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Hapmersley's Law for_thé van der Corput Sequence:

An Instance Qf-Probabiliﬁy Theory for Pseudo-Random Numbers

by

A. @el Junco and J. Michael Steele

2 Introduction.

Pseudo~random numbers form the backbone of compuber simulation and
Monte Carlo analysis, vet there are essentizlly no known theorems which
make explicit the sense in which pseudo-random numbers are replacements.
for random numbers. There is probably no general resﬁlt which can be
proved, but there is still a program by which a deeper understanding of
the relationship between pseudo-random mumbers and random numbers can
evolve.

For every pseudo-random sequence and every probabalistic theorenm,
there 1is surely some analogue of the probabalistic theorem for that
pseudp~random sequence. The qualities of that analogue should then
accurately reflect the random gualities of the pseudo-random seguence.
By a systematic analysis of these pairs of theorems and sequences, a
body of results can be obtained which is capable of resolving, or at
least eroding, mamy of the philosophical and practical questions
concerning pseudo-random sequences.

This is no over-night task and there is no obvious place to begin
other than with the theorems and sequences vwhich interest one most. We
have begun with a theorem due to Hammersley and a sequence due to

van der Corput.



To introduce Hammersley‘'s theorem, let Xi’ i=1,2,..., be indepen-
dent random variables with uniform distribution on [0,1]. By
zn = Z(Xl,Xg,...,Xn) we denote the cardinality of the largest monotone

increasing subsequence of the values Xl'(a)),XZ(a)) ,..v,Xn(cn). Hammez;sley
[{2] proved that

(1.1) 1im Ezn S
n “»co

wvhere c¢ 1is a constant and the convergence is in probability. We are
particularly interested in (1.1) because of the considerable effort which
has been focused on the determination of c¢. Even before convergence had
been proved in (1l.l), Baer and Brock [1] had conjectured that e =2 on
the basis-of extensive computation. Hammersley [2] gave bounds on ¢
which were improved by Kingman [4], but the deepest results bbtained SO
far are due to Iogan and Shepp [6] who proved ¢ > 2. The problem of
proving c¢ < 2 remains open.

In the present context Hammersley's theorem has a nabural appeal
as a substantive probabalistic result in which there is much current
interest. The tempting prospects of obtaining c¢ in the analogue of
(1.1) for some pseudo-random sequence provide even more reason to start
with Hammersley's theoren.

One natural choice for the sequence of pseudo-random numbers would
be those generated by the linear congruence method. These are the most

widely used pseudo-randonm mumbers, yet they are very difficult to analyse.



For this reason, we have begun with the van der Corput sequence which has
wide-spread use in numerical integration [3] as well as considerable
historical interest. (See, I’“or example, Kouth's interesting discussion
"Wnat is a random sequence" [5, pp. 127-1571).

To define the van der Corput sequence we first write, for n >0,

i
n = z ?: -0 a.iE where a; = 0 or 1. The nt+lst element of the seguence

i ~i-1 '
is @,(n) = > :.;o a2 *"> . One can see that ?,(0) =0, 9,(1) = é]; ;

o.(2) = %, o.(3) = % s etc. The nature of ¢,(n) is more easily seen
2 2 2
in binary notation where cp2 (n) is "the refection of n in the decimal
point." As the subscript suggests one can define a similar sequence by

< © ~1=1 ) i .
cpp(n)—zi=oaip where n—zi=oaip,05ai<p and p22 is
an integer.

We now have the theorem:

If £(n) is the ca.rdinality of the largest monotone increasing

subsequence of {(Pp (o), C,Dp(l),. . .,q)p(n-‘l)} then

(1.2)  lim 22 4 (n) =2, lim n'l/2z(n) =~32— for p =2
n - o n *ow

and

(1.3) lim n-l/2 2(n) = 2-;/1-p_l , lim n-l/2 2(n) = pl/2 forp>2.

n *co n o

This result is as precise an analogue to (1.1) as one could realistically
expect. Also, the Logan-Shepp lower bound on ¢ makes it particularly

noteworthy that



(1.k) lim  lim .n“l/2 t{n) =2.

P oo I >
For digestibility, the proof of these results has been divided into four
parts. First we obtain a geometrical characterization of the monotone
subsequences of van der Corput's sequence. Upper and lower bounds are

then obtained for £(n). Finally the required limits are identified.

2. The Geometrical Representation.

Our first goal is to obtain a representabion from which &tailed
information about {qu(O),qap(l),...,(pp(n-l)) can be deduced. We
define o, to be the unique permubtation of {0,1,...,n-1} which pubs
(pp(i), 0 <i < n~l in increasing order, i.e.

95(€,(0)) < 0(5, (1)) < ... < @ (0, (a-1)
This permutation will be written as a sequence

o, = (0,00),0,();...,0,(n-1))

and our reason for introducing oy .is the elementary fact that the length

of the longest monotone increasing subsequence of o = is equal to 2 (n).

We also have the following law of formation of, o - which will be

mp
crucial.



Lemma 2.1.  One obtains o  from o o DY replacing the entry o n(i)
mp b Y

of o by the sequence o _(i)+p o .
P P m

Remark. Here and in the following if x is a sequence then a+bx 1s a

sequence with the same domain as x defined by (a+bx)(i) = atbx(i).

Proof of lemma. DNotice that there ave two things we must show:

(2.1) Pl n(3) B, (3)) < 7o a0) + P, (342)) 5
and
(2.2) @P«rpn(i) +p'0 (3)) < qap<crpn<i+1> +p% (3'))

for any j, J'-

We first suppose J < _pn and k 1is any integer. Setting J = Z -1

- -

i-n . _onn i
X = Z m 2P we have j + pnk = L i=0 3P s and. consequently

i=n
. . ~(i+1)
(213) cpp(a+pnk) =3 ap
i=0
-1 . R
- n}'.v aip-(l-i-l) + P-—n % aip-(::_-i-l)
i=0 i=n

i

. - : n
o (3) +p g (k) for j<p .
D P

low by (2.3) we see (2.1) is equivalent to

p9,(0,(3)) < 70 (0, (G42))

i



which is just the definiiion of o . Similarly, (2.2) is equivalent to

1) wplo 5(30) + 2o (9)) < %0 1)) + p e, (o, (3')) -
To check (2.%) we note that, as. i runs through {0,1,...,p -1}, ?, (1)

runs through {0, 552D ee., (P0-1)p "} so that, in fact,

(pp(o- 1,_1(:11+3.)) = p-n + (pp (o n(i))' The proof of the lemma is thus complete.
1Y . P .

In many ways it is easier to work with the permutation matrix %

associated with ope Ve recall that An is an nxn mabtrix defined

by
1 if i = O'n(j)

An(i:j) =

0 otherwise .

To revhrase Lemma 2.1 in terms of matrices we define m different

n n . -0 =L —m-1
P x mp natrices A n’ A n""’A n by
D 1Y iy

) T D .
An(:.,,jm ) if mf3
P
-0 ,. .
A n(lyJ) =
L 1 otherwise

=~ e = -0 . s
A n(l,:}) = A (i, (3~2 )mod m) .
P iy



Intuitively, we get Zon by inserting m-l columns of O's after each
P
0

column o A ” and then shift A n by £ places to the right to get
-2 P Y
Apn.
Finally we can thrazse Lemma 2.1 by the following formula for A a
mp
as a block mabrix:
B - -1
oo (1)
Z m
n
Y
_ ot @)
A -
(2.5) A =1 b
- :
_ o m)
A
n
L 2 ]

This rairix representation of the permutation permité a geometrical
view of the decreasing subsequences. Formally an increasing subsequence
of o, 1is a sequence of integers P = {jl <Jp <eee < jz'} such that
G(ji) < cr(ji+l). Such a svbsequence can be identified in A as a path
of 1's vhich goes down and to 1:,he right. The set of integers
[jl’j,e] = {k: i, £x< jﬁ} will be called the domain of the path .P
and will be denoted by dom(P). The integer interval [Un(jl),c‘n(jz)] B
{k: crn(jl) <k < Gn(jz)} will be called the range of the path, and

naturally 2 (P) will be called the length of P.



3. The lower Bound Iemma.

The main result of this section is the following,

-2 =
Lemma 3.1. TFor pn <mn< Pn 1 we have

1

(3.1) 2 (mp™) > p*” >+ m(p-1) - (3p-1) ,

n-3 n-2

and for p <m<p we have
n n-3 2
(3.2) (mp ) >p " (p-1) + mp - (p~+2p-1) .
. . : n-2 n-1
Proof. First we will consider m such that p <m<p and,

construct an explicit path through A . By setting m = (pn-l-m)/ (p~1)
mp
and o, = m-m1 we have mlp2 + mep = pn. For 0<1i< [ml] we can define

a path P, through A of length 2p-1 and domain [pgi,pg(iﬂ)-l] by
- b

2. 2 2 2, 2,. 2,
P = (pi,p i+p,p i+2p,y...,p (i+l)-p,p (i+l)~-p+l,...,p (i+1)-1) .

For 0<i< [m2] we then define a path P through & L vith

[m1]+i

P
) 2., 2 .
length p and domein [[m ]p +ip,[m Jp"+(i#l)p-1] by
P = ([m)p%+ip, [m, Jp7+ipHL, .« .. , [y Ip7+ (141 )p-1)
[ 1o = (g Jo7sims Loy It iy -
_ _ o)
Tow we consider the paths Pi in A n wvhich correspond to Pi'
p -

These paths are defined by T;i = m_'Pi+0‘;11 (i). Finally we define our



desired path P through A a as the concatenation of the P. .
T i
mp

To maxe certaln that the path P is properly défined. we have to
check that for each k ¢ dom P, , and ¢ ¢ dom P, we heval el 4. Tais
condition will be abreviated by dom 151 4 > dom 'i-?i, and it follows
immediately from the corresponding fact that dom Pi 1 > dom Pi' By our

construction we finally have

2(mp") > 2(P) = [m](2p-1) + [m,)p

>m (2p-1) +mp ~ (3p-1)

=p" 4 m(p-1) - (3p-1)

vwhich completes the proof of (3.1).

-3 -2

We now consider m, pn <mn< pn and begin by setting

m = (P 2m)/ (p-1) eand m, =.m-m1. This time we have mlp3+m2p2 =
As in our previous construction there is & path of length p2 through
A 35 SO for 0<i< [ml] there is a path P, of length p2 .through
Azn with domain ipa, (i+l)p’7)~l]. For 0<ic< [m2] there is a path

P f ; iy i 3
'[m]_] 4 Of length 2p-1 through 'Apn with domain

G J.(i C S -1,
[{ml]pjl_p ,[ml]p +(i+l)p ~1]. Next we set Pi = mPi + oy (1) and
~1,.
o _ota)
obtain a path through A n by letting

b



Finally we calculate as before:

2(@p”) > 2(p) = [m 1" + [m,] (2p-1)

> myp 4y (2p-1)=(p742p-1) = p* 2 (p-1)tmp-(p>+2p-1)

which completes the proof of (3.2).

Remark. The preceeding proof probably é.ppea.rs more involved than an
examination of an example would indicate. By calculating A n for

p =35 and several small values of m and n one can easixll.lg-; find the
path P and see how i1t evolves as m and n increases. Similarly in

the arguments which follow one should keep the example p =3 .clearly

in mind, perhaps by keeping a small table of the A n
mp

to The Upper Bound Lemma.

The recursive nature of A n provides the key to the following,
mp
Lemma, %.1. For any positive integer m we have

(4.1) 2 (mpt 1) < p™ 4 m(p1)
and
4.2) . 2 (mpn) < pn—l = pn'2 + mp .

10



Proof. For any path P through A , We can decompose P as a

mp
concatenation
P = POPl s ee Pm-l
_ _ 0.1;1 (i)
where Pi is a path through A a « Here one should note that the
P

range of ?i is a subset of {ipn, (i-l-]_)pn-.l],

We now let P; be the corresponding path in A~ of 'fi. That is,
I .

-l,= -1,
we let B =mn (Pi-O’m (i)) . We do not have dom P, < dom Pi+l but we

obviously do have don Pi < dom Pi 4 S© the two paths have at most oxe

common point. If dom P; N dom B, . # ¢ we shall say P, and P, . are

linked. Since £(P) <Y ff‘;é' £(P;) the lemma would follow from

T2 (2 < min(p a(p-1),0° 0" Pamp).  This fact will be proved

using only the inegquality dom Pi < dom Pi a°
First we decompose A o0 into pn blocks of height pn-l and width p.
We note that each block has exactly one 1, and the pattern of 1's in each

column of blocks is the same as the pattern in Ap.

The block width Ww(P) of a path P is defined as the number of
distinct columns of blocks which intersect P. The block height h(P)
is defined correspondingly. Further, we let pn equal the number of
integers i such that Pi is linked to Pi °

If P, and P, . are linked we define their linkage as the

P . 3 % . . .
concatenation PiP{+1 where Pi . denotes Pi vith its first entry

removed. By forming the successive linkage of the Pi we obatin my1

paths i; ,f’

Al
12 F0seees B which are unlinked and for which

11



m m-1
(%.3) w3 e(B)= 3 £(R).
i=1 =0

Next we form all possible concatenations of successive f’i to get s paths

i’Pé"" ,Pé vhich allow no further concabtenation. One then has s < m

and
S my s
(k.1) Y, s(®) = ¥ 2(®) .
i=1 i=1 g
Moreover, one notes that no two P:!L share a common column of blocks for
the simple reason that donm Pi < dom Pi +1 and the 1 in any block is to

the right of the 1 in any block above it.

The crucial observation is that for each path P]!_ we have
T t f ). t Y
z(Pi) gh(Pi) + W(Pi) 1 §p+w(1>i) 1
vhich by summing over i yields
S S
(1.5) Ye(®) < Yw(®) +s(p-1) .
i=1 i=1

Since no two le_ share a column of blocks we have

S

(4.6) Yw(e) <p .
i=1

By the inequality (4.5) we obtain

S
(4.7) Z 40 < P + s (p-1)
1=

12



which by setting s = m-u-n with A >0 wusing (4.3) and (4.4) becomes
= n-1

(4.8) ZO 2(B)<p T+ (@A)(e-l) - w(-2) .
i

This completes the proof of (k.1l) since A >0 and u > 0. On the other
hend (4.6) also yields s <p" 0 so0 -u < PP r-(mA) vhich by (4.8)

implies

“Lin and by replacing n. by n-L and m

This implies £ (mp ) < p -p .
by mp | ne obtain the proof o'f' (k.2). This completes our proof of the
vpper bourd lemnma. .
Before applying the preceeding lemmas, we should note that in cerbtain
cases the inequalities can be made to provide equality. By inspecting
the proof of (3.1) in the cases of m = pn—l and m = pn-2 one sees
that it is not necessary to -estimate greatest integers so that the 3p-l

disappears from the right of (3.1). Combining this with (4.1) we have

the identities
on-1 n 2n-2, n-1.
%.9) £ ) =p and g( ) =p (ep-1).

By similar analysis for p =2 we also have the identity

13



(4.10) 2 (m2") =

5. TIdentification of the ILimits.

To complete the proof of our theorem, we first identify Tim N“l/ 2 (w)
n - o
where N is restricted to S = {mp™: p"> <m < p" ).
. . i

Lemma 5.1. Setting K = max(2(l-p-l) /2, pl/2, 2-p JL) and
k = min(e(l-p"l)l/e, pl/e, 2-p-l), we have
(5.1) Iim N"l/2 L) =K

NeS
and

. -1/2

(5.2) lim N L(N) =k

NeS

. . . n-2 n-l

Proof. As in Section 3 we deal with p <m<p (Case 1) and
Pn-B <n< Pn-e (Case 2) separately. This time we begin with case 2.

By (3.2) and (4.2) we have

-1/2 -1/2

g, (@)~ (o +2p4 ) (mp™) ™2 < £ (") (mp™) 2 < g _(m)

1/2

-2 &
vhere g () = (0 (p-1)+xp) (x0") . Consequently we have,

1k



1/2

... . n = . :
(5.3) lim 2 (mp )(mp™) = lim g (m)
wvhere the lim inf is taken over the set Sl = [mpn: ;pn"‘3 <m < pn—z,i < pad 1

One has the same equation as (5.3) for the lim sup.

Next observe gn(m) has its minimm ab a, = n'3(p-l) and g is

decreasirg for pn"3 <x< a, and increasing for a, <z< pn—2 One easily

- 1/2 -2 -1 -
checks that g (") = p /2, g,(0"") =207, ad g (a)) =2(1-p L/

so we have

(5.1) linm gn(m) =k and Iim gn(m) =K.

n n
mp €S, mp €Sy

To prove the compargble identities for case 1 one sets

£ (x) = (?n~l+x(p—l))(3<pn)”l/ 2 and obtains from (5.1) end (b1} that

vn @) @) 2 = 1 £ (m)

mpnes 5 mp €3

-2 =
where 82 = {'mpn: Pn ~<n pn l, nx 1}. The same equality holds for the

limsup, and we note as before that £ has a minimm at pn—l(p—l)‘l =b ,

n
or pnNQSxf_’o

=ty

. N~ .
cecreases " and increases for bn <x<0p l. Finally

-1\1/2 n-1 1/2 -2 -
we note f (b ) =2(i-p 0 / » £,0 ) =0p / , and £ (0777) = 2-p7.

Hence, we have

(5.5) linm I"n(m) >k and Tin fn(m) <X.

mpn 582 mpn 682

15



One has inequality in (5.5) since b~ 1is pot an integer. Actually
equality can be proved but is not required for the rest of the proof.
By (5.3), (5.4) and (5.5) we have completed the proof of (5.1) and (5.2)
as required by the lemma.

The proof of our theorem can now be completed in a routine way. For

an arbitrary integer N we write

(5.6) N = mpn+r with p <m<p and 0<r< pn+2

Letting £(i,j) denote the cardinality of the largest increasing

subsequence of (cpp(i), Q)p(i+l),...,cpp(j—l)) we see
(5.7) £GP, (141)p%) = 2()

as a consequence of (2.3). There is also the obvious fact that £(i,3)

is subadditive,

£(i,k) <2(E,3) +£(J,k) for i<j<k.

By choosing an integer t such that tpn+2 < mpn and

2 +2

npe +p e < (6+2)p" = one has by (5.6) that

16



£ (M) < g (mp™ep™*2)

n n n, ni2
< 2(mp”) + £(mp ,mp +p )

< 2 (mp") + g (£0772, (542)p7*2)

< o (mp”) + 25 (0"*2) |
Hence we have,
Tiy ' n - ni2
(5.8) . £(mp ) <2 (W) < s(up ) + 2 (™ C) .

Since for large N one has N/mp~ is near 1 and z(pn+2)/ (mpn)l/ &

is near O, the inequality (5.8) together with Lemma, 5 completes the

proof of the theorem.

17
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