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E | LIST OF SYMBOLS
This section presents a partial list of the notation em-

ployed. Symbols missing frc® this list are defined in the text.

4 A Vector surface area
A Area in (x,y) plane

i dA Area element in (x,y) plane

; e Local sound speed

fﬁ p Specific heat at constant pressure
Cy Specific heat at constant volume

. € Closed curve in (x,y) plane

‘: dc Arc length element along curve C
e Turbulent kinetic energy
E Specific internal energy, ft-1lbs/slug
£ Function which related curvilinear coordinate x to gen-

eralized coordinates, x=f($ g )

g Function which relates curvilinear coordinate y to
generalized coordinates, x=q(& ,7,TC)

h Enthalpy
Ht Stagnation enthalpy
hx Metric in the x-direction
}‘ hy Metric in the y-direction
i hz Metric in the z-direction
. i Unit vector in x-direction
bl Unit vector in y-direction
J J-line, streamline-like-line or Jacobian of transformation
k Unit vector in z-direction
‘ K K-line, potential-like-line
§ ) S hdx
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Mass or jhydy

Mach number

Momentum vector

jhzdz

Unit vector normal to curve C in (x,y) plane
Cycle count

Pressure, lbs/ft.2

Stagnation pressure, lbs/ft.2
Transformed particle velocity vector in (x,y) plane
Transformed mesh point velocity vector in (x,y) plane
Radius at discharge, ft

Radius, ft.

Gas constant, ft/°R

Reynolds number

Reynolds number based on distance along body

Reynolds number based on momentum thickness

Mesh point coordinate velocity in the x-direction, fps
Mesh point coordinate velocity in the y-direction, fps
Time, secs or time-like-coordinate, secs/ft

Timestep controlled by sound speed

Timestep controlled by diffusive effects

Temperature, oR

Component of velocity in the x-direction, fps

Velocity at boundary laver outer edge, fps

Velocity of blade-to-blade and/or cross-sectional sur-
fact, fps

Component of velocity in the y-direction, fps

xi




w Component of velocity in the z-direction, fps

_; wl Perturbation velocity in the z-direction, fps

| W Average velocity vector in (x,y) plane, fps

: W Velocity ( U+ V' + W* ), fps

‘ X Curvilinear coordinate associated with the angular
k| direction

Q; X Distance along a surface

! Xy1rXg, X5 Cartesian coordinates

3 y Curvilinear coordinate which labels potential-like-lines
3 in the meridional plane

! v Distance normal to surface

, z Curvilinear coordinate which labels streamlike-lines in
E | the meridional plane

Ratio of specific heats,
Eddy viscosity
Molecular viscosity, slugs/ft-sec

Density, slugs/ft3

Nox mo

1 Characteristic time for calculation or time in general-
k|| ized coordinates

Turbulent shear stress tensor

a

Generalized distance coordinate
Generalized distance coordinate
Turbulent vorticity

Total stress tensor

Angular coordinate, or momentum thickness

Boundary layer thickness

»

Displacement thickness

x

Incompressible displacement thickness

.910»@‘09:3‘“1‘4

A~‘-IA/ -

Angular velocity, radians/sec
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- Superscripts ‘
; ! Rta

b 1» ( )“ Property associated with time t" ;
bl L Property associated with time t"™¥

i :

|

‘ Subscripts

i “ : : .

H % Property evaluated from a previous iterate ]
) 3

( )r Reterence condition ]

| ( )t Stagnation condition

g

1 5 08 Laboratory stagnation condition i
j ( )i Ideal or inviscid condition '
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SECTION I

INTRODUCTION
The principal objective of this study was to numerically
b | calculate the three dimensional, viscous flow field in a cascade
of airfoils including splitter vanes. Supersonic flow enters the
cascade and subsonic flow leaves the system; thus, flow through
a section of blading in a converging compressor annulus is simu-
lated. The accuracy of the numerical calculations was tested
against appropriate experimental data, the flow field results
were studied to learn more about such cascade flow fields, and
4 these numerical data were used to help determine the validity of
simulating flow in a converging axial compressor annulus with a
cascade having convergent sidewalls. .
? L To properly address such a complex viscous, three-
dimensional flow problem requires solution of the steady, three-

dimensional Reynolds-averaged Navier-Stokes equations. Inviscid ;

quasi-three-dimensional methods, such as those of Hearseyl, Wenner-

3

stromz, and Katsanis and McNalley~, do not properly account for

viscous effects nor three-dimensionality. Three-dimensional,

inviscid relaxation techniques with viscous terms treated as source
terms, such as the method of Dodge4'5, are useful for weak interac-
tions. However, a strong interaction,with a strong three-dimensional
vortical flow in the separated region,is beyond the scope of these
techniques. Time-dependent solutions of the three-dimensional,
Reynolds-averaged Navier-Stokes equations are now possible, as

evidenced by the work of Steger and Pulliamﬁ: however, such methods

are limited by the speed and storage capacity of present day computers
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such as the CDC 7600. Therefore, an iterative solution of
the steady, Reynolds-averaged, three-dimensional, Navier-Stokes
equations appears to be the most viable alternative.

A computer code, called VANS*, was the starting point
for this numerical investigation. The VANS code solves the time-
independent, three-dimensional Navier-Stokes equations on blade-
to-blade computational surfaces. This code, developed from first
principles at NASA Ames Research Center, is briefly described
in Reference 7. Two of the main features of the VANS code are
that (1) it performs computations along the streamline-like lines
of the finite difference mesh in each blade-to-blade surface,
and (2) it employs vector coding. The IFFC** computer code, which
was developed at NASA Lewis Research Centere, performs blade-to-
blade computations along the potential-like lines of the finite
difference mesh and is written in FORTRAN. The streamline-like-
mode of computation reduces the number of branch points in the
computer code and the vector coding makes the arithmetic more ef-
ficient. The present version of the VANS computer code is 88%
faster than the IFFC computer code on the CDC 7600 computer.

Under NASA Lewis sponsorship the IFFC computer code
was employed to generate a blade-to-blade iterate for a backswept,
centrifugal impeller operating at 75000 rpm, with a tip diameter
of 6.28 in, and a compressor design pressure ratio of 3:18. The
calculated blade-to-blade flow field contained a leading edge

suction surface separation, significant boundary layer flows along

*The letters VANS stand for Vectorized Asymmetric Navier-Stokes Code.
**The letters IFFC stand for Impeller Flow Field Calculator Code.

758 "
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the pressure and suction blade surfaces, and a mixed supersonic-

subsonic region at the inducer. In general, the blade-to-blade
flow field contained significant differences from the inviscid,
quasi-three-dimensional flow field3 which served as the zeroth
iterate.

In a subsequent follow-on programg, the VANS blade-to-
blade computer code was revised to solve the eguations of motion
on cross-sectional surfaces. Based on the blade-to-blade field

as the previous iterate, the VANS computer code was employed to

generate a cross-sectional iterate for the backswept centrifugal
impeller. The calculated cross-sectional flow field duplicated

the leading edge suction surface separation computed earlier, and
in addition contained three other fluid-mechanical phenomena.
First, it was found, in cross-sectional planes tipped normal to

the blading, that the cross-sectional relative velocity field ex-
hibited a large vortex. This vortex was quite pronounced in the
inducer region. Second, a standing pressure wave was recorded
along the hub and shroud of the system. The wave-length of this
disturbance was correlated to the time of travel of a sound sig-
nal from shroud to hub. Furthermore, measurements of time-averaged
shroud pressures indicated the presence of such a wave. Third,

the flow separated along the shroud of the system near the dis-
charge. The leading edge suction surface separation and shroud sep-
aration produced relative total pressure losses at the discharge.
The standing pressure wave distorted the discharge flow field which

resulted in losses in the diffuser of the centrifugal compressor.
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In this research effort splitter vane logic was devel-
oped and incorporated into the blade~to-blade and cross-~sectional
versions of the VANS computer codes, and the supersonic compressor
cascade problem was solved.

The VANS computer codes and the numerical method they em-
body are described in Section 2.0, turbulence and transition models
are discussed in Section 3.0, and the cascade geometry and input
conditions are presented in Section 4. Section 5 presents the blade-
to-blade solution, or first iterate, Section 6 presents the cross-sectional
solution, or second iterate, and Section 7 outlines the principal conclusions and

recommendations of this research effort.
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SECTION 1II
THE VANS COMPUTER CODES

2.1 Formulation of Cascade Problem

A set of finite difference analogs of the full three-dimen-
sional, compressible Reynolds-averaged, Navier-Stokes equations
has been developed and programmed. In addition to three-dimen-
sionality and compressibility, the following effects are included:

1) Splitter vane geometry

2) Transition and turbulence

3) Arbitrary cascade geometry

4) Shock waves
A solution to these finite difference equations is obtained in the
following manner. Starting from a known inviscid, quasi three-
dimensional solution, in this particular case the inviscid field
generated by the method of Hearsey and Wennerstroml’z, we calcu-
late the viscous effects through iteration. Certain terms of the
finite difference equations (FDE) are evaluated from the inviscid
solution and other terms are evaluated directly. Terms evaluated
from the inviscid solution are designated "elliptic source terms",
while those evaluated directly are designated "parabolic terms".

The distribution of the elliptic source terms and parabolic
terms in the FDE depends on the mode of marching. At present two
modes of marching are contemplated.

1) The FDE are solved on blade-to-blade surfaces which move
from the case of the cascade to its symmetry plane.

2) The FDE are solved on cross-sectional surfaces, which move

from upstream of the cascade blading to discharge.
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Each method of marching results in its own set of elliptic source
terms and parabolic terms.

For illustrative purposes we start with a schematic of one
blading passage for a compressor cascade shown in Figure 1. The
case of the system and its symmetry plane are indicated in the fig-
ure. The surface labelled "pressure surface" is like the windward
side of an airfoil, while the surface, labelled "suction surface"
is like the leeward side of an airfoil. 1In the blade-~to-blade mode
of marching, the computation takes place on a blade~to-blade sur-
face which extends from the leading to the trailing edge of the
cascade blade , and moves from the case to the symmetry plane dur-
ing an iteration. The blade-to-blade method of marching is illus-
trated in the blade passage schematic shown in Figure 2. The x, vy
and z coordinates of Figure 2 represent a left-handed, orthogonal,
curvilinear coordinate system. The z-direction is proportioral to
the time-like-variable, t, with the calculation taking place in the
(x,y) blade--to-blade surfaces. The (x,y) blade-to-blade surfaces
move from the case to the symmetry plane of the cascade. This mode of
marching accounts for two very important fluid mechanical effects
that occur in three-dimensional cascades.

1) Upstream influence effects. The flow becomes subsonic
within the blading passage; hence, downstream conditions influence
upstream conditions. Since each blade-to-blade surface extends
from the leading to trailing edges of the cascade blades, the down-
stream flow can influence the upstream flow as the blade-to-blade
surface moves from the case to the symmetry plane.

2) Blade boundary layer separation. Separations, which occur

on the blade surfaces, produce vortices whose axes are nearly

6
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normal to the blade-to-blade surfaces. Thus, the vortices themselves
are contained in the blade-to-blade surface and are easily calcu-
lable.

In the cross-sectional mode of marching, we move down the chan-
nel, from upstream of the leading edge of the cascade blade to down-
stream of the trailing edge of the cascade blade, in cross-sectional
surfaces normal to the case surface. A schematic of the blade pas-
sage with the cross-sectional surface indicated is presented in
Figure 3. The z-direction, i.e., the time-like-coordinate is now
normal to the (x,y) cross-sectional surface of Figure 3. The (x,y)
cross-sectional surfaces move from the leading to trailing edges
of the cascade blades. This mode of marching accounts for two
additional fluid mechanical effects that occur in cascades.

3) Channel corner vortices. At the junctions of the blades
and the case, vortices usually form whose axes are generally nor-
male to the cross-sectional surfaces; hence, the corner vortices
would be contained in these surfaces and are easily calculable.

4) Symmetry plane effects. The symmetry plane imposes a
frictionless flow boundary condition on the system, as well as a
condition of zero flow normal to the symmetry plane. Effects of
these boundary conditions are calculable in this mode of marching.

To properly solve for a cascade flow field, an iteration pro-
cedure with both modes of marching is required. The procedure is
as follows. Starting from an inviscid solution as the "zeroth"
iterate, we determine the first viscous iterate by marching in blade-

to-blade surfaces which move from the case to the symmetry plane.




Based on the first iterate we determine a second viscous iterate
by marching in cross-sectional surfaces which move from the lead-
ing to trailing edge of the cascade blade. 1In this way the four
principal cascade fluid-mechanical effects, described above, can
be accounted for. The second iterate is a good engineering solu-
tion to the three-dimensional, compressible, Reynolds-averaged,
Navier-Stokes equations for flow in a supersonic compressor cas-
cade. A third iterate, which is comprised of an additional blade-
to-blade solution, is required to demonstrate convergence of this
numerical method.

The differential equations of motion in orthogonal, curvi-
linear, Eulerian coordinates, x, y and z are presented in Appendix
A. Integral equations solved on either blade-to-blade or cross-
sectional surfaces are presented in Appendices B and C. 1In addi-
tion the continuity equation is derived in Appendix B.

2.2 Blade-to-Blade and Cross-Sectional VANS Computer Codes

The integral equations of Appendix B are equally applicable
to either the blade-~to-~blade or cross~sectional modes of marching.
Therefore, the principal differences between the blade-to-blade
version of VANS, i.e., "WANS-BB', and the cross-sectional version
of VANS, i.e.,"VANS~CS"are in the boundary conditions and the
implementation of the turbulence model. The blade-to-blade and
cross-sectional turbulence models are discussed in Sections 3.2
and 3.3, respectively. Boundary conditions are described for the
blade-to-blade version of VANS in Section 5.3, while cross-sectional

boundary conditions are described in Section 6.3.
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SECTION III
TURBULENCE AND TRANSITION

3.1 Turbulence and Transition Model for Computation of Flow in a
Compressor Cascade

An algebraic turbulence model, originally formulated by RoselO
was selec;ed for the computation of turbulent flow in a compressor
cascade. Tﬁe model is, in effect, the mixing length theory to
which relaxation along a streamline is incorporated. All versions
of available algebraic models are discussed. A criterion for
boundary layer transition is also presented.
3.1.1 Turbulence Modelling

Numerical modelling of turbulence has become quite practical
in the past decade with the advancement of high-speed computers.
Though a universal model with wide range of applicability is far
from reality, there is ample evidence that existing models have
served well even in complex situations such as shock-wave boundary-
layer interaction. All models of turbulence are supposed to be
general in scope, and until recently, cross-comparisons between

10'11'12) are few. For

models (mainly studies done at NASA-Ames
flows in a compressor cascade, there is no investigation as to the
best turbulence model to employ. Thus a good rule in selection
seems to be "the simpler the better."

The usage of numerical models naturally bypasses the more
fundamental approach to turbulence studies via statistical theory,
which might be at times academically pleasing but unrealistic in

engineering applications. 1In general, turbulence modelling is

divided into two categories: the algebraic models such as mixing

r




| length theory, and the transport models which are described by one
or more differential equations governing some quantity like turbu-
lence energy, turbulence vorticity or shearing stress. The original
work of Prandtl and its subsequent extension by Cebeci and Smith,

ﬁ i.e., C-S mode113’14, Rose model10

, etc. are examples of the first
class; the classical Kolmogorov model15 and the Saffman model16 fall

into the latter category. In adopting a transport model, one must

T

solve, in addition to the basic conservation laws, other differen-

tial equations from which turbulence stresses are determined. Suc-

&gl e

t? cess of transport models so far has been confined to simple prob-
i{ lems such as attached turbulent boundary layers with small pres-
E; sure gradients. A comparative study by Balwin and McCormack12

has concluded that Saffman's transport model and the C-S mixing length
L theory suffer a similar degree of inaccuracy in the hypersonic bound-

ary-layer shock-wave interaction problem.

Let us present herein the Saffman model16 for illustration.

The model contains two variables: the energy density e and a pseudo-

vorticity.JUl, which are assumed to satisfy the following non-linear

diffusion equations.

480+ g (RUe>= [4*(2855)'- 5" €] ge
t J —
* Y - e dul 1
i, g BN
£&@0 0 g (R60) = [« [ ($) (0] - nRa]ee
+ g [ 42

where: t = time

xj = Cartesian coordinates (j = 1,2,3)

10




¢ = mean density

Gj = mean velocity components in the jth direction
/u = molecular viscosity coefficient
Sij = mean rate of strain tensor

The numbers oty */ f4 p)*, T .o* g are assumed by the model

to be universal constants.

oc=0 =Vy
%= 0.3
n* s Lt
% < U<
" e
d= &% 4*-—46‘0%)

? = 2.5, based on experimental data,

and K is the Karman constant.
This set of equations is integrated with an appropriate set of
boundary conditions (which are by no means trivial) to yield e and

JL . The eddy viscosity € is related to e and (2 by

€ = e{(}_ (3)

Saffman’'s model is but one of the many available schemes gov-
erned by two equations; some of the others are Chou (1945)17, Harlow-
Nakayama (1968)18, Jones-Launder (1972)19, Ng-Spalding (1972)20, etc.
They all have a set of empirical constants, some even parametric func-
tions. The complexity of the mathematical system and the uncertainty
in those constants are inherent with all the models. Moreover, a

set of non-linear diffusion equations generally introduces a new




time scale in the computation, which is often substantially smaller
than the convective or diffusive time scale for laminar type compu-
tation. The two-point boundary value problem also poses a tedious
numerical task. However, the advantage in this kind of turbulence
modelling is also clear; they all attempt to depict the physics of
turbulence transport, generation, dissipation and diffusion. 1In
addition, some models (such as Saffman's) show the correct analytical
behavior near the wall (as demanded by the law of wall). The pre-
dictive capabilities for incompressible boundary layer flows by
those models are convincingly established. Turbulent flows in more
than two spatial dimensions, including separation, compressibility,
rotational effects, and containing boundary layers interacting with
shock waves have not been subject to examination by those models*.
In short, the transport models, as promising as they are, have yet
to be thoroughly tested by problems more complex than plane boundary
layer flows.

In view of the three dimensionality of the cascade problem, the
desired economy in computation, and the added degree of complication

in the nonlinear equations, we must seek an alternative to the form-

-

3 ulation by turbulence model equations. The alternative should be
able to render a reasonably good description of the turbulent bound-
o ary layer development without a disproportional amount of computation

time.

*
Wilco;zl, applying Saffman's model, has shown good results in the study
of turbulent boundary separation and reattachment at moderate (2.96)
Mach number.




3.1.2 Algebraic Turbulence Models
The mixing length theory, originated by Prandtlzz, provides
the foundation to all algebraic models. Modifications introduced

by van Driest23, Cebeci and Smithl3'l4, and recently Balwin and

Roselo, Shang and Hankey24, and Deiwertll all direct to improve the
applicability of the model. Algebraic models bypass the necessity of
solving additional differential equations. From a computational stand-
point, the eddy viscosity based on an algebraic model is post-pro-
cessed from mean-flow information. Our past application of the CS
mixing length theory to internal flow problems in an impeller has
shown good qualitative results. Quantitative comparison is not pos-
sible due to the complete lack of experimental data. Hence, some
version of an algebraic turbulence model is preferred to the more
complex transport model. Despite the mixing-length common ingred-
ient, there are variations in each individual formulation. The var-
iations range from the unmodified theory to a relaxation model incor-
porating special treatment for the separated regions. The relaxation
model was found significantly better than the unmodified algebraic
model. According to Shang and Hankey24, it was significantly better
than the Saffman's transport model for flow over a flat plate. Since
separation in the cascade passage is a real possibility, incorporation
of the relaxation effect becomes quite desirable. For a detailed
comparison of various formulations, we list them in Table I.

The formulation we shall adopt in the cascade problem is basi-
cally a hybrid relation primarily based on Rose's relaxation model and
the modification suggested by Deiwert. Ingredients of the present

algebraic model are blocked in heavy-lined rectangles in the preceding
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I: COMPARISON OF VARIOUS TURBULENT MODEL FORMULATIONS

' ROSE-BALWIN RELAXATION

SHANG & HANKEY

DIEWERT MODEL 1

DIEWERT MODEL 2

DIEVERT MODEL

Same as Rose~Balwin Baseline

.11ﬁ

€ "% ¥y

wvhere 21 is the same as
Rose-Bslwin Baseline

Same as Rose-Balwin
Baseline.

e-u [@T e @'

vhere L1 1s the same as
Rose~Balwin Baseline

Same as Mode

Boundary Layer

0.0168 u 6:

€, same as Model

Eg = zl 'ﬂ + iv—l €E= §
3y  9x e 5 1
.2 |, 3y € = 0.0168 u__ 6# vhere 1+ g el, a=3
max 'dy = ox LR £ = 0,07 (5§ - vo) -
yo = value of y at zero where
Te l.-x = 0,098, vh:re B valocity g f6 G d vhere y, = valy
Zeilp gl g vake s N & dividing streanl
€o = 0,001176 (8§ - yo)
Iu6 - ud‘l
Separated bubble -
Boundary Layer
€ = Min (€, €o) € = 0.0168 u, 6; (
c-)un(c‘,:,) € = Min (€,, €9)
b e Prescribed Separated Bubble Separated bubble -

-p? duy? | dv? .k
€=t ua (IGH + GD 1Y,

ub

§

€ = 0.0168 “66=

) = (pe)o + l(oc).q = (pe)o)

(-exp (- LK 20Dy,

{3

> if (06)“ < (p€)o

1/5 otherwise

€o€ g *+ (Emc ) ex (- éf)

1058, Boundary layer
28, Mixing layer
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FORMULATIONS

JIEWERT MODEL 1

DIEWERT MODEL 2

DIEVERT MODEL 3 BASELINE

DIEWERT MODEL 4 RELAXATION

as Rose-Balwin
eline.

= u? . av,?
€, = ¢ ,|(5;‘7) + G

where 21 is the same as
Rose-Balwin Baseline

Same as Model 2

Same as Model 3

= 0,07 (5 = vo)
value of y at zero
velocity

0.001176 (8 - yo)
- ﬁtl

. 0.0168 u8%
1+ (Li_u).

where

S -y
8 lv- 58 ug) dy

€

€, same as Model 2 except

-8 .y
& fy“ a "s“’

wvhere Ve value of y at

dividing streamline

Same as Model 3

Prescribed

Boundary Layer
€ = Min (ci' €o)
Separated Bubble 3 .
3
e=tlmn (1GH + g9 1Y

o

Separated bubble - wall region

i

% X ¥y)2
€ = 0.0168 ug 8% [ yd.(l-exp (A))

Separated bubble - wake region
€ = 0.0168 uss;

Same as Model 3

€(§) = €(§-4E) +
[€,q(6) = €(E=80))
(1 ~ exp (=AE/N))
A= 186 v 108




table. The model for the turbulence stress 1rij can be summarized
as follows

oy dls g I § ] 250

Z"-J-:. QE Jx) /Xl 3 X (4)

with e é, = -—:{' Tec

The eddy viscosity € is estimated by the mixing length theory which
subdivides the shear layer into an inner and an outer region.

Inner region

I [ (o)

where: ,Zr= k,yD

kl = 0.4
y = normal distance from the nearest wall
D=1 - exp(y/A)
A =267/ / ;rwye-
1/w = kinematic viscosity coefficient at the nearest wall

z’w = shearing stress at the nearest wall

Outer Region

fmx/ !'Z +(5—g))2— (6)

0.96 J;

boundary layer thickness

where: X i

o
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Selection

€€,g = Mlh(é;) éo) (7)
Relaxation along a streamline-like trajectory

€)= ECE-08) + [€q(E) - E(r-05][1-op(-45)] (s

where
co0,if €eg < e (§-4%)
A=
Jo,otherwise

and & is a parameter defined along a streamline.

Two major components, due to Deiwert, are introduced into Rose's

formulation. One is the adoption of ‘/(%‘)‘”F Jﬁ-)b in place
3 7R ) IXe
of / My 4 CL / to avoid the complete vanishing of € in
dx). dy‘.

a recirculating zone. Another one is the modification of the relaxa-

tion process in which €& (?-—A?) is used in place of a fixed €
evaluated at some reference station. Moreover, Deiwert found that
relaxation over a streamline-like contour was more appropriate par-
ticularly for flows over a curved boundary, such as airfoil or tur-
bine blade. Both modifications, indeed minor in nature, are conven-
ient to implement with our computer code in which the scanning is !
done along streamline-like trajectories. The necessity of incorpor-
ating the relaxation effect has been substantiated by Baldwin and
Roselo, Deiwertll, Shang and Hankey24. Its usefulness for flows in

a cascade passage will be born out in our forthcoming computation.
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3.1.3 Transition to Turbulence

Laminar flow at large Reynolds numbers becomes unstable, then
the growth of disturbance in the boundary layer builds up until
transition to turbulence occurs. The point of transition is strong-
ly affected by the streamwise pressure gradient and the turbulence
level of the free stream. To account for these factors, several em-
pirical methods are available (for example, van Driest and Blumer,
Crabtree, Granville, Smith and Gamberoni, van Ingen, Michel). It 1is
not possible to give a thorough comparison for those methods. In
our blade-to-blade computation for flows in impeller passage, both

Granville25, and Michel'526

formulations were examined. We found
that Michel's simple algorithm provided a clear-cut prediction of
transition point and it was extremely easy to implement. Since
boundary layer transition is such a dubious subject in numerical
computation, our guideline in the selection of a criterion is
again "the simpler the better!" Unless future experiments contra-
dict our selection, we shall adhere to Michel's criterion for the
present application. The criterion gives a transition Reynolds

number, (Ree ) based on the local Reynolds number Rex.

0.4¢
¢ Py Jpar™ M7 (/+ 7_%'29) Key (9)

trans’

The local Re g can be estimated from the incompressible momentum

thickness € i

3 =
&" « (/—gw)dﬂ (10)
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If the local Regy is larger than (Reg ) transition to

trans’
turbulent flow has taken place. Michel's criterion, which resulted
from correlation of experimental data, is supposedly valid for

> and 60 x 106. Criterion of

the range of Rex between 0.1 x 10
this nature signifies that transition to turbulence occurs at a
point, rather than in a region, and relaminarization is not

possible. A.M.O. Smith had compared Michel's algorithm against

Granville's, Smith found the simple criterion of Michel quite

satisfactory in the description of transition to turbulence.

3.2 Blade-to-Blade Turbulence Model

The turbulence and transition models, as described in Section
3.1, were formulated, coded, merged into the VANS-BB code and de-
bugged. The turbulence formulation considered only the components
of velocity in a given blade-to-blade surface.

Our turbulence model is in effect the mixing-length formulation
generalized for internal flows with a splitter vane and included re-
laxation effects along streamlines. The transition criterion is the
semi~empirical one proposed by Michael. To accomplish these computa-
tions, consistent with the VANS scanning logic, four new subroutines
were developed. The subroutines were structured as components in
VANS; hence, any modification or even overall change of the basic
theory would not require an overall change of the VANS code. The

four components can best be described in tabulated form in the

following.




Subroutine Called from Major functions R T L e
TURB MVS* in 1. Compute geometric and shear stress quan-
VANS tities at all walls. For a blade-to-blade

geometry with a splitter vane, there are
possibly four solid walls.

2. Compute integral thickness at walls for
all boundary lavers.

3. If transition has taken place, use mix-
ing length theory to compute the eddv
viscosity coefficient.

INTER TURB Find the distance between any two points in
a curvilinear coordinate svstem. The dis-
tance is required by the mixing lenath theory.

TRANS TURB Examine if transition has taken place alonag
any streamline, according to Michel algorithm.
Relaminarization is not possible alona a given
streamline.

MIXL TURB Compute the eddv viscosity coefficient accord-
ing to the mixing=-length theorv. MIXL is
called only after transition has taken place.

3.3 Cross-Sectional Turbulence Model

Computation in the cross-sectional plane upstream of the splitter
vane included the three boundary layers which influence the eddy vis-
cosity at a given point in the flow field. The pressure surface bound-
ary layer, the case boundary layer, and the suction surface boundary
layer. All thiree layers were considered to determine the eddy vis-
cosity at a given point. In a cross-sectional plane containing the
trace of the splitter vane, two additional boundary lavers must be
considered; however, only the main blade and case boundary lavers
were employed to compute the eddy viscosity. The extension of the
mixing lenath theo;y to this case is consistent with the practice
discussed by Lauder and Spalding for flows in duct827, and for the

T 28
mixing of two streams

*The MVS subroutine of VANS computes the viscous stresses on each
blade-to-blade surface.
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A cross-sectional turbulence model was formulated, incorporated
into the VANS cross-sectional 5omputer code, and debugged. The main
features of the cross sectional model are as follows:

(1) The mixing-length theory with streamwise relaxation, as
formulated by Rose, is adapted. The model is capable of estimating
the eddy viscosity coefficient for a spvecific turbulent boundarv laver.

(2) Michel's empirical transition criterion is used for the
location of transition from laminar to turbulent flow.

(3) The preceding models, originally formulated for steady flow
with small boundary layer curvature, are used in the space-marching
computation with curvilinear coordinates. Past comparison with
experimental data seems to support this adaption.

(4) The eddy viscosity coefficient at any point in a passage is
determined by the nearest turbulent boundary laver.

Implementation of this formulation for the cross-sectional
surfaces was done through coding consisting of four subprograms:

TURB--The main program for turbulence computation in which all
necessary information for the mixing-length theory are computed, up-
dated and stored.

INTER--An auxiliary program in which the normal distance from
any internal point in the passage to any point on a surface is computed.

TRANS--A short program in which Michel's transition criteria is
examined for any boundary layer.

MIXL--A short program which calculated the eddy viscosity
coefficient at any internal point in the passage according to the

mixing length theory.

21
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SECTION IV

CASCADE GEOMETRY AND INPUT CONDITIONS
The supersonic compressor cascade geometry numerically inves-
tigated was tested by Holtman, McClure, and Sinnetzg. A schematic
of the compressor cascade is shown in Figure 4. The compressor
cascade is comprised of six blades and five splitter vanes. The
geometry of the cascade blades and splitter vanes is identical in
all planes parallel to the direction of free stream flow; hence,

the cascade is two dimensional in this respect. However, contoured

sidewalls are utilized in the cascade to obtain the required stream-

i e

tube convergence; thus, the three dimensionality of the flow. The
effective axis of the system, designated as the x3 direction, is
indicated in Figure 4. The contoured sidewalls and symmetry plane :

are indicated in Figure 5, while a blading passage of the cascade

is shown in Figure 6. The main cascade blade has a chord of 3
| inches and an axial length of 1.8396 inches.

Input flow properties for the cascade problem are as follows:

I

freestream Mach number 1.46

.656772 1lb/sec |

[}

i mass flux per passage

]

medium is air with 1.4
specific heat

ratio ¥

[/

4 freestream Reynolds 1.3575 x 10°

number based on

chord

Measurements of static pressure, total pressure, and Mach num-
ber were made in the wake of the cascade. The measurement axial

station was located at the symmetry plane approximately .49 inches

aft of the cascade exit. This corresponds to about 16 percent of

|
|
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a chord aft of the cascade. Thus, mass averaged static pressures,
total pressures, and Mach numbers are not indicative of the true
cascade exit conditions. However, these mass averaged quantities

are tabulated below:

mass averaged static pressure ratio 1.883

across cascade at symmetry plane

mass averaged stagnation pressure = .86
ratio across cascade at symmetry
plane

mass averaged wake Mach number at
symmetry plane

.837

23
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SECTION V
DEVELOPMENT OF BLADE-TO-BLADE SOLUTION: THE FIRST ITERATE
5.1 The Inviscid Solution: Zeroth Iterate

The inviscid solution to the cascade problem was generated by
Capt. W.A. Buzzel of the Air Force Aero-Propulsion Laboratory.

This solution constitutes the zeroth iterate in an iteration pro-
cedure to solve for the viscous flow field within the compressor
cascade. In this section the cascade problem is briefly described,
the method of obtaining its inviscid solution is briefly discussed
and the inviscid streamlines are presented.

The compressor cascade is comprised of six blades and five
splitter vanes. The geometry of the cascade blades and splitter
vanes is identical in all planes parallel to the direction of free
stream flow; hence, the cascade is two-dimensional in this respect.
However, contoured sidewalls are utilized in the cascade to obtain
required stream-tube convergence; thus, the three-dimensionality of
the flow. Input flow properties for the cascade problem are pre-
sented in Section 4.

The inviscid solution was generated by Air Force Aero-Propulsion
Laboratory Program UDO300. This computer code integrates the axi-
symmetric radial equilibrium equation of turbomachinery in a meri-
dional plane associated with a mean stream surface through the blad-
ing passagel. Forces acting between the cascade blades and fluid
are taken into account by body force terms in the radial equilibrium
equationz. The splitter vane is accounted for in the continuity equa-

tion as blockage. Isentropic flow is assumed in obtaining the in-

viscid flow field.




Due to the axial symmetry built into Computer Code UDO300,
the essentially 2-D cascade problem is solved as an axial compres-

sor single-stage problem at large radius. The solution takes place

in the axial coordinate X3 and a radius of 10000 inches is added
to the normal coordinates of the contoured sidewalls to produce
the radial coordinate. 1In addition to the introduction of a large
radius, the compressor is rotated at 16.5 r.p.m. Therefore, an
equivalent axial compressor single-stage problem is solved by pro-
gram UDO300 to generate the inviscid field about the compressor
cascade.

The meridional projection of the streamlines on the mean
stream surface is presented in Figure 7. The ordinate of the
figure corresponds to the radius, while the abcissa corresponds
to the axial coordinate. Due to the introduction of cylindrical
coordinates the lower contoured wall now becomes the hub and the
upper contoured wall becomes the shroud or case. The vertical
lines of Figure 7 represent the computing stations for Program
UDO300. There are seven streamlines and twenty-six computing sta-
tions. The hub and case of the system are indicated in Figure 7.
& By assuming a linear pressure distribution between the cascade

suction and pressure blade surfaces, the blade velocities, and
hence, loadings are estimated.
5.2 Mapping of Blade-to-Blade Surface from Cartesian to Curvi-
linear Space
The curvilinear coordinate system employed by the VANS computer -
code is axisymmetric and orthogonal. The axisymmetric condition im- i

plies that the geometry of the hub and case lines of the machine
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are bodies of revolution. To expedite solution of the effectively
two-dimensional cascade problem, the inviscid method of solving an
equivalent axial compressor flow field at large radius is followed.
The VANS numerical solution considers the same axial and radial
coordinates employed to generate the inviscid flow field. However,
the equivalent axial compressor geometry computed by VANS will not
rotate.

This section is concerned with the specification of the geometry
for the cascade problem in cylindrical and curvilinear coordinates.
The cascade geometry is first specified in cylindrical coordinates
r, ©, and Xy. Meridional traces of the radial and axial coordi-
nates of the hub and case of the system have already been presented
in Figure 7. The radial hub and case coordinates are presented as
functions of axial distance, X3. These hub and case lines extend
upstream of the leading edge of the blades and downstream of their
trailing edge so that the flow field in the inducer ard discharge
regions can be calculated directly from the equations of motion.
Figure 8 presents angular coordinates of the traces of the blading
surfaces on the hub. The cascade pressure surface, suction and
splitter vane are indicated in Figure 8.

A generalized, axisymmetric, orthogonal, curvilinear coordi-
nate system is used to solve the cascade problem. Consider the

curvilinear coordinates x, y, and z. The surfaces x = constant

are selected as meridional planes. The surfaces y constant and
z = constant are obtained by rotating two orthogonal curves on
the meridional plane about the axis of rotation of the machine.

Figure 9 presents two families of orthogonal curves in the
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meridional plane. The streamline-like curves are identical to the
inviscid streamlines of Figure 7. These curves form the surfaces
of revolution y = constant and z = constant. The curvilinear coor-
dinate x is identical to the angular coordinate @ . The curvi-
linear coordinates y and z are related to distances along the
streamline-like and potential-line-like lines of Figure 9, respec-
tively.

Streamline-like-meridional curves are labeled with the para-
meter z and are calculated according to the following integral:

n
2= ¥ (Gosd = Sind ) dn’ (11)

2
% %
where r is the local radius, ry is the hub radius at discharge of
the system, n is the arc length along the upstream potential-like-
line of Figure 9, A 1is the angle that the streamline-like-lines
of the system make with upstream potential-~like line, and n1 is a
dummy variable. It is noted that the parameter z is nondimensional.

Potential-like meridional curves are labeled by the parameter vy,
which is a measure of distance alung the hub. The following inte-
gral is used to define the y curvilinear coordinate

m, i
g = ‘éf dm, (12)
(o)

where ™y is the arc length along the hub and mé is a dummy variable.
As in the case of Equation (11), y is nondimensional.

Based on the above definitions of x, y, and z the metrics of
the transformation and their derivatives can be evaluated at each

of the coordinate points of Figure 9. Vavra30 developed formulae
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for the metrics and their derivatives in terms of local curvatures
and slopes. Based on known metrics and their derivatives at the
coordinate points of Figure 9, the metrics and their derivatives
at a given point in the meridional plane, i.e., P(y,z), can be
determined by interpolation.

The cascade geometry in cylindrical coordinates,defined in
Figures 7 and 8, is transformed to x, y, z space according to
Equations (11) and (12). The transformed geometry is shown in
Figures 10 and 11. Figure 10 shows the hub and case curves in
the (y,z)piane; these curves have now become straight lines.
Figure 1l presents traces of the blading on the hub blade~to-blade
surface in the (x,y) plane. The calculation takes place in the
(x,y) planes which move from the hub to the symmetry plane as the
z parameter increases from zero at the hub to .2868-03 at the sym-

metry plane.

5.3 Meshes, Boundary Conditions, and Initial Conditions
5.3.1 Finite Difference Mesh for Cascade Problem

The VANS computation takes place on (x,y) blade to blade sur-
faces which move from the hub to the symmetry plane and distort
as the blade surfaces distort. The VANS computer code has a sub-
routine which automatically develops the finite difference mesh in
accordance with the blade geometry. The finite difference mesh cor-
responding to the hub blade-to-blade surface is shown in Figure 12.
The mesh is formed by the intersection of 42 streamline-like lines
and 80 potential-like lines, i.e., 3360 points. The streamline-like

lines are spaced closer in the vicinity of the blades and splitter
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plate than in center of the passage between a blade and splitter

plate surface.

The Reynolds number at the casgade exit, based on the average
inviscid velocity along the hub, average hub density, average hub
viscosity, and distance along the hub, is Re = 7.53 x 105. The
flow will surely go turbulent along the blade ; however, for pur-
poses of mesh sizing a laminar boundary layer was considered. Based
on flat plate theory the exit boundary layer thickness is 1.028 x 10-3
ft. Using a radius of 10000 inches this would give an angular in-
crement of Ax = 1.233 x 10~° radians. The mesh was sized such
that one zone would exist in the laminar flat plate boundary layer
at the cascade exit. Five or six zones should exist in the turbu-
lent boundary layer which actually occurs in this case.

5.3.2 Boundary conditions for Blade-to-Blade Iterate

Identical boundary conditions are prescribed for all blade-

to-blade surfaces. Let us consider the hub blade-to-blade surface
of Figure 12. The boundary conditions are as follows:

1. No slip flow is imposed on the main cascade blade and
splitter vane.

2. Periodic conditions are imposed on the lateral boundaries
upstream of and downstream of the main blade.

3. The inviscid, or zeroth iterate, flow field properties are
specified at the upstream boundary.

4. The static pressure is uniformly varied along the down-
stream boundary to maintain the passage mass flux. As the blade-
to-blade surface moves from the hub to the symmetry plane, the

mass flux at the downstream boundary is integrated and the back




pressure is varied to produce a mass flux equal to half the pas-
sage mass flux of .656772 1lb/sec.
5.3.3 1Inviscid Blade-to-Blade Field at Cascade Hub
The inviscid field for the cascade problem was solved for
by Capt. W. A. Buzzel, using the UDO 300 computer code. Buzzell solved
for the inviscid velocity field, while the energy and density fields
were determined as functions of the velocity field by invoking con-
stant rothalpy, and the isentropic flow assumptions.
As in the case of the impeller problems solved previouslye,
the inviscid solution served a dual purpose.
1) It was the zeroth iterate, i.e., used to evaluate the el-
liptic source-like-terms in the equations of motion.
2) The hub solution served as the initial conditions for the
viscous calculation.
The inviscid or zeroth iterate velocity field on the hub blade-

to-blade surface is discussed in Section 5.5.

5.4 Characteristic Time for Calculation

To run the cascade problem, the speed at which the (x,y) blade-
to-blade planes move from the hub to the shroud must be specified.
The curvilinear coordinate z is related to a time-like parameter t

as follows:
2= Lé < (13)

Where Uz is the speed at which the (x,y) plane moves, and is nothing
more than a coordinate transformation*. The curvilinear coordinate

z is measured in radians and Uz is in units of feet per second, so

*See Appendix B for a derivation of the coordinate transformation
from z to t .
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the parameter t has the units seconds per foot. The speed Uz must

be small enough to permit viscous diffusion effects at the blade

surfaces to build-up boundary layers which could subsequently sep-

arate, depending on the magnitude of the adverse pressure gradient.
The definition of the characteristic time for diffusion is

based on the distance, AM , between the suction surface leading edge

and trailing edge at the hub, and the average inviscid velocity,

ﬁh , along the mid-channel plane at the hub. The characterisic
time T 1is then defined as follows:
am/
L /UI\ (14)

It was found that &M= ,1642 ft and ﬁh

characteristic time T of .2022 ms results.

= 812 fps; therefore, a

In the process of solving the cascade problem the (x,y) plane
was moved at Uy = 355 fps. This speed permitted two characteris-
tic times to pass as the blade-to-blade surface moved from the hub

to the symmetry plane of the system.

5.5 Numerical Results of Blade-to-Blade Solution

The cascade problem was run through 5300 cycles; where, each
cycle of computation corresponds to updating all the variables of
motion on one blade-to-blade surface. In 5300 cycles the blade-to-
blade surface was moved from the system's hub, where the z-coordinate
is zero, to the symmetry plane, where the z coordinate is .2868 x 10_3
The cascade blade-to-blade iterate required 3.68 hours on the CDC 7600
computer at Lawrence Berkeley Laboratory. There exist computation-
time-reduction methods that can be incorporated into the VANS computer

codes to reduce the computational time considerably; this subject

is discussed in Section 7.
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The results obtained are presented in the following fcrmat.

1) Velocity vector plots of the entire cascade flow field.

2) Velocity vector plots in the neighborhood of the splitter

vane.

3) The inviscid field and flow in the symmetry plane.
5.5.1 Velocity Vector Plots of Entire Cascade Flow Field

Figure 13 presents the inviscid velocity field on the blade-

to-blade surface corresponding to the hub of the system. This field

represents the initial conditions for the computation. The vectors
are proportional to the local particle velocities, and their tails
emanate from the finite difference mesh in the blade-to-blade sur-
face. The plot is shown in the coordinates { and m defined as

follows:

,l" jféh dX
s / ,’3 d; (15)

where (x,y) are the curvilinear coordinates and (hx,hy) are the me-
trics of the transformation. The coordinates { and m correspond
to the actual cascade coordinates. The vectors of Figure 13 are
tangent to the pressure surface, suction surface, and splitter
vane.

On the blade-to-blade surface 11.9% of the distance between
the hub and symmetry plane of the system (Figure 14) boundary
layers are clearly indicated on both the pressure and suction blade

surfaces. Furthermore, a bow shock has formed about the splitter

vane. This shock is caused by the assumption of no splitter vane
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loading in the initial inviscid field. It is as if the splitter
vane were instantaneously inserted in the flow field to produce a
piston-like bow shock. This phenomenon is a transient condition
which diffuses as the blade-to~blade surface moves towards the
symmetry plane.

In Figure 15 a velocity vector plot is shown on a blade-to-
blade surface 13.8% of the distance between the hub and symmetry
plane. This bow shock surrounding the splitter vane leading edge
is weaker, and a separation can be seen on the leading edge of the
suction blade surface.

Figure 16 shows a velocity vector plot of the cascade flow
field on a blade-to-blade surface 62% of the distance between the
hub and the symmetry plane. The initial bow shock has disappeared
on the splitter vane. A large vortex is clearly seen on the suction
surface of the cascade blade near its leading edge. This vortex,
which is a result of the interaction between the pressure surface
leading edge shock wave and the suction surface boundary layer, re-
duces the flow area to produce a rapid turning of the flow as it
streams about the vortex. Separated regions are also indicated at
the trailing edge of the cascade suction surface, along the pressure
side of the splitter vane, and at the trailing edge of the splitter
vane suction surface.

The cascade velocity field at the symmetry plane is shown in
Figure 17. T7The vortex near the leading edge of the cascade blade
suction surface, and the separated region near the trailing edge of
the suction surface of the splitter vane are still present. However,
a comparison of Figures 17 and 18 shows that the flow almost uni-

formly accelerates as the symmetry plane is approached.
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5.5.2 Flow about the Splitter Vane

Development of the flow field about the splitter vane is pre-
sented in Figures 18 to 23. At 5.3% of the distance between the
hub and symmetry plane (Figure 18) a bow shock is indicated about
the splitter. The weakening and eventual diffusion of this bow
shock is indicated in Figures 19 and 20. Figure 20 presents the
field on the 28% blade-to-blade surface. A small separation region
is indicated on the pressure sicde of the splitter, whilg the

flow remains attached on the suction side of the splitter vane.

The main points emerging from Figures 18 to 20 are that a
transient bow shock forms almost immediately about the splitter
vane and then diffuses away.

Figure 21 shows a velocity vector plot of the splitter vane
flow field on a blade-to-blade surface 50% of the distance between
the hub and the symmetry plane. On the pressure side of the split-
ter vane the vortex present on the 28% blade-to-blade surface has
grown, while a new separated region has developed at the trailing
edge of the suction surface of this vane.

The vortex on the pressure surface of the splitter vane has
further increased in size when the blade-to-blade surface has
moved 80% of the distance between the hub and symmetry plane
(Figure 22). Furthermore, this figure also depicts separation
along a large portion of the splitter vane suction surface, a recir-
culation region at the trailing edge of the suction surface of the
cascade blade, and a separation near the trailing edge of the

pressure surface of the cascade blade.
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The velocity field in the vicinity of the cascade exit is
shown in Figure 23 at the symmetry plane. Comparison of the fields
of Figures 22 and 23 indicates that an acceleration takes
place as the blade-to-blade surface approaches the symmetry plane.
The symmetry plane flow in the vicinity of the splitter vane suction
surface, downstream of the 40% chord station, is separated with re-
attachment taking place near the trailing edge.
5.5.3 The Inviscid Field and Flow in the Symmetry Plane

The inviscid flow field for the blade-to-blade surface is
generated from the pressure distribution on the mean stream sur-
facel‘z. It is based on the assumption that static pressure varies
linearly from the mean stream surface to the pressure and suction
surfaces of the cascade blade. Thus, the velocity distribution
from blade-to-blade can be obtained from the isentropic relations.
The inviscid field is then used in the zeroth iterate for the blade-
to-blade computation in the VANS code. Hence, the inviscid solu-
tion, generated in the manner just described, plays an important
role in the first iterate. Its influence on the accuracy of our
solution will be diminished as the number of iterations increases,
especially when the cross-flow computation becomes part of the it-
eration algorithm.

The inviscid flow field yields certain mass fluxes at speci-
fic stations along the cascade passage. As the surface of inte-
gration approaches the symmetry plane, the mass flux at each station '

should reach the maximum possible value. In fact, the mass flux at

all stations along the cascade would reach the same value right at
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the symmetry plane where all vertical velocities vanish. The pre-
sent inviscid solution, which is expected to be valid throughout a
good portion of the channel from hub to the symmetry plane, would
be relatively poor in describing the flow field near or at the
symmetry plane because the continuity equation is not exactly sa-
tisfied at either the hub or symmetry plane. For example, at the
axial station along the hub of zero, (see Figure 24), the mass
flux there is as high as 130% of the incoming mass flux, which
means that a strong vertical flow velocity is needed at that sta-
tion in order to satisfy the continuity equation. The corresponding
mass flux variation based on the viscous solution, and dependent
on the inviscid mass fluxes, is also shown in Figure 24.

Because of the preceding observation and the requirement on
maximum mass flow at the symmetry plane, the gas is then allowed
to expand isentropically from a place close to the symmetry plane
(78% blade-to-blade surface) to the symmetry plane (100% blade-
to-blade surface). This stipulates that all viscous losses at the
78% blade-to-blade surface are constant in the remainder of the
channel. This stipulation was verified by monitoring the losses
at every cycle of our computation between the 78% and 80% blade-
to-blade surfaces. Based on our monitoring we are satisfied that
all viscous losses have become nearly stationary above the 78% sur-
face. The isentropic expansion yields sonic conditions for a good
portion of the suction surface. The pressure distribution on the
suction surface is however not uniform at the symmetry plane, because
the viscous losses at each station are quite different from one ano-

ther. This simple algorithm for obtaining .solutions at the
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symmetry plane, based on the solution on the 78% surface, is applied
to all points at the symmetry plane.

According to the isentropic relation of Reference 31, we find

“1F eyt
 (Symmetry p lone) i [["(é) J (‘5) ;m‘*"\“ tione  (16)

h (789~ surace) b L o §
v (78 u /[’ (%)" ] (5) }732_5ur4«¢

where m (symmetry plane) is the maximum possible mass flux up to

the sonic speed, m (78%-surface) is the mass flux evaluated at a
corresponding station on the 78% surface, and

R

(17)

*sqmehn flane 73 % suv face

Equations (16) and (17) are employed to compute the local static to
stagnation pressure ratio. Based on the isentropic Mach number-pres-

sure ratio relation

M =ﬁ£f)[(§-)?" (18)

the Mach number is computed for 6?) > .5283. 1In cases where
-+

5?2 < .5283,sonic flow is assumed. The usual isentropic relations
are employed to compute the local density, local specific internal
energy, and local velocity at the symmetry plane.

In summary, the principal results of the blade-to-blade iterate
were two-fold. First, a large separated region was computed on the

suction blade surface; caused by the interaction of the shock wave
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emanating from the pressure surface leading edge and the boundary layer
flowing along the suction blade surface. Second, the cascade suction
surface separated region distorted the flow incident to the splitter
vane producing a fairly significant separated region on its pressure
surface. The blade-to-blade solution is an intermediate iterate in

the iteration process. The cross-sectional iteration, which is dis-

cussed in Section 6, provides a good engineering answer to this prob-

lem.




SECTION VI

DEVELOPMENT OF CROSS-SECTIONAL SOLUTION:
THE SECOND ITERATE

6.1 Mapping of Cross-Sectional Surface from Cartesian to Curvilinear
Space

In Section 5.2 a blade-to-blade surface, specified in cylindri-
cal coordinates r, 6 , X3, was mapped to x, y, z space. This sec-
tion is concerned with the mapping of a cross-sectional surface from
cartesian to curvilinear coordinates.

A meridional view of traces of the blade-to-blade and cross-
sectional surfaces is presented in Figure 9. The streamline-like
lines of Figure 9 rgprisent traces of blade-to-blade surfaces,

while the potential like lines represent traces of cross-sectional

surfaces. The surfaces x = constant are selected as meridional planes.

The surfaces y = constant are obtained by rotating the streamline-
like-lines about the axis of the system. Surfaces z = constant are
obtained by rotating the potential-like-lines about the axis of the
system.

Streamline-like-meridional curves are labelled with the para-

meter y and are calculated according to the following integral

M
= 2 v (Ger=Smd) dm’ (19)
g

0

where r is the local radius, ry is the hub radius at the cascade blade
trailing edge, and m is the arc length along the upstream potential-
like-line of Figure 9, AN is the angle that the streamline-like-
lines of the system make with the potential-like-lines, and m' is

a dummy variable.
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f Potential=like~meridional curves are labelled by the parameter
2, which 18 a measure of distance along the hub. The following itnte-
gral is used to define the 2z curvilinear coordinate

n,
!
. k ‘mh (20)

where n

h

& As in the case of Equation (19), 2 is nondimensional.

is the arc length along the hub and nﬁ is a dummy variable.

Lot us consider a cross=-scectional surface between the leading
| odge of the cascade blade and the leading edge of the splitter vane,
i.e., surface labelled vkin Figure 9. This surface is schematically

tllustrated in cartesian coordinates (xl,x ) in Figure 25a. As in the

3
case of the blade-to-blade solution a radius of 10000 inches has boeon

added to the ordinates of the cascade coordinates. The transtormed

geometry to (x,y) space is shown in Figure 25b. As secen from Fig-

ure 25b the cross-sectional surface has been transformed to a nearly

rectangular region in (x,y) space; blade thickness produces some

deviation from the rectangular geometry. The calculation takes

1 place in (x,y) cross-sectional planes which move from the upstream
boundary of the system to the cascade exit as the 2z parameter in-

g creases from zero at the upstream boundary to .61303-03 at the cas-

cade exit.

6.2 Interpolation of Blade-to-Blade Solution onto Cross=-Sectional |
Surfaces

4 A computer code has been written and debugged to interpolate

the blade~to=blade data onto cross=sectional surfaces. fThe inter-
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polated cross-sectional data will serve as the previous iterate
in obtaining the cascade cross-sectional solution. The variables
interpolated include axial coordinate, density, specific internal
energy, eddy viscosity, and the three velocity components.

The blade-to-blade solution was obtained on a finite difference
mesh comprised of 80 points in the axial direction and 42 points in
the azimuthal direction. For purposes of interpolation, 19 blade-
to-blade surfaces were employed, starting from the blade-to-blade sur-
f~ face coresponding to the hub and ending at the blade-to-blade sur-
face corresponding to the symmetry plane. Each blade-to-blade
surface is comprised of 80 streamwise points; hence, there are
eighty cross-sectional surfaces. Furthermore, since there are 42
azimuthal points, each cross-sectional surface will be comprised
of 19 points in the radial direction and 42 azimuthal points.

Therefore, the finite difference mesh upon which the blade-t»-

blade solution is specified is comprised of 63840 points.

6.3 Meshes, Boundary Conditions, and Initial Conditions
6.3.1 Finite Difference Meshes
As seen from Figure 25b, the transformed cross-sectional sur-

face is nearly rectangular, with the hub and symmetry plane lines

4 parallel to each other. Due to the nearly rectangular transformed
cross-sectional geometry, specification of the mesh points in (x,y)
space becomes a trivial problem. The mesh is comprised of the in-
tersection of 30 lines parallel to the hub and 42 lines conforming
to the shape of the main cascade blade and splitter vane. The 42

azimuthait lines are spaced finely in the vicinity of the main
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cascade blade and splitter vane, and coarsely in the center of the
blade passage.
6.3.2 Boundary Conditions for Cross-Sectional Computation

The boundary conditions for the supersonic compressor cascade
in cross-sectional computation planes are as follows:

1) No slip flow is enforced along the hub (contoured wall),
pressure surface, suction surface, and splitter vane between the cas-
cade blade entrance and discharge.

2) Periodic flow is enforced downstream of the discharge
of the blades except on the hub and symmetry plane surfaces. On |
the hub the velocities will be set to zero, and frictionless flow
calculated on the symmetry plane.

3) Periodic flow is enforced upstream of the cascade blade
leading edge except on the hub where the velocities from the pre-

vious iterate are prescribed, and on the symmetry plane where fric-

tionless flow with zero normal velocity is prescribed.

The above boundary conditions are illustrated in Figure 26.
Figure 26ashows the cross-section in (x,y) curvilinear space up-
stream of the leading edge of the cascade blades. Periodic flow
is enforced on the lateral boundaries, velocities from the previous
iterate are enforced on the hub and frictionless flow, with zero
normal velocity, is envoked at the symmetry plane. Figure 26b shows
the (x,y) plane within the blading passage. No slip is imposed on
the hub, splitter vane and cascade blades. Frictionless flow with
a zero normal velocity is envoked at the symmetry plane. Downstream

\ of the cascade discharge (Figure 26c¢), periodic flow is imposed on

the lateral boundaries, no slip flow is enforced on the hub and
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the normal velocity is set to zero at the symmetry plane, with the

other components Ux and Uz determined from frictionless flow equa-

tions.
6.3.3 Initial Conditions for Cross-Sectional Computation

The blade-to-blade solution interpolated onto the farthest
upstream cross-sectional surface of the system (see Figure 9),
serves as the initial conditions for the cross-sectional calcula-

tion.

6.4 Characteristic Time for Calculation

The speed U, at which the (x,y) cross-sectional plane moves

e = i et e o Pt S

:ﬂb from the farthest station upstream of the cascade to the cascade
exit must be specified. For the cross-sectional calculation a speed
parameter Uz of the 772 fps was employed.

As is discussed in Section 5.4, the characteristic time for

diffusion is .2022 ms based on a distance of .1642 ft. between the E

suction surface leading edge and trailing edge at the hub. Therefore,

at U, = 772 fps, 1.05 characteristic times will pass after the cross- {

section moves from the entrance to the exit of the cascade. j

A 6.5 Numerical Results of Cross-Sectional Solution
The cascade problem was run through 2216 cycles; where each
:; cycle of computation corresponds to updating all the variables of
motion on one cross-sectional surface. 1In 2216 cycles the cross-
sectional surface was moved from the farthest upstream cross-sec-
tion at x3 = =3,00 ft (see Figure 9) to the exit of the cascade.
3 The z-coordinate at X3 = -3.00 ft is zero, while the z-coordinate

at the discharge is .613149-03 radians. The cascade cross-sectional




iterate required 53 minutes on the Air Force Weapons Laboratory

CDC 7600 Computer.

The results obtained are presented in the following format:

1. Data reduction analysis and procedures.

2. General flow field structure.

3. Comparison of numerical and experimental results.

4. Cascade Mach number,

5. Cascade total pressure losses.

6.5.1 Data Reduction Analysis and Procedures

This section is concerned with those cross-sectional surfaces
for which numerical data have been reduced and the method of data
reduction.

Cross-sectional surfaces for which numerical data have been
reduced and interpreted are presented in Figure 27. This figure
shows a meridional view of the cascade contoured wall and symmetry
plane with cross-sectional surface traces indicated. These cross-
sectional surfaces are labelled with the axial position that they
intercept the symmetry plane of the system in the following manner.
The ratio of axial distance from the cascade leading edge to the
total axial length of the cascade blade*,‘fr, is employed to position
a given cross-sectional surface. These ratios are indicated within
parentheses in Figure 27. The cascade blade leading edge, splitter
vane leading edge and cascade blade exit are also presented in Fig-

ure 27. It is noted that the farthest downstream cross-section is

*The total axial length of the cascade blade is 1.8396 inches.
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labelled by the ratio (.945) and intercepts the hub of the

system at the cascade exit*.

In order to properly interpret these numerical data, the cross-
sectional surfaces of computation were tipped to the mean camber
line of the cascade blade. Figure 28 presents a blade-to-blade
view of the traces of the computational cross-section and the
tipped cross-section. The computational cross-scctional trace is
normal to the axial direction, X3 while the tipped cross-section is
normal to the blades. The tipping procedure, which was invoked for
the cross-sections of Figure 27 between the leading and trailing
edges of the cascade blade, is described in the following paragraph.

Let (x,y,z) and (Ux' Uy’ Uz) define the curvilinear coordinates
and velocity components, respectively, of the computational cross-
sectional plane. The computational cross-sectional plane was mapped
to the curvilinear coordinates x', y', z' which corresponded to the
tipped plane. The original velocity components Ux and Uz were re-
defined, respectively, as U* and Ué, to exist within and normal to
the tipped plane. The nearly radial component of velocity Uy was
unchanged in the transformation. This method of tipping the planes
and associated revision of the velocity components is approximrate,
since no interpolation between computational cross-sectional planes
was attempted. However, although approximate, it is believed that
the tipped data present a more realistic physical picture of the
fluid mechanics of the compressor cascade. Therefore, all the

data presented in the forthcoming sections are on tipped cross-

sectional planes.

*Due to a lack of time and funds it was not possible to carry the
cross-sectional calculation into the wake of the system.
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6.5.2 General Flow Field Structure

The general flow field structure is best depicted in contour
plots of the ratio of the streamwise component of velocity U; to the
local sound speed a on tipped cross-sectional planes. Contour
plots of this type comprise the bulk of material presented in this
section. For completeness, a few velocity vector plots of the tipped
cross-sectional flow field, i.e., U;, Uy' are also included.

A contour plot of Ué/a is presented in Figure 29 on a tipped
cross-sectional surface of ratio ‘Rr = ,206 (see Figure 27). The
plot is shown in the coordinates £ and m defined by Equations 15.
The coordinates f{ and m correspond to the actual cascade cross-
sectional coordinates. The hub, symmetry plane, pressure surface
and suction surface are indicated in the figure; the cross-section
of Figure 28 becomes non-rectangular due to the tipping of the

(putational cross-sectional plane and the thickness of the blades.
Jpsiream of the blading the velocity ratio Ué/a = 1.46, while in the
tipped cross-section at j& = .206 velocity ratios less than one
appear. Therefore, the shock wave pattern at the cascade entrance
is sufficient to produce subsonic conditions. Boundary layers are
clearly indicated on the hub and pressure surface of the main cas-
cade blade. Furthermore, a significant separation is indicated on
the suction surface of the main cascade blade.

A contour level of Ué/a = =,20 exists in the vicinity of the
cascade suction blade surface. The negative velocity indicates

the presence of a separated region. The separated region starts
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at an ordinate m of about .04 and takes up about a third of the
cross-section. The shock wave emanating from the leading edge

of the pressure surface of the main cascade blade interacts with
the turbulent boundary layer flowing along the suction blade sur-
face to produce the separation. This separated region reduces the
effective flow area of the cross-sectional surface; thus, markedly
disturbing the flow pattern there.

A contour plot of U;/a is shown in Figure 30 on a tipped cross-
sectional surface of axial distance ratio 2¥= .385 (see Figure 27).
Boundary layers are still in evidence on the hub and pressure sur-
face of the main cascade blade. Furthermore, the suction blade
surface separated region is much smaller than that of Figure 29.

The separated region starts at an ordinate m of .06 and takes up
about a fifth of the cross-section. This region is again defined
by the contour line Ué/a = -,20. Due to the smaller separated re-
gion the cross-sectional area is largerat JL.= .385 than at JK.=
.216; thus, the subsonic flow is diffused, as indicated by the velo-
city ratios of Figures 29 and 30.

The suction surface separated region shown in Figures 29 and 30
is in accord with the suction surface separated region of Figures
16 and 17, computed during the blade-to-blade iteration. Thus,
two successive iterations produced nearly the same separated flow.
The computation of the same physical phenomena in two successive
iterations is an indication of the convergence of the numerical
method. Furthermore, this points out one of the principal advan-

tages of the ADE numerical technigue. Through alternating the




direction of marching, a vortex was computed in cross-sectional
planes which did not contain the vortex.

Contour plots of the streamwise velocity component are pre-
sented on cross-sections aft of the splitter vane leading edge in
Figures 31, 32, and 33. Figure 31 shows contours of the velocity
ratio Ué/a on a cross-section of axial distance ratio fe= .605.
The splitter vane pressure surface and suction surface are indicated
in the figure as well as the main cascade blade specifications. The
main suction surface separated region is very small at,(_ = .605,
i.e., it starts at m = .075 and takes up ibout 10 percent of the
channel width. The suction surface flow attached in Figures 32
and 33 at axial distance ratios ‘jk = .672 and _fL= .945, respect-
ively.

The principal fluid mechanical features depicted in Figures
31, 32, and 33 are three-fold:

1. The splitter vane initially accelerates the incoming cas-
cade flow.

2. The flow separates from the pressure side of the splitter
vane.

3. The flow in the passage between the splitter vane pressure
surface and main cascade blade suction surface is re-accelerated
through a sonic condition and then shocked down to a subsonic con-
dition. These three fluid mechanical phenomena are discussed
further in the next several paragraphs.

Acceleration of the flow in the cascade passage, due to the

splitter vane, is seen in a comparison of the streamwise velocity
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ratios of Figures 30 and 31. In Figure 30, upstream of the splitter
vane, streamwise velocity ratios Ué/a of the order of .40 to .50 are
present in the cross-section £L= .385. Figure 31 ( J&.= .605)
shows Ué/a going to .70 in the passage between the pressure surface
of the main cascade blade and the suction surface of the splitter.
Furthermore, U;/a approaches one in the passage between the pres-
sure surface of the splitter vane and suction surface of the main
cascade blade. The splitter vane reduces the cascade flow area;
hence, an acceleration of the incoming subsonic flow is physically
reasonable.

Flow separation is indicated on the pressure side of the split-
ter vane in Figures 31 and 32 at axial distance ratios Q,= .605
and j&.= .692, respectively. This separated region is more pro-
nounced in the cross-section at Qh= .6492 than in the cross-section
at ﬂL= .605. Near the exit of the cascade, i.e., at the cross-
section associated with axial distance ratio ‘ﬂh= .945 (Figure
33), the splitter vane pressure surface flow is again re-attached.
The pressure surface splitter vane separation is caused by the
main cascade suction surface separation discussed earlier. The
shock-wave turbulent boundary layer interaction, which triggers
the main cascade blade suction surface separation, produces
a variable incidence angle distribution of the flow upstream of the
splitter vane. It is believed that this incidence angle distribu-
tion upstream of the splitter vane produces the splitter vane pres-
sure surface separation.

Figure 34 shows a Schlieren picture of a two-dimensional shock-

wave turbulent boundary layer interaction3.2

The freestream Mach
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number for this case is 1.45 and the ramp angle is 4.5 degrees.
The separated region alters the direction of the shear layer flow
near the wall, increases the thickness of the shear layer and changes
I the angle of the reflected shock wave. Hence, the variable direc-
E tion of the flow downstream of the interaction region is markedly
v different than what would occur if there were no shock-wave bound-
ary layer interaction . In fact the shear layer flow is directed
toward the surface of the system.
To illustrate the variations in splitter vane incidence
angle of the fluid, the mass flux division between the flow passage com-
prised of the main cascade pressure surface and splitter vane suction
surface (Passage I) and the flow passage comprised of the splitter
vane pressure surface and main cascade blade suction surface (Pas-
sage II) was determined. It was found that 53 percent of the in-
coming airflow passed through Passage I, while 47 percent passed
through Passage II. The nearly equal division ¢of mass flux is
somewhat surprising at first. One would expect most of the mass
\ to go into Passage I, due to the large separated region on the
main cascade blade suction surface. However, the separation region,
which is caused by a shock-wave boundary layer interaction,
¥' sufficiently changed the flow angles to induce a greater portion of

the mass flux into Passage II.

The splitter vane pressure surface separation computed in the
cross-sectional mode of itecr2tion is in accord with the separated

region computed earlier in the blade-to-blade iteration. A comparison

"




of cross-sectional iterate Figures 31 and 32 with blade-to

blade iterate Figures 21 and 22 indicates the presence of a splitter
vane pressure surface separation at about the same region along

the splitter. Thus, as in the case of the main cascade blade
suction surface separation, two successive iterations produced
nearly the same separated flow. Computation of the same physical
phenomena in two successive iterations is an indication of the
convergence of the method.

Due to the separation on the splitter vane pressure surface,
the flow in Passage II undergoes an acceleration from subsonic to
supersonic conditions and then subsequently goes through a normal
shock back to subsonic cascade exit conditions. The acceleration
to supersonic flow is indicated in Figures 31 and 32 at axial dis-
tance ratios of JK,= .605 and _1L= .692, respectively. In fact
in the cross-section at J&-= .692 the velocity ratio Ué/a approaches
1.3. Figure 33 ( /a.= .945) , which corresponds to a cross-section
near the cascade exit, shows subsonic streamwise flow. In summary,
the splitter vane pressure surface separation produces an effective
area variation in Passage II which acts as a convergent-divergent
nozzle to the flow.

For completeness cross-sectional velocity vector

v’ Ux', are shown in Figures 35 to 37.

Figure 35 shows the cross-sectional velocity field on an untipped

plots, i.e., of components U

cross-sectional plane located upstream of the cascade, i.e.,

,QL =-1.146 (see Figure 27). It is seen from Figure 35 that the

cross-sectional field is effectively undisturbed upstream of the
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cascade. The cross-sectional velocity field is shown on a tipped
cross-sectional plane just upstream of the splitter vane in Figure
36. The cascade suction surface separation and the disturbances
caused by the shocks in the system produce a complicated eddy pat-
tern in the cross-section. However, it should be pointed out that
the vectors of Figure 36 are small in magnitude relative to the
streamwise component of velocity. The eddy field near the exit of
the cascade is shown in Figure 37 at an axial distance ratio ‘fL=
.945. A comparison of cross-sectiomal velocity fields between Fig-
ures 36 and 37 indicates that the splitter vane tends to reduce the
secondary flows in the system.

6.4.3 Comparison of Numerical and Experimental Results

Holtman, McClure, and Sinnet29 measured static pressures along
the main cascade blade at ten stations, along the suction surface
of the splitter vane at three stations and along the pressure sur-
face of the splitter vane at two stations. The above measurements
were confined to the symmetry plane of the cascade. In addition,
mass averaged values of pressure, total pressure, and Mach number
were measured in the wake of the cascade at the symmetry plane. It
is the purpose of this section to compare these measurements with
corresponding calculations.

Figure 38 presents a comparison of calculated and experimental
static pressures along the main cascade blade at the symmetry plane.
The abscissa of the figure is the percent chord along the main blade
and the ordinate is the ratio of the local static pressure to the
freestream stagnationpveéssure. Comparisons of cascade blade suction |

and pressure surface static pressures are good.




Comparisons of numerical and experimental static pressures for
the cascade splitter vane are shown in Figure 39. Coordinates of
the figure are the same as that of Figure 38. These comparisons
are at the symmetry plane of the system. As can be seen from Fig-
ure 39, the calculated pressures along the splitter suction surface
are in excellent agreement with corresponding data. Calculated pres-
sure ratios along the pressure surface of the splitter start at a
ratio p/Rnc of about .80, decrease to a ratio of approximately
.45, and then increase to a ratio above .60. The initial drop in
pressure ratio is due to separation on the splitter pressure sur-
face. The subsequent increase in pressure ratio results after re-
attachment has taken place. It appears from Figure 39 that the
calculated initial pressure drop is overestimated; thus, the extent
of the separated region may be overestimated. It is believed that
the zeroth iterate, which assumed no splitter vane loading, is the
cause of the larger calculated pressure drop. After re-attachment
the numerical and experimental pressures are in accord on the split-
ter pressure surface.

Mass-averaged quantities were measured at the symmetry plane
at an axial station of about 16 percent of a chord aft of the
discharge of the cascade. Calculated mass-averaged quantities
were determined at the symmetry plane on a cross-section at axial
distance ratio Iv= .945, i.e., just upstream of the cascade
exit. Thus, we have computed results effectively at the cascade
exit and measured results in the wake of the cascade.

The symmetry plane of the cascade is quite unique, since no

mass flow occurs normal to it. Thus, the mass flux within the
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A ! symmetry plane at the cascade exit is precisely the mass flux
within the symmetry plane 16 percent of a chord aft of the cascade
exit. Based on the area ratio between the cascade exit and station
of measurement (Aw /Ae), the calculated mass averaged Mach number
at the cascade exit (He) and the pressure recovery between the

cascade exit and station of measurement ( fam/ﬁie ), the mass aver-

P R pe—- 0

aged Mach number (M,,) can be calculated at the station of mea-

El |
surement. The calculated mass averaged Mach number at the cas-

cade exit ﬁe is .920, the area ratio A“’/Ae is 1.05757 and the

calculated mass averaged exit pressure recovery Fie//ﬂh» is
.896. The measured pressure recovery in the wake of the cascade
is Eiw//ano = ,860; hence, the pressure recovery between' the
cascade exit and measurement station -éfh)/ép-e is .9598. On the
basis of the above, the pressure ratio and Mach number at the sta-

tion of measurement are computed. The calculations are compared

to corresponding measured quantities in Table II.

Table 2
COMPARISON OF MASS AVERAGED STATIC PRESSURE AND
MACH NUMBER IN THE WAKE OF THE CASCADE AT THE SYM-

METRY PLANE

| Parameter Calculated Measured
1 Pressure Ratio 15893 1.883
( PolBs )
Mach Number .832 »837
My )

The calculated wake Mach number and pressure ratio are within half

& a percent of the corresponding measured values.
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On balance, numerical-experimental comparisons cf the main
cascade blade and splitter vane static pressures, and mass aver-
aged quantities in the wake of the cascade are good. These compari-
sons strongly suggest that the numerical method has produced a
good engineering prediction of the very complicated supersonic
compressor cascade flow field.

In order to demonstrate convergence of the solution, a third
blade-to-blade iterate must be developed, based on the cross-
sectional field as the previous iterate. A calculation of this
type can be used to evaluate the degree of convergence of the num-
erical method. Unfortunately, time and funds did not permit a
third iteration.

6.5.4 Cascade Mach Number Field

In order to better understand the details of the cascade flow
field, contour plots of the local Mach number were made within the
blading passage. Figures 40-44 show Mach number contour plots on
cross-sections having axial distance ratios f{.of .206, .385,
.605, .692, and .945, respectively. Meridional traces of these
cross-sections are shown in Figure 27.

At an axial distance ratio j& of .206 (Figure 40), Mach num-
bers of about .80 prevail throughout most of the cross-section,
with low subsonic Mach numbers along the main cascade blade suc-
tion surface and supersonic flow at the symmetry plane with a peak
Mach number of 1.4. The Mach .80 flow in the center of the cross-
section is consistent with the fluid mechanics at the leading edge
of the main cascade blade pressure surface. The pressure surface

leading edge wedge angle with respect to the Mach 1.46 freestream




flow is about 14 degress. This angle is too great to permit an
attached oblique shock at the pressure surface leading edge. This
being the case, a bow shock must occur just upstream of the cas-
cade blade. On the basis of the blade-~to-blade velocity vector
plots of Figures 16 and 17, which show that the separated suction
surface region lies on a normal from the pressure surface leading
edge, the bow shock must be nearly normal to the pressure surface
of the blade. The Mach number behind a normal shock is .72 for a
1.46 Mach number freestream flow; hence, an .80 local Mach number
in the cross-section at an axial distance ratio £, of .206 is
consistent

The suction surface separation is also clearly indicated in
Figure 40. Starting at an ordinate of m = .04 and going to the
symmetry plane, Mach number contours are densely packed with a
peak Mach number of .80 outside the shear layer and zero at the
wall. The separated region takes up about a third of the width
of the channel.

A contour plot of the local Mach number at a cross-section of
axial distance ratio _Qh= .385 is shown in Figure 41. The suc-
tion surface separated region has become smaller in this figure;
thereby}increasing the cross-sectional area. The increased cross-
sectional area has further diffused the flow in the center of the
passage from about .80 Mach at JL = ,206 to .60 Mach at ,ﬂr=
.385. Furthermore, flow at the symmetry plane is now predominantly
subsonic.

Mach number contour plots within the splitter vane passage are
presented in Figures 42 to 44 for cross-sections at axial distance

ratios 1@= .605, .692, and .945. Boundary layers are clearly
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seen building up on the hub, pressure surface of the main cascade
blade and suction surface of the splitter vane in all three figures.
In Passage I* the flow is subsonic in the center of the passage and
along the pressure surface of the main cascade blade. However,
along the suction surface of the splitter vane the flow is accel-
erated to supersonic conditions. The flow in Passage II accelerates
to supersonic conditions in the center of the passage. Furthermore,
at the symmetry plane a significant region of sonic flow prevails in
both passages.

The flow in Passage I is subsonic near the main cascade blade
pressure surface and in the center of the passage. Figure 42 shows
a Mach number contour of level .40 near the cascade pressure sur-
face, and contour levels of .60 to .80 in the center of the passage.
In the neighborhood of the splitter vane suction surface, a contour
level of 1.2 exists in Figure 42. Figures 43 and 44 indicate little
change in Mach number near the cascade pressure surface and center
of the passage from that of Figure 42. However, Figures 43 and 44
show a deceleration to sonic conditions near the splitter vane
suction surface. An oblique shock wave may be present near the
splitter vane suction surface to affect this deceleration. It is
believed that this oblique shock wave is located at about the 75
percent chord position of the splitter vane. In Passage II the
flow is accelerated to supersonic conditions in the center of the
passage, and then decelerated to subsonic conditions. Fiqgures
42 and 43, which depict the cross-sectional flow field upstream

of the splitter vane 50 percent chord position, indicate an

*See Section 6.5.2 (p. 50) for definitions of Passage I and Passage
I




acceleration to Mach 1.4. Reasons for this acceleration in Passage

II have been discussed earlier (see Section 6.5.2). Figure 44
shows that the flow in the center of Passage II is at approximately
Mach .60 near the cascade exit. Thus, a normal shock occurs in
Passage II near the 50 percent chord position.

In summary, the flow in Passage I accelerates to supersonic
conditions along the splitter suction surface and then goes through
an oblique shock located aft of the 50 percent splitter vane chord
position. On the other hand, the flow in Passage II accelerates
to supersonic conditions in the leading edge region of the splitter
vane and goes through a normal shock near the 50 percent chord
position.

6.5.5. Cascade Total Pressure Losses

To evaluate cascade losses, contour plots of the total pres-
sure recovery, defined as the ratio of the local stagnation pres-
sure to the freestream stagnation pressure ( H_/R_‘o ) were
made on various tipped cross-sections within the blading passage.
Figures 45 to 49 show total pressure recovery contour plots on
cross-sections having axial distance ratios,er of .206, .385,
.605, .692, and .945, respectively. Meridional traces of these
cross - sections are shown in Figure 27. These contour plots de-
pict the magnitude and location of losses in the flow field and

these data are precisely what is required to improve the cascade

performance. Detailed flow field data such as this is only possible

through a numerical solution of the Navier-Stokes equations.

The principal cascade losses come from the following five

sources.

et
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1) A nearly normal shock emanating from the leading edge of
the pressure surface of the main cascade blade.

2) A separation on the suction surface of the main cascade
blade.

3) A separation on the pressure surface of the splitter vane.

4) A normal shock wave in the passage between the pressure
surface of the splitter vane and the suction surface of the main

cascade blade.

5) An oblique shock wave along the splitter vane suction
surface.

High losses are present near the suction surface of the main
cascade blade on the cross-section at an axial distance ratiol&
of .206 (Figure 45). Total pressure recoveries of the order of
e/ﬂ.w = .10 are present in the suction surface separated region,
while the total pressure recovery increases to nearly unity through
the shear layer. Figure 45 indicates a thick shear layer near the
suction surface.

Throughout the remainder of the flow field at J&.= . 206,
the losses are due to the nearly normal shock emanating from the
leading edge of the pressure surface of the main cascade blade.
Figure 45 shows a small contour level of .70 total pressure recov-
ery; however, most of the cross-sectional flow is at .90 total
pressure recovery. For reference purposes the total pressure
recovery through a normal shock at 1.46 freestream Mach is E;/rl“ =

.942.

A contour plot of the total pressure recovery at a cross-

section of axial distance ratio ,L, = .385 is shown in Fiaqure 46.




High losses are still indicated along the cascade suction surface;
however, the high loss region is confined closer to this surface
than at ,fv= .206. This is because the separated region is
smaller at J&-= .385. Throughout a large portion of the remainder
of the cross-section, the flow remains at a total pressure recovery

near .90. This value is a result of the leading edge cascade main ]

blade pressure surface shock wave.

Total pressure recovery contour plots within the splitter vane
passage are presented in Figures 47 to 49 for cross-sections at
axial distance ratios l@= .605, .695, and .945. 1In general the
results of Figures 47 to 49 show higher total pressure recoveries
in Passage I than in Passage II. Furthermore, the total pressure
recovery at the symmetry plane 1is higher than within the blading
passage. As discussed earlier, the mass averaged total pressure
recovery at the symmetry plane was .896 at an axial distance ratio

Avof .945,

Within splitter vane Passage I, the total pressure recovery
ranges from .40 to .70 near the main cascade blade pressure sur-
face and in the center of the passage. Near the splitter vane sur-
face the pressure recovery ranges from .50 to .90 at distance ratios

/é; of .605 and .692 (Figures 47 and 48). The pressure recovery then

drops to approximately .50 along the splitter vane suction surface
at.lr = ,945 (Figure 49). This drop is caused by the oblique shock
in Passage II.

Since the flow re-attached on the suction surface of the main
blade, the high losses of the separated region, i.e., at,[; = .206, 4

are no longer present. However, the suction blade separation did l

60
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produce losses, and more importantly, caused significant losses in
other parts of the system.

The flow along the pressure surface of the splitter was induced

to separate due to the main cascade suction blade separation. The
splitter pressure surface separation caused high system losses
throughout Passage II, i.e., total pressure recoveries as low as
E%/E%O = ,20 are present at ,Q = .605, .692 and .945 near the split-
ter pressure surface.

: In addition the subsonic flow entering Passage II was accel-

erated to supersonic conditions and then shocked back to subsonic

conditions. This was caused by the splitter vane pressure surface
separation at its leading edge. Figures 47 and 48 show an inviscid
core in Passage II of total pressure recovery in the 95 percent range*.
At fy = .945 (Figure 49) pressure recoveries of 50 percent are now

present in the region of Passage II where 95 percent prevailed pre-

viously. A normal shock wave in Passage II, believed located near
the splitter vane 50 percent chord position, is the principal cause

of this loss of pressure recovery.

*The contour interval is .10; hence, ﬁ-//? = .951 will show
3 up as unity on the contour plot. 0
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SECTION VII
CONCLUSIONS AND RECOMMENDATIONS

A numerical investigation has been conducted of the viscous,
compressible, three-dimensional flow field in an axial supersonic
compressor cascade. The main conclusion emerging from this re-
search effort is that the ADE numerical method, embodied in the
VANS computer codes, can produce a good engineering solution to
this complex problem within two iterations. Numerical-experimental
comparisons of cascade blade static pressures and mass-averaged
quantities in the wake of the cascade, provide part of the evi-
dence upon which the above conclusion is based.

A first-of-a~kind numerical solution has been developed of
the flow field within the compressor cascade. It is recommended
that these numerical data be further analyzed and interpreted in
accord with the following two aims: (1) revising the geometry of
the cascade to improve its performance, and (2) developing better
physical models of the cascade flow to incorporate into the UD0200

and UDQ300 codesl'2

in order to provide a better zeroth iterate.

In addition to the above recommendation, it is further recom-
mended that convergence of the ADE numerical method be demonstrated,
the computational efficiency of the VANS codes be improved, and
additional stator problems be solved. A third blade-to~blade itera-
tion will permit an analysis of the convergence properties of the
method. Through the use of spatial splitting of the explicit method

33 34

presently employed™ , or through the use of implicit methods™ ", it

is believed that computational time can be reduced to within two
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hours to complete two iterations. This would make the VANS computer
codes practical for design of turbomachinery. Finally, the VANS
computer code can be modified to calculate the periodic flow in

the clearance region and stator blading of an axial compressor
stage. Calculationsof this type will reveal the fluid mechanics

necessary to improve stator designs.
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Figure 1. Schematic of the lower half of one blading passage

of a cascade of blades; the symmetry plane divides
the actual blading passage in half.
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Figure 2. Schematic of cascade blading passage illustrating
the blade-to-blade mode of marching.
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Figure 3. Schematic of cascade blading passage illustrating
cross-sectional mode of marching.
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Figure 34. Shock-wave turbulent boundary layer interaction

on a flat plate; freestream Mach number is 1.45
and the wedge angle is 4.5 degrees.
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APPENDIX A
EQUATIONS OF MOTION IN ROTATING ORTHOGONAL CURVILINEAR COORDINATES
Cascade flows are confined to a channel, whose axis follows
the channel geometry; hence, the equations of motion are formulated
in an orthogonal, curvilinear coordinate system rotating with con-
stant angular velocity w*. Let x, y, and z denote the generalized
coordinates and let X0 X5 and X3 denote the cartesian coordinates.
The continuity, momenta, and specific internal energy equations in
rotating, orthogonal, curvilinear coordinates are presented in this

Appendix.

Continuity
div(€uU)=o (A1)

where the divergence of the vector Qg is defined as

div (@) = [ g by 2 (evheb)e ﬁ(f'V""';z)} -

and the velocity vector u is defined as

-

U= ug'-fV‘)'sz_h (A3)

where: Q is the density, (u, v, w) are the velocity components in
the x, y, and z directions, respectively, (i, j, k) are the unit
vectors in the x, y, and z directions, respectively, and hx' hy, h,
are the transformation metrics in the x, y, and z directions, re-

spectively.

*For the case of the compressor cascadew = 0; however, the deriva-
tion is applicable to a rotating geometry.
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A Ceus) + et [ LR p - Sl
+2¢w (K AR - g8) - c;fa( X'x.thx.x 3

div(T;) + __1«#"-#&4 _g«_uiia _g.d/) (Ad)
hhy IX /,,),tdx

where the force per unit area in the x-direction is defined as

O = Oui+ To)+ Tu b

and ( 6’;:} T;x/ Cax ) are the stress tensor components asso-

ciated with the x-direction. The term div (@UU ) is obtained by

replacing the components ( e4, €V, €W ) in Equation (A2) by
J

((UH, Cvu, ¢WU ). similarly the term div(g')'x) is obtained from

Equation (A2) by replacing the components ( @4, eV pw ) by
( Cux ) Z',,J Lax

A (e ol f{ w4k K m 5e- S [f i L‘m”*wx&]
+ 2000 (}g:,/x mg}a) gg.z‘(fx.»,éx,xb)
dv(Dy) + T Jﬁn+£‘;$Ag XS ﬁl& A,).J (AS5)

where the force per unit area in the y-direction is defined as

Ty = Byl + Ol Ty k

and ( rx,/ aq) ty) are the stress tensor components associated with

the y-direction.
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dw(eWU)+ %{[“3@ ;;%* ‘3’5}]- [ﬁ‘;‘f?‘ﬁﬁ”:ﬁ"s"’]
frea(f - L g)-CR KL R 2

' Lex Jhe + _:& Oxx Jhx - Oqy gh
dl\l(@)-}vbh e [f; bj:r. 7 }!Aj JZ‘L (A6)

where the force per unit area in the z-direction is defined as
Q= Tl + Tu) + G L

and ( &4/ Z'c,.e/ 0;* ) are the stress components associated with

the z-direction.

Internal Energy Equation

w + Wby U Jhy
div(efY)= qr[};:}ju /,;\L Jh'!tkmzl‘? *G"[A’,; hihe0¥  hehy dx_]

LY *ﬁ,ﬁﬁ**ﬁ#’*] v we[ () )1 £0%)]
o oo (1) SR By g [ EE S K]

The Stokesian stress tensor components for laminar flow

in orthogonal, curvilinear coordinates are presented below:
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Normal Stresses

=—F+77M(éxx—fdf*/(g)) (A8)

Ow= =P w(é’,;—fdiv(g)) o
0Ge= - P + zya(é“.— fdn/(‘j)) (A10)

wherg/ﬁl is the temperature dependent molecular viscosity and the

rate of strains GEX& 2 é%n? 3 are defined as follows:
é)(:(: },ﬁ g{f +bﬁ:; Y /)Jlx be (All)
B b W oh Jhy
637 hy fg /\gk Jf . hy Jx g

éa‘ht dt+hz‘k5)—(&+£¢v;t5ff (A13)

Shear Stresses

Toe = Z’*:l =/ e?*— (A14)
Lax= Uxe< étx (A15)
ax & /

1}7 - z}u =;/AJ f?x;z (Al6)

where the rate of strains 87¢, Ca-x and exg are defined as follows:
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APPENDIX B
DPERIVATION OF THE INTEGRAL CONTINUITY EQUATION

In this section the integral continuity equation solved on
the (x,y) blade-to-blade surface is derived. This derivation is
presented to illustrate the actual elliptic source terms and the
parabolic terms of the equations of motion. The equations of motion
in rotating, orthogonal, curvilinear, Eulerian coordinates x, y
and z are presented in Appendix A.

The steady three-dimensional equations of Appendix A, in
Eulerian coordinates x, y, 2z are transformed to (x,y,t) space ac-

cording to the following relations
R - !
2= WUt = ’g" Us , W= Uarw (B1)

where t is a time-like-variable, L& is the velocity of the blade-
to-blade surface, W 1is the velocity component in the z-direction,
and VV' is the perturbation velocity in the z-direction. Equations
(6|) represent a mathematically convenient transformation and lead to
a compact set of integral equations; however, they are somewhat non-
physical in that the variable t may no longer be time-like, having
the units 2/(), -

The conservation of mass for steady motion relative to the

rotating, curvilinear coordinates (x,y,z) is (Appendix A) as follows:

i((wmhg)+£(€“hgh~)*§ Qv hebe) = 0 (82)




R \ e 6 g R e g < 55 4 Lo SRS oo B S o, i s G i e

wheré @ is the density, u the x-velocity component, v the y-

velocity component, and hx' h , hz are the transformation metrics.

Y
According to Equations (Bl) the continuity equation becomes:

‘ ﬁ(eh,l»,') +;§((Mh;bt)+j;;(ﬂbxht)= -é;ﬁ((w'lu Aﬁ) (B3)

3 The left-hand side of Equation (B3) closely resembles the continuity
equation for unsteady flow in the (x,y) plane. The transformation

metrics, h h , h  on the left-hand side account for the fact that

x’ “y z

the flow is not planar but occurs on a curved surface. The term on
the right-hand side of Equation (B3) represents a source term which
accounts for the variation of axial velocity w from the constant
reference velocity. This term must be considered known in the it-
eration process and is evaluated from the previous iterate in each

successive iteration.

Equation (B3) is formulated in the Eulerian coordinates (x,y,t):

however, in the planar calculational process the trace of the boundary
of the cqsaada channel in the cross-sectional surface must distort
with time. Hence, we are really interested in the continuity equa-

tion in a generalized coordinate system $ i F K . vhere S

t= T (B4)

X = 'f’(é,Zf) (B5)

- 3(#;7,'5) (B6)




and {(R'LO): $)9(€7;0)= '7 e where f$t=6§)c‘° =1,,zﬂ{j?"z:‘°=l.

We now differentiate (B4) with respect to t, x, and y, respective-

l,, with the results

| E-.
-@, - Sl

5,%:: o (B7)

et s

E: o
s /v
3 Performing the same differentiation of Equations (B5) and (B6) yields

(after much manipulation)

of = f?ﬂr"g‘lft
oE TRy - 9v sy ]

& g ax
& TR R b -
e

o7 [Fe3 - Jehr ]

\

7 Fe e - $49c
T [$¢3y - v
_" ﬂ = -gf (B9)
3 o [§¥‘31 - Je¥ ]
41 . ;,‘_
oF [ S8y - 9 5]
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Consider the function G( é' . 1 , T ) whose derivatives are
oG - Gd?+651+6d_7=

Gj("']jt'gq;:)“’ @, (fcﬁ#'ftoqt)*é'c(&ﬁ?'J?ﬁi) (B11)
("'F;7—;&;~,) ;'

= Gr £= G?g.' " Gﬁg# Bl2
G#f t G"ﬁ ¥ X [;FZ _;‘. ;,.1] b

3 ,c
1 4G - Gy 3E + Gngl+ Ge gF - Gefrt Gt 513
%"t 5 [$sdh-JeFq]

where use of Equations (B6) - (B9) produced Equations (Bll), (B1l2),

and (B13).

Based on Equations (Bll), (Bl12), and (Bl1l3), the continuity Equa-
tion (B3) transforms to the generalized coordinates { 5' e 1 T )

as follows:

:' ﬁ((’h"}‘a T") + [(6’!:_ (U‘h"thxl)i‘ (ehx (V'N.‘SJ’}}): )] 3:'
_i [(QW')';bx&),'* (QW'/)x‘\;SJ);]f;'(j’;f(ﬂv“)f,) (B14)

where ( )x and ( )y define differentiation with respect to x and

y, respectively, and the grid velocity components Sy and Sy are de- ;
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fined as

St = :g;” §t'
53= ﬁ = Jr (B15)

The symbol J represents the Jacobian of the transformation, i.e.,

= , J(EY,T) l_ S 8
J= o/ (x,9,¢) |~ 563m - Ik (B16)

where: dvdy = T—'dé dv (B17)

Multiplying Equation (B14) by the area increment dsdvl and inte-

grating yields:

5 ebodh [ 3-8 e, [ e bt
c L h

where dA = dx dy, A corresponds to the area in the x,y plane contained
within the region bounded by the closed curve C, n is the unit nor-
mal to the curve C, g is the particle velocity vector in the (x,y)
plane as defined by Equation ((3), and gg is the coordinate velocity
vector in the (x,y) plane as defined by Equation(c4). In the inte-
gration process use was made of Equation (Bl7) to convert integrals

in d?d'] to integrals in dxdy. Furthermore, Leibniz's rule was

used to permute differentiation and integration and Gauss's theorem
was used to convert area integrals to line integrals in the (x,y)

plane.
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APPENDIX C

MOMENTUM AND SPECIFIC INTERNAL ENERGY RELATIONS
IN GENERALIZED COORDINATES

In this appendix the momentum and specific internal energy
relations are presented in generalized coordinates.

x-direction momentum

J'&/n eu hxhy dR +[€ eu (§- %) -hde *ﬁ,/'xliyh A dH
= ii(uw ?,-ﬁdc = -d;i—[(uwibxﬁgdn fiﬁg@‘xé? JH

-J.Jl'u@r-[;dc-l— lxﬁzﬂ;dﬂ-*[@;-!?dc (c1)
Ua % 2 -
where:

= %‘i[ﬂ. o'tl+ :5§!+t%§_£{ﬁt%+ét£3+f}ff
+zew(),‘“f-( }V’:J’(’)—S%‘(%Xm%n) (c2)

%:. L(l)x/)t_é thxAti (C3)

?c= chxhol §.+ S’: }t;/;x_)_. (ca)

= dhx + Tex dﬁl J_’E
T }7:/_;{7_ /,j: 2 /?;':;Jx /,,(),é X (C5)
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G, = Ochyh {+ Tuhshe)

(Co)

and A is the area in the (x,y) plane, C a closed curve in the (x,y)
2 T

plane, N is a unit normal to the curve C, ( 6;5 (75 & ) are

the stress tensor components associated with the x-direction, 0—’&

is the normal stress in the y-direction, and Cxi is the normal

stress in the z-direction.

y-direction momentum

PYCZE Jev 8- hidc t fohehy heRydA
A i s

- (.Z[ f*) 3-:@ dC +L/x@£¢@v{”+c/¢;} L"i dc (c7)

e QLR bbb} R L s
+ 2ew (& ‘J'-é *ﬁ%‘(’)-’ %'“-’L(X.jfnﬂjé) (c8)

cr)-;y ke h’ he z;‘} ¢ + hxhe Oyy ) (C10)
and ;bt is the shear stress component associated with the (y,z)
directions.
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z~-direction momentum

2 erbhydh [ om3-2-iidc 4 [lky hth - f [ow'gdc
= _[/L#/ngww'b.lngdﬂ+ iﬁ/k‘g&dﬂ—i[@t%.é Jde
’ C

v fohhyhe Tedn + [ @ - de 1

where:

%{ta"k*la’& E 7&[ ./I,,+ L*’fﬁi’

? zew(;“""“" ) %'(x.a.max; )

- Tx Jh Tye Jhe — Oxx ‘/l'x-—_ﬁlﬁ oh Cc13
= bxb.,f+b:"} " b hchy I s

G = hyhe G &+ hohe Ty )
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Internal energy equation

& / CEhihy A+ / CEF-po) -1 de- | RENg-Rde=— [<E"M:«M
+.L/@£/{wm,ydﬂ # z}%/vhxl.,dﬂn;(#/uhxﬁ;dn

J—{ 6&/ W¢-ndc+ a,efvg, ndC+ TeJ(J? ndc /M,MEJ"
+f77épdﬁ +f@"’ fdufz.?v ‘irdu T - B (15

where:
v [l B R ATe Sl S22 5 Ji.éfm 1
- Ty ['j-’dﬂl +‘-ﬁ;jh} &[}S; ﬁ!+ﬁwhx‘/2 [‘&:-’J_?zl%%’u] (C16)

= -[dj_&_u/-f Tya V+ qu] %w [&UfG’W-MJ%& [Q.,vm’urwjn_ﬂ;f;)(cl_”

' u: ( o Uyy ) (C18)

:j 0 lk;‘)

1 Tp= \oy o (€19)

4 o UTay :
1 Z-PE: (tu 0 ) (C20) 1‘
Al

?‘,: 7 hx"’tg "'V"‘f “6:’, ?Cb= WNL_(, + w""*i (C21)
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