o

'/AD-AObl 369 NEW MEXICO UNIV ALBUQUERQUE ERIC H WANG CIVIL ENGINE=-=ETC F/6 13/2

AIR FORCE REFUSE=COLLECTION SCHEDULING PROGRAM DESCRIPTION, VOL==ETC(U)
APR 78 H J IUZZOLINO F29601-76=C=0015
UNCLASSIFIED CERF=-EE~19 _ CEEDO=TR=78-23-VOL=1 NL

o i

CEEDO-TR-78-23

fol 0986

AIR FORCE REFUSE—COLLECTION
SCHEDULING PROGRAM DESCRIPTION
VOLUME | : PROGRAM RCINPT

N

HAROLD J. IUZZOLINO

ADA0 61365

ERIC H. WANG CIVIL ENGINEERING RESEARCH FACILITY
UNIVERSITY OF NEW MEXICO

BOX 25, UNIVERSITY STATION
ALBUQUERQUE, NEW MEXICO 87131

03
& APRIL 1978
O

FINAL REPORT FOR PERIOD JANUARY 1976 — APRIL 1977

Approved for public release; distribution unlimited |

‘ CIVIL AND ENVIRONMENTAL
M ENGINEERING DEVELOPMENT OFFICE

(AIR FORCE SYSTEMS COMMAND)
TYNDALL AIR FORCE BASE
FLORIDA 32403

L, s —————

"

A

UNCLASSIFIED

SECURITY MFICAYION OF THIS PAGE (When Dcl.‘Bmemdl

| | REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

¥ BER 9 VT ACCESSION NO.
R-78-23 —Vorame=t VE/ m

3. RECIPIENT'S CATALOG NUMBER

q)

14

e ot B B N A

5. ‘N{E}mmﬁ\covsneo
Fma] Repawt . Vit

£976-m Apr N7,

Harold J /quzohno 7

i

F_AIR FORCE REFUSE-COLLECTION SCHEDULING /| /
PROGRAM DESCRIPTION e e ey

Volume I. Program R ol

7, _AUT S — ng&& f

0961 7 CL_/

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Eric H. Wang Civil Engineering Research Faci]i;y,

University of New Mexico, Box 25, University
Station, Albuguerque, NM 87131

10. PROGRAM ELEMENT PROJECT, TASK
AREA & WORK UNIT NUMBERS

T.D. 4.03

11. CONTROLLING OFFICE NAME AND ADDRESS

DET 1 (CEEDO) HQ ADTC

Air Force Systems Command

Tyndall Air Force Base, Florida 32403

14. MONITORING AGENCY NAME & ADDRESS(V“{'O}" rom flice

158
1S. SECURITY CLASS. (of this report)
Unclassified
15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

DDC-~

Map processing
Map description strings

18. SUPPLEMENTARY NOTES = ‘\Eﬁn\] l “ E
Available in DDC U =
NOV 17 1978
TCGGIT L
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) B
Minimum number of trips Free format
Spatial clustering of streets Computer-generated routes

%o. ABSTRACT (Continue on reverse side If necessary and identify by block number)

This report describes Program RCINPT, the first of

Force Refuse-Collection Scheduling Program. Program logic, input, output,
requirements, and Timitations are presented in detail. Error messages are
listed and corrective procedures are given. Recommended program changes, a
program listing, and sample input and output are included.

four programs in the Air

DD . jg:"n 1473 EDITION OF | NOV %5 IS OBSOLETE

UNCLASSIFIED

!; " SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

400 770 L

[Zaep——

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) 14

UNCLASSTFIED

TESMIT L AL ACRIEICATIANM AF TUIF DAAF/Wha~ Nata Frisrad)

PREFACE

This report documents work performed during the period January 1976
through April 1977 by the University of New Mexico under Contract F29601-
76-C-0015 with Detachment 1 (CEEDO), ADTC, Tyndall Air Force Base,
Florida 32403. cCaptain Robert Olfenbuttel managed the program.

This volume, which documents program RCINPT, is the first of four
volumes constituting the Air Force refuse-collection-scheduling program
description. All of the algorithms used in program RCINPT were developed
and coded by Harold J. Iuzzolino.

The report has been reviewed by the Information Officer and is
releasable to the National Technical Information Service (NTIS). At
NTIS it will be available to the general public, including foreign
nations.

This technical report has been reviewed and is approved for publi-

cation.
mg.@%m ;JC 0 @,M
ROBERT F. OLFENBUTTEL, Capt, USAF, BSC ETER A. CROWLEY, Maj, USgk, BsC
Chief, Resources Conservation Branch Director of Environics
EMIL C. FREIN, Maj, USAF JOSEPH S. PIZZUTO, Col, USAF, BSC
Chief, Envmtl Engrg & Energy Rsch Commander
Division

i
(The reverse of this page is blank)

TABLE OF CONTENTS

Section Title Page

I INTRODUCTION 1

II PROGRAM OVERVIEW 3

I1I PROGRAM LOGIC 7

, 1. Program Tasks 7

: . 2. Data Storage 16

3. Purpose and Performance 18

a. Subroutine MOVES 19

b. Function IFIND 19

c. Subroutine STRINP 20

d. Subroutine NUMBER 22

e. Subroutine AXIS 23

f. Subroutine MAPGRID 26

) g. Subroutine SHAPCOM 28
i h. Subroutine COORD 32
) i. Subroutine MAPPLT 34
j. Subroutine LINEIN 38

. Program RCINPT 43

IV INPUT AND OUTPUT 53

: 1. Input 53
’ 2. Output 58
. a. Disk Files 59
g b. Plot File 60
} c. Printed Output 61
v PROGRAM REQUIREMENTS 63

VI PROGRAM LIMITATIONS 65

VII ERROR MESSAGES AND CORRECTIVE ACTION 69

VIII RECOMMENDED PROGRAM CHANGES 75

APPENDIX A: LOGIC FLOWCHARTS 77

APPENDIX B: PROGRAM LISTINGS 101

APPENDIX C: DEFINITIONS OF IMPORTANT VARIABLES 135

APPENDIX D: SAMPLE INPUT DATA 143

APPENDIX E: SAMPLE PRINTED OUTPUT 151

GLOSSARY 157

e e

R —

LIST OF FIGURES

Figure Title Page
1 Control Relationships Among Subprograms b
2 Geometry for Circular Arc Radius Calculation 10
3 Geometry for Circular Arc Center Calculation 12
4 Geometry for Derivation of Coordinates of Point on Arc 14
5 Geometry for Calculating Rectangular Segment Parameters 14
6 Geometry for Calculating Angle Segment Parameters 15
7 RCINPT Data Deck Setup 55

LIST OF TABLES

Table Title Page
1 RCINPT Data Cards 54

}

iv !

k*-——-—_—______f I .

SECTION I
INTRODUCTION

1. OBJECTIVES

In designing the Air Force Refuse-Collection Scheduling Program (RCSP),
the fundamental objective was to reduce collection costs. The most signifi-
cant cost reduction is effected by a reduction in the number of collection
trips used to service a given region. If a collection crew can be dropped
from the fleet, the cost of manpower will be cut. In addition, fuel and
maintenance costs will be lessened if the total mileage traveled by the
collection fleet can be reduced. The first objective, then, is to generate
a collection schedule that calls for the theoretical minimum number of trips.

The second objective was to produce a desirable collection schedule that
would be relatively easy to implement. Some of the features considered de-
sirable for a refuse-collection trip by one vehicle are the use of as few U-
turns as possible, collection of all refuse on a block by one pass of the
vehicle, spacial clustering of all streets serviced by the vehicle, and mini-
mization of the time and distance required.

A third objective was to produce a computer program that is easy to im-
plement and runs quickly. The requirements for easy implementation include
a simple technique for describing the collection region to the computer, no
need for human decisions during the program execution, and computer output
in forms that can be used immediately. It was desirable to develop the pro-
gram at a cost less than that of any other scheduling method and in a short
time. The cost-performance balance finally used was that of coming as close
as possible to the performance goals using roughly a one-man-year effort
over two calendar years.

The performance finally achieved comes very close to the stated objectives.
RCSP usually achieves the theoretical minimum number of trips without human
intervention and always achieves the minimum with a very little human in-
tervention. Implementation is fairly straightforward, although the desir-
ability of the final schedule depends on the care with which the map of the

1

e

el

collection region is reduced to computer input form. Provisions exist for hu-
man improvement of the computer-generated routing before the final maps and
schedules are produced. Spacial clustering of the streets in the collection
region usually is very good for all but one trip.

2. SCOPE

This section (Volume I) of the report describes the first program, RCINPT.
A program overview is given, followed by a thorough description of the logic
involved in the map processing. A skeleton of the logic flow is provided. In-
put and output files are described. Program requirements and restrictions,
error messages and error-handling techniques, definitions of important symbols,
and a running time estimate are also provided.

SECTION I1I

PROGRAM OVERVIEW ?

Program RCINPT serves two purposes: it plots the map input data to verify ;
their accuracy, and it determines the total amount of refuse for which collec-
tion is to be scheduled. Since the refuse-quantity computation is embedded in

the map processing procedure, the functional description of RCINPT will stress
the latter.

RCINPT receives three types of input. The first data record contains
street names. (The program provides printouts of these names that can be
checked for accuracy; the data are then saved on disk for use by program
PHASE4.) The second data record describes maps to be plotted by RCINPT as
an aid to debugging the input description. The map-description cards are
in free format, with refuse-quantity information embedded in the map de-
scription.

The program consists of a main program named RCINPT and 10 nonsystem
subroutines. RCINPT calls subroutine STRINP, which reads the problem title
and the street-name data. STRINP prints the title, the street numbers, and
the street names. The street-name information is buffered out to file TAPE3.
Control returns to RCINPT.

RCINPT reads the second data record, which consists of the bounding co-
ordinates and the sizes of maps to be plotted by subroutine MAPPLT. If any
maps are to be p]otted, RCINPT calls subroutine MAPGRID, which draws the axes
and a grid on which the map will be plotted. MAPGRID uses subroutine AXIS to
draw each axis and to append tic marks to the plot. Subroutine AXIS uses sub-
routine NUMBER to append numbers to the axis.

After drawing the grid, RCINPT reads two cards from the first map descrip-
tion, which give various parameters pertaining to the map. These parameters
are then printed out. The remainder of the map-description data consist of
groups of strings describing street connections and positions. Refuse-

quantity information is embedded in these strings. The strings are read in free

format, using subroutine LINEIN. The strings are read in groups corresponding

to street segments; as each group of numbers is read, the information is stored.

Subroutine MOVES and function IFIND are used to position the data in the corre-
sponding arrays. Each string is terminated by coordinates and shape informa-
tion. The shape information is processed by subroutine SHAPCOM. Coordinates
of points on each street segment are determined by subroutine COORD.

When each string has been completely read in and processed, subroutine
MAPPLT 1is called to plot the information from that string. This process is re-
peated until all strings in the record have been processed. Additional records
of map data are processed in the same manner, and the reading of map data term-
inates at an end-of-file or two consecutive end-of-record cards.

When all of the map-description data have been read, the information about
each street segment is printed out. Information about street segments is
written on disk file TAPE1, and information about intersections (nodes) is
written on disk file TAPE2. If more than one output map is requested, RCINPT
calls subroutines MAPGRID and MAPPLT repeatedly until all output maps have been
completed.

The flow of control from one subprogram to another is shown in Figure 1.
Within each subprogram, only the first call to each other subprogram is shown.
(Four of the subroutines shown in Figure 1--PLOTS, SYMBOL, PLOT, and EXIT--are
subroutines from the basic Calcomp software package and are not included in
the description of program RCINPT.)

T AT

RCINPT

SYMBOL

Figure 1.

5

F;:_——_’ PLOTS
STRINP
MAPGRID AXIS '%‘
J,___ﬂ SYMBOL
— LINEIN
P IFIND
f—1 MOVES
SHAPCOM
COORD
WAPPLT SHAPCOM
| NUMBER SYMBOL
E SYMBOL
PLOT
COORD
r._‘ PLOT
—8 EXIT

Control Relationships Among Subprograms

(The reverse of this page is blank.)

SONTRDSSPRRPU—

SECTION III
PROGRAM LOGIC

The logic for program RCINPT is described from three viewpoints. The
first description is task oriented. The second view is data-storage oriented
and includes a discussion of the preparation of data for use by subsequent
programs. The third view describes each subroutine in terms of its purpose
and the manipulations performed within it.

In the descriptions that follow, certain terms are used to represent por-
tions of arrays. Assume that array X has permissible subscripts of from 1 to
| 100. The terms low, first, and front refer to data at or near X(1). The terms
} high, last, and end refer to data at or near X(100).

1. PROGRAM TASKS

Program RCINPT serves two primary tasks: it reads the map-description
data, and it plots the output maps.

Program execution begins in main program RCINPT. The Calcomp plot pack-
age is initialized by a call to subroutine PLOTS. Program RCINPT calls sub-
routine STRINP, which reads in the problem title, the street numbers, and the
names associated with those numbers.

The main program then reads the second record of data, which will be the
descriptions of the regions to be plotted on maps. From 1 to 10 cards must be
; present in this record. The description of the collection region may consist
t of several maps, each producing a record of map-description data. The first
two cards of each map-description record consist of scale factors and default
parameters. These are read by the main program using formatted read state-
ments. The problem title and the map parameters are printed. The remaining
data cards in the map-description record consist of free-format strings that
describe the street connections, the refuse quantities, and the street geom-
etries. These cards are read by several calls to subroutine LINEIN.

The first call occurs at statement 210 in the main program. The street
number and the number of the first node on the card are read by this call to
LINEIN. The next four items on the map-description string may be repeated many
times. These four items--street-segment length, houses on right side, houses
on left side, and end node number--are read by the call to LINEIN at statement
250 in the main program. The data obtained on this call are processed and
stored in the segment data table and the node data table. Control then returns
to the call to LINEIN at statement 250 until either the end of the card or a
slash or left parenthesis is encountered. If a slash is encountered, a speed
limit, a one-way indicator, the number of sides collected on one pass, and a
refuse quantity adjustment factor may follow. These are read by the call to
LINEIN preceding statement 280 in the main program.

After these data have been processed, LINEIN is called at statement 310
to obtain the coordinates of the first node and the shape code. Following
statement 320, LINEIN is called to obtain the coordinates of the final node
of the string. This completes the reading of a map-description string. The
coordinates of the initial and final nodes of the string are processed accord-
ing to the mode of coordinate use specified on the first data card of the map-
description record. If average coordinates are requested, the coordinates are
accumulated into a running average for each node. If the last coordinates are
to be used, all previous values are overwritten., If only the first specifica-
tions of coordinates are to be used, no subsequent values are retained. If a
new map with a new coordinate system in a new map-description data record is
being processed, the translations for that map relative to the initial map
description are found by using either the initial or the final node of the
first map-description string. Therefore, one of these nodes must have been
specified on a previous map.

Processing in the main program continues by the assigning of an individ-
ual shape code to each segment in the string. Where possible, simplified shape
codes are assigned to the segments. For example, if segments on a string with
an angle shape code exclude the vertex, these segments are assigned a shape
code indicating a straight segment. This processing takes place between state-
ments 600 and 690 in the main program. Where collection is from one side of

the street at a time, the segment is processed twice, one way in each direction.

——

Subroutine MAPPLT is called to draw the contribution to the first output
map from each segment in the string. This process of reading strings and
plotting their contributions to the first map is repeated until all of the in-
put map-description records have been read. When the first output map has been
completed, the node and segment data are written to disk or tape. Subroutines
MAPGRID and MAPPLT are called repeatedly to draw subsequent maps. Processing
is then terminated and control returns to the system.

As each string in the first map-description record is processed, subrou-
tine MAPPLT is directed to draw all of the segments in that string. It is di-
rected to draw all of the segments on subsequent calls for subsequent maps.

In all cases, parts of the map outside the bounds specified on the cards in
the second data record are not drawn.

Before each segment is drawn, subroutine SHAPCOM is called to set up the
parameters used to determine the position on the segment of points at a given
distance from the start of that segment. The actual coordinates of points on
the segment are returned by subroutine COORD. The loop from statements 130 to
170 in subroutine MAPPLT generates points on each segment and plots a line
through these points. The nodes at the ends of the segment are numbered, and
the segment number is appended to the map near the midpoint of the segment.

Four types of computation are used by subroutines SHAPCOM and COORD to
produce the coordinates of points on a segment. The simplest computation is
performed for straight segments and involves a linear interpolation between
the initial and final nodes. Another calculation processes both circular-arc
and S-curve segments; an S-curve is treated as two consecutive circular arcs.
The center and radius of the circular arc are found in subroutine SHAPCOM.

Subroutine COORD uses the distance along the perimeter to compute the angle
subtended by the arc; it then computes the coordinates of the point on a ref-
erence circle, translates the reference point, and rotates the point to ob-
tain its coordinates on the segment.

In SHAPCOM the radius of the circular segment is found using a curve fit
to the solution of a transcendental equation containing the radius. The geom-
etry for the derivation of the equation is shown in Figure 2. T represents

Figure 2. Geometry for Circular Arc Radius Calculation

the total length of the circular segment and corresponds to FORTRAN variable
TOTLEN. D is the length of a chord connecting the end points of the circular
arc segment and corresponds to FORTRAN variable D in SHAPCOM. ¢ is one-half
the angle subtended by the circular arc at the center of the circle. R is
the radius of the circular segment. From fundamental definitions of ¢ and
sin¢, one obtains the equations

¢ = %ﬁ-and sing = %ﬁ

Dividing these two equations yields

b . 8in

B
Since this equation decreases monotonically as ¢ increases from 0 to pi (its
maximum permissable value), ¢ can be found by curve fitting ¢ as a function
of D/T. The curve fit actually used fits ¢> against 1 - D/T and is motivated
by the approximate solution for small values of ¢: replacing sind/¢ by the
approximation 1 - ¢?/3! yields D/T = 1 - 4%/3!; therefore ¢° = 6(1 - D/T).

10

Values were tabulated for (¢/n)? and 1 - sing/¢ (which is 1 - D/T) for
101 values of ¢/m from O to 1. The relation was treated as an odd function,
giving 100 more points for negative values of (¢/m)?, and a seventh-degree
polynomial curve fit was performed. Treating the relation as an odd function
caused all coefficients of even powers of (1 - D/T) to vanish. Since ¢ =
T/2R, the fit for ¢ yielded 1/R. The result of the curve fit is used by
SHAPCOM to evaluate 1/R, which is FORTRAN variable RPR.

The error in 1/R is reduced by reducing the error in the difference of
sing = sinT/2R and sin¢ = D/2R. For the present value of 1/R an error £ B
sinT/2R - D/2R is evaluated. If Iell >0.00001, the following iterative im-
provement is performed. The error €, is positive when 1/R is too small. A
change A1/R is selected such that Al1/R = 0.0002 * sign (e), and another error
g = sin[T/2(1/R + A1/R)] - D/2(1/R + A1/R) is evaluated. This error is either
closer to zero or opposite in sign from €, - A linear interpolation is per-
formed to improve the value of 1/R: 1/R = 1/R - elAI/RO]d/(e1 - ez).

new old
When Iel] <0.00001, the process is stopped.

Once the radius is known, the center of the circle must be found. There
are four cases: right or left circular arcs, each either more or less than
half a circle. The geometry used to find the center for both cases of right

circular arcs is shown in Figure 3. In this figure, 6 is the slope of the
line from starting to ending point, and o is +1 for a right circular arc or -1
for a left circular arc. H is found using the Pythagorean theorem on a tri-
angle having sides R and H.

The computation for the coordinates (XS, Y_) on a circular arc at a perim-

s
eter S from the starting point (XI’ YI) can be derived easily by using vectors.

{ }
C

11

(XE,YE) (XE,YE)
' (XCTR,YCTR) o
R
(XNI,YNI MR
Case 1: o=+1,H>0 Case 2: g =+1,H< 0
i XCTR = 0.5 (XNI+XE) - oH sine

; YCTR = 0.5 (YNI+YE) + oH cose
' Note: o = -1 for left circular arcs.

E Figure 3. Geometry for Circular Arc Center Calculation

is the vector from the origin to the center of the circle. The radius vector
- %
Y17
is from the center of the circle to the starting point. The rotation matrix
cos -sin

sin cos

olv D»
ojwv DW»

rotates the radius vector from the starting point to the point on the arc a

perimeter S away. The vector
Xﬂ
's

to this point, and therefore the coordinates (Xs, YS), are given by

12

S 3
X cos g -sin

Y sin cos

o|l» D»

o|n

Figure 4 illustrates the geometry.

To calculate the coordinates of a point on a rectangular segment, the
slope components of the first side are determined, and then appropriate multi-
ples of these components are added to the starting or ending node's coordin-
ates. The distances to the break points, BR1 and BR2, and the slope components
SX and SY are computed in subroutine SHAPCOM. The geometry for the calculation

is shown in Figure 5. Using the FORTRAN variable names, the calculations and
units are

BR1 = 0.5 (TOTLEN - D) miles
BR2 = 0.5 (TOTLEN + D) miles
SX = sin6 + SCR/AVMD MCU/mile
SY = cosb + SCR/AVMD MCU/mile

where TOTLEN is the total length of the segment, SCR is the ratio of current
to overall map distance conversion, and AVMD is the current map distance con-
version. The slope components and distances to breaks are used in subroutine
COORD to obtain the coordinates (XX, YY) of the point a perimeter S from the
starting node of the rectangle. The following equations are used:

[XNI+g+SX-S, S < 0.95+BR1
XNI+o«SX+BR1, 0.95+BR1 < S < 1.05+BR]
XX = | XNI+o+SX-BR1+SY-(S-BR1), 1.05-BR1 < S < 0.95+BR2
XNI+o+SX<BR14SY+ (BR2-BR1), 0.95¢BR2 < S < 1.05+BR2

| XNF+0+SX+ (BR1+BR2-S), 1.05BR2 < S

[YNI-g-SY-S, S < 0.95+BR1
YNI-G+SY+BR1, 0.95+BR1 < S < 1.05+BR1
YY = | YNI-o-SY+BR1+SX+(S-BR1), 1.05-BR1 < S < 0.95+BR2
YNI-o-SY-BR1+SX+ (BR2-BR1), 0.95:BR2 < S < 1.05+BR2

|_YNF-0-SY- (BR1+BR2-S), 1.05BR2 < S

13

After Rotation

(Xc’ Yc)

Before
Rotation

Origin (X1 Yy)

Figure 4. Geometry for Derivation of Coordinates of Point on Arc

(XNF,YNF)

(XNI,YNI)

Figure 5. Geometry for Calculating Rectangular Segment Parameters

T

(XNF,YNF)

0
(XCTR,YCTR) _4'_‘&_

(XNI,YNI)

Figure 6. Geometry for Calculating Angle Segment Parameters

where (XNI, YNI) are the coordinates of the starting node, (XNF, YNF) are the
coordinates of the ending node, o = +1 for a right rectangle, and o = -1 for a
left rectangle.

The coordinates of a point on an angle segment are found by linear inter-
polation between one end and the vertex. The coordinates of the vertex are
found in subroutine SHAPCOM and are stored in variables XCTR and YCTR. The
geometry is shown in Figure 6. Here BR1 and BR2 are the lengths of the sides
of the angle. The fraction F of D that forms a right triangle with side H and
hypotenuse BR1 is found by eliminating H* from the two Pythogorean relations
for the two right triangles having H as a common side, and then solving for F.
H can then be found by using the right triangle with hypotenuse BR1. The re-
sults are

F = [1- (BR22-BR1?)/D?]/2
H = o}/BR12-(F+D)?

15

| N —

where o = +1 for an angle that lies to the right of the line connecting the
end points, or o = -1 for an angle on the left side of that line.

The coordinates of the vertex of the angle are

XCTR
YCTR

XNI+(cos8+F+D-sinf+H)+SCR/AVMD
YNI+(sin6+F+D-cos6+H)+SCR/AVMD

where SCR, AVMD, XNI, and YNI have the same meanings as for a rectangular seg-
ment. The coordinates (XX, YY) of a point S miles from the starting node of
the angles are found in subroutine COORD by linear interpolation. The equa-
tions used are equivalent to

[XNI+(XCTR-XNI)+S/BR1, S < BRI
XX = 4

| XCTR+(XNF-XCTR) - (S-BR1)/BR2, BRI < S

[YNI+(YCTR-YNI)-S/BR1, S < BRI
YY = A

LYCTR+(YNF-YCTR)+ (S-BR1)/BR2, BR1 < S

2. DATA STORAGE

Three files generated by program RCINPT are saved on disk for use by later
programs: segment data on file TAPE1, node data on file TAPE2, and street data
on file TAPE3. Files TAPE1 and TAPE2 are used by programs PHASE2, PHASE3, and
PHASE4. File TAPE3 is used only by program PHASE4.

The segment data are stored in array STG, which is in blank COMMON. The
array is equivalenced with array ISTG so that both integer and floating-point
segment data can be accessed by reference to the appropriate array name. All
of the data in arrays STG and ISTG come from the input map-description records.
In the following, the variables NSTR, NN1, NN2, LEN, NH, NSPD, NWAY, NRQF,
NXMID, NYMID, and NSF represent numeric subscripts 1 through 11, respectively.

The street number and starting node of each string are read by the call

to LINEIN at statement number 210 in main program RCINPT. The initial node
number is stored in ISTG(NN1,KI) two statements after statement number 240.

16

-

The street number is saved in variable NUMST until later. KI is the line num-
ber at the start of string processing. Each segment is read by LINEIN at
statement 250. The length and the number of houses on the right side are
stored in STG(LEN,KF) and ISTG(NH,KF) after statement 260. KF is the current
line number. The number of houses on the left side is saved in array NHL for
later use. The next node number is stored in both ISTG(NN2,KF) and
ISTG(NN1,KF+1), six statements after number 260. If the string continues, the
node is both the ending node of one segment and the starting node of the next.
If the string ends on the node, the next string will overwrite ISTG(NN1,KF+1)
with its starting node number. The speed 1imit, number of ways of travel, num-
ber of sides serviced on one pass, and refuse quantity adjustment factor are
read by the call to LINEIN two statements before statement 280. These param-
eters, or default values if the parameters are missing, apply to all segments
in the string. The speed 1imit, number of ways of travel, and refuse quantity
adjustment factor are stored in STG(NSPD,K), ISTG(NWAY,K), and STG(NRQF,K) in
the loop through statement 290. K is the loop index and has values equal to
the line numbers of the segments. Also in this loop, the street number is
stored in ISTG(NSTR,K); and if both sides of the street are serviced on one
pass, the houses on the left side are added to those on the right side.

The midpoint coordinates of the segments and the segment shape codes are
stored in STG(NXMID,K), STG(NYMID,K), and ISTG(NSF,K) in the loop through
statement 690 as the segments are plotted. If collection is from only one
side of a street at a time, additional segments are generated in the loop
through statement 700. These additional segments are made one-way segments if
the corresponding original segment was a two-way segment. The signs on the
number of houses on the original and new segments are made minus to indicate
collection from one side of the segment at a time.

When all plotting is complete, the count of segments KF, as much of the
ISTG array as has been filled, and the map distance conversion factor for the
first input map SVAV(1) are written to TAPE1 by the binary WRITE following
statement 1030. SVAV(1) is set at statement 90 and is computed from a product
using the map scale and the coordinate scale, both of which are read from the
first card in the map-description record.

17

The data written to TAPE2 consist of variables NHTOT, TOTREF, and KNODES,
and node data arrays NODNUM, NBS, XNOD, and YNOD. Variable KNODES and the four
arrays are stored in COMMON block NDDATA. The total number of houses (NHTOT)
and the total refuse (TOTREF) are accumulated in the loop through statement 290,
using data from the map-description strings. KNODES, the count of nodes, is in-
cremented at the statements before statements 245 and 265, immediately follow-
ing the insertion of node numbers into array NODNUM. This array is kept in in-
creasing order by using function IFIND to determine where the node number
should go and subroutine MOVE5 to open a space for it in the NODNUM array.
NBS(I) contains up to six numbers of segments bounding the node NODNUM(I). The
segment number is appended to that entry in array NBS corresponding to the
starting node following statement 260 and corresponding to the ending node at
statement 265. The x- and y-coordinates of the node are stored in XNOD and
YNOD near the end of the loop through statement 690. The binary WRITE, two
statements after 1030, writes NHTOT, TOTREF, KNODES, and the filled parts of
arrays NODNUM, NBS, XNOD, and YNOD to file TAPE2.

The street numbers and names are read from the first record of card in-
put by subroutine STRINP. These data are stored in arrays NUMSTR and NAMSTR
in blank COMMON. After 100 street name cards are read, the NUMSTR and NAMSTR
arrays are written to TAPE3 by a BUFFER OUT statement in subroutine STRINP.
When the last street name card is read, all of the NUMSTR and NAMSTR arrays
are buffered out to TAPE3, so the records on TAPE3 are always the same length.
The unused portions of these arrays will be filled with zeros. These arrays
are not needed after STRINP returns control to the main program. Since NUMSTR
and NAMSTR occupy the same storage as the STG array, they will be overwritten
with segment data after control returns to the main program.

| 3. PURPOSE AND PERFORMANCE

In this section the simplest subroutines are described first so their
workings will be clear when they are mentioned again in the descriptions of
the more complicated subroutines and, finally, of the main program. Logic
flowcharts are given in Appendix A. Complete program listings are provided
in Appendix B. In Appendix C, the more important variables in the following

18

-

subroutines are defined in terms of their specific meaning for each
subroutine.

a. Subroutine MOVES

The purpose of subroutine MOVE5 is to move all data starting at and
following a given subscript to a position in the array starting at a given
higher subscript. Argument II represents the subscript from which the data
will be moved, and IF represents the subscript to which the data will be moved.
Arguments Al, A2, A3, A4, and A5 are the names of the arrays in which data will
be moved. Subroutine MOVES5 starts by testing whether the data are to be moved
to a higher subscript. If the final subscript, IF, is less than the initial
subscript, II, the program returns control to the calling program. If the
initial and final subscripts are in proper relation, the subroutine executes
the loop through statement 10, which moves each item, starting at subscript II,
the distance necessary to reach IF. A1l data between subscripts II and IF are
moved, beginning with the last item. Motion starts at the higher subscript so
that no data that must be moved later are overwritten. Zeros are stored at
the location corresponding to subscript II, from which data were moved. Con-
trol is then returned to the calling program.

b. Function IFIND

Function IFIND uses a binary search to locate a given number in an
array; the subscript corresponding to the location of the number is assigned
as the value of IFIND. If the number is not found, the function sets a value
for IFIND equal to the negative of the subscript at which the number, to be in
numerical order, should be inserted. (The array is assumed to be in increasing
order.) The comment cards at the beginning of function IFIND Tist the latest
changes to the function and state the function's purpose.

Argument NUM is the number that is sought in array IARRAY. The
length of array IARRAY is given by argument LEN. Function IFIND begins by
checking that LEN > 0. If LEN < 0, the function assigns a value for IFIND of
-1. This value indicates that the number sought is not in the array and would
be stored as the first entry in the array. The binary search uses variables

19

IT, 1P, and IF as pointers. II is the subscript of the front of the region
being searched, IP is the subscript of the item being compared to the number
sought, and IF is the subscript of the last item in the region being searched.
Variable Il is initially set to 1 at statement 5, and variable IF is set to
the end of the array in the next statement. The pointer IP is the subscript
about midway between II and IF.

The computation of IP occurs at statement 10. The statement follow-
ing statement 10 compares the number being sought, NUM, to the data at
IARRAY(IP). If NUM < IARRAY(IP), control transfers to statement 20, indica-
ting that the number is in the front half of the region being searched; at
statement 20 the final pointer is moved to the subscript preceeding the point
just searched. If NUM > IARRAY(IP), control transfers to statement 30, indi-
cating that the number being sought follows the subscript just inspected; at
statement 30 the initial pointer, II, is set to the present pointer, IP, plus
1. If the number sought is found at IARRAY(IP), control transfers to state-
ment 50, where IFIND is set equal to the current pointer and control returns
to the calling program. Where NUM is unequal to IARRAY(IP), control resumes
at statement 40 after the initial or final pointers are moved. At statement
40 the final pointer is compared to the initial pointer; if IF > II, control
is transferred to statement 10.

At statement 10 the search is resumed on the appropriate half of the
region examined previously. If the final pointer becomes less than the initial
pointer, the number sought is not in the table. In this case, control resumes
following statement 40, and the value of IFIND is set to the negative of the
current pointer. If the number at the current pointer is less than the number
being sought, IFIND is set to -(IP + 1) so the number can be inserted in the
appropriate place. Control then returns to the calling program.

(= Subroutine STRINP

Subroutine STRINP reads and prints the first record of data: the
title card and the street-name information. It also writes the street-name
data on file TAPE3. It has one argument, NIIR, which indicates to the call-
ing program the presence or absence of street-name data.

-n-m-----u!---!---!!-"-!-lI'lll'l!"ll'llIl'!!!!!!!!!!!!!!!!!!!!'!"""'l!|‘l

Blank COMMON is used to hold the title and the street numbers and
names. The title is left permanently in blank COMMON, but the street numbers
and names are overwritten later. Variable MSTINC is set to 100 in a DATA
statement. This variable controls the maximum number of streets stored in
core before the data are written to TAPE3.

The subroutine initially assumes that street-name data will be pres-
ent and sets NIIR = 2 to indicate this. Variable NS is set to 0 and is used
to count the number of cards read. The title card is read according to the
‘ format in statement 5: 8A10. The storage set aside for the street numbers is
] set to 0 by the loop through statement 20. The next statement attempts to
: read 100 cards, each containing a street number and a street name. If an end-
of-record card is encountered before 100 cards have been read, the zeros stored

in the street-number array will remain unchanged after the end-of-record is en-
countered.

-

The loop through statement 40 starts at the end of the storage set
aside for street numbers and searches for a nonzero value. When a nonzero
street number is encountered, control transfers to statement 50. (Variable
INC is 2 count of the number of cards read.) If this loop finds no nonzero
street numbers, control transfers to statement 120.

At statement 50 a Toop through statement 80 prints the number and
name of each street read in. After statement 80, the information in arrays
NUMSTR and NAMSTR (street numbers and names) is written to TAPE3 by a BUFFER
OUT statement using parity 1. The unit status is tested by the next state-
ment; when a parity error is encountered, control is transferred to statement
90, which prints an error message. In either case controi then resumes in
statement 110, which increments the cumulative count of streets, NS, by the
number of streets read and written.

Statement 120 tests for an end-of-record in the card input. If no

} end-of-record is encountered, control transfers to statement 10, and additional
cards are read. If an end-of-record is encountered, control resumes at state-
ment 130. If no streets have been read by this point, an error message is
printed and variable NIIR is set to 1. If streets are found, control transfers

21

from statement 130 to statement 150. After statement 150 an end-of-file is

written on TAPE3 and the file is rewound. Control then returns to the calling
program.

d. Subroutine NUMBER

Subroutine NUMBER appends numbers to plotted output. Its use is al-
most identical to that of the standard Calcomp number routine, the primary dif-
ference being that the last argument in subroutine NUMBER gives an alphanumeric
format rather than an integer format code.

Subroutine NUMBER has six arguments. The first two give the coor-
dinates, in plotter inches, of the lower left corner of the field. The third
gives the height, in inches, of the digits. The fourth is the number to be
plotted. The fifth is the angle at which the number is to be plotted, meas-
ured in degrees counterclockwise from the horizontal. The Tast argument is an
alphanumeric format up to 10 characters long, which describes the appearance
of the plotted number.

Array TEXT is used to hold the character representation of the num-
ber. Up to 30 characters are allowed. The first executable FORTRAN statement
sets this array to three words of blanks. The second statement moves the for-
mat into the second word of the array FORM. The first and third words of this
array have been preset to a left and a right parenthesis by a DATA statement.
The ENCODE statement converts the number from binary form in variable NUM to

character form in array TEXT, according to format FORM. A character count,
variable NC, is set to 30.

The loop through statement 10 searches for the last nonblank char-
acter in array TEXT. Each time a blank is found, starting at the end of the
TEXT array, the character count (NC) is decremented by 1. When a nonblank
character is encountered, control transfers to statement 20

Statement 20 calls the standard SYMBOL subroutine to plot the char-

acter representation of the number. Control then returns to the calling pro-
gram.

e. Subroutine AXIS

Subroutine AXIS draws an axis with tic marks, numbers, and a label.
The axis and numbers may be drawn at any specified angle, and the format for
the numbers must be specified. The axis can be drawn with tic marks extending
through it or with half-size tic marks on the numbered side of the axis. An-
other option allows the tic marks, alone, to be plotted (without the axis).

Subroutine AXIS has 13 arguments. The first two arguments, X and Y,
are the x- and y-coordinates of the low-value end of the axis, in plotter
inches. The next two arguments, VI and VF, are the values of the start and
end of the axis. The fifth argument, SCALE, is the scale of the axis in plot-
ter inches per axis unit. The sixth argument, TIC, is the value of the inter-
val between small tic marks. The seventh argument, DLBL, is the value of the
interval between the larger numbered tic marks.

The eighth argument, MODE, is the mode of plotting of the axis. If
MODE = 0, the axis is plotted with tic marks extending across the axis. If
MODE = 1, only tic marks are plotted. If MODE = 2, the axis is plotted with
tic marks on only the numbered side of the axis. If MODE = 3, half-size tic
marks are plotted. Multiples of 4 can be added to the mode to decrease the
number of numbered tic marks. If 0 or 4 is added to the mode, every large
tic mark corresponding to an interval of DLBL will be numbered. If 8 is added
to the mode, every second large tic mark will be numbered. If 12 is added to
the mode, every third large tic mark is numbered.

The ninth argument, FMT, is the format of the numbering on the axis.

The tenth argument, ANGAX, is the angle of the axis measured in degrees counter-

clockwise from the right horizontal axis. For ANGAX < 0, the label and numbers
go on the clockwise side of the axis. For ANGAX > 0, the label and numbers go

on the counterclockwise side of the axis. The label runs in the same direction
as the axis if |ANGAX| < 360°, but in the opposite direction for 360° <

|ANGAX| < 720°.

The eleventh argument, ANGNM, is the angle of the numbers, in de-
grees. The twelfth argument, LBL, is an array containing the label for the

23

.

- T

axis. The thirteenth argument, NC, is the number of characters in array LBL

to be used in the label. NC may equal 0, in which case no label is appended
to the axis.

The first executable statement in AXIS sets variable IFP to 1, assum-
ing that the format specifies floating-point numbers. If this assumption is
incorrect, IFP will be set to O when the format is scanned. The cosine and
sine of the axis angle are computed next. If either is within 0.0001 of 0,
it is set to 0. If either is close to 1 or -1, it is set to the appropriate
value. Thus roundoff errors are eliminated from axes that occur at some mul-
tiple of 90°.

The next statement evaluates TCC and TCS, which are the horizontal
and vertical components of the small tic marks. The next statement evaluates
variable IPEN. This variable will be equal to 2 if the entire axis is to be
drawn, or equal to 3 if only the tic marks are to be drawn. Logical variables
CCS and CS are set to TRUE, assuming that the tic marks will be drawn on both
the counterclockwise and clockwise sides of the axis. The next statement tests
the two bit of the mode to see whether the tic marks extend through the axis.
If the two bit of the mode is 0, control transfers to statement 10. If the
two bit is 1, variable CS is set to TRUE or FALSE according to whether or not
the numbering is on the clockwise side of the axis. CCS is set to the comple-
ment of CS.

Statement 10 sets variable N to the total number of tic marks to be
drawn on the axis. The next statement positions the plotter pen at the begin-
ning of the axis. Variable M is set to the number of tic marks between one
large tic mark and the next. The next FORTRAN line sets variables XX and YY
equal to the initial position of the pen. These variables will contain the
current pen position as the axis is drawn. Variables XINC and YINC are com-
puted; these are the horizontal and vertical increments during the drawing of
the axis.

The loop through statement 20 draws the axis. Each pass through the

loop draws the axis from one tic mark to the next. Variable F indicates
whether the tic mark is a small or a large one. For each small tic mark, F = 1;

24

W

F = 2 for each large tic mark. The pen is positioned at coordinates XX and YY.
If variable CCS is TRUE, a tic mark is drawn on the counterclockwise side of
the axis. If variable CS is TRUE, a tic mark is drawn on the clockwise side
of the axis. The next statement returns the pen to coordinates XX and YY,
which are on the axis. The last two statements in the loop increment coordin-
ates XX and YY. The call to PLOT following statement 20 advances the pen to
the high-value end of the axis. The next call to PLOT returns the pen to the
beginning of the axis, causing the central line of the axis to be drawn twice
unless only tic marks are to be drawn. The next statement tests variable IPEN
to see whether only tic marks are to be drawn. In this case, control returns
to the calling program. If the entire axis is drawn, numbers will now be ap-
pended to the large tic marks.

Variable DIFA is the difference, measured in radians, between the
angle of the numbers and the angle of the axis. The next statement computes
the sine and cosine of this angle. The cosine of twice the angle is also com-
puted. The next Tine sets variable S to either 1 or -1, depending on whether
or not the axis angle is positive. Variable NCN, the number of characters in
the numbering, is initially set to 0.

The loop through statement 22 will scan the format for the output
type. If the output is not of type E, F, G, or I, the program stops with num-
bered STOP 567. If an I-type number is specified, control transfers to state-
ment 23, where variable IFP is set to 0. If type E, F, or G is found, control
transfers to statement 24.

At statement 24 a loop is started through statement 26, which scans
the remaining characters to find the field width. The field width is stored
in variable NCN. When the scan finds a noninteger character, control trans-
fers to statement 28.

Following statement 28, variable HWD, the half-width of the number,
is evaluated. The position of the beginning of the number field relative to
the corresponding point on the axis is determined next in terms of the compon-
ents normal and tangential to the axis (DIFN and DIFT). The x- and y-components
of this position difference are evaluated next in variables DELX and DELY. The

25 ;

spacing between large tic marks is computed in variables XINC and YINC. Vari-
able N is the number of large tic marks. Variable IINC is computed next and
gives the number of large tic marks between numbered large tic marks.

The loop through statement 30 appends numbers to the appropriate
large tic marks. The value of the number is kept in variable V; if the num-
ber is to be an integer, the value is changed to integer preceeding state-
ment 30. The number is appended to the plot at statement 30. Variables V and
IV are equivalenced so that the integer value can be accessed as variable V.

The statement following statement 30 tests to see whether a blank
label or no label is to be appended to the axis. In either case, control re-
turns to the calling program. Otherwise, the remaining statements determine
the position and direction of the label for the axis. Variable S is set to
1, indicating that the label runs in the same direction as the axis. The
next statement changes S to -1 if the angle of the axis is an odd number of
full rotations from the interval -360.0001 to 360.0001. The coordinates XX
and YY of the midpoint of the label are then computed. If the axis angle is
0, the y-coordinate of the midpoint is recomputed. The beginning coordinate
of the lower left corner of the label field is computed next in variables XXX
and YYY. The label is then plotted in characters 0.15 inch high by the call
SYMBOL. Control then returns to the calling program.

s Subroutine MAPGRID

Subroutine MAPGRID plots a grid around the map of the collection re-
gion so that coordinates may be easily read from the map. Arguments XMIN and
XMAX are the minimum and maximum coordinates of the map region to be plotted.
Argument XLEN is the length of the x-axis, in inches. Arguments YMIN, YMAX,
and YLEN are the corresponding y-direction parameters. If a drum plotter is
used, the Tast argument, YHCUT, is the height of strips of the map. If a
flatbed plotter is used, YHCUT should be the maximum height allowed for plots.

The first FORTRAN line evaluates XDEL and YDEL, which are the number
of map coordinate units (MCU) spanning the map in the x- and y-directions. The
next line evaluates XSC and YSC, which are the x- and y-scales, in inches per

26

iICU. YINC, the number of units in the y-direction in one strip of the map,
is evaluated next as the height of a strip divided by the y-scale. If the
height of a strip is 0, YINC is set to the number of units in the y-
direction. If YHCUT is 0, the plotter paper is assumed to be high enough to
accommodate the entire grid. If the spread in the y-direction exceeds one
unit, YINC is set to its integer part. VYHCUT is reset so that one strip of
the map includes an integral number of coordinate units in the y-direction.
This number is used by the other map-plotting subroutines.

IDELX and IDELY are computed next. They are the number of units
between tic marks drawn in the vertical and horizontal directions. The
marks are at most 5 inches apart to allow coordinates to be read accurately.
NPL is the number of pieces long the plot will be. NH is one greater than
the number of y-direction MCU spanned by the bottom and top horizontal axes
of each piece. NV is one greater than the number of x-direction MCU
spanned by the leftmost and rightmost vertical axes of each piece.

The Toop through statement 50 draws the horizontal and vertical
axes on each piece of the overall grid. XDISPL is the displacement in the
x-direction to the beginning of the Jth piece. YSTOP and YSTART are the
final and initial values of the y-axis. The axis angle, ANGAX, is set to O
for the horizontal axes. The 80-character problem title will be used as a
label on the first horizontal axis. Variable NC is set for 80 characters.

The Toop through statement 20 draws horizontal axes for one piece
of the map. The axis mode, M, is set to 0, indicating that the full axis is
to be drawn. The next statement transfers control to statement 10 if the
first or last axis is being drawn. The next statement bypasses axis plot-
ting if the y-coordinate value represented by I-1 is not a multiple of IDELX.

The axis mode, M, is set to 1 for all axes within the boundary of the piece,
causing only tic marks to be plotted.

At statement 10, the y-coordinate of the beginning of the axis is
computed. The axis is then plotted. After the first call to AXIS, NC is ‘
set to 0 so that the label will not be appended on subsequent calls.

27

At statement 20 the axis angle is set to 360°. The numbering will

now appear above the last axis (the one at the top of the piece). After the
loop through statement 20, the axis angle is changed to 90°.

The loop through statement 40 draws vertical axes. The mode, M, is
initially set to 0. If the first or last vertical axis is being drawn, con-
trol transfers to statement 30. If not, the mode is reset to 1. If the x-
coordinate represented by I-1 is not a multiple of IDELY, axis plotting is by-
passed.

At statement 30, the x-position of the axis relative to the beginning
of the piece is computed. In the next statement subroutine AXIS is called, and
the displacement from the beginning of the first piece to the beginning of the
current piece is added to XH to give the appropriate starting x-coordinate. At
statement 40 the axis angle is changed to -270° so that the last vertical axis
will be numbered on the right side. Statement 50 is the end of the loop that
draws each piece of the overall map. Control returns to the calling program.

g. Subroutine SHAPCOM

Subroutine SHAPCOM sets up parameters in COMMON block COPARM that de-
scribe the geometrical properties of a segment. These parameters are used by
subroutine COORD to produce the coordinates of points on a segment.

Subroutine SHAPCOM has five arguments. Argument TOTLEN gives the
total length of the segment, in miles. Argument AVMD gives the number of
miles per MCU on the overall map. Argument CNVLEN gives the number of miles
per length unit. Argument SCR gives a scale ratio for AVMD on the present
map compared to AVMD on the first map. Argument MODE indicates whether data
cards should be printed if errors are encountered. MODE is always 1 in the
current version of the program because the data cards are printed when read
by RCINPT. The values of the arguments are sent to subroutine SHAPCOM, and
all output values from SHAPCOM are placed in COMMON block COPARM.

28

In COMMON block COPARM, variable SF indicates the shape of the seg-
ment. XNI and XNF are the x-coordinates of the initial and final nodes of the
segment. YNI and YNF are the y-coordinates of these nodes. SX and SY are the
slope, in MCU per mile, in the x and y directions. RPR is the reciprocal of
the radius of curvature for circular segments and the circular portions of S-
curves. C11 and C12 are the position differences in MCU of the starting point
and center of a circular arc or of the first half of an S-curve. XCTR and YCTR
are the center coordinates in MCU for a circular arc or half an S-curve. BRI
is the distance in miles from the start of a segment to some particular point
on that segment. It is not used for straight segments. For circular segments,
BR1 is the total perimeter. For an S-curve, BR1 is the perimeter to the mid-
point of the S-curve. For a rectangular segment, BR1 is the distance to the |
first bend in the rectangle. For an angle, BR1 is the distance to the vertex. '
BR2 is defined only for rectangular segments and angles. It is the distance
in miles from the start of a rectangular segment to the second bend. For an
angle, BR2 is the length of the second side. SGN is -1 for shapes involving
the L (left) prefix; otherwise, SGN is +1.

Subroutine SHAPCOM begins execution by assuming that the shape code
indicates a straight line. Break indicators BR1 and BR2 are set to 0. DX
and DY, the x- and y-components of the vector from the initial to the final
nodes on the segment, are computed. The x- and y-components of the slope of *
the vector, measured in MCU per mile, are computed and stored in SX and SY.
The shape code is tested; if the segment proves to be a straight line or is
not to be plotted, the subroutine returns control to the calling program. For
any other shape code, execution continues. The angle of the vector from the
starting to the stopping node is computed as variable THETA. The distance from
the starting to the stopping point, D, is computed in miles. If the shape code
indicates a shape other than circular or S-curve, control transfers to state-
ment 60. If the distance from the starting to the stopping node is less than
the total perimeter of the segment, control transfers to statement 45. Other-
wise, the shape code is set to 0 and control returns to the calling program.

At statement 45 the coordinates of the final node are stored in vari-
ables XE and YE. The first break, BR1, is set to the total length of the seg-
ment. Variable DD is set to the straight-line distance from the starting to

29

w

e
e

the stopping node. If the shape code indicates a circular segment, control
transfers to statement 50. If not, variables XE and YE are reset to the coor-
dinates of the mid-point of the S-curve. Break indicator BR1 is reset to the
perimeter length from the starting point to the center of the S-curve. Vari-
able DD is set to half the distance from the starting to the stopping point.

At statement 50, SGN is set to 1. If the shape code indicates a

left circle or left S-curve, SGN is reset to -1. Variable V is set equal to
1-D/TOTLEN. VS is the square of V. The reciprocal of the radius of curvature
of the circle or the circular portion of the S-curve is evaluated using a poly-
nominal approximation to the solution from a transcendental equation containing
the reciprocal of the radius of curvature. The approximate radius of curva-
ture, RPR, is improved by a series of linear interpolations if the value for
RPR causes an error greater than 0.00001 in the transcendental equation

. BR1*RPR _ DD*RPR
sin > b

When RPR is within the desired accuracy, control resumes at statement
51. The radius of curvature, R, is computed. A temporary variable, ARG, is
evaluated. The height of the center of the circle from the line connecting the
starting and stopping points, H, is set to 0. If variable ARG is greater than
0, H is recomputed. The distance to the first break, BR1, is tested to see
whether the circular arc is greater than half a circle. If so, the sign of
the height is changed. The x- and y-coordinates of the center of the circle
are computed. The components of the vector from the center to the starting
point, C11 and C12, are computed. A1l variables needed to compute points on
the S-curve or circle are now available, so control returns to the calling
program.

Processing continues at statement 60 for the remaining shape codes.
[f the total perimeter is greater than the straight-line distance from start to
stop, control transfers to statement 65. If not, and if variable MODE is equal
to 0, a copy of the input card is printed. An error message is also printed
indicating that the map distance from start to stop exceeds the total segment
length. The shape code is set to 0, and control returns to the calling pro-
gram,

30

vo—

At statement 65, the shape code is tested; if neither a right nor a
left rectangle is indicated, control transfers to statement 80. Otherwise, for
a rectangular segment, the distance from the start to the first bend, BR1, is
computed. If this distance is greater than 0.05 of the total length, control
transfers to statement 70. Otherwise, the rectangle is assumed to be so shal-
Tow that a straight-line approximation is adequate, and the shape code is set
to 0. Control then returns to the calling program.

At statement 70 the perimeter to the second bend in the rectangle,
BR2, is computed. SX and SY, the x- and y-components of the slope of the vec-
tor from starting point to stopping point, are computed and control returns to
the calling program.

The only segments that reach statement 80 are the angles. The first
time an angle shape code is processed, it is in character form with at least
the first two character positions filled with binary zeros. After this shape
code has been processed for the first time, it will be replaced by a floating-
point number that does not have zeros for all of the first 12 bits. At state-
ment 80 control transfers to statement 82 if the first 12 bits of the shape
code are zero. If not, the sign of the shape code is stored in variable
SGN, and the distance to the vertex of the angle is retrieved as the magnitude
of the shape code and is stored in variable BR1. Control transfers to state-
ment 140.

At statement 82, SGN is set to 0. Variable N is set to 0; it will

contain the numerical part of the shape code. Variables P10 and DPF are set
to 1.

The loop through statement 100 scans the characters in the shape
code. The characters are retrieved in variable KAR. If no character is found,
control goes to the end of the loop and another character is sought. If the
character is not a decimal point, control goes to statement 85. If a decimal
point is found, variable DPF is set to 10, and control transfers to the end of
the loop.

31

e |

At statement 85 the character is checked for a digit. If no digit
is found, control transfers to statement 90. Otherwise, the cumulative value
of the string is stored in variable N. Variable P10 is multiplied by DPF,
which is 1 if no decimal point has been encountered, or 10 if a decimal point
has been encountered. Control transfers to the end of the loop.

At statement 90 a check for an illegal character is made. If an il-
legal character is found, control transfers to statement 110. If not, SGN is
set to 1. If the character is an L, SGN is reset to -1. If the loop is exited
normally after the shape code has been completely scanned, control transfers to
statement 130.

At statement 110 the card image is printed if mode is equal to 0. An
error message is also printed indicating the illegal character in the shape
code. The shape code is set to 0, and control returns to the calling program.

At statement 130 the distance from start to break, which is part of
the shape code, is computed and converted to miles. The length of the second
leg of the angle is computed and saved in variable BR2. A validity check is
performed on the triangle formed by the two sides of the angle and the line
connecting the end points. If any sides are invalid, that is, if the sum of
the lengths of any two sides is less than the length of the third, an error
message is printed. Otherwise control transfers to statement 160. If an
error is found, the shape cude is set to 0 and control transfers to state-
ment 20.

At statement 160 a temporary variable, F, is computed. This vari-
able and the total perimeter of the angle are used to compute the height of
the vertex above the line connecting the starting and stopping nodes. The
height, H, is then used in the computation of the x- and y-coordinates of
the vertex of the angle. Control returns to the calling program.

h. Subroutine COORD

Subroutine COORD is given a distance, in miles, from the beginning
of a segment and returns the coordinates in MCU. Parameters describing the

Je

segment to be processed have been stored in COMMON block COPARM by subroutine
SHAPCOM before COORD is called. Argument CUMLEN is the cumulative length along
the string, in miles; arguments XX and YY are the coordinates returned for a
point CUMLEN miles from the start of the segment.

The first statement of COORD sets S equal to the cumulative length.
[f the shape code is nonzero, control transfers to statement 10. The coordi-
nates of the point on a straight-line segment are computed and returned in
variables XX and YY. Control returns to the calling program.

At statement 10 control transfers to statement 30 if the shape code
indicates other than a circular or S-curve segment. For circular and S-curve
segments, the reciprocal of the radius of curvature is stored in RIP. The co-
ordinates of the center of the circular portion are stored in XC and YC. The
components of the vector from the center of the circle to the initial node are
stored in Cl1 and C2. If the point on the segment is less than or equal to
0.999 of the first break distance or if the shape code indicates a circular
segment, control transfers to statement 20. The statements following this test
change parameters to generate coordinates for the second circular portion of an
S-curve. The sign of the reciprocal of the radius of curvature is reversed.
The cumulative distance, S, is set to the distance from the mid-point of the
S-curve. The coordinates of the center of the second circular portion, XC and
YC, are computed. Variables C1 and C2 are recomputed for the new center.

At statement 20, the sine and cosine of the angle subtended by the
perimeter corresponding to S are computed. The coordinates XX and YY of the
point are computed, and control returns to the calling program.

At statement 30, control transfers to statement 60 if the shape code
indicates that the segment is not a rectangle. Otherwise, variable SGN is set
to 1. If the shape code indicates a left rectangle, SGN is reset to -1. If
S, the distance along the rectangle, is greater than 1.05 times the first
side's length, control transfers to statement 40. If S is greater than 0.95
times the length of the first leg, S is set to the length of the first leg.
The x- and y-coordinates of the point on the first leg are computed by linear
interpolation, and control returns to the calling program.

33

At statement 40, S is tested to see whether it falls on the second
leg of the rectangle. If S is greater than 1.05 times BR2, the length of the
second leg of the rectangle, control transfers to statement 50. If S is
greater than 0.95 times BR2, S is set equal to BR2. The x- and y-coordinates
of the point on the second leg are computed by linear interpolation, and con-
trol returns to the calling program.

At statement 50, the x- and y-coordinates of a point on the third
leg of the rectangle are computed by linear interpolation. Control returns to
the calling program.

At statement 60 the distance, S, is compared to the length of the
first side of an angle segment. IF S is greater than this length, control
transfers to statement 70. If not, the x- and y-coordinates are computed by
interpolation for a point on the first leg. Control returns to the calling
program.

At statement 70 the distance along the angle is decreased by the
length of the first leg of the angle. The coordinates of the point on the
second leg are computed by linear interpolation, and control returns to the
calling program.

7 Subroutine MAPPLT

Subroutine MAPPLT draws a map of the street segments, one line per
segment, with the end-point nodes and the street segments numbered. Up to 10
maps can be drawn. When the first map is being plotted, MAPPLT draws all of
the segments on a map-description card on each call. After the first map,
MAPPLT draws the entire region requested on one call.

Subroutine MAPPLT has three arguments. Argument II indicates the se-
quence number of the map. Arguments KI and KF are the numbers of the initial

and final segments to be drawn on the map if the segments lie within bounds.

The coordinates of the region bounding the map are contained in ar-
rays in COMMON block MPDATA. In this COMMON block, arrays XMIN and XMAX are

34

—

the minimum and maximum x-coordinates for the map. XLEN is the length, in
inches, of the map in the x-direction. YMIN, YMAX, and YLEN are the corre-
sponding arrays in the y-direction. Array YHCUT contains the height, in
plotter inches, at which the map must be sliced into strips. Array SVAV con-
tains the miles per MCU conversion factor for each map. Arrays TRX and TRY
contain the x- and y-components of the translations of the coordinate systems

1 of the maps with respect to the coordinate system of the first map. Each map
has its own coordinate system. Array MSEQ indicates which map coordinate sys-
tem the arrays XMIN, XMAX, YMIN, and YMAX are in. Variable PLEN is the length
of the plot in plotter inches. It is the total length from the start of the
first piece to the end of the last strip of the map. Argument CNVLEN is the
miles per map length unit conversion factor.

The first two executable statements of subroutine MAPPLT save the
initial and final segment numbers in variables K1 and K2. If the map number,
II, equals 1, control transfers to statement 20. Otherwise, the ratio of miles
per MCU conversion factor for the current and overall maps is computed and
stored in variable SCR. The x- and y-components of the translation of the cur-
rent coordinate system relative to the overall coordinate system are saved in
variables TX and TY. Since all segments are examined after the first map has
been plotted, variable K1 is set to 1.

At statement 20, if the first map is being drawn and subroutine
MAPPLT has been called previously, control transfers to statement 110. Other-
wise, the first-time-through indicator is set to FALSE. At this point all
parameters that will apply to the entire map are set. These parameters in-
clude the miles per MCU conversion (AVMD); the map bounds in the current co-
ordinate system and in the overall coordinate system; the height of a strip
of the map; the maximum length; the number of map strips (MX); the map scale
factors; and the intervals, in MCU, at which the strips are cut. These pa-
rameters are printed according to format 90.

At statement 100 the segment data are read from unit 1. Unit 1 is
tested for an end-of-file. No end-of-file will be encountered unless an error
exists in the program. When no end-of-file is encountered, control transfers
to statement 110.

35

Miica

At statement 1°0 a loop through statement 200 tests each segment to
see whether it falls within the frame of the map; if it does, it will be plot-
ted. Variables NI and NF are set equal to the numbers of the nodes bounding
the segment. The mid-point coordinates of the segment are saved in variables
XMD and YMD. The lines in the node number array at which the initial and
final nodes occur are saved in variables NS1 and NS2. The coordinates
of these nodes are retrieved.

Initially the segment is assumed to be entirely within the bounds,
and indicators INBI, INBM, and INBF are set to 1. If the coordinates of the
initial node lie outside the frame of the map, INBI is set to 0 Similar
tests are made on the coordinates of the mid-point of the segment and the co-
ordinates of the final node of the segment. If all three points are outside
the frame of the map, control transfers to statement 200 and the segment is
not plotted. For segments that are at least partially within the frame of
the map, the shape code is saved in variable ISF. If the shape code is 17 s
the segment is not to be plotted and control transfers to statement 200.
Otherwise, the street number of the segment and its total length in miles are
saved in variables NUMST and TOTLEN. The number of points to be used in plot-
ting half the segment (NPMID) is computed. The number will be restricted to
a maximum of 10 points. The total number of points per segment, NPPSEG, is
set to twice NPMID.

Subroutine SHAPCOM is called to set up the parameters needed to gen-
erate coordinates of points on the seyment. The cumulative length along the
segment is initially set to 0. A step size, DS, is computed as the total
length divided by the number of points to be plotted on the segment. The
coordinates of the initial node are converted from the overall coordinate
system to the current coordinate system and are stored in variables XX and YY.
The number of the strip of the map into which the node falls is computed. Both
a current value of the strip number, NMAP, and a value for the previous point,
NMAPO, will be used. The pen position, up or down, is determined by whether
the initial point was in bounds. Variable IPEN will be 3 if the point is out
of bounds and 2 if the point is in bounds. If the point is out of bounds, con-
trol transfers to statement 130. If not, the coordinates of the point are con-
verted to plotter inches and stored in variables XP and YP. If the current

36

rr

e

e — —

node has already been plotted as the last node on the previous segment, control
transfers to statement 120. If not, the node number and a small square marking
its position are appended to the map. At statement 120 the pen is moved to the
position of the current point on the segment.

Statement 130 starts a loop through statement 170 that will advance
the pen through the remaining points on the segment. The cumulative length is
incremented by DS. Subroutine COORD is called to obtain the coordinates of
the point in MCU.

At statement 140 the coordinates are converted to plotter inches.
The point is assumed to be in bounds, and variable INB is set to 1. If the
coordinates of the point are out of bounds, INB is reset to 0. If the pen
has been up and the current point is out of bounds, or if the strip number is
greater than the number of the final strip, control transfers to statement 160.
Otherwise, the pen is moved to the position of the current point. If the pen
is up, it is lowered. Variable IPEN is recomputed to reflect whether the point
is in bounds.

At statement 150, if the Toop index is not equal to the number of the
mid-point of the segment, control transfers to statement 160. Otherwise, the
segment number is appended to the map near the segment mid-point, and the pen
is repositioned at the mid-point.

At statement 160 the number of the current strip is computed. If the
current strip number is equal to the previous strip number, control transfers
to statement 170. If not, the old strip number (NMAPO) is set equal to the
current strip number; IPEN is set to 3, indicating that the pen is up; and
control transfers to statement 140. In this case, the pen is positioned at
the current point on the new strip.

Statement 170 is the end of the loop that causes the segment to be
drawn. If the last point drawn is out of bounds, control transfers to state-
ment 200. Otherwise the node number and a small square marking the node's
position are appended to the map. The pen is repositioned at the last node.
The number of the node is saved in variable LASTNN.

37

Statement 200 is the end of the loop that draws the various seg-
ments. At statement 300, if the map being drawn is other than the first map,
the plotter pen is positioned 2 inches beyond the end of the last strip.
Control returns to the calling program. The pen is moved beyond the end of
the first map in the main program, RCINPT.

e Subroutine LINEIN

Subroutine LINEIN reads information from card images in free for-
mat. The information can be integer, floating-point, or alphanumeric, and
alphanumerical data can be delimited by blanks, asterisks, dollar signs, or
single quotes.

Subroutine LINEIN has six arguments. Argument IUN is the number
of the unit from which the card image is to be read. Argument NIN is the
number of data items to be read from the card. Argument INPT is the array
into which the data are placed.

Argument ITYPE indicates the type of data to be transferred. FEach
octal digit of ITYPE, from right to left, specifies the type for the data.
If the digit is 0, an integer is returned by LINEIN. If the digit is 1, a
floating-point number is returned. If the digit is 2, a word of a character
string delimited by *, §, or ' is returned. If the digit is a 3 or a 7, a
word of a blank-bounded character string is returned. This string is also
terminated by an equal sign, a left parenthesis, or a slash. Character
strings of types 2 and 3 are right-justified with preceding binary zeros;
character strings of type 7 are left-justified with blank fill.

The fifth argument, MODE, causes LINEIN ejther to start at a new
card or to continue reading the last card. A negative MODE causes LINEIN to
continue reading the last card. If MODE is 0, reading starts at a new card.
[f MODE is positive, a new card is read and printed.

The sixth argument, IBRK, is a break and error indicator. IBRK is
set to the break character when the read is okay. IBRK is set to O when a
read is resumed after column 80, to -1 when an end-of-file is read, or to -2
when an error is detected while information from the card is being processed.

38

The first executable statement sets logical variable DONE to FALSE.
The word counter (IW) is set to 1. If MODE is less than 0, control transfers
to statement 40. If not, variable IPRINT is set to MODE.

At statement 10 the column indicator II is set to 1. The break in-
dicator IBRK is set to -1. A card is read from unit IUN, and each column of
the card is placed in a separate word in array IC. The unit is tested to see
whether an end-of-file has been encountered by the read. If so, control trans-
fers to statement 240. If not, control resumes at statement 30. At state-
ment 30, if IPRINT is greater than 0, the card that was read is printed.

At statement 40, a Toop through statement 60 zeros out the INPT ar-
ray for the variables to be returned. The break indicator is set to 0. If
the column indicator, II, is greater than 80, control returns to the calling
program. Otherwise, variable IAB is set to 0. IAB is used to hold the char-
acter bounding a bounded text string.

The loop through statement 65 presets the sign and magnitude arrays
ISGN and IV to be used in building numbers. The three elements in each array
are used to hold the integer part, the fraction part, and the exponent part of
a number. The sign array will contain either +1 or -1, depending on the sign
of the corresponding part of the number. The magnitudes of the three parts
are initially set to 0. Variable ITYP will contain the digit indicating the
type of the word being processed. Variables IP and LB are set to 1. IP indi-
cates which of the three parts of the number is being processed. LB = 1 when
the previous character is a blank. Variable NT is set to 0. It will hold a
count of the number of digits following a decimal point.

The loop through statement 200 controls the scan of the card, column
by column. The scan begins at the column indicated by II and continues through
what would appear to be column 81. 1IC(81) is preset to a blank to provide a
terminator for an item extending into column 80. Variable II is set to the
number of the next column. Variable ICHAR holds the character in the current
column. If ICHAR is a plus sign and column 80 is being processed, control
transfers to statement 200, the end of the loop. If not and if ICHAR is a
blank (which is stored in variable IBK), and the previous character was blank,

39

and no bounded character string is in process, control transfers to statement
200. If not and if IAB is 0, which means no bounded character string is being
processed, control transfers to statement 90. Otherwise, if the current char-
acter is equal to the break character on a bounded character string, or if the
break is a blank and the current character is a comma or a right parenthesis,
control transfers to statement 70. Otherwise, if the break indicator is a
blank and the character in progress is a slash, a left parenthesis, or an equal
sign, control transfers to statement 68. If not, the present character is ap-
pended to the word of text being built.

The word of text is kept in variable I1. The present character is
added to the end of this word, and counter IAN is incremented by 1. If IAN
is less than or equal to 10, control transfers to statement 200. Otherwise,
IAN is set to 1 and control transfers to statement 159, where the text in I1
will be moved to the INPT array.

At statement 68, if IAN is equal to 1, control transfers to state-
ment 2Z20. Otherwise, the word of text being built in I1 must be moved to the
INPT array. In this case, variable DONE is set to TRUE.

At statement 70 the break indicator is set to 0. If a new word of
text has not been started, control transfers to statement 200. Otherwise, if
the type of the text is not type 7, control transfers to statement 159. Other-
wise, blanks are appended to the end of the word being built in I1, and con-
trol transfers to statement 159.

At statement 90, LB is set to O because the current character is
not blank. If the character is not a digit, control transfers to statement
100. If the character is a digit, it is changed to its binary value, and the
cumulative value of the number being processed is stored in variable IV. If
a decimal point has been encountered, variable NT is incremented by 1. Con-
trol transfers to statement 200.

At statement 100 a test is made for an exponent field. If the pres-
ent character is not an E, or if the type of the number is not integer or
floating-point, or if an exponent field has already been processed, control

40

transfers to statement 102. Otherwise, IP is set to 3, and control transfers
to statement 200.

At statement 102, a loop through statement 130 is executed. In this
loop, the present character is tested for one of 12 special characters. If
the character is not one of these 12, control transfers to the end of the
loop. If one of the 12 is found, control transfers to a statement that does
the appropriate processing. If a dollar sign, an asterisk, or a single quote
is found, indicating the start of a character string, control transfers to
statement 105. Otherwise, if the type of the word is not equal to 2, control
transfers to statement 131, where an error message is printed. When the type
is 2, IAN is set to 1, indicating that the next character position to be filled
is the first character. IAB is set equal to the present character, which will
terminate the string at its next occurrence. Control transfers to statement
200. If a decimal point is found, control transfers to statement 110.

At statement 110 variable IP is incremented by 1. This causes the
processing to build IV(2) as the value of the number following the decimal
point. If IP > 2, control transfers to statement 131 where an error message
is printed. Otherwise, control transfers to statement 2(O0.

At statement 120 a minus sign is processed. If the sign of the num-
ber being built is already negative, or if the fractional part of a number is
being built, control transfers to statement 131. Otherwise, the sign of this
part of the number is set to -1, and control transfers to statement 200.

At statement 125 the left parenthesis, slash, and equal sign charac-
ters are processed. Variable DONE is set to TRUE. If the type of the word is
0 or 1, control transfers to statement 140, where a numeric value will be pro-
cessed. Otherwise, control transfers to statement 159, where a word of text
will be processed.

Statement 130 is the end of the loop that searches for the 12 special
characters. Any character that is not processed by the end of the 130 loop is
assumed to be the first character of a string of hlank-bounded text. If the
type is not 3 or 7, or if the character is not alphanumeric, control transfers
to the error message at statement 131. When valid alphanumeric characters are

41

encountered, IAN is set to 2, indicating that the next character to be pro-
cessed will be stored in the second-character position. IAB is set to a
blank. The present character i5 stored I1, which will eventually hold the
word of text. Control transfers to statement 200.

At statement 131 an error message is printed indicating which
column of the card image contains the error. The card image is also printed.

The error indicator, IBRK, is set to -2, and control returns to the calling
program.

At statement 140, the final evaluation of numeric constants is
performed. F2, the fractional part of the number, is initially set to 0.
If NT is greater than 0, F2 is re-evaluated. If the type does not indicate
a floating-point number, control transfers to statement 150. Otherwise, F1
is evaluated as the floating-point value of the integer that is to be re-

turned. The integer portion of Fl is stored in I1, and control transfers to
statement 159.

At statement 150, the desired floating-point number is evaluated
and stored in F1.

At statement 159, the value in I1 is transferred to the INPT
array. Note that variables F1 and I1 are equivalenced. The word counter,
IW, is incremented by 1. If IW is greater than the number of words to be
returned by LINEIN, or if logical variable DONE is TRUE, control transfers
to statement 220. Otherwise, the type of the next word to be returned is
stored in ITYP.

The Toop through statement 170 resets the sign and magnitude arrays
used to hold the appropriate parts of numeric constants. I1 and NT are reset
to 0. LB and IP are reset to 1. The loop that processes the columns of the
card terminates at statement 200. If column 80 of the card is a plus sign,
control transfers to statement 10, where another card will be read. Other-
wise, if the next column to be processed is equal to the character bounding

a text string, the column counter Il is incremented by 1. The break charac-
ter is returned in variable IBRK.

42

At statement 240 control returns to the calling program.

An entry point, PRNTC, is provided to print the current card image.
The card image is printed, and control returns to the calling program.

k. Program RCINPT

Main program RCINPT controls the reading of the map data and the
plotting of the maps. It uses six files: INPUT, OUTPUT, TAPE1, TAPE2, TAPE3,
and TAPE8. File TAPE5S is equivalenced to INPUT in order to test for end-of-
records. File TAPE8 is used for Calcomp plot output. Files TAPE1, TAPE2, and
TAPE3 are used for segment, node, and street-name data, respectively.

Blank COMMON contains a title array and storage for the segment data.
COMMON block COPARM has been described under subroutine SHAPCOM. COMMON block
NDDATA contains the node data. The items in this COMMON block are a count of
the number of nodes (KNODES), an array of the numbers of the segments bounding
the node (NBS), the node number (NODNUM), the number of times the node has oc-
curred (TIMNOD), and the x- and y-coordinates of the node (XNOD and YNOD).
COMMON block MPDATA contains map information and is described under subroutine
MAPPLT. Array INPT holds data returned by subroutine LINEIN. Since these can
be either integer or floating-point data, array FNPT is equivalenced to INPT
so that the different types of data can be accessed properly. Arrays ISTG and
STG are equivalenced primarily for convenience in storing and retrieving inte-
ger and floating-point segment data. Variable XNI is equivalenced to XN(1) and
variable YNI to YN(1) primarily for convenience in writing certain FORTRAN
statements.

Several variables are preset in DATA statements. Variable CMDMXR,
the maximum error in map distance conversion, is preset to .1. When the rela-
tive error in map distance conversion exceeds this number, the program causes
the map distance conversion to be redefined in one mode of operation or prints
a warning message in the other. Variable MAXSEG gives the maximum number of
segments that may be used. It must be equal to the second dimension of array
STG. For clarity, the first subscript of the segment data array, STG, is used
in symbolic form so that the particular type of segment data will be apparent.

43

| VI—

The numerical values for the symbolic names are given in a DATA statement.
Variable NSTR indicates the subscript for street numbers. Variables NN1 and NNZ
indicate the initial and final node numbers. Variable LEN is the subscript for
the segment length. NH is the subscript for the number of houses on the seg-
ment. NSPD is the subscript for the speed 1imit on the segment. NWAY is the
subscript for the number of ways the street may be traveled. NRQF is the sub-
script for the refuse-quantity adjustment factor. NXMID and NYMID are the sub-
scripts for the x- and y-coordinates of the segment midpoint. NSF is the sub-
script for the shape code of the segment. Variable MODE controls the printing
of the input data map-description cards. When MODE is 1, the data cards are
printed as they are read by LINEIN. The total number of houses and total ref-
use quantity are set to 0 in a DATA statement. Arrays holding the map distance
conversion factors (SVAV) and the x- and y-coordinates of map translations (TRX
and TRY) are also set to 0 in a DATA statement.

The first executable statement initializes the plotting package. The
pen is moved down and then up 3 inches to force at least a 3-inch border at
the bottom of the plot. The input unit number (IUN) is set to 5. This number
will be used in calls to subroutine LINEIN. Variable IQUIT is set to 0. It
will hold a count of errors found in the map-description cards. The variables
that hold counts of the segments and nodes, KF and KNODES, are set to 0. The
maximum number of errors allowed in map-description data cards before proces-
sing terminates is set to 20.

Subroutine STRINP is called to input the street-name data. Argument
NIIR is 1 if street-name data are absent, or 2 if street-name data are present.

In normal operation, street-name data will be present. The double loop through
statement 10 zeros out the segment-data array, ISTG. The loop through state-
ment 30 reads up to 10 map-bounds description cards. The loop is executed 11
times, at most, to ensure that an end-of-record indicator will be encountered
after a tenth data card.

XMIN, XMAX, YMIN, and YMAX are the minimum and maximum x- and y-
coordinates bounding the map. Variables XLEN and YLEN are the x- and y-lengths
of the map in plotter inches. Variable YHCUT is the height, in inches, at which
the map should be cut into strips. YHCUT will be set equal to 30 inches at

a4

———

statement 25 if this field is zero or blank on the data cards. Variable MSEQ
is the sequence number of the coordinate system for arguments XMIN, XMAX, YMIN,
and YMAX. If MSEQ is blank or zero on the data card, it will be set to 1.

The loop is executed one time more than the number of map-data cards
so that the end-of-record card will be passed. At statement 40 the number of
maps (MAPS) is set to I-1.

If any maps are to be drawn, subroutine MAPGRID is called to draw
the appropriate grid for the first map. Scale ratio, SCR, is set to 1. Vari-
able MDFILE, the number of the current data file, is set to 0. The statements
through this point are executed only once.

At statement 50 the reading of the map-description data begins. Con-
trol will return to statement 50 each time a map has been completely processed.
The first two cards in the map description, which contain scale factors and de-
fault values, are read according to format 60. UNLEN is the unit of map length
measurement. SCALEM is the map scale in feet per inch. SCALEC is the coordin-
ate scale in plotter inches per MCU. CTYPE is the cocrdinate-use type. The
default speed 1imit, number of ways of traveling a street, number of sides col-
lected on one pass, and refuse quantity adjustment factor (RQAF) are read from
the second card and are saved in variables SPDDEF, NWAYDEF, NSIDDEF, and RQFDEF.
If an end-of-file or end-of-record is encountered, control transfers to state-
ment 1000; otherwise execution continues at statement 70.

At statement 70 the count of map data files is incremented by 1. If
the coordinate scale is less than or equal to 0, it is changed to 1 inch per
MCU. AVMD and AVMDDEF are the map distance conversions in miles per MCU.
CCMD, the count of strings used in the evaluation of AVMD, is preset to O.

If AVMD is not O, CCMD is reset to 1. If the map scale is less than or equal
to 0, it is reset to 400 feet per plotter inch. The map length conversion

is set to 0.01 miles per map length unit. If UNLEN has been specified as
positive, the conversion is re-evaluated. The coordinate-use type (CTYPE)

is tested and will end by being equal to either the letters AVG, FIRST, or
LAST. The default speed limit is set to 15 miles per hour if the default on
the card is not positive. The default number of ways of traveiing a street is

45

set to 2 if no positive number is found on the card. The default number of
sides collected on one pass is set to 2 if a positive number is not found. The
default RQAF is set to 1 if a positive factor is not found on the card. Logi-
cal variable FIRSTT is evaluated and will have the value TRUE the first time a
card is read. If the first map-description record is being processed, or if
AVMD is positive, control transfers to statement 90. Otherwise, an error mes-
sage is printed indicating that only one map is allowed when the variable map-
coordinate option is used; the job is then terminated.

At statement 90 the map distance conversion is saved in array SVAV.
On all maps after the first, the scale ratio, SCR, is evaluated. A count in-
crement, KINC, is set to 0. The title of the problem and a number of vari-
ables describing the map are printed. This information is useful primarily
when the output map differs drastically from what was desired.

At statement 210, the reading of the map-description cards is begun.
The street number and the number of the first node are read. IBRK is tested
to see whether the card contains an error. If so, contro! transfers to state-
ment 220. If not, IBRK is tested for three conditions: an end-of-file, a call
to LINEIN with the card column pointer beyond column 80, or a valid read. If
an end-of-file (or end-of-record) is encountered, control transfers to state-
ment 50, where the first card in a new map-description record will be read.
[t should be impossible for a card to be started past column 80.

At statement 220, if MODE is 0, the card being processed is printed.
An error message is then printed indicating that the card contains some error.
The error counter (IQUIT) is incremented by 1. If the number of errors does
not yet exceed the maximum, control transfers to statement 210 and another
map-description card is read. Otherwise, the job terminates.

Control resumes at statement 240 if no errors have been encountered
during the reading of the street number and first node number. The count of
segments is incremented by 1. The number of the street, if present, is stored
in NUMST; otherwise, NUMST is set to 0. The initial node number is saved
in NODEI and is also stored in the segment data table. Variable TOTLEN, a
total length measurement, is set to 0. Function IFIND is used to find

46

the initial node number in the node data table. If the node is present in the
table, NS1 will be positive, and control transfers to statement 245. If not,
NS1 is negative and indicates where in the node table the node number should be
stored. Its sign is changed, subsequent entries in the table are moved down to
make room for the new node number, and the node number is stored in the table.
A count of the number of nodes is incremented by 1. At statement 245 the Tine
number in the table is saved in variable NS2.

At statement 250, LINEIN is called to obtain the segment length, num-
ber of houses on the right side of the street, number of houses on the left
side of the street, and final node number of the segment. The break indicator
is tested. Control transfers to statement 220 if an error exists, to state-
ment 270 if the read resumed past column 80, or to statement 260 if the read
was valid.

At statement 260 the first number returned by LINEIN is tested. If
it is zero, no data were found on the card (zero segments lengths are not al-
Towed), and control transfers to statement 270. When a valid segment length
is found, the segment number is saved in array NBS indicating that the segment
bounds the most recently encountered node. Other information about the seg-
ment is stored in the segment data array (STG), and the total length of the
present string is incremented by the length of the current segment. The num-
ber of houses on the left side of the street is saved in the NHL array. The
final node number is saved in the segment data array and in variable NODEF.
The segment counter (KF) is incremented by 1. If the final node number is not
positive, control transfers to the error message at statement 220. Otherwise,
the second node number is sought in the node number tabie. If it is present,
NS2 will indicate its line number, and control transfers to statement 265. If
NS2 is not positive, it indicates where the node should be stored and the node
1s appended to the node data table.

At statement 265 the segment number is saved in the NBS array, indi-
cating that the segment bounds the current node. The break character returned
by LINEIN is tested. If it is neither a slash nor a left parenthesis, control
transfers to statement 250 where another segment will be read. If a slash or
a left parenthesis is encountered, the segment count is decremented by 1 at

47

statement 270. Because the addition of the terminal node number to the node
number table may have changed the location of the initial node number, func-
tion IFIND is used to again find the location of the first node.

The first four locations of th