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OBJECTIVE

Develop and analyze advanced signal processing techniques that

will provide improved performance, reliability , and mainta i nability

while reducing costs of signal processing systems for radar, sonar ,

and electronic warfare.

RESULTS

1. An exact computational method is given for determining the

detection threshold to be used when a square-law integrator is appl ied

to the output from a nonrecursive moving target indicator (Mu ).

2. A table of bias levels is given for a two-pulse (single-

delay) MTI for several values of the number N of pulses integrated

and the probability PFA of a false alarm .

3. The characteristic function of the output from the square-

law integrator is determi ned for the case where the Mu input contains

a signal .

RE COMMENDATION

Continue the analysis of the effect of MTI on incoherent integration .

Specifically, determine exact (or approximate ) methods for computing

detection probabilities , and investigate optimum methods for constant

false-alarm rate (CFAR) processing for an MTI followed by incoherent

integration .

fT~~~J L J  

~~ 
—
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BAC KGROUND

This report describes the results of work that is in progress

at the Naval Ocean Systems Center (NOSC), San Diego, California , and

at OR INCON Corpora tion , La Jol la , California. Further results will

be described in an expanded version of this report which will be sub—

mitted for publication in the IEEE Transactions on Aerospace and

Electronic Systems.

INTRODUCTION

The output sequence from a nonrecursive MI! is a linea r combination

of the inputs from successive pulse repetition intervals (PRI’ s) .  Thus ,

the sequence at the MI! output is correlated even though the input se-

quence may be uncorrelated. When detection is performed by incoherent

integration of successive MI! outputs (for each range bin), the variables

integrated are not statistically independent. This poses two problems .

First , the determination of the detection threshold must take into

account the noise correlation , and thus graphs or tables of thresholds

(e.g., Pachares ’ table Li ]) previously published cannot be used. Sec-

ond, the noise correlation degrades detection performance, as has been

Indicated in the literature [2,3,4]. Trunk [2] considered both problems

and obtained detection thresholds and detection sensitivity , by Monte Carlo

simulation , for a linear integrator at the output of a binary-weighted MI!.

Hall and Ward [3] and Kretschmer [4] estimated the detection sensitivity

degradation for a square-law integrator by computing the “effective number ”

Ne of pulses from a ratio of variances and squared means.



_ _ _ _  — ______rT T~~

This report serves two purposes. The first is to provide an exact

computational method (and the associated theory) for determining the

detection threshold to be used when a square-law integrator is applied

to the output from a nonrecursive MI!. Using this method , a table of

bias levels is computed for a two-pulse (single-delay ) MTI for several

values of the number N of pulses integrated and the probability PFA of

a false alarm.

The second purpose is to derive the characteristic function of the

output of the square-law integrator when the Mu input contains a sig-

nal with Doppler frequency 
~d 

and amplitude G. While inversion of this

characteristic function (to find the associated probability density )

has proven to be intractable , the techniques of Helstrom [51 can be used

to estimate the detection probability .*

The general theory is given for obtaining the characteristic func-

tion of the sum of squared magnitudes of correlated , circular-

Gaussian [61 random variables . (The particular circular—Gauss ian process

considered here corresponds to the in-phase and quadrature components of

the complex envelope of a Gaussian stochastic process.) For the case

where the variables have zero mean (i.e., the no-signal case), the

cha racteristic function is inverted , and the probability distribution is

obtained. The application of the general theory to the computation of bias

*Estimates of the detection probability will be given in the journa l
publication which will follow at a later date Comparisons will then
be made with the estimates of Hall and Ward [31 and the simulation
results of Trunk [2] .

2
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levels for a nonrecurs i ve MI! is discussed in detail. Also , applica-

tions to signa l detection based on incoherent integration of overlapping

discrete Fourier transforms (OFT’s) are considered briefly.

The theory given here is similar to derivations by other authors ,

such as Kac and Siegert [7], Emerson [8), and Meyer and Middleton [9].

For example , Kac and Siegert [71 obtained the characteristic function

of the (unsampl ed) output from a video amplifier which follows a

square-law detector, and expressed their results in terms of eigenvalues

and eigenfunctions of an integral equation. Emerson [8] considered the

same probl em and outl i ned procedures for determining probabilit y density

functions directly wi thout solving the eigenva lue problem or i nvert ing

the characteristic function . Meyer and Middleton [9] extended the re-

sults of Kac and Siegert and obtained an explicit solution for the

integra l equation involving the autocorrelation function of the noise.

Our work differs from these previous analyses in that we approach the

problem from a sampled-data viewpoint and devel op an exact coniputational

method which provides a straightforward means of analyzing the performance

of digital detection processors which employ incoherent i ntegration of

correlated random variables .

NONREC URSIV E MTI

For each range bin , the output from a nonrecurs ive MTI is a linear

combination of the inputs from L successive pulse repetition intervals

(P R I ’s). That is , the complex MTI output Ek is~

*The output is a compl ex variable obtained from the in-phase and quadrature
components. The index k denotes the PRI; the index that would denote the
range bin has been suppressed .

3



Ek = 
~~~

W
~~Gk~~+L~~~

Xk + i Y k (i)

where W1, W 2, ..., W L are fi xed weights  which , for t h is  ana lys i s , are
assumed to be real. The rea l and imaginary parts of the input sequence
G1, G2, ..., are assume d to be independent  norma l ly d i s t r ibuted random

va r i ab les wi t h var iance ~2 , and with means m1, m2, ..., and C1, C~,
respect ively. Thus , the output Ek ~ 

X k + iY k~ 
k = 1,2, - - . , is such that

X k and are normal ly distributed w i t h  means

L
E[X k ] = W~ mk~~+L (2)

E[Y k ] = W~ Ck~~+L

and wi th covar iances

L-n
2 

~ W~W~4~ n<L

E[XkXk+~~Mk~k
] = E[Y k Y k+ ~k~k = 

o 
~~~~ 

n~L ( 3a)

and

E [X kYk+n — 

~k~
’k+n1 = (3b)

n=O ,1,2,...

4
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THEORY

With X 1, X2, ..., X N and Y 1, Y 2, Y~ defined as above , their

j o in t  probabil ity dens ity is  g iven  by

f(x,~) = (2lT Y
N lA lexp {- ~ [ (x-~ )A( x ’ -p ’ )+ (~ -1)A(~~’ -1’ ))j  (4)

where A is the inverse of the covariance matrix R determined by (3a);

x, 
~~~~ 

etc., denote N-dimensional row vectors ; x ’ , y ’ , etc., are their

transposes (column vectors); and A l is the determinant of the matrix A.

From Kendall and Stuart [10, page 347], there is an orthogonal

matrix (i.e., transformation) I such that T’AT = 0, where 0 is a

diagonal matrix. Al so, the elements on the diagonal of D are the elgen-

values of A [11 , page 186]. Applying this transformation I to x and y

(by letting x ’ = Tz’ and y ’ = 1w ’), the new variables z and w have joint

density

f(z,w) = (271 )
_N

lD Iexp {_~~[(z-ct)D(Z ’-a ’)+(w-B)D (w’ _I3 ’)]} , (5)

where 
~~~ 

= Ta ’ and 1’ = Ta ’ .

Note that since T is orthogonal ,

S 

~ 

x~ + y
~ 

= x x ’ +~~~~~~
‘ = zT’Tz ’ + wT ’Tw ’ = w~ + z~

(6)

5
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From (6) and the discussion in the previous section , it follows that S

can be interpreted as the result of square-law integration of N outputs

from a nonrecursive MTI. We now determine the characteristic function

of S from the joint density (5).

The change of variables Zk rk cos 0k and Wk 
= rk si n ek in (5)

and integration with respect to o
~
, 
~2’ 

0N gives the joint density

of r1, r2, . . .,  rN :

N
f(r ) = fl dkrk exp - —i- (r k + 

~k) I0 (d~r~g~ ) (7)
k=1

where g~ ~ + ~~~ , the d k ’ s are the eigenva lues of A , and I~ (.) is the

modified Bessel function of the first kind , order zero . Final ly, letting
2 . .  . .

= rk, the joint density of q 1, q2, ... , q~ is

N d d
f(s) = H -

~~~~ exp - -p- (q~ 
+ g

~ ) I~ (g~d~ 
V~j~~). (8)

k= 1

From (8) it fol lows that q1, q2, ..., are independent random variables;

also , the transformations above are such that

S =

Thus , the characteristic function (ch. f .)  of S is .given by

6
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N
= 

~ ~~~ 
(9)

k=1

where 
~k
(w) is the ch. f. of 

~~~~~~ 
Fr om Weins tock [12, page 1771, the

ch. f. 
~~~ 

is

= (i - exp tiwg
~
/ (i -

~~~~)} 
(10)

and , therefore,

= fl (i - exp ~iw~~/ (i - 

~~~
) } -  (11)

Inversion of ~~( w )  provides  the p r o b a b i l i t y  dens ity fs (S )  of the

random variable S. From this density we can determine the false-alarm

and detection probabilities associated with a detection system which is

based on the square-law integration of the outputs from a nonrecursive

MTI. Inversion of (11) for the signal-present case (i.e., when g~ is

nonzero) has proven to be intractable. However, for the no-signal case

(g~ = 0), inversion can be accomplished as described in the next section.

BIAS LEVELS FOR SQUARE-LAW INTEGRATION

In this section we obtain an exact computational method for deter-

mining the bias levels (detection thresholds) to be used when a square-

law integrator is applied to the output from a nonrecursive M u .

I

H
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When no signal is present at the MI! input , the means of X k and

( the real and imaginary parts of the MTI output) are zero . Thus , from

(11), the ch. f. of S is

= II (i - )
‘. (12 )

When the e igenvalues  d1, d2, .. ., dN are a l l  d i s t inc t  (which is the case

for the covariance matrices considered here), (12) can be inverted to

give

1 
N -sd /2

= > dk Pke 
k (13a )

k= 1

where

N / d \ 1
= 
“ y _~~.!S~) 

. (13b )

s~ k

Therefore , the false-alarm probability PFA is given by

N -Td /2
PFA = 

‘

~~~

‘ 

Pke k (14)
k= 1

where T is the detection threshold. From (14 ) it follows that PFA is

uniquely determined by the threshold I and the eigenvalues of A (which

is the inverse of the covariance matrix R) . However , R is the matrix

8
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that is given (e.g., from equation (3)) and its inversion can be

computationally difficult. Since the eigenva l ues of A are reciprocals

of the eigenva lues of R , it is not necessary to invert R. That is , i t

is only necessary to find the eigenva l ues A 1, A 2, ..., A f.~ of R. (Note

that A k 
= dv.) In terms of the eigenva l ues of R , PFA becomes

N _h/2A kPFA = 

~~ 
Bke ( 15a )

k= 1

where

N /
Bk = fl (~i 

_~~.&) . (15b)
9. 1

The computational method for obtaining the bias level TN PFA is as

fol lows : For each N, the eigenvalues x~, x 2, ... , A N are determined and

the coefficients B1, B2, 8N are obtained from (15b). For each

spec ified value of PFA , (15a ) is solved for the bias level I = TN PFA
using Newton ’ s method (or another numerical technique). The computations

are illustrated in the next section where a particular example is

discussed .

9
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TWO-PULSE Mu FOLLOWED BY INCOHERENT INTEGRATION

For a two—pulse MTI (L = 2 in (3)) the covariance matrix RN
has the form

7a b o . . .o

/ b a b o

f o b a b
RN = t  : - ~~~~~~~~~~~~~~~~ (16)

. -~~~~ b

\ 0 - o b a

where a = (W~ + W~) ~
2 and b = w 1 w2 a

2 (The subscript N denotes the

dimension of R and is also the number of MTI outputs i ncoherently inte-

grated.) If binomial weights [13] are used (i.e., W1 
= 1, W2 

= -1),

then a = 2a2 and b = -a
2 . In the followi ng , a two-pulse MTI wi th binomia l

weights is assumed . Also , since the detection thresholds are

normalized by the noise variance a2, no loss of generality occurs if

we assume 2 
= 1.

Bias levels

To obtain the eigenvalues of RN, we compute the determinant of the

matrix RN - AI M and find the roots of the polynomial equation

- AI M I = 0. (17)

For the case being considered , the polynomials satisfy a recursive

relation as a function of N. We make the change of variable u = 2-A in

10
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(17) and denote by DN(u) the polynomial in u obtai ned from (17). The

following recursive formula is easily verified :

D1( u )  = u

D2(u ) = u2 - 1

(18)

DN(u) 
= u 0N 1 (u )  - DN 2 (u)

N = 3,4,...

From (18) the derivative D~(u) is also obtained recursively:

D~(u)= 1

D~( u )  = 2u

- (19)

D~( u )  = u D~~1 ( u )  - D~~2 ( u )  + DN 1 ( u )

N = 3,4,...

Using (18) and (19), Newton ’s method can be applied to compute the

roots of (17).

Equations (18) and (19) were derived under the assumption that

a = 2  and b = - 1  in (16). However , it is easi ly shown that th e solutions

11
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I
of (17) in terms of the variable u defined above provide the most gen-

eral solutions for any matrix of the form defined in (16). In (17), if

we let v= ( a - A ) / l b I ,  then the resulting polynomial in v is proportional

to DN (v), where DN(~
) is defined in (18). Thus , the roots ukl

k = 1,2, . . .  , N, of (18) can be used to obtain the eigenvalues of any
matrix RN of the form (16) by defining A

k a - b l u k.

To illustra te the location of the eigenvalues of RN~ 
Figure 1 is a

graph of A 1,A 2, . - .  , A N 
as a function of N for N between 1 and 20. The

continuous curves are obtained by connecting the mth largest eigenvalue

for each N. Because of symmetry about A = 2, only the eigenva l ues in the

interval [2,4] are shown . (The eigenvalues for a particular value of N

are found in Figure 1 at the intersection of the corresponding horizon-

tal line with the continuous curves.)

Tabl e 1 gives the bias levels required to obtain the indicated

va l ues of PFA for values of N between 2 and 39. Equations (18) and (19)

were used to find the elgenvalues and (15) was used to determine I by the

method described in the previous section.

Table 1 was computed for the case where a= 2  and b =-1 in (16). How-

ever, the results are more generally applicable. From the discussion

above , the solutions of (18) can be used to determine the eigenva l ues A k

from A k 
= a - I b u k. If a 2 1 b 1 , then A k 

= bj (2 - Uk
) and the required

threshold is Ib I T , where I is the threshold given in Table 1. For ex-

ample , if 1 (as was assumed previously) the required threshold is

where ~2 is the variance of the real and imaginary inputs to the MI!

It should be noted that comparisons of the bias levels in Table 1

wi th Pachares ’ table [1] must take into account a difference in normalization

12
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Figure 1. Location of the eigenva1ues A~ as a f~mction of N.
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~1og10PFA

1 2 3 4 5 6

2 16.2394 30.0637 43.8793 57.6948 71.5103 85.3258
3 22.5577 38.6635 54.4551 70.1904 85.9148 101.6369
4 28.4521 46.2636 63.3186 80.1319 96.8537 113.5390
5 34.0875 53.3038 71.3648 88.9887 106.4079 123.7218
6 39.5437 59.9806 78.9033 97.2102 115.2028 133.0168
7 44 .8678 66.3986 86.0883 104 .9981 123.4918 141.7368
8 50,0896 72.6211 93.0118 112.4719 131.4218 150.0577
9 55.2293 78.6892 99.7301 119.7009 139.0738 158.0717
10 60,3013 84.6312 106.2821 126.7323 146.5028 165.8410
11 65.3162 90.4679 112.6956 133.5999 153.7474 173.4087
12 70.2822 96.1920 118.9632 140.2953 160.7979 180.7633
13 75.2057 101.8642 125.1612 146.9088 167.7576 188.0205
14 80.0919 107.4678 131.2694 153.4165 174.5986 195.1484
15 84.9448 113.0105 137. 2983 159.8306 181.3347 202.1620
16 89.7680 118.5126 143.2727 166.1804 187.9989 209.0978
17 94.5644 123.9505 149.1648 172.4335 194,5545 215.9149
18 99.3363 129.3446 154.9998 178.6193 201.0347 222.6498
19 104.0860 134.688 5 160.7703 184 .7295 207.4302 229.2922

N 20 108.8152 140.0062 166.5055 190.7978 213.7786 235.8837
21 113.5255 145.2897 172.1961 196.8136 220.0682 242.4109
22 118.2183 150.5416 177.8454 202.7807 226.3031 249.8786
23 122.8948 155.7640 183.4564 208.7026 232.4873 255.2910
24 127. 5562 160.9591 189.0316 214.5822 238.6241 261.6516
25 132.2034 166.1286 194.5734 220.4224 244.7165 267.9638
26 136.8373 171.274 1 200.0837 226 .2256 250.7673 274.2305
27 141.4586 176.3969 205.5646 231.9939 256.7788 280.4545
28 146.0681 181.4984 211.0176 237.7292 262.7534 286.6379
29 150.6665 186.5798 216.4443 243.4335 268.6930 292.7831
30 155.2543 191.6422 221.8461 249.1084 274.5995 298.8921
31 159.8320 196.6907 227.2291 254.7607 280.4805 304.9732
32 164.4002 201.7135 232.5798 260.3755 286.3194 311.0083
33 168.9593 206.7242 237.9140 265.9704 292.1358 317.0188
34 173. 5098 211.7193 243.2279 271.5412 297.9251 322.9994
35 178.0520 216.6995 248.5222 277.0889 303.6882 328.9515
36 182,5862 221.6654 253.7978 282.6145 309.4265 334.8764
37 187. 1129 226.6177 259.0556 288.1189 315.1409 340.7750
38 191.6324 231.5570 264.2963 293.6031 320.8324 346 .6485
39 196.1449 236.4837 269.5205 299.0677 326 .5019 352.4979

Table 1. Bias levels for square —law integrati on of N outputs
from a binary-weighted , two-pulse nonrecursive tYPI .

14
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-log,~ 0WA

7 8 9 10 11 12

2 99.1414 112.9569 126.7724 140.5879 154.4034 168.2189
3 117 .3586 133.0801 148.8014 164.5227 180.2440 195.9652
4 130 . 2093 146.8733 163.534? 180.1950 196.8548 213.5144
5 140.9789 158.2045 175.4125 192.6106 209.8029 226.9920
6 150.7 227 168.3606 185.9548 203.5204 221.0672 238.6014
7 159.8229 177.8028 195.7096 213.5649 231.3835 249.1755
8 168.4865 186.7724 204.9561 223.0651 241 ,1184 259.1296
9 176,8173 195.3849 213.8226 232.1629 250.4288 268.6371

10 184.8843 203.7164 222.3920 240.9486 259.4128 277.8040
11 192.7346 211.8180 230.7197 249.4816 268.1337 286.6982
12 200.3552 219.6747 238.7885 257.7427 276.5705 295.2966
13 207.8735 227.4256 246.7489 265.8937 284.8961 303.7831
14 215.2534 235.0303 254.5564 273.8856 293.0571 312.1002
15 222.5113 242.5062 262.2291 281.7376 301.0736 320.2684
16 229.6866 249.8958 269.8125 289.4980 308.9967 328.3418
17 236.7341 257 .1496 277.2529 297.1086 316.7637 336.2535
18 243.6940 264.3109 284.5967 304.6191 324.4275 344 .0591

~, 19 250.5545 271.3669 291.8298 312.0140 331.9713 351.7407
“ 20 257.3611 278.3665 299.0047 319.3492 339 .4543  359.3606

21 264.0989 285.2936 306.1036 326 .6057 346.8559 366.8970
22 270.7730 29 2.1534 313.1322 333.7890 354.1821 374.3557
23 277.3878 298.9505 320.0952 340.9042 361.4378 381.7420
24 283.9473 305 .6891 326.9969 347.9557 368.6278 389.0607
25 290.4549 312.3729 333.8412 354.9475 375.7561 396.3159
26 296.9138 319.005 1 340.6315 361.8832 382.8263 403.5113
27 303.3267 3’5 .5887 347.3709 368.7659 389.8418 410.6504
28 309.6963 332.1264 354.0622 375.5985 396.8054 417.7361
29 316.0248 338.6 207 360.7079 382.3837 403.7199 424 .7712
30 322 .3144  34S. 0737  367.3103 389.1238 410.5878 431.7582
3 1 328.5741 351.4951 373.8797 395.8297 417.4204 438.7090
32 334 .7 844  357.8640 380.3937 402.4776 424.1926 445 .5973
33 340.9682 364.2049 386.8784 409.09 51 430.9334 452 .4534
34 347.1200 370.5118 393.3274 415.6753 437 .6357  4S9 .2697
35 353 .2411  376.7862 399.7422 422.2199 444 .3010  466.0478
36 359.3328 383.0294 406.1243 428.7303 4 50.9308 472 . 7893
37 365.3964 389.2427 412 .4750  435,2080 457. 5267 479.4957
38 371 .4329  395 .4273 418.7954 4 4 1 . 6 5 4 1  464.0898 486.1684
39 377 .4435  401 .5843  42 5.0868 448.0699 470.6215 492.8086

Tabl e 1. (Continued )
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by a factor of two . That is , the vari able considered by Pachares is one-

half the sum of squares of input amplitudes (divided by the variance a2),

while the variable considered here is not normalized by the factor one-

half. (The change of variables used here to obtain (8) from (7) is

= r~ . The equiva l ent change of variables made by Pachares is

t = R~ /2a
2, using his notation.)

Figure 2 compares the thresholds required for a two-pulse MTI with

those for no MTI. The curves for no MTI were obtained by doubling the

values from Pachares ’ tables. !t is interesting to note that for N

larger than about 10 (and for the same PFA) the square root of the ratio

of the two thresholds

‘I ~~1/2( NO MT I

‘,, ~MTI

is approximately 0.66 , which is Ne/N as determined by Hall and Ward [3] .

Characteristic function for the signal case

Suppose a signal of Doppler frequency 
~d and amplitude G is present

at the Mu input. Then, the real and imaginary parts of the outputs have

mean va lues

= - [2G sin ~ 
fd/PRF)] sin [2~ ~d 

(k + ~.)/PRF]

= [20 sin (~ fd/PRF)] cos [2ir 
~d 

(k + ~.)/PRF] (20)

k = 1 , 2,..., N

16 
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To obtain the ch. f. ~ (~) from (11), we must determine

where 
~k 

and 8k are components of the vectors obtained from the trans-

formations p ’ = Ia’ and 
~~~

‘ = Ta ’ . It can be shown [11] that the

matrix T has rows which are the unit -length eigenvectors ~ corres-

ponding to the eigenvalues A k~ 
k= 1,2, .. - , N. Therefore, is given

by

= (t ~ s ) 2 
+ (t  x~)

2 
(21)

The eigenvectors ~~ are obtained from the relationship

0 — ~r%N -~k 
- 1’k -

~~k

and , for the covariance matrix RN given by (16) (with a = 2  and b=- 1) ,

equation (22) leads to the relationship

tkj 
= Dj _ 1( 2 - A k ) tkl (23a )

where

4. (tkl. tk2~ ... , tkN ) (23b)

and D~( - )  is defined above in (17). In (23a) , tkl must  be chosen such

tha t ~ has unit length . Thus , we can define the eigenvector ~ from

18
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To obta in the ch . f . 4~(~) from (11), we must determine ~~~ ~~~~ k
2
’

where 
~k 

and 
~k 

are com ponen ts of the vectors obt aine d from the trans-

formations p ’ = Ta ’ and 
~~~

‘ = Ti~’ . It can be shown [111 that the

matrix I has rows which are the unit -len gth eigenvectors 
~k 

corres-

ponding to the eigenvalues A
k~ 

k 1,2, .. - , N . Therefore , is given

by

= 
~~~ 

~ i ) 2 
+ 

~ -k ~)2 (21)

The ei genvectors ~~ are ob taine d from the relat i onsh ip

RN~~~~
= A k~~ (22)

and , for the covariance matr i x RN given by (16) (with a = 2  and b=- 1 ),

equation (22) leads to the relationship

tkj  
= Dj 1( 2 _ A k ) tkl (23a )

j = 2,3, . . - , N

where

.4. (tkl, tk2, tkN ) (23b)

and O~
(
~ ) is defined above in (17). In (23a), tkl must be chosen such

that ~~ has unit length . Thus , we can define the eigenvector ~ from

_  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~
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~~~ 
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~~~~~~~

tk l = E k

tkj 
= E~~

1 Dj l (2
~~

A k) (24a)

where

~ N-i

E k + D~~(2-x ~ ) (24 b )

Now , rewriting (21), we have

= + = 
~~~ ~~~~ 

+ y~ ~~ 
tk~ 

tkm (25a )
~~ m 1

N
= 402 sin 2 ( 

~~~~~ 
( 

t~~
) 

(25b)

wi th (25b) obtained from (25a ) using the relationship defined in (20) .
Equation (25b) can be further sim plifi ed. Note that

~~~
tk~~

= 1
~~~

where i ~ (1,1, . - .  , 1), and from (22):

iR N~~~
= x k i

~~~
= A k~~~~ tk - (26)

19
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But i RN = (1,0, . - - , 0,1), and (26) reduces to

N

t1(~ = (tkl + tkN )/A k (27)

Using (27), (25b), and (24) we have , finally,

2 4G2 sin 2 (~r ~d
1’
~
’
~~ 

/ 1 + DN 1 (2 - A k)\ 
2

I - ) (28)
\

~~ 

D~ (2 - A k)]

APPLICATIONS TO OVERLAPPING DFT 1S

The discussion above pertained to the square-law integration of the

cutputs from a nonrecurs ive M u .  We now consider briefly the appl ica-

tion of the theory to square -law integration of coefficients of over-

lapping DFT ’ s,.

Signal detection is often accomplished by computing the discrete

Fourier transform ( DFT ) of a sequence G
~
, G~, ... , of sensor out-

puts and comparing the magnitudes -squared of the DFT coefficients with

a threshold. The length M of the OFT is determined by severa l factors,

including the required signa l resolution in the frequency domain (14].

To improve detection , it is sometimes necessary to perform incoher-

ent integration of the OFT outputs. That is , a sequence of DFT’ s is

computed and the magnitudes-squared of successive coefficients are

20
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sunvied and compared with a threshold. The sequence of DFT ’s can be con-

tiguous , as indicated in Figure 3a, or overlapping, as indicated in Fig-

ure 3b. When the OFT ’s are nonover lapping , the quantities incoherently

integrated are independent; however, when the OFT ’s are overlapping , the

integration involves dependent (correlated) random variables. (Since we

are dealing exclusively with Gaussian processes, correlation and depend-

ence are used interchangeably.)

The correlation between coefficients of successive transforms de-

pends both on the degree of overlap and on the ‘1 window-function ’ used in

the OFT [14, page 56]. The qth coefficient of the ~th OFT is defined as

M-1
F = W G -2lTiqk /M
qp L k k+p(M-r) e

k=O
(29)

p = 0,1, ... ; 0 < r < M - 1

where {Wk}
N_ l 

is the window function , and the parameter r defines the
k=O

degree of overlap. (Note that r is defined differently here than by

Harris [14, page 56].) Let the real and imaginary parts of Fqp be

defined by

Fqp 
= Xqp + I Yqp (30)

and assume that the inputs Gk, k=O ,i, ... , have real and imagina ry

parts that are lID Gaussian random variables with variance ~
2. Then ,

the covar i ance of Xqp~ Xq,p+u (and Yqp~ “q,p+u~ 
is given by

21 
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Figure 3a. Partitioning of inr~1t sequence for nonoverlapping DP’P’s.
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Figure 3b. Partitioning of input sequence for overlapping DFT’s.
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M- 1+u(r-M)
= a2 W~ W

~+u(M_ r) , 0 < u < (M-1)/(M-r) (31)

= 0 , otherwise.

(The index q has been suppressed in (31) since the covariance is i nde-

pendent of q.) Using (31), the covariance matri x of the real and imag-

inary parts of Fq0~ Fq1~ -- ~~ ~~~~ can be determined and the previ-

ously deri ved theory can be applied to determine the bias levels to be

used. If the presence of a signal is represented by having nonzero-

mean inputs (such as defined by equation (20) in the previous section),

the characteristic function for the signal-present case can also be

deri ved.

If the signa l to be detected is a narrowband Gaussian process , the

presence of such a signal at the OFT input results in an increase in the

variance of the real and imaginary parts of the OFT coefficient which

corresponds to the center frequency of the input process.* Thus, for

this coefficient the covariance when a signal is present is

/ 2  2a +~~y

~u,S ~ a2 ~u ,

*Because of spectral leakage [14 , page 52] ,  the signal wi l l  increase the
variance of all DFT coefficients . We assume that the bandwi dth of the
input process is narrow enough that only the DFT coefficient correspond-
ing to the center frequency of the process wi l l  have a significant
response.
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where a~ is the variance of the signa l component of th e OFT input , and

is the noise-only covariance given by (31). If the SNR ~j , is defined

such that  ~ = 05 /a , the covariance •u,S is

u ,S 
= ( i + ~~) u (33)

It follows that the probability of detection 
~d 

can be computed from

(15a ) wi th I replaced by T/(i+~p).

As an example, for 50% overlap the covariance matri x has the form

of (16) wi th a = c1 0 and b = q 1, and recu rsive formu las s im ilar to (18) and

(19) can be derived. For a rectangular window (i.e., Wk = 1, k=0 ,i, ...
M- 1), a=M a 2 and b= -~- ~

2 Thus, the thresholds tabulated in Table 1 are

applicable if I is replaced by MTa 2/2. This follows from the discussion

of Table 1 above and the fact that a = 2b.

CONCL USIONS AND DI SCUSSION

The general theory has been given for obtaining the ch. f. of the

sum of magnitudes squared of correlated circular-Gaussian random variables.

This  theory has been app lied to the case of incoherent integration of the

outputs from a nonrecursive MTI. In particular , the ch. f. has been de-

termined explicitly for a two-pulse MTI, and the threshold levels which

provide specified false-alarm probabilities have been determined and

tabulated for several values of the number N of MTI outputs integrated.

The application of the theory to incoherent integration of the co-

efficients of overlapping DFT’s has also been shown. It has been shown that

24
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when the DFT ’ s overlap by 50%, the tabulated thresholds for the two-

pulse MI! can be used after appropriate scaling.

Detection proba bili ties have not been comp uted since inver si on of

the ch. f. for the signal-present case has , thus far , proven to be intract-

able. However , the technique of Helstrom [5] w il l  be applied to estimate

the detection probability and the results wil l be published later. These

results will be compared with the estimates of Hall and Ward [3] and

Trunk [2], and the degradation in performance due to noise correlation

will be evaluated .

ACKNOWLEDGEMENTS

The authors acknowl edge the support of Cl iff Fowler and ORINCON

Corporation in performing the computations described in this paper.

REFERENCES

1. Pachares, J., “A Table of Bias Levels Useful in Radar Detection
Pro b l ems ,” IRE Trans. on Inf. Theory, Vol. IT-4, pp . 38-45,
March 1958.

2. Trunk , G.V., “MI! Noise Integration Loss,” IEEE Proceedings, Vol .
65, pp. 1620-1621, November 1977.

3. Hall , W.M ., and H.R. Ward , “Signal-to-Noise Loss in Moving Target
Indicator ,” IEEE Proceedings, Vol . 56, pp. 233—234, February 1968.

4. Kretschme r, F.F., Jr., “Correlation Effects of MTI Filters ,” IEEE
Trans. on Aerospace and Electronic Systems, VoL AES-13, pp. 321-
322, May 1977.

5. He i strom , CW. , “Approximate Evaluation of Detection Probabilities
in Radar and Optical Coninunications ,” IEEE Trans. on Aerospace and
Electronic Systems, Vol . AES-14, pp. 630-640, July 1978.

6. Heistrom, C.W., Statistical Theory of Signal Detection, 2nd ed.,
New York :Pergamon 1968.

25

I



___ - - ---- -- _- .---~~~~~- - -- . - - .  - - -  ~~~~~~~~~~- - ~~~~~~~~ - —

7. Kac , M., and A.J.F. Siegert , “On the Theory of Noise in Radio
Receivers with Square-Law Detectors,” Journal of Applied Physics,
Vol . 18, pp. 383-397, Apri l 1947.

8. Emerson, R.C., “First Probability Densities for Receivers wi th
Square Law Detectors ,” Journal of Applied Physics, Vol . 24,
pp. 1168-1176 , Sept. l95~3.

9. Meyer , M.A., and D. Middleton , “On the Distributions of Signals
and Noise After Rectification and Filtering, ” Journa l of Applied
Physics, Vol . 25, pp. 1037-1052, August 1954.

10. Kendall , M.G., and A. Stuart , The Advanced Theory of Statistics ,
Vol . 1, Hafner :New York , 1958.

11. Finkbeiner , O.T., I I , Introduction to Matrices and Linea r Trans-
formations, Freeman:San Francisco , 1960.

12. Weinstock , W.W , “Probability Density and Distribution Functions ,”
in Berkowitz, R.S., Modern Radar, Wi ley:New York , 1965.

13. Nathanson , F.E. , Radar Design Principles, McGraw-Hi ll:New York ,
1969.

14. Harr is , F.J., “On the Use of Windows for Harmonic Analysis with
the Discrete Four ier Trans form ,” IEEE Proceedings, Vol. 66, pp.
51-83, January 1978.

26 

.


