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ABSTRACT

In this thesis, the algorithms for an A-7E aircraft perfor-
mance calculator were developed and then implemented on three
small data processors of different programming levels and storage
capabilities.

The utility of data is a function of several variables in-
cluding accuracy and availability. The problem of retrieving

performance data from the Naval Air Training and Operating Pro-

! cedures Standardization (NATOPS) Manuals is significantly les-

sened by the devices demonstrated in this investigation. Nine
performance chart groups, yielding data usually considered
necessary for flight, were reduced to a series of analytical
expressions. These analytical expressions were demonstrated to
reproduce NATOPS Manual data to a high degree of accuracy.
Implementation was demonstrated on a desk computer, a hand

held calculator and a microprocessor.
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I. INTRODUCTION

The Naval Air Training and Operating Standardization
(NATOPS) Manual is the official standard of the United States
Navy for "...information on all aircraft systems, performance
data, and operating procedures required for safe and effective
operations." [1]

The purpose of this thesis was to develop algorithms of
the more often used NATOPS performance charts for the A-7E
aircraft, examine their accuracy and implement them on small
data processors that might be adaptable to shipboard or aircraft
onbcard use. The interpretation of NATOPS performance charts
is an error prone and time consuming procedure even for experi-
enced users. The need for a system to eliminate this laborious
process has been fully documented in a thesis completed in June
1978 by LCDR W.M. Siegel [2]. 1In his investigation, LCDR Siegel
devised an efficient procedure to develop algorithms from the

NATOPS performance charts and exercised this procedure on the

problems of "Takeoff Ground Roll Distance" and "Takeoff Airspeed".

This investigation is an extension of the aforementioned
work. The original scope of this investigation was to develop
algorithms for eleven of the most often used performance problem
chart groups and implement them on the Texas Instruments-$39
(TI-59) hand held calculator (HHC). All of the NATOPS perfor-
mance charts were not reduced because of research time

limitations. Of the eleven performance chart groups studied,
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two performance problems, "Time to Climb" and "Fuel Required
to Climb" were rejected because of implementation difficulties
on the TI-S59 HHC (discussed fully in "Development Difficulties").
Therefore, nine performance chart groups were reduced to analy-
tical expressioﬁs and implemented on the TI-539 HHC. To show
further possibilities and feasibility of implementation of the
é algorithms, they were 1) fully implemented on the Hewlett
Packard-9830 (HP-9830) desk computer, 2) demonstrated on a
microprocessor (INTEL Corporation Microcomputer System-48),

and 3) considered for implementation on the A-7E onboard digi-

tal computer and a microprocessor utilizing a recently developed

number processing chip by the National Semiconductor Corporation

(MMS57109).
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II. DEVELOPMENT

A. GUIDELINES

The scope of this investigation was established after a
firm set of guidelines was defined.

Being the official United States Navy standard for the
A-7E aircraft, the A-7E NATOPS Manual was the sole source of
performance data used to develop the algorithms. As such,
and being subject to changes during the aircraft's life cycle,
the need for possible future updates to the algorithms was
acknowledged. The effective date of the NATOPS Manual from
which these algorithms were developed is March 1975. Since the
performance data yielded by the algorithms was identical to
NATOPS Manual performance curves, the same restrictions and
limitations apply. For example, takeoff airspeed calculation
restricts the NATOPS Manual user to trailing edge flap positions
between 20 and 40 degrees down (Figure 1). For that reason, one
could not expect to calculate the flaps up takeoff airspeed
using the developed algorithms. An additional feature provided
by the algorithms was higher order interpolation. While the
inexperienced NATOPS user might attempt to interpolate linearly
between non-linearly spaced curves, the algorithms do not.

An important guideline for the user's benefit was to ensure
the execution of these algorithms after implementation was
simple enough so very little training was required for the

users. Intended users were Naval Flight Officers and Aviators.

11
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Not included in the scope of this thesis is an introduc-

tion to the TI-59 HHC, HP-9830 desk computer and the INTEL

s

Microcomputer System-48; however, to follow the computer pro=-
grams written for these devices would required their basic
understanding.

Another guideline established was that the performance

calculators be light and small enough to be physically suited
for its environment. For example, the TI-59 calculator and
microprocessor could be used in a cockpit, briefing room or
Air Operations Center. The HP-9830 desk computer would be
restricted from cockpit use.

Reliability was a necessary guidzline.

To make algorithm implementation on the TI-§39 HHC feasible
and since the program storing chip, the Continuous Read Only
Memory (CROM), was limited to 5000 calculator program steps,
the library of nine programs was required to fit into that
space [3].

Finally, accuracy was a necessary consideratvion. The
results obtained from the algorithms were required to be at
least as accurate as following the performance charts manually.
These accuracy requirements established were: One knot of air-
speed, 100 feet of altitude or ground roll distance, 100 pounds

of weight, ten seconds of time and one nautical mile of dis-

tance.
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B. PERFORMANCE CHART REDUCTION

P i i SIS .5
-

The reduction of the NATOPS Manual performance curves into é
analytical expressions was accomplished by a historically proven ‘
mathematical procedure, "least squares curve fitting". This
method was applied to certain A-7E performance data by LCDR
W.M. Siegel (see Introduction, Section I). His brief explana-

§ tion of the "Least Squares Fit Approximation (LSFA)" is included
in Appendix A.
; Many performance charts from the NATOPS Manual contain

three variables (two independent, one dependent) and are de-

picted as a two-dimensional space with the third dimension

illustrated by a family of curves. The reduction of such a ' ]

chart can be accomplished as follows:
1 1. Determine order of curves in family (i.e, second order, ;

(y = A +Ax+A3x*).

1 2
2. Apply LSFA to every member of the family of curves.

3. Since the order of the curve families may vary, a

general curve family could be depicted as follows:

‘ y = A A X Alsx2 + .....Almxn_l (for curve z,)

i y = Ay + A x ¢ A23x3 + .....Aann'l (for curve 22) ;
| y o= A, t Am2x + Amax’ + .....Amnxn-l (for curve % ) 3
if

' 4. Apply LSFA to the coefficients. For example, plot Aypo

A21"""Aml Versus 2y, ZgyeeeeeZp respectively, yielding

2 r=-1
A1 = B11 + 8122 + 8132 + ""Blrz .

| Doing the same with all coefficients,




ki i

A

o 2 r-1
Ay = Byy + Byyz + Byg2z® + ....B,,
. v . . . 2 . r-1
An = Bml + Bmzz + Bm3z + ....erz

5. Given z and x, y can now be calculated by:
a. Computing coefficients from equations generated in
b. Applying coefficients to y = A} + Ayx + ...Anxn'l.
6. It is important to note that although all curve family
members must be of identical order, the equations representing
the coefficients as a function of "z" need not be of similar
order.

Although applying LSFA to the family of curves and then
to their coefficients was the normal method of chart reduction,
it was not always used for the following reasons:

a. Some charts were two-dimensional (LSFA still used).

b. Some charts were reduced by inspection.

(1) Linear curve families with linear spacing.

(2) Time, distance, speed charts (d = v/t).

c. Algorithm anomalies (see "Development Difficulties").

When used, the LSFA was accomplished by a program pre-
written by the Hewlett Packard Corporation for use with the
HP-9830. This program, although greatly facilitating the
development portion of this investigation, was written for a
two-dimensional problem and had to be executed at least once
for each curve and once for each set of coefficients.

A listing of all of the equations making up the perfor-

mance algorithms are contained in Appendix C. The A-7E

;qj
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performance chart groups from which they were developed are

contained in Appendix B.

They are in order:

1. Low Level Cruise Performance.

2. Takeoff Ground Roll Distance.

3. M#ximum Range Cruise Time and Speed at Constant
Altitude.

4. Maximum Range Cruise Fuel Required at Constant
Altitude.

5. Maximum Range Climb Airspeed Schedule.

6. Takeoff Airspeed.

7. Maximum Refusal Airspeed.

8. Optimum Endurance Altitude.

9. Cruise Ceiling.

Future reference in this thesis is made to algorithms and

programs by the numbers above.

C. EXAMPLE OF CHART REDUCTION

An example of the procedure discussed in the previous sec-

tion is presented below. The chart chosen for reduction is the

lower graph of Figure 2, from Phase II of the A-7E Cruise Per-
formance chart group.
By inspection, all Ay and A2 coefficients are equal to

zero. The curves appear parabolic and therefore second order,

yielding N = AaM‘. The example follows:

N = intermediate result
M = mach number
D = drag count
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DRAG COUNT LINE

CURVE EQUATION

50 N = 1.3915M2
100 N = 2.7787M2
150 N = 4.1658M?
200 N = 5.5530M%
300 N = 8.3273M2 1
400 N = 11.102M? |

By plotting the A3 coefficients versus D (drag count), the
LSFA yields:
Ay = (4.3732E~3) + .027743D and therefore,
N = ((4.3732E-3) + .027743D)M?.
This was a particularly simple chart to reduce but illus-

trates the procedure.

D. DEVELOPMENT DIFFICULTIES
The normal method of reducing performance curves did not

always yield useful information. One reason was although the
NATOPS Manual Performance curves were constructed from experi-
mental data, families of curves occasionally had very unusual
spacing. They also were not always a true curve family; that
is, they were of varying order. This can be visually detected
in the lower graph of Phase III of the A-7E Cruise Performance
chart group (Figure 3). The unequal and varying spacing be-

tween curves with different "reference numbers" is obvious.

Although the coefficients for each curve can be calculated,
the coefficients determined for a LSFA equation for an inter-

mediate curve would be incorrect. To be usable for the normal

18 g
-
SR .
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method of chart reduction, a chart must have equal, constantly
increasing, or constantly decreasing spacing between curves.
When such an incompatible chart was encountered, it was neces-
sary to interpolate between them. Two chart groups eliminated
from consideration, "Fuel Required"” and "Time to Climb from Sea
Level to Selected Altitude", contained so many such curves
(11), that very high order expressions would have been re-
quired to compute the coefficients, making implementation on
the TI-59 HHC impractical. The A-7E Cruise Performance lower
chart of Phase I had the same anomaly (Figure 4). Because of
the importance of the low level mission, however, the algorithm
for this chart was developed, for sea level only though. The
multiple algorithm was not developed but could have been for
implementation on a desk computer.

Another reason a straight application of LSFA was not
always appropriate was the uniqueness of the upper graph of
Phase I of the A-7E Cruise Performance chart group (Figure u4).
This chart requires entry from the lower chart. A line is
traced upward until the user contacts the appropriate Drag
Count Line (dotted lines). The first pass through the Mach
Number axis, a result of the lower chart, was defined MW,
Instead of now tracing horizontally to the Transfer Scale axis
(this value defined TS*), one must trace "between the sclid
guidelines" to the interception with a line traced vertically
upward from the desired Mach number, M. The Transfer Scale

would now be manually obtained by tracing horizontally to the
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vertical axis. To develop the algorithm for this problem,

the equations of the guidelines were also calculated as a func-
tion of Mach number. The values of the Transfer Scale resulting
from M* intercepting the guidelines and tracing horizontally

to the vertical axis were called TSl*, 'I‘Sz*, ...TSH;‘, from top

to bottom. The original position, (M®, TS®*), could now be
determined in relation to (M®, TSn*) and (M%, TSn+1*) ot and
"n+1l" indicate the upper and lower guidelines, respectively,
which bracket (M*, TS*). This ratio provided the initial posi-
tion relative to the guidelines:

+l*)/(TS§-TSn+l*)

Using the desired Mach number, M, the Transfer Scales for

R = (TS*-TS
n

the same two enclosing guidelines were calculated (TSn and
Tsn+l)‘ The final position relative to the guidelines was
maintained using the original ratio by solving:

R = (x=TS_, )/ (TS _-TS_,

l) for x.
"x" is the Transfer Scale with which the user now proceeds to
Phase III of this performance chart group. Figure § depicts

this problem graphically.

E. ACCURACY

A large number of results comparisons between the generated
algorithms and manually traced performance problems were made.
An infinite number of comparisons would be required to check
all possibilities, but since the mathematical theory was so

basic, the number of checks accomplished were considered suf-

ficient.

e
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All nine algorithms were checked for accuracy on the

HP-9830 desk computer. The number of checks for each algo-
rithm was proportional to the ease of manually tracing through
the performance charts. The author spent considerable time

obtaining performance results from the NATOPS Manual charts

and a relatively small amount of time computing the problems
on the desk computer once the algorithms had been implemented.
In a significant number of instances, the results disagreed,
but after rechecking, the solution obtained manually was in
error. This supported the contention that manual manipulation
of the performance charts is an error prone procedure, even
with an experienced user.

In a few rare instances, the author entered the required
given data incorrectly into the desk computer. These miskeying
errors, not procedural, were noticed as soon as the answer was
produced. A user familiar with the A-~7E performance character-
istics would normally notice an answer resulting from grossly
incorrect data input. It is acknowledged, however, that there
is no failsafe check on the programs. When using a desk com-
puter, the required input data can be printed along with the
answer to ensure the user of the correctness of the input data.
For a hand held calculator, however, computing a performance
problem twice would provide a check, which is what many NATOPS
Manual users often do. As with all computer programs, a desired

result requires accurate input data.

24



Except for those noted below, the results of programs

checked (using five significant figures) were indistinguish-

able from the answers obtained by manually manipulating the

performance charts. Answers produced from the algorithms

were rounded off to the nearest digit.

PROGRAM MAXIMUM DEVIATION

Maximum Refusal Speed 2 knots

Takeoff Airspeed 1 knot

B, o Nl S M B i e S M s S8 e 5 L A2 Mo o
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III. IMPLEMENTATION

A. DESK COMPUTER
The use of a desk computer capable of producing A-7E per- f 3
|

formance information within seconds (less than three seconds

computation time for the longest algorithm) would be ideal for
a squadron briefing room or Air Operations Center use. The
HP-9830 desk computer was used for this implementation stage.
Very little training would be required for personnel to load
the programs stored on a cassette tape cartridge and execute
them.

A knowledge of "basic'" computer language is required to
fully understand the nine HP-9830 programs in Appendix D [4].

The nine programs are in the same order as the algorithms of
Appendix C.

Only in the Low Level Cruise Performance program are sub-
routines required for linear interpolation or for the iterative
method to find the Transfer Scale (see "Development Difficulties".
All other programs are straight forward, sequential computations.
In these programs, the coefficients defining a curve (y = f(x))
for a given set of conditions are calculated. That chart
result, "y", is then calculated for the given independent vari-
able "x". The next chart of that group is similarly treated
and so on until the "final result" is achievea.

The HP-9830 programs are very useful since they prompt the

user to supply the correct information. Most of the programs




"request, then accept" those inputs required for the applicable
NATOPS Manual performance chart. The HP-9830 then prints the
data just entered (ensuring the user that data input was as
desired) followed quickly by the solution. The computer is
instantly ready to receive new data for another calculation.

Programs 1, 2, 3, 4 and 7 (as identified in "Performance

3‘ Chart Reduction, section II-B), are written in this "request,

vy 75 77

then accept" format. The shorter programs, 5, 6, 8 and 9,

were written with an initial set of input data already in the

A 5

program. This format allowed the computer to step incrementally
through the allowable range of values for the input data, thus
calculating a "table of performance data" for the applicable
1 performance chart group. These programs are easily altered to
| the "request, then accept" format by some simple edit commands
[4].

The variables used in the programs are defined following

each program in Appendix D.

B. HAND HELD CALCULATOR

The many favorable features of the hand held calculator
£¥ encouraged its implementation of the performance algorithms.
| Its small size allowed consideration for use in the cockpit.
Its simplicity and reliability was an advantage making it
especially suited for users of varying experience (including
no experience). Although its execution speed was the slowest
of all devices used, the computation time was still much faster

than using the NATOPS Manual.

27
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The Texas Instruments-59 (TI-59) programmable hand held

calculator (HHC) was selected for implementation. This selec-

tion was made for several reasons. At the time, it was the

only calculator available to the author which allowed permanent
program storage (on magnetic cards). Additionally, the Texas
Instruments Corporation had the capability to combine all pre-
written performance programs, up to a 5000 program step limit,
onto a Continuous Read Only Memory (CROM) chip, making the

A-7E performance programs a permanent part of the calculator.
This CROM chip can also be used on the less expensive TI-58 HHC.
These features made the TI-58/59 (with CROM) a practical system
for the A-7E Naval Aviation community.

One might consider the calculator's inability to prompt the
user for inputs a shortcoming of this implementation candidate,
but a company spokesman, Mr. Richard Cuthbert, stated a new
face could be fitted onto the calculator, identifying different
buttons with the input data categories such as GW for gross
weight, FLPS for flap position, T(°C) for temperature, and so
on [(3].

Some time was required for the author familiarization with
the TI-59 HHC and its capabilities. For a detailed explanation
of comments in this section involving TI-59 programming and
Appendix E, consult the user's manual [5].

All programs were entered with the calculator memory parti-
tioned to allow 879 program steps and ten memory storage
locations. The loss of program steps in order to provide

coefficient storage locations (ten to one) was the reason for
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partitioning in this manner. Only five significant figures Q
were considered necessary for computational accuracy. Consider-
ing the number possibilities (1.2345 to 1.2345E-12) might take
from six to ten program steps, this was less than the absolute

ten program steps sacrificed for a storage location. The ten

memory storage locations were used to store the input data at
program execution start but were often reused after the input
data storage was no longer required.

The programming language level of the TI-$9 HHC is below
the HP-9830's and above a microprocessor's (discussed later)
in sophistication. The algorithms were computed in a more
space-saving manner than on the HP-9830. For example, in com=-

puting a first order polynomial, the HF-9830 program functioned

as follows: A
B(0) = A11 + Alzz
B(l) = A2l + A222
y = B(0) + B(l)x.

The TI-59 HHC was programmed to compute as follows:
(All + Alzz) + (A21 + Azzz)x =y,

In the Low Level Cruise Performance program, the linear
interpolation and iterative methods to follow guidelines (dis-
cussed in previous section) was still accomplished using the
more tedious TI-59 HHC language.

Using the partitioning already described, a program limit
of 879 program steps was imposed (filling two magnetic cards).

Two programs, "Takeoff Ground Roll Distance" and "Low Level




Cruise Performance", exceeded this limit and had to be continued
on extra cards. These programs were written to allow storage
of an intermediate result into the T-register. The rest of the
cards could then be read in, any lost or newly acquired input
data entered, and program execution would continue, automatically
retrieving the stored intermediate result from the T-register.
These artificial necessities for program completion using the
magnetic cards would not be necessary if the programs were
stored permanently in the CROM.

The total number of steps required for the nine performance
algorithms programmed on the TI-59 HHC was 5461 steps. By sub-
routining (340 steps of programming are common to two programs),
the total number could be reduced to 5121 steps. The elimina-
tion of the artificial steps required for the oversized programs
would reduce the overage more. The sole intent of this imple-
mentation phase was not to fit these nine programs into the
5000 step CROM. If the inclusion of all nine programs was
desired, streamlining aid offered by engineers from the Texas
Instruments Corporation plus the reduction of significant
figures in a non-critical area would accomplish this.

The program listings, storage location usage, user instruc-

tions, and execution times are included in Appendix E.

C. MICROPROCESSOR

1. Single Board Computer using Software for Mathematical
perations

The single board computer (SBC) implementation was

investigated both as an extension of thesis work and to meet
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the course objectives of AE-4900, Air Data Systems. Work
toward this effort was also done by LCDR W.M. Siegel. The
performance algorithms were to be processed on a SBC using an
INTEL Corporation 8048 Programmable Read Only Memory (PROM),
external random access memory (RAM) and a program counter.
Software development was completed on the INTEL Prompt-u8
(Microcomputer System-48 language) using an INTEL 8035 arith-
metic logic unit (ALU). Although a SBC using the 8048 PROM
and requiring a digital keyboard and display was never actually
constructed because of the time limitations, the software opera-
tion was successfully demonstrated on the Prompt-u48.

To preserve the programs between operation periods,
the Prompt 48 was hand wired as specified in the user's manual
to an ASR-35 Teletype set which allowed paper tape storage [6].
The Prompt-48 provided 1024 by two bytes of RAM and 64 by two
bytes of resident memory. Although the MCS-u48 instruction set
will not be discussed in this thesis, a basic understanding of
assembly level language is necessary to understand the developed
software presented in Appendix F [7]. This microprocessor
program listing includes the MCS-48 instructions in hex code
and literal mneumonics and includes full documentation to facili-
tate interpretation.

A full performance algorithm was not implemented on the
Prompt-48 because of its memory storage limitations. The
original intent was to exercise the software of the complete

A-7E Takeoff Ground Roll Distance algorithm on the Prompt-u8.
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After the necessary routines were written and stored, only room
for three coefficients remained (98 coefficients required for
this algorithm). Since implementation capability was the
desired result, the computation of a second order polynomial

was considered sufficient. Although this effort was software
oriented, the necessary RAM storage for the additional coeffici-
ents and executive routine could have been easily provided for
a SBC.

The software development for algorithm implementation
required routines for input/output (I/0), executive direction,
binary to binary coded decimal (BCD) and BCD to binary conver-
sions, and floating point binary addition and multiplication
routines. The I/0 and executive routines were written by LCDR
Siegel. The nonavailability of a number oriented microprocessor
at the time of this effort required the development of the
mathematical package described above. The advantages for such
a capability will be discussed inthe following section.

In addition to the microprocessor software developed by
the author and LCDR Siegel, the I/0 and display routines would
require alteration for SBC implementation since a digital dis-
play and keyboard would replace the Prompt-48.

Figure 6 illustrates the solution method. Figure 7 is
a flow chart of the program execution sequence. TFigures 8 and 9
show the Prompt-48 RAM and resident register memory, respec-

tively.
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; f SBC_SOLUTION METHOD
;
RECEIVE NUMBER AS IT IS ENTERED

4 AND PLACE IN BUFFER AS DECIMAL

| I |

DISPLAY BUFFER

4 CONVERT NUMBER TO BINARY IN FLOATIN
POINT STORAGE CONVENTION AND STO
4

4 R\~

k| COMPUTE ALGOR ITHM

J <
CONVERT ANSWER BACK TO BINARY CODED

' DECIMAL AND PUT BACK IN BUFtch

3

"_ DISPLAY BUFFER

i | i
,. |
] Figure 6 5
! i
' SBC Solution Method ‘




SBC PROGRAM EXECUTION SEQUENCE

INPUT INDEPENDENT VARIABLE "X"
AND DISPLAY

CONVERT X TO BINARY NUMBE

PLACE B, INTO Y-LOCATION
(MULTIPLY (X-LOCATION)*(Y-LOCATION)|

| STORE ANSWER IN X-LOCATION|

MOVE Bl INTO Y-LOCATION

N

|ADD (X-LOCATION) TO (Y-LOCATION)|

e

MOVE ANSWER (Bzx*-Bl) INTO X-LOCATION

Ne

|MOVE X INTO Y-LOCATION |

e

MULTTPLY (X~-LOCATTION)*(Y-LOCATION)
N "2
+Byx) INTO X-LOCATION

N

Envn By INTO Y-LOCATION

N

ADD(X-LOCATION) TO (Y-LOCATION)

" -
MOVE ANSWER (Bpx’+Byx+Bg) INTO Y-LOCATION

e

[ConverT T0 sCD)

[

MOVE ANSWER ( B,x

DISPLAY

-

Figure 7

SBC Program Execution Sequence
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000-069
06A-06F
Q70-079
07A-0C6
0C8-0E2
OES-OFF
100-2EC
300-3FF

ACCESS Y

UsE
INPUT AND DISPLAY

EXECUTIVE ROUTINE SEGMENT
COEFFICIENT STORAGE
MAIN EXECUTIVE ROUTINE
BINARY TO BCD EXECUTIVE ROUTINE
MISCELLANEOUS SUBROUTINES
ADDITION AND MULTIPLICATION SUBROUTINES

BCD TO BINARY EXECUTIVE ROUTINE AND CONVERSION SUBROUTINES

Figure 8

Random Access Memory Map




ADDRESS

RESIDENT REGISTER MAP

USE ADDRESS USE
20 IS8 30
21 X~ LOCATION 31
22 | ARITHMETIC REGISTER | 32 ISB
23 MSB 13 DISPLAY HEX
24 EXPONENT 3% BUFFER
25 [ISB Y-LOCATION | 35 MSB |
26 |MSB ARITHMETIC REGISTER| 36 FECTRAL FOTVT TSk ]
27 EXPONENT 37 CHARACTER COUNTER
28 [ISB  BCD-BINARY 38 ISB {
29 [MSB  CONVERSION 39
.
24 EXPONENT 3A DISPLAY |
28 38
2¢ 3¢ BIT
2D 3D
2E 3 PATTERNS
2F IF MSB
Figure 9

Resident Register Map
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The second order polynomial, y = B(0) + B(l)x + B(2)x?,
was calculated using a mathematical executive routine (alter-
able for any size polynomial and any number of polynomials).

The only mathematical operations required were multiplication

and addition of positive or negative numbers. For speed, binary

arithmetic was used. For increased storage capability and
mathematical efficiency, a floating point capability was in-

cluded.

The calculation routine proceeded as follows:

B," = (B,x)

2
(Bzx) + (Bl)

(Bzx + Bl)

*® 2
(82x + Bl) X (32x + le)

2 2 2
(82x + le) + B0 2 (Bzx + B.x + BO)

1

Although all mathematical operations are performed in
the 8-bit (2-byte) accumulator register of the 8035 ALU (for
a SBC, the 8048 PROM), a working accumulator using five regi-
sters (resident memory registers two through six), was

established. All numbers in the program (independent variable

"x" after conversion to binary, coefficients stored in RAM

070-079 and the 'result') were in one of two binary conventions.

While in storage, the numbers were in "storage" convention.

The numbers were shifted from "storage" to "working" convention
only when transferred from the X and Y locations (see resident
register memory map, Figure 9) to the working accumulator
(registers two through six). Wwhen the desired operation was

completed, the result was returned to the "storage" convention
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and moved to the "X" location. Figure 10 displays the "storage
and working" conventions.

This software was successfully demonstrated on the
Prompt-48. The user instructions for the Prompt-48 to repeat

the demonstration are listed below:

(1) Ensure the 8035 ALU or 8048 PROM is inserted in the

"execution" socket of the Prompt-u48.

(2) Enter the program in hex code in the proper storage

locations as listed in Appendix F.
On the Prompt-48, press the following keys to clear

the resident register memory:

nen

"Registers"

ngn

"o

nyn

ngn

Do not press "Program Memory" instead of "registers"
or the program just entered will be erased.

(3) To execute the program, press the following keys:

nan

maon

"Execute"

"GO"

"No Break"
l! "0"
4 "Execute"
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BINARY CONVENTIONS

Each large block depicts 1 byte which includes 4 bits. The compart-

mented blocks represent 1 bit,

STORAGE _CONVENTION

¢ t 3 3 v ¢ 7 T i e . 1Y s TEENTCA
ERARE NSRRI NSERE L aRS T BEE)
EXPONENT 5 DECIMAL

SIGN BIT

In storage convention, the mantissa is left justified to bit 5. A
positive number is denoted by O in the first bit of the second byte(sign

bit); a 1 indicates a negative number.

WORKING CONVENTION

MANTISSA
e , 2y |'% & op # 9 0y a 3 v s 16 ¢ 19 19|
v : 20 r L} A | Al 1) L | 2, e | e i . « 5 e
O 5 ha- G el o g S
EXPONENT S oecmaL

in working convencioﬁ, the mantissa is left justified to bit 4.
The sign bit is stored in FO(X-location number) and Fl(Y-location num=

ber) flags of the program status word.

Figure 10

Binary Conventions
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The display will blank, awaiting the input of the
independent variable "x". To enter "x", enter the digit keys
for numbers (base 10) and "D" for decimal point. "x" will be
displayed on the digital display as it is entered. To compute |
the Algorithm (second order polynomial), press "E". The answer

will rapidly appear. To calculate the polynomial with a new

value for "x", start at Step 3.

(4) To prevent the time consuming reloading of the pro-
gram, it is advisable to store the program on a peripheral
device (paper tape, disc, etc.).

2. Single Board Computer using Number Oriented Micropro-
cessor

Very recently, the National Semiconductor Corporation
began production of a chip intended for use in number processing
applications [8). This chip, the MM57109 MOS/LSI, is capable
of all scientific calculator functions, test and branch capa-
bilities, internal number storage, and I/0 instructions. Of
the specific calculator functions, only addition, subtraction
and multiplication would be used.
A SBC using this chip would need the 8048 PROM for -
coefficient and executive routine storage but would not need
the space consuming mathematical package of the SBC in the last

section. A program counter would still be required but external

RAM would not. The computation time would be increased over the
demonstrated SBC (approximate computation time of a HHC), but
the simplicity of programming would make this proposed SBC very

attractive.
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D. A-7E TACTICAL COMPUTER

In February 1978 the author made a trip to the Naval Air
Facility at China Lake, California. The purpose of this visit
was to receive indoctrination on the TC-2/2A tactical computers
and obtain a programming manual for these devices. The desired
goal was implementation of selected performance algorithms on
the laboratory bench computer run by the A-7 Program Office of
the Naval Weapons Center (NWC). A thorough understanding of
the computer's capabilities and limitations was provided by Mr.
Robert Westbrook, a software technician.

The A-7E computer provides very accurate navigation and
weapons guidance capability. The TC-2 and TC-2A computers are

a generation apart, the TC-2A being over two times faster and

having twice the storage capability of its earlier version.

Both computers are operational at this time. Specific design

and programming information is available from the programming
manual (91].

The instruction set of the tactical computer provides fixed
point arithmetic, logical transfer of control (branching),
address modification and single word input/output instructions
specifically intended for operations primarily involving arith=-
metic. These features made the implementation of algorithms a
logical decision. Several factors made this implementation by
the author impractical. The computer design was quite old, the
instruction set being very tedious and difficult to interpret.

The computer's inability to function using floating point
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arithmetic would require a significant software effort in that
area alone. The time required to become fully familiar with
the instruction set, write the software, and load and test the
programs at NWC would have been prohibitive for this investiga-
tion.

It is hoped that the programmers at NWC will be able to
implement those algorithms deemed desireable to achieve an
onboard capability. Takeoff Airspeed and Maximum Refusal Air-

speed are considered ideal for implementation.
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IV. CONCLUSIONS AND RECOMMENDATIONS

Nine of the A~7E NATOPS Manual performance chart groups
were rgduced to a series of analytical expressions or algo-
rithms. These algorithms, accurate to five significant figures,
are as accurate as results obtained by manual manipulation of
the performance charts,

Implementation was made on three data processors of different
programming levels and storage capabilities. These devices and
degrees of implementation were:

(1) HP-9830 Desk Computer - complete implementation
with successful demonstration.

(2) TI-S59 Hand Held Calculator - complete implementation
with successful demonstration.

(3) Microprocessor - partial implementation with suc-
cessful demonstration.

In view of the su¢cess of this investigation, recommendations
concerning implementation possibilities are listed below:

(1) Complete reduction of the NATOPS Manual performance
charts could be accomplished and implemented onto a desk com-
puter as one large program capable of performance data computation
within seconds. The desk computer would be ideal for mission
planning on a squadron or air wing level or for Air Operations
Center use.

(2) The programs written for the TI-§3 HHC could be con-

solidated onto a CROM and used with a TI-58 HHC for use on a

o i i
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squadron level. As an alternative, the software could be
rewritten for any HHC of comparable capability.

(3) Although implementation on a single board computer
using a number oriented microprocessor is completely feasible,
because of programming ease and cost consideration, the HHC is
considered a superior implementation possibility at this time.

(4) The A-7E tactical computer could easily be pro-

grammed by software engineers at NWC, China Lake, California,

to produce an onboard capability.

1.4
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APPENDIX A

Least Squares Fit Approximation

References 10 and 11 describe the Least Squares Fit Approxi-
mation in detail. In general the problem is to represent a set
of "n" data noints in two-dimensional space

Xi, Yi i=21ton
by a polynomial expression of a curve whose degree is less than
"n". Two classes of problems exist:

(1) Linearly independent - those in which the degree
(d) of the polynomial is one less than the number of data
points

d = n-1 (1)

(2) Linearly dependent - those in which the degree (d)
is less than n-1

d < n-1 (2)

As an example, a set of four (4) data points randomly spaced

was chosen. If a third degree polynomial of the form

Y = A + BX + CX* + DX’ (3)
were desired, and the data points X; and Y; were inserted
(i = 1 to 4) into four such equations, an exact solution for the
four unknown coefficients would exist. These four unknowns
could be found from the four equations by numerous conventional
techniques (Direct substitution, Cramer's rule, etc.). The poly-
nomial expression generated would be termed a "col-location"

polynomial because its plot would pass through all data points.
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It is often advantageous to describe a set of data points
by a curve that does not pass through each point. This type
of polynomial would be termed a "regression" equation. For any
set of data points an infinite number of regression expressions
exist for any specified degree (except the linearly independent
case) and the object of the Least Squares Method is to find the
polynomial coefficients of the chosen degree that best describe
the data points. In the previous example of four data points,
assume that, instead of the third degree form chosen, a second
degree equation were selected of the form

Y oA+ B> 00t (%)

With four data points, the polynomial is overspecified and thus
linearly dependent. For this case an infinite number of solu-
tions exist for the coefficients a, b and ¢. If an error term
(§) were defined for any given X,Y pair as
+ CX. | (5)

1 1
a total squared error term (E) could then be defined by squaring

61=|Y1-A+BX

and summing the terms attained:
N
E= & §,° (6)
i=1
If E were them minimized for any given degree chosen, the best
Least Squares Fit would have been achieved.
If the values for § from Equation 5 were inserted in Equation
6 and the partial derivative of L were taken with respect to the
coefficient A, an equation would be generated that when set equal

to zero (0) would define a minimum value of E for a given value

of A. If the same operation were performed with respect to the
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coefficients B and C then three equations would be generated

with three unknowns (A, B and C). The solution of these simul-

taneous equations would produce the coefficients A, B and C,

that would minimize the value of E and hence would produce a

Least Squares Fit approximation to a set of linearly dependent

equations.

A numerical procedure has been developed to accomplish this

task. An example of this procedure has been included in the

following paragraphs [10, 111].

Least Squares Fit Method Example

Given the following set of data:

4 7

X 0

4 2

f(X) =Y 0 1 3 12 20

fit a curve of the form

f(X) = Y - A + BX + Cx?

STEP 1: Substitute all pairs of data into the form equation

yielding the fact that the coefficients (A, B and C) must

satisfy all the following:

L | 0 = A+ B(0) + C(0)?

1 = A + B(1l) + C(1)? |

| 3= A+ B(2) + C(2)?

i 12 = A + B(4) + C(u)?

20 = A + B(7) + C(7)?

Now multiply each expression by its coefficient of A in that

expression and add all equation yielding
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36 = S5A + 1u4B + 70C

Now multiply each expression by its coefficient of B in that

expression and add all the equations yielding
0
1

0CA) + 0(B) + 0(C)

A * 3B % ]C

6 = 2A + 4(B) + 8(C)
48 = U4A +16(B) +64(C)
140 = 7A +u44(B) +343(C)

195 14A +70(B) +ul6(C)

Now multiply each expression by its coefficient C in that

expression and add all the expressions yielding

0 = 0(A) + 0(B) + 0(C)
1 = 1(A) + 1(B) + 1(C)
12 = 4(A) + 8(B) +16(C)

192 =16(A) +6u4(B) +256(C)
980 =49(A) +343(B)+2u401(C)

1185

70A + u4l6B + 267uC

Now solve the following three previously generated equations for

the coefficients A, B and C yielding
36 = 5A + 1uB + 70C
195 =14A + 70B +uls6C
1185 =70A +416B +267u4C

A -oggg B = 2.6’ C = .065
and

= -,99 + 2.6X + .065X?

<
'
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The following plot and chart depict the original data and
|
the data obtained from the equation for the fitted curve:

Fitted Curve

Qriginal Polynomial
X Y Y
0 0 -.98
1 1 1.67
2 3 4.u8
4 X2 10.46
; 20 20.41
Q.E.D.




APPENDIX B

NATOPS Manual Performance Charts

These charts from which the performance algorithms were

developed are listed below in order:

Figure

Bl
B2
B3
Bu
BS
Bé
B?
B8
BS

B10O
Bll
Bl12
B13

Cruise Performance, Phase I

Cruise Performance, Phase II

Cruise Performance, Phase III

Cruise Performance, Phase IV

Takeoff Factor

Takeoff Ground Roll Distance

Adjusted Takeoff Ground Roll Distance

Maximum Range Cruise at Constant Altitude (Time, Speed)

Maximum Range Cruise at Constant Altitude (Fuel
Required)

Military Power Climb Schedule
Takeoff Speed
Maximum Refusal Speed

Cruise Ceiling and Optimum Endurance Altitude
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NAVAIR 01-45AAE-1

CRUISE PERFORMANCE (A-TE)

PHASE 11l — POUNDS OF FUEL PER NAUTICAL MILE

MOOEL: A-7€ ENGINE: TF41.A.2
DATA BASIS: FLIGHT TEST FUEL GRADE: WS
OATE: NOVEMDER 1971 FUEL DENSITY: 6.8 LB/GAL
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Figure B3

Cruise Performance, Phase III
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NAVAIR 01-45AAE-1

TAKEOFF FACTOR (A-7E)

MODEL: A€ ENGINE: TF41.A2

DATA BASIS: FLIGNT TEST FUEL GRADE: #§
DATE: NOVEMBER 1971 FUEL DENSITY: 6.8 LB/GAL.
.
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Figure BS

Takeoff Factor
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NAVAIR 01-45AAE-1

: U_AKEOFFMG_RQUND ROLL DISTANCE (A-TE)

b
s § 3

- g

=

MODEL: A-7€ CONDITIONS: ENGINE: TFal1.A.2
DATA BASIS: FLIGHT TEST LEVEL HARD SURFACE RUNWAY FUEL GRADE: #.8
DATE: NOVEMBER 1971 MILITARY RATED THRUST FUEL DENSITY: 6.8 LB/GAL.

LANDING CONFIGURATION
2ERQ HEADWIND

Ca: 26% MAC

FULL FLAPS

For minimum ground roll cor ding to
lifeoft weed, subtrect 500 feet

For humidity effects on tekeotf distence, ground roll
| distences shoukd be increased 1N for esch 10% increess
in the relative humidity sbove 40%
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Figure B6

Takeoff Ground Roll Distance




NAVAIR 01-45AAE-1

TAKEOFF GROUND ROLL DISTANCE (A-TE)

ADJUSTED GROUND ROLL DISTANCE

MOOEL: A-7€ CONDITIONS: ENGINE: TF41.A.2
DATA BASIS: FLIGNT TEST HARD SURFACE RUNWAY FUEL GRADE: »-§
DATE: NOVEMBER 1971 MILITARY RATED THRUST FUEL DENSITY: 6.8 LB/GAL.

LANDING CONFIGURATION
LEADING EDGE FLAPS DOWN

For humidity affects on tekeoff distance, ground roil
distances should be increased 1% for ssch 10% increase
in the relative humidity sbove 40%.
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Figure B7
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NAVAIR 01-45AAE 1

MAXIMUM RANGE CRUISE AT CONSTANT ALTITUDE (A-TE)

FUEL REQUIRED

MODEL: A€ a ENGINE: TFe1-A2
DATA BASIS: FLIGHT TEST FUEL GRAOE: Jr-5
DATE: NOVEMBER 1971 FUEL DENSITY: 6.8 LB/GAL
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Figure B9

Maximum Range Cruise at Constant Altitude (Fuel Required)
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MILITARY POWER CLIMB (A-7E)

CLIMB SPEED SCHEDULE
ENGINE: TF41.A:2

; MODEL: A-7€
i DATA BASIS: FLIGHT YEST FUEL GRADE: Jr-8
FUEL DENSITY: 6.8 L8/GAL

| DATE: NOVEMBER 1971

e
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Figure B10

Military Power Climb Schedule
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NAVAIR 01-45AAE-1

CRUISE CEILING AND OPTIMUM ENDURANCE ALTITUDE (A-7E)

MODEL: A-7€ ENGINE: TF41-A-2
DATA BASIS: FLIGHT TEST FUEL GRADE: .
OATE: NOVEMBER 1971 FUEL DENSITY: 6.3 LB/GAL
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Figure B13 g

Cruise Ceiling and Optimum Endurance Altitude




APPENDIX C

Generated Algorithms

LOW LEVEL CRUISE PROGRAM

Phase I

M1

-92.512 + 236.8966

Transfer Scale Versus Drag Count

AQ

Al

A2

S1

-2.3287 -.26316D + .0073327D% -(7.513E-5)D® + (3.5396E~7)D"*
-(7.78E-10)D° + (6.462E-13)D°

4.835 + 1.0956D -.030653D% + (3.1912E-4)D*® -(1.5276E-6)D"
+(3.408E-9)D° -(2.8692E-12)D°®

10.284 -1.0719D + .031094D? -(3.2878E-4)D*® + (1.595E-6)D*
-(3.6009E-9)D° + (3.0634E-12)D"

A0 + (AL)(M1) + (A2)(ML)?

Transfer Scale Versus Guidelines

BO = 22.819 -31.73u4I + 41.33I% -5,09531°

Bl =-154.98 + 217.51I -261.73I% + 35.9051°

B2 = 405.08 -525.56I + 607.49I? -88.7371°

B3 = -445.62 + 542.98I -611.55I% + 92.894I°

B4 = 184.78 =-204.42I + 225.89I% -35.1891°

S = BO + (BL)(M1) + (B2)(M1)? + (B3)(M1)? + (B4)(MDL)®
Phase II

R =S + 2((4.3732E-3) + .027743D]IM?




Phase III
BO = 5.6253 -1.989R + 3.0252R® -1.0761R%® + .17675R* -.013095R®
i + (3.526E-4)R®

Bl 205.3012 -248.9317R + 91.66355R? -15.55218R%® + 1.224432R"

g -.0395333R% + (2.896385E-4)R"®

f B2 = -1052.123 + 1231.24R -487.4233R* + 91.6522R*® -8.662962R"

i + .3953974R% -.006305535R"

B3 = 1680.142 -1950.139R + 788.8513R? -152.5733R*® + 15.03819R"
-.7274139R% + .013707R®

S W T T

R3 = R

Rl = 2 (Integer (R/2))

R2 = R1 + 2

N1 = BO + (BL)(R1) + (B2)(R1)? + (B3)(RL)®
N2 = BO + (Bl)(R2) + (B2)(R2)? + (B3)(R2)?®

Using Linear Interpolation

! N = N1 + [(N2-N1)(R3-R1)/2]
! P = 4.97u6N + (7.9043E-6)N2
Phase IV
Ny = [6.4375 + .010426T -(6.8925E-6)T% + (4.9127E-7)T3IM
3 F = .1(NW)P
TAKEOFF DISTANCE PROGRAM
BO = 13.086 -.00017113A -(2.0655E-7)A% + (3.6861E~11)A°

-(2.4156E-15)A"




Bl

B2

B3

If

If

GO

Gl

If

If

LO

Ll

L2

If

-.045635 -(7.8931E-6)A + (3.7545E-9)A% -(9.7088E-13)A°

+ (6.997E-17)A"

-.001317 -(8.2558E-7)A + (4.0739E-10)A%? -(8.548E-14)A°
+ (5.4964E-18)A"

-(1.9097E-5) + (1.3671E-8)A -(9.4694E-12)A? + (2.0434E-15)A"

-(1.4617E-19)A"
BO + B1(B) + B2(B)? + B3(B)?

double datum on,
z 1.9773 ¢ .58598C

double datum off,

.54178 + .65876C
-(4.889B6E+5) + (8.4974E+1)G -(5.7856E~3)G? + (1.9373E-7)G°

-(3.1744E-12)G* + (2.0446E-17)GS
(5.8621E+4) ~(1.0146E+1)G + (6.8807E-4)G% -(2.292E-8)G?

+ (3.7387E-13)G* -(2.3964E-18)G®

= GO + G1(E)

relative humidity < 40%, X = H

not, K = 4{[(I-40)/1000]+1}

= 67.124 + .89509K + (2.3306E-5)K? -(1.6254E-9)K?
+ (3.3728E-1u)K*

= -9.0995 -(1.0856E-2)K + (2.1754E-7)K? =(2.5327E-11)K®
+ (1.197E-15)K"

(1.4782E-1) -(2.1666E-6)K + (3.4274E-9)K? -(2.7817E-13)K*
+ (9.3077E-18)K"
= LO + L1(L) + L2(L)?

winds calm, M = K




X0 = (4.5704E+1) + .93429M + (2.2265E-5)M? -(2.338E-9)M*
+ (7.941E-14)M"

X1 = 7.9472 + .014914M + (9.0708E-6)M? -(7.1235E-10)M*
+ (3.0684E-14)M"*

X2 = 5.3616 -.0085136M + (3.5914E-6)M* -(4.5932E-10)M*

+ (1.9889E-1u)M"
X = X0 + X1(N) + X2(N)?
Q0 = 2604.2 -2.1694X + .0010915X? -ki.1119£-7)x3 + (3.662E~-12)X*
Q1
é -(2.5437E-13)X"

-175.73 + .22601X -(7.5225E-5)X? + (7.7018E-9)X° i

Q2 = 2.8549 -.0040102X + (1.2832E-~6)X? -(1.3234E-10)X?
+ (4.3908E-15)X*

Q = Q0 * Q1I(P) + Q2UP)?

SO = -400.79 + 1.5801Q -(2.0254E-4)Q% + (2.4111E-8)Q°?
-(8.6737E-13)Q"

| S1 = 16.196 -.024333Q + (9.3484E-6)Q? -(1.2594E-9)Q°
{ + (4.7522E-14)Q"
§2 = -,14758 + (2.359E-4)Q -(1.037E-7)Q* + (1.6016E-11)Q°}
-(6.3195E-16)Q"
S =2 S0 # S1(R) + S2(R)?

MAXIMUM RANGE CRUISE TIME AND SPEED
AT CONSTANT ALTITUDE PROGRAM

BO = -1 + (5.0794E-3)H -(1.3968E-3)H? + (8.254E-5)H°

; -(1.2698E-6)H"




Bl

BO

Bl

B2

B3

M1

g i

BO

Bl

B2

"

.05 + ,0015159H + (1.123E-u4)H? -(3.4921E-6)H*®

+ (7.9365E-8)H"

BO + B1(G)

.47803 + .0013417D + (6.2287E-6)D? -(1.6261E-8)D?

+ (1.6438E-11)D"

.08217 + (4.1209E-4)D -(4.5577E-6)D? + (1.6777E-8)D°
-(2.001E-11)D"

(4.2143E-4) -(9.4397E-5)D + (1.2646E-6)D? -(4.8537E-9)D°}
+ (5.7222E-12)D"

-(6.6767E~4) + (8.4671E-6)D =-(. 0501%-7)D? + (3.6382E-10)D?
-(3.7828E~13)D*

BO + Bl(N) + B2(N)? + B3(N)?

M -[(60-T)(2)(M)/1200]

(710)(M1-.14) + 100 -E

D1/V

FUEL REQUIRED FOR MAXIMUM RANGE CRUISE
AT CONSTANT ALTITUDE PROGRAM

4.54 -.16444A + .0033932A% -(1.0283E-4)A® + (1.926E-6)A"
-(1.3757E-8)A°

(3.22E-9) -(3.6664E=-3)A + (8.9338E-4)A? -(5.593%E-5)A"

+ (1.4593E-6)A* -(1.3281E-8)A°

(6E-4) + (1.1203E-4)A =(2.3358E~5)A? + (1.u536E-6)A°
-(3.7144E-8)A" + (3.3334E-10)A°

BO + B1(G) + B2(G)?
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BO

Bl

Ul

Vo

vVl

V2

V3

BO

Bl

-(2.5399E-3)D + (9.7299E-5)D® -(2.3516E-7)D?

+ (1.4251E-10)D"*

2 + (4.2388E-3)D + (1.2326E-5)D? -(1.0298E-7)D°
+ (1.7277E-10)D"

BO + B1(N)

L/V

(F)(T)/60

MAXIMUM RANGE CLIMB AIRSPEED SCHEDULE

405.56 -.79075D + .0011382D% -(4.1018E-7)D°

.86 -(2.1634E-3)D + (7.6582E-5)D? -(1.1344E-6)D?
+ (7.2125E-9)D* -(2.3035E-11)D° + (3.6588E-1u)D*®
-(2.3062E-17)D’

TAKEOFF AIRSPEED PROGRAM

54.023 + (3.4787E-3)G ~(1.9475E-8)G?

Ul + [(26-P)/2]

-1917.1 + 61.604U -.70348U% + .0035661U° -(6.6578E-6)U"
76.824 =-2.4517U + .028779U% -(1.4753E-4)U*® + (2.7872E-7)U*
-.72239 + .023415U -(2.798E-4)U? + (1.4596E-6)U°
-(2.807E~9)U"

VO + VI(R) + V2(R)?

MAXIMUM REFUSAL SPEED PRCGRAM

-43.01 + 6.761G -.35159G6% + .00805u45G® -(6.7769E-5)G"
26.312 -3.8382G + .20326G% -.047022G° + (3.994E-5)G"




-4.9639 + .72723G -.038721G* + (8.985E-4)G® ~(7.638E-6)G"
.30288 -.044855G -.0023921G% -(5.5549E-5)G®

+ (4.7217E-7)G"

BO + B1(E) +B2(E)? + B3(E)°®

-11.412 + 62.185L -9.0037L% + .64921L*® -.017455L"

-.2811 -4.2012L + .70377L%? -.058693L% + .0017461L"

BO + B1(R)

A AN MRS S oA A MRS Wi U 0

OPTIMUM ENDURANCE ALTITUDE PROGRAM

55.333 + .073076D -(9.7836E-4)D?® + (3.5015E-6)D?
-(3.9782E-9)D"
-1.1 -(8.0597E-3)D + (8.0097E-5)D? -(2.8836E-7)D?

;
:
:
!
i
|

+ (3.3032E-10)D"
(6.6667E-3) + (1.2541E-4)D -(1.4039E-6)D?
BO + B1(G) + B2(G)?

CRUISE CEILING PROGRAM

85.118 -.29117D + .0030434D? -(1.2851E-5)D® + (1.6621E-8)D"
-2.7877 + .025635D =(3.3063E-4)D? + (1.4162E-6)D?*
-(1.8343E-9)D"

.063327 -(8.5289E-4)D + (1.0814E-5)D? -(4.6514E-8)D?

+ (6.0606E-11)D"

-(6.0468E-4) + (9.0826E-6)D -(1.143E-7)D? + (4.9304E-10)D*
-(6.4567E-13)D"

BO + (B1)G + (B2)G? + (B3)G®
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HP-9830 Programs and Lists of Variables

L FEM THIS FRUGERM CHLCULATES THE FUEL
2 REM ﬁ-’E FLVING ﬂ

PRINT ENTEF hFﬂb\ N1\UkRG C]-

FRINT

PRINT

[NFUT GoDeMsT
G=G. 1000

MI=Q, 3331340, 0042931 «G

LOSUB 309
=0
GOSUB 500

) S2=8

[F S1°S2 THEN 1w

e §282
4 GOTO 300

I=1
GOSUR 508
33=3
IF S1{53 THEN Zzow
32=83
1al+1
2 GOSUE =99
GOTQ 129
118($1-821-7(83-32)
M1=M
[=1-1+11
I=INTC(DD
. GOSUB =sav
3 32=S
I=1+1
GOSUR =00
33=9
a3+ 1o 33=-32 0
GOTO 299
23S PRINT
= PRINT

W ReS+2%04, ITIIE-GI4D, 02

R3=R
2 R1=2#INTC(R-2)
R2=R1+2

J=q

[F J=2 THEN 311
R=R1

SOTQ 319

R=R2

BA=S, 528231, A0+R+ 3, QISI4RMI- L QATHE LRI+, {TETS*R TS
BO=BO=0, 11 NSRS+ 3, SIRE-Q4*R TS
3 B12205, 3012-243,93417

APPENDIX D

FLON AHD LEFUEL HAUTICAL MILE FOR AN
UN lEVEL Nlbﬁlﬁﬂ ﬂND I3 DEPENDENT UH 4 VARIRELES
AND TEMFERRTURE: CENTIGRRADE)

MACH 0- AND TEMF(CENT )"

CREAL L BRISSeRI2-1S

81-61-0.0395333~Rr592.896~H*E-n4éRra

S B2=-10S3, 12341201, 34+R~-48T,
B2=B2-0,DOE305T35sR 18
Bl=1830, 142-19%0, l*“*R’.o\
B3=B82-0, TATH1 39+ rS+0, 013
Be=-88d, 0379+ 00, 44~~R~4na..4*1~9r‘+b0 QEI{4+R A=
Bd4=04+Q, JIQ2G2T RIS~
N=BO+B1+M+B2 onr’*akknr;+aa»n*4

[F J=2 THEN 489
Ni=N

JRRPI+I], 0T22#RPA-E

513 #R"-lS_.f

MELTE-Q3sR TS

71

T

———

COSQIRERTI¢L, 2244232 %R N
CIASINTARR TS

J*RMIFIS, Q55 19:R MY

preet




4SS
dad
47S
430
RN
Y]
S
20
S0
539
bR

S43

53 65 DD

DO LN I SV O
oo oD DD

DO OO

J=2

GaTa 3t

R=2

N2=N

NN+ N2=NIY*(R3-R1Y. 2

REM COMPLETED CHLCULATION UF IHTERMEDIATE # 8% LINEAR INTERFOLATION

Pad, 4 daeN+ T 904 3E -QneNt2

Hg= o 437540 010020+ T-8, QU2SE -0 «Tr2+4, 3 2TE-QT Tt +N
F=, [ «Nd+P = 1000

F=[NT(F»

FRINT "GROSS WT="G+10Q0

FRINT "TS="S"DC="D"M="NM

FRINT “TEMP="T

FRINT "REF #="R23

FRINT “N="N

FRINT "LBFUEL NM="P

FRINT "FUEL FLOQW= “F

PRINT
GaTa 19
BO=22, 1 =31 V3[4 ] A2 P2-S, 00836 [ D
Bla=184,98+217,51 e [~381, T3+ 12435, 305213

Ba=40S, 08 -529, Se+1+507 49« [ 127 ITHIND

BR=~ddS . 82+542, 33« [~A 11 SN[ 12432, 324+ [t3

Ba=184, PR=20d I8 [¢Z2F, 39 [12-35, 139« 3
S=RO+EL+ML BN P2 eEIeMI P I+BI ML Mg

RETURN

AD=-0, 3397-0, 28 e« De0, 0T 3327« Dt e=T S13E-0S« Dt 3+3, SI36E-AT + Dty
AO=AN -7, PRE- LDt Sen, JR24E-1 30ty

AL=d, 33541 09 a=D=0, Q20893 eDt 203, 131 JE-Q4s D31 (SOTEE-Q5 4Dy
AL=R1+ 3, SJORE- Q3+ tS-2 B8 AZE-1 2«0 te

A=, 204 -1 QT35 D+R, Q31094 a0 2=0, 29TRE-Od«D 12+, SRSE-Qu Dty
A=A = 3, AUORE-O3+[tS+ 3, D 24E-1 2+ D1

SLERUHL ML +RI ML D

RETURN

END

et & Ao i L




List of Variables for Program 1

Definition

Variable

Gross weight (1bs.)

Drag count

Temperature (°C)

Mach number

Result of lower graph, Figure Bl

Guidelines, numbered top to bottom consecutively

Transfer Scale calculated as function of I

Transfer Scale calculated as function of D

Transfer Scale calculated for upper guideline

Transfer Scale calculated for lower guideline

Relative Transfer Scale location between guidelines

Reference number

Even reference number below actual reference number

Even reference number above actual reference number

Integer counter

N Result of lower graph, Figure B3

N1 Result of lower graph, Figure B3 for Rl

N2 Result of lower graph, Figure B3 for R2

N4 Result of lower graph, Figure Bu

A0,BO,

Al,Bl Coefficients

A2,B2,
B3,Bu

Coefficients

Pounds of fuel per nautical mile

Fuel flow

73



1 R
2R
RS
4 F
*P
1
1
1
1

EM  GROSS MEIGHTFHUY ALTITURE TEMP«DRAG COUNTRELATIVE HUMIDITY «WINDS
EM  RHWY SLOFESCENTER OF GERVITY LOCHTIOMs FLAFSs AND DOUBLE DATUM STRTUS *
RINT “INFUT ALTs TEMP DO GH™
INFUT RiBy Dy 3 3
=50
L=10
N=1 ]
P=27
R=22S
BO=13,088-0, 0001 711 3+A=-2, QeSSE~Q AT+, 686 1E- (1 #A T3
BO=BA-2,415cE~15+RAM4
Bl1=2-0,04S5835-F (333 E~DQE s H+ 3, TE4SE-Q+Q 2 i
B1=281-9, TRRSE-13«Rt2+5, DATE-L1 TR
Bl==0, QL3 T-2,  2O82E-UT+A+4 ATIE-1Q+/TD
BA=B2=3, SHSE-13+=HPI+S, 4284E~-1 %A MY
B3==1,3QITE-0S+1, ZaT1E-N2¥A=-2 48 4E- 1 2+ATZ+ 2, Q4 34E-1F+RAMS
B3=2B3-1, 461 TE~135AM4
C2B0+BL¥B+BI+BIO+BI8BTI
I[F D=1 THEN t20
E=0, 54173+, 853878+C
GAaTo 229
E=1,37T73+0Q, 58533+C
GR=-4 2F0REFOS 3  HATIE+Q 1 +G-5, TOSeE-Q3x G2+ 1, FATIE-AT*G P32, [ T44E-1 2551
GA2GA+2, Q448E-L1T+G 1S
u1=5.oe.lE+ﬂ4 1 O148E+Q1 *G+0, SQQTE-Q4 G122, QURE-QR 40123 +3, TRETE-1 385 8
Gl=aG1=2,3904E-123+515
H=GR+G1 +E
J=9
IF [<49 THEN 289
J=CI=40) 0 1999
K=N+l+H
IF L= THEN 349
L=a, TIZ4E+AL1 +2, FSQFE -0 <K 2, 300EE~0S 8K P2~ 1, E2SE-QI=K P43, ITIRE-19+K M4
L1==3,0935-] D356 ~02=K+2, I TSHE-DT K P2=2, SIATE-1 1 sk 3+, IQ'E 192Kty
La=1. 4732E-01-2, 16GSE-06+K+3. 42T4E~0%K P 2=2, TR TE- 135K 13 2, IATTE-13%K 14
M=La+LlsL+L25L 2
GOTO 35@
M=K
A= STRGE4DNL #3342 -0 #M4D 22ESE-QS Mt 2=, JARE-AV M I+ T, G (E-L 4N
A=T 4T3+, 4314E GQA+M43, ATRRE=-QE +MP2=7, LI2SE-1Q=MPI+2, DE34E~-145MMy
HE!S.aolb-b.Slst “A3EMAR, SALIE~DE# M= SAZE-1QEMTI+ 1, IQRE - 14Nty
=R SNEN RN 2
nes..b04‘E+n3-_.lo=4~\¢l QISE-Q34WP3=1, 1 LLIRE-QT*NPI+3, 582E-12+N M4
Dl==1, TS E+DI+2, 280DLE- Dl*\-..SJZQE-ﬂ|~\f’+7.TOlSE-O?*Kr‘-S.S437€*13*NT4
0222, 35494, D102E-03 N1 2032E-08 R P2=1, 22J4E- 1Q+NT 344, JQIE- 1521y
D=QQ+0 ] «F+Q2P 2
S==d QOTIELA2 ] STRL 20 -2 DOSHE =D+ P42, J P E QD033 BTATE~1 2018
S12],8196E+01 =2, $233E-02 #0493, J4RIE-NR QP 2= SSAQE-QA+Q T304, TSIZE-142Q M8
S3==]  4TSAE-D1 + 2, 3SE-Q4 Q=1 ,QATE-UT P2+ EQNLIEE-1 1201 3=8, J{ISE=-1o+Q T4
SESQ+S L sR S22+ 12
A=INT S
PRINT * FOR"
FRINT “GN="G" ALT="AR" TEMP="8" DC="D"RH="1"KDIWD="L !
2 FRINT "RHNY SLP="N"", CEN GRAV="P"FLAPS="R
PRINT
PSINT ‘TAKEQFF ROLL DIST="$
G
END

Program 2 4

EM  THIS PROGRAM CALCULATES THE TRKEUFF DISTRHCE REQUIRED FOR AN A-7E
EM IT IS DEFEHDEHT ON 9 VARIABLES =--
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List of Variables for Program 2

Variable Definition
A Runway Altitude (feet)
B Temperature (°C)
D Double datum status (1 indicates "with")
G Gross weight (1lbs.)
1 Relative humidity (%)
L Headwind (kts.)
N Runway slope (%)
P Center of gravity (%)
R Flap position (degrees)
¢ Result of upper graph, Figure BS
E Takeoff factor
H Unadjusted ground roll distance, Figure B6
J Adjustment factor due to relative humidity
K Ground roll distance (GRD) adjusted for relative
humidity
M GRD adjusted for wind
X GRD adjusted for runway slope
Q GRD adjusted for the center of gravity location
S True GRD (also adjusted for flap position)
ig:gg’Lo’ Coefficients
ii:gi’Ll’ Coefficients
gg:gg’Lz’ Coefficients
gi:gg’ Coefficients

75




Program 3

1 REM THIZ FROGRAN CRALCULATES THE A-TE MANIMUM FANGE  RIFSFEED AND
S REM TIME OF FLIGHT AND I3 DERPENDENT OM & YARIABLES --
§ REM GROSS WETGHTWRLTITUDE DRAG COUNY « TEMPERRTURE«WINDS« HND DISTANCE

; 3 PRINT “"INPUT GH+ALT«DCs TEMP <0 o HDMD DISTRNCE"
1 19 INPUT GeHsDsToL oDt
39 G=G. 1809

48 H=H. 100ad

H SO AQ=-1+S, QTUE-AZ+H~ l.LPHSE QI*HT2-3, 491 ZE-QRXHTI+T, 2238
4 20 Al=0,05+0. 00 1S1935H+ 1 1 23E-A4+HT2- 3, 42 LE-NE+HT 3+7, 238
TO N=RO+A1 =0

b A BD=0, 47303 -0, 001 34 T+ 0+8, 2E2QTE-AR=Dr 21, 62
: 35-31=0.9321?+4.1309E~n4sn -4, SSTTE-ReeDt 4L, B
A Ba=d4,. 2 143E-ng-3 BAATE-0S <D+, 2E84nE- \\QQDY“ o+
95 B3=-8.878TE~- 04*\ 45T1E-06+D=-1 . QSQ1E-QT«Dt2+3
100 M=BO+B L «N+ES+NTZrBIeNT 2

110 M=M=C 0 C80-T 2=« 1@s1280 )

v 120 ¥=71a+ M-, 14'+1H0 =L

! . 1392 T1=D1 W

135 V=INT

{43 PRINT

152 PRINT "FOR"

189 PRINT "GW="G" ALT="H" DC="D"TEMF="T" HIWD="L"DIST="D1
181 PRINT

182 PRINT "GROUMD 3SFEED="\" TIME QF FLIGHT="T1!

179 END

39:'E~ﬂ°~ur3;5
' 6332E-104D 13-

B3




List of Variables for Program 3

Variable Definition

G Gross weight (1lbs.)
Altitude (ft.)
Drag count
Temperature (°C)
Headwind (kts.)
Distance to fly
Result of first chart, Figure B8
Cruise Mach number (adjusted and unadjusted for T)
Ground speed (kts.)
Time of flight
Coefficients
Coefficients

Coefficient




Program 4

REM THIS FROGRAM CALCULATES FUEL REQUIRED FOF MR!. FANGE AT CONSTANT
FEM ALTITUDE FOR AN A=TE RAND I3 DEPENDENT 0N S VARIRBLES -~

FEM  GROSS WEIGHT ALTITUDE.DFAG COUNTTRUE AIRSPEED. AND TIMECMIMUTES)
FRINT "ENTER GROSS WTWALTSDRAG CT«TAS«TIME MINUTES)"

FRINT

PRINT

INPUT GeReDeteT

FRINT "GRQSS WT="§

PRINT "RLTITUDE="R

FRINT “DRAG COQUNT="D

FRINT "TRUE HIFSPEED="V

FRINT "TIMFE OF FLIGHT="T

G=G.1099

A=A 1908

Dol ROl BRI

B R O O B

G s =) 0

L
-

JRIE-DI QAT I+ |, A2EE-QEcATY=1 , ATSTE-QR+R S
Bl negdE -0 Ae D, III0E -0 ERII-S, SORCE-0SERP I A5 3E-D8 #ATI -1, 323 1E-DS RS

S0 BI=RE-Od el 1 D0 E-De e /=2, J0SSE-0S AT+ 4SICE-Q8 AT I-D, TI44E-QS A NS
35 BI=B2+3, 333ME-1Q<ATS
H=BA+BLl=G+E2+12
AR=-0, SI99E-05eD+9 T2I9E-QS+D12-2, 3S1GE-QT+D M3+ . 42S1E-1 Q=D g
Rl=2+4, 23336 -03+0+1, 2320E-05+D 121, Q2ITE-QT D341, TATTE-19%D 1y

L=RO+A1 *N

FapsV

F=F*T &a

LaCINT L« i taaa

F2NT F)
: R=INT R

FRINT

FRINT

FRINT "LBFUEL HM="L"FUEL FLQW="F
S PRINT "FUEL REQUIRED="R
2 PRINT

PRINT

5QTA 2@

END




List of Variables for Program U4

Variable Definition

G Gross weight (lbs.)
Altitude (ft.)
Drag count
True airspeed (kts.)
Time of flight (minutes)
Result of first chart, Figure B9
Pounds of fuel per nautical mile
Fuel flow
Fuel required
Coefficients
Coefficients

Coefficient




." Program §

1 FEM  THIZ FROGRAM CALCULATES THE CLIME RIFSFEED OF AN R-TE
E 2 REM ¢ INDICATED RIRSFEED BELOM Z9.@00° )
g 2 REM  CMACH HUMBER HEOVE 29.0989° )
19 D=4
12 FRINT “"CLIME RIFSFEED SCHEDULE”
. FRINT “DRRG CT CLIME RIRSPEED CLIMB MHCH"
3 PRINT CLHS Tn :aaun'w 'HEn“E Bnuﬂ’w"

a

'SSJE “ *Df?-l 1344E-38+Pt3+7., 2123E-99+#D14-2, 203SE-11+D
Dl

2 M= MrlﬁB@

4 M=INTOM

= M=Ms12a8

S PRIMT DeSeM

3 D=D+24

2 IF D<319 THEHN 29
g EMD




List of Variables for Program 5 j

Variable Definition

D Drag count

M Mach number

S Calibrated airspeed (kts.)




Program 6

498 REM  THIT PROGEAM CALLCULATES THE TRKEDFF AIRSFEED OF A A-TE
431 FEM  UMDER YARYIMG  GEOSZ WEIGHTS. FLAF FOSITIOMSY
432 PEM  AND CENTER OF GRAYITY LOCATIONS

433 F=28

433 F=24

S@n G=2000a

S8l FRINT "FOF GROSS WEIGHT="13

S92 FRINT

Sa2 PRINT

S99 FRINT “"FLAFS Cis TREEQOFF RIRSFEED"
S30 =S 4AC3E+L+ 3, 4TITE-RAI+G-1 . J4TSE- Q2513

S48 U=Ui+025~F0 2

594 VB=‘1-91T1E+@3*€.16@4E*@lﬁ”—?.GZ4$E—QI#UT3+3.SESIE—Bﬁth
Sl 4
57

3

W= THT W

FRIMNT RsFs''d
R=R+5

[F Rr43 THEHM =3@
GOTO 524

F=F+3

R=29
639 IF P2

T T T T FoTinCn
Lo BT = 2
DARE Oooogad

PR
—

35 THEH =59
49 COTO S2a

558 G=G+ 2304

551 R=2v

552 P=29

S5 PRINT

FEINT

FRINT

FRINT “Fuf GRO2S WEIGHT="G
FRINT

FRIMT

IF noq42mmy THEN Tt
GOTO S39

EMD

NGOG T T T
[ DR P R
DOnORF AV SO W )




List of Variables for Program 6

Variable Definition

R Flap position (degrees)

P Center of gravity (%)

G Gross weight (1lbs.)

Ul Unadjusted takeoff airspeed

U Takeoff airspeed adjusted for center of gravity

vy Actual takeoff airspeed (adjusted for flap position)
Y034, Coefficients

ve,vs3




g

R
Kk
R
FEM  GROSS WE
FRINT “INPUT
[NFUT AsBvL+«Go D

G=4. 1000

L=L 19919

FRINT "ALTITUDE="R
PRINT “TEMP="B

FRINT "RHMY LTH="L+10Qd

) e s e -

1
&
20
T
.
L
1]
119
1B Bt
(S

Program 7

EM  THIS FROGEAM CALCULATES THE MANIMUM REFUSAL SPEED
EM  FOR AN A-TE USTHG ANTI-SKID
EM IT IS DEFEHDENT DN S VARIRBLES --

TGHT s TEMF RNIY LENGTHYRNNY ALTITUDE. AND DOUBLE DATUM STATUS
RLT«TEMP S RMKHY LTHs Gy DOUBLE DATUM"

3 PRINT "GRUSS NT="G«1000Q

FRINT “DD="D

BO=13, Q86-0, 000 T 1 3+R=2, QESSE-QT v A P2+ 3, 608 1E-1 1+ M3

BQ=R0-2, 41SnE-1S«AtY

Bl=-Q, Ol‘f =T R E-NE AR+, TSISE-QALAPD

Bl=R1-9, 2‘1}'Rf\*h AITE-1 TR

Bl=-q 001\1 -8y 2998 F CEAAG  ATRRE-1AFARTD

RQ3=BI-2, SHBE - L4 et 21+ S t?ﬁ*E-\@'H*4
3--1.?097E<U3‘1.36?1E-BS~R~9.46945"13*RT3+2.0434E~15*H’3

B3=R3-1.461 E-13+Rty

C=BO+E 1 +B+BI+*BII+RIxB T3

IF D=1 THEN l*n

E=Q,S4173+0

GATQ 299

E=i, Q"‘*ﬂ.ﬁb.‘S*L

Bl==42 010» .nlbh CASISARG I, MNANEGSAG P =8, TTRAE-NS 5 Mg

Bl1=2 ﬁ.?l Je 'h*ﬂ._ﬂ’*h~hf"<0 DUAE B PRIl T e R IR B - L R Y

El=-g, 3“*0 JTS:*&-“ QAT+ P2 +Q, SQSE-Nd« 5P 3= S3RE-Q8+G s

B3=Q, \0 SR, 2SS 540, 0033?£1v6f2-5.554?E-05~u I TR TE-QT RGN

F=BO+B1*E+BI+ET2+BI*ET]

Blma] | 12452, 105l =9, QQ2TL 240, 0021 4L 1 23=0, Q1 7488+ My

Bl1==90,23311=4,2012 *L*O.TO"T*L*‘ A, QSESAIHLII40, 001 Td8 1Lty

M=BO+B1+R

M=INT M)

FRINT A

FRINT THKEQFF FRACTOR =“E k
FRINT ;
FRINT "MR! REFUSHL SPEED = "N

FRINT

GOTO 9

END

84 |
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2
|
9

Variable

List of Variables for Program 7

Definition

A

Runway Altitude (ft.)

Temperature (°C)

Runway length (ft.)

Gross weight (1bs.)

Double datum status (1 indicates "with")
Result of upper chart, Figure BS
Takeoff factor

Result of first chart, Figure Bl2

Maximum refusal speed (kts.)

Coefficients




Program 8

1 REM THIS PROGRAM CALCULATES THE QPTIMUM EMDURANMCE ALTITULDE

2 REM QF AN R-TE AT YARVING GROSS WEIGHTS AND DRAG CQUNTS

4 DIM BL3]

S G=19

& D=0

19 PRINT "OPTIMUM ENDURRMCE ALT "

20 PRINT “GROS: NWT DRRG CT QFT END ALT"

SQ G=G+3

20 BL2 =55, 333+0., 073078 «D0-9, TRISE-Q4+D12+2, SAISE-QS+D13-3, 3TQ3E-09=D Mg
A BLL)==1,1-2. 0S3TE-03+D+3, DN3TE-QS«DP2~-2, 38 38E-AT*DP3+3, 2A32E-1 Q%DM

1ol Bl2)=8, 86e ' E-A341, 354 1E-Q4 %D~ 1, 4033E-D8«D12+5, 2022E-03+DP3~5, D21 SE-12+D s
11 H=BO 2 1+B0 1 1«5+BL 2 1+G12

Z=INT H*1a00)

N=G+1299

PRINT XsDsZ

D=D+3a

[F D<219 THEM 29

D=8

=
[F G{4S THEN S@
END

ROonga ]

e et e
B O R S e
DOy SV RS o)

86
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dindni T . S

List of Variables for Program 8

Variable Definition

Gross weight (lbs. times 1000)
Drag count
Optimum endurance altitude (ft.)
A Optimum endurance altitude ( integer format)
X Gross weight (1bs.)
B1,B2,B3 Coefficients




T —

Program 9

1 REM THIS FROGRAM CALCULATES THE CRUISE CEILING OF AN R=-TE
2 REM UNDER VARVING GROS3 WEIGHTS AND DRAG COUNTS

4 DIM B(41]

S G=13

& D=4

19 PRINT "CRUISE CEILING"

20 PRINT "GROSS WT DRAG CT CRUISE CEILING®

T G=2G+3

G0 Bl 1=95.113-0, 2911 T+D+Q, Q020434 ¢0P2-1, 23S1E-AS+D P 3+ 1, 662 1E-QS*D MY

A Bl )=-a, TATTHA, Q2SS «D-3, JAEE-04 =D P2+ 1 $182E-NE+Dt3-1, 3343E-A9x D14

1y
1as
110

B D O S e

D DR gl R VO |

B2 1=0 el 3aT -2, S202E -2 ¢ 0+ 1 AL 4E-DS*#DP2-9, 5S14E-Q2+D M 3 +8, D60SE-1 1 DM 4
B3 1==8, Q48QE-N4+3, QR2RE-08 D=1, [43E~AT+D 12 ¢4, 3304E- 1A+ D13-5, 4SETE-13+D 14
H=BL 4 1+B0 1 1xG+BL 2 1=Cr2+BL 3 1+GM3

I=INT(H+1099)

W=G*1299

PRINT XsDs2

D=D+30

[F D{312 THEN 3@

D=a

IF G 45 THEN Sa

END




It i

| |
2% List of Variables for Program 9 E
é? Variable Definition j
:;? G Gross weight (1bs. times 1000) i
:7 D Drag count {
g H Cruise ceiling (ft.)

? Z Cruise ceiling (integer format)

g X Gross weight (1bs.)

| B1,B2,
| B3,Bu

Coefficients




APPENDIX E

TI-59 Programs and User Information

USER INFORMATION FOR PROGRAM 1

Program: Low Level Cruise Performance
Number of Steps: 1336

Computation Time: 90-110 seconds

STEP ENTER PRESS KEY DISPLAY

1 gross weight (1lbs.) A gross weight/1000
2 drag count (& drag count
3 mach number mach number
temperature (°C) Transfer Scale
—-——- Unusable number
read in cards 3 & U4 -—
drag count Transfer Scale
mach number mach number
temperature (°C) 1b.fuel/nautical mile

- fuel flow
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