed operation.
These effects together with relatively small GM (which is typical for
certain high-speed ships) produce large rolling motions in a seaway as fre-
quently observed in actual operations. Results of digital simulations and
captive model tests clearly indicate the major contributing factors to such

excessive rolling motions at sea.
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Ship Hydrodynamics
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NOMENCLATURE

reference area (A = fH, £2, or BH)

yaw gain constant

ship beam

yaw-rate gain constant

sway gain constant

sway-rate gain constant

water depth

subscript e indicates the value at the equilibrium condition
Froude number (U/A/gZ )

acceleration due to gravitx

ship draft

moment of inertia referred to z-axis

ship length

mass of ship

hydrodynamic and aerodynamic yaw moment

derivative of hydrodynamic yaw moment with respect to yaw acceleration
derivative of hydrodynamic yaw moment with respect to sideslip velocity
propeller.revolutions per second

derivative of hydrodynamic yaw moment with respect to rudder angle
yaw rate

time constant of rudder in control system

ship speed (U =W)

component of ship speed along x-axis
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component of ship speed along y-axis
hydrodynamic and aerodynamic force component in x-axis direction
hy&rodynamic force component along x-axis due to propeller

derivative of hydrodynamic force component along x-axis with respect
to surge acceleration

second derivative of hydrodynamic force component aleng x-axis direc-
tion with respect to sideslip velocity and yaw angular velocity

total resistance along x-axis
hydrodynamic and aerodynamic force component along y-axis

derivative of hydrodynamic force component along y-axis with respect
to yaw rate

derivative of hydrcdynamic force component along y-axis with respect
to sideslip velocity

derivative of hydrodynamic force component along y-axis with respect
to sideslip acceleration

derivative of hydrodvnamic force component along y-axis with respect
to rudder angle

drift angle (usin-] %9

rudder angle

heading angle of ship

Dimensionless Forms

Most dimensionless expressions in this paper follow SNAME nomencla-

The dimensionless form of a quantity is indicated by the prime of

that quantity. Examples are shown below:

Typical
Quantity Typical Symbol Dimensionless Form
! b
Length Yo Yo yo/L
Force Y y! = Y/%AU2
Moment . N N! = N/-%AIZU2
Mass m m! = m/‘% AL
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Quantity

Angular velocity
Static force rate
Static moment rate
Rudder force rate
Damping force rate
Damping moment rate
Inertial coefficient
Inertial coefficient
Moment of inertia
Velocity

Time

Typical Symbol
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Typical

Dimensionless Form
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INTRODUCT I ON

When a ship is proceeding at a high-speed in a seaway, serious rolling
motions are frequently observed in actual ship operacions and in model
testing in wave's,"z Anomalous behavior of rolling and steering was clearly
evident, for example, in full-scale tests of a high-speed container ship

during cross-Atlantic operations!.

Certain Naval ships have the following hull form characteristics
which have major impacts on ship performance in particular, maneuvering and

rolling behavior:

(1) High speeds with large &/B ratio and relatively small GM.
(2) Fore-and-aft asymmetry .
(e.g., with a sonar dome at the bow, cee Figure 1).

(3) Relatively large rudder.

This particular hull form characteristics introduces the possibilities
of fairly significant yaw-sway-roll-rudder coupling effects during high-

speed operations.

The major objective of this study is to examine the coupled motions
of yaw, sway, roll and rudder for high-speed ships (e.g., hull forms similar

to destroyers) through digital simulation studies.

Due to lack of available hydrodynamic data, no extensive digital
simulation effort has been made previously, in the area of maneuvering
performance with inclusion of roll motion efrect wich should have an
important impa-t during high-speed operations. ‘ecently, under other
simul taneous research program- at Davidson Laboratory, a high-speed ship was
extensively tested in the rotating-arm facility with inclusion of roll
motion effect. Test results clearly indicated fairly significant couplings
between yaw-sway-roll-rudder motions. Accordingly, a mathematical model
was formulated on the basis of these experimental results combined with
analytical estimations, for a 500 ft long hull form which is similar to

that of high-speed naval ships.

A series of computer runs were made by using equations of yaw, sway,

roll and rudder motions on a digital computer,




Results indicated substantial coupling effects between yaw, sway,

-

roll and rudder, which introduce changes in maneuvering and rolling
behavior. For example, coupling terms introduce destabilizing effects
on course stability and increase turning performance at high-speeds.
These coupling effects together with relatively small GM produce large |
rolling motions in operations in seaways. Effects of yaw- sway- roll-

rudder coupling on the possibility of yaw-roll instability were clearly

demonstrated in simulation results.

This report has been prepareu for the Office of Naval Research
under Contract NOOO14-67-A-0202-0040. (DL Project 4007/143).
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HULL CONFIGURAT{ONS

A high-speed hull form to be considered in this study includes the

following characteristics as shown in a table below:

A

- (1) High length-beam ratio and relatively small GM

- for high-speed operation.

“ ‘
FUb Pl WL A

- (2) Fore-and-aft asymmetry, which is more pronounced for naval

ships with appendages than that for commercial ships.

(3) Relatively large rudder.

w‘ “
Ut R
[

. Length, ipp’ ft 500.0
c Beam at WL, B, ft 60.0
Draft, H, ft 17.0

!
ih
i

Rudder Area Ratio, Ar/f.H 1740

Block Coefficient, Cb 0.56

The above mentioned hull-form characteristics introduces a fairly
substantial hydrodynamic coupling effects between yaw-sway-roll-rudder

motions.

I i I
MWMHMHMHWWMHJWMMM'WHM”

ALl

Figure 2 shows two curves which indicate the distance of CG of

the local sectional area from the longitudinal centerline at roll angle

= T =

P = 0 and 15 degrees. The curves can be considered to be equivalent

to camberline of the wing section.

||\”<.|dn! LT

Figure 3 shows the other example of the camberline for the hull

W
v

form shown in the top of the figure.

f:‘ A

When roll angle is not zero, the camberline is not straight line,

!
HH"!‘\NM i i

as shown in these figures introducing hydrodynamic yaw moment and side force.

This trend is pronounced by the fore-and-aft asymmetry of hull form, in

particular, during higa-speed operation.
E = Figure 4 shows, for example, captive model test results of yaw-roll

coupling effect, indicating hydrodynamic yaw moment to port introduced by

uydm‘
ol

roll angle to starboard.

i

BASIC EQUATIONS FOR YAW-SWAY-ROLL-RUDDER MOTIONS

On the basis of captive model test results together with analytical
estimations, an effort was made to formulate the equations of yaw-sway-roll-
rudder motions to represent realistic maneuvering and rolling behavior

of a high-speed ship.




Figure A-1 shows the coordinate system used to define ship motions

[
m

with major symbols which follow the nomenclature used in previous papers.
Longitudinal and transverse horizontal axes of the ship are represented

by the x- and y- axes with origin fixed at the center of gravity., By

O Yk

w

reference to these body axes, the equations of motion of a ship in the

i+

horizontal plane can be written in the form:

i

LE =N (Yaw)

196 =K (Rol1)

m{v+ur) =Y (Sway) (1)
m{d-vr) = X  (Surge)

where N, K, Y, and X represent total hydrodynamic terms generated by

ship motions, rudder and propeller.

Xo ==

Figure A-1. Orientation of Coordinate Axes Fixed in Ship éi‘

Hydrodynamic furces are expressed in terms of dimensionless quantities,

N', K', Y', and X' based on non-dimensionalizing parameters p (water

§ density), U (resultant ship velocity relative to the water), and A, i.e., 1

| T @) 1
i 2 2 §=é
g Hydrodynamic coefficients vary with position, attitude, rudder angle, == £
g propeller revolution, and velocity of the ship, For example, in the case of £ %
§ hydrodynamic yaw moment coefficient, § §
% 2

N! = NI(Vl,rl’s’yé’VI'il’nl’ul, ?’¢l,u‘) (3) f% g

where % :
v ‘o 2 2
visgerterg,yi=to s ol e, P o

[3 ne ue % :
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Finally, the following polynomials were obtained for predictions

of ship dynamic motions:

- ' ' 1. 12 0 1,13 3 9 3
N 3 ta,v +a3r +au6+a5y°+a6v r +a7v r +a8v' +a9r +a]05
. '3 .y . ° 4 .o'

MR P PURASE AR TR st T L T

A Y! = 5]+b2v'+b3r'+bh6+b5yé+b6v'2r'+b7v'r'3+b8v'3+b9r'a+b

] I o My} ot
hypYg Hoypf by gV by by (@TD, 0

3
10°

U= code,vir'+c,v!%+c, 6% 4c, 014X}
X <y czv r c3v ché c.-u +Xp

5

s K = dy+d,viedyried, b+d ordcpi+d o +dgft4d o ¥ (4)

ROLL-YAW COUPLED INSTABILITY

Figure 5 shows roll extinction curves obtained in simulation runs
on a straight course at 30 knots having GM values of 3 ft and 2 ft.
This particular result was obtained in the roll equation uncoupled from
yaw and sway equations. The roll response shown in the figure can he
considered to be realistic on the basis of comparison with results obtained

from model tests of a similar high-sperd ship shown in the same figure.

. When roll extinction curves were obtained in simulation runs in
equations of roll-yaw-sway coupled motions, an important change in ro'l-
: ing and yawing behavior was taken place. Roll-yaw coupled instability

% was clearly indicated in test runs. Figure 6 shows time history of roll
: and yaw motions starting on a straight course at 30 knots with an initial

roll angle of 10 degrees. The roll extinction curve is approximately

the same as that shown in the previous figure at the initial portion of

t]

s g
>

o

the run. However, subsequent roll and yaw motions are divergent, indicating

roll-yaw coupled instability. When an autopilot is adequately included in

T
5t these yaw-sway-roll coupled motions, stability characteristics of the
ship system is improved as shown in Figure 7, where the above mentioned

|

&2

=
=

roll-yaw instability is eliminated.
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PREDICTIONS OF RESPONSE TO TURNING AND Z-MANEUVERS

Figures 8 and 9 show response to 20°-20° Z-mzneuver having GM of
3.0 and 25.0 feet. The approach speed is 30 knots in the tests. A
comparison of heading angle response is shown in Figure 8, which clearly
indicates a greater overshoot angle with GM of 3.0 feet relative to that
with GM of 25.0 feet. It is clearly evident in this figure that course
stability characteristics are deteriorated with reduction in GM, Figure
9 shows a substantial difference in rolling behavior with GM of 3 and 25
feet. " It should be noted in this figure that the largest roll angle is
generated for the case of GM of 3.0 feet when the rudder angle is shifted
to the other direction. This clearly indicates that the rudder angle

has a counteracting effect to outward heel angle during steady turning.

Figures 10 and 11 show computer-plotted turning and rolling character-

istics in deep water. The major parameter changes in computer runs were
as follows:

1. Rudder Angle = 35o
2. GM = 2,0', 3,0, 25.0'

Roll angle during enter-a-turn is shown, for example, in Figure 11,

which confirms very well previous full-scale observations.

Figures 10 and 11 clearly show the effect of GM on turning and
rolling characteristics. Substantial changes in maneuvering characteristics
(i.e., reduction in course-keeping and increase in turning performance)

are clearly evident in these figures with a decrease in GM.
YAW-SWAY-ROLL-RUDDER COUPLED MOTIONS WITH AUTOPILOT

Roll-yaw coupled instability was clearly indicated in yaw-sway-roll
coupled motions in the previous test runs. In actual ship operations,
rudder is actively used, introducing important effects on yaw-sway-roll

motions.

Let us consider the ship dynamic behavior under the following

conditions:

When the ship is proceeding on a straight course, a certain external
disturbance (e.g., the roll moment due to beam wind) is given stepwise
to the ship. When the ship is rolled to the starboard, for example, due

to beam wind from the port, an asymmetry is formed in the underwater

J
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portion of the hull as shown in the previous figure (i.e., Figure 2).

As a result, hydrodynamic yaw moment is generated to deviate the ship
heading to the port. Subsequently, the rudder is activated by the auto-
pilot to the starboard to correct heading angle deviation. This starboard
rudder angle produces the roll angle further to the starboard., Under this

condition, the possibility of instability exists in the ship systems.

Accordingly, simulations were carried cut under the following
conditions:

The 500 ft long ship was proceeding on a straight course at an approach
speed of 30 knots. A stepwise roll moment (e.g., due to beam wind from the
port) was given to the ship. The magnitude of the moment is equivalent
to a statlcally generated roll angle of 5 degrees. The subsequent dynamic
response of the ship was computed with inclusion of an autopilot system,

which can be represented as:

=]
I

d = a (U"lbd)‘l'b'li"

where 6d desired rudder angle

wd = desired heading angle
a = yaw gain
b! = yaw-rate gain

Figures 12 and 13 show oscillatory motions for the case where GM =
2 ft, yaw gain = 3, and yaw-rate gain = 0. Instability of the ship systems
is clearly evident in the figure.

When GM is increased to 3 ft, the stability characteristics is improved

as shown in Figures 14 and 15.

When the autopilot is refined with addition of yaw-rate gain of 0.5,
further improvement in the stability characteristics is shown in Figures 16
and 17. It should be noted here that the autopilot refinement substantially

improved the rolling behavior as shown in these figures.

The results mentioned in the above clearly indicate the possibility
of instability due to a stepwise disturbance. During actual operations in
seaways, continuous disturbances are given to the ship due to wind and
waves. Accordingly, even marginal yaw-roll-rudder instability can introduce

serious rolling problems in seaways.

O
I IO




==

W

Such difficulties have been frequently indicated in full-scale observations

il

1.2
3 and model tests. Figure 18 shows, for example, the possibility of yaw
instability obtained by J. F. Dalzell during model tests of a high-speed

.. 2
ship in waves.
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CONCLUDING REMARKS

The purpose of this study was to develop mathematical equations of
yaw, sway, roll and rudder to represent realistic maneuvering behavior of
high~speed naval ships, and subsequently to examine yawing and rolling mo-

tions during high-speed operations through a series of simulation runms.

Based on recent captive-model test results of a high-speed ship con-
figuration, important coupling effects between yaw, sway, roll and rudder
motions were incluaed in the mathematical model. Cartain terms such as yaw
moment due to roll angle were not adequately considered in previous studies.
1t was found in this study that these terms have important impact on maneuver-
ing and rolling behavior, introducing the possibilities of instability and

serious rolling problems during high-speed operations in seaways.
The major findings obtained in this study are summarized as follows:

(1) Roll angle introdices asymmetry of underwater portion of hull
form relative to the longitudi..al centerline, which generates
yaw moment due to roll (i.e., N@¢)° This particulziy term in-
troduces a tendency to turn to port when the ship is heeled to
starboard, contributing to inherent yaw instability due to roll
combined together with other coupling terms such as Ke and K!

6
(i.e., roll-moment due to sideslip and rudder angle, respectively).

(2) When GM is relatively small (which is the case for most high-speed
ships), the above-mentioned coupling terms can introduce severe
rolling motions in a seaway. This was clearly indicated in sub-

stantial rolling motions during turning and Z-maneuvers.,

(3) The possibility of yaw-roll instability exists for the ship system

with autopilot during high-speed operations with small GM.

(L) Refinement in the autopilot characteristics has important effects
on yawing and rolling behavior of the ship.

(5) Serious rolling problems frequently observed during high-speed
operation in waves can partly be due to inherent yaw-roll in-

stability (or marginal stability).

o

s

e A




.
£
H
£

z

ACKNOWLEDGMENTS

The author wishes to thank Mr. J. F. Dalzell and Dr. A. Strumpf for

their valuable discussions during various stages of this study.

REFERENCES

1. Taggart, R., ‘Anomalous Behavior of Merchant Ship Steering Systems,!!
Marine Technology, 1970.

2, Dalzell, J.F. and Chiocco, M.J., 'Mave Loads in Model of the SL-7 Con-
tainer Ship Running at Oblique Heading in Regular Waves,!' Technical
Report $SC-239(SL-7-2), prepared for the Ship Structural Committee, 1973.

3. Baitis, A.E., Meyers, W.G. and Applebee, T.R., 'A Non-Aviation Data Base
for Naval Ships,! NSRDC-SPD-738-01, 1976,

L, Eda, H., "Directional Stability and Control of Ships in Restricted Chan-
nels,'" TSNAME, 1971.

5. Eda, H, and Crane, C.L., Jr., 'Steering Characteristics of Ships in Calm
Water and Waves,! TSNAME, 1965.

6. Eda, H., "Steering Control of Ships in Waves,! Davidson Laboratory Report
1205, June 1967. (Presented at the International Theoretical and Applied
Mechanics Symposium in London, April 1972.)

7. Eda, H., ‘'Low-Speed Controllability of Ships in Winds," J. of Ship Research,
1968,

8. Eda, H., 'Course Stability, Turning Performance, and Connect on Force of
Barge Systems in Coastal Seaways,'' TSNAME, 1972.

10

a8 0 it bR i P w1 oo

bt o oot ot b0 o I




FIGURE 1., BODY PLANS OF REPRESENTATIVE NAVAL SHIPS
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