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OBJECTIVE
Develop and analyze advanced signal processing techniques that

will provide improved performance, reliability, and maintainability

while reducing costs of signal processing systems for radar, sonar, _

E and electronic warfare.

RESULTS
1. An exact computational method is given for determining the
detection threshold to be used when a square-law integrator is applied

to the output from a nonrecursive moving target indicator (MTI).

2. A table of bias levels is given for a two-pulse (single-
delay) MTI for several values of the number N of pulses integrated

and the probability PFA of a false alarm.

3. The characteristic function of the output from the square-
law integrator is determined for the case where the MTI input contains

a signal.

RECOMMENDATION

Continue the analysis of the effect of MTI on incoherent integration.
Specifically, determine exact (or approximate) methods for computing
detection probabilities, and investigate optimum methods for constant

false-alarm rate (CFAR) processing for an MTI followed by incoherent

integration.
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BACKGROUND
This report describes the results of work that is in progress

at the Naval Ocean Systems Center (NOSC), San Diego, California, and

at ORINCON Corporation, La Jolla, California. Further results will
be described in an expanded version of this report which will be sub- 1

mitted for publication in the IEEE Transactions on Aerospace and

Electronic Systems.

INTRODUCTION

The output sequence from a nonrecursive MTI is a linear combination
of the inputs from successive pulse repetition intervals (PRI's). Thus,
the sequence at the MTI output is correlated even though the input se-
quence may be uncorrelated. When detection is performed by incoherent
integration of successive MTI outputs (for each range bin), the variables
integrated are not statistically independent. This poses two problems.
First, the determination of the detection threshold must take into
account the noise correlation, and thus graphs or tables of thresholds
(e.g., Pachares' table [1]) previously published cannot be used. Sec-
ond, the noise correlation degrades detection performance, as has been
indicated in the literature [2,3,4]. Trunk [2] considered both problems
and obtained detection thresholds and detection sensitivity, by Monte Carlo
simulation, for a linear integrator at the output of a binary-weighted MTI.
Hall and Ward [3] and Kretschmer [4] estimated the detection sensitivity
degradation for a square-law integrator by computing the "effective number"

Ne of pulses from a ratio of variances and squared means.




This report serves two purposes. The first is to provide an exact
computational method (and the associated theory) for determining the
detection threshold to be used when a square-law integrator is applied s ;
to the output from a nonrecursive MTI. Using this method, a table of
bias levels is computed for a two-pulse (single-delay) MTI for several
values of the number N of pulses integrated and the probability PFA of
a false alarm.

The second purpose is to derive the characteristic function of the
output of the square-law integrator when the MTI input contains a sig-
nal with Doppler frequency fd and amplitude G. While inversion of this
characteristic function (to find the associated probability density)
has proven to be intractable, the techniques of Helstrom [5] can be used
to estimate the detection probability.*

The general theory is given for obtaining the characteristic func-
tion of the sum of squared magnitudes of correlated, circular-

Gaussian [6] random variables. (The particular circular-Gaussian process
considered here corresponds to the in-phase and quadrature components of
the complex envelope of a Gaussian stochastic process.) For the case
where the variables have zero mean (i.e., the no-signal case), the

characteristic function is inverted, and the probability distribution is

obtained. The application of the general theory to the computation of bias

*
Estimates of the detection probability will be given in the journal
publication which will follow at a later date. Comparisons will then
be made with the estimates of Hall and Ward [3] and the simulation
results of Trunk [2].




levels for a nonrecursive MTI is discussed in detail. Also, applica-
tions to signal detection based on incoherent integration of overlapping
discrete Fourier transforms (DFT's) are considered briefly.

The theory given here is similar to derivations by other authors,
such as Kac and Siegert [7]), Emerson [8], and Meyer and Middleton [9].
For example, Kac and Siegert [7] obtained the characteristic function
of the (unsampled) output from a video amplifier which follows a
square-law detector, and expressed their results in terms of eigenvalues
and eigenfunctions of an integral equation. Emerson [8] considered the
same problem and outlined procedures for determining probability density
functions directly without solving the eigenvalue problem or inverting
the characteristic function. Meyer and Middleton [9] extended the re-
sults of Kac and Siegert and obtained an explicit solution for the
integral equation involving the autocorrelation function of the noise.
Our work differs from these previous analyses in that we approach the
probiem from a sampled-data viewpoint and develop an exact computational
method which provides a straightforward means of analyzing the performance
of digital detection processors which employ inccherent integration of

correlated random variables.

NONRECURSIVE MTI
For each range bin, the output from a nonrecursive MTI is a linear
combination of the inputs from L successive pulse repetition intervals

(PRI's). That is, the complex MTI output Ek js*

*The output is a complex variable obtained from the in-phase and quadrature
components. The index k denotes the PRI; the index that would denote the
range bin has been suppressed.
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(1)

where wl, wz, g wL are fixed weights which, for this analysis, are

assumed to be real. The real and imaginary parts of the input sequence

Gl’ GZ’ --+» are assumed to be independent normally distributed random

variables with variance 02, and with means Mps Moy oo

respectively. Thus, the output E

Xk and Yk are normally distributed with means

L
e = EIX ) = :S Wo my_get
2=1

ne>

L
g = BV = :S Wy CrogaL
=1

and with covariances

E[kak+n'”k“k+n] = B e Yl ©

and

E Y an = iirkan) = 0

n=0,1,2,...

, and Cl’ C

A 1 = i
K 2 Xk+-1Yk, k=1,2, ..., is such that

(2)

(3a)

(3b)
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THEORY

With X,, X e XN and Y Y2, ey YN defined as above, their

hae e = 3 12
joint probability density is given by

f(x,y) = (2r)" IAlexp{- 7 [(X'E)A(i"g')+(.)1-1)A(.x"y_')l} (4)

where A is the inverse of the covariance matrix R determined by (3a);

X, Y, etc., denote N-dimensional row vectors; x', y', etc., are their
transposes (column vectors); and |A| is the determinant of the matrix A.
From Kendall and Stuart [10, page 347], there is an orthogonal

matrix (i.e., transformation) T such that T'AT = D, where D is a
diagonal matrix. Also, the elements on the diagonal of D are the eigen-
values of A [11, page 186]. Applying this transformation T to x and y
(by letting x' = Tz' and y' = Tw'), the new variables z and w have joint

density

)-N

where u' = Ta' and y' = Tg'.

Note that since T is orthogonal,

ne>

g
w2
1

Z xﬁ * yi =xx'tyy' =2zl'Tz' + Wl'Tw' =
k=1 k

S

N
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From (6) and the discussion in the previous section, it follows that S

can be interpreted as the result of square-law integration of N outputs
from a nonrecursive MTI. We now determine the characteristic function
of S from the joint density (5).

The change of variables z, =1, cos ek and We T sin ek in (5)
and integration with respect to 015 Bos «.es O gives the joint density

of Pis Yoo oves T

" d« 12 2
f(r) = T dry exp {-5 (ri + 9 )1 Toleerg) (7)
k=1
28 2

where g = o t Bi, the dk's are the eigenvalues of A, and IO(') is the

modified Bessel function of the first kind, order zero. Finally, letting

o e S 5 .
G = Mo the joint density of 9> dps ---5 Qy s

N
d d
k k 2
fla)= I 5 exP['T(“k * 9k)] To(gkdy Yoy )- L
k=1
From (8) it follows that 9y5 dps ---» Qy are independent random variables;

also, the transformations above are such that

Thus, the characteristic function (ch. f.) of S is.given by
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¢S(w) = H ¢k(w) (9)

where ¢k(m) is the ch. f. of Ay From Weinstock [12, page 177], the
ch. f. ¢k(w) is

o (w) = (1 : %ikﬂ)-l exp [‘iwgi/ (1 -—2—‘3)} (10)

and, therefore,

o -1 s

: 2

¢S(m) =TI (1 = 2_(112) exp 1wgz/ (1 = —Jﬂ) ; (11)

i k k k
k=1 '

Inversion of ¢S(w) provides the probability density fS(s) of the
random variable S. From this density we can determine the false-alarm
and detection probabilities associated with a detection system which is
based on the square-law integration of the outputs from a nonrecursive
MTI. Inversion of (11) for the signal-present case (i.e., when gi is

nonzero) has proven to be intractable. However, for the no-signal case
2
(

BIAS LEVELS FOR SQUARE-LAW INTEGRATION
In this section we obtain an exact computational method for deter-
mining the bias levels (detection thresholds) to be used when a square-

law integrator is applied to the output from a nonrecursive MTI.

9 = 0), inversion can be accomplished as described in the next section.




When no signal is present at the MTI input, the means of Xk and Yk
(the real and imaginary parts of the MTI output) are zero. Thus, from

(11), the ch. f. of S is
N g
dgfof = L= S (12)

When the eigenvalues dl’ d2, Sisly dN are all distinct (which is the case

for the covariance matrices considered here), (12) can be inverted to

give
N
-sd, /2
e | Sy
fs(s) =5 z d, Pee (13a)
k=1
where
N dk -1
P (13b)
2=1
L#k
Therefore, the false-alarm probability PFA is given by
N
-Td, /2
i k
PFA = > P (14)
k=1

where T is the detection threshold. From (14) it follows that PFA is
uniquely determined by the threshold T and the eigenvalues of A (which

is the inverse of the covariance matrix R). However, R is the matrix




that is given (e.g., from equation (3)) and its inversion can be

computationally difficult. Since the eigenvalues of A are reciprocals
of the eigenvalues of R, it is not necessary to invert R. That is, it
is only necessary to find the eigenvalues Al’ Aps wnes Ay of R. (Note

that Ak = dil.) In terms of the eigenvalues of R, PFA becomes

N
-T/2x
PFA= > Be (15a)
k=1
where
N Al
= el
B, = H(l Ak) : (15b)

The computational method for obtaining the bias level TN,PFA is as
follows: For each N, the eigenvalues A{s Aps --e5 Ay are determined and
the coefficients Bl’ Bz, ey BN are obtained from (15b). For each
specified value of PFA, (15a) is solved for the bias level T = TN,PFA
using Newton's method (or another numerical technique). The computations
are illustrated in the next section where a particular example is

discussed.
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TWO-PULSE MTI FOLLOWED BY INCOHERENT INTEGRATION
For a two-pulse MTI (L = 2 in (3)) the covariance matrix Ry

has the form

b o. .0
a b o

0 b. a b o ]

Ry = 0 b (16)

.o

b

(O L 0°b"a

o 2. 2 _ 2 .
where a = (w1 + wz) o~ and b = Wy Wy 0%, (The subscript N denotes the

dimension of R and is also the number of MTI outputs incoherently inte-
grated.) If binomial weights [13] are used (i.e., w1 =1, Nz = -1),

then a = 202 and b = -02. In the following, a two-pulse MTI with binomial
weights is assumed. Also, since the detection thresholds are

normalized by the noise variance 02, no loss of generality occurs if

2
we assume o = 1.

Bias levels
To obtain the eigenvalues of RN’ we compute the determinant of the

matrix RN - AIN and find the roots of the polynomial equation
[Ry = Ayl = 0. (17)

For the case being considered, the polynomials satisfy a recursive

relation as a function of N. We make the change of variable u = 2-) in

10




(17) and denote by DN(u) the polynomial in u obtained from (17). The

following recursive formula is easily verified:

Dl(u) =y
o
Dz(u) =u” -1
(18)
Dy(u) = u Dy_;(u) - Dy_»(u)
N= 3:8:...
From (18) the derivative D&(u) is also obtained recursively:
Di(u) =1
Dé(u) = 2u
(19)
Dy (u) = u Dy-q(u) = Dy_p(u) + Dy (u)

N=3,4,...

Using (18) and (19), Newton's method can be applied to compute the
roots of (17).

Equations (18) and (19) were derived under the assumption that

a=2and b=-1in (16). However, it is easily shown that the solutions




T

of (17) in terms of the variable u defined above provide the most gen-
eral solutions for any matrix of the form defined in (16). In (17), if
we let v=(a-1)/|b|, then the resulting polynomial in v is proportional
to DN(v), where DN(-) is defined in (18). Thus, the roots Ups
k=1,2,..., N, of (18) can be used to obtain the eigenvalues of any
matrix Ry of the form (16) by defining A, = a- |blu,.

To illustrate the location of the eigenvalues of RN’ Figure 1 is a
graph of Al,xz,... » Ay 3s 2 function of N for N between 1 and 20. The

continuous curves are obtained by connecting the mth

largest eigenvalue

for each N. Because of symmetry about A =2, only the eigenvalues in the
interval [2,4] are shown. (The eigenvalues for a particular value of N

are found in Figure 1 at the intersection of the corresponding horizon-

tal line with the continuous curves.)

Table 1 gives the bias levels required to obtain the indicated
values of PFA for values of N between 2 and 39. Equations (18) and (19)
were used to find the eigenvalues and (15) was used to determine T by the
method described in the previous section.

Table 1 was computed for the case where a=2 and b =-1 in (16). How-
ever, the results are more generally applicable. From the discussion
above, the solutions of (18) can be used to determine the eigenvalues Ak
from 1, = a - [bluk. If a = 2|b|, then A = [b](2 -uk) and the required
threshold is |b|T, where T is the threshold given in Table 1. For ex-
ample, if ozf 1 (as was assumed previously) the required threshold is
Toz, where o? is the variance of the real and imaginary inputs to the MTI

It should be noted that comparisons of the bias levels in Table 1

with Pachares' table [1] must take into account a difference in normalization

12




Ak

Figure 1, Location of the eigenvalues Ak as a function of N,
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16.2394
22.5577
28.4521
34,0875
39.5437
44.8678
50.0896
55.2293
60.3013
65,3162
70.2822
75.2057
80.0919
84.94418
89.7680
?4.5644
?9.3363
104.0860
108.8152
113.5255
118.2183
122,.8948
127.5562
132.2034
136.8373
141,4586
146.0481
150.6665
155.2543
159.8320
164.4002
168.9593
173.5098
178.0520
182.35862
187.1129
191.6324
196.1449

Table 1.

8]

30.0637

38.6635

46.2636

53.3038

59.9806

66.39846

72.6211

78.6892

84.6312

?0.4679

96.1920
101.8642
107.4678
113.0105
118.5126
123.9505
129.3446
134.688S5
140.0062
145.2897
150.5416
155.7640
160.9591
166.1286
171.2741
176.3969
181.4984
186.5798
191.6422
196.6907
201.7135
206.7242
211.7193
216.6995
221.6654
226.6177
231,5570
236.4837

-logwl’ﬂ
3 4

43,8793 57.6948
$54.4551 70,1904
63.3186 80,1319
71.3648 88.9887
78.9033 97.2102
86.0883 104,9981
?23.0118 112.4719
?9.7301 119.7009
106.2821 126.7323
112,6956 133.5999
118.94632 140,2953
125.1612 146.9088
131.2694 153.4165
137.2983 159.8306
143.2727 166.1804
149.1648 172.4335
154.9998 178.6193
160.7703 184.,7295
166.5035 190.7978
172.1961 196.8136
177.8454 202,7807
183.4564 208.7026
189.0316 214,5822
194.5734 220.4224
200.0837 226.2256
205.5646 231.9939
211.,0176 237.7292
216.4443 243,4335
221.8461 249.1084
227.2291 254.7607
232.5798 260.3755
237.9140 265.9704
243.2279 271.5412
248.5222 277.0889
253.7978 282.6145
259.0556 288.1189
264.2963 293.6031
269.5205 299.0677

w

71.5103

85.9148

96.8537
106.4079
115.2028
123.4918
131.4218
139.0738
146,5028
153.7474
160.7979
167.7576
174.5986
181.3347
187.9989
194.5545
201.0347
207.4302
213.7786
220.0682
226.3031
232.4873
238.5241
244,7165
250.7673
2546.7788
262.7534
268.6930
274.599S
280.4805
286.3194
292.1358
297.9251
303.6882
309.426S
315.1409
320.8324
326.5019

85,3258
101.,6369
113.53%90
123,7218
133.0168
141.7368
150.0577
158.0717
165.8410
173.4087
180.7633
188.0205
195.1484
202.1620
209.0978
215.9149
222.6498
229.2922
235.8837
242.4109
248.8786
255.2910
261.6516
267.9638
274.2305
280.4545
286.6379
292,.,7831
298.8921
304.9732
311.0083
317.0188
322.9994
328.9515
334,.8764
340.7750
346.6485
352.4979

Bias levels for square-law integration of N outputs
from a binary-weighted, two-pulse nonrecursive MTI,

14
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-:Log1 OPPA
7 8 ? 10
99.1414 112,9569 126.7724 140.5879
117.3586 133.0801 148.8014 164.5227
130.2093 146.8733 163.5347 180.1950
140.9789 158.2045 175.4125 192.6106
150.7227 168.3606 185.9548 203.5204
159.8229 177.8028 195.7096 213.5649
168.4865 186.7724 204.9561 223.0651
176.8173 195.3849 213,8226 232.1629
184.8843 203.7164 222,3920 240.9486
192.7346 211.8180 230.7197 249.4816
200.3552 219.6747 238.7885 257.7427
207.8735 227,4256 246.7489 265.8937
215,2534 235.0303 254.5564 273.8856
222,5113 242,5062 262,2291 281.7376
229.6866 249.8958 269.8125 289.4980
236.7341 257.1496 277.2529 297.1086
243,6940 264.3109 284.5967 304.6191
250.5545 271.3669 291.8298 312.0140
257.3611 278.3665 299.,0047 319.3492
264.0989 285.2936 306.1036 326.4057
270.7730 292.1534 313.1322 333.78%90
277.3878 298.9505 320.0952 340.9042
283.9473 305.6891 326.9969 347.9557
290.454%9 312.3729 333.8412 354.9475
296.9138 319.0051 340.6315 361.8832
303.3267 325.5887 347.3709 368.7659
309.46963 332.1264 354.0622 375.5985
316.0248 338.6207 360.7079 382.3837
322.3144 345,0737 367.3103 389.1238
328.5741 351.4951 373.8797 395.8297
334,7844 357.8640 380.3937 402,4776
340.9682 364.2049 3846.8784 409.0951
347.1200 370.5118 393.3274 415.6753
353.2411 376.7862 399.7422 422.2199
359.3328 383.0294 406.1243 428.7303
365.3964 389.2427 412.4750 435.2080
371.4329 395.4273 418.7954 441.6541
377.4435 401.5843 425.0868 448.0699
Table 1. (Continued)
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154.4034
180.2440
196.8548
209.802¢9
221.0672
231.3835
241.1184
250.428¢€
259.4128
268.1337
276.5705
284.8961
293.0571
301.0736
308.9967
316.7637
324.4275
331.9713
339.4543
346.8559
354.1821
361.4378
368.6278
375.7561
382.8263
389.8418
396.8054
403.7199
410.5878
417.4204
424,1926
430.9334
437 .,6357
444,3010
450.9308
457 .5267
464.0898
470.6215

12

168.2189
195.9652
213.5144
226.9920
238.6014
249.1755
259.1296
268.6371
277.8040
286.6982
295.2966
303.7831
312.1002
320.2684
328.3418
336.2535
344.05%91
351.7407
359.3606
366.8970
374.,3557
381.7420
389.0607
396.3159
403.5113
410.6504
417.7361
424,7712
431.7582
438.7090
445,.5973
452.4534
459.2697
466.0478
472.7893
479.4957
486.1684
492.8086
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by a factor of two. That is, the variable considered by Pachares is one-
half the sum of squares of input amplitudes (divided by the variance 02),
while the variable considered here is not normalized by the factor one-
half. (The change of variables used here to obtain (8) from (7) is
q = rf . The equivalent change of variables made by Pachares is
t = Ri /202, using his notation.)

Figure 2 compares the thresholds required for a two-pulse MTI with
those for no MTI. The curves for no MTI were obtained by doubling the
values from Pachares' tables. It is interesting to note that for N

larger than about 10 (and for the same PFA) the square root of the ratio

of the two thresholds

1/2
( "No MTI>
T
MTI
is approximately 0.66, which is Ne/N as determined by Hall and Ward [3].

Characteristic function for the signal case

Suppose a signal of Doppler frequency fd and amplitude G is present
at the MTI input. Then, the real and imaginary parts of the outputs have

mean values

Wy = - [ZG sin (n fd/PRF)] sin [Zn fy (k+ %)/PRF]

[ZG sin (n fd/PRF)] cos [Zn fd (k + %)/PRF] (20)

k=1,2,..., N
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To obtain the ch. f. d)S(w) from (11), we must determine gkzé ak2+8k2,

where % and B, are components of the vectors obtained from the trans-
formations u' = Ta' and y' = Tg'. It can be shown [11] that the

matrix T has rows which are the unit-length eigenvectors Ek corres-
ponding to the eigenvalues Ao k=1,2, ..., N. Therefore, 9:2 is given
by

2

e
gk = (ka_)

ive
+ (1) (21)
The eigenvectors Ek are obtained from the relationship

Rv B = M X ke

and, for the covariance matrix RN given by (16) (with a=2 and b=-1),

equation (22) leads to the relationship

tk,j 5 DJ'_]_(Z- )‘k) tkl (23a)
J = 23505 N
where
Ek ;éA. (tkl, tkz’ e e 9 tkN) (23b)

and Dj(-) is defined above in (17). In (23a), te1 must be chosen such

that t, has unit length. Thus, we can define the eigenvector t, from

18
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To obtain the ch. f. ¢S(w) from (11), we must determine gézé uf-+Bf,

where @ and B are components of the vectors obtained from the trans-
formations p' = Ta' and y' = Tg'. It can be shown [11] that the

matrix T has rows which are the unit-length eigenvectors Ek corres-
ponding to the eigenvalues Ao k=1,2, ..., N. Therefore, gf is given
by

)2+

90 = (1, 27+ (4, 1) (21)

The eigenvectors Ek are obtained from the relationship

Ry £, = &

NS T A K (22)

and, for the covariance matrix RN given by (16) (with a=2 and b=-1),

equation (22) leads to the relationship
By = 03-1(2-2) g {45}
J = 2585 oot o N

where

4 (

i, 4 teps tk2"" > tkN) (23b)

and Dj(-) is defined above in (17). In (23a), tyy must be chosen such

that t, has unit length. Thus, we can define the eigenvector t, from




N-1 o |
X 2 i
E, -\/1 T e (24b)
2=1

Now, rewriting (21), we have

NN
2o ge
9 = 9 T = Z (“2 Hy © g Ym) tes tkm (25a)
2=1 m=1
: 2
= 462 sin® (n f ,/PRF) Z s (25b)
=

with (25b) obtained from (25a) using the relationship defined in (20).
Equation (25b) can be further simplified. Note that

where i 4 (1,1, ..., 1), and from (22):

N
Akizl;:Akz tye -
2=1




But i_RN = (1,0, ..., 0,1), and (26) reduces to
P S Y (27)
=1

Using (27), (25b), and (24) we have, finally,

2 .2 2
,  46° sin® (n f/PRF) (1 # iy g 2= xk))

9
k Ay

(28)

N-1
2
1+ :E DQ (2 - Ak)
=1

APPLICATIONS TO OVERLAPPING DFT'S

The discussion above pertained to the square-law integration of the
cutputs from a nonrecursive MTI. We now consider briefly the applica-
tion of the theory to square-law integration of coefficients of over-
lapping DFT's.

Signal detection is often accomplished by computing the discrete
Fourier transform (DFT) of a sequence Go’ Gl”" ; GM_1 of sensor out-
puts and comparing the magnitudes-squared of the DFT coefficients with
a threshold. The length M of the DFT is determined by several factors,
including the required signal resolution in the frequency domain [14].

To improve detection, it is sometimes necessary to perform incoher-
ent integration of the DFT outputs. That is, a sequence of DFT's is

computed and the magnitudes-squared of successive coefficients are

20
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summed and compared with a threshold. The sequence of DFT's can be con-
tiguous, as indicated in Figure 3a, or overlapping, as indicated in Fig-
ure 3b. When the DFT's are nonoverlapping, the quantities incoherently
integrated are independent; however, when the DFT's are overlapping, the
integration involves dependent (correlated) random variables. (Since we
are dealing exclusively with Gaussian processes, correlation and depend-
ence are used interchangeably.)
The correlation between coefficients of successive transforms de-

pends both on the degree of overlap and on the "window-function" used in

h h

the DFT [14, page 56]. The qt coefficient of the pt DFT is defined as

M-1
5 -2migk/M
qu EE% wk Gk+p(M-r) s

(29)

where {wk}:;; is the window function, and the parameter r defines the
degree of overlap. (Note that r is defined differently here than by
Harris [14, page 56].) Let the real and imaginary parts of qu be
defined by

£ ian ey
" oot Yop (30)

and assume that the inputs Gk’ k=0,1, ..., have real and imaginary
parts that are IID Gaussian random variables with variance 02. Then,
(and Y__, Y

the covariance of X__, X ) is given by

gp” q,ptu qQp’ 'q,ptu




rE

M-1 M-1

DFT 1 DFT 2 DFT 3

Figure 3a., Partitioning of input sequence for nonoverlapping DFT's,

> Mer |«
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DFT 3

Figure 3b. Partitioning of input sequence for overlapping DFT's,
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M-1+u(r-M)

0 =% D MM » 05U s (M=1)/(Mer) (31)

2=0

0 , otherwise.

(The index q has been suppressed in (31) since the covariance is inde-
pendent of q.) Using (31), the covariance matrix of the real and imag-

inary parts of qu, F . Fq,N-l can be determined and the previ-

ql’ **°
ously derived theory can be applied to determine the bias levels to be
used. If the presence of a signal is represented by having nonzero-
mean inputs (such as defined by equation (20) in the previous section),
the characteristic function for the signal-present case can also be
derived.

If the signal to be detected is a narrowband Gaussian process, the
presence of such a signal at the DFT input results in an increase in the
variance of the real and imaginary parts of the DFT coefficient which

corresponds to the center frequency of the input process.* Thus, for

this coefficient the covariance when a signal is present is

2
o + OS

%S N\ T 2 1Y%, (32)

(0]

—

*Because of spectral leakage [14, page 52], the signal will increase the
variance of all DFT coefficients. We assume that the bandwidth of the
input process is narrow enough that only the DFT coefficient correspond-
ing to the center frequency of the process will have a significant
response.




T O ST

T T T

where 05 is the variance of the signal component of the DFT input, and

¢ 1s the noise-only covariance given by (31). If the SNR y is defined

u
such that y = os2 /02, the covariance 4. is

by,5 = (1+v) ¢, - (33)

It follows that the probability of detection Pd can be computed from
(15a) with T replaced by T/(1+y).

As an example, for 50% overlap the covariance matrix has the form
of (16) with a= % and b= 91 and recursive formulas similar to (18) and
(19) can be derived. For a rectangular window (i.e., W

K
M-1), a=Mo° and b=Y o®. Thus, the thresholds Eabulated in Table 1 are

=1y k=051, .co 5

applicable if T is replaced by MT02/2. This follows from the discussion
of Table 1 above and the fact that a=2b.

CONCLUSIONS AND DISCUSSION

The general theory has been given for obtaining the ch. f. of the

sum of magnitudes squared of correlated circular-Gaussian random variables.

This theory has been applied to the case of incoherent integration of the
outputs from a nonrecursive MTI. In particular, the ch. f. has been de-
termined explicitly for a two-pulse MTI, and the threshold levels which
provide specified false-alarm probabilities have been determined and
tabulated for several values of the number N of MTI outputs integrated.

The application of the theory to incoherent integration of the co-

efficients of overlapping DFT's has also been shown. It has been shown that
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when the DFT's overlap by 50%, the tabulated thresholds for the two-
pulse MTI can be used after appropriate scaling.

Detection probabilities have not been computed since inversion of
the ch. f. for the signal-present case has, thus far, proven to be intract-
able. However, the technique of Helstrom [5] will be applied to estimate
the detection probability and the results will be published later. These
results will be compared with the estimates of Hall and Ward [3] and
Trunk [2], and the degradation in performance due to noise correlation

will be evaluated.
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