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A TWO-STAGE MINIMAX PROCEDURE WITH SCREENING
FOR SELECTING THE LARGEST NORMAL MEAN (I I) :

AN IMPROVE D PCS LOWE R BOUND AND ASSOCIATED TABL1ES

Ajit C. Tambane

Northwestern University , Evanston , Illinois

Robert E. Bechhofer

Cornell University , Ithaca , New York

ABSTRACT

This paper is a follow-up to an earlier article by the
authors in which they proposed a two-stage procedure with
screening to select the normal population with the largest
population mean when the populations have a common known variance .
The two-stage procedure has the highly desirable property that
the expected total number of observations required by the pro-
cedure is always less than the total number of observat ions
required by the corresponding single-stage procedure of Bechhofer
( 1954), ~~~~~~~~~~~ of the configuration of the population means.
The present paper contains new results which make possible the
more efficient implementation of the two-stage procedure . Tables
for this purpose are given , and the improvements achieved (which
are substantial) are assessed .



1. INTRODUCTION AND SUMMARY

The present paper is a follow—up to Tainhane and Bechhofer
(1977) (henceforth referred to as T-B) and contains some new

results which make possible the more efficient implementation of

the two-stage procedure proposed in Section 4 of T-B . In order

to make the present paper somewhat self contained , certain results

from T-B are repeated here (without proof); the reader is referred

to T-B for background and motivation as well as for the necessary

proofs .

In T-B we studied in depth a two-stage procedure (P 2 ) for

selecting the largest normal mean . This procedur e (which employs

the indifference-zone approach of Bechhofer ( 19514)) screens out

“noncontending” populations in the f i rs t stage and selects the
“best” population from among the “contending” populations whi ch
enter the second stage . In order to determine the constants

necessary to implement P2 ,  we proposed in T-B the criterion of

minimizing the maximum (over the entire parameter space ) of the

expected total sample size required by P2 subject to the

procedure ’ s guaranteeing a specified probability requirement . As

a consequence , P2 based on this unrestricted min imax ( U-minimax )

design criterion possesses the highly desirable property that the
expected total sample size required by P2 is always less than

the total sample size required by the best competing single—stage

procedure (P1) of Bechhofer (19514), regardless of the true

configuration of the population means .

As noted in Section 10 of T-B , there were two main unsolved

problems associated with P2 applied to three or more (k ~ 3)

populations . First , the so-called least-favorable configuration
( LFC ) of the population means has not yet been determined for

k �. 3; knowledge of this configuration is required in order to

determine the best set of constants necessary to implement P2 .

Second , even if the LEt of the populat ion means were known for
k ~ 3 , the problem of evaluating the probability of a correct
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selection (P{CS}) associated with P2 (see (5.1) of T-B) when

the population means are in that configuration would still remain ;

it is extremely difficult and costly to evaluate the exact P{CS }

associated with P2 on a computer , even if the population means

are in the so-called “slippage” configuration (see ( 5 .6)  of T-B) .

It is possible to determine a set of constants (although

not the best set) to implement P2 if a lower bound to the

P { C S } of P2 can be found and the LFC of the population means

determined for that lower bound; such a set of constants

provides a conservative solution to the problem. It was this

device that we adopted in T-B in order to circumvent the first

unsolved problem; it turned out that it was straightforwar d to
determine the LFC of the ~O~ uidt~~Ofl means for the lower

bound that we adopted (see (5.8) of T-B), and in addition the

integrals associated with that lower bound proved to be very easy
to compute.

A referee of T-B proposed a new lower bound to the P{CS)

of P
2 
(see Section 1]. of T-B), his bound being uniformly superior

to ours; it is also straightforward to determine the LFC of the

population means relative to the referee ’s lower bound , and the

resulting integrals are easy to evaluate . Using this new lower

bound we could have computed a new set of constants to implement

and thereby obtained a less conservative solution to our problem .
In the present paper we obtain a third lower bound to the

P{CS} of P
2 
--one which is uniformly superior to the referee ’s,

and relative to which the LFC of the population means is easily

obtained . However , it is quite a bit more difficult and costly

(although not prohibitively so) to evaluat e the resulting function

than was the case for our original bound or for the referee ’s.

It turned out that such computations wer e just i f ied since results
obtained with this newest bound yield a significant improvement

over all of our previous results. We make these ideas precise

in the next sections. The comparisons between our new results

and our previous ones are made in Section 5. In Section 6 a

L — . .~~~~~~~~~~~ .._ .. -~~~.... .. .-
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numerical example is given which illustrates the options (in terms

of choice among procedures) available to the experimenter, and
the strikingly different consequences associated with each option .

2. PRELIMINARIES

2.1 Assumptions

Let (1 ~ i ~ k)  denote a normal population wi th unknown
mean ~.t. and known variance ~

2 and let ~ denote the para-

meter space of vectors ~i ~~~~~~ . 
~~~~ 

Denote the ranked values
of the u~ by 

~ClJ 
— 

~ ~Ek]’ 
and let 

~~~ 
‘EiJ 

- 

~~~~We assume no prior knowled ge concerning the pairing of the
wi th the (1 1 i, j  ~ k). Any one of the populations

(if there is more than one) with u -value equal to is

regar ded as “best.”

2.2 Goal and Probability Requirement

The goal of the experimenter is to select a best population .

This event is referred to as a correct selection (CS) .  The

experimenter restricts consideration to procedures ( P)  which

guarantee the probability requirement

P {CSIP} .~~~ P~ for all ~i ~ ~2(~~~~) (2 .1 )

where {5* ,pe } 0 < d* < ~~~, 1/k < P* < 1 are specified prior to
experimentation, and 12(p) = E 

~~~ k ,k-l ~

2 .3  Two-stage Procedure (P 2)

In T-B we proposed a two-stage procedure P2 P2 (n
1,n2 ,h)

(previously considered by Alam ( 1970)) which depends on

nonnegative integers n1,n2 and a real constant h ?.. 0. The

constants (n 1,n2 , h )  depend on k and {~~~,P*}, and are

chosen so that P2 guarantees (2.1)  and possesses a certain

minimax property (given by 2.2)).

Procedure P2
Stage 1: Take a random sample of size n1 from each and

1 -__ _- - - - -—--- -. .— — — —.—---— — — -—-~ _.____ __
~~~

_t—
_--_ — —— 

. — — -  ——— 
~

‘—.———.—.- —
~~~~

——
~

- ‘—
~ ~~

—.



., .-

4

compute the sample mean 5?9~ (1 ~~~ i ~ k). Let

max X . . Determine the subset I of {l ,2,. . . ,k}  where
l<i<k 1

I ~~~~~~~ - h}. The populations 11
1’~~

• ’ 1T
k 

with sub-

scripts in I are the ones which enter the second stage (i f  I
has more than one element). Let H

1 denote the set of populations
with subscripts in I.

a) If T1
~ 

contains only one population , stop sampling and

assert that the population associated with is best.

b) If 
~I 

contains more than one population , proceed to
the second stage.

Stage 2: Take a random sample of size n
2 

from each U . with
i € I and compute the sample mean -~(2)~ Compute the cumulativ e

sample mean 3?. = (n 3?~
1) 

+ ~ ~~
2
~~i~n +n 

) for each 11. withi i  2 i  1 2 
— 

1 
—

i € I. Assert that the population associated with Xr~ i max X .
L~’J i€ I 1

is best .

Remark 2.1: A two—stage procedure of Somerville (1974) which is

related to ours has recently come to our attention . His procedure

eliminates a prede termined number of populations at the end of
the f irst stage whereas ours eliminates a random number ; thus for
favorable configurations of the population means, his procedure
always requires two stages and a fixed total number of observa-

tions , whereas ours often requir es only a si ngle stage or two
stages with a small total number of observations. Moreover, after
the first-stage data are used to determine which populations enter

the second stage , Somerville ’s procedure ignores the information

concerning the population means obtained in the first stage. Our

procedure not only uses the first stage data to determine which

populations enter the second stage, but also for those populations
which do enter the second stage our procedure pools the first stage

and second stage information concerning the associated population

means; thus our procedure makes fuller use of the information in

the total experiment.

______ 

•1

_ 
_ _



_ _ _ _ _ _ _ _ _ _ _ _ _ _

5

Let T denote the total sample size and E {T!P2
} denote

the expected total sample size required by P2 . In T-B (Section

4.2) we proposed the following unrestricted minimax (U-minitnax )

design criterion to determine (n
1
,n
2
,h)  guaranteeing ( 2 .1) .

2.4 U-minimax Design Cri terion

For given k and specified {
~~ ,P~

} choose (n 1,n2,h) to

minimize Sup E {TIP 2 }
(2.2)

subject to Inf P { C S I P 2
} >

pE~2(~~~~) ~~
.

where n
1
,n2 

are nonnegative integers and h > 0. We denote by
(n
1,
n
2
,hIE ) the exact solution to (2.2), and by P

2
(E) the

procedure using that solution . If a lower bound on P {CSIP
2
}

is used in the 1.h .s. of the con3traint of ( 2 . 2 ) ,  then we denote

by (n
1
,n2

,h~C) the corresponding conservative solution to (2.2),

and by P2 (C)  the procedure using that solution .

3. AN IMPROVED LOWER BOUN D ON P {cS~P 
},2

AND THE ASSOCIATED U-MINIMAX OPTIMIZATION PROBLE M

3.1 Improved Lower Bound on P {CSIP
2
}

Our new lower bound is given in the following theorem which

is proved below.

Theorem 3.1: For all p € ~2 we have the following inequalities:

P {CS ~ P 2
} > A > B > C

where
k—i (6 .÷h) ,/ ~~ 6

A J ~~ i~l ~2[ 
k ,i 1 

- 

~~~~ 

k ,~~ -

x d~2[x 1,x2 I i ~], (3.la) 

rn -~~~~~~~~~~~ - .~~~~-—.- - -~~~~~~~~~ - -----—- —
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~ k-i

~ =0 i~l 
~Cx + (o k i +h)c/a]d~

(x )
~

~ k-i

x (f i~1 
~Cx + ~~~~~~~~~~~~~~~~ 

(3.~~~)

~ k-i
C J 11 ~[x + (6 .+h) 1~~ /ci]d’~’( x)k ,i 1

—
~~~ i=1

r~ k-i
+ TI cDE x + 6 . v’i~/~ ]d~ (x )  — 1. ( 3.lc )

j . k,i

Here ~2 (
~, Ip ) denotes the standard bivaria-te normal cdf with

correlation coefficient p (—1 < p < 1); ~~~ denotes the

standard univariate normal cdf, m = n
1 + n2

, and p n
1
/m.

Proof: Let and X(i) denote the first stage sample

mean and the cumulative (first stage plus second stage) sample

mean , respectively , from the population with mean

( l 1i~~~k). Then

P {CS~P2} > P {3 ?~~ ~~~ — h, 3?(k) > ~~~~ (1 I i  I k — l ) }
— 

(3.2)

~
6
k,i~~~ I~’ v~ I 

6k~i ~~ (1 1

where U. (3?~.) 
- 3?(1) + 6 . )v ~~ /añ~ and1 (i) (k )  k ,i 1

(3? . - 3? 6 .) r ’~~/~~ i/~~ (1 ~ I ~~k-i). We note that the(i)  (k )  k ,i — —

U . and V . are standard normal r.v.’s with Corr{U.,tJ .}

Corr{V.,V.} i/2, Corr{U.,V.} i’~~ , and Corr{U.,V .}~~ ,/
~/2

(i � i~ 1 1 i~i 1k—i); thus using the representation (see

Bechhofer and Tambane (1974)) (U . , V .)’ (Y .i-Y ,Y .-~-Y )‘/v’~1 1 ii 10 2i 20
(1 

~ 
I < k-i) where the (Y

1
.,Y2

.)’ (0 
~ 

j ~ k—i ) are i.i.d.

N ((~
) (i 

~)) 
we obtain A of (3.la) which is our new lower bound .

The referee ’s lower bound B is obtained by replacing au of the

L -
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correlations between the U. and the V . (1 ~ i , < k-i) by

zeros and applying Slepian ’s inequality. The inequality between

B and our original lower bound C was shown in Section 11 of T-B.

We note that for A , B, and C the LFC of the population

means, i. e . ,  the configuration of the population means which
minimizes A , B, and C subject to 11 € c2(S*), is given by

= uEk_ lJ ~[k] - 6* (which is also the conjecturea LFC

for the exact P {CSjP
2
} subject to p € ~2(6*)). Thus we r.~w

obtain

Corollary: For all p € c2(6*) we have the following inequalities:

P f C S I P 2
} > A (6 *)  > B(6~ ) > C ( 6~~) (3 3)

where 
—

= i: ~: 
~k~~l [(6*÷h)

~~~~ 
- ___ - I 

-

x d~ 2 [x 1,x2~~’/~ ], (3.4a)

B ( 6*)  ~k-l~~ + (6*+h )~~~~/o]d~ ( x))

+ 6*~~ /a]d~ ( x)). (3. 14b )

C(o *)  = J ~
k_ l

~~ +

+ fl ~k-l ÷ 6*~~Ia]d~ ( x)  - 1. (3.4c )
-~~~

In the optimization problem (2.2) we shall replace the con-

straint by A(6*) ~ P*; we denote by (n1,n2,
hjC 1

) the corre-

soonding conservative solution and by P
2
(C
1
) the associated 

--- -~~ ‘~~~~-- -- - ‘ -~~~~~~~- -~~- -
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procedure. Simiiariy , conservative solutions and procedures

result if we employ the constraints B(tS*) > p~ or C(â*) >

in (2.2) obtaining (n
1
,n
2
,h~C2

) and P 2 (C 2
) , and (n

1
,n2,hIC 3

)

and P2
(c 3) ,  respectively.

Remark 3.1: If we let h -
~~ ~ in A , B , or C of (3.la), (3.lb),

(3.lc), respectively , we obtain in each case

I ~~~~ ~fx ~
6
k~~~~

/a]d
~
(x) which is an expression for

where P
1 

uses a common single-stage sample size m per popula-

tion. Therefore P~ is a special case of any P2 based on either

(3.la) or (3.ib ) or (3.lc). Now it was shown in Bechhofer (1954)

that

Inf P {cS}P1} J~ 
~~~~ + 6*~~ /aJd~ ( x ) .  ( 3 . 5 )

Thus if we let n denote the smallest value of m for which the

r.h.s. of (3.5) is equal to or greater than P~ (i.e., n is

the smallest single-stage sample size that guarantees (2.1)), then

for i 1,2,3 we have

E ( T I P  (C .) }  I kn ( 3 .6)p 2 i  —

for all ~~~€

3.2 U-minimax optimization problem

Before we state our optimization problem we cite the foliowing

results given by Theorems 6.1 and 6.2, respectively, of T-B:

(1) For any p € Q we have

k ~~(k r ( o .  .+h )/ ~~
E ( T I P  } kn + n ~ f ~

‘ II ~Ix + 
1

p 2 1 2 
i=l )—

~~~~~
=

~ 
L a

J �1

k 
~ 

(6.
- fl ~Ix + ~ !) d ~ (x )  ( 3 . 7 )

j=l L a j i
j �i

and

_ _ _ _ _  ~~~- . - - -~~~~~~~
. 

~~

- --- -
~~~ 



(2 )  Sup Eu(TIP 2
} =

—
— 

(3.8)

+ f (~ k l ~~ ÷ bc/a] - s
k_l

~~ -

which occurs when = (referred to as the equal means
configuration (EMC)).

It is more convenient to work with Continuous variables than
with discrete variables. Thus we define new design constants

h/~~c
1 a

1
, c

2 a
2
~~

d 
a~~ 

(3.9)

which we regard as nonnegative continuous variables. Then the
design constants (n1,n2,h (c1

) can be approximated by solving
the following continuous optimization problem:

For given k and specified F:’: choose (c1,c2,d) to

minimize kc~ ÷ kc~ J {~~~~~(x+d) -

subject to J J ~~~~[c1÷d-x1, 
Ic~÷c~-x 2 !~~]

~ P~ (3.10)

where p c~ / (c~ +c~~) and c1,c2 ,d ? 0. We denote the solution
to (3.10) by (

~1
,
~ 2

,alC 1
) and for specified 6’~ use the approximate -

design constants

~~ [(~~~)2] ~2 [(
~~
c1)21 ~ , (3.11 )

where [z] denotes the smallest integer 
~~ . z, to implement

P
2(c1).

For k 2 we note that (3.10) can be written as:

For specified ~ * choose (c
1,c2,d) to

minimize 2c~ + 2c~(~’(d//i) —

subject to ~2
E(c

1
÷d)/~’~, v~~~+c ~I I ~~1~3 > p ~. (3.12)

_ _ _  _ _ _  _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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4. CONSTANTS TO IMPLEMENT P
2
(C
1
) FOR k ~ 3

4.1 Tables of Constants to Implement P2 (C1)

Table I contains constants (
~1

,~2
,aIC1

) necessary to
approximate (n

1
,n
2
,hjC1

) for k = 2 and selected P’~; these

constants are the solutions to (3.12). Also included in Table I
are the constants (

~1,~ 2,aIE) 
and (

~1
,a2,aIC 3

) necessary to

implement the exact procedure and P2(c3), respectively ; these
were given in T—B and Tainhane (1975), respectively. We include

the latter constants here in order for the reader to see how the

constants (
~ 1,~ 2

,~~(C 1
) compare with them; however, we emphasize

that in practice one would only use (c
1
,c
2
,dIE) since these

constants are optimal.

Table II contains constants (c
1
,~ 2

,ajC
1

) necessary to
approximate (n

1,
n
2,hlC 1

) for k 3(1)10,12,15,25 and selected

P*; these constants are the solutions to (3.10). For fixed

(large) ~~ we have found that c
1 

and c
2 

are approximately

linear in log (k—i); similarly, for fixed k and (large) P*,

and are approximately linear in 1og~{P*/(1_P*)}. We

have not been able to characterize the behavior of a in a

simple way. The constants given in Table II for k 6(1)9 and

~2 ~212 were obtained by quadratic interpolation of c
1, 

c
2 

and d

against log (k-i) for fixed P~ 0.75, 0.90, 0.95 and 0.99;

these constants (particularly d) are not as accurate as the ones

which served as the basis for the interpolation .

4.2 Details of Computations of Constants

All of the computat ions were carried out on Northwestern ’s
CDC 6600 computer in 32—bit arithmetic. The generalized reduced

gradient (GRG) algorithm of Abadie and Carpentier (1969) was used

to solve the constrained nonlinear optimization problems (3.10)

arid (3.12). The constants (
~1,32 ,a IC 3) given in T-B were used

as initial guesses in the GRG algorithm ; even with these rela-

tively “good” guesses, at least 10 and often more iterations were 
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TABLE II

Constants to Implement P2 (C 1) for k > 3

(& ~~~~~~ 
)

k 1

c~ C
2 d

0.99 2.79 1 2.406 1.205
0.95 1.999 1.846 1.552
0.90 1.578 1.525 2. 100
0.75 0.9986 0.9485 3.989

0.99 2.965 2.508 1.222
0.95 2.139 2.090 1.452
0.90 1.760 1.777 1.700
0.75 1.161 1.128 3.545

0.99 3.043 2.693 1.241
0.95 2 252 2 .257 1.362
0.90 1.8’45 L963 1.537
0.75 1.260 1.277 2.821

0.99 3.087 2.815 1.261

6 0.95 2.307 2.397 1.352
0.90 1.916 2.121 1.478
0.75 1.332 1.440 2 556

0.99 3.130 2.909 1.278
0.95 2.355 2.505 1.332
0.90 1.969 2.240 1.398
0.75 1.386 1.582 2.276

0.99 3.163 2.989 1.294
0.95 2.394 2.595 1.3218 
0.90 2.011 2~340 1.342
0.75 1.428 1.709 2.049

0.99 3.189 3.060 L309

9 0.95 2.425 2.673 1.315
0.90 2.045 2.426 1.304-
0.75 1.463 1.824 1.861

0.99 3.194 3.142 1.322
0.’35 2.452 2.711.4 1.32210 
0.90 2.067 2,507 1.342
0.75 1.500 1.889 1.570

L - _______________ _____ - — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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TABLE II (continued )

0.99 3. 243 3. 231 1.349
12 0.95 2 .4 - 92  2.858 1.318

0.90 2.120 2 .630 1.256
0. 75 1.54-1 2.100 1.468

0.99 3 .272 3.376 1.384
0.95 2.532 3.001 1.346

15 0.90 2. 174 2,791 1.330
0.75 1,588 2.350 1,364-
0.60 1.235 1.667 1.979

0.99 3.34-0 3.649 1.463
0.95 2.621 3.302 1.411

25 0.90 2.271 3.121 1.358
0.75 1.704 2.809 1.256
0.60 1.360 2.732 1.099
0.45 1.014 2.227 1.219

required to arrive in the neighborhood of the absolute optimum .

The objective function is relatively flat in the region of the

absolute optimum which results in extremely slow convergence in

the later iterations. A maximum limit of 25 was placed on the

number of iterat ions , and the algorithm was terminated sooner

if no change was observed in the first four significant digits

of the objective function in five successive iterations. Thus

we would expect our so1ut~ ons to be reasonably close to the

absolute optima.

Each it eration of the GRG algorithm corresponds to at least

one (and often many) evaluations of the double integral in the

constraint of (3.10) and its partial derivatives with respect to

c1, c2 and d. We evaluated these pax’tials numerically by taking

the value of the double integral at the current solution
(c1,c2 ,d) as the base value , say q ( c

1,c2 , d ) ,  and approximated

the derivat ives as: a*/9c1 ~ {~~(c1+A ,c2 , d) —

etc. ,  where A = ~O
4-. Since it was necessary to evaluate the

double integral in the constraint of (3.10 ) at least four and 
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often many more times in each iteration of the GRG algorithm , a
fast and accurate method was sought for this purpose.

We used Monte Carlo (Me ) sampling to estimate the value of

this double integral by noting that it equals

E {~~~
1[c

1
+d—X

1
, /c~

-i.c
~-X2 I ,jJ} (4.1)

where X
1 

and X
2 

are standard normal r.v.’s with Corr{X 1,X2} =

Each estimate of (4- .1) was based on an average

over 200 runs. In each run (X
1
,X
2
) was generated by first

generating a pair (Z
1,Z2

) of independent standard normal r .v . ’s

using the Box-Mailer algorithm and then employing the transforma-

tion X1 Z
1
, X

2 
1’~ Z1 + /I~j~ z2. The Fortran library program

R.ANF was used to generate the uniform [0,1] r.v.’s needed as

inputs for the Box-M’dller algorithm .

We evaluated 
~2 

using Borth’s (1973) modification of Owen ’s

(1958) method . This modification is based on the fact that

subject to a specified accuracy, Owen ’s method is fast only for a

certain range of values of the parameters of for other
values of the parameters a computing method proposed by Borth is

faster. The modified method which is a composite of the two

methods is thus faster than Owen ’s method. For the Owen ~cthod
part we used the IMSL subroutine MDBNOR for which a limit ox~ the

maximum error in evaluating 
~2 

is specified to be l0~~ in the
IMSL manual. For the Borth method part the limit on the maximum

error in evaluating a certain T-function necessary to obtain

(see equation (2) of Borth (1973)) is specified to be l0~~ in his
article. In addition to the T-function it is also necessary to

compute some standard normal cdf values to obtain (All of

these steps are carried out internally in MDBNOR.) We used the

approximation to $ given by equation 26.2.17 of Abramowitz and

Stegun (1964) which is accurate to within ±7.5 x10 8
. Thus the

overall accuracy in the evaluation of 
~2 

may be estimated to be

(We mention that we tried to use Cadwell’s (1951)

I 

- -~~~~- - - -~~
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approximation to ~2 but found its accuracy to be unacceptable
4 

for our purposes.)

For evaluating the double integral we also tried using the

Gauss-Legeridre quadrature method (with the integrals over

to -s-~ approximated by integrals over —6 to +6) with 16 nodes,

i.e., 256 integrand evaluations. Although this method requires

slightly more computer time than the MC method with 200 runs, we

found that in general the MC method gave a more accurate estimate

of the double integral; hence we adopted the MC method .

For evaluating the single integral in the objective function

of (3.10) we used the Rombex’g quadrature method for which the

maximum error was controlled at l0~~. ~ appearing in the inte—

grand was evaluated using the approximation given in Abramowitz
• 

and Stegun (1964) referred to earlier.

The reported values of aj~ c2, a are rounded off in the

fourth significant digit and are estimated to be correct to at

least the first three significant digits.

5. THE PERFORMANCE OF P
2

(- ) RELATIVE TO P1

As a measure of the efficiency of P
~ 

(Bechhofer (1954-))

relative to that of P
2 

when both guarantee the same probability

requirement (2.1), we consider the ratio (termed relative effi-

ciency (RE(P
1
:P

2
) )

E~{T~P2
)/kn , (5.1)

where n = [(~~/~~)2] and ~ is the solution of

j 41
k_l

(x+c)d$(x) P*. (5.2)

Clearly RE depends on 
-: 

and {6*,P*}; values of RE less than

one favor P
2 

over P1. To remove the dependence on we use

the continuous approximations to E11{TIP 2} and n ( thereby

ignoring the fact that the sample sTzes must be integers). RE

is then given by 



16

(kc~ + ~~~~ 

i~l 
r~ ~ 

$(x+di.~~ 1
c
1
/~*)

j�i

- 

~~1 
,(x_d+61,~~1/&*~~d,(x~~ /k~

2 (5.3)

j �i
where we employ in (5.3) the (~1,~2,d)-values of the particular
procedure P2 being compared to P1. The value of c which is
the solution to (5.2) has been tabulated for selected k and P~
by Bechhofer (1954-), Gupta (1963), and Milton (1963); Bechhofer ’s
A = c, Gup ta ’s and Mil ton ’s ~i

Table III gives computed RE—values for RE (P
1
:P
2

( E ) ) ,
R E ( P1:P 2 (C

1
) ) ,  and RE(P

1
:P
2

( C
3
)) for k = 2 and selected P*,

while Table I V g ives analogous values for RE (P 1 : P 2 (C 1 ) )  for

k ~~, 3. The computed values given in Tables III and IV were

obtained using the (
~ 1

,~ 2
,d)—values listed in Tables I and El ,

respectively. Table V is an abbreviated one which permits com-

parison of P2(C 2
) and P

2
(C
3
) with P

2
(C
1

) via RE (P
1
:P

2
(C . ) )

i 1,2,3 f o r  selected extreme (k ,P*)_combinations.

Since P~ is a special case of  P2 (E) and P
2

( C . )  i = 1,2,3

(see Remark 3.2), it f ollows that f o r  k = 2 we have

1 > max {RE (P 1 :P 2 ( E ) ) ,  RE (P1:P2(C .) i 1,2,3), (5.4)

and for k ~ 3 we have

1 > max{RE(P
1
:P
2

(C~ ) )  i 1,2,3) (5.5)

for all ~.i € 0. Thus , our two-stage procedures P
2
(E) and

P2(c .,) (i 1,2,3) are unifori4y (in i) better than the corre-

sponding single—stage procedure P1 when all guarantee the same

probability requirement (2.1). Moreover, when the constraint in

(2.2) is replaced by A (d*) > p*, and -then by 8(6*) ~~, P~ , and
f ina l ly  by C(6*) > ~~~ we have as a consequence of (3.3) that

the set of feasible values of (c
1,

c2,d) decreases at each step .
Thus the corresponding minima of the objective function of ( 2 . 2 )
increase at each step, and we have for k ~ 3:

REEMC l 2~~l
fl < REEMC (P

l :P2 (C 2
) )  < RE EMC

(P
l :P2

(C 3
) )  ( 5 . 6 )

L ~~~~• .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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where ENC refers to the configuration 
~
1
tlJ 

= 

~LkJ’ 
This implies

that not only is P2 (c
1

) tJ-min imax among our two-stage procedures
based on the conservative lower bound A(6*) ~ ~~*, but also that
it is U—minimax among our two—stage procedures based on the con-
servative lower bounds 3(6*) ~ p* or C(6* ) > p* as well.

These findings and ones described in the sections below demonstrate

that P2 (C 1
) is highly effective as a selection procedure with

screening.

5.1 P
2
(E), P2 (c1) and P2 (C 3) vs. P1 for k = 2

We have discussed RE(P
1
:P
2

( E ) )  and RE (P1:P2(C 3)) in
Section 9.1 of T-B. From Table III we note that the performance

of P
2

(C
1

) is always “intermediate” to that of P2
( E )  and

P
2

(C
3
) at 6 = 0. The range of .5 > 0 values for whi ch P2 (C 1

)

is intermediate depends on PC ; thus , e.g., our computations
indicate that for .5 = we have P

2
(c
1

) as intermediate when
F e 

~~~. 
0.99 but as poorest when P* ~ 0.95.

5.2 P2 (C1) vs. P1 for k > 3

The performance of P2 (c1
) relative to that of P1 can be

studied using the RE-values given in Table IV. We note that for

fixed k and P~ , RE is a decreasing function of the differences

~tiJ 
— (1 ~~~ i ~~ . k — l) ;  thus P2 (C1) capitalizes on

f avorable conf igura tions of the ( 1 ~~i £k). The columns

headed = and — 

~Ek-l1 
= ~ represent the minimum

and maximum RE (measured in terms of E {T I P } ) ,  respectively ,
achieved when P2 (c

1
) is used in plac e of P1; as noted earlier ,

based on this criterion the experimenter always gains using P
2

(C
1
).

We also note that for fixed i and P’~, RE is a decreasing

function of k. Thus the screening f eature of P2(C1) becomes
more effective as k increases.

In the range of P*_values for which computat ions were made

(these being the ones of greatest practical interest), we note
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TABLE IV

Efficiency of P
1 Relative to P2(c1) for k ~ 3

when the (1 < i ~ k) are in Various Configurations

~tk]~~Ck—1r
6’

ii - —
~~ . =6 (2~i~k-l)k p* i:~i [i—i] —

(ENc ) ( LFC )

‘
~[k]~~[1] 

6/6*=0 .5/6e=l.o .5/.5C=4.Q

0.99 0.863 0.663 0.633 0.633 0.595
0.95 0.882 0.736 0.665 0.658 0.544
0.90 0. 904 0.818 0.735 0 .700  0.500
0.75 0.921 0.917 0.906 0.798 0.485

0.99 0.860 0.668 0.633 0.633 0.610
0.95 0.876 0.718 0.620 0.617 0.538
0.90 0.902 0.786 0.654 0.641 0.516
0.7 5 0.918 0.907 0.834 0.694 0.4 76

— 

0.99 0.858 0.662 0.622 0.622 0.603
0.95 0.863 0.703 0.601 0.600 0.543
0.90 0.873 0.750 0.604 0.596 0,504
0.7 5 0.909 0.879 0.710 0.631 0.466

— 

0.99 0.807 0.626 0.576 0.576 0.566
0.95 0.798 0.652 0.542 0.54-1 0.514

10 0.90 0.796 0.677 0.524 0.522 0.480
0.75 0.808 0.740 0.521 0.510 0.439

0.99 0.778 0.609 0.557 0.557 0.550
0.95 0.756 0.623 0.513 0.513 0.494

15 0.90 0.756 0.646 0.498 0.497 0 469
0.75 0.761 0.693 0.471 0.464 0.414
0.60 0.805 0.767 0.472 0.450 0.386

0.99 0.735 0.584 0.530 0.530 0.526
0.g5 0.712 0.593 0.485 0.485 0.473
0.90 0.702 0.607 0.466 0.466 0.448

25 0.75 0.689 0.631 0.432 0.430 0.399
0.60 0.708 0.671 0.429 0.421 0.374
0.45 0.713 0.691 0.401 0.380 0.318
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that for fixed ~i and k, RE decreases and then increases as
increases; in fact, RE + 1 as P~’ ~~- 1/k or 1,

5,3 P
2

(C
1
), P

2
(C

2) and P2(c3) vs. I’l for k~~. 3

Table V which. gives RE (P 1:P 2 (C . ) )  I 1,2 ,3 for four
“extreme” (k ,P*)._ comb inations , namely , k = 3 and 25 and
PC 0.75 and Q.99 , can be used to compare the p erf ormances
of P

2
(c.) I = 1,2,3 over a considerable portion of the range

of practical interest of these parameters. The values for

RE(P
1:P2

(C
1

))  are taken f rom Table IV of the present paper , those
for RE (P1:P2 (C 3

) )  f rom Table IV of T—B , and those for
RE(P

1
:P

2
(C

2)) were computed just for inclusion in this table .
We f i r st note that f o r  f ixed  k and ~C we have , over the

rang e of (k ,P*)..values considered, that

RE (P
1
:P
2

(C
1
)) < RE (?1:P2

(c 2 )) < RE (P
1
:P2

(C
3
)) (5.7)

for all 11 0 ( including - 

~Ek-l] 
o o } ) .  This latter

is in contrast to the results f or  k = 2 where it was f ound that
RE (P

1:P2
(C 1)) > RE (P

1:P2
(C,)) fur M [2] — =

— For f ixed i-i ~nd k, and P~ ~ 1, the RE-values are close
f o r  the P2(c.) i = 1,2,3; this is so since + and hence

the P
2(c.) + however , the effect on the RE-values of P~ + 1

depends critically on k for each of the P
2(c1

). - For fixed P*

“close to unity ” we see that the RE—values of the P2(c.) are

closer for large k than for small k.

For fixed ji and k, and P’~ 
-

~~ 1/k , our computational
results indicate that the minimax solution (~~1

,~i2~~~ ) of (3.9)

is such that h -
~ and hence P

2
(C .) -

~~ ~l ~~ = 1,2,3) ;  thus
the three procedures perform similarly. However, the value of ~*

(call it ~~~ ) at which h becomes large enough so that P
2
(C.)

becomes “almost equivalent to” P1 is such that < 1~ .
Thus for moderate values of P~ we find that P

2 
(C
1

) is superior
(in terms of RE) to P2(c 2 ) which in turn is superior to P

2
(0
3
).

---- --—
L ( 

_ _ _  
- _ _ _ _ _—
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6, NUMERICAL EXMPLE

In this section we give a numerical example to Illustrate

the use of Tables II and IV for P
2

(C
1
). In addition, we compare

the performance (In terms of E
~
{TIP}) of P 2 (c 1) with that of

- 
the single—stage procedure P

1 and the open sequential procedure
P
s

(BKS ) of Bechhof er , Kiefer and Sobel (1968, Section 12.6.1-1)
which samples a vector—at—a-time . The example will show in a
striking way the trade-offs that the experimenter has at his

disposal when choosing among procedures that guarantee (2.1).

Suppose that k = 10, a = 10 and that the experimenter
specifies ‘5* = 2, P* = 0.90; we then anticipate large sample

sizes since for k 10 the specification 6*/a 0.2, p11 = 0.90

is a demanding one.

a) To determine the constants necessary to implement P
2
(c
1
),

we obtain from Table II: :
1 

2.067, 
~2 

2.507, a = 1.342.

Using (3.11) these yield 
~ 

= [(2.067/0.2)2] = [106.8] 107 ,
= [(2-507 I 0.2)~] = [157.1] 158, h = 1.342(2)/2.067 = 1.299.
b) To determine the constant necessary to implement 

~
‘
1~

we obtain from Table I of Bechhofer (1954) that ~ of our ( 5 .2)

is 2.9829. Thus n = [(2.9829( 10) 12 ) 2 ] = [222.4] = 223, which

is the number of observations required from each of the 10

populations .
c) We obtain estimates of E {T I P S

(BKS)} from Tables 18.4.5

and 18.4.10 of BKS (1968) for the LFC and the EMC , respectively;

these are 1453 and 2906 , respectively .

The above results are summarized in Table VI.

The entries in Table VI illustrate the savings in E {TIP}

when P2
(C
1

) is used in place of P1. In addition , the ~ntr ies
for P5

( BKS ) show the dr amatic f urther savings that can be
achieved using that procedure if sequential sampling is a viable

method of experimentation for the practical problem at hand and
it is anticipated that the largest population means are not too

close. However, it must be emphasized here that we are presently

_ _ _ _ _
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TABLE VI

E {T IP }  for P
1
, P2(C 1), and Ps

(BKS )

for Selected Configurations of the Population Means

when k lQ, S*/a = 0 , 2, p C = 0 ,gO

E {TJP}
Pr ocedure

EMC LFC 
~[10] 

- 1J[g] =

P1 2230 2230 2230

P2(c1) l775~-” 1510!” l070~’

P
s
(BKS ) 2906 1453 10

Note: The entries for P
2

(C
1

) in Table VI were computed by
multiplying the rel evant rela tive ef f i c iencies in Table IV by 2 230 .

focusing on E(T }. The distribution of T has a very large
standard deviation for P

S
(BKS ) when E {T } is larg e (se e Tables

18.4.5 and 18.4.10 of BKS (1968) where for P11 = 0.90 the

estimated standard deviations of T are given as 713.4 and

1744.6 for the LFC and EMC, respectively ) and is highly skewed

to the right; thus if the experimenter uses this procedure he

must be prepared to accept occasional very large values of T.

The closed sequential procedure of Paulson (1964) (with the
improvement of Fabian (1974)) which samples a vector-at-a-time

and eliminates populations is superior to P
s

(BKS ) in terms of
E~~TIP} over certain ranges of values of k and F11; f o r  the
p~ob1em at hand with k 10, P* 0.90, ‘511/a 0.2 and

Paulson ’s design parameter A cS11/2 we have, using Fabian ’s

improvement , that the maximum number of stages to terminate

experimentation for Paulson ’s procedure is 381, and hence an
upper bound on E {T(P} which is extremely conservative



24

(since it does not take into account the fact that populations are

permanently eliminated prior to termination of experimentation)

is 3810 . Here again the problem at hand must be such that a

completely sequential procedure is feasible, and the experimenter

must be prepared to accept very large values of T.

7. CONCLUDING REMARKS

We feel that in spite of the relatively heavy financial costs

involved in obtaining the design constants necessary to implement
P2(C1

), they were justified by the final results. For we have
been able to demonstrate conclusively that P2 (c 1) represen ts
a significant improvement over both P

2
(C
2
) and P

2
(C
3

) (as
well as over P1) .  And we now can of f e r  a highly effective two—
stage procedure , incorpora ting screening ,  which is easy to
implement.

8. DIRECTIONS OF FUTURE RESEARCH

In Section 10 of T—B we postulated several unsolved problems
associated with P

2
. All of these still remain open problems.

The most important of these (at least from a theoretical point of

view) is that of determining the LFC of the i.~. for k > 2. If

the conjectured LFC U E1) U tk . 1] = 

~ tkJ 
- 5~ can be proved

to be the true one , and if an efficient algorithm can be found

for evaluating the exact P C C SI P 2
} for i,x in the LFC , then

it would be of considerable interest to determine how much decrease

in Sup E {T~P} can be achieved if P
2

( E )  is used in place of
U~~7

P2 (C1
) f o r  k ~ 3.

9, ACIQ~0WLEDGMENTS

The authors would like to thank Dr. Roy Milton and Professors
Shan-ti Gupta and Donald Owen for helpful suggestions concerning

some problems encountered In computing the tables given in this

paper,



F-
_ i 

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ —- 

~~~~~~~~~~~

- -

~~~~~~~ 

-

This research was supported by NSF Grant ENG 77-06112 at

Northwestern University , and U .S. Army Research Office--Durham

contract DAAG29—77-C-0003 and Office of Naval Research contract

N000l4—75—C—0586 , both at Cornell University.

BIBLIOGRAPHY

AbadIe, J. and Carpentier, J. (1969). Generalization of the Wolfe
reduced gradient method to the case of nonlinear constraints .
Optimization (ed. R. Fletcher), New York , Academic Press.

Abramowitz , N . and Stegun , l.A. (1964). Handbook of Mathematical
Functions. Nat. Bureau of Standards, Appl. Math. Ser. 55,
Washington , D.C. : U.S. Govt. Printing Office.

Alan, K. (1970). A two-sample procedure for selecting the popu-
lation with the largest mean from k normal populations.
Ann . Inst. Statist. Math. 22, 127-36.

Bechhof er , R.E. (1954). A single-sample multiple decision
procedure for ranking means of normal populations with known
variances. Ann. Math. Statist. 25 , 16—39.

Bechhofer, R.E., Kief e r , J~ and Sobel, M .  ( 1968) .  Sequential
Identif i cation and Rankin~ Procedures. Chicago, Ill.:
The University of Chicago Press .

Bechhof er , R.E. and Tainhane , A.C. (1974). An iterated integral
representation for a multivariate normal integral having
block covariance structure. Biometrika 61, 615—19.

Borth, D.M. (1973). A modification of Owen’s method for computing
the bivariate normal integral. J. R. Statist. Soc. C , 22 ,
82—85.

Cadwell , J.H. (1951). The bivariate normal integral. Biometrika
475—79.

Fab ian , V (1974). Note on Anderson ’s sequential procedures with
triangular boundary. Ann. Statist. 2, 170—6.

Gupta, S.S. (1a63). Probability integrals for multivariate normal
and multivar ia te t . Ann . Math. Statist. 34 , 792—828.

Milton , R.C. (1963). Tables of the equally correlated multivariate
normal probabili ty integral. Tech. Rep . No. 27, Dept. of
Statistics , Univ. of Minnesota, Minneapolis , Minnesota.



L 

26

Owen , D.B. (1956). Tables for computing the bivax’iate normal
probabilities. Arm . Math. Statist, 27, 1075—90.

Paulson, ~~, (1964). A sequential procedure fox’ selecting the
population with the largest mean from k normal populations.
Ann. Math. Statist, 35, 174—8a,

Somerville, P.N. (1974), On allocation of resources in a two-
stage selection procedure. Sankhya B, 36, 194—203.

Tanthane, A.C. (19751. On minimax multistage eliminatIon type
rules for selecting the largest normal mean. Tech. Report
259., Dept. of Operations Res. Cornell Univ., Ithaca, N.Y.

Tamhane, A.C. and Bechhofer, R.E. (1977). A two-stage minimax
procedure with screening for selecting the largest normal
mean. Commun. Statist. A6, 1003—33.



r ~~~~~~~~~~~~~~~~~~ 

-

~~~~~~~ 

-

~~~~~~~~~~~~~~~~~~~~

-- -- — --

Unclassif ied
S E C U R I T Y  CLASSIFICATI ON OF THIS PAGE (~Then ~~~~

REPOOT flOrt I IA~~bJT AT 1fl1I ~ A~~E 
READ INSTR UCT I ONS

~~~~n’~~ i’ . ‘~~. •~~~I ’ BEFORE COMPLET IN G FORM
I. REPORT NUMBER 

~~. GOVT ACCESSION NO. 3 R EC IP I EN T S  C A T A L O G N UM U E R

#377 ‘
4. TITLE (~~~d Sub(Stl.) - 5. TYPE OF REPORT & PERIOD COVERED

A TWO-STAGE MINIMAX PROCEDURE WITH SCREENING FOR
SELECTING THE LARGEST NORMAL MEAN (II): AN 

Technical Report

IMPROVED PCS LOWER BOUND AND ASSOCIATED TABLES 6. PERFORMING ORG. REPORT NUMBER

7. A UTHOR(s) 8. CONTRACT OR (~.RANT NUM BER(s)

Ajit C. Tamhane and Robert E. Beçhhofer -

N00014—7 5—C—O 586
9. PERFORMING ORGANIZATION NAM E AND ADDRESS 10. PROGRAM ELEMENT . PROJECT , T A SK

School of Opera tions Research g Indus~rial AREA 6 WORK U N I T  N U M B E R S

Engineering , College of Engineerin g
Cornell University, Ithaca , N.Y. 14853

I I . CONTROLLING OFFICE NAME AND A DDRESS ¶2. REPORT DATE

National Science Foundation June 1978 (Revised Oct . 19~ )
Wash ington , D . C .  2055 0 ¶ 3.  N U M B E R O F  PAGES

26
14. CONTROLLING OFFICE NAME AND ADDRE SS I S.  S E C U R I T Y  CLASS. (of this report)

Soonsoring Military Activities : U . S .  Army Resear ’ h Unclassified
Off~c~ , P.O. Box 12211, Research Triangle Park, _________________________
N.C. 27709 and Statistics and Probability Program ‘~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Off i ce of Naval Research , Arlington , VA 22217 _____________________________
IS . D I S T R I B U T I O N  STATEMENT (of this R.port~

Appr oved f or p ublic release , distribution unlimited.

¶ 7. D I S T R I B U T I o N  STATEMENT (01 the abstract entered in Block 20. if d i f f e r e n t from R.f.ort)

15. SUPPLEMENTARY NOT EZ

¶ 9. KEY WORDS (Continue On tOVIrIC aid. if n.e.AlarY and identify by b(o. k numb. ,) -

Selection procedure; ranking procedure ; minirnax procedure ; two-stage procedure;
indifference—zone approach screening

Z9. ABST~~AC r  (Gout ~~ s. ~~ ,ev.rr. s~~~ if ~ec,asatp and Id.raitr by block numb. ,)

This paper is a follow-up to an earlier article by the authors in which they
proposed a two-stage procedure with screening to select the normal population
with the largest population mean when the populations have a common known
variance. The two-stage procedure has the highly desirable property that the
expected total number of observations required by the procedure is always less
than the total number of observations required by the corresponding single-stage
procedure of  Bechhof er ( 1954), regardless of the configuration of the population
means. The present paper contains new results which make possible the more

DD ~~~~~~~~~ ~(73 ~ Dr nON OF ? ‘ ~OV SN IS OC , SOL ETE Unc lass if i ed
SECURITY CL ASSIFICAI,OM OF THIS PAGE ~~P,.n flat s

Li 



-
~~~‘-.

‘\ SECURITY CLASSIFICATION OF THIS PAOE(WPum Daia Enl .,.d)

\fficient implementation of the two-stage. procedure. Tables for this purpose
are given, and the improvements achieved (which are substantial) are assessed.

- i

Unclassif ied
SE CURITY CLASSIFICATION OF THIS PAGE(Wh.n Dat a Entere d) 

— - C - --- .—  —.

L ~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - - _

~~~

_

~~~~
_ _ _ . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~


