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SEQUENTIAL RANDOM PACKING IN THE PLANE

by

Howard J. Weiner

University of Califormia at Davis and Stanford University

I. INTRODUCTION

On a line segment (0,at+w), cars or segments of length « are to be
parked in this manner. Choose the point X uniformly on (0,a). Then
the first car is parked at (X,X+w). The succeeding cars are placed I.I.D.
as the first, except that if there is overlap with a previously-parked car,
the new car is discarded, otherwise it is parked. The process is con-
tinued until no further cars can be parked. This is Model I for parking
one-dimensional cars, due to Renyi (see [2], [3]).

Denote

(1.1) Ma(a+a) = mean total number of cars of length & parked in

accord with Model I.
Then (see [2], pp. 131-132) by total probability,
9 2
(1.2) M(a+a)=1+—frx(x) dx, M (x) =0, 0<x<a
o adgy o o =
It is known that ([2], pp. 123-124)

(1.3) lim ca” M (a) = 1 ~ .75.

a—om



In Model IT of Solomon ({2), pp. 129-132), a one-dimensional car
has coordinates (X,X+a), where X is uniform on (-«,a). The total parking
boundary is the segment (0,at+w), for a > @. If - < X< 0, the car is
parked at (0,x). If a-o < X< a, the car is parked at (a-2«,a-@). If
0 < X< a-o, the car is parked at (X,X+a). A second car of length «
is placed I.I.D. as the first car and parked if it does not overlap the
first car. 1If it dces overlap the first parked car, and the first parked
car has coordinates (%,xt+@), X > «, and the second car is initially placed
at (Y,Y+o), with o < x < Y+ < xtv, the second car is parked at (x-o,x).
If x <Y < x4, the second car is parked at (xt+o,x+2¢) if x + 20 < a.
In all other cases the second car is discarded. The process is continued
as above, except that a newly placed car is also discarded if it initially
overlaps another parked car, and upon moving adjacent to this car, either
will not f£it on fhe (0,;) segment, or overlaps still another parked car.
The process is continued until no further cars may be parked.

Denote

(1.4) Ra(a) = mean total number of parked cars on (0,2) in accord

with Model II.

By total probability, ([2], pp. 131-132),

20 2 .
a+2o Ra(a) o atr2a IORQ(X) 250

(1.5) R (at@) = 1 +
For Model II ([2], pp. 131-132),

(1.6) lim ca 'R (a) = &6 ~ .81,
g —* o

- It is the purpose of this paper to show that the Palasti conjecture

for sequential random packing holds in the plane for two-dimensional versions



of Models I and II. This will be formulated precisely below, and in the
special case of unit square size cars parked parallel to the sides of a
rectangular boundary, the Palasti conjecture states that as the boundary
area increases, the limiting ratio of mean total number of cars parked
divided by the boundary area approaches ﬂz for Model I and 62 for Model iI.
The extension of the Palasti conjecture to n-dimensions for Models I and II
is given. A random car size model in one dimension for Models I and II are

considered, and asymptotic results indicated.

iTr. MODEL I IN TWC DIMENSIONS

For Mecdel I in two dimensions, consider the fectangular boundary with
corners at (0,0), (0,b), (2,0), (a,b). The first car is parked in the space
given by the corners (X,Y), (i;Y+B), (X+a,Y), (X+o,¥+8) where (X,Y) is
chosen uniformly at random in the subrectangle (0,0), (0,b-g), (a-x,0},
(a~-o,b-B). Succeeding cars of the same size and orieﬁtation are placed
I.T1.D. as the first, and parked if there is no oyerlap with a car already
parked, and otherwise discarded.

Define

(2.1) M(a,b) = mean total number of & X § size parked cars in the

a X b rectangie.

Lemma 1. Let P(x,y) be defined for x,y > 0 and satisfy

(2.2) (i) P(x,y) = 0 if either x €< @ or y < B where o, B are positive
constants.

> (P
(ii) xyP(x,y) <) AUO ds Jo dt P(x,t) where A > 0 is a constant

and x > o, v > 8.



Then for x > @, y > 8,

(2.3) P(x,y) (5) 0.

Proof. By (2.2)(i) substituted into the right side of (2.2)(ii) with

: X0 -8
(2.2) (i1) xyP(x,y) > AI ds J dt P(x,t),
0 h¢]
it follows that
(2.3)  P(x,y) 20 for 20>x>a, 28>y > B.

Iterating by substituting (2.3) into the right side of (2.2)(ii) just

above proves that
(2.4) P(x,y) >0 for 3e¢>x>c¢, 38>y >8B.

Iterating (2.4) in this manner proves the result. The other inequality is

similar.

Consider the a X b rectangle with coordinates (0,0), (0,b), (a,0), (a,b),
and rectangular o X B cars, o,8 << a,b., Let £ denote the line segment

(0,b-B) to (a,b-B). A key lemma is the following.

Lemma 2. The o X B cars parked in the a X b rectangle accordigg-to
" Model I intersect line segment £ in segments (of length «) in accord with
a one-dimensional law of Model I for cars of length ¢ parked on a segment

of length a.



Proof. The line segment £ must be intersected by parked cars such
that no other cars can fit. Otherwise another car could be parked on U£.
Given thaﬁ this is the case, and that the x,y-coordinates which determine
the placerent of a car to be parked are chosen I.I.D. uniformly, then the
horizontal placement and parking of cars on £ 1is independent of all other

parked cars and depends only on the x-coordinate. This suffices for the

proof.

lacma 3. In Model I, for 2 > 20 or b > 2B, and @ X B cars,

(2.5a) M(a,b+B) > M{a,b)
M(a,b+B) _ M(a,b)

et a(brp) = ab

(2.6a) M(a,b) + M _(a) > M(a,b+B)

(2.6b) M(a,b) + Ma(a) < M{a,b+28).

Proof. By an induction and taking derivatives of each of a’lMd(a),
bnlMB(b), M&(a), Mﬁ(b) and checking their sign, it may be concluded that for
a>2g, b >28,

(2.72a) a—1 M&(a) and b_lMﬁ(b) are monotone decreasing, and
(2.7b) Md(a) and MB(b) are monotone increasing. .

Denote the @ x B cars parked in the a x b rectangle according to Model I
and which intersect line £ of lemma 2 by row 1 of parked cars. Below row 1,
the immediately adjacent cars form row 2 from one end of the recfangle_to the

other, znd so on, until rows are exhausted, and "partial rows' form. From the

independence of the (x,y) coordinates, density and monotonicity relations per row

-

..-’/'J



of (2.7a) , (2.7b) and a consideration of each row and partial row yields

the density and monotonicity relations respectively

a,b) < M(c,d)
b = cd

(2.8a) Mi fora>c, b>d
and
(2.8b) M(a,b) > M(c,d) for a X ¢, b > d.
.Relations’(Z.Sa) and (2.5b) are special cases of (2.8b), (2.8a) respectively,
Relations (2.6a), (2.6b) follow from (2.7a), (2.8b), lemma 2, and consideration

of row formation as in the above paragraph.

emma 4. Consider the (ata) X (b+8) rectangle as in Figure 2 and lemma 2. Th

cross-hnarcched subrectangle is an @ X B car, considered to be the first car

- parked in the rectangle.

en for a > 2z,

X

b > 28 and a, b multiples

T \ 1\ \ “\
of o, 8 respectively, oL | \\}\FQSSFQF
4 AR \

RN

NS

Figure 2
4 a-2a b-28
(2.9)  M(ata,big) 2 M (a-0) + Uy (>-B) - 1 + T 5m) Io ds fo dt M(s»t),

(2.10) M(a+x,b+B) < Ma(a{roz) + M

L 2 b
S - 1+ o5 jods fodt M(s, t).

Proof. The inequalities are direct consequences of Lemmas 2 and 3,
upon consideration of shaded areas to be replaced by one-dimensional lines

of cars. Then (2.ba) establishes (2.10) and (2.6b) establishes (2.9).



Theorem 1. For Model I of Renyl in the plane,

(2.11) lim op(ab) 1M(a,b) = T°.
a‘"b —-
Proof. A straightforward computation using (1.2) shows that for r
an integer, positive or negative,

(2.12> Ma(a+ra)M (btrg) = Ma(a+r00 + MB(b+rB) -1

B

4 ra—!—(r—l)a bt (r-1)p
+ a f .
(a+(x-1)a) (b+(x-1)B) v, *J, dt M ()M, (€)
Now sibzracting (2.12) with r = -1 from (2.9) and subtracting (1.12) with

r = +1 from (2.10) yields for
(2.13) Ma(a-oz)MB (b-8) < M(ate,b+p) < Ma(aw)MB(N-B) .

Dividing (2.135 by ab and using (1.3) yields the result.

~

III. MODEL 1II IN TWO DIMENSIONS

Model I1 for sequential random packing in the plane is an extension
of the sne-dimensional packing model of Solomon ([2], pp. 129, 131-132) and
is defined 2s follows., Again there is an a X b rectanguiar boundary and
& X B size cars to be parked with side o parallel to a and é to b,
The a X b rectangular boundary has lower left corner at (0,0), upper right
at (a,b). The first car may be placed with its lower left corner uniform on

the rectangle ("Q’,"B)’ ("Q'>b): ('B:a)’ (a:b)’



There are two cases. First, if the lower left corner of the first
car lands in the strip (-«,0), (0,0), (-o,b-B), (0,b-B), the car is shifted
horizontally to the right until its lower left corner is on the vertical
axis, and the car is parked there. Similarly, if the car is placed with
lower left corner in the other strips so that part of the car is outside
of the a X b boundary, the car is moved vertically or horizontally untii it
"fits" into the boundary. If the lower left corner is initially in the
strip {-v,-8), (-o,0), (0,-B), (0,0), the car is moved up and parked with
its lower left corner at (0,0). Similarly with the other 3 locations at
the corners of the a X b rectangle. For the second case, if the first car
falls within the a X b rectangle, it is parked there. A second-car is
parked I ,I.D. as the first, except that if the initial placement overlaps
that of the already parked first car, the second car is moved to the left
or down or diagonally if its lower left corner is not within the first car,
and to the right or up (or diagonally if necessary) if it is. 1If the
second car still cénnot fit, it is discarded. Similarly if there are at
least two already parked cars the next car is parked.I.I.D. as the othérs,
except that it is discarded if it canrot fit into the a X b boundary or over-
laps a second parked car after it is maneuvered as indicated. The process
continues until no further cars may be parked.

Denote

(3.1) Ra B(a,b) = R(a,b) = mean total number of & X B size cars
2

parked on an a X b rectangle according to the Mcdel II.

Lemma 5. Let R(x,y) be defined for x > 0, y > 0, and satisfy



(3.2) (1) RG,y) =0 if x< @, y < B,

(3.2)  (ii) R(x,y) ég) AR(x-,y) + BR(X,y-B)
+ CR(x~,y-B)

x-0 - y-p
+ Df ds J dt R(s,t),
0 0

for positive constants A, B, C, D. Then for x > «, y > B,

(3.3) R(x,¥) (5) 0.

4V ]

z32Z, The procf is similar to that of Lemma 1 and is omitted.

H,

[y Gty

Temma 6. Consider the a X b rectangular boundary with coordinates
(0,0), (0,b), (2,0), (a,b) aﬁd the line segment from (0,b-g) to (a,b-B).’
Cars of size @ X § are to be parked on the rectangular.boﬁndary a X b above
with  o-side parallel to a-side, and B-side parallel to the b-side in
accord with Model II in the plane until no further cars may be parked.

Then the number of o X B parked cars that intersect line £ above is
distributed in accord with the one-dimensional law of Model II for cars of

length « parked on a segment of length a.
Proof. The argument is as -in Lemma 2.

Lexra 7. For Model II in the plane, for a > 2o, b > 28

(3.4) R(a,b+p) > R(a,b)
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R(a,bt+B) R(a,b)
(3.5) a (b+g) = ab ¢
(3.6) R(a,b) + Ra(a) > R(a,b+ﬁ)7
3.7 R(a,b) + Rd(a) < R(a,b+2B).

Prcof. The relations (3.4), (3.5) follow from Lemma 6 as Lemma 3
follows from Lemma 2. Then (3.6), (3.7) follow from (3.4), (3.5) as

(2.6a), 72.6b) follew from (2.5a), (2.5b).

Yerma 8. Denote, for Model 11,

(3.8) T(a,b) = Rd(a)R (b).

B

Then for %k some integer, positive or negative,

2

(3.9)  Tlatko,bikp) = Ry(atke) + Rg(b+p) - 1+ yg

~

T(a+(k-1)x,b+kB)

ZQRa(a+(k-1)a) 28T (atke, bt (k-1)8) _ ZBRB(b+(k~1)B)
at(k+l) o b+(k+1)B b+(kt+1)B

at(k-)o b+(k-1)8

_ 40B8T (at (k-1)a, br(k-1)8) 4 Mas [ e o).
0

(at+ (t1)@) (b£ (k1)) | (at(k+1) ) (b+(k+1)B) ‘o

Prcof. This is a straightforward computation using (1.5).

Lecma 9. For Model IT in the plane, and a > 2«, b > 28.
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(3.10)  R(ate,b+B) < R (ata) + R (D) - 1 + 2o R(a,bp) - R (a)

o4
at+2a o

B

28R (at,b) 28 _ haBR(a,b)

t T g tr2p Rp ) 7 (ar20) (b+2p)
4 ra r,b

* (ar2a) (b+2p) .JOds u!odt R(s,t),

(3.11)  R(a+a,b+) > B (a-0) + R (b-p) - 1 + 2% R(a-20,b-p) - 22 R (a-20)

B

L 28RCa-opb-2p) _ PR O28) ogR (anob-28)

Proof of (3.10). Comsidering Figure 1 as applying to the two-dimensional

version of Model II, there are two cases. 1In the first case, the first car
fails within the recééngular boundary as in Figure 1. In this case the
shaded strips are replaced with one-dimensional lines of cars and (3.6) is
used to account for the terms 1, 2, 3, 9 on the righf side of (3.10).

Term 3, the -1 on the right of (3.10) is to avoid double-counting the car
common to the two shaded strips of Figure 1. The first case part of the
inequality follows from (3.6). 1In the second case the first car initially
falls partially outside the rectangular parking boundary and is parked with
one side on the rectangular boundary. If, for example, the first car is
parked with its lower horizontal side on the lower horizontal boundary of

the rectangular parking boundary, then by the analog of (3.6),
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(3.12) R(ata,b+8) < R(a+to,b) + Ra(a+af)
and from a computation and induction using (1.5) or from (3.4),
(3.13) Rﬁ(b+B) > RB(b).

Use of (3.12), (3.13) accounts for the terms 1, 2, 3, 6, 7 on the right ;f
(3.10). The "-1", term 3 on the right of (3.10) is to avoid double counting
a car common to the two perpendicular shaded strips. Considering a first
caxr pakged with a vertical side on a vertical side of the parking boundary
acccunts in addition for terms 4, 5 on the right side of (3.10). Thé term
gsht of (3.10) is subtracted to avoid double counting when the
first czr is parked in one of the four corners of the rectangu}ar boundary.
The doudble counting arises since a corner may be considered as both part of
a horizontal anl vertical shaded strip, This yields (3.10).

To obtain (3.11), (3.7) is used to obtain

(3.14) © R{a+o,b+g) > R(a-20,b-B) + Rd(a-Ot)
and
(3.15) R{ata,b+B) > R(a-o,b-2B) + RB(b-ﬁ).

Also, (3.4) or an induction based on (1.5) yields
(3.16) Ra(a—a) > Ra(a—Za)

(3.17) Ry (b-B) 2 Ry (5-2p).

Again considering the first car to be parked in one of two ways as in
the above argument used to establish (3.10) and use of (3.14) - (3.17), and

the double-counting arguments as used for (3.10) establish (3.11).



13

Theorem 2. For Model II in the plane, the Palasti conjecture holds,

that is,

(3.18) lim ap(ab) TR(a,b) = 8% ~ .65.

a,b - =
Proof. Subtracting (3.9) for k = +1 from (3.10) and subtracting (3.9)
for k = -1 from (3.11) yields inequalities of the form (3.2)(ii) in both

directions. Then epplication of Lemma 5 yields

(3.19) R (2-0)R_(b-B) < R(ate,b) < R (ate)R_ (b+p).

B B

Then iilviding (3.13) by ab and using (l.8) yields the result of Theorem 2.

Rzmark. The zrzuments for Theorems 1 and 2 in the plane clearly carry
over to higher dimensional analogs of Models I and II, respectively. The
detailad descriptions of Models I and 11 for dimensions higher than two
will be omitted, but the result will be stated.

Denote the n-vectors

(3.20) a= (al,...,an)
o = (crl,...,an)
and
Ta = a; - ay ¢ ... ¢ oa.
Denote
(3.21) M(a) = mean total number of &-cars parked in an a-rectangle
according to Model I in n-dimensions. -
(3.22) R(2) = mean total number of B-cars parked in an a-rectangle according

to Model II in n-dimensions.
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Theorem 3. For Model I in n > 3 dimensions, the Palasti conjecture
holds, that is,

(3.23) 1im (me) (ma) " M(a) = 1.
2158500053 O

For Model II in n > 3 dimensions, the Palasti conjecture holds,

that is,

(3.24) lim () (Tra)-lR(g_) =&,

a.,...,2 — @
1° >“n

Proof. The argument is similar to that for two dimensions, and an
induczion on the result for n-dimensions is used just as the one-dimensional
Palasti limit theorem is used for the Palasti limit in the plane. The

details are omitted.

IV. RANDOM meeR CAR SIZE

An extenmsion in which car size is chosen from a distribution independent
of the parking mechanism and I.I.D. is indicated below for the first moments
in the cane-dimensional cases of Models i and II. A model for random car
lengths in one dimension for Model I where the car size distribution is
state~dependent on the available distribution of parking space lengths was
considered in [1] and the asymptotic first moment obtained.

The =cdel here is simpler. Car sizes are chosen I.I.D, from a distribu-
tion with density £, distribution function F, with finite positive mean.

Using the same notation for Model I in Section 1, let

“.1) M(a) = mean number of cars which can be parked in this random

car size version of Model I, after averaging over car size.
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It follows that

a

2 =
¢.2) M(a) = Fa) + = [ M(a-§)F(E) ag.
: 0

Denote

(==
@ .3) L(s) = [ ™) ax

0
and

(=]
@ .4) o(s) = [ e x) ax

0
then taking Laplace transforms of (5.2) after multiplying by a yields

. L o= -2 29
¢ .5 L Qs s Lo
Assume
(¢-]

(4.6) 0 < j& o' (u) Zn(u) du < =,

This holds if, for example, the domainof F is [a,b] for 0 <a <b < =,

Denote
(4.7) i E.fé @' (u) In(u) du.

it follows that, by the previous methods,

[>=]

)

2, S%ngdr I _er -‘?-éﬂ du-2y i
(4.8) L) =e ° Ple 78 0 ~E)y g
8

g

so that, using [2], p. 132



(4.9) lim szL(s) = k,
s i,O

where

(e}
-2? Q%?l du-2

4,10 K= "8 IO NI
( ) b e ( g )g g:
so that for this model
(4. 113 lim a~'M(a) = k.

a ~— [ee}

For Model II with the same randommess in car length, denote

(4.12) R(a) = mean number of cars which may be parked in Model II in [0,a].
Let
P(D
(4.13) I(s) = | e %*R(x) dx.
0
Then
2 2 2 2
(4.14) R(a) = F(a) + —J oR(a~@)E(@)de + 3 | R(2-§)F(E) dE,
&0 290
yielding, where
(4.15) 3. =2 5s)
* s ds "%
- = - -(-E - ’ _2_(2
(4.16) I (S)S ZQSJ + 3 J

and solving for J by using an integrating factor, taking limits

as s $ 0, by the same method as before, the final result is
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(4.17) lim 2" R(2) = 1,

a —+

where, since the integrating factor must vanish at § = =, it follows that

<

- -zjr ﬂu‘ildu—zgo(g)-zwz

- § PICO N
(4.18) A Joe [(g ey 98-

Higher dimensions for this random car size model can be
treated by methods of the preceding sections, then averaging over car size.

This is straightforward and will not be carried out here.

Cne possible 2-dimensional extension is as follows, by the methods of

the previous sectious.

(4.19; Let W(a,b) = mean total number of cars of dimensions Xi’Yi which
can be parked in an axb rectangle according to the two-dimensional Renyi model,

where Xi’Yf are I.1.D. with density £.

Let

(4.20) U(a,b) = mean total number of cars of dimensions Xi’Yi which can
be parked in an axb rectangle according to the two-dimensional Solomon model,

where Xi,Yi are I.I1.D, with density £.

Theorem 4

(4.21) 1m (ab)"! wea,b) = Ko
a,b—=
(4.22) vim  (ab)" ! ua,b) = A,

a,b-—vcs
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