L/

CORNELL UNIV ITHACA N Y SCHOOL OF OPERATIONS RESEARC==ETC F/G 12/1
A TWO-STAGE MINIMAX PROCEUURE WITH SCREENING FOR SELECTING THE ==ETC(U)
OCT 78 A C TAMHANEr R E BECHHOFER DAAGZQ-?T-C-OUOS

UNCLASSIFICD TR=377

I
END
DATE
LMED
yie

| AD=AOB1 337




T T T W T T - -

ADA061337

DDC FLE C

.- RS

SCHOOL
OF
OPERATIONS RESEARCH
AND |

INDUSTRIAL ENGINEERING

r

, m\ﬂ
NQ” k '4 19.(8

— m
This docyr-~~r1 3 "3 been conroveq

for public re! ¢ -- cd scle; i

distribution is unlimited,

COLLEGE OF ENGINEERING

CORNELL UNIVERSITY
ITHACA, NEW YORK 14853




SCHOOL OF OPERATIONS RESEARCH i
AND INDUSTRIAL ENGINEERING 1
COLLEGE OF ENGINEERING
CORNELL UNIVERSITY
ITHACA, NEW YORK

f

ECHNICAL \cpaus NO. 377 Ind  NOY 1y 10

U
=

ADAQ 61337

June 1978

B |
(Revis e@ctober “3978) f

T

=é TWO-STAGE MINIMAX PROCEDURE WITH SCREENING
] =R SELECTING THE LKRGEST NORMAL MEAN (II)
| AN ;EPROVED PCS LOWER BOUND AND ASSO IATEDE*EBLESI

/ = =
L -

by b

‘_g___ :
' Ajde €. Tamhane
Opthwestern University |

ﬁobert E. ’Bechhofe“ ! 1

Tf -4 [

ci———

OO~

ON
B
*//._~

DDC FiLE COPY

Prepared under
NSF Grant ENG 77-06112
at Northwestern University
E and ) 1

U.S. Army Research Office-Durham contr AAG28-77-C-0003, / |
Office of Naval Research contract /NOOOl4-75-C-0586 ¢ ,

at Cornell Univers Dy ————

Approved for Public Release; Distribution Unlimited.

5 4
01 861 o




THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN

OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED
BY OTHER AUTHORIZED DOCUMENTS




TABLE OF CONTENTS

Abstract

1.

2.

Introduction and summary
Preliminaries

2.1 Assumptions

2.2 Goal and probability requirement
2.3 Two-stage procedure (P2)

2.4 U-minimax design criterion

An improved lower bound on Pu{CSlPQ}, and the associated

U-minimax optimization problem

3.1 Improved lower bound on Pu{CS]P

3.2 U-minimax optimization problem

ot

Constants to implement P2(Cl) for k > 3

4.1 Tables of constants to implement

P2(Cl)

4.2 Details of computations of constants

The performance of P2(-) relative to P

5.1 P2(E), P2(Cl) and P2(C3) vs.

5.2 P2(Cl) vs. Pl

5.3 P2(Cl), P2(C2) and P2(C3) vs.

for k > 3

Numerical example

Concluding remarks

Directions of future research
Acknowledgments

Bibliography

BY

DiSTRIB! T2
"

1

Pl fori k = 2

Pl for k > 3

SOV ) ¢

10

10

10

1k

18

18

20

22




A TWO-STAGE MINIMAX PROCEDURE WITH SCREENING
FOR SELECTING THE LARGEST NORMAL MEAN (II):
AN IMPROVED PCS LOWER BOUND AND ASSOCIATED TABLES

Ajit C. Tamhane
Northwestern University, Evanston, Illinois
Robert E. Bechhofer

Cornell University, Ithaca, New York

ABSTRACT

This paper is a follow-up to an earlier article by the
authors in which they proposed a two-stage procedure with
screening to select the normal population with the largest
population mean when the populations have a common known variance.
The two-stage procedure has the highly desirable property that
the expected total number of observations required by the pro-
cedure is always less than the total number of observations
required by the corresponding single-stage procedure of Bechhofer

(1954), regardless of the configuration of the population means.

The present paper contains new results which make possible the
more efficient implementation of the two-stage procedure. Tables
for this purpose are given, and the improvements achieved (which

are substantial) are assessed.




1. INTRODUCTION AND SUMMARY

The present paper is a follow-up to Tamhane and Bechhofer
(1977) (henceforth referred to as T-B) and contains some new
results which make possible the more efficient implementation of
the two-stage procedure proposed in Section 4 of T-B. In order
to make the present paper somewhat self contained, certain results
from T-B are repeated here (without proof); the reader is referred
to T-B for background and motivation as well as for the necessary
proofs.

In T-B we studied in depth a two-stage procedure (P2) for
selecting the largest normal mean. This procedure (which employs
the indifference-zone approach of Bechhofer (1954)) screens out
"noncontending" populations in the first stage and selects the
"best" population from among the '"contending' populations which
enter the second stage. In order to determine the constants
necessary to implement P2, we proposed in T-B the criterion of
minimizing the maximum (over the entire parameter space) of the
expected total sample size required by P2 subject to the
procedure's guaranteeing a specified probability requirement. As
a consequence, P_. based on this unrestricted minimax (U-minimax)

2
design criterion possesses the highly desirable property that the

expected total sample size required by P2 is always less than
the total sample size required by the best competing single-stage
procedure (Pl) of Bechhofer (1954), regardless of the true
configuration of the population means.

As noted in Section 10 of T-B, there were two main unsolved
problems associated with P2 applied to three or more (k > 3)
populations. First, the so-called least-favorable configuration
(LFC) of the population means has not yet been determined for
k > 3; knowledge of this configuration is required in order to
determine the best set of constants necessary to implement P2.
Second, even if the LFC of the population means were known for

k > 3, the problem of evaluating the probability of a correct
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selection (P{CS}) associated with P2 (see (5.1) of T-B) when
the population means are in that configuration would still remain;
it is extremely difficult and costly to evaluate the exact P{CS}
associated with P2 on a computer, even if the population means
are in the so-called "slippage" configuration (see (5.6) of T-B).

It is possible to determine a set of constants (although
not the best set) to implement P& if a lower bound to the
P{CS} of P2 can be found and the LFC of the population means
determined for that lower bound; such a set of constants
provides a conservative solution to the problem. It was this
device that we adopted in T-B in order to circumvent the first
unsolved problem; it turned out that it was straightforward to
determine the LFC of the population means for the lower
bound that we adopted (see (5.8) of T-B), and in addition the
integrals associated with that lower bound proved to be very easy
to compute.

A referee of T-B proposed a new lower bound to the P{CS}
of P2 (see Section 11 of T-B), his bound being uniformly superior
to ours; it is also straightforward to determine the LFC of the
population means relative to the referee's lower bound, and the
resulting integrals are easy to evaluate. Using this new lower
bound we could have computed a new set of constants to implement

P2, and thereby obtained a less conservative solution to our problem.

In the present paper we obtain a third lower bound to the
pP{CS} of P2 --one which is uniformly superior to the referee's,
and relative to which the LFC of the population means is easily
obtained. However, it is quite a bit more difficult and costly
(although not prohibitively so) to evaluate the resulting function
than was the case for our original bound or for the referee's.

It turned out that such computations were justified since results
obtained with this newest bound yield a significant improvement
over all of our previous results. We make these ideas precise

in the next sections. The comparisons between our new results

and our previous ones are made in Section 5. In Section 6 a




numerical example is given which illustrates the options (in terms
of choice among procedures) available to the experimenter, and

the strikingly different consequences associated with each option.

2. PRELIMINARIES

2.1 Assumptions

Let Hi (1 £ 1< k) denote a normal population with unknown
mean My and known variance 02, and let Q denote the para-
meter space of vectors B = (ul,...,uk). Denote the ranked values
of the s by M3 S S Mk and let Gi,j = Mgy = u[j].
We assume no prior knowledge concerning the pairing of the
Hi with the u[j] (1 £1i,j £ k). Any one of the populations
(if there is more than one) with u-value equal to Mg is

regarded as 'best."

2.2 Goal and Probability Requirement

The goal of the experimenter is to select a best population.

This event is referred to as a correct selection (CS). The

experimenter restricts consideration to procedures (P) which

guarantee the probability requirement

Pu{CS|P} 2 P%¥ for all u e Q(8%) (2.1}
where {8%,P*¥} 0 < 6* < =, 1/k < P* < 1 are specified prior to
experimentation, and Q(8%) = {u ¢ Qle ol = §%}.

9

2.3 Two-stage Procedure (P2)

In T-B we proposed a two-stage procedure P2 = P.(n h)

sy
(previously considered by Alam (1970)) which depends gn llfi
nonnegative integers n; .0, and a real constant h > 0. The
constants (nl,n2,h) depend on k and {8*,P*}, and are
chosen so that P2 guarantees (2.1) and possesses a certain

minimax property (given by 2.2)).

Procedure P2

Stage 1: Take a random sample of size ny from each Hi and




compute the sample mean fgl) (L2£1igk)., Let iﬁi; =
max Yfl). Determine the subset I of {1,2,...,k} where
l<i<k

« gt ), L) ; A £
I {llxi ==X[k] h}. The populations Ms...,M  with sub

scripts in I are the ones which enter the second stage (if I

has more than one element). Let HI denote the set of populations

with subscripts in I.

a) If HI contains only one population, stop sampling and
assert that the population associated with ?Ei% is best.
b)Y 1If HI contains more than one population, proceed to

the second stage.

Stage 2: Take a random sample of size n, from each Hi with

2
Compute the cumulative

%2,

i € I and compute the sample mean

T = O) =(2) .
sample mean Xi (ani + n2xi )/(nl+n2) for eac& Hi w1t§—
i € I. Assert that the population associated with X[k] = max X,
is best. L

Remark 2.1: A two-stage procedure of Somerville (1974) which is

related to ours has recently come to our attention. His procedure

eliminates a predetermined number of populations at the end of

the first stage whereas ours eliminates a random number:; thus for
favorable configurations of the population means, his procedure
always requires two stages and a fixed total number of observa-
tions, whereas ours often requires only a single stage or two
stages with a small total number of observations. Moreover, after
the first-stage data are used to determine which populations enter
the second stage, Somerville's procedure ignores the information
concerning the population means obtained in the first stage. Our
procedure not only uses the first stage data to determine which
populations enter the second stage, but also for those populations
which do enter the second stage our procedure pools the first stage
and second stage information concerning the associated population
means; thus our procedure makes fuller use of the information in

the total experiment.




Let T denote the total sample size and Eu{T|P2} denote
the expected total sample size required by P2. “In T-B (Section

4.2) we proposed the following unrestricted minimax (U-minimax)

design criterion to determine (nl,nz,h) guaranteeing (2.1).

2.4 U-minimax Design Criterion

For given k and specified {8%,P%*} choose (nl,n2,h) to
minimize Sup E {T|P.}
HeR 2 2

B (2.2)

subject to Inf P {cs|P2} > P#%,
EgQ(G*)

where n, .0, are nonnegative integers and h > 0. We denote by

(n h|E) the exact solution to (2.2), and by P,(E) the

n
b gl iy
procedure using that solution. If a lower bound on Pu{CSIPQ}

is used in the l.h.s. of the constraint of (2.2), then we denote

by (n hIC) the corresponding conservative solution to (2.2),

n
SR
and by PQ(C) the procedure using that solution.

3. AN IMPROVED LOWER BOUND ON Pu{csle},
AND THE ASSOCIATED U-MINIMAX OPTIMIZATION PROBLEM

3.1 Improved Lower Bound on Pu{CSIPz}

Our new lower bound is given in the following theorem which

is proved below.
Theorem 3.1: For all u € 2 we have the following inequalities:

PH{CS|P2} >A» B >C

where
5 ro 00 k;[l " ((Sk i+h)/l-‘lz e Gk’i/r_n- 3 l/"’
7 D = ; o 2! 'P
~® J-m =]
x d¢2[xl,x2|/§], (3.1a)
e ottt S ol e

bt




® k-1
‘ B ={Lw ifl o[x + (6k,i+h)/ﬁz/°]d°(")}

® ek
xU n olx + 8, ./ﬁ/c]d@(x%, (3.1b)
- j=] s

© k-1
C = [-“ igl o[x + (Gk,i+h)/ﬁzyo]d¢(x)

© k-1
+ J n o[x + cSk ./m/0]do(x) - 1. (3-1c)
- i=]1 3+

Here ¢2(-,-|p) denotes the standard bivariate normal cdf with
correlation coefficient p (-1 < p < 1); &(-) denotes the
standard univariate normal cdf, m =n, + n

i 2°
={1)

Proof: Let X denote the first stage sample

and p = nl/m.

=0 g T
(1) (1)
mean and the cumulative (first stage plus second stage) sample
mean, respectively, from the population with mean iy

(1 2£1i<k). Then

<(1) —(l) = = o
P {cs|P } 2P { Xy Z X3y = B Xpy > Xpy (L2 d < k-1)]
(3.2)
(8 .+h)jn_ iy
b k,1 1 k,i /m b 2
-P{Ji;—T—T,ViS__——O 2(l;l;kl)}
. Ay 6
where U, = (X(i) - X(k) k, )/H /oY2 and
| b (i(i) -.i(k) + Gk’i)/EYG/_ (1 £ 1< k-1). We note that the

Ui and Vi are standard normal r.v.'s with Corr{Ui,Uj} =
Corr{Vi,Vj} = 1/2, Corr{Ui,Vi} = ¥p, and Corr{Ui,Vj} = ¥p/2
(i #35 1 <1i,j £k-1); thus using the representation (see
L
Bechhofer and Tamhane (1974)) (Ui’vi) (Yli+Ylo Yy, YQO) /2
; ] e
lj’Y2j) (0 23 £k-1) are i.i.d.

( ) » ( )) we obtain A of (3.la) which is our new lower bound.

1 <i<k-1) where the (Y

The referee's lower bound B is obtained by replacing all of the




correlations between the Ui and the Vj (1 =24,] £k=1) by

zeros and applying Slepian's inequality. The inequality between

B and our original lower bound C was shown in Section 11 of T-B.
We note that for A, B, and C the LFC of the population

means, i.e., the configuration of the population means which

minimizes A, B, and C subject to € Q(6*), 1is given by

u[l] = p[k-l] = u[k] - 6% (which is also the conjecturea LFC

for the exact PH{CSlPQ} subject to M € Q(6%)). Thus we now

obtain

Corollary: For all u < Q(8%) we have the following inequalities:

Pu{CS|P2} > A(8%) > B(8%) > C(6&%) (3.3)
where %
A(8%) = e gt EE::EZIEE PR D
e e o 1% 5 i
x d¢2[xl,x /pl, (3.4a)
o = f°° k-l KA
B(&%) = ) [x + (60+h)/5;70]d®(x)
- -
x{ " bk % 6*/5/cjd¢(x)}, (3.4Db)
Jo -~ k-l KR
C(s%*) = o [x + (6"+h)/n_l'/0]d¢(x)
+ j Yk + s%/m/olde(x) - 1. (3.4c)

In the optimization problem (2.2) we shall replace the con-
straint by A(é*) > P*; we denote by (nl’n2’hlcl) the corre-

sponding conservative solution and by PZ(C1) the associated




procedure. Similarly, conservative solutions and procedures
| result if we employ the constraints B(6%) > P*¥ or C(§%) > P*

in (2.2) obtaining (n thz) and P2(C2), and (nl,nQ,hlca)

l’n2’
and P2(C3), respectively.
Remark 3.1l: If we let h+« in A, B, or C of (3.la), (3.1b),
(3.1c), respectively, we obtain in each case

ffmnt;l o[x +38, i/ﬁ]d]d@(x) which is an expression for Pu{CSIPl}

where P. wuses a common single-stage sample size m per popula-

tion. Tierefore Pl is a special case of any P2 based on either
(3.1a) or (3.1b) or (3.1c). Now it was shown in Bechhofer (1954)
that ik,
Inf P {cs]R. } = J 652k + s*vm/olde(x). (3.5)
ueQ(8%®) L 5 -

Thus if we let n denote the smallest value of m for which the
r.h.s. of (3.5) is equal to or greater than P* (i.e., n is

: the smallest single-stage sample size that guarantees (2.1)), then
: for i =1,2,3 we have

E (TP (C.)} £ kn (3.6)
)iy 24T =
for all u € Q.

3.2 U-minimax optimization problem

Before we state our optimization problem we cite the following
results given by Theorems 6.1 and 6.2, respectively, of T-B:
(1) For any u € @ we have

k pef k (s, .+h)/KI
EAT|P. )} = kn, + 1, } n oofx + —=2d—e =
B 2 1 2 i=1l J-e| j=1 (o)

j#L

k (5. .-h)/ﬁ'z

. @Ec+—-—l-?-3—-——-—] de(x), (3.7)
j=1 5 J

jEL

and




(2) Sup E {T|P.} = kn
neg % 2 1
(3.8)

+ kn, r {¢k‘1[x + h/z?l’/o] = @k‘l[x = h@/c]}dqs(x)

which occurs when u[l] = u[k] (referred to as the equal means
configuration (EMC)).
It is more convenient to work with continuous variables than
with discrete variables. Thus we define new design constants
§%/n §%/n hv/n_

C, T =——a ¢ =T =—=_ 4 =
ik o’ 2 o g

(63291

which we regard as nonnegative continuous variables. Then the
design constants (nl,nz,hlcl) can be approximated by solving

the following continuous optimization problem:

For given k and specified P#* choose (e1,¢5,d) to

i - T
minimize kci + kcg J {Qk l(x+d) - ¢k l(x—d)}d¢(x)

-0

(-] -]
3 k-1 L2 2
subject to J-m J_w @2 [cl+d-xl, cl+c2—x2|/5]
x d2,(x;,%,[VpP) 2 P* (3.10)

where p = ci/(ci+c§) and cl,c2,dﬂ; 0. We denote the solution
to (3510) by

design constants

=
=

n"
[(==m)
0>
g
il o
(L

Lo i

c.0\2 o
. {(—9 ] e (3.11)
e

where [2z] denotes the smallest integer > z, to implement
P2(Cl)-
For k = 2 we note that (3.10) can be written as:

For specified P#* choose (cl,cz,d) to

minimize 2ci + 2c§{¢(d//5) - #(-d/v2)}

subject to ¢2[(cl+d)//5, Vci-+c§//§|/5] > P, (3.12)

él,éz,alcl) and for specified &% use the approximate

4‘4.,».._,‘._.4..
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4. CONSTANTS TO IMPLEMENT PQ(Cl) FOR k > 3

| 4.1 Tables of Constants to Implement Pz(Cl)

Table I contains constants (¢ &lcl) necessary to

»C,
approximate (nl,n2,hlcl) for k =12 2and selected P*; these
constants are the solutions to (3.12). Also included in Table I
are the constants (El,éz,aIE) and (61,62,3|C3) necessary to
implement the exact procedure and PZ(C3)’ respectively; these
were given in T-B and Tamhane (1975), respectively. We include
the latter constants here in order for the reader to see how the
constants (51,82,3|C1) compare with them; however, we emphasize
that in practice one would only use (El,éz,aIB) since these
constants are optimal.

Table II contains constants (61,52,&]01) necessary to
l,n2,hlcl) for k = 3(1)10,12,15,25 and selected

P*; these constants are the solutions to (3.10). For fixed

approximate (n

(large) P* we have found that Ei and 53 are approximately
linear in loge(k-l); similarly, for fixed k and (large) P%,
Ei and ég are approximately linear in log {P*/(1-P¥)}. We
have not been able to characterize the behavior of d in a
simple way. The constants given in Table II for k = 6(1)3 and
12 were obtaiﬁed by quadratic interpolation of Ei, &g and 82

against loge(k-l) for fixed P%* = 0.75, 0.90, 0.95 and 0.99;
these constants (particularly d) are not as accurate as the ones

which served as the basis for the interpolation.

4.2 Details of Computations of Constants

All of the computations were carried out on Northwestern's
CDC 6600 computer in 32-bit arithmetic. The generalized reduced
gradient (GRG) algorithm of Abadie and Carpentier (1969) was used
to solve the constrained nonlinear optimization problems (3.10)
and (3.12). The constants (61,82,&|03) given in T-B were used
as initial guesses in the GRG algorithm; even with these rela-

tively ''good" guesses, at least 10 and often more iterations were

b
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TABLE II

Constants to Implement P,(C,) for k 2 3

(81,82,d|C1)

; k P

F ~ ~ ~
; S5 <2 4

; 0.99 2.791 2.406 1.205

‘ 3 0.95 1.999 1.846 1.552

0.90 1.578 1.525 2.100

0.75 0.9986 0.9485 3.989

0.99 2.965 2.508 1.222

1 " 0.95 2.139 2.090 1.452

0.90 1.760 1.977 1.700

0.75 1.161 1.128 3.545

0.99 3.043 2.693 1.241

P 0.95 2.252 2.257 1.362

0.90 1.845 1.963 1.537

0.75 1.260 1.277 2.821

0.99 3.087 2.815 1.261

g 0.95 2.307 2.397 1.352

0.90 1.916 2.121 1.478

0.75 1.332 1.440 2.556

0.99 3.130 2.909 1.278

7 0.95 2.355 2.505 1.332

0.90 1.969 2.240 1.398

r 0.75 1.386 1.582 2.276

0.99 3.163 2.989 1.294

8 0.95 2.394 2.595 1.3

0.90 2.011 2.340 1.342

0.75 1.428 1.709 2.049

: 0.99 3.189 3.060 1.309

g Q.95 2.425 2.673 1,318

0.90 2.0u5 2.426 1.304

0.75 1.463 1.824 1.861

0.99 3.194 3.142 1.322

10 0.95 2.452 2. 744 1.322

0.90 2.067 2,507 1.342

0.75 1.500 1.889 1.570

12
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TABLE II (continued)

0.99 3.243 3,231 1.349
12 0.95 2,492 2.858 1.318
0.90Q 2.120 2.630 1.256
Q,75 1. 58] 2.100 1.468
0.99 3.272 3.376 1.384
Q.95 2.532 3.001 1.346
15 0.90 2.174 2,791 1.330
0.75 1,588 2.350 1.364
0.60 1.235 1.667 1.979
0.99 3.340 3.649 1.463
0.95 2.621 3.302 1.411
25 0.90 2.271 3.121 1.358
0.75 1.704 2.809 1.256
0.60 1.360 2.732 1.099
0.45 1.014 2.227 1.219

required to arrive in the neighborhood of the absolute optimum.
The objective function is relatively flat in the region of the
absolute optimum which results in extremely slow convergence in
the later iterations. A maximum limit of 25 was placed on the
number of iterations, and the algorithm was terminated sooner
if no change was observed in the first four significant digits
of the objective function in five successive iterations. Thus
we would expect our solutions to be reasonably close to the
absolute optima.

Each iteration of the GRG algorithm corresponds to at least
one (and often many) evaluations of the double integral in the
constraint of (3.10) and its partial derivatives with respect to
s S and d. We evaluated these partials numerically by taking
the value of the double integral at the current solution
(cl,c2,d) as the base value, say W(cl,c2,d), and approximated
the derivatives as: aw/acl ) {w(cl+A,c2,d) - W(cl,c2,d)}/A,
etc., where A = 10'4. Since it was necessary to evaluate the

double integral in the constraint of (3.10) at least four and
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often many more times in each iteration of the GRG algorithm, a
fast and accurate method was sought for this purpose.
We used Monte Carlo (MC) sampling to estimate the value of

this double integral by noting that it equals

k-1 202
5{02 [cl+d—Xl, /cl+c2—X2 [/} (4.1)
where Xl and X2 are standard normal r.v.'s with Corr{xl,xz} =

/5'=cl/ c2+c2 Each estimate of (4.1) was based on an average

1 2
over 200 runs. In each run (Xl,X2) was generated by first
generating a pair (Zl,Z2) of independent standard normal r.v.'s
using the Box-Miller algorithm and then employing the transforma-
tion X, =2, X, = VS'Zl + ¥i-p I,

RANF was used to generate the uniform [0,1] r.v.'s needed as

The Fortran library program

inputs for the Box-Miller algorithm.

We evaluated ¢2 using Borth's (1973) modification of Owen's

(1958) method. This modification is based on the fact that
subject to a specified accuracy, Owen's method is fast only for a

certain range of values of the parameters of ¢ for other

2;
values of the parameters a computing method proposed by Borth is
faster. The modified method which is a composite of the two

methods is thus faster than Owen's method. For the Owen mcthod

part we used the IMSL subroutine MDBNOR for which a limit on the

s

maximum error in evaluating ¢, is specified to be 10~ in the

2
IMSL manual. For the Borth method part the limit on the maximum

error in evaluating a certain T-function necessary to obtain ¢2
(see equation (2) of Borth (1973)) is specified to be 10'-'7 in his
article. In addition to the T-function it is also necessary to
compute some standard normal cdf values to obtain ¢2. (All of
these steps are carried out internally in MDBNOR.) We used the
approximation to ¢ given by equation 26.2.17 of Abramowitz and
Stegun (1964) which is accurate to within #7.5 x10~%, Thus the
overall accuracy in the evaluation of ¢2
le-s. (We mention that we tried to use Cadwell's (1951)

may be estimated to be
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approximation to ¢, but found its accuracy to be unacceptable

for our purposes.) !
For evaluating the double integral we also tried using the

Gauss-Legendre quadrature method (with the integrals over -«

to +» approximated by integrals over -6 to +6) with 16 nodes,

i.e., 256 integrand evaluations. Although this method requires

slightly more computer time than the MC method with 200 runs, we
found that in general the MC method gave a more accurate estimate

of the double integral; hence we adopted the MC method.

|

|

\

1

j

i For evaluating the single integral in the objective function
i of (3.10) we used the Romberg quadrature method for which the

| maximum error was controlled at 10-5. ¢ appearing in the inte-~
! grand was evaluated using the approximation given in Abramowitz

] and Stegun (1964) referred to earlier.
5 The reported values of él, 82, d are rounded off in the
fourth significant digit and are estimated to be correct to at

least the first three significant digits.

5. THE PERFORMANCE OF P2(') RELATIVE TO Pl

As a measure of the efficiency of Pl (Bechhofer (1954))
relative to that of P2 when both guarantee the same probability

requirement (2.1), we consider the ratio (termed relative effi-
ciency (RE(Pl:P2))
E {T|P,}/kn, (5.1)
u 2

where n = [(50/6*)2], and ¢ is the solution of
it X
J ¢ T(x+c)dd(x) = P%, (5.2)
-0

Clearly RE depends on U and {8%,P%}; wvalues of RE less than
one favor P2 over Pl' To remove the dependence on &% we use
the continuous approximations to Eu{Tlpz} and n (thereby
ignoring the fact that the sample sizes must be integers). RE

is then given by




T ———

16

2 2 k k
ke) + ¢, /) fﬂ n o(x+d+%..cl/6*)
izl 7~= | j=1 2
j#i
x .2
- T o(x-d+6. < /6*5&)(:(} /ke (5.3)
o 1,771
j=1
j#i
where we employ in (5.3) the (El,az,a)—values of the particular
procedure P2 being compared to Pl' The value of ¢ which is
the solution to (5.2) has been tabulated for selected k and P%
by Bechhofer (1954), Gupta (1963), and Milton (1963); Bechhofer's
A =c, Gupta's and Milton's H = ¢//2.

Table III gives computed RE-values for RE(Pl:P2(E)),
RE(Pl:Pz(Cl)), and RE(Pl:Pz(C3)) for k = 2 and selected P#,
while Table IV gives analogous values for RE(Pl:PQ(Cl)) for
k > 3. The computed values given in Tables III and IV were
obtained using the (61,62,&)-values listed in Tables I and II,
respectively. Table V is an abbreviated one which permits com-
parison of P2(C2) and P2(C3) with P2(Cl) via RE(Pl:PQ(Ci))
i=1,2,3 for selected extreme (k,P%*)-combinations.

Since P, is a special case of P2(E) and P2(Ci) i=1,2,8

1l
(see Remark 3.2), it follows that for k = 2 we have

1 > max{RE(Pl:P2(}:)), RE(Pl’Pz(Ci) i = 1.2.8), (5.4)
and for k > 3 we have
1> max{RE(Pl:P2(Ci)) i=41,2,9} (5.5)

for all u € Q. Thus, our two-stage procedures P2(E) and
P,(c;) (i=1,2,3) are uniformly (in p) better than the corre-
sponding single-stage procedure Pl when all guarantee the same
probability requirement (2.1). Moreover, when the constraint in
(2.2) is replaced by A(§*) > P*, and then by B(8*) > P*, and
finally by C(8§*) > P*, we have as a consequence of (3.3) that
the set of feasible values of (cl,c2,d) decreases at each step.
Thus the corresponding minima of the objective function of (2.2)

increase at each step, and we have for k > 3:

BB (7, :P,(C.)) <« RE.(P. :P

emc' 1 21 eme'F1 2(C2)) < RE.,.(P.:P_(C,)) (5.6)

EMC™ 12778

—————
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where EMC refers to the configuration Bryg * u[k]' This implies

that not only is P2(Cl) U-minimax among our two-stage procedures

based on the conservative lower bound A(§%*) > P*, but also that

it is U-minimax among our two-stage procedures based on the con- f
servative lower bounds B(6%*) 2 P* or C(8%) > P* as well.

These findings and ones described in the sections below demonstrate

that P2(Cl) is highly effective as a selection procedure with
screening.

5.1 P2(E), P2(Cl) and P2(C3) vs. Pl for k = 2

We have discussed RE(Pl:Pz(E)) and RE(P1:P2(C3)) in
Section 9.1 of T-B. From Table III we note that the performance
of P2(Cl) is always "intermediate" to that of P2(E) and
P2(C3) at 8§ = 0. The range of 8 > 0 values for which P2(Cl)
is intermediate depends on P#%; thus, e.g., our computations
indicate that for & = » we have Pz(Cl) as intermediate when

P* > 0.99 but as poorest when P* < 0.95.

559 P2(Cl) vs. Pl for k > 3

The performance of P2(Cl) relative to that of Pl can be
studied using the RE-values given in Table IV. We note that for
fixed k and P*, RE is a decreasing function of the differences
Mrs] "~ Mri-1] (1 £1igk-1); thus P2(Cl) capitalizes on
favorable configurations of the My (1 £1i < k). The columns
headed u[k] = u[l] and u[k] - u[k—l] = © pepresent the minimum
and maximum RE (measured in terms of Eu{TIP}), respectively,
achieved when P2(Cl) is used in place of Pl; as noted earlier,
based on this criterion the experimenter always gains using P2(Cl).

We also note that for fixed u and P*, RE is a decreasing
function of k. Thus the screening feature of P2(Cl) becomes
more effective as k increases.

In the range of P%*-values for which computations were made

(these being the ones of greatest practical interest), we note
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TABLE IV
Efficiency of Pl Relative to P2(Cl) for k> 3

when the i3 (L £ igk) are in Various Configurations

— :6:’:
k1M k13
TS =8 2<i<k-1
. Mri7Mri-1] (25i<k-1)
(EMC) | (LFC)
= §/6%=0| 6/6%=1.0( 8/8%=4.0 i =
Mrrr™ragl 8/ / 4 MEk1 M [k-1]

0.99| 0.863 |0.663 | 0.633 | 0.633 0.595
0.95| o0.882 |0.738 | 0.665 | 0.658 0.5uk4

3 10.90| o0.904 |o0.818 | 0.735 0.700 0.500
0.75| 0.921 |0.917 | 0.906 | 0.798 0.u485
0.99| 0.860 |0.668 | 0.633 | 0.633 0.610
0.95| 0.876 |0.718 | 0.620 | 0.617 0.538

% 1o.90| 0.902 |0.786 | 0.65u 0.641 0.516
0.75 0.918 |0.907 | 0.834 | 0.s9u 0.476
0.99| 0.858 |0.662 | 0.622 | 0.822 0.603
0.95| 0.863 |0.703 | 0.601 | 0.600 0.543

5 lo.90| 0.873 |0.750 | 0.504 | 0.596 0.504
0.75| 0.909 [0.879 | 0.710 | 0.831 0.466
0.99| 0.807 |0.626 | 0.576 | 0.576 0.566
0.95| 0.798 |0.652 | 0.542 | 0.541 0.514

10 1o.90| 0.796 |0.677 | 0.524 | 0.522 0.480
0.75| 0.808 |0.740 | 0.521 | 0.510 0.439
0.99{ 0.778 |0.609 | 0.557 | 0.557 0.550
0.95| 0.756 (0.623 | 0.513 | 0.513 0.u494

15 10.90| 0.756 |0.646 | 0.498 | 0.u497 0.469
0.75| 0.761 [0.693 | 0.u71 | 0.usy 0.414
0.60| 0.805 [0.767 | 0.u472 | 0.450 0.386
0.99| 0.735 [0.584 | 0.530 | 0.530 0.526
0.95{ 0.712 [0.593 | 0.485 | 0.485 0.473
0.90| 0.702 (0.607 | 0.u66 | 0.u66 0.448

25 10.75| o0.689 |0.631 | 0.432 | 0.430 0.399
0.60| 0.708 [0.671 | 0.u29 | 0.421 0.374
0.45| 0.713 |0.691 | 0.u01 | 0.380 0.318
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that for fixed M and k, RE decreases and then increases as P%

increases; in fact, RE+ 1 as P* + 1/k or 1,

5,3 P2(cl), Pz(cz) and P2(c3) vs, P, for k23

1

Table V which gives RE(Pl:PQ(Ci)) i=1,2,3 for four
"extreme" (k,P*)-combinations, namely, k = 3 and 25 and
P%* = 0.75 and 0.99, can be used to compare the performances
of P2(Ci) i=1,2,3 over a considerable portion of the range
of practical interest of these parameters. The values for
RE(P. :P_(C.)) are taken from Table IV of the present paper, those

I a2l
for RE(Pl:P2(C3)) from Table IV of T-B, and those for
RB(Pl:P2(C2)) were computed just for inclusion in this table.
We first note that for fixed k and P* we have, over the

range of (k,P*)-values considered, that

REE(Pl:PZ(Cl)) s REE(?l:pQ(C2)) < REEFP1:p2(03)) (5.7)

for all u € 2 (including f{ulupq - Mropy = ©1). This latter
is in contrast to the results for k = 2 where it was found that
R;H(Plzpz(cl)) > REu(Pl:PZ(CB)) for Mrag ~ M1y T

For fixed M and k, and P* - 1, the RE-values are close
for the P2(Ci) i=1,2,3; this is so since ﬁl + » and hence
the P2(Ci) > Pl; however, the effect on the RE-values of P#* -+ 1
depends critically on k for each of the P2(Ci)' - For fixed P#*
"close to unity" we see that the RE-values of the P2(Ci) are
closer for large k than for small k.

For fixed u and k, and P* + 1/k, our computational
results indicate that the minimax solution (ﬁl,ﬁz,ﬁ) of (3.9)
is such that h + » and hence P2(Ci) + Pl (i =1,2,3); thus
the three procedures perform similarly. However, the value of P%*
(call it F?) at which h becomes large enough so that P2(Ci)
becomes "almost equivalent to" P, is such that ?? < Fg < P%.
Thus for moderate values of P* we find that P2(Cl) is superior

(in terms of RE) to PZ(Cz) which in turn is superior to P2(C3).
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6, NUMERICAL EXAMPLE

In this section we give a numerical example to illustrate

the use of Tables II and IV for Pz(Cl). In addition, we compare
the performance (in terms of Eu{T|P}) of P2(Cl) with that of
the single-stage procedure Pl “and the open sequential procedure
PS(BKS) of Bechhofer, Kiefer and Sobel (1968, Section 12.6.1.1)
which samples a vector-at-a-time. The example will show in a
striking way the trade-offs that the experimenter has at his
disposal when choosing among procedures that guarantee (2.1).
Suppose that k = 10, o = 10 and that the experimenter
specifies 6% = 2, P* = 0.90; we then anticipate large sample
sizes since for k = 10 the specification §6%/0 = 0.2, P%* = 0.90

is a demanding one.

a) To determine the constants necessary to implement P2(Cl),
we obtain from Table II: El =z 2,067, 82 = 2.507, 4 = 1.3u42.
Using (3.11) these yield A = [(2.067/0.2)2] = [106.8] = 107,
ﬁ2 = [(2.507/0.2)%] = [157.1] = 158, h = 1.342(2)/2.067 = 1.299.
b) To determine the constant necessary to implement Pl’
we obtain from Table I of Bechhofer (1954) that c¢ of our (5.2)
is 2.9829. Thus n = [(2.9829(10)/2)2] = [222.4] = 223, which

is the number of observations required from each of the 10

populations.

c) We obtain estimates of Eu{TlPs(BKS)} from Tables 18.4.5
and 18.4.10 of BKS (1968) for the LFC and the EMC, respectively;
these are 1453 and 2906, respectively.

The above results are summarized in Table VI.

The entries in Table VI illustrate the savings in Eu{TIP}
when P2(Cl) is used in place of Pl' In addition, the entries
for PS(BKS) show the dramatic further savings that can be
achieved using that procedure if sequential sampling is a viable

method of experimentation for the practical problem at hand and

it is anticipated that the largest population means are not too

close. However, it must be emphasized here that we are presently
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TABLE VI
P
;H{Tl } for P, P,(C)), and P (BKS)
for Selected Configurations of the Population Means

when k = 1Q, &*%/g = 0,2, P* = 0,30

E A¥|P}
Procedure L
EMC LFC | urpgq - Mpg =
P, 2230 2230 2230
Pe,) 17752/ |1510%/ 10702/
P.(BKS) | 2906 |1us3 10

Note: The entries for P2(Cl) in Table VI were computed by
multiplying the relevant relative efficiencies in Table IV by 2230.

focusing on E{T}. The distribution of T has a very large
standard deviation for PS(BKS) when E{T} is large (see Tables
18.4.5 and 18.4.10 of BKS (1968) where for P#* = 0.90 the
estimated standard deviations of T are given as 713.4 and
1744.6 for the LFC and EMC, respectively) and is highly skewed
to the right; thus if the experimenter uses this procedure he
must be prepared to accept occasional very large values of T.
The closed sequential procedure of Paulson (1964) (with the
improvement of Fabian (1974)) which samples a vector-at-a-time
and eliminates populations is superior to PS(BKS) in terms of
Eu{T'P} over certain ranges of values of k and P¥*; for the
problem at hand with k = 10, P* = 0.90, 6%/0 = 0.2 and
Paulson's design parameter A = §%/2 we have, using Fabian's
improvement, that the maximum number of stages to terminate
experimentation for Paulson's procedure is 381, and hence an

upper bound on Eu{T[P} which is extremely conservative
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(since it does not take into account the fact that populations are
permanently eliminated prior to termination of experimentation)

is 3810. Here again the problem at hand must be such that a
completely sequential procedure is feasible, and the experimenter

must be prepared to accept very large values of T.

7. CONCLUDING REMARKS

We feel that in spite of the relatively heavy financial costs
involved in obtaining the design constants necessary to implement
P2(Cl), they were justified by the final results. For we have
been able to demonstrate conclusively that P2(Cl) represents
a significant improvement over both P2(C2) and P2(C3) (as
well as over Pl). And we now can offer a highly effective two-
stage procedure, incorporating screening, which is easy to

implement.

8. DIRECTIONS OF FUTURE RESEARCH

In Section 10 of T-B we postulated several unsolved problems
associated with Pz. All of these still remain open problems.
The most important of these (at least from a theoretical point of
view) is that of determining the LFC of the e for k > 2. If
the conjectured LFC ¥r17 T ¥me-13 T Y[k T 8* can be proved
to be the true one, and if an efficient algorithm can be found
for evaluating the exact Pu{CS[P2} for u in the LFC, then
it would be of considerable interest to determine how much decrease

in Sup Eu{TIP} can be achieved if PQ(E) is used in place of
HER =

P,(C;) for k 23.
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