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This paper presents a general theorem on the invariant behavior of

a certain function of a matrix. It then shows the importance of this

result principally by using it to derive properties of certain maximum

likelihood estimates which arise when considering problems such as the

location of a. moving obj ect being surveyed from a moving observatory

when all data on location are subject to stochastic error. This problem

is important in tracking objects either from an observatory satellite or

from a transport plane bearing ground seeking radar. Some applications to

this situation are made.

Key words and phrases. Multivariate analysis , multivariate normal

errors of observation , model for tracking objects, estimators of

heading and velocity, distribution of radar errors , observation

and predict ion in aerial surveillance
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1. INTRODUCTION

This paper stems, in part , from two earlier proprietary reports, viz.

Saunders (1965) and. Saunders and. Johnson (19614) ,  dealing with statistical

problems arising from the estimation of the position, heading and velocity

of a moving object using data which are subject to statistical error.

These data were presumed to have been obtained from observations made

during one overflight when the exact location of the observatory platform

is not precisely known with respect to the ground. The solution of this

problem was originally intended to assist in the determination of both

the travel and location of ships when using data obtained from an observa-

tory satellite. Recently the same mathematical problems have arisen with

the introduction of ground mapping radar which is being born by airplanes

and used in the observation and prediction of position of moving land.

vehicles.

In the first section a theorem on the behavior of a certain function

of a matrix is stated and proved. In the following sections a simple

model with normal errors for the moving traget from a moving observatory

is given and the maximum likelihood estimates of target position are

obtained. The theorem is then utilized to yield certain invariance

properties of these estimates.

2. Th~ GENERAL THEOREM

We now state and prove a general result on the behavior of a particular

function of positive definite matrices.

3.
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Theorem 1: Let c be a given real number, E~, 
~~~
‘ ~~~ 

positive

definite (symmetric ) matrices and the matrix function F (t ) ,  defined

for any real t by the expression

21+tz0 
_l

i 
I

F(t) = (I , (t+c)I)  2 1~11
+t1

0 
Z2
+2tE1+t~~0 ~ (t+c )I ,

then F(t) F(O).

Proof. The res ult will hold if f (t )  ~ uF(t)u ’ is independent of t for

all vectors u of appropriate dimenaion. Note

1i~~
1o ~~~~~~ U t

f(t) = (u, (t+c)u )
11
+t10 12

÷2t1
1
÷t101 (t+c)u’

Further note that if A is non-singular, then

I A+w’wI = !A I l I4-A~~w’wl = I A I  (l+wA~~w’) ,

so that

-1 IA +wt wlwA w’ = - 1 .I Al

Consequently, f ( t )  independent of t is equivalent to

(2 i) 
11+t10+(t±c )u ’u

‘l~~~O

12+2t11+t210

2

1~.
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independent cf t. If the numerator is indepencient of t for all u

then the denominator will also be independent of t by taking u

Us i ng the fact that if A is nori -~ ingu1ar

IA D_BI A 1B~ ,

we obtain for the numerator of (2.3.);

I 2J ± u ’u~~~~~ ±~t~~ +t ~: ±(t+~~) u ’u -

[11+cu I u~ t (l~ +u i u) 1 (~0
4,J, U Ya 11+~~~ ÷(~ +C)U I U ) l

The first term is independent of t. The matrix in the second. term is

E2
2tE

1
rt~~~0

.(t ~~~ ) u ~~~ -

- 2t (7~1
±cu I u) - t (:0-ru ’u)  ,

‘which upon expansthn and siciplification reduces to

u - (~ ~cu
1 u) (>;~+u’ ~~~ (~1+cu’ u)

This expression is independent of t , ~hicb completes the proof.

3. THE MODEL AND ITS A~S~~~~ IO~S

We shall speak of the object (or target ) and the observatory, including

thereby all apnlications, with the understanding that both points are ~EvirIg

3



with respect to a. given coordinate axis. Our first task is to derive the

appropriate densi ty of the observations of target positions relative to a

fixed coordinate axis , as determined from the observatory.

We now specify precisely the assumptions on which our analysis is

based. These are:

10 The observatory moves at constant height linearly above the plane

with a known constant velocity.

2° The object moves linearly in the plane at a constant but unknown

veloci. ty.

3° The estimated position coordinates of the observatory over the

plane, as determined from the ground at a given time, are

bivariate normal random variables with known cova.riance.

ts.° The estimated position coordinates of the object in the plane,

as determined relative to the true position of the observatory,

are biva.riate normal random variables and successive observations of

such relative positions are independent.

5° Time between successive observations can be measured with sufficient

accuracy so that errors of pcsition due to time inaccuracy are

negligible.

6° The parameters of the covariance matrix of the observations of

ob ect position relative to the true observatory position can

be determined from bearing angle and range data.

On a single overflight, an observatory ma~r make several observations

of the position of an object and our first problem is to determine the

~io1nt distribution of the observations of the target position, using the

fact that the target position relative to the observatory is subject to
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observational error, as is the estirtat e of the observatory positions

relative to the ground. Thus , at a given time t~ we assume the

observatory is at some position, say ~~~~ and the target at some

position 
~~ 

both in a plane located with respect to a given coor-

dinate system. However, the position of the object as observed by

radar from the observatory is subject to chance error and hence, the

radar estimate of the object position from the observatory position is

a random variable, say X1. Now a radar measurement from the ground

at time t0 of the observatori position p
0 on the given coordinate

system is also a random variable, call it Y.

From assumptions 1° and 2° ‘we have that the observatory follows a

linear path in the plane, say p.~ = ‘.+ et , as does the object , say,

= a - i - f3t. (Greek letters denote points in the plane. )

Without loss of generality, we can select our coordinates so that

the first coordinate of ~ is in the direction of observatory travel

and hence, the second coordinate of ~ is zero. Moreover, by assumption

1~, the first coordinate of ~ is known.

Again, following the general mathematical assumptions 3° and 4 °,

w~ have that X1, for i l,...,n, and Y are bivariate normal.

More specifically, X~, has mean vector ~.t~~-Q1 and known covariance

matrix C~~ , whereas Y has me an vector p0 and covariance matrix

That is, for i =

X. -. !~~~i . -p . , C~~~ ) and Y —

The data obtained from the observatory yield. the observations

= X1
+Y for i = l,...,n and in this section we seek to derive the

joint density, f , of Z =  (z1,..., Z~). Since Z~ = X~ +Y, it follows
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I
that Var(Z~) C~~ + and Cov(Z~, z~) -- D~~ for i / j  ,

i,j = l,...,n. Hence

I = Cov(Z) = (~1.C~~ 4-D~~’) ,

where is the Kronecker delta. Setting

= A

it follows that

(3.1) = - c~ (D ÷ c2 ) c ~

This inversion is a consequence of the

Lemma: If Q2,.. . ,Q,~ are non-singular symmetric matrices of the same

dimension and

~ 1
.

H = dIag(Q1,...,Q~ ) + (i , . .. , i)  ,

then

H 1 
= ~~~~~~~~~~~ .,~~~~

1
) - 

~~
‘M

l)  ÷ 
i.!~ 

~~
iM )

l
(ç

l . ci)

See Householder (19611.), p. 1211..
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Specifically, the choice of Q1 C~~ , M~ = D 1 yields the result

claLmed.

Noting that /i. = A.~, it follows that A is itself symmetric.

Except for elementary debails we have obtained the basic

Theorem 2: Thc distribution of the observaticns of target nosition

z = (z1,... ,z ) ,  obtained from the observatory i~

z ~~~~~~

~:ith density function

k l / 2
= ‘

~~~ 

—

~~~~~ 

exp [— ~ (z—V)A (L -’,)’ } ,
(2i~)

where z ~ R2fl , v = (v1,...,
v~~) = 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~

= ~:
_l 

is defined by (3 . :.) , and

DI ~I IC .!
~A I -

I D +1 cj
1

1

Theorem 2 tells us that a single observation of observatory position

from a bivariate n~-rmal distribution relative to the ground, combined with

n observations of the 3bject position, which are normally distributed

relative to the ~hseiv~tox~ position yields a joint normal distribution of

observed target positions relative to the ground. Our next problem is to

f’ind. a best estimate of the target course using this normal distribution

of error and the assumption that the target is moving linearly at a constant

veloci t:,r .

7 4



THE MAXIMUM LIKELIHOOD ESTIMATES AND THEIR DISTRIBUTION

Thus, we want to find the maximum likelihood estimate (MLE), 
~~

of future target positions ~~~~~ as a function of t. By properties

of the MLE,

A A A
= a + ~t ,

A A
where CY and ~ are the NLE ’ s of a and. ~~. To complete the pi cture

we need to know the distribution of (a,~ ).

Recall that v1 = 
~~~~~~~~ 

= (a+st0)+ (~-e)t~, for i = l,...,ri.

If we define ~ = a ÷ ste, K = ~~-E and obtain the MEET s of 7 and IC,

then we can easily obtain the NLE ’s of a,~~.

The likelihood function is, with = z~~-V1 for i =

L = log~E~ — n log (2it ) -
1,~)

Introduce the notation for the coordinates of

IC = (ic 1,1c2 ) ,

then writing 
~k 

= (
~ lk,o2k ) for k = 1,2 where is the Kronecker

delta we obtain, by taking partial derivatives, the two equations for k =  1,:~,

(11.i ) = ~~
. 

• l~ ~~~~~ + 
~~~~~~~

(1~.2) .
~~~~~~~ 

~~

. 

~~~ 
t~ ~~~~~~~ + t1~~z~1~ r,~ )

8
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Realizing the second terra in each expression is a scal a.r, and thus equal

to its own transpose, the two equatic’n~ ~~ (~Li)  and the two equations

in (~i- .2)  can be written matrix form, upon equating to zero, as

= (0,0)

E ~~~~~~~~~~ = (0,0)

Note that

z. + z . .- 2~’ - K ( t .  4 -t . )  ,1 , 3  2. 3 1 J

t.r. ÷t  ~ = t z + t z. - y(t.+t .) - 2Kt .t .
31- i j  ~~i 13  1 3  2 . 3

By substitution, we obtain from (11..3) and (11~ 14) the equations

(~ .5 ) I (z . -1-z.)A. . = 2 y 1  A . .  + K E (t~ ÷ t .)A . .  ,
1 3 1 3  - . 1 3  1

. 3 131,j  1~~3 , j

(14 .6 )  1 (t .z + t ,. z . )A .  . = y ~ (t. + t . ) A. . + 2K Z t . t .A. .
-; . 3~~ 1 3  13 . . 1 3 13 . . 13 13
,~~., 1~~3

Writing these in matrix notation, ‘we h ave

(~~ . 7)  (7 ,K )  

~ ~:) 
= 

~~~~~

9
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where

t. +t.

~~~ 
A . .  , l~~ 121 

1 
~ A1~ , E~~ 

~~~~~~ 
~~~~~~~

Define the !aatrix F = (F . . )  by = ~ (A~~-FA~1) for i,j =

so that F -—— with the obvious definition of the partitioned

matrix A’ = (~ L )  where A~~. = A.
~~
. By rearranging some summations,

‘,~1.8) Ill _ A1~ ‘~l2 I~~ = 1  ~~~~~~ 122 = I t . t .F1.
1,3 1,3 1, j

I z.F. ‘4, = I1 1 i3  2 . . 1 3 1 31,3 1~~3

If we denote

S
_i 

= (I~~) , s = (s~~) , i, j  = 1,2

then 4.7)can bewitt~~ a~ ~~~~~~ 
= (~r1,~fr~ )S , with

( .  
~l~ll 

+ 

~2~2l 
‘ ~i~l2 

+ ~~
2

~~~22

where ~~~~ We now wr ite from the defi ni tion of

L

i’

_ _ _ _ _



I I F . I t S .lj 3 13
(11..io) 

~‘l’~’2~ 
z1,...,z ) (  ~

I P . , In.J

or in matrix notation, with the obvious definition,

= zu.

By Theorem 2, Z is fl,(v , .A 1) arid. ~r is fl,(vu, U’A 1U) . Since

= IjrS, ~~~~ is fl,(vus ,Q ), where Q = S’U ’A~~~US. We x~ w prove that

(11~.i1) VUS = (y,K)

—l —To do this we ma~ce use of the identities which follow from E S =

The first component of the vector VUS is

I (7-F,ct . )F1.S11 (y-f/ctjb.F ..S
211,3  1~~3

= y( 111S11 + z12s21
) + K ( E 21S~~~+ E22S21) = y .

The second component of the vector VUS is

I (Y~~t~)F1~s12 +I (v~~t1 )t~F1~S22
1~~3 1~~3

+ 125 )  ÷ K( 121812 + 1
22322

) = K

which completes the proof of (Ii..ll). I~

11
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We have just obtained

Theorem 3: The IvILE, ~~~~~ of (Cz,~~) has components given by

A A Aa = 7-€t 0 , = K+6 ,

A Awhere (y, ic) are defined by (I1..9). Furthermore (Q,~) ..~1t((c ~,~ ) ,Q) with

Q = S’U ’A 1US ~11

From this we obtain

Coroilarv:~~ If, from conditions of symmetry, the additionai assumption
that

(~4..12) A’A ’A’ = A

holds, then

Q = S ’U ’A 1
U S S .

Proof. From (14..lO)

1F11 ... F1 I t1I

U = I
•~~• F / i t~i

Since F’ = F, it follows that FA 1F’ = F, and hence

Ip• .  t F  / I F . I t F  ~U ’A~~U = 
i F1~ 

= 
±,j  j,j ~ 

= ~—1
i,j  tiFi. t.t.F. . 

~~t1
F
1~ Z t

1t~F1~~/

The assertion follows since S’ = S. H
12

I
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r~ T~~~~~

Corollary 2: The MLE of the true target position at time

t is

= ~ +~ t ~
(
~~‘~t

) 
‘

where

(4.14) Bt = 

~u. 
+ t (Q

12
4Q

21
) + t2Q22

Applying Theorem 1, we have obtained a result of great practical

importance, namely,

Theorem 4~ The estimate and its covaria.nce matrix B
t 

are

invariant under location and scale change in time.

5. SOME SPECI.ALIZ.ATIOIIS OF PRACTICAL IM1OR1~A1’iCE

Assume that a given time t~ the observatory is at point o~ and

traveling in a strai4it line at a known constant velocity. It observes,

at a true bearing angle e~ and range R1, the obj ect ‘which is located

at position ~~~~ obtaining the random variable L(IL j -P~,Cj~~). See

Figure 1.

4 (V’\
~~~~~~~~

— 

~ 6j  (
~J direction of

/ travel at known
/ velocity

p1
Figure ].

13
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From elementary geometrical arguments, as in Saunders and Johnson (19614.),

which ~eed ~.t ic given here, we have

jcos
L Q. +~~~ sin

2
0j Sifl2 (i .

(5.1) C. 2 
2 2 2 2 ~‘2 ~~ sin2 cr,~~sin 0

~ 
+c~~cos 0~ f

where at time t1, a-~~ is the standard deviation of the range error,

is the standard deviation of the azimuth error and both are known

functions of the range RI, all in accord with Assumption 6 0.

We also assume that the matrix D is diagonal and known.

If it is true that the distribution of radar errors is constant in

time, itha~ neither the direction of travel of the observatory platform

nor its position relative to the target will influence the covariance

matrix cf observations, then C . C for I = l,...,n and A . = A...
2. ij •J].

By a straightforward calculation, with the time chosen so that t Et
1/n 0,

we obtain

nC_n
2
C(D+nC)

_1
C , = 121 0 , 122 = n

~2 1 t~~c ,

(.‘here z z., tz = I t . z1, t2 
= Et~/n )  and hence

..l
= + D 

~ ~l2 = S21 = 0 , S22 =

n t

hi .

_ _ _  -



From ( 14.9) ,  the maximum likelihood estimates are given by

;=~~, ;=~~~/~
2
,

~ A Aand hence by Theorem 3 and Corollary 2, it follows that a + ~t, where

A —a = z  —~~t0 ,

The estimator is unbiased and has cova.riance matrix

= ~~ (1 + ~~)c 1 + .

In the case that C is diagonal, the matrix ~~ also diagonal .

In the circumstance that the observations are symmetrically spaced

in time and the origin is chosen so that

t1 + t~~11 = 0 , + I = 

~ 
= 1,...,n

it follows by (5.1) that C1 
+ C~~11 is a diagonal matrix; the matrices

n
D + I C ., I,~ , L,, 2, , are also diagonal, whereas 121 is contradlagonal.

1 1 .1.

This facilitates the computation of S’U ’AUS which will not in general

reduce to S as in Corollary 1.

6. ESTIMATION AND CONFIDENCE INTERVALS FOR SP~~D AND HEADING

The parameters of interest when tracking a moving obj ect are the speed

axid heading, and in this section we consider the accuracy with ‘which they

can be estimated. The estimate of the true position 
~~ 

at any time t ,

15

_ _ _ _ _ _ _ _ _-- -~~

L ‘ -~



fr A A A A
u ( t)  = z + v t  (m1( t ),  m2 ( t ) )

w~i 1~~L we write in coordinate form, assuming it follows a linear path.

The true velocity z, heading angle h, are given by

2 2 1/2
= ([ni~(t)1 + [m~(t)] I ~ h arctwi

These relationships are seen to be simply: if ~ = (b1,b0), then

(7.1) b1 =s cos h , b2 = s s i n h .

Thus by ana1o~ r we have the equations

(7 .2) b~ — V cos ~ , = V Slfl ~

defining the random variables V (for velocity ) and ~ ‘ for the heading

an~1e, which ~re estimates of the true speed 5 and the true heading h.

By Theorem 3, it follows by known results on the marginal distribution

of ~‘iormal variates that 
~ ~~~~~~~~~ 

The joint density of ~~ V is

found by sim ly making a transformation to polar coordinates. This yields

O < v < c c
(7.’) g(p,vjh,s) — exp(— ~ ~ Q;~~’)

21tIQ~,I O < ~ p < 2 i t

r (V  cos p -s cos h, v sin (p—s sin h). This density can be

used to study the distribution of velocity and heading estimates that

co uld arise under infrequent headings and/or hi~ i velocity.

16
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~nc might desire ~enarate coniidence lnt.ervals on the heading

and on the velocity. ‘~w cv r, ~f we ~‘roc ed to find the marginal

densities of v and p from (7.~
’) ~e see that cach densiry has both

parameters h and b.

Thus a confidence interval for the velocity can be constructed

only if ‘we know the true heading h. Li kewise a ccnfidence interval

can be found for the true headirg If we .~cnow the true velocity. The

presence of the nuisance parameters prevent s us from obtaining confi-.

dence intervals separately when both parameters are unknown.

However, we can obtain a joint confidence region for (h,s), which

is somewhat inefficient, as follows; from well-known results on

the chi-square distribution of the quadratic iorm of normal variates

‘we have

(7.14.) ~~~~~~~~~~~~~~~~ < )C~ (p ) )  i-p ,

where X~ (p) can be easily calculate d for any 0 < p <1.

The (random ) elliptical region W, so defined, determines a

l00(l-p ) cercent confidence region for ~~. We seek the smalLest area

in polar coordinates which is the Cartesian product of intervals arid

contains W ; call it W • See ~~gure 2.

A Figure 2

Joint confidenc e interval s for heading angle •arid velocity V.

17
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With the obvious notation for the maximum and minimum of argument

~nd modu.ius; we write

1.5) ((U ,r): 
~~ 

< ~ < ~2’ 
V1 < r <

‘vo w (r cos o , r sin ~ W implies (0,r) e W~, P((h ,s)  E > i ..p

The task to which we now address ourselves is the determination of

~ functional repre~,entation for the random variables (~ , Vi ), i 1,2.

if we denote the elements of the symmetri c matrix

____  
-l q

11 
q
12~

= 

q12 ~~2 /

~hen we ca~n write from (7. Li. )

~7 .6) q
11(x-~1)2 

+ 2 q
12(x-~1)(y-~~) + q22 (y-~2 )2 

= I

We want to find, the maximum and minimum of the functions

(7.7) f(x,y) y/x , g (x,y) = x
2 + y

2

.:ub ec ’. tc toe r ~triction (7.6).

Proceeding by analytic geometry or by the method of Lagrange multi—
pilers , le~iL to the solution of a quartic equation. A simpler method

scr ~n’ ~o be the following: transform (7.6) to the variables (u,v) via

x + u cos 00 - V sin E’() ~

h~. + U Sifl + v cos ~. ,
where

18 11
_ __ _  
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~

‘~ci12tari 2O0 = q22-q11

Thus we want to extremize the functions of (u,v) obtained by substituting

into (7 .7) subject to the restriction ~1
u
2 

+ ~2v
2 

1. Elementary analysis

shows that

q11 cos2
O0 + q

12 sin 20o 
+ q

22 S~ fl 9
~ ~

q11 sIn29~ - q~~ SIT1 2eo q22 COS &0

Now let

c o S ( p = 1/~~~u , sin~~~=/ç V ,

and set

cos sin 60
= , ~ — , i = 1,2 .

The problem then becomes that of extremizing the functions

A
Cos (p + Sin (p + b2

f(cp) = A

cos rp - sin (p + b1
and

A 2
g(p) = (~~cos (p - 

~2 ~~~ + b1
) + cos p + sin p + b2)

for the range of’ values 0 <ç <2~t. It is straightforward to show that

f’ ((T) ) = 0 if and only if

_ _  .~_-



T
i 

51Y1 P + T~ COS T0
where

q11 = F ~~~~~~~ , T1 = b2~1 - , T~ = + b2~2

~ith ~~Jt~t . letters denoting those random variables which are functions

of the estimates.

No w le t ~~ be the unique random angle for which sin bC) = T1/T,

cos l~ T2/T, iuhere T JT~ + T~ . Then (7.8) becomes simply, by

‘~~~‘ig t.1~e trigonometric identity for cosine of a sum, cos (~~ -p) =

Letting ~ be the angle on (O ,i~) such that e = arc cos(-e~/T)

we h ave, since cosine is an even function, = 
~~~~~~

°
‘ ~2 

= as

~~~~€ ~wo SO1 u -;1~.Cn13 of’ (7 .8).  Thus we have as the limits on the true

b . r~~-~ ~up 1c as in (7 .5 ) ,  the angles

~rotan f( .o
1) ‘ ~2 arctan f (~2)

o ~occmrj !ohes ti~c’ I~.ocation of local extremum of f. Graphical examination

~.f ~~e :‘ nc 4
~i-’r~ or (n ,1~r )  ma~r be necessary to see if these are the true

‘
~~ e extremum of’ ~ is obtained in a manner similar to that for f.

j1 1LLZ g ’ (~) = 0 if and only if

(7, rj )  sin 2rp + 

~2 cos 2p + L~ sin p + L2 cos p = 0

~oo r e
20
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2 2 2 228i ~l 
- 

~2 
+ 

~l ~2 ’ 
82 = 

~l~2 
- 

~l~ 2 ~

A A A

L
1 

= b1’~1 ‘F L2 = b1~ 0 - b2~ 2 ,

and again upper cas e letters denote random variables. The solutions of

(7 .9), call them 1’ 2’ canno t in general be found explicitly, but

must be found numerically. This is easily carried out.

Having found. the solutions r 1 , I 1,2 the limits on the velocity,

which were sought , become

V1 = min (~/g(r~J , ~/g(F 2 ) )  V2 -= max~~g(P1) ,

A circumstance of practical interest occurs whenever the observations

are drawn symetrically on each overflight. In this case 0
~ 

= 0. =

1 1, 
~~ 

°~~~~l ‘ 
~~

Vq11

2~~, - 
~ 

= 0 T
1 = b1/~/~~~ , T~ = -b2/~/~~~

Thus the equation (7.9) reduces to

(7 .10 ) 2 q11 q22 /~~
—

If we further specialize and assume that q11 q22 we see from

(7.10 ) that the equation to be solved is merely tan p =

which has solutions

A A
b
1 

b
2C 0 S Q = + .v- , Si f l P = + . v _  ‘
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Ce V is the estimate of ~e1ocity defined in (7 .2) .  From the defini-
tion or g previously given we see that = q2~ implies that th€

f ,iflction we were extremizing was merely

g( r p )  C05 C~)  
÷
~~ \2 ÷ 4 b,.~ 

2

J v ~~~~

arJ we obtain, directly from the definition of V
1 and V2 previously

~~~~ the simple answer

V =~~÷ -_-L , v = v - - - - ~_.
2 1 —Vq~1
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