
HAMMERSLEY'S LAW FOR THE VAN DER CORPUT SEQUENCE: 

AN INSTANCE OF PROBABILITY THEORY FOR PSEUDO-RANDOM NUMBERS 

BY 

A. DEL JUNCO and J. MICHAEL STEELE 

TECHNICAL REPORT NO. 23 

OCTOBER 9, 1978 

PREPARED UNDER GRANT 

DAA629-77-G-0031 

FOR THE U.S. ARMY RESEARCH OFFICE 

Reproduction in Whole or in Part is Permitted 
for any purpose of the United States Government 

Approved for public release; distribution unlimited. 

DEPARTMENT OF STATISTICS 

STANFORD UNIVERSITY 

STANFORD, CALIFORNIA 



Hammersley's Law for the van der Corput Sequence: 

An Instance of Probability Theory for Pseudo-Random Numbers 

Ey 

A. del Junco and J. Michael Steele 

TECHNICAL KEPOET NO. 23 

October 9,  1978 

Prepared under Grant DAAG29-77-G-0031 

For the U.S. Army Research Office 

Herbert Solomon,, Project Director 

Approved for public release^ distribution unlimited. 

DEPARTMENT OF STATISTICS 
STANFORD UNIVERSITY 
STANFORD, CALIFORNIA 

Partially supported under Office of Naval Research Contract NOOOlU-76-0-01*75 
(NR-042-267) and issued as Technical Report No. 263. 



The findings in this report are not to 
be construed as an official Department 
of the Army position,  unless so 
designated by other authorized 
documents. 



Hammersley* s Law for the van der Corput Sequence: 

An Instance of Probability Theory for Pseudo-Random Numbers 

by 

A-  del Junco and J.  Michael Steele 

1.       Introduction» 

Pseudo-random numbers form the backbone of computer simulation and 

Monte Carlo analysis, yet there are essentially no known theorems -which 

make explicit the sense in which pseudo-random numbers are replacements 

for random numbers. There is probably nq general result which can be 

proved, but there is still a program by which a deeper understanding of 

the relationship between pseudo-random numbers and random numbers can 

evolve. 

For every pseudo-random sequence and every probabalistic theorem^ 

there is surely some analogue of the probabalistic theorem for that 

pseudo-random sequence.    The qualities of that analogue should then 

accurately reflect the random qualities of the pseudo-random sequence. 

By a systematic analysis of these pairs of theorems and sequences,  a 

body of results can be obtained which is capable of resolving, or at 

least eroding, many of the philosophical and practical questions 

concerning pseudo-random sequences. 

This is no over-night task and there is no obvious place to begin 

other than with the theorems and sequences which interest one most.    We 

have begun with a theorem due to Hammersley and a sequence due to 

van der Corput. 



To introduce Hammersley's theorem, let    X.,  i = 1,2,...,    be indepen- 

dent random variables vita uniform distribution on    [0,1].    By 

£    = £(X_,X2,...,X )    we denote the cardinality of the largest monotone 

increasing subsequence of the values    X, (a>),Xp(a>),..«,,X (a>).    Hammersley 

[2] proved that 

(1.1) lim     n"1'2^    = c v      ' n n •* co 

•where    c    is a constant and the convergence is in probability.    We are 

particularly interested in  (l.l) because of the considerable effort which 

has been focused on the determination of   c. Even before convergence had 

been proved in  (l.l),  Baer and Brock [l] had conjectured that    c = 2    on 

the basis -of extensive computation.    Hammersley [2] gave bounds on    c 

which were improved by KLngman [k], but the deepest results obtained so 

far are due to Logan and Shepp [6] who proved    c > 2.    The problem of 

proving    c < 2    remains open. 

In the present context Hammersley's theorem has a natural appeal 

as a substantive probabalistic result in which there is much current 

interest.    The tempting prospects of obtaining    c    in the analogue of 

(l.l) for some pseudo-random sequence provide even more reason to start 

with Hammersley' s theorem. 

One natural choice for the sequence of pseudo-random numbers would 

be those generated by the linear congruence method. These are the most 

widely used pseudo-random numbers, yet they are very difficult to analyse. 



For this reason, we have begun with the van der Corput sequence which has 

wide-spread use in numerical integration [33  as well as considerable 

historical interest.(See, for example,  Knuth's interesting discussion 

"What is a random sequence"   [*5, pp. 127-157])«. 

To define the van der Corput sequence we first write, for    n > 0, 

n = £ "^    Q.^2      where    &± = 0    or    1.    The    n+lst element of the sequence 

is    (p2(n) = £ i=0 
ai2~X~    •    0ne can see that    ^2^ = °» ^2^ ~ §" ' 

1 3 
92(

2) = 5> ^Ö) - 5" »  etc»    "ß16 nature of   cp>(n)   is more easily seen 

in binary notation where   <p?(n)    is "the refection of    n   in the decimal 

point."    As the subscript suggests one can define a similar sequence by 

^pfa) = I 1=0 ^P"1"      where    n = £ •^Q a^p1, 0 < a± < p   and   p > 2    is 

an integer. 

We now have the theorem: 

If    £(n)    is the cardinality of the largest monotone increasing 

subsequence of    [<p (0)f <p (l),...,cp (n-l)}    then 

(1.2)        lim    xT1^2 i(n) = 72 ,    Hm    n"1'2 Z (n) = |-   for   p = 2 
n -*• 00 n "*• 00 

and 

(1 .3)        lim    n"1'2 £ (n) =2 /L-P""
1
 ,    lim    n""1'2 S, (n) = p1'2 for p > 2 

n -*• co n -> 00 

This result is as precise an analogue to  (l.l) as one could realistically 

expect.     Also,  the Logan-Shepp lower bound on    c    makes it particularly 

noteworthy that 



(1.10 lim        lim    n"1'2 Z (n) =2 
p -+ co    n -»• co 

For digestibility,  the proof of these results has been divided into four 

parts.    First we obtain a geometrical characterization of the monotone 

subsequences of van der Corput's sequence.    Upper and lower bounds are 

then obtained for   S, (n).    Finally the required limits are identified. 

2-      The Geometrical Representation. 

Our first goal is to obtain a representation from which detailed 

information about    {cp (o),cp (l),...,cp (n-l)}    can be deduced.    We 

define    cr      to be the unique permutation of    {0,1,...,n-l}    which puts 

cp (i), 0 < i < n-l    in increasing order, i.e. 

cp (o-  (0)) < <p (a  (l)) < ... < <p  (ex (n-l)) . Ypv n p^ n      y Yp   nv      " 

This permutation will be written as a sequence 

°n = (o-n(0),a-n(l),...,o-n(n-l)) 

and our reason for introducing   cr    . is the elementary fact that the length 

of the longest monotone increasing subsequence of   cr      is equal to    & (n). 

We also have the following law of formation of.   cr which will be 
mp 

crucial. 



Lemma 2.1.       One obtains    er from   er       by replacing the entry   cr    (i) 
mp p p

n 

of    cr        by the sequence    cr     (i)+p cr . n n m 
P P 

Remark.    Here and in the following if   x    is a sequence then    a-*bx   is a 

sequence with the same domain as    x    defined by    (a+bx)(i) = a+bx(i). 

Proof of lemma.    Notice that there are two things we must show; 

(2.1) cp (or n(i) + p\(j)) < <P (cr n(i) + pa«r Ü+1)) , 
P ^    P 

and 

(2.2) (?)  (cr     (1) + p\(j)) < <P>     (i+1) + pV(J'))     , 
P ^    P 

for any    j,  jf. 

We first suppose    j < p      and   k    is any integer.    Setting    j = £ . JT a.p , 

_ rr m     a.p    *    we have    j  + pi = £ a.p ,    and consequently 

(213) <P (jtA) =   |   V~(i+1) 

-   1   a±P + P       Z   a P V 

i=0 i=n   x 

= <Pp(d) + p"nq>p(k)    for   3 < pn . 

Now by  (2.3) we see  (2.1) is equivalent to 

p-\(o-mü))<p-ncpp(o-m(j+l)), 



which is just the definiiion of   cr .     Similarly,   (2.2) is equivalent to 

(2A) cpp(cr nÜ)) + p-ncpp(o-m(j)) < 9p(cr n(i+l)) + p"\(crm(j' ))  - 

To check (2.h) we note that, as.   i    runs through    {0,l,...,pn-l}, cp (i) 

runs through    {0,p    ,2p~ ,...,(p -l)p" }    so that, in fact, 

qp'  (cr n(i+l)) = p~    + <p>  (cr n(i))«    She proof of the lemma is thus complete. 
P    P P 

In many ways it is easier to work with the permutation matrix    A 

associated with    cr .    We recall that    A     is    an    nxn   matrix defined 

by 

An(i,j) = 

1    if   i = crn(j) 

0    otherwise 

To rephrase Lemma 2.1 in terms of matrices we define   m different 

v   x mp     matrxces    A    , A    ,....,A_      by - •* nun 
P        P P 

An(i,jm~1)    if   m|5 

-0 •    P 

A n(i,j) 
P 1 otherwise 

V. 

and 

Ä5
n(i,j) - A°n  (i, (j-i)mod m)  . 

P P 



Intuitively, we get A _ by inserting m-1 columns of 0rs after each 
p     -o column of A   and then shift A   by 2,    places to the right to get 

7^       P P 
An* 

Finally we can phrase Lemma 2.1 by the following formula for    A n 

as a block matrix 
mp 

n 
P 

(2.5) A n srp 

o-~1(2) 

n 
P 

This matrix representation of the permutation permits a geometrical 

view of the decreasing subsequences. Formally an increasing subsequence 

of   a-      is a sequence of integers    P = {j, < j    < ... < -r}    such that 
n -L        c 2, 

c(d- ) < c(3".+1 ).  Such a subsequence can be identified in   A^    as a path 

of   l's    which goes down and to the right.    The set of integers 

[j-j^Dg]  = (k: Ö-, < k < 3.)    will be called the domain of the path    P 

and will be denoted by    dom(P).     The integer interval    [or (j, ),o*  (j.)] = 
XX      JL XI      i/ 

(k:  a• (j, )<k<cr(3-)}    will be called the range of the path,, and 
XX      X      "~~ —~      Xi      Xf 

naturally   I, (P)    will be called the length of   P. 



3.      The Lower Bound Lemma. 

The main result of this section is the foll.otd.ng, 

Lemma 3-1.     For    p        < m < p we have 

(3.1) I (mpn) > p11"1 + m(p-l) - (3p-l) , 

o *> n~3 ^      ^   n-2 and for   p        < m < p we have 

(3.2) #(mpn) > pn"3(p-l) + mp -  (p2+2p-l)    . 

Proof. First we will consider m such that p "~" < m < p ~  and 

construct an explicit path through A  . By setting BL = (p  -m)/(p-l) 
2      mp 

and EU = H-HL we have EL,P + nup = pn. For 0 < i < [HL] we can define 

2      2 
a path    P.     through    A       of length    2p-l    and domain    [p i,p (i+l)~l]    by 

2       2 2 2 2 2 
P.  =  (P i>P i-fp^P i+2p,...,p  (i+l)-p,p (i+l)-p+l,...,p  (i+l)-l) . 
x 

For 0 < i < [nul we then define a path Pr -.   through A  with 

2 2 
length    p    and domain    [[m,]p +ip, [nL.jp +(i+l)p-l]    by 

2 2 2 
P

[EL ]+i =   ^ml^ +iP'tmi]P +ip-fi^-«-»[mj_]p + (i+l)p~l)  • 

o-_1(i) — —   m 
I'fow we consider the paths    P.    in    A which correspond to    P.. 

p 1 

These paths are defined by   P.   = mP.+cr~  (i).    Finally we define our 

8 



desired path. P through A    as the concatenation of the P , n x mp 

P- P0PX ...   P^+J-^J.-L • 

To make certain that the path    P    is properly defined we have to 

check that for each    k e dom P. ,n    and   £  e dom P.    we have   k > &„    This 

condition  will  "be abreviated by    dom P.  ,  > dorn P.,    and it follows 

immediately from the corresponding fact that    dom P.  _ > dorn P..    ^y our 

construction we finally have 

/,(mpn) > £(P) = [mL](2p-l) + [BLJP 

>mL(2p-l) + nyp -  (5p-l) 

= p "    + m(p-l) - (5p-l) 

which completes the proof of (3.1). 

We now consider   m, p       < m < p and begin by setting 

m    =  (p      -m)/(p-l)    and   mp = m-nL.    This time we have   nLp -to^p    = pn. 

2 
As in our previous construction there is a path of length p  through 

p 
A *,   so for    0 < i < [EL ]    there is a path    P.    of length    p      through 

P 3 3 
A       with domain    [ip , (i+l)p -1].    For   0 < i < [mu]    there is a path 

Pr     -,,.    of length    2p-l    through    A        with domain 
LHL j+x n 
^232 — l 

[[mjp^-f-ip , [m_]p +(i+l)p -1].    Next we set    P.  = mP.  + a~  (i)    and 

o--1(i) —   m obtain a path through    A by letting 
P 

9 



p- popi •" ^mJ+fi^J-l 

Finally we calculate as before: 

& (mpn) > i (P) = [m^p2 + [a^] (2p-l) 

n-2-, > m^p -h^(2p-l)-(p +2p-l) = p^Cp-D-tap-Cp +2p-l) 

•which completes the proof of (5.2). 

Remark.      Hie preceeding proof probably appears more involved than an 

examination of an example would indicate. By calculating   A for 
mp 

p = 3    and several small values of   m    and   n   one can easily find the 

path    P    and see how it evolves as    m    and   n    increases.    Similarly in 

the arguments which follow one should keep the example   p = 3    clearly 

in mind, perhaps by keeping a small table of the   A 
mP

n 

h.      The Upper Bound Lemma. 

The  recursive nature of A   provides the key to the following, 
mpn 

lemma h.l.    For any positive integer m we have 

(4.1) £ (mp*-1) < pn-1 + m(p-l) 

and 

nN „ n-1   n-2 
(4.2) I (mp )<p" -p"+mp 

10 



Proof.    For any path    P   through    A   n   we can decompose    P    as a 
mp 

concatenation. 

P ~ P0P1 *' *  Pm-1 

cr^Ci) 
where    P.    is a path through    A .    Here one should note that the 

p 
range of   P.    is a subset of    [ip j(i+l)p ~l]„ 

¥e now let    P.    he the corresponding path in   A       of   P..    That is, 
pn     i 

-1 —  -1 
let ~P.  = m (P^-o^ (i)) - We do not hare dom P. < dom P. +, but we we 

obviously do have    dom P. < dorn P. so the two paths have at most one 

common -point.    If   dom P. f] dom P. ,_   4 <fi   we shall say   P.    and    P.  .,    are 
i i+j. x x+l 

linked.     Since   £ (P) < ]T -Zn & (P- )    'fche lemma would follow from 

£ i~0 * ^ - Ejin(pn"l4a(P":i-)^pn"1-pn"2'{mP)-    This fact will *>e proved 

using only the inequality    dom P.  < dom P.   ... 

First we decompose    A       into    p      blocks of height    p ~      and width p. pn 

We note that each block has exactly one 1, and the pattern of l's in each 

column of blocks is the same as the pattern in A . 

The block width w(P) of a path P is defined as the number of 

distinct columns of blocks which intersect P. The block height h(P) 

is defined correspondingly. Further, we let u equal the number of 

integers i such that P. is linked to P. ,.,. ° x 1+1 

If P.  and P. ^,  are linked we define their linkage as the 

concatenation P. P*   where P*   denotes P. with its first entry 

removed. By  forming the successive linkage of the P. we obatin m-u. 

A A A 
paths    P, ,P„,...,P which are unlinked and for which I7  a7       7 m-u 

11 



m-fj.  A   m-1 

0*.3) V + £ i(P-) = X i(P.) . 
i=l   x        i=0 

Next we form all possible concatenations of successive P. to get s paths 

P',,P'>....,P' which allow no further concatenation. One then has s < m-u 

and 

s        m-jj.  . 
(*.*> I 1(12) = Z ^V 

1=1       i=l 

Moreover, one notes that no two PI share a common column of blocks for 

the simple reason that dorn P. < dom P. and the 1 in any block is to 

the right of the    1    in any block above it. 

The crucial observation is that for each path    P!    we have 

Z (P! ) < h(P!,) + w(P! )-l < p+w(Pl )-l 

which by summing over i yields 

(*.5) L*Q\)<   IX^) + s(P-l) 
i=l      i=l 

Since no two    PI     share a column of blocks we have x 

(h.6) IWCPM^P11"1 

i=l 

By the inequality  (.*]-. 5) •e obtain 

ft.7) I   1(3) <Pn_1 + s(p-l) 
1=1 

12 



which by setting    s = EL-JJL-X.    with    X >0    -using   (h.3)  and (h,k) becomes 

(^8) X   £ (P, ) < p11""1 +  (m-\)(p-l)  - n-fe-2)  - 
i=0 

This completes the proof of  (k.l) since   X > 0    and   u > 0.    On the other 

hand (h.6) also yields    s < p " '    so    -V- < p11"" -(m-\)    which by 0*-.8) 

implies 

m-1 
X   i(P±) <pn"X +  (m-xXp^l) +  fe      -(m.*))(p-2) 

i=0 

.    n    n-1, < p -p      +m . 

This implies £ (nrp ) < p -p +m and by replacing n by n-1 and m 

by mp we obtain the proof of (^.2). This completes our proof of the 

upper bound lemma. 

Before applying the preceeding lemmas, we should note that in certain 

cases the inequalities can be made to provide equality.    By inspecting 

/       % n~l n—2 
the proof of (3.1) in the cases of   m = p and   m = p one sees 

that it is not necessary to ^estimate greatest integers so that the   3p-l 

disappears from the right of (3-1)«    Combining this with (^.l) we have 

the identities 

(fc.9) iCp211"1) = Pn    and   Hv2n~2) = Pn_1(2p-1)  . 

By similar analysis for    p = 2    we also have the identity 

13 



(U.10) £(w2n) = 

2      +m        for        2        < m < 2 

t 2n-1
+2m      for        2n~3 < m < 2n"2 

II  -* CO 

5".     Identification of the Limits. 

    i/o 
To complete the proof of our theorem, we first identify  lim S       & (ST) 

where Bf is restricted to S = {mpn: pn  < m < p " }. 

—1 l/2      1/2 —1 Lemma 5.1.    Setting   K = max(2(l~p••  )      , p '   ,  2-p    )    and 

k = min(2(l-p    ) '   , p '   , 2-p~  ),    we have 

(5.1) lim   N-1'2 l (N) = K 
NeS 

and 

-l/p 
(5.2) lim   N   '    jg(W) = k 

NeS 

Proof.    As in Section 3 we deal with    p       < m < p (Case l) and 

p        < m < p ~£     (Case 2) separately.    This time we begin with case 2. 

By  (3.2) and  (4.2) we have 

gn(m)-(p2+2P+l)(mpn)-l/2 < ^(mpn)(mpn)-l/2 < gn(m) 

n-2 n -1/2 
where g (x) = (p  (p-l)-Hxp)(xp )    .  Consequently we have, 

14 



• n -1/2 

(5-3) lim Z (mp )(mp' ) = lim g  (m) n'' -"   ' —- "IT 

where the   lim inf   is taken over the set    S,  = [mpn: pn~^ < m < pn~2/l < n}. 

One has the same equation as  (5.3) for the lim sup» 

Next observe    g^m)   has its.minimum at    a   = p      (p-1) and   g     is 

decreasing for    p       < x < a_    and increasing for   a   <x< p      .    One easily 

checks that    gn(pn~3) = Pl/2, gn(pn'2) = 2-p"1,    and   g  faj = 2(l~p~1)l/2 

so "we have 

(5'J+) lia     g  (m) = k    and      lim      g  (m) = K . 
n _ n _ mp eS- mp eS 

To prove the comparable identities for case 1 one sets 

n-1 n -1/2 

fn(x) =  (p      +x(p-l))(xp ) and obtains    from  (3.1) and (k-.l} that 

lim      i (mp  ) (mp  ) =    lim      f (m) 
—-— •       n n „ n mp €S2 mp eSp 

where    S2 = (mp :p~<mp~,n>l}.-    The same equality holds for the 

limsup^  and we note as before that    f     has a minimum at   p"  (p~l)~    = b , 

decreases for    p       < x < b      and increases for   b    < x < p ~ «.    Finally —     —   n xi —     — 

we note    fjbj = Pd-p"1)1^  fjp*"1) - ^\    and   fn(pK"2) = 2-p"1. 

Hence, we have 

(5.5) lim      1   (m) > k      and       lim      f (m) < K 
n „      "' n „      n 

mp  cS mp eS 

15 



One has inequality in (5-5) since b  is not an integer. Actually 

equality can be proved but is not required for the rest of the proof. 

By (5.3), (5-^) and (5.5) we have completed the proof of (5.1) and (5.2) 

as required by the lemma. 

The proof of our theorem can now be completed in a routine way. For 

an arbitrary integer N we write 

(5.6)   l\  = mp +r wxth p   < m < p    and 0 < r < p 

Letting i(i,j) denote the cardinality of the largest increasing 

subsequence of (cp (i), cp (i+l),...,<p (j-l)) we see 

(5.7) i(iP
k,(i+l)pk) =^(pk) 

as a consequence of (2.3).    There is also the obvious fact that   i(i,3) 

is subadditive, 

Z (i,k) < t (i,j) + i (d,k)    for   i < j < k . 

By choosing an integer    t    such that    tp        < mp      and 

rap    + p   '~~ <  (t*2)p    c    one has by  (5»6) that 

16 



i(N) <^(rapn-fpn+2) 

<i(mpn) + S>g(pn+2) . 

Hence we have, 

(5.8)  •      i (mp
n) < t (N) < ^ (mpn} + ^ (pn+2) _ 

Since for large N one has N/mpn is near 1 and l (pn+2)/(mpn)1/'2 

is near 0, the inequality (5.8) together with Lemma 5 completes the 

proof of the theorem. 

17 
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