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SECTION I

INTRODUCTION

The concept of a well-posed problem was formulated by Hadamard

early in this century. In broad terms, a problem is well-posed in

the sense of Hadamard if it has a unique solution which depends con-
tinuously on the data of the problem. Specifically, if T is a trans-
formation from a metric space X into a metric space Y, then the prob-

lem
Tx = b (1)
is said to be well-posed if

( 1) for each beY there is a solution xeX,
( 11) the solution x is unique, and

(iii) the solution x depends continuously on the ''data'" b.

A problem which is not well-posed is called "ill-posed.' 1I11-

f posed problems have been intensively studied during the last fifteen

years, especially by Soviet mathematicians (see [12],[23]), because
i of their importance in many engineering applications (see [11] and
| [14] for specific areas of Air Force interest). In this report we
; will be concerned with linear ill-posed problems, that is, we will
study the problem (1) where T is a linear operator on Hilbert space.
A typical problem of this type is the integral equation of the first

4 kind




d
fk(s.t)x(s)da = b(t) (2)

a
where the kernel k is a member of Lz([a,d]x[a.d]) (the space of
Lebesgue square integrable functions on the rectangle (a,d]x[a,d])
and brLZ[a,d] (we allow a or d to be infinite). Such equations are
notoriously ill-posed. For example, if k(s,t) = t + ¢, then (2) can
have a solution only if b is a linear function, violating (i). If
k(s,t) = sin(s) and b(t) = 2, then by the well-known orthogonality

relations,

n
fk(s.t)(l + sin(ms))ds = b(t), m = 2,3,...
0
which violates (ii). Far more serious is the fact that (iii) is
violated for equations of type (2). Indeed, by the Riemann-Lebesgue
lemma, for arbitrary A,
1
fk(s,t) A sin (mms)ds + 0 as m > o,
o
and hence solutions do not depend continuously on the data.
Numerical methods for analyzing ill-posed linear problems are
particularly important because a large number of engineering prob-
lems have the form (2). Consider for example the one dimensional

heat equation




~ 2

3__; -:—:- ,» u(x,0) = h(x).
ox

It is well known that the temperature distribution f(x) = u(x,T) at
some time T > 0 can be expressed in terms of the initial temperature

distribution h(x) by

fexp(-(x-r)zl (4T))h(t)dT.
2/AT ¥

f(x) =

The "inverse" problem of determining the initial temperature distri-
bution h(x), given the distribution f(x) at the later time, is of
considerable interest and is an ill-posed problem of type (2).
Another problem of type (2) is the numerical differentiation
problem. The nth derivative of a given function b(t) (with b(0) =

b°(0) @ s .vw 881 (05 4 0) sacisfies

t
f '(-,;_—i-)-r (t-)""1x(s)ds = b(t).
0

This problem has been studied extensively within the context of ill-
posed problems by Cullum [3], Franklin [5] and others.

Another example is afforded by the work of Lee [13] and Pro-
vencher {18] on the determinatior. of the molecular weight distribution
of a solute from centrifuge data. In this example the molecular

weight distribution f(m) satisfies

2 2 =Amx
U(x) -f A — f(m)dm
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where U is a function which is proportional to the measured con-
centration gradient and A is a constant which is proportional to the
square root of the rotor speed.

As a final example, we give the two dimensional integral equa-
tion

p(x7,y") dx’dy”
Qx4 =y

L fl (XQY) — fz(xvy)

which was studied by Singh and Paul [21] and concerns the pressure
distribution in the contact of nonconforming elastic bodies.
Integral equations of the first kind also arise in the deter-
mination of the shape of conducting bodies from backscattered elec-
tromagnetic radiation ([16],[17]), seismic prospecting [2], antenna
theory [4], remote probing of the atmosphere ([22],[24]), medical

tomography [6] and system identification ([1],[15]).
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SECTION II

GENERALIZED INVERSES

We will henceforth assume that Hl and H2 are Hilbert spaces and

that T:H1 > H2 is a bounded linear operator. The inner product and
norm in each space will be denoted by (+,+) and ||+||, respectively.
The range and nullspace of T will be denoted by R(T) and N(T), re-
spectively. Our task is to solve the ill-posed problem (1) for

erl given bcHz. Of course, if bFR(T) then (i) is violated and there
is no solution. 1In such a case we might reasonably adopt the more
flexible attitude of replacing b in the right hand side of (1) by

the point in R(T) which is nearest to b. However, if R(T) is not

closed, such a closest point may not exist. We are then led to accept

as a generalized solution any vector ueH1 which satisfies

Tu = Pb (3)
where P is the projection of “2 onto R(T), the closure of R(T). Any

vector u satisfying (3) is called a least squares solution of equa-

tion (1). We note that a least squares solution will exist for any

vector b whose projection onto R(T) lies in R(T), i.e., for all vec-

tors b in the dense subspace R(T) @ R(T)"' of Hz. It is not diffi-

cult to see that least squares solutions may also be characterized

as vectors ueﬂl which satisfy either of the conditions ‘

[[Tu - b]] :.IlTx - b||, for all x ¢ H (4)

1)

or . - |
TTu=THhH (5)
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where T* is the adjoint of T (see [7] for a proof of this and other
simple facts pertaining t this section).

We have seen that if we consider least squares solutions in-
stead of traditional solutions, then difficulty (1) is to a certain
extent obviated. The problem of nonuniqueness, however, remains at
this point. Indeed, if N(T) # {0} then there may be infinitely many
least squares solutions, for if u is a least squares solution, then
so is u+v for any veN(T). Fortunately, there is a natural way of se-
lecting a least squares solution which is unique in a certain sense.
We see from (5) that the set of all least squares solutions is a
closed convex set. This set therefore contains a unique vector of
smallest norm and it is this vector which we will accept as the
unique generalized solution of equation (1). Let 0(T+) = R(T) @ R(T)l:

The operator

.0ty - H,

which associates with each b ¢ O(Tf) the unique least squares sol-
ution of equation (1) with minimal norm is called the generalized
inverse of T. It is not difficult to show that T+ is a closed linear
operator (see [7]). If '1‘T were continuous then problems (i), (ii),
(111) would be solved, at least for bef(T'). But alas this is not
the case. It is not difficult to show that T+ is continuous if and
only if R(T) is closed. Unfortunately the range of an integral op-
erator is closed if and only if its kernel is degenerate (see [7]).

We are therefore led to seek approximations to T+ by bounded linear

-

&
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operators. Such approximations, when applied to b, are called reg-

ularizors of equation (1).
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SECTION III

A GENERAL METHOD

We will denote the operator T*T by T and the operator TT* by
T. Note that T and T are self adjoint linear operators whose spec-
tra lie in the interval [0,||T||2]. If 0 ¢ o(T) (the spectrum of
T), then by (5) we have '1‘+ = T-lT*. In general, however, 0 ¢ o(i),
but this last equation nevertheless leads us to seek approximations
to T+ by operators of the form U(i)T* where U is a continuous func-
tion on [0,||T]|2] which approximates the function f(t) = t.1 in
some sense., Specifically, we will consider a family (net) of real
valued functions {UB(t):BeS}, indexed by a subset S of the positive

real numbers with wcg; where each U, 1s continuous on {O,IITIIZJ

B
and such that

ItUB(t)| <M for all t and B (6)

and 1

UB(t) ot as B + » for each t # 0. (7)

The following is proved in [7].

~ * b
= UB(T)T b, Then x_, -+ T1b

Theorem 1. Suppose beﬂ(T*) and let x 8

8
as B » o,

To this we now add,

Theorem 2. If btﬁ('l‘+), then {xB} hns no weakly convergent subnet.

Proof. Suppose {xB,} is a subnet of {xB} which converges weakly

to chl, denoted xB, X z. By the weak continuity of bounded linear

operators we then have TxB, ¥ 2.




Now,

~ R
Pb - TxB = Pb - TUB(T)T b

= Pp - 'i’Ub('i‘)Pb.

However, by (6) and (7), the operator TUB(%) converges pointwise to

o 2 e i e
- g

oAb i D e
the projection of H, onto N(T)” = N(T ) = R(T). Therefore

2

Pb - TXB' + 0. 1t then follows that Pb = Tz, a contradiction.f

~ %
In the proof above we have used the fact that UB(T)T =

: * ~
b T UB(T). This is easy to see if U, is a polynomial. In the general

8
case the identity follows from the Weierstrass approximation theorem.
Using the fact that bounded sets in Hilbert space are weakly com-

pact, we have:

Corollary 3. If btﬂ(TT). then ||x8|| > © g8 R » @,

Theorem 1 and Corollary 3 demonstrate dramatically the
unequivocal nature of the approximations {xB}.

Several authors have established rates of convergence for
various approximations to TTb under the stronger assumption that
Pb ¢ R(T) (see [20],[9],[10]). We see from Corollary 3 that the

very least we must require to get convergence at all is that

Pb ¢ R(T). 1In order to strengthen this condition only slightly and .

thereby obtain a rate of convergence we note that

1
1
!
|
|
|

\i

R(T) = R(TP ﬂ
N(T)

and, in the pointwise sense,

10

%
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N(T) o'
It therefore seems reasonable to replace the hypothesis b c"(T*),
i.e., Pb ¢ R(T), by the hypothesis Pb ¢ R(Ti“) for some v > 0. In
order to gauge the rate of convergence we will replace (7) by the

stronger condition
1 - tU ()| < w(Byv) for v > 0 (8)

where w(B,v) =+ 0 as B > » for each v > 0 (the case v = 1 was con-
sidered in [8]).

Lemma 4. If v > 0, then R(T") € NCT)

Proof. Suppose (fn} is a sequence of continuous real valued func-

v=1

ttons on [0,]|T]|%] such that £ _(t) + t"' for t # 0 and tf (t) is

uniformly bounded (for example, we may take fn(t) - t\"—l for t > 1/n

2% for 0 <t <1/n). Let (Et} be the resolution of

and fn(t) = n
the identity generated by the self-adjoint operator T. By the

bounded convergence theorem we then have

2 2
) [T [l
iy = f t2dE y = f lim tf (t)dE,y
t n t
0 0 n
2
Tl S0t L
- 1in S tf (t)dE.y = lim Tf (T)y ¢ N(T) .#
n 0 “ s n "

We now state a rate of convergence reswuit. The vector

Trb will be denoted by x and the error x = Xg by ey

11




Theorem 5. If Pb = TT'w, where v > 0, then lleell < w(B,v) | |w]].
Proof. Since Tx = Pb = vaw and since x - ivw € N(TYL. we see

that x = T w. Now,
U1 = v (HTPb
o il gl

oy 5 =y mvHl
Uy (H)Tx = U (DT v

Therefore e, = x - x

B B

By the Spectral Mapping Theorem and Radius Formula, we then have

- V(1 - UB(T)i)w.

[egll < w0 [1w[]. ¢

In our next result we become more cavalier in our

assumptions on the data.

Lemma 6. 1f Pb = T'w where v > 1, then ||eB||2 < w(B.v-1)||Tea|| | |w]].
*N -
Proof. As in the previous proof we find that x = T lv. Also,

&3
L]

~ * ~ XAy
UB(T)T Pb = UB(T)T Tw

* AL Ay
=T UB(T)T w.

* R K\
Therefore e8 -, - T (I - UB(T)T)T\ lw. and
2 * ALavav=1
egl1® = (eguT (X = U MTT W)
AL Aye] {
= (TeB.(I - UR(T)T)T w) < w(Byv=1)]|w|] ||Toﬁ||.#
Ihgprém 7. If Pb = T'w where v > 1, then ||ee[|2 < w(ByWw(Byv=1) | [wl].
Proof. In Lemma 6 we saw that
* ~ -~ A -
e, = T (1 - U (DD v,
8 B
12

L g =y




therefore

feg = T'T°(1 - U (D).
We then have
IlTeell2 - (ieB.es) = (171 - U (Diw,Te )
< m(B.v)llreBII. i.e., ||Te8|| < w(B,v).

Substituting into the result of Lemma 6 completes the proof.#
In the next section we will give a number of examples of
specific computational techniques to which the above results apply.
We have avoided for long enough the problem of polluted
data. We now take up this question. Suppose that the data b is the
result of measurements so that instead of b we have in our possession

a corrupted version b° satisfying b - bcll < €. We operate on the

€

B

vector b® to obtain the approximations x_, given by

€ R S
xB UB(T)T b,

Let ¢(B) = sup{ItUB(t)l:t € [0.||T||2]}, and recall that ¢(B) is
bounded (by (6)).
Lemma 8. |Txg = Txgll < e ¢(B).

- -~ ~ ®
Proof . T(x, - x;) = TUL(DT (b - b%), therefore

8
€,)2 - € €
“Txe > TxB” b (T(xs b xB)oxB - xe)
- T " - B * €
(TUDT (= b uxg = xQ)
& € €
= (h“B(T) (b o b )OT(xB i xa))

13




|A

#@ > - || [T - x|

|A

4 (8) [ Tx, - Tx;l{.l

Suppose now that g(g) = sup(IUB(t)lzt € l0.||T||2]}. We

note that
g(B) »» as B » w, 9)

Indeed, if this were not the case, then there would be a constant L
such that |Ua(t)| < L for all t and 8. But then |:uﬁ(c)| <Lt » 0
as t + 0, contradicting (7).

Lemma 9. ||xg - xg|| < eVg(BYO(R).

Proof. Since x8 - x; - T*UB(%)(b - bc). we have, by use of
Lemma 8,
€,12 € . /8 €
||x8 xell (xg = X T U (Db - b )

€ A
(T(xB - xB).UB(T)(b - b))

20(B)g(R). #

| A

Suppose now that Pb = Tw (we could also use the other
hypotheses considered above, but we choose to consider this simple

case to illustrate the ideas). By the triangle inequality we have
€ €
llx-xsl'illx-xsll+”xa-xe”'

Lemma 9 and Theorem 7, then give

Theorem 10. If Pb = fw, then

14
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lx = %511 < (Llwl|wB,Du(8,0) + e(a(8)e(8))™.

The first term on the right hand side of this inequality
goes to zero as B + =, However, by (9) and (7), the second term be-
comes infinitely large as B + ». This illustrates the ciassic di-
lemma in the numerical treatment of ill-posed problems. Even if
computations are performed exactly, small errors in the data may
eventually grow and overpower the approximations.

In view of Theorem 10, the question naturally arises as
to whether it is ever possible to obtain convergent approximations
even 1if the data can be measured as precisely as desired. Specifi-
cally, is there an effective way of choosing a "stopping parameter"

B(e) such that e + 0 as ¢ » 0? This problem of choice of reg-

B(e)
ularization parameters is of great import and still has not been
satisfactorily answered. For the wide class of methods considered
here the question is particularly difficult, for as we shall see in

the next section, the parameter may take on discrete or continuous

values depending upon the specific method under consideration.




SECTION IV

SPECIFIC METHODS |

In this section we will consider some specific choices for the
functions {Ua(t)} and we will find functions w(8,v) which determine
rates of convergence. The index set S in all examples below will be i
either the set of nonnegative reals or nonnegative integers. In the
discrete case, the parameter f will be denoted by n.

As a first example we consider Showalter's integral formula [19]:
t s % &

Tb = f exp(-uT)T bdu. ?

0 ]

The functions U, for this example have the form

8

B
UB(t) = f exp(-ut)du
0

and may be motivated in terms of Borel summability [7]. It is not

difficult to see that a function w(B,v) satisfying (8) is given by
w(B,v) = B° (v > 0).

The choice Ua(t) = (t + B'-]')"1 (B > 0) leads to Tychonov's reg-

ularization of order zero [23]. Here one can readily verify that
w(B,v) = B~  for 0 <v <1,

In order to obtain approximations with this rate for v > 1 we may
use extrapolated regularization [9]. That is, for a given B > 0 we

set

17




1)-1

I

and define Richardson extrapolants by

i = @I - 18V onet -,
4 =102 .. .

It is not difficult to show (see [9, lemma 2.1]) that for k = 0,1,2,...
k+1 (k) .S

e )| =Tl ——

i=0 2 Bt + 1

< gkl

Therefore, for the kth extrapolant we may apply Theorem 7 with
w(B,k) = B-k—l, k =1,2,..., to obtain the rate B—k+15 (see [9, The-
orem 3.2]).

We now consider some iterative regularization methods. Below,
a will be a parameter satisfying 0 < a < 2 IITH-2

If the functions Un(t), n=0,1,2,... are defined by

U () = a Z(l-ut)
k=0

then (6) and (7) are satisfied and one can show that

n't’|1 - v (£)] = n"t"|1 - at |7

is uniformly bounded. From this we find that the rate of conver-

gence of the iterative process

* ~ *
.. aT b, X 41 = (I - aT)xn + aT b




is determined by the function w(n,v) = .

Newton's method for approximating t-l leads to the sequence of

functions defined by
Uo(t) = a, Un_'_l(t) = un(:)(z - tUn(t)).
For this sequence of functions it is not difficult to see that
'[1 - eu ()] = 02"  for v > 0.

Therefore the rate of convergence of the corresponding iterative
method is determined by the function w(n,v) = ™,

Showalter and Ben-Israel [20] have extrapolated on the previous
method to obtain methods with a higher rate of convergence. For a
positive integer p > 2 they define the hyperpower methods in terms

of the sequence
p-1 k
U (t) =a, U, (t) = U (t) lEo(l - tU ().

For these methods the results above may be used to obtain the con-

vergence rate 0(p ")

In [11]) Lardy considered the approximations

- *
. 0, Txn o A + Tb, o= 1;25:ss

to be, where T is an unbounded operator. We may apply the results

atove in the case of a bounded operator if we define the functions

Un by




= -k
U (e) = F (e +1) .
k=1

One can verify, as in the first iterative example above, that the
function w(n,v) = n-v determines a rate of convergence.

The iterative method

* * ~
X, = T b, Rang * Ty + (Tb - Txn)/(n + 2),

was investigated in [10]. The appropriate functions Un are given

by
n -1 k-1
U () = T+ TP -t/ + ).
k=0 =0

This leads to the iterative method

* * -
% T b, Red B + (Tb - Txn)/(n+2).

Following the analysis given in [10] one can show that the rate of
convergence of this method is governed by the function w(n,v) =

(log n)—v.

20
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