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A MODEL FOR AERIAL SURVEILLANCE OF MOVING OBJECTS
WHEN ERRORS OF OBSERVATION ARE MULTI-VARIATE NORMAL

Ingram Olkin
Stanford University

and

Sem C. Saunders
Washington State University

This paper presents a general theorem on the invariant behavior of
a certain function of a matrix. It then shows the importance of this
result principally by using it to derive properties of certain maximum
likelihood estimates which arise when considering problems such as the
location of a moving object being surveyed from a moving observatory
when all data on location are subject to stochastic error. This problem
is important in tracking objects either from an ohservatory satellite or
from a transport plane bearing ground seeking radar. Some applications to

this situation are made.

Key words and phrases. Multivariate analysis, multivariate normal

errors of observation, model for tracking objects, estimators of
heading and velocity, distribution of radar errors, observation

and prediction in aerial surveillance
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1. INTRODUCTION

This paper stems, in part, from two earlier proprietary reports, viz.
Saunders (1965) and Saunders and Johnson (1964), dealing with statistical
problems arising from the estimation of the position, heading and velocity
of a moving object using data which are subject to statistical error.
These date were presumed to have been obtained from cbservations made
during one overflight when the exact location of the cbservatory platform
is not precisely known with respect to the ground. The solution of this |
probvlem was originally intended to assist in the determination of both
the travel and location of ships when using data obtained from an observa- .
tory satellite. Recently the same mathematical problems have arisen with %
the introduction of ground mapping radar which is being born by airplanes i
and used in the observation and prediction of position of moving land

vehicles.,

In the first section a theorem on the behavior of a certain function
of a matrix is stated and proved. In the following sections a simple
model with normal errors for the moving traget from a moving observatory
is given and the maximum likelihood estimates of target position are
obtained. The theorem is then utilized to yield certain invariance

properties of these estimates.

2. THE GENERAL THEOREM

We now state and prove a general result on the behavior of a particular

function of positive defirnite matrices.
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Theorem 1: Let ¢ be a given real number, ZO, Zl, 22

definite (symmetric) matrices and the matrix function F(t), defined

for any real t by the expression

T S +tE e

0 g 1 ‘
P(t) = (I,(t+)T) ( ’

2 ’
I, g, I, +2t5 +t 2:0 (t+c )11

then F(t) = F(0).
Proof. The result will hold if f(%)=uF(t)u' is independent of t for

all vectors u of appropriate dimension. Note

=, :
ZO Z‘,l '*"tZ‘.O \ u )

£(t) = (u, (t+e)u) )
1
zl+tzo 22+2t>:l+tz.o (t+e)u

Further note that if A is non-singular, then

lamrw] = |allzeaTwwl = |4l @wa™tw )
so that
wA-lw' = lAW'W' -1,
A

Consequently, f(t) independent of t is equivalent to

« ] 1
Totu'u zl+tzo+(t+c)u u
. +y +(t4e Ju'u 5, 42t5. HE5 +(t+c)2u'u
ik 0 2 il 0
(2.1) - — ——
—IO (_ll Alo
. 2
£+, £, 4245, 15
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independent of t. If the numerator is independent of t for all u

then the denominator will slso be independent of + by taking wu = O.

Using the fact that if A is non=-singular

A B gl
(g o| = lallp-pra™8] ,

we obtain for the numerator of (2.1);

S Tomar s el Ll
l}.,o-ru'u' 2 |2,2+2t21+u l,u-'.- (t+c)u'u -
(5, +eututt (5, watu)] (5 +atu) " (s 465+ (tre Jaru)] .
1 0] 1L ¢}
The first term is independent of +t. The matrix in the second term is

By, _.,_2,,4__ 2v tyi YIS 1 l ]
22.2’0}:1 £72, (t+e)"u'u - ¥, *eu a)-\%+u ul) (Zl+cu u)

2
- 2‘5(}“.1.*0‘.1'11) -t (Zom'u) k
vhich upon expansion and simplificabion reduces to
& -1
Syteutu - (8 tentu)(Natutu) (S, tcutu) .
2 i i 0 il
This expression is independent of +t, which completes the proof. |
3. THE MODEL AND ITS ASSUMPIIONS

We shall speak of the object (or target) and the observatory, including

thereby all applications, with the understanding that both points are moving
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with respect to a given coordinate axis. Our first task is to derive the

’ appropriate density of the observations of target positions relative to a

fixed coordinate axis, as determined from the observatory.

We now specify precisely the assumptions on which our analysis is

based.

10

20

I
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These are:

The observatory moves at constant height linearly above the plane
with = known constant velocity.

The object moves linearly in the plane at a constant but unknown
velocity.

The estimated position coordinates of the observatory over the
plane, as determined from the ground at a given time, are

bivariate normal random variables with known covariance.

The estimated position coordinates of the object in the plane,

as determined relative to the true position of the observatory,

are bivariate normal random variables and successive observations of
such relative rositions are independent.

Time between succescive observations can be measured with sufficient
accuracy so that errors of position due to time inaccuracy are
negligible.

The parameters of the covariance matrix of the observations of
object position relative to the true observatory position can

be determined from bearing angle and range date.

On a single overflight, an observatory may make several observations
of the position of an object and our first problem is to determine the

Jjoint distribution of the observations of the target position, using the

fact that the target position relative to the observatory is subject to




observational error, as is the estimate of the observatory positions
relative to the ground. Thus, at a given time ti we assume the
observatory is at some position, say Pys and the target at some
position My both in a plane located with respect to a given coor-
dinate system. However, the position of the object as observed by
radar from the observatory is subject to chance error and hence, the
radar estimate of the object position from the observatory positicn is
a random variable, say Xi' Now a radar measurement from the ground
at time to of the observatory position Py on the given coordinate
system is also a random variable, call it VY.

From assumptions 1° and 2° we have that the observatory follows a

linear path in the plane, say o, = 1+¢€t, as does the object, say,

&
by =0 +Bt. (Greek letters denote points in the plane.)

Without loss of generality, we can select our coordinates so that
the first coordinate of ¢ is in the direction of observatory travel
and hence, the second coordinate of ¢ is zero. Moreover, by assumption
1°, the first coordinate of ¢ 1is known.

Again, following the general mathematical assumptions 3° and 4°,
we have that Xi’ for i = 1,...,n, and Y are bivariate normal.
More specifically, Xi has mean vector By =03 and known covariance
1

matrix C;l, whereas Y has mean vector Po and covariance matrix D .

That is, for i = 1,...,n
ol -1
X, ~ Ny -0;5C7) and Y ~N(py,D ") -

The data obtained from the observatory yield the cbservations
Zi = Xi+Y for i = 1,...,n and in this section we seek to derive the

joint density, f, of 2= (Zl,...,Zn). Since 2, = X;+Y, it follows
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that Var(z,) = ci‘1+1)'l and Cov(Zi,Zj) e A 3

i,j =1,...,n. Hence

1

T = Cov(z) = (& 2™,

1%

where Bij is the Kronecker delta. Setting

it follows that

n -1
. o el ..C. - % .
Bel) A 513 i Ci(D + 3 cz) cj

i
o 1
This inversion is a consequence of the
Lemma: If Ql"“’Qk are non-singular symmetric matrices of the same

dimension and

i

H = diag(Qre.r,@) + [ 1 |(Ten,I),

then

-l O-l )

H =di3€(Ql ,"'}k y

See Householder (1964), p. 12k,




Specifically, the choice of @ = ci‘l, M, = D' yields the result

claimed.

Noting that Afi = Aji’ it follows that A 1is itself symmetric.

J
Except for elementary details we have abtained the basic
Theorer 2: The distribution of the observaticns of target position

Z = (zl,...,zn), obtained from the observatory is
z ~nv,z) ,

with density function

1/2
, N 1
(3.2) f(z) = “—— expl- 5(z-v)a(z=v)'] ,
(ex)" 8
2n
where z € R, v = (Vy50.0,V ) = (by=p1- o""’“n'pn-po) :
A = x'l is defined by (3.1) , and
n
ipj 1 jc.|
‘ ‘ 1 3k
(\:').2) IA! = .—I" .
D + = Cil
1k

Theorem 2 tells us that a single observation of observatory positicn
from a bivariate normal distribution relative to the ground, combined with
n obzservations of the object position, which are normally distributed
relative to the cbservatory position yields a joint normal distribution of
cbserved target positions relative to the ground. Our next problem is to
find o best estimate of the target course using this normal distribution
of error and the assumption that the target is moving linearly at a constant

velocity.
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4. THE MAXIMUM LIKELIHOOD ESTIMATES AND THEIR DISTRIBUTION

Thus, we want to find the maximum likelihood estimate (MLE), Gt s
of future target positions Ry 88 8 function of +t. By properties

of the MLE,

el

A A
utza‘f-Bt,

A A
vhere O and B are the MIE's of @ and B. To complete the picture
AR
we need to know the distribution of (@,B).
Recall that v, = u, -0,+0, = (O£+eto)+ (B-e)ti, for 4 =Nl e n:
If we define ¥y =Ol+5t0, K = PB-g and obtain the MIE's of 7 and K,
then we can easily obtain the MLE's of Q,B.

The likelihocd function is, with gi = zi-v for' 4 =ll..e. .0,

at

L = loglE| -~ n log(ex) -~ ¥ ;iAijgsj :
i,3

Introduce the notation for the coordinates of
Yy = (71}72) s K = (Kl)K2) 2

then writing By = (Slk,bek) for k = 1,2 where Sij is the Kronecker

delta we obtain, by taking partial derivatives, the two equations for k=1,2,

5 R . Y
Ched) o TR (€505 By * By 585) »
»d
oL 1 )
b2 & - 2 A, 5 ;
(he2) T z (tjglAiask + tit‘»k/\ij{j)
1,J




Realizing the second term in each expression is a scalar, and thus equal
to its own transpose, the two equations in (4.1) and the two equations

in (4.2) can be written matrix form, upon equating to zero, as

(5.3) Nk (gi+§j)1\ij = (0,0) ,
1,J
( =
(ko) 7;(%%+%%MU (0.0) «
Ly]
Note that

L = I = = /
:""1-(.‘. —RZI "‘j 27 K\ti +tj) 3
+ =5t 1 . =7 .+t. - 2Kt. 2 0
by by = b+t B - 7 (808,) 155
By substitution, we obtain from (4.3) and (4.4) the equations

4.5 S (2,42 ). . =2y & A,. +K T (t.+6.)A. .
(4e5) i (l J) 1j 7i,j i3 i3 (i J)lJ’

“.6) = (b2

+1 . s — AT s o ESG « Uodle o @
Rt s 12305 =7 2 (BytbyA s+ 2K D bt

1,5 1,9 29

Writing these in matrix nctation, we have

z 3
i 12
(7,K) (Zgl 222) i (‘Vl,‘l’2) )




i s

10 T %y T 2 TNy 0 Iy ==§s Y80y -

. : : e i
Define the matrix F - (Fij) by FiJ’ =5 (Ai,j+Aji) for 4,3 = 350450,

so that F = ‘g“' with the obvious definition of the partitioned

matrix A' = <A1!.j) where Aij A.:+ By rearranging some summations,

Ak

0 - 3 "
(%.8) 213 izj A5 2 Bp = By G ;
b} > sd

If we denote

AN
then (L.7) can be written as (7,k) = (\Jrl,urg)s, with

N

A
./.’;.-" ) o = S = Y. r
i, 7 = WSy t¥S,y s K =8y, HS,,

where S_,)1 = SZ'L" We now write from the definition of ‘Jli




=
(W o¥p) = (Zyseess2)

or in matrix notation, with the obvious definition,

\V:Z.[Io

By Theorem 2, Z is TN(v, A-l) and ¥ is n(vu, U‘A'lU). Since

A A AL -]
(;,K) =S, (r,k) is n(vus,Q), where Q = S'U'AT"US. We now prove that

(Cronisy VS = (7,k) «

To do this we make use of the identities which follow from z'ls =N

The first component of the vector vVUS is
) w 2,
Tyt )R, 8.4 + B (7~H<ti)bjFijSe]_

hgl Al
L 1,d

i:d
= 7(29380y * ZpSpy ) H (T8t T08,) =7 .

The second component of the vector +VUS is

IOt OFy 8,5 + E (7 JEF 58,0
1,J 1,d

=y(% 3 .8 3+ »c(221312 + 222322) =K,

11812 12722

vhich completes the proof of (4.11). ||
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We have just obtained
A A
Theorem 3: The MIE, (@,B), of (@,B) has components given by

A N A
a:;-eto, B:K-i—e,

where (,;,l?) are defined by (4.9). Furthermore (&,§)~n((cx,s),q) with

Q
Q = S'U'A-lUS Lk et Q’l.? ) :

%1 %

From this we obtain

Corollgz ¢ If, from conditions of symmetry, the additional assumption

that
-1
(%.12) A'A TAY = A
holds, then
e -1
(4.13) Q =8'UA"US =S .
Proof. From (4,10)
Fll ere Fln I tlI
v-| 3
Fnl e an i tnI

Since F' = F, it follows that Fp-lp - F, and hence

IF, . t.F T I t.F A
i F i i i
UA™Y = ; 7Ty L,3% 1,y IH )= s
1,3 g5
AtiFi,j tithiJ' & tiFi;j & tithiJ.
i, i,
The assertion follows since §' = S. ”

L2
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Corollary 2: The MLE ﬁt of the true target position B at time

t is
r ) A ~
th =a+at o~ n’(ut)Bt) 2
where
2
(+.14) By = Qq *8(Q 10 ) + 7R, &

Applying ‘fheorem 1, we hegve obtained a result of great practical
importance, namely,

Theorem 4: The estimate Gt and its covariance matrix Bt are
invariant under location and scale change in time.

5. SOME SPECIALIZATIONS OF PRACTICAL IMPORTANCE

Assume that a given time t, the observatory is at point o, and

i i
traveling in a straight line at a known constant velocity. It observes,
at a true bearing angle 6, and range Ri’ the object which is located
at position p; obtaining the random variable X; ~ n,(p.i-pi,C;l). See

Figure 1.

il direction of
travel at known
velocity

P
Figure 1
13
- T Erap———

m

o ——————




From elementary geometrical arguments, as in Saunders and Johnson (1964 ),

which need not be given here, we have f

; 2. 4
, 5 om = S - TRiCAi .
i . oRicos Bi + oAism ei 5 sin?2 (ai |
| {5.1) c, = P ’
0.0
Ri AL _, i il
e sin?2 (»)i URisin oi +crAicos Oi

where at time ti, Tpy is the standard deviation of the range error,
Tpi is the standard deviation of the azimuth error and both are known
functions of the range Ri, all in accord with Assumption 6°.

We alsc assume that the matrix D is diagonal and known.

If it is true that the distribution of radar errors is constant in
time, that neither the direction of travel of the observatory platform

nor its position relative to the target will influence the covariance

=A . ®

matrix of observations, then Ci =C for i=1lyee.on and Ai,j 54

By a straightforward calculation, with the time chosen so that t© = £ty /n=0,

we obtain
2 -] 2
= | - ( — = = 9
S,y = nC-n Q(DHac) ¢ S5 =Ly =0 , Iy =nttC
N N = Bl
F (vhere z = =5 2 tz = =3 t.2 :2— = zt2/n) and hence
\ 't i? i%4° i
=l -1
a C -1 & _ C
oo b Rl IR R TR TR T —
2
nt
14




From (4.9), the maximum likelihood estimates are given by

A =3 n e
Y=z, ,k=tz/% ,
A A
and hence by Theorem 3 and Corollary 2, it follows that i , =@ +Bt, where

A a ” T
6 oF om o BoBes.
t2

The estimator Gt is unbiased and has covariance matrix

In the case that C is diagonal, the matrix Bt is also diagonal.

In the circumstance that the cbservations are symmetrically spaced

in time and the origin is chosen so that

t, + 1t =108 s B g

i n+l-i i ntlei = T

’ i-= lyeee,n ’
it follows by (5.1) that Cy + Cn+1-i is a diagonal matrix; the matrices

n
D + 212 Ci’ 211, 222, are also diagonal, whereas 221 is contradiagonal.
This facilitates the computation of S'U'AUS which will not in general
reduce to S as in Corollary 1.

6. ESTIMATION AND CONFIDENCE INTERVALS FOR SPEED AND HEADING
The parameters of interest when tracking a moving object are the speed
and heading, and in this section we consider the accuracy with which they

can be estimated. The estimate of the true position Py at any time ¢,

15
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T

(o) =G+fe = @), By(e))

which we write in coordinate form, assuming it follows a linear path.

The true velocity s, heading angle h, are given by

1/2

3 .

) m, (1)-m, (0)
s = (lmy (617 + (my(£))%) e

» h = arctan (m

These relationships are seen to be simply: if B = {bl’bz)’ then

(7-1) b. =acosh ; b,=s8s8lnh,

Thus by analogy we have the equations

i}

A A
; (7.2) b, =Vecosd , b,=Vsino

defining the random variables V (for velocity) and ¢ for the heading

angle, vhich are estimates of the true speed s and the true heading h.

By Theorem 3, it follows by known results on the marginal distribution
N
of normal variates that 8 ~ Y\,(B,Qg2). The joint density of o, V is

found by simnrly making a transformation to polar coordinates. This yields

0 < V<o

(7.3) g(oyvlh,s) = —Yer expl- 2 £ 201,
L En T

vhere t = (v cos p-s cos h, v sin -5 sinh). Tis density can be

0 <9< 2n

used to study the distribution of velocity and heading estimates that

could arise under infrequent headings and/or high velocity.

16




One might desire separate conridence intervals on the heading
! and on the velocity. However, if we proceced Yo find the marginal
densities of v and ¢ from (7.”) we see that cach density has both
rarameters h and s.

Thus a confidence interval for the velocity can be constructed
only if we know the true heading h. Likewise a confidence interval
can be found for the true heading if we know the true velocity. The
presence of the nuisance parameters prevents us from obtaining confi-
dence intervals separately when both parameters are unknown.

However, we can obtain a joint confidence region for (h,s), which

is somewhat inefficient, as follows; from well~known results on
the chi-square distribution of the quadratic form of normal variates

we have
~ 21 A :
(7.4) PB-6)S(B8) < X(p)) = 1-p ,

where Xg(p) can be easily calculated for any O < p < 1.

The (random) elliptical region W, so defined, determines a
100(1-p) vercent confidence region for P. We seek the smallest area
in polar coordinates which is the Cartesian product of intervals and

=
{ contains W; call it W . ©GSee Figure 2.

Figure 2

L oa - - ’
Joint confidence intervals for heading angle &
and velocity V.

f 17




With the obvious notation for the maximum and minimum of argument

and modulusy we write

*
(7.5) W - {(o,r): 0 <O <0y V) <r< V2] »

Now (r cos ¢, r sin ¢) ¢ W implies (6,r) € W*, P{(h,s) € W*) >1-p.
The task to which we now address ourselves is the determination of

2 functional representation for the random variables (¢i, Vi), = o]

If we denote the elements of the symmetric matrix

q Qs )

i 4 -1 G 12 4
2 Q:.’Q ¥ ‘ ’

(@) Yo Lo

then we can write from (7.Lt)
S Gl R A A A D
(7.6) Qq (x=by )" + 2 qy, (x=by ) (y-b, ) + U, (y-b,)" =1,
We want to find the maximum and minimum of the functions
2 2
(7.7) fx,y) =y/x , glx,y) =x"+y

subject to the restriction (7.6).

Proceeding by analytic geometry or by the method of Lagrange multi=-
pliers, leads to the solution of a quartic equation. A simpler method

seems to be the following: transform (7.6) to the variables (u,v) via

A

X = bl tucos 6, ~vsin eo 3

A
¥y =b, *usin g, + v cos eo ’

where

18
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24,
‘ ta.n260=-——_§-—.
9o=Y;

Thus we want to extremize the functions of (u,v) obtained by substituting

into (7.7) subject to the restriction ® u - 6?v2 = 1. Elementary analysis

it 3

shows that

5. = c sze + s8in 26, + si 29

1 = Sy PR Ny T8y, B30 e0g S Gy BN |

8. = sin29 sin 26, + c 526

s = %y o T Hgp B et T 8ns 08 Dy e
Now let

coscp:./blu, sinq>=,/82v,

and set

The problem then becomes that of extremizing the functions

A
glcoscp+n2$1nq>+b2

A
qlcos cp-g2 smcp+bl

f(p) =

and

. A D A2
g(p) = (ncos @ = ¢, sin ¢ + b, )" + (&) cos @ + n, sin @ + b,)

for the range of values 0 < ¢ < 27, It is straightforward to show that

f'(p) = 0 if and only if

19




} Tl sin @+ T Scag © = 0 ,

a

where

~ N ~ ~

99 = B8 * 0 Ty = bomy =16y, T, =bym, + byE,

with capital letters denoting those random variables which are functions
of’ the estimates.

Now let . be the unique random angle for which sin 0, = Tl/T’
cos &, = TQ/T, vhere T = JT? + Tg . Then (7.8) becomes simply, by
using the trigonometric identity for cosine of a sum, cos(¢o-¢) = -al/T.

Letting © be the angle on (0,%) such that © = arc cos(-sl/T)
we have, since cosine is an even function, Q6 = @ =0 +0 as

4 0 2 0

the two solutions of (7.8). Thus we have as the limits on the true

-@’ Q
bearing angle as in (7.5), the angles
¢. = arctan £(Q.) 9, = arctan f(ﬂg) :

g §ill gl

This accomplishes the location of local extremum of f. Graphical examination

of the function on (0,27) may be necessary to see if these are the true

extrema,
The extremum of g 1is obtained in a manner similar to that for f.

fhis yields g'(9) =0 if and only if

(7.9) &, sin 29 + 5, cos 20 + L sin ¢ + L, cos ¢ = 0

B S 2

where




and again upper case letters denote random variables. The sclutions of

cannot in general be found explicitly, but

i

(7.9), call them rslps

must be found numerically. This is easily carried cut.

> 1 =1,2 the limits on the velocity,

Having found the solutions Ii
which were sought, become
v, = winW/g(r,) , Veg(r,J) v, = nax(Vg(r,) , Vell,)) .

A circumstance of practical interest ocecurs whenever the observations

are drawn symetrically on each overflight.

O = Sagr By = G
n = —-];- Er - O = g » ﬂ - -L
17— 2 1 2= —
Viy 9
P | e g
g Gl il o L T by s T = by,

Thus the equation (7.9) reduces to

b 5
) L (_l_ - _l_) sin 2¢ + _i_ sin ¢ = £ cos P .
(7.10) 2 9y, 4y /3 1
= Va1 22

If we further specialize and assume that qll = q,, we see from

A
(7.10) that the eguation to be solved is merely tan ¢ = bg/ﬁl 3

which has solutions

In this case eo = 0. 61 =9y,

L Y |« S




where V is the estimate of velocity defined in (T.2). From the defini-

tion of g previously given we see that 94 = 95

function we were extremizing was merely

2
A 1 A
g(rp) cos Cp 4 1\ + -S--"'~‘°1.;q> + b2
vy / v,

and we obtain, directly from the definition of V

1
made, the simple answer
Vo, = V + L y V. =V - e
2 Vi il /———
9 i

2z

implies that the

and V, previously




| REFERENCES

(1] Householder, A.S. (1964) The Theory of Matrices in Numerical

Analysis. Blaisdell Publishing Co. New York.
[2] Saunders, S.C. (1965) Further statistical problems of tracking a
target from an observatory satellite. Boeing Document D1-82-039%0.

Boeing Scientific Research Laboratories, Seattle.

—
N
e

Saunders, S.C., and Johnson, D.L. (1964) On the estimation of
locatdon coordinates from data taken from a manned orbital

laboratory. Boeing Document D1-82-0320, Boeing Scientifie

Research Laboratories, Seattle.




UNCLASSIFLED
SECURITY CLASSIFICATION OF Tilis PAGE (When Date Entered)

S P T
REPORT DOCUMENTATION PAGE ! v ";r"k'“r;r;;}%(:u.v.
. Y REFORY NUMBER 7. GOVT ACCESSION 1o | 1 ! S NUMBEA
189

4 TITLE (nn‘:l Subtiile) '
A MODEL FOR AERIAIL SURVETLLANCE OF MOVINC £
BJECTS WHEN ERRORS OF OBSERVATION ARL ?
MULTI-VARIATE NORMAL ;
}

7. AUTHOR(S) % CONTRACY 3% GRANT NUMBEArR)

INGRAM OLKIN and SAM C. SAUNDERS

NOCO Lu-T75-C=(r A1

S. PERFORMING URGANRIZATION NAME AND ADDREZS |70 :":r GRAM
Dept. of Operations Research and Dept., of E
Statistic s,'SL—;\n {ord University
Stanford, California QU305

~

1

11 CONTROLLING OFFICE NAME AND ADDRESS P P SR
Statistics and Probability Program Code 436 i Ma

Office of Naval Research EER ROF PAGES

Arlingtoa, Virginia 22217 1 !

TT RONITORING AGTNTY N AME & ADDRESS(H Jifferent from Controllsng Offics) ~ (of thia report)

RESFICATION, DORNGRADING ‘i

1€ CISTR BUTION STATEMENT (of thia Report)

APPRKOVED FOR FUBLIC RELEASE: DISTRIBUTION IS UNLIMIITD

7. DISTR'BUTION STATEMENT (m..lu absiract entered Ir: Riock 20, if difiereni froes Ropoil)

8. SUPPLEMENTARY NOTES ) 8 | {
This report is also issued as Technical Report No, :2f, unde

National Science Foundation Grant MPS 75-0945C. Department of Statistics -~

W

Stanford University.

13, KEY WOHOS (Continue on revarse alde {f necessary and identify by bifock number)

|
i
AW ST O USRI I SIS,
!
Multivariate analysis, multivariate normal errors of obser b ;

H

% fml = c LES ¥ X e
model for tracking objects, estimators of head

distribution of radar errors, observation and predi

}— -

2 FT‘CT (Continue on reverse side f necescary and identity by block wumbar)
N\

~ This paper presents a general theorem on the invaria behavi
a certain function of a matrix., It then shows the importance of this
result principally by using it to derive propertic s o ertaie maximum
likelihood estimates which arise when considering nrolic i as the
Jocation of a moving object being surveyed from a moving chservatory
when all data on location are subject to stochastic error, This problem

z

5 important in tracking objects either from an cbservatory satellite o:
rom a transport plane bearing ground seeking radar. Ffome applications to
] his situation are made.
, L .-

¥ aw b \
DD .5 1473  eoimion or  nov 88 15 oesoLETE
S/N 0102-014- 6601 |

o e

TR

UNCLASSIFIEI
BRCURITY CLASAIFICA IOM OF T 8 » LOR (When Deta Bniersd)

o WG WL e NGRS




