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AN ANALYSIS OF THE FREE VIBRATION OF A SHALLOW
SPHERICAL MEMBRANE SHELL

INTRODUCTION

The ferroelectric element in some transducers is a shell that has the
form of a sector of a sphere. In order to design practical underwater
acoustic transducers that use spherical-shell-sector elements, it is
useful to know the lowest resonant frequencies of such elements and to
establish the modal displacement functions that correspond to these
resonant frequencies. This report describes the calculation of the
lowest resonant frequencies and the corresponding modal displacement
functions of a shailow spherical membrane shell that is composed of
a homogenous material. The analysis presented here does not provide
a complete description of the vibration of a piezoceramic transducer
element of this form, in that, it does not explicitly account for the
effect of the electrical boundary conditions upon the motion of the
shell. Nevertheless, this analysis is necessary before design
procedures for transducers, which incorporate piezoelectric shells that
are shallow sectors of spheres, can be established. A comprehensive
theory that treats a spherical shell composed of a ferroelectric
material, and which incorporates the complete set of electromechanical
equations, would be the next step in the analytic treatment initiated

here.
Note: Manuscript submitted July 17, 1978,




The subsequent material in this report will be presented as follows.
First, a description of the spherical shell will be given, and those
formulas from differential geometry that will be needed in the later
analysis will be written down. Also,the assumptions and limits of
shallow-shell theory will be noted. Next, the equations of motion of
a shallow spherical membrane shell will be written down in several
different forms. The equations will te solved for the normal and
tangential displacement functions. Permissible boundary conditions

will be discussed. The corresponding secular equations, whose roots

yield the eigenfrequencies of the shell's free vibration, will be given.

In addition to these secular equations, which result from the solution
to the equations of motion that describe the shell, an approximate
secular equation will be derived by use of the Ravleigh-Ritz method.

The analysis in this report is, for the most part, a codification of
a number of the results found in the excellent book on shell theory by
Kraus [1] , and it draws freely and extensively upon the material in
this text. It is desirable, however, to collect Kraus' results for
shallow spherical membrane shells and to present them in a form that is
useful in transducer-design work. Moreover, several errors were found
in rederiving Kraus' equations. These have been corrected in the
equations reported here. Those interested in further details of the
analysis presented in this report should refer to the comprehensive
treatment in Kraus' text. The notation used in this report is the same

as that used by Kraus, whenever possible.

GEOMETRY OF A THIN SHALLOW SPHERICAL SHELL

Since a thin shell can be considered as the materialization of a
curved surface, results from differential geometry, which is needed to
describe such surfaces in space, are incorporated into the theory of
thin shells. The motion of a point in a thin shell is, in fact,
determined by the motion of the curved reference surface associated

with the shell. Consider the geometry of a rotationally symmetric thin




e

§

shell of general form that is shown in Fig. 1. The reference surface S

of this shell may be described in the rectangular coordinate system

X3
SHELL _~MERIDIONAL CURVE

REFERENCE " (GENERATING CURVE)
SURFACE S

Fig. 1 - Geometry of a rotationally symmetric thin shell

(xl,xz,x3) as a function of two independent curvilinear coordinates of

the surface, & and @ , by the expressions

1 2°

xl - fl(alsaz) ’

x2 = fz(al,az),
Xy = f3(01,02). (1)

The surface S is symmetric with respect to the x, axis. The first

3
fundamental form of the surface S is a relation that describes (dr)z,

the square of the length of the infinitesimal vector de that measures




the change in the vector r as one moves from point P to an infinitesi-
mally near neighboring point on the surface. If @, and a, are orthog-

onal curvilinear coordinates, then the first fundamental form of S is
2 2 2 2 2
(ds) Al(dal) + Az(daz) (2)

in which Al and Az

first fundamental form can also be written

are fundamental constants characterizing S. The

(an)d = Rf(u)z # Rg(de)2 (3)

in terms of the independent coordinates ¢ and 6, where ¢ is the meridi-
onal angle, that is, the angle between the shell's axis of rotational
symmetry and the normal to S at P and where 6 is the azimuthal angle of

the meridional plane containing P. The quantity R, in Eq. (3) is the

principal radius of curvature of the meridional curie, which [2] lies
along, but has a direction opposite to, the normal to the surface S at
P. The quantity Ro is the radius of the latitude circle that passes
through P. Comparing Eqs. (2) and (3), one sees that ay and a, may be

associated with ¢ and 6, respectively, and that

Ao =Ry (4a)

and

= (4b)
A, = R,.

Three differential equations, the Gauss-Codazzi conditions, relate the
fundamental constants A, and A, to the principal radii of curvature of

1 2
a surface at a point. When applied in the (¢, 8) coordinate system, the




Gauss-Codazzi condit ions require that

dRo

T - Rlcos¢. (5)

The foregoing concepts, which apply to a general, rotationally
symmetzric shell, can now be specialized to a shallow spherical shell.
A shell that is the surface of a segment of a sphere is depicted in

Fig. 2. The principal radius of curvature R, is constant for such a

1
spherical shell. This radius of curvature has been denoted as R,
rather than Rl’ in Fig. 2. It is easily seen that the origin of the

(xl,xz,x3) system of Fig. 1 may be placed so that R terminates at the

- -
~. —
T —— ——

Fig. 2 - Geometry of a spherical shell

center of that sphere from which the shell is derived. Also, for this

spherical shell, the meridional radius has been denoted by r instead of




by R Thus, in the revised notation, Eqs. (4) become

0
Al = Rl = R (6a)
and
A2 = Ro = r, (6b)

Figure 2 shows a to be the radius of the spherical shell at its rim,
00 to be the meridional angle of points on the rim, and H to be the
height of the shell segment. It is also readily shown that, for a

v ¥

general spherical shell,

%

2
a“ = 2RH - H". @))

The notion of shallowness is introduced into thin-shell theory in
order to simplify the equations that govern the motion of a shell.

Reissner's [3] criterion for considering a shell shallow is that

H < éa. (8)

3 For a shallow spherical shell, Eq. (7) becomes

2 (

a“ = 2RH. (9

By inserting the inequality given by Eq. (8) into Eq. (9), one obtains

the expression
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which implies thac a spherical shell may be considered shallow if

< 30°, (10b)

If ¢ is small, one has, from Eq. (5), the result that

dr =~ Rds an

for a spherical shell. Equation (1ll) is basic in the theory of
shallow shells, even though ¢ is not small for all shells that
satisfy Reissner's criterion of shallowness; i.e., all those for

which Eq. (10b) holds.

FREE VIBRATION OF A SHALLOW SPHERICAL MEMBRANE SHELL
Thin-shell theory is usually considered valid if the thickness
h of the shell in question is small in comparison to one of its

radii of curvature. A spherical shell is, thus, thin if
h/R < ¢, (12)

where ¢ in engineering studies [4] is usually taken as 1/10 or 1/20.
Under conditions where a thin shell is so loaded that all bending
moments are zero or are negligibly small, the shell is said to be
in a membrane state of stress. The set of equations that governs
the motion of a thin shell is considerably simplified if the shell

is in a state of membrane stress, in which case it is referred to

as a membrane shell. The membrane-shell assumptions will be considered

to hold for the spherical shells analyzed subsequently.




The equations of motion of a shallow spherical shell of thickness
h, which is not loaded by external forces and which is executing motion
that is independent of the circumferential position, i.e., independent

of the coordinate 8, are

3(rNr) 32
= = R % prh 3 (13a)
at”®
3(rQ.) 2
E _ ¢ Z 3w (13b)
= R(Nr + Na) prh >
3t
and
s(er)
o R g, = 0, (13¢)

in which p denotes the density of the shell material, u and w,

respectively, denote the tangential and the normal shell displacements,

N_and N
) -

are the stress resultants, Mr and M_ are the bending moments,

9 9
Qr is the shear-force resultant, t denotes the time, and r and R are

as shown in Fig. 2. For a membrane shell,

Mr *® MB = Q, (l4a)

and, consequently, by Eq. (13c¢)

Q. = 0. (14b)

As a consequence of Eqs. (14), the three equations of motion reduce to
two equations, Thus, if the forces and displacements are assumed to
have a harmonic time dependence described by the factor exp(juwt)

(which is henceforth dropped), Eqs. (13) become, for a shallow spherical
membrane shell in free harmonic vibration, the two coupled differential

equations

.-‘:\_‘ -

.‘ﬁ-ﬁ-....-.-.......-............-...................-.-..-.-..--m-.-.--..m-..--.-;;zl i



r(BNr/ar) + Nr - Ne + prhmzu = Q (15a)

and
- oBRuw = O (15b)

Nr+N8

The two stress resultants Nr and Ne are obtained by integrating the
actual stress distribution across the thickness of the shell after
assuming the form of the displacement functions. These stress

resultants are given by the stress-displacement relations

0 0
Nr K(er + vee) (l6a)
and

0 0
Ne K(ee + ver), (16b)

where v is the Poisson's ratio of the shell material and

K = hE/(1 - vD), (17)

in which E is the Young's modulus of the shell material. For a
symmetrically vibrating spherical shell, the quantities eg and eg in
Eqs. (16) are

eg = (3u/3r) + (W/R) (18a)

and

=2 = (u/t) + (w/R). (18b)




Figure 3 shows a differential element of the spherical shell in

order to illustrate the action of the forces Nr and Ne and the

- -

X

Fig. 3 - Differential element of a shallow spherical membrane shell

directions of the displacement u and w. The shell element shown in

Fig. 3 is defined by two infinitesimally separated meridional curves
and by two infinitesimally separated latitude circles. The stress
resultant Nr acts normal to the face abed of the element, and the stress
resultant Ne acts normal to the element face cdef. The direction of

the displacement w is normal to the reference surface of the shell,

that is, normal to element face bcfg, and the direction of the
displacement u is in the meridional direction. Owing to the shell's

symmetry, there can, of course, be no displacement in the 9 direction.

10




If the results expressed by Eqs. (16) through (18) are substituted
into Eqs. (15), one obtains, for the two equations of motion, the

expressions

Lru) + w' [£(1 + V)/R] + (ohw’ru/K) = 0 (19)

and
(ru)' + (2rw/R) = {[phmzw]/[x(l + v)]}- 0. (20)
In Eq. (20), the prime denotes differentiation with respect to r
2 i

(eeed)' B ir (eed)y (21a)

and the operator L in Eq. (19) is defined
L(coo) 2 (--s)" o, (ooo)'

-[r—-+-d—--1—] tyindn (21b)

The differential equations for the normal and tangential displacements
of the shell, w(r) and u(r), are coupled when expressed in the form of
Eqs. (19) and (20). Uncoupled differential equations for w and u may,
however, be found in the following way. Suppose one solves Eq. (20)

for w, and obtains the result

w=[u'+ (u/r)]/8, (22)

11




8 = (hoRI/[R(L+ W] - 2/R). (23)
Then, if Eq. (22) is differentiated with respect to r, the expression
w' = L(ru)/(gr) (24)

is produced. Substituting the value of w', given by Eq. (24), into

Eq. (19) allows one to obtain the uncoupled differential equation for
the tangential displacement of the shell, viz

L(ru) + (u/a)z(ru) =0, (25)
where
e adfar w2 - fa - IR - oD, (26)
in which
a? = puwlR/E. Qn

Now Eq. (19) can be solved for u, with the result that

u = -[K/(othmz)]{[r(l + V)/R] w' + L(ruw)}. (28)

Upon substituting the value of L(ru) that is obtained from Eq. (24) into
Eq. (28), one obtains the result that

u= [RQL - @)% + W W', (29)

12

i
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which yields, upon differentiation, the equation

o' = [RQ1 - @V + W] w". (30)
The expressions for u and u', given by Egs. (29) and (30), when

substituted into Eq. (22), results in the uncoupled differential

equation for the normal displacement of the shell, viz

9
w'+ w'/r + (u/a)“w = 0. (31)

When one differentiates Eq. (31) with respect to r and multiplies both
sides by r, he obtains the equation

L(rw") + (w/a) (') = 0. (32)
Since Eqs. (25) and (32) have the same form, their respective solutions

u(r) and w'(r) must be proportional. This can easily be shown by

substituting the result

L(ru) = -(u/a)°ru, (33)

obtained from Eq. (25), into Eq. (19). When this is done, one obtains

the result that

u/w' = R(L + v)/[Cur/a)% = (1 = vB)@?]. (34)

13

|
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One notes that if the change of variable s = (u/a)r is made in
Eq. (31), the result is just Bessel's equation of order zero. The

general solution to Eq. (31) therefore is

w o= -A(a/u)Jo(ur/a). (35)

where JO(...) is the Bessel function of the first kind of order zero
and where A is an arbitrary constant. The zero-order Bessel function
of the second kind Yo(...) does not enter the general solution to

Eq. (31), since w(r) cannot be singular at r = 0. From Eqs. (34) and

(35), one also obtains the result

we RO+ /[GR@F - - VDa?]} A (ur/a), (36)

in which Jl("') is the Bessel function of the first kind of order onme.

Either of two possible boundary conditions may be imposed at the
edge r = a of a shallow spherical membrane shell. At r = a, one can

have either

u(a) = 0 37

or else

Nr(a) = 0. (38)

The boundary condition that is expressed by Eq. (37) corresponds to
a tangentially clamped shell rim, while that expressed by Eq. (38)
corresponds to a free edge. Note that neither of the two permissible

boundary conditions is imposed upon the normal displacement w.

T —————




Equation (36) requires that u must be a root of the secular equation

Jl(u) =0 (39)

for the tangentially-clamped boundary condition that is expressed by
Eq. (37). For the boundary condition expressed by Eq. (38), which
characterizes a shell with a free edge, one finds that u must be a root

of the secular equation

o = {GR¥ady/Law/a? - @fa - vH ]}

X[ = D3 Gy + wpn] = o. (40)

Equation (40) is obtained as follows. First, one calculates the various
terms appearing in the stress resultant Nr’ which is given by Eqs. (16a)
and (18), using values for u, u' and w obtained from Eqs. (35) and (36).

One then sets the result obtained equal to zero.

The roots of Eq. (40) determine the resonant frequencies of the
spherical shell with a free edge. Before Eq. (40) can be solved,
however, it is necessary to express the quantity 92 therein in terms

of u. To do this,one rewrites Eq. (26) in the form
@t - {[200 + v + R/ - VD) a2+ R/ - VD) = 0 (4D)

and solves this quadratic equation in Q2 for its two roots Qi(u) and
ng(u). To each of these two values of 92 there is a set of roots Mo of

Eq. (40). When inserted into Eq. (40), the root Qi (u) generates a

sequence of eigenvalues u, , with {m=1, 2, ...} , when that equation is
solved. Another sequence of eigenvalues Hom® again with {m -1, 2, ...},
15
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is obtained when this procedure is repeated with Qi(u). There are,
thus, two families of solutions Miem with k = 1 or.k = 2, to Eq. (40).
To obtain the resonant frequencies of the shallow spherical membrane
shell, each root Mem is inserted into Eq. (41). Each of the two values
of HMiem yields in turn two values of Qz, which can be designated gikm
gkm' There thus appear to be four families of resonant frequencies

of the shallow spherical membrane shell with a free edge. Recalling

and Q

Eq. (27), one notes that the resonant angular frequencies are

oy = (/R €/, (42)

with i = 1 or i = 2 and k = 1 or k = 2. Of course, only those roots

Hiem which yield real values of the resonant frequencies Oy 1m S8R be

considered to be of physical significance. (One notes in passing that
there are only two families of resonances for a spherical shell with a
tangentially clamped edge. Since Eq. (39) does not involve 92 it
yields directly a sequence of eigenvalues u .  Each of these u when
inserted into Eq. (41) gives rise to two values of P“, which can be

of the shell

denoted Qil and Qz . One resonant frequency

m2 2
corresponds to each such ka.)

“mk

The modal displacement functions corresponding to the roots of
Eq. (40) can now be expressed. First, note from Eq. (35) that the
expression for the normal displacement w does not depend explicitly
upon Q. Thus, there are just two families of modal normal displacement
functions corresponding to the two sequences of eigenvalues Mim and

Mom® These modal normal displacement functions are

L e -(a/ukm)Jo(ukmr/a) ’ (43)

16 B




———r g Ty

with k = 1 or k = 2. On the other hand, since by Eq. (36) the

tangential displacement depends upon {i, there appear to be four

families of modal tangential displacement functions, namely
u = {ROL+ /[0y R/Z = (1 - vBad 1, (u_r/a) (44)
ikm "km km? I w8

with 1 = 1 or 1 = 2 and k = 1 or k = 2. The modal functions of the
gravest modes of the shallow spherical membrane shell are those

corresponding to setting m equal to one in Eqs. (43) and (44).

MODAL VIBRATIONS OF A SHALLOW SPHERICAL MEMBRANE SHELL WITH A FREE
EDGE, CALCULATED USING THE RAYLEIGH-RITZ METHOD

In order to calculate the resonant frequencies of free vibration
of a shallow spherical membrane shell that has a free edge, one is
required to find the roots of Eq. (40). Moreover, as was explained
previously, before Eq. (40) can be solved, it is necessary first to
solve Eq. (41) for 92 in terms of u and to insert each of the two
values of Q2 thus obtained into Eq. (40) before proceeding to find the
roots of this latter equation. While such a procedure for calculating
the resonant frequencies of a spherical shell with a free edge is
clearly possible, it is sufficiently complicated to make simpier
appfoximate methods of calculating shell's resonant frequencies

attractive.

One such approximate method of calculating the resonant frequencies
of a shell's vibration is the Rayleigh-Ritz method. The formulation of
the Rayleigh-Ritz analysis that is appropriate in thin-shell theory

17
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is based upon the variational equation

I\ Ia i gl(“-"»") + phw’ulsu

C

2

2
+ [ QZ(U.V.W) + ohw'v]6v

+ [ 52?3(u,v,v) + phmzw]éw}AlAz da,da, = 0. (45)

in which the ;2?;(...) are the differential operators that appear in
the equations of motion for free vibration of a thin shell, once the
shearing forces, the stress resultants, and the bending moments have
been eliminated. In terms of these operators, the equations of motion
appear in the form

32u
g (uov )w) - Dh ’ (ll6l)
1 3t2

2
QZ(U.V-“) = ph 3—% ’ (46b)
ot

and
2

23(11,\',9) = ph .%% . (46¢)
Jt )

For symmetric free vibration of the kind being considered, there is no
tangential displacement of the shell in the direction of 8. Therefore,
for symmetric motion, the displacement v does not appear in Eq. (45),

and one has a variational equation of the form




] J {[ gl(u,w) + ohuuleu

\ll dz

z
+ [ <Qz(u.«v) + ohw’v]SH}AIAz da da, = 0. (47

1

Likewise for symmetric motion, there is no appearance of v in Eqs. (46).

For the shallow spherical shell, one has, from the previous
discussion of shell geometry and from Eqs. (6) and (ll1), the result
that

A

A, da,da, = r drde. (48)

1 |

Since the shell's motion is independent of 8, the integral over
a, = 9 can be carried out directly after one substitutes the result
of Eq. (48) into Eq. (47). The resulting expression is a variational

integral over r:

I: {[izz(u.w) + phuzu]Su

*§ z(u.w) + ohwzw]Sw}r dr = 0. (49)

Note that, in the case of harmonic free vibration of a shallow
spherical membrane shell, Eqs. (19) and (20) can be put in the form
of the general equations of shell motion that are expressed
symbolically by Eq. (46). When this is done, one can obtain from
Eq. (49), for the shell in question, the expression

19




‘a
J {[L(m) +w'{r(l + V)/R} + /R - vz)ru]du
0

- [{a + /R + (2rw/R)}
- (Q/R)z(l - vz)rw]Sw} dr = 0. (50)

In obtaining Eq. (50), the results expressed by Eqs. (17) and (27)
have been used. Equation (50) is the form of the Rayleigh-Ritz
variational equation that is needed for finding the resonant

frequencies of a shallow spherical membrane shell.

The next step in the Rayleigh-Ritz method is to find suitable
approximate displacement functions, that is, suitable approximate
expressions for u and w. In order to use Eq. (50), however, these
approximate displacement functions must be such that the boundary
conditions appropriate to the problem in question are satisfied.
For the vibrating spherical shell with a free edge, this boundary
condition is given by Eq. (38), which, when written in terms of

the displacement functions u and w, has the form
u' + [(1 +V/R]w + (v/r)u = 0. (51)

Equation (51) holds at r = a.

20




Approximate forms of the displacement functions are found in the
following way. First, note that the exact forms of the displacement

functions are available. In particular, one has from Eq. (36) that

u = BJl(ut/a), (52)

where B is a constant. Consider, on the one hand, the form of the

series expansion of a first-order Bessel function:

L) s2 (1<% $2m2= .00 ). (53a)

22 4%
3,00 = sin(dx) = bx( 1 - e B (53b)

in which b is a constant chosen so as to make the first zero of Jl(x)
coincide with the first axis-crossing of the sine function. The
approximation expressed by Eq. (53b) can be expected to be reasonably
good for values of x somewhat beyond the first zero of Jl(X)' Upon
examining Eqs. (52) and (53), it is not too difficult to see that a
good approximation of the displacement function u would be

u = Ae/a) [l = y(r/a)?), (54)

in which A is an arbitrary constant and in which y is a constant chosen
in such a way that the boundary condition in question is satisfied.
For example, in the case of the tangentially clamped shell, for which

the boundary condition is expressed by Eq. (37), one would take y = 1.




The approximate displacement function expressed by Eq. (54) can be
expected to be a good approximation of the tangential modal

functions corresponding to the lowest resonant frequencies,

Since the boundary condition for a spherical shell with a
free edge is expressed by Eq. (51), an approximation for the
displacement function w, corresponding to the approximation for
u that is expressed by Eq. (54), is also needed. This may be readily
found by inserting the value of u expressed by Eq. (54) into Eq. (22).
The result is that

w=al2/@a®) I[1 - 2y(z/a)?%], (55)

in which, after combining Eqs. (17), (23), and (27), one expresses 8
by the equation

8=[( - wa® - 2]/z. (56)

Note that, since Eq. (22) is just a rearrangement of Eq. (20), the
approximate displacement functions, given by Eqs. (54) and (55), will
satisfy Eq. (20).

The approximate displacement functions u and w, which are given by
Eqs. (54) and (55), are now substituted into Eq. (51), which expresses
the boundary condition for the shell with a free edge. The resulting

equation, when solved for y, yields the expression

y = [+ wa?l/[3 + wa? - 2]. (57)
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Thus, if y is given the value expressed by Eq. (57), the approximate
displacement functions will satisfy the proper boundary condition.
Note from the presence of 92 in Eq. (57) that both of the approximate
displacement functions u and w must depend upon the frequency of
vibration of the shell, if the rim of the vibrating shell is to be

stress free.

Equation (50) can now be used to derive an approximate secular
equation for the resonant frequencies of a shallow spherical membrane
shell. First, note that from Eq. (54) one has, for the variation in u,

the expression

su = (z/a)[l - y(r/a)?]sa. (58)

Next, the displacement functions given by Eqs. (54) and (55) and the
result expressed by Eq. (58) are substituted into Eq. (50). Because
the displacement functions u and w satisfy Eq. (20), the bracketed
term in the integral that multiplies §w will vanish identically.
Therefore, one need not deal further with that term. The substitution
in question, which is somewhat simplified if one recalls Eq. (24),
yields the equation

a 4 _ a2 2
s i putaiscs B Sy L )
b G R BT S

When the integration in Eq. (59) is performed, the equation

23 by
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ASA{Y(l - Qz)(3 =29/ - v)n2 - 2]

+ [0%20 + WY - 8y + O)2(4D2]) = 0 (60)

is obtained. Since the variation §A is arbitrary and since the
constant A must be non-zero for non=-trivial displacement functions,
Eq. (60) is satisfied only if the term within braces vanishes. If
the value of y given by Eq. (57) 1is used, Eq. (60) with the term

in braces set equal to zero leads to the following secular equation:

6 4 2
cln + czn + CJR + Ca =0, (6l)

in which the constants C, are

i
C, = (1= w33+ lov+ WY, (62a)
¢, =-[2(61 = Lav = 3 + R/ + 0], (62b)
Cy = 8(17 = V) + (4R/2)%(13 + V), (62¢)
and
c, = -48[2(R/2)% + 1). (62d)

5
Equation (61) 1is cubic in Q. Suppose ﬂg is the smallest real

root of Eq. (61). The resonant angular frequency of the gravest mode

of a shallow spherical membrane shell with a free edge is, therefore,

up = (no/a)(s/p>5. (63)




It is known that the Rayleigh-Ritz method always yields a resonant
frequency that is somewhat higher than the exact result (i.e., the
resonant frequency determined from Eq. (40). Therefore, the

e shell

ound using the

approximate resonant frequency of a shallow spherical memb

given by Eq. (63) will be somewhat greater than t

exact theory that was outlined in the previoys section. Once the

smallest real root ﬂé of Eq. (61) has been éalculated. the modal

displacement functions u, and "0 of the gfﬁvest mode can be found.

These modal displacements are

Yo

] - / [( -0 - I
w » ( R .) l ' \’)5

X {x - 2[(1 + v)u(‘;}/{(s + vl - :](r/d)“}. (64b)

At a nodal circle, the normal displacement function Voo if it exists

vanishes. From Eq. (55), it is seen that a nodal circle exists at

re l{[(3 + v)ﬂé =210 + v)ua]}H (65)
provided that

n(‘; < 2/C(1 = W) (66)

or provided that the lowest resonant angular frequency Y% is such that

Wy < R-I{QE/[(I - v)o]}a. (67)

Equations (66) and (67) follow from Eq. (65) owing to the fact that

the quantity (r/a) cannot exceed unity.

25

- (r/a)[l - [ w)szg]/[(s . v)x‘.g - 2](r/a)2], (64a)
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SUMMARY

In this report, the secular equation giving the resonant frequencies
of a freely vibrating shallow spherical membrane shell has been
calculated by two means. The exact form of this secular equation, under
the assumptions of the theory, is given by Eq. (40). An approximate
form of the secular equation resulting from the Rayleigh-Ritz analysis
is given by Eq. (61). The modal displacement functions for normal and
tangential motions that are associated with the roots of the exact
secular equation are respectively given by Eqs. (43) and (44).
Corresponding to the roots of the approximate secular equation, is the
expression for the normal modal displacement functions, given by Eq.
(64b), and the expression for the tangential modal displacement

functions, given by Eq. (64a).
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