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AN ANALYSIS OF THE FREE VIBRATION OF A SHALLOW
SPHERICAL MEMBRANE SHELL

INTRODUC TION

The ferroelectric element in some transducers is a shell that has the
form of a stsctor of a sphere. In order to design practical underwater

acoustic transducers that use spherical—shell—sector elements , it is

usefu l  to know the lowest resonant frequencies of such elements and to

establish the modal displacement functions that correspond to these

resonant frequencies. This report describes the calculation of the

lowest resonant frequencies and the corresponding modal displacement

functions of a shallow spherical membrane shell that is composed of

a homogenous material . The analysis presented here does not provide

a complete description of the vibration of a piezoceramic transducer

element of this form , in that , it does not explicitly account for the

effect of the electrical boundary conditions upon the motion of the

shell. Nevertheless , this analys is is necessary befor e design
procedures for transducers. which incorporate piezoelectric shells that

are shallow sectors of spheres , can be established . A comprehensive

theory that treats a spherical shell composed of a ferroalectric

material , and which incorporates the complete Set of electromechanical

equations, would be the next step in the analytic treatment initiated

here.
Note: Manuscript submitted July 17 , 1978.
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The subsequent material in this report will be presented as follows .

First , a description of the spherical shell will be given , and those

formulas from differential geometry that will be needed in the later

analysis will, be written down. Also,the assumptions and limits of

• shallow—shell theory will be noted. Next , the equations of motion of

a shallow spherical membrane shell will be written down in several

dif ferent  forms . The equations will i.e solved for the normal and

tangential displacemen t functions . Permissible boundary conditions

will be discussed. The corresponding secular equations , whose roots

yield the eigenfrequencies of the shell’s free vibration , will be given .

In addition to these secular equations, which result from the solution

to the equations of motion that describe the shell, an approximate

secular equation will be derived by use of the Rayleigh—Ritz ‘iethod .

The analysis in this report is, for the most par t, a codification of
a number of the results foun d in the excellent book on shell theory by

ICraus [1] , and it draws freely and extensively upon the material in

this text . It is desirable, however , to collect Kraus ’ results for

shallow spherical membrane shells and to present them in a form tha t is

useful in transducer—design work. Moreover , several errors were found

in rederiving Kraus ’ equations . These have been corrected in the

equations reported here. Those interested in fur ther  details of the

analysis presented in this report should refer to the comprehensive

treatment in Kraus’ text. The notation used in this report is the same
as that used by Kraus , whenever possible.

GEOMETRY OF A THIN SHALLOW SPHERICAL SHELL

Since a thin shell can be considered as th. materialization of a

curved sur face , results from different ia l  geometry , which is needed to

describe such surfaces in space , are incorporated into the theory of
thin shells . The motion of a point in a thin shell is , in fact ,

determined by the motion of the curved reference surface associated

with the shell. Consider the geometry of a rotationally symmetric thin

2 

-.•~~~-,,



~~‘—.(~~~~~-—-•  --,-- —— -~~~~~~~~~~~~ ---~ ---~~~~

• shell of general form tha t is shown in Fig.  1. The reference surface S

of this shell may be described in the rectangular coordinate system

x 3
SHELL ,/— M ERIDIONAL CURVE

REFERENCE . (GENERATING CURVE)
SURFACE S /

- 
. — - - - - - - 

-

LATITUDE~~~~~~~~~~~~~
• CIRCLE

— — — R —~~~~~~~~~

XI

Fig. 1 — Geometry of a rotationally symmetric thin shell

(x 1, x2 , x3) as a function of two independent curvilinear coordinates of
the surface , ~~ and 

~2 ’ by the expressions

—

a (1)

The surface S is symmetric with respect to the x 3 axis . The f i r s t

fundamental form of the surface S is a relation that describes (dr) ,

the square of the length of the infinitesimal vector dr that measures

3
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th. change in the vector r as one moves from point P to an infinitesi-

mally nea r neighboring point on the surface. If and 0
2 
are orthog—

onal curvilinear coordinates, then the first fundamental form of S is

• (ds)2 - A~ (da 1
) 2 

+ A~ (do
2

) 2 (2)

in which A1 and A
2 
are fundamental constants characterizing S. The

first fundamental form can also be written

(ds)2 — R~ (d~)
2 

+ R~ (dO) 2 (3)

in terms of the independent coordinates • and e, where c~ is the meridi-

onal angle , that is, the angle between the shell’ s axis of rotational
symmetry and the normal to S at P and where S is the azimuthal angle of

the meridional plane containing P. The quantity R 1 in Eq. (3) is the

principal radius of curvature of the meridional curve, which [2) lies
along , but has a direction opposite to , the normal to the surface S at
P. The quantity R0 is the radius of the latitude circle that passes

through P. Comparing Eqs. (2) and (3) , one sees that and 02 may be

associated with $ and e, respectively , and that

A - R1 1 (4a)

and

A2 
— R0. (4b)

Three differential equations, the Gauss—Codazzi conditions, relate the

fundamental constants A 1 and A2 to the principal radii of curvature of

a surface at a point . When applied in the ( 4 , O) coordinate system , the

‘14
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Geuss—Codazzi condit ions require that

dR
— R

1cos~ . (5)

The foregoing concepts , which apply to a general , rotationally

symmetric shell, can now be specialized to a shallow spherical shell.

A shell that is the surface of a segment of a sphere is depicted in
Fig. 2.  The principal radius of curvature R

1 
is constant for such a

spherical shell . This radius of curvature has been denoted as R,

rather than R1, in Fig. 2. It is easily seen that the origin of the

(x 1,x2,x3
) system of Fig. 1 may be placed so that R terminates at the

X 3
SPHERiCA L

SHEL~~~~~~~~~~~~~~~~~~~~~~~~

/

~~~~~~~~~~~~

Q~~7

‘ /
/
/

/
/

/‘S. /‘S.

Fig. 2 — Geometry of a spherical shell

center of that sphere from which the shell is derived . Also, for this

spherical shell, the meridional radius has been denoted by r instead of
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by R0 . Thus , in the revised notat ion , Eqs. (4) become

A 1 R 1~~ R (6a)

and

A 2 — R~ — r. (éb)

Figure 2 shows a to be the radius of the spherical shell at its rim,
to be the meridional angle of points on the rim , and H to be the

height of the shell segment. It is also readily shown that , f or a
general spherical shell ,

2R.H — H .  (7)

The notion of shallowness is introduced into thin—shell theory in
order to simplify the equations that govern the motion of a shell.

Reissnar ’s [3) criterion for considering a shell shallow is that

H < ~~a. (8)

For a shallow spherical shell, Eq. (7) becomes

(
~ 2R11. (9)

By inserting the inequality given by Eq. (8) into Eq. (9), one obtains

the expression

(lOa)

6
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which implies tha t. a spherical shell may be considered shallow if

< 30 0 . ( lOb)

If ~ is small , one has , f rom Eq. (5) , the result that

dr ~ Rd~ 
( 11)

for  a spherical shell. Equation ( 11) is basic in the theory of

shallow shells , even though ~ is not small for all shells that

sat isfy Re issner ’s criterion of shallowness; i.e., all those for

which Eq. (lOb) holds.

FRE E VIBRATION OF A SHALLOW SPHERICAL ME~~~RANE SHELL

Thin—ahe~ll theory is usually considered valid if the thickness

h of the shell in question is small in comparison to one of its

radii of curvature. A spherical shell is, thus, thin if

h/R ‘ c , ( 12~

where c in engineering studies [4] is usually taken as 1/10 or 1/20.

Under conditions where a thin shell is so loaded that all bending

moments are zero or are negligibly small, the shell is said to be

in a membrane state of stress. The set of equations that governs

the motion of a thin shell is considerably simplified if the shell

is in a state of membrane stress , in which case it is referred to

as a membrane shell. The membrane—shell assumptions will be considered

to hold for the spherical shells analyzed subsequently.

7
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r

The equations of motion of a shallow spherical shell of thickness

h, which is not loaded by external forces and which is executing motion

that is independent of the circumferential position , i.e., independent

of the coordinate e , are

3(rN )
r 

— N  — ~rh -~---~, (13a)
3r

~(rQ ) 2
r 

— ~ (N + N )  — ~rh 
3 w  (13b)

3r R r ~

and
3(rM )

— M~ — rQ 0, (13c)

in which denotes the density of the shell material , u and w,

respectively , denote the tangential and the normal shell displacements ,

N and N~ are the stress resultants, Mr and M
8 are the bending moments .

is the shear—force resultant , t denotes the time , and r and R are

as shown in Fig . 2. For a membrane shell,

H — M~ — 0 , ( lA a )

and, consequently , by Eq. (13c)

— 0. ( 14b)

As a consequence of Eqs . (14) , the three equations of mo t ion reduce to

two equations , Thus , if the forces and displacements are assumed to

have a harmonic t ime dependence described by the factor exp(j wt )

(which is henceforth dropped) , Eqs. ( 13) become , for  a shallow spherical

membrane shell in free harmonic vibration , the two coupled d i f ferent ia l

equat ions

8
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r(
~ Nr /~

r) + Nr 
— N e + prhw 2u — 0 (iSa)

and

N + N8 — pRR w2w — 0. (lSb)

The two stress resultants N
r 
and N9 are obtained by integrating the

actual stress distribution across the thickness of the shell af ter
assuming the form of the displacement functions. These stress

resultants are given by the stress—displacement relations

N — K(€° + vc~) (16a)

and

N 0 
— K(e~ + vc~), (16b)

where v is the Poisson ’s ratio of the shell material and

K — hE/(l — 
2) (17)

in which E is the Young’s modulus of the shell material. For a

symmetrically vibrating spherical shell , the quantities 4! and in

Eqs. (16) are

— (au/ar) + (w/R) (18a)

and

— (u / r) + (w/R). (18b)

9
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Figure 3 shows a differential element of the spherical shell in

order to illustrate the action of the forces N and N and the
r 8

X 3

E!~~~~~T~~~ç1I~~~~~d

I I ~~X 2

~ 
/

/ _ i _

8

_I
~~

N
N~~~~ 

-

Fig. 3 — Different ia l  element of a shallow spherical membrane shell

directions of the displacement u and w. The shell element shown in

Fig. 3 is defined by two infinitesimally separated meridional curves

and by two infinitesimally separated latitude circles. The stress

resultant Nr acts normal to the face abcd of the element, and the stress
resultant N.~ acts normal to the element face cdef. The direction of

the displacement w is normal to the reference surface of the shell ,

that is, normal to element face bcfg, and the direction of the

displacement u is in the meridional direction. Owing to the shell’s

symmetry , there can , of course , be no displacement in the ~ direction .

10
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If the results expressed by Eqs. (16) through (18) are substituted

• into Eqs. (15), one obtains, for the two equations of motion , the

expressions

• L(ru) + w ’ [r(l + v)/R] + (phw
2
ru/K) — 0 (19)

and

(ru)’ + (2~~ /R) - ~[phR~
2
~~ 3/[K(l + ~) 3 - 0. (20)

In Eq. (20) , the prime denotes differentiation with respect to r

( . . . ) ,  (21a)

and the operator L in Eq. (19) is defined

L( . .  ) ( . . . )“  — ( . . . )‘

— [r_ ~4+~~~~_ 3~
] 

( . ..) .  (2lb)

The differential equations for the normal and tangential displacements

of the shell, w(r) and u(r) , are coupled when expressed in the form of

Eqs. (19) and (20). Uncoupled differential equations for w and u may ,

however , be found in the following way. Suppose one solves Eq. (20)

for  w , and obtains the result

w — [u ’ + (u/r)]/~ , 
(22 )

11 
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where

8 — (~ hw 2R)/ (K ( 1  + v ) ]  — (2/R) . (23)

Then , if Eq. (2fl is differentiated with respect to r , the expression

.4 w ’ — L(ru) / (8r )  (24)

is produced . Substituting the value of w ’, given by Eq. (24), into

Eq. (19) allows one to obtain the uncoupled differential equation for

the tangential displacement of the shell , viz

L(ru) + (~j/ar (ru) — 0, (25)

where

4
2 -, .,

— a s 1 ( l +  ~) [2  — 
~~(l — v)]/[R (l — I~~’~3, ( 26)

in which

2 2 ’
~ ~~i R / E .  (27 )

Now Eq. (19) can be solved for u , with the result that

u — — [ K / ( ø r h w 2
~~] {[r( 1 + v)/R] w ’ + L(ru)}. (28)

Upon substituting the value of L(ru) that is obtained f rom Eq. (24) into
Eq. (28) , one ob ta ins  the result tha t

u — [R(1 — ~2 ) ] , [ 1 2 ( 1  + v)  ] w ’ , (29)

12
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which yields , upon differentiation , the equation

— [RU — ~
2))/ [~

2 (1 + v)] w”. (30)

The expressions for  u and u ’ , given by Eqs . (29) and (30) , when

• substituted into Eq. (22), results in the uncoupled differential

equation for the normal displacement of the shell , viz

w” + w ’f r + (i~/a) 2w — 0. (31)

When one differentiates Eq. (31) with respect to r and multiplies both

sides by r , he obtains the equation

L(rw ’) + (~ /aY(rw ’) — 0. (32)

Since Eqs. (25) and (32) have the same form , their respective solutions

u(r) and w’(r) must be proportional . Thia can easily be shown by

substituting the result

L(ru ) — —(i.i/a) ru, (33)

obtained from Eq. (25) , into Eq. (19) . When this is done , one obtains

the result that

u/w ’ R(1 + ‘v)/[(iiR/a)
2 — ( 1 — v2)~22 J (34)

I ’ .

13
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One notes that if the change of variable s - (U/a)r is made in

it 
Eq. (31) , the result is just  Bessel ’s equation of order zero . The

general solution to Eq. (31) therefore is

4 —A(a/i~)J0(~ir/a), (35)

where J
0
(...) is the Bessel function of the first kind of order zero

and where A is an arbitrary constant. The zero—order Bessel function

of the second kind Y
0
(...) does not enter the general solution to

Eq. (31), since w(r) cannot be singular at r — 0. From Eqs. (34) and

(35) , one also obtains the result

u — {R(1 + v)/[(~R/aY — (1 — 2 )~~2 ]} AJ 1(ur / a )  , (36)

in which J
1
(...) is the Bessel function of the first kind of order one.

Either of two possible boundary conditions may be imposed at the

edge r — a of a shallow spherical membrane shell. At r - a, one can
have either

u(a) — 0 (37)

or else

N (a) — 0. (38)

The boundary condition that is expressed by Eq. (37) corresponds to

a tangential ly clamped shell rim, while that expressed by Eq. (38)
corresponds to a free edge . Note that neither of the two permissible

boundary conditions is imposed upon the norma l displacement w.

14
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Equation (36) requires that ~ must be a root of the secular equation

— 0 (39)

for the tangentially—clamped boundary condition that is expressed by

Eq. (37) . For the boundary condition expressed by Eq. (38), which

characterizes a shell with a free edge, one finds that ~ must be a root
of the secular equation

J
0
(u) - k(~

R’/a
2)/[(pR/a)2 - ~

2 ( 1 -

~\ [( v  — 1)J
1
(~) + ~.iJ 0

(~~) ]  — 0. (40)

Equation (40) is obtained as follows. First , one calculates the various

terms appearing in the stress resultant N
~
, which is given by Eqs. (16a)

and (18) , using values for  u , u ’ and w obtained from Eqs. (35) and (36).

One then sets the result obtained equal to zero.

The roots of Eq. (40) determine the resonant frequencies of the

spherical shell with a free edge. Before Eq. (40) can be solved ,

-
‘ 

however , it is necessary to express the quantity ~~ therein in terms

of u. To do this, one rewrites Eq. (26) in the form

— {[2( 1 + v) + ( IAR/ a) 2 ]/ ( 1 — v2) ~2 
+ ( MR/a) / ( 1  — v2) — 0 (4 1)

and solves this quadratic equation in o2 for its two roots 0~~(~i) and

To each of these two values of G2 there isa set of roots Urn of
Eq. (40) . When inserted into Eq. (40), the root ~j 

(~ ) generates a
sequence of eigenvalues u

115
, with {tn — 1 , 2, . . .}  , when that equation is

solved. Another sequence of e igenvalues U 2m~ 
again with {m — 1, 2, ...

~~~~
.

15 F



is obtained when this procedure is repeated with ~~~~~~~~~~ There are ,

thus , two families of solutions ~~~~~~~ with k — 1 or k — 2 , to Eq. (40).

To obtain the resonant frequencies of the shallow spher ical membrane
shell , each root is inserted into Eq. (4 1) .  Each of the two values

of U~~~ yields in turn two values of ~2
2, which can be designated c2~~

and ~~~ There thus appear to be four fumilies of resonant frequencies

of the shallow spherical membran e shell with a free edge . Recall ing
• Eq. (27), one notes that the resonant angular frequencies are

— (0
i~~

/R) (E/Q)½ , ( 2 )

with i — 1 or i — 2 and k — I or k — 2.  Of course, only those roots

which yield real values of the resonant frequencies 
~~~~ 

can be

considered to be of physical significance. (One notes in passing that

there are only two families of resonances for a spherical shell with a

tangentially clamped edge. Since Eq. (39) does not involve ~2 j~

yields directly a sequence of eigenvalt~es U .  Each of these U when

inserted into Eq. (41) gives rise to two values of ~~~~~~, which can be

denoted and One resonant frequency w~~ of the shell

corresponds to each such

The modal displacement functions corresponding to the roots of

Eq. (40) can now be expressed. First , note from Eq. (35) that the

expression for the normal displacement w does not depend explicitly

upon ~2. Thus, there are just two families of modal normal displacement

functions corresponding to the two sequences of eigenvalues iL 1 
and

i12m • These modal normal displacement functions are

— —(a/u~~)J
0(U~~

r/a), (43)

16 J



with k — 1 or k — 2. On the other hand, since by Eq. (36) the

tangential displacement depends upon ~~ , there appear to be four

families of modal tangential displacement functions , namely

— 
~8.(1 + v)/[(.t,~~R/ a) — ( 1 — v 2 )~~~~~]}J 1(~~~~r /a) , (44)

with i — 1 or i — 2 and k — 1 or k — 2. The modal functions of the

gravest modes of the shallow spherical membrane shell are those

corresponding to setting m equal to one in Eqs. (43) and ~~~~~

MODAL VIBRATIONS OF A SHALLOW SPHERICAL MEMB RANE SHELL WITH A FRE E
EDG E , CALCULATED USING THE RAYLEIGH-RITZ ~~THOD

• In order to calculate the resonant frequencies of free vibration

of a shallow spherical membrane shell that has a free edge , one is

• required to find the roots of Eq. (40). Moreover, as was explained

previously , before Eq. (40) can be solved , it is necessary first tO

solve Eq. (41) for ~2
2 in terms of U and to insert each of the two

values of ~ thus obtained into Eq. (40) before proceeding to find the

roots of this latter equation. While such a procedure for calculating

the resonant frequencies of a spherical shell with a free edge is

clearly possible, it is sufficiently complicated to make simp~.er

approximate methods of calculating shell ’s resonant frequencies
attractive.

• One such approximate method of calculating the resonant frequencies
of a shell ’s vibration is the Rayleigh—Ritz method . The formulation or
the Rayleigh—Ritz analysis that is appropriate in thin—shell theory

17 I: ~
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is based upon the variational equation

J J {t c~~~1
(u,”,w) + phw 2u]tSu

‘
~1 ~2

+ [ ,~~?2~u,v,wi + phuf~v )âv

+ [ ~~~~ 3 (u ,v ,w) + phw
2
w)6w}A1

A
2 

d~ 1
d~2 

- 0. (45)

4 
in which the 

~~~~~~~~~~~~~~~~ 
are the differential operators that appear in

the equations of motion for free vibration of a thin shell, once the

shearing forces , the stress resultants , and the bending moments have
been eliminated . In terms of these operators, the equations of motion

appear in the form

1
(u ,v ,w) — ph -

~~--~~~ , (46a)

— ph .4 , (46b)

and

~~~ 3
(u,v,w) — ph ~~~~~~~~ . (46c)

For symmetric free vibration of the kind being considered , there is no

tangential displacement of the shell in the direction of 8. Therefore,

for symmetric motion, the displacement v does not appear in Eq. (45),

and one has a variational equation of the form

18
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{ [ .~~~1
(u ,w) + ~~~ I U ] ~~FU

+ [ 
~~~(u,w) + ~h~~w].Sw

1A
1
A~ dt

1
d~ 2 — 0.

Likewise for symmetric motion , there is no appearance of v in Eqs. (.4&I .

For the shallow spher ical shell, one has, from the previous
discussion of shell geometry and from Eqs. (e~ and 1.11) , the result

that

A 1A .., da
1
d~~.~ — r drd8. (48’)

Since the shell’s motion is independent of 8, the integral over

— 8 can be carried out directly after one substitutes the result

of Eq. (48) into Eq. (47). The resulting expression is a variational

integral over r:

i: {[.q~ (u ,w) +

+ [ ,(u,w) + ~h ~w)Sw ’r dr — 0.

Note that , in the case of harmonic free vibration ~ t a shallow

spher ical membrane shell, Eqs. (19) and ~2O) can be put in the form

of the general equations of shell motion that are expressed

symbolically by Eq. (o). When this is done, one can obtain from
Eq. (49), for the shell in question , the expression

19
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- -  ~~~~~1 ..

~~~~~~~ 
__  

~~
., 4W~ -r r —

,~~ .—‘-— —--- --- .— .•----,‘
• -~~ - - .

j s~[L .ru) + w ’ {r(1 + v )/ R }  + (c~/R) 2(1 — v ) r u 3 o u
0

- [{(1 + v )/ R}{ ( ru) ’  + (2rw/R) }

— (~ /RY(1 — v 2
)rw]Sw} dr — 0. (50)

In obtaining Eq. (50), the results e?cpressed by Eqs. (17) and (27)
• have been used. Equation (50) is the form of the Rayleigh—Ritz

variational equation that is needed for finding the resonant

frequencies of a shallow spherical membrane shell.

The next step in the Rayleigh—Ritz method is to find suitable

approximate displacement functions , that is, suitable approximate

expressions for u and w. In orc’er to use Eq. (50), however , these

approximate displacement functions must be such that the boundary

conditions appropriate to the problem in question are satisfied.

For the vibrating spherical shell with a free edge , this boundary

condition is given by Eq. (38), which, when written in terms of
the displacement functions u and w , has the form

u’ + [(1 + v)/R)w + (v/r)u — 0. (51)

Equation (51) holds at r — a.

20
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Approximate forms of the displacement func tions are found in the

following way . First , note that the exact forms of the displacement

functions are available. In particular , one has from Eq. (36) that

u — BJ
1
(4~r/a), (52’)

where B is a constant. Consider, on the one hand , the form o 1 the

series expansion of a first—order Bessel function :

2 4
.1
1
(x) — ( 1 — + — ... ) . (53a~

Now suppose , on the other hand , that one makes the approximation

J
1
(x) ~ sin(bx) — bx( 1 — ~-j~

-- + — ... ) .  (53b)

in which b is a constant chosen so as to make the first zero of J
1

(x )

coincide with the first axis—crossing of the sine function . The

approximation expressed by Eq. (53b) can be expected to be reasonably

good for values of x somewhat beyond the first zero of J
1
(x) . Upon

examining Eqs. (52) and (53), it is not too difficult to see that a

good approximation of the displacement function u would be

u - A ( r l a) [ 1  - y(r/aY], (54)

in which A is an arbitrary constant and in which ‘
~ 
is a constant chosen

in such a way that the boundary condition in question is satisfied .

For example, in the case of the tangentially clamped shell, for  which

the boundary condition is expressed by Eq. (37) , one would take 
~ 

— 1.

11 •
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The approximate displacement function expressed by Eq . (54) can be
expected to be a good approximation of the tangential modal

functions corresponding to the lowest resonant frequencies ,

Since the boundary condition for a spherical shell with a

free edge is expressed by Eq. (51), an approximation for the

displacement function w, corresponding to the approximation for

u tha t is expressed by Eq . (54), is also needed. This may be readily

found by inserting the value of u expressed by Eq. (54) into Eq. (22) .
The result is that

w — A [2/(a8)] [1 — 2y (r/a) 2], (55)

in which, after combining Eqs. (17), (23), and (27) , one expresses 3
by the equation

3 - [u - v)~~
2 

- 2]/R. (56)

Note that, since Eq. (22) is just a rearrangement of Eq. (20), the

approximate displacement functions , given by Eqs. (54) and (55), will
satisfy Eq. (20) .

The approximate displacement functions u and w, which are given by
Eqs. (54) and (55), are now substituted into Eq. (51), which expresses
the boundary condition for the shell with a free edge. The resulting

equation, when solved for y, yields the expression

- [(1 + v)~
2 )/ [(3 + )c22 - 2]. (57)

22
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Thus , if y is given the value expressed by Eq. (57), the approximate
• displacement functions will satisfy the proper boundary condition.

Note from the presence of ~2
2 in Eq. (57) that both of the approximate

displacement functions u and w must depend upon the frequency of

• vibration of the shell, if the rim of the vibrating shell is to be

stress free.

Equation (50) can now be used to derive an approximate secular

equation for the resonant frequencies of a shallow spherical membrane

shell. First, note that from Eq. (54) one has, for the variation in u,

the expression

— ( r/a) [ 1 — y(r/a)
2
]6A. (58)

Next, the displacement functions given by Eqs. (54) and (55) and the

result expressed by Eq. (58) are substituted into Eq. (50). Because

the displacement functions u and w satisfy Eq. (20), the bracketed

term in the integral that multiplies 6w will vanish identically .

Therefore, one need not deal further with that term. The substitution

in question, which is somewhat simplified if one recalls Eq. (24),

yields the equation

A6A ça 

~ 
[8(~ /a4)(1 _ ~2

)] r~ -
0 (1 — v)~ — 2 a

+ 
[ 2 2  

‘]

~~~ 
r
3 
[1 — y(!.)2] 

2
~~dr — 0. (59)

When the integration in Eq. (59) is performed , the equation

23
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ASA {y(t — ~~) (3  — ~v)/[(l — v)~~~ — 2]

+ [~f a (1  + v ) ( 3 ’y — 8y + 6 ) / ( 4R Y ] }  — 0 (bO)

is obtained . Since the variation 6A is arbitrary and since the

constant A must be non—zero for non—trivial disp lacement func t ions,

Eq. (60) is satisfied only if the term within braces vanishes. If

the value of y given by Eq. (57) is used , Eq. (60) w ith the term
in braces set equal to zero leads to the following secular equation :

c1~
6 

+ c2~ + c3~
2 

+ c4 — 0, (61)

in which the constants C~ are

C1 
— (1 — v ) ( 33 + t Oy + v 2 ) ,  (62a)

C
2 ‘

-.[2(61 — 14v — 3v
2) + (4R/aY(7 + v)], (62b)

C3 
— 8(17 — v) + (4R/a) (13 + v), (62c)

and

C4 
— —48[2(R/aY + 1]. (62d)

Equation (61) is cubic in ~~~ . Suppose is the smalles t real
root of Eq. (61). The resonant angular frequency of the gravest mode
of a shallow spherical membrane shell w ith a free edge is , therefore ,

(63)
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It is known that the Rayle igh—Ritz method always y ields a resonant

frequency that is somewhat higher than the exact result (i.e., the

• resonant frequency determined from Eq. (40). Therefore , the

approximate resonant frequency of a shallow spherical memb~a1~e shell
given by Eq. (63) will  be somewhat greater  than ~~~~d using the

exact theor” that was outlined in the previouA section. Once the

smallest real root of Eq. (61) has been
1

calcu lated, the modal
disp lacement f unc tions u

0 
and w

0 
of the gcavest mode can be found.

These modal displacements are

u
0 

- (r / a ) [1 - E 1  +v’)\~~]/[~ 3 + \I)~~~ - 2 ] ( r / a ) 2] , (64aY

and

— ~2R/a ) [(. 1 — \I)~~~ — 2 ]

\ - : [ ((  ÷ v) : I ) (
~ 

+ y ’
~~~~~~ - (r/ ~ ) } .  (64b )

At a nodal circle , the normal uisplacement function w
0
, if it exists

vanishes. From Eq. (55), it is seen that a nodal circle exists at

r — a.~[( 3  + — 2] l [ 2 t , 1 ‘ \I
’
)~~~~~~~)~~~~~ (65)

provided that

. 2/(1 — v) (66)

or provided that the lowest resorant angular frequency is such that

~ R 
1
~ 2E/[(1 — v)~~]}’~. (h 7 )

Equations (66) and (67) follow from Eq. (65) owing to the fact that

the quantity (n a) cannot exceed unity.

15
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SUN14ARY

In this report , the secular equat ion giving the resonant frequencies
of a freely vibrating shallow spherical membrane shell has been

calculated by two means . The exact form of this secular equation, under

the assumptions of the theory , is given by Eq. (40). An approximate

form of the secular equation resulting from the Rayleigh—Ritz analysis

is given by Eq. (61) . The modal displacement functions for  normal and

• tangential motions that are associated with the roots of the exact

secular equation are respectively given by Eqs. (43) and (44).

Corresponding to the roots of the approximate secular equation, is the

expression for the normal modal displacement functions , given by Eq.

(64b) , and the expression for the tangential modal displacement
functions , given by Eq. (64a).
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