AD-A06	1 290 SIFIED	DAVID A NOTE NOV 78	N TAYLO	R NAVAL CKAGE C AI -78/081	SHIP R ORRECTI	ESEARCH	AND DE	EVELOPME	ENT CE-	ETC F	/6 14/2	-	
	DF) AD 61290		aarabii aarabii								and the second		
								MIN				Æ	
				postimul-sel. Janut Jones du	plintilansphi philaderaphi		A Stationard State		END DATE FILMED I79 DDC				
										×			
								ł					

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS
REPORT NUMBER 2. GOVT ACCESSI	ON NO. 3. RECIPIENT'S CATALOG NUMBER
DTNSRDC-78/081	
TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVE
A NOTE ON BLOCKAGE CORRECTION,	
Mar a a	6. PERFORMING ORG. REPORT NUMBE
AUTHOR()	8. CONTRACT OR GRANT NUMBER(.)
Kwang June/Bai	16/2R01192
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TA
David W. Taylor Naval Ship Research	17 Task Area 78 011 0201
Bethesda, Maryland 20084	Element 61152N
1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
David W. Taylor Naval Ship Research	November 1978
and Development Center	13. NUMBER OF PAGES
4. MONITORING AGENCY NAME & ADDRESS(II different from Controlling O	ffice) 15. SECURITY CLASS. (of this report)
0 1 1 1 + +	UNCLASSIFIED
Research and development rept.	15. DECLASSIFICATION DOWNGRADI
	SCHEDULE
APPROVED FOR PUBLIC RELEASE: D 2. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If diffe	ISTRIBUTION UNLIMITED
APPROVED FOR PUBLIC RELEASE: D 2. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If diffe	ISTRIBUTION UNLIMITED
APPROVED FOR PUBLIC RELEASE: D 3. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If diffe	ISTRIBUTION UNLIMITED
APPROVED FOR PUBLIC RELEASE: D 2. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If diffe	ISTRIBUTION UNLIMITED
APPROVED FOR PUBLIC RELEASE: D 3. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different and the statement of the abstract of the abstract of the abstract of the statement of the abstract of the statement of	ISTRIBUTION UNLIMITED
APPROVED FOR PUBLIC RELEASE: D 3. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different 18. SUPPLEMENTARY NOTES 3. KEY WORDS (Continue on reverse elde if necessary and identify by block Blockage correction, Mean speed correction fo	ISTRIBUTION UNLIMITED
APPROVED FOR PUBLIC RELEASE: D 3. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde if necessary and identify by block Blockage correction, Mean speed correction fo Towing tank experiment, Wind tunnel experimen	ISTRIBUTION UNLIMITED rent from Report) number) rmula, t
APPROVED FOR PUBLIC RELEASE: D 3550 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse eide if necessary and identify by block Blockage correction, Mean speed correction fo Towing tank experiment, Wind tunnel experimen	ISTRIBUTION UNLIMITED rent from Report) number) rmula, t
APPROVED FOR PUBLIC RELEASE: D 3. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 difference 18. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary and identify by block Blockage correction, Mean speed correction fo Towing tank experiment, Wind tunnel experimen 10. ABSTRACT (Continue on reverse side if necessary and identify by block re-	ISTRIBUTION UNLIMITED rent from Report) number) rmula, t
APPROVED FOR PUBLIC RELEASE: D 350 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 difference 18. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde if necessary and identify by block Blockage correction, Mean speed correction for Towing tank experiment, Wind tunnel experimen 10. ABSTRACT (Continue on reverse elde if necessary and identify by block of It has recently been shown that a jump i	ISTRIBUTION UNLIMITED rent from Report) number) rmula, t number) n velocity potential exists
APPROVED FOR PUBLIC RELEASE: D 3550 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If difference 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse eide if necessary and identify by block Blockage correction, Mean speed correction fo Towing tank experiment, Wind tunnel experimen 10. ABSTRACT (Continue on reverse eide If necessary and identify by block It has recently been shown that a jump i between infinite upstream and downstream dire uniformly along a channel of finite cross see	number) rmula, t number) number) rmula, t
APPROVED FOR PUBLIC RELEASE: D 3. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If difference 9. KEY WORDS (Continue on reverse eide if necessary and identify by block Blockage correction, Mean speed correction fo Towing tank experiment, Wind tunnel experimen 10. ABSTRACT (Continue on reverse eide if necessary and identify by block re- It has recently been shown that a jump i between infinite upstream and downstream dire uniformly along a channel of finite cross sec wind tunnel. In this report a new blockage c	ISTRIBUTION UNLIMITED rent from Report) number) rmula, t number) n velocity potential exists ctions when a body translates tion such as a towing tank or orrection formula for body
APPROVED FOR PUBLIC RELEASE: D 3. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, If diffe 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse eide if necessary and identify by block Blockage correction, Mean speed correction fo Towing tank experiment, Wind tunnel experimen 0. ABSTRACT (Continue on reverse eide if necessary and identify by block r It has recently been shown that a jump i between infinite upstream and downstream dire uniformly along a channel of finite cross sec wind tunnel. In this report a new blockage c speed is proposed. The speed correction form	ISTRIBUTION UNLIMITED rent from Report) rumber) rumber) number) n velocity potential exists ctions when a body translates tion such as a towing tank or orrection formula for body ula due to blockage is
APPROVED FOR PUBLIC RELEASE: D 3. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, If diffe 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse eide if necessary and identify by block Blockage correction, Mean speed correction fo Towing tank experiment, Wind tunnel experimen 0. ABSTRACT (Continue on reverse eide if necessary and identify by block It has recently been shown that a jump i between infinite upstream and downstream dire uniformly along a channel of finite cross sec wind tunnel. In this report a new blockage c speed is proposed. The speed correction form	number) rent from Report) number) rmula, t n velocity potential exists ctions when a body translates tion such as a towing tank or orrection formula for body ula due to blockage is in rect
APPROVED FOR PUBLIC RELEASE: D 3. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If diffe 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse elde if necessary and identify by block Blockage correction, Mean speed correction fo Towing tank experiment, Wind tunnel experimen 0. ABSTRACT (Continue on reverse elde if necessary and identify by block r It has recently been shown that a jump i between infinite upstream and downstream dire uniformly along a channel of finite cross sec wind tunnel. In this report a new blockage c speed is proposed. The speed correction form	ISTRIBUTION UNLIMITED rent from Report) number) rmula, t number) n velocity potential exists ctions when a body translates tion such as a towing tank or orrection formula for body ula due to blockage is in the formula (Continued on reverse side)
APPROVED FOR PUBLIC RELEASE: D 3. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different supplementary notes 9. KEY WORDS (Continue on reverse eide if necessary and identify by block Blockage correction, Mean speed correction fo Towing tank experiment, Wind tunnel experimen 1. ABSTRACT (Continue on reverse eide if necessary and identify by block of The has recently been shown that a jump i between infinite upstream and downstream dire uniformly along a channel of finite cross sec wind tunnel. In this report a new blockage c speed is proposed. The speed correction form D 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-LF-014-6601	ISTRIBUTION UNLIMITED rent from Report) number) rmula, t number) n velocity potential exists ctions when a body translates tion such as a towing tank or orrection formula for body ula due to blockage is -> new (Continued on reverse sid UNCLASSIFIED
APPROVED FOR PUBLIC RELEASE: D 3. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 diffe 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse eide 11 necessary and identify by block Blockage correction, Mean speed correction fo Towing tank experiment, Wind tunnel experimen 0. ABSTRACT (Continue on reverse eide 11 necessary and identify by block r It has recently been shown that a jump i between infinite upstream and downstream dire uniformly along a channel of finite cross sec wind tunnel. In this report a new blockage c speed is proposed. The speed correction form D FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-LF-014-6601 SECURIT	ISTRIBUTION UNLIMITED rent from Report) rumber) rumber) rumber) n velocity potential exists ctions when a body translates tion such as a towing tank or orrection formula for body ula due to blockage is

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

(Block 20 continued)

obtained by dividing computed potential jump by body length, assuming that the body is slender or flat in the direction of motion. The potential jump is expressed explicitly in terms of the effective volume, i.e., the sum of the displaced volume and added mass/density of the submerged body, and the depth Froude number, if a free surface is present. As a test of the present speed correction formula, two cases are considered: (1) the Wigley parabolic ship model, tested in both a small and a large towing tank, (2) a body of revolution (prolate spheroid) tested in a circular wind tunnel. In each case the mean-speed increment averaged over the entire body surface is computed by a threedimensional, finite-element method applicable to free-surface flow problems. These are shown to be in good agreement with those obtained by the approximate speed correction formula. At high values of Froude numbers, the main difference in the total resistance coefficients measured in the two towing tanks by Tamura is due primarily to difference in model wave resistance computed for the two tanks by a full-fledged, three-dimensional, finite-element method. Results are also compared to those obtained by using the speed correction formula of Lock and Johansen. The present formula renders a better approximation than that of Lock and Johansen when the cross sectional area of a flow tunnel is not much larger than the maximum cross section area of the body.

	WILLE Section -
200	Buff Section
WANNOUNCE	n L
1-S 1 103 17	4
•••••	*******
r	
DIST 212 TO	Sactor II States
E.	E.4
	1
۸.	an an al saon
IX	

TABLE OF CONTENTS

Pag	e
LIST OF FIGURES	i
LIST OF TABLES	v
NOTATION	v
ABSTRACT	1
ADMINISTRATIVE INFORMATION	1
INTRODUCTION	1
BLOCKAGE CORRECTION	3
EXACT MEAN-SPEED INCREMENT	3
APPROXIMATE MEAN-SPEED INCREMENT	6
APPLICATIONS	8
TOWING TANK EXPERIMENT	8
WIND TUNNEL EXPERIMENT	5
CONCLUSIONS	7
ACKNOWLEDGMENT	9
REFERENCES	L
LIST OF FIGURES	
1 - Resistance Coefficients C_T , C_w , and \hat{C}_F	2
2 - Corrected Values of (C _T -C _w) from Small Tank o, Large Tank x, and ITTC 1957 and ATTC Curves,	
\widehat{c}_{F}	ŧ
3 - Velocity Potential for a Spheroid (a/b=4) in a Wind Tunnel with a Circular Cross Section of Radius R 16	5
4 - Added Mass Coefficient \overline{m} and Speed Correction $\Delta u/U$ for a Spheroid in a Circular Wind Tunnel	3

iii

LIST OF TABLES

Page

1	-	Dimensions of Small, Large, and Extra Large Towing Tanks
2	-	Wigley Parabolic Model (Tamura Model M1719) 9
3	-	Comparisons of Mean-Speed Increment, Computed by Numerical Results and by Present Formula for F _L = 0.4
4	-	Resistance Coefficients of the Wigley Parabolic Model at Two Different Towing Tanks (Model M1719) 13
5	-	Frictional Resistance Coefficients C_F and \widehat{C}_F , Computed from ITTC (1957) and ATTC Friction Formulas, at a Freshwater Temperature of 20 C
6	-	Comparisons of Mean-Speed Increments on a Spheroid in Wind Tunnel, Computed by a Numerical Method, Approximate Formulas (u /U=0.0813557 Obtained by Lamb was Used)

NOTATION

A	Cross sectional area of towing tank
a	One-half of length of prolate spheroid
В	Beam of ship
b	Radius of maximum cross section of spheroid
с _в	Block coefficient
с _ғ	Frictional resistance coefficient
$\mathbf{\hat{c}}_{_{\mathrm{F}}}$	Frictional Resistance Coefficient
с _т	Total resistance coefficient
C _W	Wave resistance coefficient
с _р	Prismatic coefficient
F	Hull fineness parameter
^F н	Water depth Froude number
FL	Ship length Froude number
g	Acceleration of gravity
Н	Water depth
K	Potential jump due to blockage
^k L	Partial form factor
L	Body length; length between perpendiculars
L w	Length of waterline
m'	Added mass of submerged body

m Added mass coefficient

v

R	Radius in cylindrical coordinates
R _F	Frictional resistance
R _T	Total resistance
R _W	Wave resistance
R _n	Reynolds number
R _o	Radius of tunnel wall
s _o	Wetted surface
Т	Draft of ship
U	Uniform incoming stream velocity at upstream infinity
ū	Mean speed due to blockage
ū,	Mean speed on the body in unbounded water
W	Width of towing tank
x,y,z	Right-handed rectangular coordinates
Δ u	Speed increment
$\Delta \mathbf{\bar{u}}$	Mean-speed increment averaged over body
ν	Kinematic viscosity of water
ρ	Density of water
$\vec{\tau} = (\tau_1, \tau_2, \tau_3)$	Tangential unit vector
Φ	Total velocity potential
Φo	Total velocity potential in absence of tank (or tunnel) walls
φ	Perturbation velocity potential
¢o	Perturbation velocity potential in absence of tank (or tunnel) wall

ví

♥ Displaced volume; volume

∇ Gradient operator

ABSTRACT

It has recently been shown that a jump in velocity potential exists between infinite upstream and downstream directions when a body translates unformly along a channel of finite cross section such as a towing tank or wind tunnel. In this report a new blockage correction formula for body speed is proposed. The speed correction formula due to blockage is obtained by dividing computed potential jump by body length, assuming that the body is slender or flat in the direction of motion. The potential jump is expressed explicitly in terms of the effective volume, i.e., the sum of the displaced volume and added mass/density of the submerged body, and the depth Froude number, if a free surface is present. As a test of the present speed correction formula, two cases are considered: (1) the Wigley parabolic ship model, tested in both a small and a large towing tank, (2) a body of revolution (prolate spheroid) tested in a circular wind tunnel. In each case the mean-speed increment averaged over the entire body surface is computed by a three-dimensional, finite-element method applicable to free-surface flow problems. These are shown to be in good agreement with those obtained by the approximate speed correction formula. At high values of Froude numbers, the main difference in the total resistance coefficients measured in the two towing tanks by Tamura is due primarily to difference in model wave resistance computed for the two tanks by a fullfledged, three-dimensional, finite-element method. Results are also compared to those obtained by using the speed correction formula of Lock and Johansen. The present formula renders a better approximation than that of Lock and Johansen when the cross sectional area of a flow tunnel is not much larger than the maximum cross section area of the body.

ADMINISTRATIVE INFORMATION

This work was authorized and funded by the Independent Research Program at the David W. Taylor Naval Ship Research and Development Center, Task Area ZR 011 0201, Element 61152N.

INTRODUCTION

Many authors have investigated blockage effect and proposed approximate blockage formulas to account for towing tank or wind tunnel boundaries.^{1-9*} The first approximation concerning towing tank blockage effects date back more than four decades. Owing to the difficulty encountered in computing flow separation, wake flow, free-surface effects, etc., the exact

^{*}A complete listing of references is given on page 21.

magnitude of the blockage effect on fluid force acting on a body is too complicated to analyze by purely theoretical means. However, these difficulties did not stop engineers from attempting to make simple engineering approximations of the blockage problem. For engineering purposes, computation of a mean-speed increment on a body due to blockage effects has been the main focus of interest in order to make a blockage correction to frictional drag. In the computation, the incremented change in frictional drag due to blockage is determined directly from the computed incremental increase of mean speed over the body surface caused by flow blockage.

Two basic inviscid flow-theory approaches have been previously employed. The first approach is based on the so-called one-dimensional, mean-flow theory, using the Kreitner equation, which was first obtained by Kreitner³ from the Bernoulli and the mass continuity equations under the assumption that velocity is uniform in each cross sectional plane. To name a few, Hughes⁴ and Kim⁵ used this approach. The second approach is based on successive reflection of images in the walls of a rectangular tank or simpler axisymmetric singularities in case of axisymmetric flows. In this approach, the velocity potential of the flow inside a specified tank boundary can be computed exactly in principle; usually, the potential is represented by a series expansion, and only the first few terms are computed. Ogiwara,⁶ Tamura,^{1,2} and Landweber and Nakayama⁷ have used the latter approach.

In all, there exist about a dozen formulas proposed for blockage corrections, and each is somewhat different from the other. Some formulas introduce empirical correction factors, ⁵ whereas others claim to be based on analytical derivations. Some formulas are proposed to be used only for frictional resistance corrections, whereas other formulas are used for total resistance corrections. An extensive review of the subject has been made by Gross and Watanabe.⁹

In the present preliminary study, skepticism is exercised about proposals in speed correction formulas that can be used to correct the total resistance which include the wave resistance in water of finite depth

with sidewalls. Herein is proposed a new speed correction formula to be used only for frictional resistance. The wave resistance which has been computed for any towing tank and/or model conditions by using the localized finite-element method previously developed by the author. $^{10-12}$ It seems to be impossible to make blockage corrections to total resistance by using only a single-speed correction formula, even though such formulas have been proposed in the past.

The approach used to derive a blockage correction formula herein is different from the two inviscid flow-theory approaches described previously. Derivation of a mean-speed correction formula in this report is based on the potential jump occurring in the three-dimensional flow in a towing tank or wind tunnel. To test the new speed correction formula, numerical computations for a full-fledged, three-dimensional wave resistance problem were made. The numerical mean-speed increment on a spheroid was computed exactly for a circular wind tunnel and compared with the results obtained by the new formula; results obtained agree reasonably well with exact numerical results.

BLOCKAGE CORRECTION

EXACT MEAN-SPEED INCREMENT

Steady uniform flow past a ship fixed in a channel has been considered; see Bai.¹² The coordinate system is right handed and rectangular. Under the usual assumptions, steady uniform flow may be described by a total velocity potential Φ defined by

$$\Phi(\mathbf{x},\mathbf{y},\mathbf{z}) = \mathbf{U}\mathbf{x} + \phi(\mathbf{x},\mathbf{y},\mathbf{z}) \tag{1}$$

where ϕ is the perturbation-velocity potential in a channel of finite cross section. Similarly the total velocity potential

$$\Phi_{o}(\mathbf{x},\mathbf{y},\mathbf{z}) = \mathbf{U}\mathbf{x} + \phi_{o}(\mathbf{x},\mathbf{y},\mathbf{z})$$
(2)

is defined to describe the flow about the same body in an unbounded fluid, i.e., in the absence of channel boundaries. The fluid speed on a body surface in general increases due to the blockage effect when compared with that of unbounded fluid. However, the speed increment on the body surface is not uniform over the entire surface. For example, the forward stagnation point of an axisymmetric body remains the same whether in an unbounded fluid or in a wind tunnel of circular cross section. Nevertheless, a mean speed correction has been traditionally employed for the blockage correction mainly due to its simplicity. To describe a mean-speed increment, speed increment due to blockage locally on the body surface is defined as

$$\Delta u = \nabla (\Phi - \Phi_0) \cdot \dot{\tau}$$
$$= \nabla (\Phi - \Phi_0) \cdot \dot{\tau}$$
(3)

where $\vec{\tau} = (\tau_1, \tau_2, \tau_3)$ is a unit tangential vector on the body surface; τ_1 is the component along the x-axis, i.e., the longitudinal direction, and τ_2 and τ_3 are, respectively, the normal and tangential components in the cross sectional plane of the body. Then the "exact" mean speed increment averaged over the entire submerged body surface is given by

$$\Delta \bar{u} = \frac{1}{S_o} \iint_{S_o} \nabla (\phi - \phi_o) \cdot \vec{\tau} \, ds$$
(4)

where S_{o} is the wetted surface area, and $\vec{\tau}$ is specified. One natural way of specifying $\vec{\tau}$ would be as the unit potential flow streamline vector on the body. However, streamlines on a body in bounded and unbounded flows, described by Φ and Φ_{o} , respectively, do not coincide in general, except in the special case of an axisymmetric body in a flow facility of circular cross section. In the case of a ship hull, if $\vec{\tau} = (1,0,0)$, and $S_{o} =$ $2 \cdot L \cdot T$ under the assumption that the ship is thin, Equation (4) can be reduced to

$$= \overline{u} - \overline{u}_{0}$$

(5)

where

$$\overline{u} = \frac{1}{L \cdot T} \int_{-T}^{0} \left[\phi \left(\frac{L}{2} , y, o \right) - \phi \left(-\frac{L}{2} , y, o \right) \right] dy$$

$$\overline{u}_{o} = \frac{1}{L \cdot T} \int_{-T}^{0} \left[\phi_{o} \left(\frac{L}{2} , y, o \right) - \phi_{o} \left(-\frac{L}{2} , y, o \right) \right] dy$$

 $\Delta \mathbf{u}$

where L and T are the ship length and draft, respectively. In Equation (5), the draft T is assumed to be uniform from the bow at x = -L/2 to the stern at x = L/2; the centerplane of the ship is on z = 0.

Similarly, for a slender axisymmetric body of revolution in a wind tunnel of circular cross section, the mean-speed increment averaged over the body surface is given by

$$\Delta \bar{u} = \bar{u} - \bar{u}_{o}$$

where

$$\overline{u} = \frac{1}{L} \begin{bmatrix} \phi \end{bmatrix} \begin{array}{l} \mathbf{x} = \frac{L}{2}, \quad R=0 \\ \mathbf{x} = -\frac{L}{2}, \quad R=0 \end{array}$$

$$\overline{u}_{0} = \frac{1}{L} \begin{bmatrix} \phi_{0} \end{bmatrix} \begin{array}{l} \mathbf{x} = \frac{L}{2}, \quad R=0 \\ \mathbf{x} = -\frac{L}{2}, \quad R=0 \end{array}$$
(6)
$$\mathbf{x} = -\frac{L}{2}, \quad R=0$$

where

$$R = \sqrt{y^2 + z^2}$$

and the peripheral length along a body meridian is approximated by the body length, assuming that the body is slender.

APPROXIMATE MEAN-SPEED INCREMENT

In this subsection, the method of obtaining an approximate speed correction formula is given, based on the potential jump discussed earlier by Bai.¹² Define K as a jump in the velocity potential ϕ given in Equation (1) between the infinite upstream and downstream directions. The potential jump K is given by integrating the speed increment along a line in the fluid from a point infinitely far upstream to a point infinitely far downstream. Numerical solutions for practical ship forms at subcritical speeds in towing tanks and for slender bodies of revolution in wind tunnels indicate that most of the potential jump occurs along the body length. This finding, observed in numerical solutions, will be used as the basis for obtaining the present approximate formula for the speed correction. It is possible to prove this empirical finding by showing that the values of the potential at the upstream and downstream stagnation points are approximately equal to the corresponding asymptotic values of the potential in the simple case of axisymmetric flow. However, the proof will not be discussed here. Thus, the mean speed increment u due to blockage is approximated by

$$\Delta \overline{u} = \frac{K}{L}$$
(7)

In a recent simple analysis,* the expressions for the potential jump K in terms of the effective volume and the depth Froude number $F_{\rm H}$ in three dimensions with a free surface were

$$K = \frac{(\Psi + m'/\rho) U}{WH (1 - F_{H}^{2})}$$
(8)

^{*}A more detailed analysis in general cases has been submitted in a paper to the Journal of Fluid Mechanics (1978).

where ₩ = displaced volume

 ρ = density of water

U = towing speed

W = tank depth

H = water depth

 $m' = m'(F_{H}) = added mass in the longitudinal direction$

$$F_{11} = U/\sqrt{gH}$$

In the derivation of Equation (8), it is assumed that the waterplane area of the ship hull is so thin that a line integral term is neglected, and the body boundary condition is satisfied exactly on the body surface. From Equations (7) and (8) is obtained

$$\frac{\Delta u}{U} = \frac{\Psi + m'/\rho}{AL (1-F_{H}^{2})}$$
(9)

where A = WH is the cross sectional area of the tank. It is of interest to note that when the value of g approaches infinity, F_{H} approaches zero, and Equation (9) reduces to the case of a wind tunnel, where

$$\frac{\Delta \bar{\mathbf{u}}}{\mathbf{U}} = \frac{\Psi + \mathbf{m'}/\rho}{AL} \tag{10}$$

It is also of interest to note that when the body boundary condition is linearized, i.e., satisfied on the body centerplane, Equations (9) and (10) further reduce to

$$\frac{\Delta \bar{u}}{U} = \frac{\Psi}{AL (1 - F_{\rm H}^2)} \tag{9'}$$

in the presence of a free surface and

$$\frac{\Delta \mathbf{u}}{\mathbf{U}} = \frac{\mathbf{\Psi}}{\mathbf{AL}}$$

in the absence of a free surface.

APPLICATIONS

TOWING TANK EXPERIMENT

To test the new blockage correction formula, three sets of computations were first made for the same model in three different towing tanks. The first two tanks had the dimensions given by Tamura;^{1,2} see Table 1. The third tank was approximately four times greater in cross sectional area than the large tank listed in Table 1, i.e., W = 24 m and H = 12 m. The specific ship model considered was the Wigley parabolic model (Model M1719 in Tamura), and the equation of the hull surface was given by

$$z = \pm \frac{B}{2} \left\{ 1 - \left(\frac{x}{L/2}\right)^2 \right\} \left\{ 1 - \left(\frac{y}{T}\right)^2 \right\}$$
(11)

where L/B = 10, and T/L = 0.0625. The geometric particulars of the models have been given in Table 2.

In the computations, the ship hull boundary condition was linearized; thus, speed correction formula (Equation (9')) was used. To test the present mean-speed correction formula, computations were also made from Equation (5) the exact mean-speed increment averaged over the hull surface from the local velocities obtained by the finite-element method.¹² In computing the value of \bar{u}_0 from Equation (5), the numerical result for the extra large tank was used in place of the perturbation potential for unbounded water ϕ_0 because the effect of the tank wall and the bottom was found to be negligibly small. Comparisons between the "exact" and approximate mean-speed increments are given in Table 3. Agreement is reasonably good. It should be noted in Table 3 that the exact mean speed averaged on the hull surface \bar{u}_0 , defined by Equation (5), is not only nonzero but also independent of Froude number. It should also be noted

(10')

	Small Tank	Large Tank	Extra Large Tank
Width in meters	6.09	12.5	24
Mean Water Depth in meters	3.555	6.268	12

TABLE 1 - DIMENSIONS OF SMALL, LARGE, AND EXTRA LARGE TOWING TANKS^{1,2}

TABLE 2 - WIGLEY PARABOLIC MODEL (TAMURA MODEL M1719)

Length between Perpendiculars in meters	8.000
Length of Waterline in meters	7.984
Beam in meters	0.800
Draft in meters	0.500
Volume in meters	1.422
Wetted Surface in meters	9.408
Block Coefficient	0.4453
Prismatic Coefficient	0.6680

TABLE 3 - COMPARISONS OF MEAN-SPEED INCREMENT, COMPUTED BY NUMERICAL RESULTS AND BY PRESENT FORMULA FOR $F_L = 0.4*$

	Exa	ct Numeric	al Results	Equation (9')
Tank	ū _o /U	ū/U	$\Delta \bar{u}/U = (\bar{u} - \bar{u}_{o})/U$	∆ū/U
Small	0.017198	0.030514	0.0133	0.0128
Large	0.017198	0.019425	0.0022	0.0029

that the free surface effect on the velocity profile on the body surface would be significantly dependent upon whether the hull is in a shallow towing tank or in unbounded water. The present study indicates that the approximate speed correction formula satisfactorily treats the seemingly complicated free-surface effect on the mean-speed increment on the body.

The total resistance coefficient C_T , determined experimentally by Tamura, and the wave resistance coefficients C_W computed by the finite element method, are given in Table 4.

In presenting our results, the total resistance coefficient $\rm C_T$ and the wave resistance coefficient $\rm C_T$ are defined as

$$C_{T} = R_{T} / \frac{\rho}{2} u^{2} \psi^{2/3}$$

$$C_{w} = R_{w} / \frac{\rho}{2} u^{2} \psi^{2/3}$$
(12)

where R_T and R_w are, respectively, the total and wave resistances. The frictional resistance coefficients, C_F and \hat{C}_F , are defined by

$$C_{F} = R_{F} / \frac{\rho}{2} \quad U^{2} \quad S_{o}$$

$$\hat{C}_{F} = C_{F} \cdot \frac{S_{o}}{\Psi^{2/3}} = R_{F} / \frac{\rho}{2} \quad U^{2} \quad \Psi^{2/3}$$
(13)

where S is the model wetted surface area. The model length Froude number $\rm F_L$ and Reynolds number R are defined by

$$F_{L} = U/\sqrt{gL}$$

$$R_{n} = v/\sqrt{UL}$$
(14)

where v is the kinematic viscosity of water. Here the Reynolds number R_n is obtained by assuming that the freshwater temperature in two towing tanks was 20 C. Table 4 results are given in Figure 1; the wave resistance computed for the extra large tank was taken to be the same as for unbounded water, already mentioned. In Figure 1, hull wave resistance in the large tank is very close to that for the extra large tank. Thus, the blockage effect on wave resistance is very small for the large tank. Also, the main difference in the total resistance coefficients C_T measured in the small and large towing tanks is due primarily to the difference in the model wave resistance computed for the two tanks.

Table 4 gives the speed corrections computed from Equation (9') along with the corrected values of $(C_T - C_w)$. The corrected value of $(C_T - C_w)$ is given by $(C_T - C_w) (U/(U + \Delta u))^2$. Table 5 gives the frictional resistance coefficients C_{F} and C_{F} , computed from International Towing Tank Conference (ITTC) (1957) and American Towing Tank Conference (ATTC) friction formulas. In the present study, it is assumed that the total resistance less the computed theoretical wave resistance is approximately equal to the frictional resistance, since the ship hull is thin and smooth, i.e., form drag is assumed to be negligibly small. If we make use of the ${
m Granville}^{13}$ correlation of partial form factor k, with hull-fineness parameter $F = C_p \sqrt{(B/L)(2T/L)}$ for the Wigley parabolic model with $F_L = 0.5$, we find that $k_r = 0.04$; i.e., form drag is estimated to be only 4 percent of the frictional drag and a still lower percentage of the total drag. Accordingly, speed correction Equation (9') was applied to the resistance component $\hat{C}_F = C_T - C_U$ to correct for blockage effect. Results given in Table 5 are shown in Figure 2. In Figure 2, the corrected values of $(C_{T}-C_{T})$ are lower than the values of C_{T} given by ITTC and ATTC friction formulations, indicating negative hull form drag, which is not acceptable. In other words, if the form drag coefficient and other corrections had been added to the values of ITTC and ATTC friction coefficients, this discrepancy would be even larger. The discrepancy seems to have been caused by computed values of the wave resistance being too large.

Figure 1 - Resistance Coefficients, C_{T} , C_{w} , and \hat{C}_{F}

	FL	C _T Experiment by Tamura	C _w Numerical by Bai	C _T -C _w	∆ ū ∕บ	(C _T -C _w) Corrected	(F _L) Corrected
	0.325	0.0353	0.00959	0.0257	0.0108	0.0251	0.329
Small Tank	0.350	0.0348	0.00981	0.0250	0.0113	0.0244	0.354
	0.375	0.0397	0.01543	0.0243	0.0120	0.0237	0.380
	0.400	0.0480	0.02364	0.0244	0.0128	0.0237	0.405
	0.425		0.03106	11.5771			
	0.325	0.0344	0.00971	0.0247	0.0026	0.0246	0.326
Large	0.350	0.0331	0.00785	0.0253	0.0027	0.0251	0.351
	0.375	0.0361	0.01203	0.0241	0.0028	0.0240	0.376
runk	0.400	0.0414	0.01865	0.0228	0.0029	0.0226	0.401
	0.425		0.02487				

TABLE 4 - RESISTANCE COEFFICIENTS OF THE WIGLEY PARABOLIC MODEL AT TWO DIFFERENT TOWING TANKS (MODEL M1719)

TABLE 5 - FRICTIONAL RESISTANCE COEFFICIENTS C_F AND \hat{C}_F , COMPUTED FROM ITTC (1957) AND ATTC FRICTION FORMULAS, AT A FRESHWATER TEMPERATURE OF 20 C

		ITTC	1957	ATTC		
FL	R _n	C _F	Ĉ _₽	C _F	Ĉ _₽	
0.325	3.861×10^{6}	0.003565	0.0265	0.003444	0.0256	
0.350	4.158×10^{6}	0.003516	0.0261	0.003400	0.0253	
0.375	4.455×10^{6}	0.003470	0.0258	0.003360	0.0250	
0.400	4.752×10^{6}	0.003429	0.0255	0.003323	0.0247	

>

In the numerical computation of wave resistance by the finite-element method, 44 nodes on the ship hull surface, i.e., on the centerplane, and 1496 nodes for the entire fluid domain were taken. One may expect more refined results by reducing the size of finite elements. To treat low values of Froude number accurately, smaller and more elements are necessary.

WIND TUNNEL EXPERIMENT

As a second example, the blockage effect was considered for a wind tunnel having a uniform circular cross section of radius R_0 . The specific body geometry considered was a prolate spheroid with its meridian profile given by

$$\frac{x^2}{a^2} + \frac{R^2}{b^2} = 1$$
(15)

for the special case when a/b = 4.

The potential flow for the axisymmetric boundary configurations considered herein could have been computed by the conventional method of integral equations; i.e., the axial source and doublet distributions or the vortex sheet on the surface, etc., as discussed in Landweber.¹⁴ However, the velocity potential has been computed by the finite-element method. Computations have been made for seven values of $R_o/b = 1.25$, 1.5, 2, 3, 4, 5, and 15 all for a/b = 4. When $R_o/b = 15$ was computed, the effect of the tunnel wall on the body surface was negligibly small as if the body were moving in an infinite fluid. The value of $\bar{u_o}/U$ defined in Equation (5), computed by using the result of $R_o/b = 15$, was 0.08185, whereas that computed by using the exact analytic result for the unbounded water, i.e., $R_o/b = \infty$, given in Lamb¹⁵ was 0.08156.

The computed velocity potential ϕ is shown in Figure 3 for three values of $R_0/b = 1.25$, 1.5, and 15. To illuminate the assumption made to obtain the present approximate mean-speed correction, Figure 3 shows straight lines drawn from the origin to the asymptotic values of K/2 at the

the downstream stagnation point x = L/2. The slope of each straight line is equal to the speed correction defined by Equation (7). Owing to the skew symmetry of the potential with respect to x = 0, the result for the upstream half-body can be obtained from the downstream potential shown in Figure 3. The velocity potential increases monotonically from a value slightly lower than - K/2 at the upstream stagnation point to a value slightly higher than K/2 at the downstream stagnation point on the body surface. However, the potentials at R = 1.25b approach monotonically the asymptotic values at both ends for $R_0/b = 1.25$ and $R_0/b = 1.5$.

In Table 6 the approximate mean speed correction given by Equation (10) is compared with the exact mean-speed correction computed from Equation (6). Table 6 also gives the speed correction obtained by the Lock and Johansen formula, which is given in $Pope^{8}$ as

$$\frac{\Delta \overline{u}}{\overline{u}} = 2.391 \left(\frac{b}{R_o}\right)^3$$
(16)

When $R_0/b < 3$, our approximate results show better agreement with the exact numerical results than with those of Lock and Johansen.

In Figure 4 computed values of the added mass coefficient and the mean speed correction $\Delta \bar{u}/U$ are shown as a function of b/R_o . In Figure 4, note that for $b/R_o > 0.765$, the contribution of the added mass to the speed correction in Equation (10) is more dominant than the contribution of the displaced volume, i.e., $\bar{m} \equiv m'/\rho \Psi > 1$. This finding indicates that a crude blockage correction, based on only the local cross sectional area of the body using one-dimensional theory, cannot always give a good approximation of the mean-speed correction when the added mass coefficient is not small.

CONCLUSIONS

In the present study a new mean-speed formula for corrections caused by blockage is proposed. The approximate formula is tested by comparing

TABLE 6 – COMPARISONS OF MEAN-SPEED INCREMENTS ON A SPHEROID IN A WIND TUNNEL, COMPUTED BY A NUMERICAL METHOD, APPROXIMATE FORMULAS $(\bar{u}_{o}/u=0.0813557)$

R _o ∕b	ធ/ប	$\Delta \hat{u} / v$			
		Exact	Present Formula (Equation (6))	Lock and Johansen (Equation (16))	
1.25	0.98204	0.90050	0.93965	1.22419	
1.5	0.52285	0.44129	0.47716	0.70844	
2	0.26702	0.18546	0.21559	0.29888	
3	0.14442	0.06287	0.08505	0.08856	
4	0.11088	0.02932	0.04624	0.03736	
5	0.09748	0.01593	0.02920	0.01913	
15	0.08185	0.00030	0.00320	0.00071	

OBTAINED BY LAMB WAS USED)

it with an exact numerical mean-speed correction, computed by the finiteelement method for both a towing tank experiment and a wind tunnel experiment. The two predictions are shown to be in good agreement for both facilities. It is shown that the effect of added mass coefficient on the speed correction of a body is very significant as the blockage effect increases. It is also found that the main difference in the total resistance coefficient measured in a large and a small towing tank is due primarily to the difference in the model wave resistances computed for the two tanks. Further investigation is necessary to take into account other blockage corrections due to viscous effects such as flow separation and wake displacement thickness effects.

ACKNOWLEDGMENT

The author would like to thank Mr. Justin McCarthy for suggesting this problem and for his encouragement during the work.

REFERENCES

1. Tamura, K., "Study of the Blockage Correction," Journal of the Society of Naval Architects of Japan, Japan, Vol. 131, pp. 17-28 (1972).

2. Tamura, K., "Blockage Correction," The 14th International Towing Tank Conference, Ottawa, Canada, pp. 173-182 (1975).

3. Kreitner, J., "Uber den Schiffswiderstand auf beschranktem Wasser," Zeitschrift Werft, Reederei, Hafen (1934).

4. Hughes, G., "Tank Boundary Effects on Model Resistance," Transactions of the Institution of Naval Architects, Vol. 103, pp. 421-440 (1961).

5. Kim, H.C., "Blockage Correction in a Ship Model Towing Tank," The University of Michigan Report 04542, Ann Arbor (1963).

6. Ogiwara, S., "Calculations of Blockage Effects," The 14th International Towing Tank Conference, Ottawa, Canada, Vol. 3, pp. 163-172 (1975).

7. Landweber, L. and A. Nakayama, "Effect of Tank Walls on Ship-Model Resistance," The 14th International Towing Tank Conference, Ottawa, Canada, Vol. 3, pp. 62-91 (1975).

8. Pope, A., "Wind Tunnel Testing," John Wiley and Sons, Inc., New York, p. 319 (1947).

9. Gross, A. and K. Watanabe, "On Blockage Correction," The 13th International Towing Tank Conference, Appendix 3, Berlin/Hamburg, Germany (1972).

10. Bai, K.J., "A Localized Finite-Element Method for Steady, Two-Dimensional Free-Surface Flow Problems," Proceedings of the First International Conference on Numerical Ship Hydrodynamics, Edited by J.W. Schot and N. Salvesen, pp. 209-229 (20-22 Oct 1975).

11. Bai, K.J., "A Localized Finite-Element Method for Steady Three-Dimensional Free-Surface Flow Problems," Proceedings of the Second International Conference on Numerical Ship Hydrodynamics, held at the University of California, Berkeley, Calif. (1977).

12. Bai, K.J., "A Localized Finite-Element Method for Two-Dimensional Steady Potential Flows with a Free Surface," Journal of Ship Research, Vol. 22, No. 4 (1978).

 Granville, P.S., "Partial Form Factors form Equivalent Bodies of Revolution for the Froude Method of Predicting Ship Resistance,"
 Paper 9, Proceedings of the First Ship Technology and Research Symposium, Society of Naval Architects and Marine Engineers, pp. 9-1-9-13 (1975).

14. Landweber, L., "Axisymmetric Potential Flow in a Circular Tube," Journal of Hydronautics, Vol. 8, No. 4, pp. 137-145 (1974).

15. Lamb, H., "Hydrodynamics," Sixth Edition, Cambridge University Press, Great Britain, p. 738 (1932).

INITIAL DISTRIBUTION

Copies		Copies	
1	WES	1	NUSC/Lib
1 2	CHONR/438 Cooper NRL 1 Code 2027 1 Code 2627	7	NAVSEA 1 SEA 03221 1 SEA 032 1 SEA 03512/Peirce 1 SEA 037
1	ONR/Boston		3 SEA 09G32
-	own / dl /	1	NAVFAC/Code 032C
1	ONR/Chicago	1	NAVSHIPYD PTSMH/Lib
1	ONR/Pasadena	1	NAVSHIPYD PHILA/Lib
1	ONR/San Francisco	1	NAVSHIPYD NORVA/Lib
1	NORDA	1	NAVSHIPYD CHASN/Lib
1	NOO/Lib (Naval Oceanographic Office)	1	NAVSHIPYD LBEACH/Lib
5	USNA l Tech Líb l Nav Sys Eng Dept l Jewell	2	NAVSHIPYD MARE 1 Library 1 Code 250
	l Bhattacheryya l Calisal	1	NAVSHIPYD BREM/Lib
2	NAVPCSCOL	1	NAVSHIPYD PEARL/Code 202.32
-	l Library l Garrison	10	NAVSEC 1 SEC 6034B 1 SEC 6110.01
1	NADC		1 SEC 6114
1	NOSC, San Diego l Library l Lang l Higdon		1 SEC 6120 1 SEC 6136 1 SEC 6136/Covich 1 SEC 6114D 1 SEC 6120F
1	NCSC/712 D. Humphreys		1 SEC 6136/Goldstein
1	NCEL/Code 131	1	NAVSEC, NORVA/6660.3 Blount
1	NSWC, Enig	12	DDC

Copies		Copies	
1	AFOSR/NAM	2	Florida Atlantic U. 1 Tech Lib
1	AFFDL/FYS, J. Olsen		1 S. Dunne
1	NSF/Eng Lib	1	U. of Hawaii/St. Denis
1	LC/Sci and Tech	1	U. of Illinois/J. Robertson
1	DOT/Lib TAD-491.1	3	U. of Iowa 1 Library
2	MMA		1 Landweber
	l Capt McClean l Library		1 Kennedy
		1	John Hopkins U./Phillips
1	NBS/Klebanoff		•
		1	Kansas State U./Nesmith
1	MARAD/Lib		
-		1	U. of Kansas/Civil Eng Lib
5	U Of Cal/Dept Naval Arch.	-	
5	Berkely	1	Lehigh IL /Fritz Eng Lab Lib
	1 Eng Library	-	Denigh 0., Title Dig Lab Dib
	1 Ling Library	5	MTT
	1 webster	,	1 I throw
	l Paulling		1 Library
	1 Wehausen		1 Yeung
			1 Mandel
2	U. of Cal. San Diego		l Abkowitz
	1 A.T. Ellis		1 Newman
	1 Scripps Inst Lib		
		4	U. of Mich/NAME
2	CIT		1 Library
	1 Aero Lib		1 Ogilvie
	1 T.Y. Wu		1 Beck
			1 Daoud
1	City College, Wave Hill/		
-	Pierson	2	U. of Notre Dame
	Tierson	-	1 Eng Lib
1	Catholic II of Amer/Civil &		1 Strandhagen
Т	Mach Eng		1 berundnagen
	Meen Eng	2	Now York II /Courant Inst
	Colored Chate II /Fee Dec Con	2	New Tork 0.7 courant mist
T	colorado State 0./Eng Res Cen		1 A. Feters
			I J. SLOKET
1	U. of Connecticut/Scottron		
No. However		1	Penn State/Arl/B. Parkin
1	Cornell U./Sears		
		1	Princeton U./Mellor

Copies		Copies	
6	SIT	1	Gibbs & Cox/Tech Info
	l Library l Breslin l Savitsky l Dalzell l Fridema	2	Hydronautics l Library l Barr
	1 Kim	2	Lockheed, Sunnyvale 1 Potash
1	U. of Texas/Arl Lib		1 Chung
1	Utah State U./Jeppson	1	Maritime Research Information Service
2	Southwest Res Inst 1 Applied Mech Rev 1 Abramson	2	McDonnell Douglas, Long Beach l J. Hess
2	Stanford U. I Eng Lib I R Street	1	1 T. Cebeci Newport News Shipbuilding/
1	Stanford Res Inst/Lib	-	Lib
2	U. of Washington	1	Nielsen Eng & Res
	l Eng Lib 1 Mech Eng/Adee	1	Oceanics
3	Webb Inst	1	Rockwell International/ B. Ujihara
	1 Library 1 Lewis 1 Ward	1	Science Applications, Inc./ Chapman
1	Woods Hole/Ocean Eng	1	Sperry Rand/Tech Lib
1	Worchester PI/Tech Lib	1	Sun Shipbuilding/Chief Naval Arch
1	SNAME/Tech Lib	2	American Bureau of Shipping
1	Bethlehem Steel/ Sparrows Point		1 Lib 1 Cheng
1	Bethlehem Steel/New York/Lib	1	Robert Taggart
1	Bolt, Beranek & Newman/Lib	1	Tracor
1	Exxon, NY/Design Div, Tank Dept		
1	General Dynamics, EB/		

Boatwright

CENTER DISTRIBUTION

Copies	Code	Name
1	1170	J.J. Luckard
1	1500	W.E. Cumming
1	1504	V.J. Monacella
1	1506	M.K. Ochi
1	1507	D. Cieslowski
1	1512	J.B. Hadler
1	1520	R. Wermter
1	1521	P. Pien
1	1524	Y.T. Shen
1	1524	W.C. Lin
1	1532 1532	G. Dobay M. Wilson
1	1540	W.B. Morgan
1	1552	J. McCarthy
1	1552	N. Salvesen
30	1552	K.J. Bal
1	1542	B. Yim
1	1560	G. Hagen
1	1561	C.M. Lee
1	1562	M. Martin
1	1564	J. Feldman
1	1572	M.D. Ochi
1	1572	E. Zarnick
1	1606	T.C. Tai
1	1614	M.J. Malia
1	1843	H. Haussling
1	1843	J. Schot
10	5214.1	Reports Distribution
1	522.1	Unclassified Lib (C)
1	522.2	Unclassified Lib (A)

DTNSRDC ISSUES THREE TYPES OF REPORTS

1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECH. NICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.

2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIM-INARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE. THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.

3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR IN-TERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE BASIS.