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SEQUENTIAL RANDOM PACKING IN THE PLANE 

by 

Howard J. Weiner 

University of California at Davis  and Stanford University 

I.   INTRODUCTION 

On a line segment (09a+a), cars or segments of length o>    are  to be 

parked in this manner.  Choose the point X uniformly on (0,,a). Then 

the first car is parked at (X,X-KO„ The succeeding cars are placed I.I.D. 

as the firstj except that if there is overlap with a previously-parked car, 

the new car is discarded, otherwise it is parked. The process is con- 

tinued until no further cars can be parked.  This is Model I for parking 

one-dimensional cars» due to Renyi (see [2], [3]). 

Denote 

(1.1)    M (a+or) = mean total number of cars of length <3    parked in 

accord with Model I. 

Then (see [2], pp. 131-132) by total probability, 

(1.2)    Ma(a+o;) = 1 + | J MQ(x) dx,  M^(x) = 0,0<x< 
0 

It  is   known that   ([2],   pp.   123-124) 

(1.3) lim aa~1M  (a)  =  71 ~  .75. 
a  — t» 



In Model II of Solomon, ([2], pp. 129-132), a one-dimensional car 

has coordinates (X,X+oO, where X is uniform on (-o/,a). The total parking 

boundary is the segment (0,a+or), for a > ex.     If -0/ < X < 0, the car is 

parked at (0,or).  If a-or < X < a, the car is parked at (a-2a,a-o/).  If 

0 < X < a-a,   the car is parked at (XsX+o/). A second car of length Of 

is placed I.I.D. as the first car and parked if it does not overlap the 

first car.  If it does overlap the first parked car, and the first parked 

car has coordinates (x,x+o/), x > a,   and the second car is initially placed 

at (Y,Y+oO, with o; < x < Y+of < x+a, the second car is parked at (x-a,x). 

If x < Y < x-fof, the second car is parked at (x+o?,x+2a) if x + 2a < a. 

In all other cases the second car is discarded.  The process is continued 

as above, except that a newly placed car is also discarded if it initially 

overlaps another parked car, and upon moving adjacent to this car, either 

will not fit on the (0,a) segment, or overlaps still another parked car. 

The process is continued until no further cars may be parked. 

Denote 

(1.4) R (a) - mean total number of parked cars on (0,a) in accord 

with Model II. 

By total probability, ([2], pp. 131-132), 

(1.5) Ra(a-faO = 1 + -£.  Ra(a) + ^ f*^)  dx. 

For Model II ([2}, pp. 131-132), 

(1.6) lim aa_1R (a) = 6 ~ .81. 
a -* a 

It is the purpose of this paper to show that the Palasti conjecture 

for sequential random packing holds in the plane for two-dimensional versions 



of Models I and II.  This will be formulated precisely below» and in the 

special case of unit square size cars parked parallel to the sides of a 

rectangular boundary, the Palasti conjecture states that as the boundary 

area increases, the limiting ratio of mean total number of cars parked 

2 2 divided by the boundary area approaches Tj for Model I and 6 for Model II. 

The extension of the Palasti conjecture to n-dimensions for Models I and II 

is given. A random car size model in one dimension for Models I and II are 

considered, and asymptotic results indicated. 

II.   MODEL I IN TWO DIMENSIONS 

For Model I in two dimensions, consider the rectangular boundary with 

corners at (0,0), (0,b), (a,0), (a,b). The first car is parked in the space 

given by the corners (X,Y), (X,Y+ß), (X+c^Y), (X+a,Y+ß) where (X,Y) is 

chosen uniformly at random in the subrectangle (0,0), (0,b-ß), (a-a,0), 

(a-Qf,b»ß).  Succeeding cars of the same size and orientation are placed 

LI.D. as the first, and parked if there is no overlap with a car already 

parked, and otherwise discarded. 

Define 

(2.1)    M(a,b) = mean total number of a  X ß size parked cars in the 

a X b rectangle. 

Lemma 1.  Let P(x,y) be defined for x,y > 0 and satisfy 

(2„2)    (i)  P(x,y) = 0 if either x < a  or y < ß where a,   ß are positive 

constants. 
jc-of      py-ß 

(ii)  xyP(x,y)   ,-\  A ds   j       dt P(x,t) where A > 0  is a constant 
IS)    >>0 ^o 

and x > o/,  v > 8. 



Then for x > a,  y > ß, 

(2.3) P(x,y)   (|}  0. 

Proof.     By  (2.2)(i)  substituted  into  the  right side of   (2.2)(ii) with 

jc-or        y-ß 
(2.2) (ii)  xyP(x,y) > A ds dtP(x,t), 

J 0 J 0 

it follows that 

(2.3) P(x,y) > 0 for 2a > x > a, 2ß > y > ß. 

Iterating by substituting (2.3) into the right side of (2.2)(ii) just 

above proves that 

(2.4) ?(x,y) > 0 for 3a > x > a, 3ß > y > ß. 

Iterating (2.4) in this manner proves the result.  The other inequality is 

similar. 

Consider the a X b rectangle with coordinates (0,0), (0,b), (a,0), (a,b), 

and rectangular a  X ß cars, Of,ß « a,b.  Let S,    denote the line segment 

(0,b-ß) to (a,b-ß). A key lemma is the following. 

Lenraa 2.  The a  X ß cars parked in the a X b rectangle according to 

Model I intersect line segment S,    in segments (of length a)   in accord with 

a one-dir?.ensional law of Model I for cars of length a  parked on a segment 

of length a. 



Proof. The line segment I must be intersected by parked cars such 

that no other cars can fit. Otherwise another car could be parked on jj„ 

Given that this is the case, and that the x,y-coordinates which determine 

the placement of a car to be parked are chosen I.I.D. uniformly, then the 

horizontal placement and parking of cars on & is independent of all other 

parked cars and depends only on the x-coordinate» This suffices for the 

proof. 

La^sa 3.  In Model I, for a > 2a  or b > 2ß, and a  X ß cars, 

(2.5a) M(a,b+ß) > M(a,b) 

(2.5b) Mia^+ßl  MJ^bJ. 
v a(b+ß) -  ab 

(2.6a) M(a,b) + M (a) > M(a,b+ß) 

(2.6b) M(a,b) + M^Ca) < M(a,b+2ß)„ 

-1 
Proof. By an induction and taking derivatives of each of a M (a), 

' a 

b    M.(b), M (a), M-(b) and checking their sign, it may be concluded that for 
P      Of      p 

a > 2or, b > 2ß, 

-1 -1 
(2.7a)  a  M (a) and b M0(b) are monotone decreasing, and 

or p ' 

(2.7b)  M (a) and M„(b) are monotone increasing. 
OP 

Denote the a  x ß cars parked in the a x b rectangle according to Model I 

and which intersect line JL of lemma 2 by row 1 of parked cars.  Below row 1, 

the immediately adjacent cars form row 2 from one end of the rectangle to the 

other, and so on, until rows are exhausted, and "partial rows" form.  From the 

independence of the (x,y) coordinates, density and monotonicity relations per row 



of (2.7a) , (2.7b) and a consideration of each row and partial row yields 

the density and monotonicity relations respectively 

/o o \   M(a,b) ^ M(c,d) c ^ , ^   , (2.8a)    \ ? •«  <     v '   '     for a > c, b > d 
ab   —  cd —  '   — 

and 

(2.8b)  M(a,b) > M(c,d) for a > c, b > d. 

Relations (2.5a) and (2.5b) are special cases of (2.8b), (2.8a) respectively. 

Relations (2.6a), (2.6b) follow from (2.7a), (2.8b), lemma 2, and consideration 

of row formation as in the above paragraph. 

Lemma 4.  Consider the (a+a) X (b+ß) rectangle as in Figure 2 and lemma 2. Tb 

cross-hatched subrectangle is an a  X ß car, considered to be the first car 

parked in the rectangle. 

Then for a > 2a, 

b > 2ß and a, b multiples 

of or, ß respectively, 
JL-K\\\\N\w 

Figure 2 

a-2a  „b-2ß 
(2.9)  M(a+or,b+ß) > M^a-a) + yb-ß) - 1 + (a_2a)(b.2ß) JQ  <*S ^  dt M(s,t), 

4   ra    rb 

(2.10) M(a+a,b+ß) < M (a+a) + M0(b+ß) - 1 + ~r      ds  dt M(s,t). 
— a a ao «» n  «i n 

,b 

0  "0 

Proof.  The inequalities are direct consequences of Lemmas 2 and 3, 

upon consideration of shaded areas to be replaced by one-dimensional lines 

of cars.  Then (2.ba) establishes (2.10) and (2 ,6b) establishes (2.9). 



Theorem 1.  For Model I of Renyi in the plane, 

(2.11) lim aß(ab)"1M(a,b) = T}2. 
a,b -» e° 

Proof. A straightforward computation using (1.2) shows that for r 

an integer5 positive or negative, 

(2.12) Ma(a+ror)M  (b+rß) = M  (a+ror) + M  (b+rß)   -   1 

4 pa+(r-l)Qf        b+(r~l)ß 
+ T~~~7 r<~T7ü7?—TT^T  , ds <*t M  (s)M„(t), (a+(r-l)a)(b+(r-l)ß) JQ        JQ aK      ßv 

Now subtracting (2.12) with r = -1 from (2.9) and subtracting (1.12) with 

r = +1 from (2.10) yields for 

(2.13)   Ma(a-ar)M (b-ß) < M(a+a,b+ß) < M (a+a)M (b+ß) . 

Dividing (2.13) by ab and using (1.3) yields the result. 

III.  MODEL II IN TWO DIMENSIONS 

Model II for sequential random packing in the plane is an extension 

of the one-dimensional packing model of Solomon ([2], pp. 129, 131-132) and 

is defined as follows. Again there is an a X b rectangular boundary and 

a  X ß size cars to be parked with side a    parallel to a and ß  to b. 

The a x b rectangular boundary has lower left corner at (0,0), upper right 

at (a,b).  The first car may be placed with its lower left corner uniform on 

the rectangle (-Q?,-ß), (-a,b), (-ß,a), (a,b). 



There are two cases. First, if the lower left corner of the first 

car lands in the strip (-a,0), (0,0), (-a.b-ß), (0,b-ß), the car is shifted 

horizontally to the right until its lower left corner is on the vertical 

axis, and the car is parked there.  Similarly, if the car is placed with 

lower left corner in the other strips so that part of the car is outside 

of the a X b boundary, the car is moved vertically or horizontally until it 

"fits" into the boundary.  If the lower left corner is initially in the 

strip (-a,-ß), (-o/,0), (0,-ß), (0,0), the car is moved up and parked with 

its lower left corner at (0,0).  Similarly with the other 3 locations at 

the corners of the a X b rectangle. For the second case, if the first car 

falls within the a X b rectangle, it is parked there.  A second-car is 

parked I.I.D. as the first, except that if the initial placement overlaps 

that of the already parked first car, the second car is moved to the left 

or down or diagonally if its lower left corner is not within the first car, 

and to the right or up (or diagonally if necessary) if it is.  If the 

second car still cannot fit, it is discarded.  Similarly if there are at 

least two already parked cars the next car is parked I.I.D. as the others, 

except that it is discarded if it cannot fit into the a X b boundary or over- 

laps a second parked car after it is maneuvered as indicated.  The process 

continues until no further cars may be parked. 

Denote 

(3.1)    R „(a,b) = R(a,b) = mean total number of a  X ß size cars o,ß 

parked on an a X b rectangle according to the Model II. 

Lerraa 5.  Let R(x,y) be defined for x > 0, y > 0, and satisfy 



(3.2)    (i)   R(x,y) =0 if x < a,  y < ß, 

(3.2)    (ii)  R(x,y) | AR(x-or,y) + BR(x,y-ß) 

+ CR(x-a,y~ß) 

„x-a 
+ D   ds 

J0    "0 

pY-ß 
dt R(s,t), 

for positive constants A, B, C, D.  Then for x > a,   y >  ß, 

(3.3) R(x,y) (|} 0. 

The proof is similar to that of Lemma 1 and is omitted« 

Lensa 6.  Consider the a X b rectangular boundary with coordinates 

(0,0), (0,b), (a,0), (a,b) and the line segment from (0,b-ß) to (a,b-ß). 

Cars of size a  X ß are to be parked on the rectangular boundary a X b above 

with  or-side parallel to a-side, and ß-side parallel to the b-side in 

accord with Model II in the plane until no further cars may be parked. 

Then the number of a X ß parked cars that intersect line I above is 

distributed in accord with the one-dimensional law of Model II for cars of 

length or parked on a segment of length a. 

Proof.  The argument is as in Lemma 2. 

Lemma 7.  For Model II in the plane, for a > 2a, b > 2ß 

(3.4) R(a,b+ß) > R(a,b) 
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n c% R(a,b+ß)  R(a,b) 
v>JO; a(b+ß) -  ab  ' 

(3.6) R(a,b) + Ra(a) > R(a,b+ß)? 

(3.7) R(a,b) + Ra(a) < R(a,b+2ß). 

Proof. The relations (3.4), (3.5) follow from Lemma 6 as Lemma 3 

follows from Lemma 2.  Then (3.6), (3.7) follow from (3.4), (3.5) as 

(2.6a), (2.6b) follow from (2.5a), (2.5b). 

Lama 8.  Denote, for Model II, 

(3.8) T(a,b) =  R(a)R (b) . 
or   p 

Then for k some integer, positive or negative, 

2a 
(3.9)       T(a+ko-,b+kß)   = Ra(a+ka) + R   (b+kß)   -  1 + a+(k+1)a T(a+(k-l)a,b+kß) 

2^(a+(k-l)a)       2ßT(a+kg>b+(k„1)ß)        2ßR8(b+(k-l)ß) 

a+(k+l)a b+(k+l)ß b+(k+l)ß 

.  toglfa^»..^»») + * .   ra+^l)a titles   t) 
(a+(k+l)cr)(b+(k+l)ß)      + (a+(k+l)of)(b+(k+l)ß) oQ    GS        }Q 

K  '   J 

Proof.  This is a straightforward computation using (1.5). 

Lersaa 9.  For Model II in the plane, and a > 2or, b > 2ß. 
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(3.10) R(a+*,b+ß) < Ra(a+a) + Rß(b+ß)   -  1 + ^L R(a>b+ß)   _ _||_ R^(a) 

.   2ßR(a+g,b) 2ß .       4aßR(a,b) 
b+2ß b+2ß     ß^  ;        (a+2a)(b+2ß) 

+  (a+2aKb+2ßTJr
o

dS4dtR(Sjt): 

(3.11) R(a-K*,b+ß)  > R  (a-a)  + R_(b-ß)   -  1 + — R(a-2a,b-ß)   - — R  (a-2c0 

+ 2ßR(a-g,b-2B)   _  2ßR3(b"2ß)   _ 4aßR(a-2a,b-2ß) 
b b ab 

a_?s b-2fi 
+ ~   ' ds   ! dt  R(s,t). ab c 0 "0 

Proof of (3.10).  Considering Figure 1 as applying to the two-dimensional 

version of Model II, there are two cases.  In the first case, the first car 

falls within the rectangular boundary as in Figure 1.  In this case the 

shaded strips are replaced with one-dimensional lines of cars and (3.6) is 

used to account for the terms 1, 2, 3, 9 on the right side of (3.10). 

Term 3, the -1 on the right of (3.10) is to avoid double-counting the car 

common to the two shaded strips of Figure 1.  The first case part of the 

inequality follows from (3.6).  In the second case the first car initially 

falls partially outside the rectangular parking boundary and is parked with 

one side on the rectangular boundary.  If, for example, the first car is 

parked with its lower horizontal side on the lower horizontal boundary of 

the rectangular parking boundary, then by the analog of (3.6), 
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(3.12) R(a+o/,b+ß) < R(a+o/,b) + R (a+o/) 

and fron a computation and induction using (1.5) or from (3.4), 

(3.13) Rß(
b+ß) > Rß(b>- 

Use of (3.12), (3.13) accounts for the terms 1, 2, 3, 6, 7 on the right of 

(3.10). The "-1", term 3 on the right of (3.10) is to avoid double counting 

a car cc-inmon to the two perpendicular shaded strips. Considering a first 

car parked with a vertical side on a vertical side of the parking boundary 

accounts in addition for terms 4, 5 on the right side of (3.10).  The term 

8 on .he right of (3.10) is subtracted to avoid double counting when the 

first car is parked in one of the four corners of the rectangular boundary. 

The double counting arises since a corner may be considered as both part of 

a horizontal and vertical shaded strip. This yields (3.10). 

To obtain (3.11), (3.7) is used to obtain 

(3.14) R(a-rQ',b+ß) > R(a-2a,b-ß) + R (a-a) 

and 

(3.15) R(a+a,b+ß) > R(a-or,b-2ß) + R0(b-ß). 
P 

Also, (3.4) or an induction based on (1.5) yields 

(3.16) Ra(a-o0 > Ra(a-2o:) 

(3.17) Rß(b-ß) > R„(b-2ß). 
P       P 

Again considering the first car to be parked in one of two ways as in 

the above argument used to establish (3.10) and use of (3.14) - (3.17), and 

the double-counting arguments as used for (3.10) establish (3.11). 



13 

Theorem 2.  For Model II in the plane, the Palasti conjecture holds, 

that is, 

(3.18) lim aß(ab)~1R(a,b) = 62 ~ .65. 
a,b — co 

Proof.  Subtracting (3.9) for k = +1 from (3.10) and subtracting (3.9) 

for k = -1 from (3.11) yields inequalities of the form (3.2)(ii) in both 

directions.  Then application of Lemma 5 yields 

(3.19)      Ra(a-a)Rß(b~ß) < R(a+o,b-fß) < Rff(a-Kv)R„(b+ß) . 

Then ii/iding (3.19) by ab and using (1.5) yields the result of Theorem 2. 

Remark.  The arguments for Theorems 1 and 2 in the plane clearly carry 

over to higher dimensional analogs of Models I and II, respectively. The 

detailed descriptions of Models I and II for dimensions higher than two 

will be omitted, but the result will be stated. 

Denote the n-vectors 

(3.20) a = (a,,...,a) 

and 

a = (a,,.. . ,a ) 
—    1     n 

rra = a, • a„ • ... • a . 12 n 

Denote 

(3.21)   M(a) = mean total number of a-cars parked in an a-rectangle 

according to Model I in n-dimensions. 

(3.22)   R(a) = r.ean total number of J3~cars parked in an a-rectangle according 

to Model II in n-dimensions. 
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Theorem 3.  For Model I in n > 3 dimensions, the Palasti conjecture 

holds, that is, 

(3.23) lim      (Tra)(na)_1il(a) = if. 
a^a , ...,a -• «> 

For Model II in n > 3 dimensions, the Palasti conjecture holds, 

that is, 

(3.24) lim      (TTa)(Tra)"lR(a) = 6n. 
a. ,.. . ,a -» <» 
1     n 

Fr.'j£. The argument is similar to that for two dimensions, and an 

induction on the result for n-dimensions is used just as the one-dimensional 

Palasti unit theorem is used for the Palasti limit in the plane. The 

details are omitted. 

IV.  RANDOM £SHl CAR SPg-E 

An extension in which car size is chosen from a distribution independent 

of the parking mechanism and I.I.D. is indicated below'for the first moments 

in the one-dimensional cases of Models I and II.  A model for random car 

lengths in one dimension for Model I where the car size distribution is 

state-dependent on the available distribution of parking space lengths was 

considered in [1] and the asymptotic first moment obtained. 

The r.odel here is simpler. Car sizes are chosen I.I.D. from a distribu- 

tion with density f,  distribution function F , with finite positive mean. 

Using the same notation for Model I in Section 1, let 

(4.1)    M(a) = mean number of cars which can be parked in this random 

car size version of Model I, after averaging over car size. 
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It follows that 

2 ra 
(4.2) M(a) = F(a) + JJ M(a-§)F(|) d§. 

Denote 

CO 

(4.3) L(s) = r e"SXM(x) dx 

and 

CO 

(4 .4) cp(s) =  f e"SXf (x) dx 

then taking Laplace transforms of (5.2) after multiplying by a yields 

(4^ -L = -(2) +^L. V   ' s     s s   s 

Assume 

r (4.6) 0 < J  cp'(u) in(u) du < «>. 

This holds if, for example, thedomainof F is [a,b] for 0 < a < b < =°. 

Denote 

(4.7) u. - cp' (u) £i(u) du. 

it follows that, by the previous methods, 

2;-^+2p   /.2fafeldu.iY
N 

r I «    § // Ä2- (4.8)   L(s) = e  ° j \e   = y[_(^)§ \ d§ 

so that, using [2], p. 132 
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2 
(4.9) lim    s  L(s)  =  k, 

s i 0 

where 

.2f  2£aldu.2^ 
(4.10) „.J   (.    *?     ' Ji-^g)«. 

so  that for this model 

(4.11) lim a_1M(a)  = k. 
a -. co 

For Model   II with  the same  randonness  in. car  length,   denote 

(4.12) R(a)  = nean number of cars which may be parked in Model  II in  [0,a] 

Let 

CO 

(4.13) J(s)  s  |p e"SXR(x) dx. 

Then 

•a 3. 

(4.14) R(a) = F(a) + - f aR(a-a)f(or)dor + -  f R(a-§)F(|)  d§, a J0 a JQ 

yielding,  'Aere 

(4.15) J    s ~ J(s) v s       ds     x 

(4.16) -J    = -(^)     -  2c? J + -22 j 
s s  s Ts s 

and solving for J by using an integrating factor, taking limits 

as s J, 0, by the same method as before, the final result is 
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_1 
(4.17) lim a    R(a)  =  X, 

a -» co 

where,   since   the  integrating  factor must vanish at § = °,   it follows  that 

(4.18) X =   f e 
d0 

-2[    ^^ du-2cp(?)-2M.+2) X     u 
<*P>5]«. 

Higher dimensions for this random car size model can be 

treated by methods of the preceding sections, then averaging over car size. 

This is straightforward and will not be carried out here. 

Cv.a  possible 2-dimensional extension is as follows, by the methods of 

the previous sections. 

(4.19)    Let W(a,b) = mean total number of cars of dimensions X. ,Y. which 

can be parked in an axb rectangle according to the two-dimensional Renyi model, 

where X.,Y. are I.I.D. with density f. 

Let 

(4.20) U(a,b) = mean total number of cars of dimensions X.,Y. which can 

be parked in an axb rectangle according to the two-dimensional Solomon model. 

where X.,Y. are I.I.D. with density f. 
li 

Theorem 4 

(4.21) lim   (ab)"1 W(a,b) = k2. 

(4.22) lim   (ab)"1 U(a,b) = X . 
a.b-*» 
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