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SECTION 1

rNTR0 DU cTI0N

The principa l objective of this study was to nume ricall y

calculate the three dimensional , viscous flow field in a

of airfoils including splitter vanes. Supersonic I low enters the

cascade and subsonic flow leaves the system ; thus, flow throuqh

• a section of blading in a converging compressor annulus is simu-

lated . The accuracy of the numerical calculations was tested

against appropriate experimenta l data , the flow field results

were studied to learn more about such cascade flow fieldn , and

these numerical data were used to help determine the validity of

simulating flow in a converging axial compressor .-innulus with a

cascade having convergent sidewalls.

• To properly address such a complex viscous , three-

dimensional flow problem requires solution of the steady , three-

d4 mensional Reynolds-averaged Wavier-Stokes equations . Inviscid

quasi-three-dimensional methods, such as those of Hearsey1, Wenner-

strom 2, and Katsanis and McNalley3, do not properly account for

viscous effects nor three—d imensionality. Three-dimensional ,

inviscid relaxation techniques with viscous terms treated as source

terms, such as the method of Dodge4’5, are useful for weak in ter a c-

tions. However , a strong interaction ,with a strong three-d imensional

• vortical flow in the separated region,is beyond the scope of these

techniques. Time-dependent solutions of the three -dimensiona l ,

Reynolds-averaged Wavier—Stokes equations are now possible, .is

evidenced by the work of Steger and Puiliam 6; however , such methods

are limited by the speed and storage capacity ot present day computers

--
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such as the CDC 7 6 0 0 .  Therefore , iii iterative solution of

the steady, Reynolds-averaged , three-dimensional , Navier-Stokes

equations appears to be the most viable alternative .

A computer code, called VJ~.NS* , was the starting point

for this numerical investigation. The VANS code solves the time-

independent, three-dimensional Navier-Stokes equations on blade-

to-blade computational surfaces. This code, developed from first

• principles at NASA Ames Research Center , is briefly described

in Reference 7. Two of the main features of the VANS code are

that (1) it performs computations along the streamline-like lines

of the finite difference mesh in each blade-to-blade surface ,

and (2) it employs vector coding . The IFFC** computer code, which

was developed at NASA Lewis Research Center8, performs blade-to-

• blade computations along the potential-like lines of the finite

difference mesh and is written in FORTRAN. The streamline-like-

mode of computation reduces the number of branch points in the

computer code and the vector coding makes the arithmetic more ef-

ficient. The present version of the VANS computer code is 88%

faster than the IFFC computer code on the CDC 7600 computer.

Under NASA Lewis sponsorship the IFFC computer code

was employed to generate a blade—to—blade iterate for a backswept ,

centrifugal impeller operating at 75000 rpm , with a tip diameter

8
of 6.28 in , and a compressor design pressure ratio of 3:1 . The

calculated blade—to-blade flow field contained a leading edge

suction surface separation , significant boundary layer flows along

*The letters VANS stand for Vectorized Asymmetric Navier-Stokes Code.
**The letters IFFC stand for impeller FTow Field Calculator Code.

~fl
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the pressure and suction blade surfaces, and a mixed supersonic-

subsonic region at the inducer . In genera l , the blade-to-blade

flow field contained significant differences from the inviscid ,

quasi-three-dimensional flow field 3 which served as the zeroth

iterate.

• In a subsequent follow-on program9, the VANS blade-to-

blade computer code was revised to solve the equations of motion

on cross-sectional surfaces. Based on the blade—to-blade field

as the previous iterate, the VANS computer code was employed to

generate a cross-sectional iterate for the backswept centrifugal

impeller . The calculated cross-sectional flow field duplicated

the leading edge suction surface separation computed earlier , and

in addition contained three other fluid-mechanical phenomena.

First., it was found , in cross—sectional planes tipped normal to

the blading , that the cross-sectional relative velocity field ex-

• hibited a large vortex. This vortex was quite pronounced in the

inducer region. Second , a standing pressure wave was recorded

along the hub and shroud of the system. The wave-length of this

disturbance was correlated to the time of travel of a sound sig-

nal from shroud to hub. Furthermore, measurements of time-averaged

shroud pressures indicated the presence of such a wave. Third ,

the flow separated along the shroud of the system near the dis-

charge. The leading edge suction surface separation and shroud sep-

aration produced relative total pressure losses at the discharge.

The standing pressure wave distorted the discharge flow field which

resulted in losses in the diffuser of the centrifugal compressor.

3
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• In this research e f fo r t  splitter vane logic was devel-

oped and incorporated into the blade-to-blade and cross-sectional

versions of the VANS computer codes , and the supersonic compressor

H cascade problem was solved.

- 
The VANS computer codes and the numerical method they em-

body are described in Section 2 .0 , turbulence and transition models

are discussed in Section 3 .0 ,  and the cascade geometry and input

• conditions are presented in Section 4. Section 5 presents the blade-

to—blade solution, or f irst iterate, Sect ion b prese1~ts the cross-sectional

solition, or second iterate , and Section 7 outlines the principal conclusions and

recoimienda tions of this research effort.
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j•• SECTION II

THE VAN S COMPUTER CODES

2.1 Formulation of Cascade Problem

A set of finite difference analogs of the full three-dimen-

sional , compressible Reynolds-averaged , Wavier-Stokes equations

has been developed and programmed . In addition to three-dimen-

sionality and compressibility , the following effects are included :

1) Splitter vane geometry

2) Transition and turbulence

- • 
3) Arbitrary cascade geometry

4) Shock waves

A solution to these finite difference equations is obtained in the

following manner. Starting from a known inviscid , quasi three-

dimensional solution , in this particular case the inviscid field

1 ’generated by the method of Hearsey and Wenrierstrom ‘
~~~~, we calcu—

late the viscous effects through iteration . Certain terms of the

finite difference equations (FDE) are evaluated from the inv±scid

solution and other terms are evaluated directly. Terms evaluated

• from the inviscid solution are designated “elliptic source terms” ,

while those evaluated directly are designated “parabolic terms” .

The distribution of the elliptic source terms and parabolic

terms in the FDE depends on the mode of marching . At present two

modes of marching are contemplated .

1) The FDE are solved on blade-to-blade surfaces which move

from the case of the cascade to its symmetry plane .

• 2) The FDE are solved en cross-sectional surfact~~, which move

from upstream of the cascade blading to discharge .

H
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Each method of marching results in its own set of elliptic source

terms and parabolic terms.

For illustrative purposes we start with a schematic 01 one

blading passage for a compressor cascade shown in Figure 1. The

case of the system and its symmetry plane are indicated in the fig-

ure. The surface labelled “pressure surface” is l ike the windward

• side of an airfoil , while the surface , labelled “suction surface ”

is like the leeward side of an airfoil. In the blade-to-blade mode

of marching , the computation takes place on a blade-to-blade sur-

face which extends from the leading to the trailing edge of the

• cascade blade , and moves from the case to the symmetry plane dur-

ing an iteration. The blade-to-blade method of marching is illus-

trated in the blade passage schematic shown in Figure 2. The x , y

and z coordinates of Figure 2 represent a left—handed, orthogonal ,

curvilinear coordinate system. The z-direction is proportior~ l to

the time-like-variable , t, with the calculation taking place in the

(x,y) blade-.to—blade surfaces. The (x,y) blade-to-blade surfaces

move from the case to the symmetry plane of the cascade. This mode of

marching accounts for two very important fluid mechanical effects

-
s 

that occur in three-dimensional cascades.

1) Upstream influence effects. The flow becomes subsonic

within the blading passage; hence , downstream conditions influence

upstream conditions. Since each blade-to-blade surface extends

from the leading to trai l ing edges of the cascade blades, the down-

stream flow can influence the upstream flow as the blade-to-blade

surface moves from the case to the symmetry plane.

2) Blade boundary layer separation . Separations , which occur

on the blade surfaces , produce vortices whose axes are nearly

6
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normal to the blade—to—blade sur faces.  Thus , the vort ices themselves

are conta ined in the blade-to-blade sur face and are easily ca lcu-

lable.

In the cross-sectional mode of marching, we move down the chan-

nel , from upstream of the leading edqe 0 ?  the cascade blade to down-

stream of the trailing cdqe of the cascade blade , in cross-sectional

surfaces normal to the case surface . A schematic ot the blade pas-

sage with the cross-sectional surface indicated is presented in

Fi~;ur e 3. The z-direction , i.e., the time—like-coordinate is now

normal to the (x,y) cross—sectional surface of Figure 3. The (x,y)

cross-sectional surfaces move from the leading to trailing edges

of the cascade blades. This mode of marching accounts for two

additional fluid mechanical effects that occur in cascades.

• 3) Channel corner vortices. At the junctions of the blades

and the case, vortices usually form whose axes are generally nor-

male to the cross-sectional surfaces; hence , the corner vortices

• would be contained in these surfaces and are easily calculable.

4) Symmetry plane effects. The symmetry plane imposes a

frictionless flow boundary condition on the system , as well as a

condition of zero flow normal to the symmetry plane. Effects of

these boundary conditions are calculable in this mode of marching.

To properly solve for a cascade flow field , an iteration pro-

cedure with both modes of marching is required . The procedure is

as follows. Starting from an inviscid solution as the “zeroth”

iterate, we determine the first viscous iterate by marching in blade-

to-blade surfaces which move from the case to the symmetry plane.

1
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Based on the first iterate we determine a second viscous iterate

• by marching in cross-sectional surfaces which move from the lead-

ing to trailing edge of the cascade blade. In this way the four

principal cascade fluid-mechanical effects , described above , can

be accounted for. The second iterate is a good engineering solu—

tion to the three-dimensional , compressible, Reynolds-averaged ,

Navier-Stokes equations for flow in a supersonic compressor cas-

cade. A third iterate, which is comptised of an additional blade-

• 
- to—blade solution, is required to demonstrate convergence of this

• • numerical method .

The differential equations of motion in orthogonal , curvi-

l inear , Eulerian coordinates, x , y and z are presented in Append ix

A. Integral equations solved on either blade—to—blade or cross-

sectional surfaces are presented in Appendices B and C. In addi-

- 

• tion the continuity equation is derived in Appendix B.

2.2 Blade-to-Blade and Cross-Sectional VANS Computer Codes

The integral equations of Appendix B are equally applicable

to either the blade—to-blade or cross-sectional modes of marching .

Therefore,  the principal differences between the blade-to-blade

version of VANS , i.e.,”VANS-Bø’, and the cross-sectional version

of VANS , i.e.,”VANS—CS” are in the boundary conditions and the

implementation of the turbulence model. The blade-to-blade and

cross-sectional turbulence models are discussed in Sections 3.2

and 3.3 , respectively. Boundary conditions are described for the

blade-to-blade version of VANS in Section 5.3, while cross-sectional

boundary conditions are described in Section 6.3.

8
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SECTION Il l

TURBULENCE AND TRANSITION

3.1 Turbulence and Transition Model for Computation of Flow in a
Compressor Cascade

An algebraic turbulence model, originally formulated by Rose10,

was selected for the computation of turbulent flow in a compressor

cascade. The model is, in effect, the mixing length theory to

which relaxation along a streamline is incorporated . All versions

of avai lable algebraic models are discussed . A criterion for

boundary layer transition is also presented .

3.1.1 Turbulence Modelling

Numerical modelling of turbulence has become quite practical

in the past decade with the advancement of high-speed computers.

Though a universal model with wide range of applicability is far

from reality, there is ample evidence that existing models have

• served well even in complex situations such as shock-wave boundary-

layer interaction. All models of turbulence are supposed to be

• general in scope, and until recently, cross-comparisons between

models (mainly studies done at NASA—Ames10’~~~’
12) are few. For

f lows in a compressor cascade, there is no investigation as to the

best turbulence model to employ. Thus a good rule in selection

seems to be “the simpler the better.”

The usage of numerical models naturally bypasses the more

fundamental approach to turbulence studies via statistical theory ,

which might be at times academically pleasing but unrealistic in

• engineering applications. In general, turbulence modelling is

- - divided into two categories: the algebraic models such as mixing

:~ : :$
• —
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length theory, and the transport models which are described by one

or more differential equations governing some quantity like turbu-

lence energy, turbulence vorticity or shearing stress. The original

work of Prandtl and its subsequent extension by Cebeci and Smith,

i.e., C-S modell3~
I 4 , Rose model10, etc. are examples of the first

class; the classical Kolmogorov model15 and the Saffman model
16 fall

into the latter category . In adopting a transport model, one must

solve, in addition to the basic conservation laws, other differen-

tial equations from which turbulence stresses are determined . Suc-

cess of transport models so far has been confined to simple prob-

lems such as attached turbulent boundary layers with small pres-

sure gradients . A comparative study by Balwin and McCormack12

has concluded that Saffman ’s transport model and the C-S mixing length

theory suffer a similar degree of inaccuracy in the hypersonic bound-

ary-layer shock-wave interaction problem .

Let us present herein the Saffman model’6 for illustration .

The model contains two variables: the energy density e and a pseudo-

vorticity,J~~, which are assumed to satisfy the following non-linear

diffusion equations. — —

~ (fe) 
.~~ ~~~ 

Ue) 
~ EoC’

(2 ~~ Sj) — ‘~ ~J2] ~ e

(U

~~~~~ 

(~ (~
) 

~~~~~~ 

(~ u .aL) 
[ [ (

~~~~~~~~~
.) (

~~~~~~~~~~~

)J

t

+ 
~~~[ (,# o-

~~~~
)
~~

iz’
~1 

( 2 )

where: t time

X
j 

= Cartesian coordinates ( j  1, 2 , 3)

10

J 
_ _ _ _ _ _ _ _ _ __ _ _ _ __ _ _ __ _ _ _  • • •_ _ _ _ _ _ _ _ _



• 
~~~~~~~~ 

. •  • •~~ç~~~~~~~~~~• r-~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• = mean density

Zr . = mean velocity components in the jth direction

= molecular viscosity coefficient

S~~ = mean rate of strain tensor

The n umbers ~~~, ~~~~~
, 15 ~~

)

* V r are assumed by the model

to be universal constants.

~~“= 0.3
~11.

~

,(

= 2.5, based on experimental data,

• and K is the Karman constant.

This set of equations is integrated with an appropriate set of

boundary conditions (which are by no means trivial) to yield e and

• The eddy viscosity E is related to e and a by

~ e,~ (3 )

Saffman ’s model is but one of the man y available schemes gov-

erned by two equations; some of the others are Chou (1945)17, Harlow-

Nakayama (1968)18, Jones—Launder (1972)19, Ng—Spalding (1972)20, etc.

They all have a set of empirical constants, some even parametric func-

tions. The complexity of the mathematical system and the uncertainty

in those constants are inherent with all the models. Moreover , a

set of non-linear diffusion equations generally introduces a new

11 
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t ime scale in the computation , whic h is o f t e n  substantially smaller

tha n the convect ive  or th f fus ive  time scale for laminar type compu-

tat ion . The two-point boundary va lue problem also poses a tedious

numerical task.  Howe ve r , the advantage in this kind of turbulence

modell ing is also clear; they all attempt to depict the physics of

turbulence transport , generation , d i s s ipa t i on  and diffusion. In

addition , some models (such as Saffman ’ s) show the correct analytical

behav ior near the wall (as demanded by the law of wal l ) .  The pre-

dictive capabilities for incompressible boundary layer flows by

those mode ls are convincingly established. Turbulent flow s in more

than two spat ial dimensions , including separation , comp ress ibility ,

rotat ional e f fec ts , and conta ining boundary layers i:’teracting with

shock wave s have not been subject to examinat ion by those models * .

In short , the transport models , as promising as they are , have yet

to be thoroughly tested by problems more complex than plane boundary

layer flows .

In view of the three dimensionality of the cascade problem , the

desired economy in computation, and the added degree of complication

in the nonlinear equations , we must seek an alternative to the form-

ulation by turbulence model equations . The alternative should be

able to render a reasonably good description of the turbulent bound-

ary layer development without a disproportional amount of computation

time .

WilcoxL , applying Saffman ’s model , has shown good results in the study
of turbulent boundary separation and reattachment at moderate (2.96)
Mach number.

12
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3.1.2 Algebraic Turbulence Models

The mixing length theory , originated by Prandtl22 , provides

the foundation to all algebraic models. Modifications introduced
23 • • 13 ,14

• - 
by van Driest , Cebeci and Smith , and recently Balwin and

Rose10 , Shang and Hankey24, and Deiwert11 all direct to improve the

applicability of the model. Algebraic models bypass the necessity of

solving additional differential equations. From a computational stand-

point, the eddy viscosity based on an algebraic model is post-pro-

cessed from mean-flow information. Our past application of the CS

mixing length theory to internal flow problems in an impeller has

shown good qualitative results. Quantitative comparison is not pos-

sible due to the complete lack of experimental data. Hence, some

version of an algebraic turbulence model is preferred to the more

complex transport model. Despite the mixing-length common ingred-

ient, there are variations in each individual formulation . The var-

• iations range from the unmodified theory to a relaxation model incor-

porating special treatment for the separated regions. The relaxation

model was found significantly better than the unmodified algebraic

model. According to Shang and Hankey24, it was significantly better

than the Saffman ’s transport model for flow over a flat plate. Since

separation in the cascade passage is a real possibility , incorporation

of the relaxation effect becomes quite desirable. For a detailed

• comparison of various formulations , we list them in Table I.

• The formulation we shall adopt in the cascade problem is basi-

cally a hybrid relation primarily based on Rose ’s relaxation model and

• • the modification suggested by Deiwert. Ingredients of the present

• algebraic model are blocked in heavy—lined rectangles in the preceding

13 •
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table. The model for the turbulence stress ?
‘

. can be summarized

as follows

(4 )

with ~ =

The eddy viscosity 6 is estimated by the mixing length theory which

subdivides the shear layer into an inner and an outer region.

Inner region

J:[(~~’i-
9 

~~~~
where : j1= k1yD

k1 = 0.4

• y = normal distance from the nearest wall

D = 1 - exp(y/A)

A = 26Vw /..[i~u V~
= kinematic viscosity coefficient at the nearest wall

= shearing stress at the nearest wallw

Outer Region

= J:M 
~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ t 

( 6 )

where : )max = 0.96

= boundary layer thickness
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Selection

Ee~~~ 
M1~,(6~1~~0)  ( 7 )

Relaxation along a streamline-like trajectory

E(~- ~~) ~[~
‘
~i~~
) E(F-

~~~
L1— e)

~~

_

~~~~l 
(8)

where

-~ 

- 

1t~,if E~~~
’ ~(~-~~

)

~‘60,otherwise

and is a parameter defined along a streamline.

• Two major components , due to Deiwert , are introduced into Rose ’s

formulation. One is the adoption of in place

of / ~~ ~ j
~J / to avoid the complete vanishing of E in

a recirculating zone. Another one is the modification of the relaxa-

tion process in which 6 is used in place of a fixed e

evaluated at some reference station. Moreover, Deiwert found that

relaxation over a streamline—like contour was more appropriate par-

ticularly for flows over a curved boundary , such as airfoil or tur-

bine blade. Both modifications , indeed minor in nature , are conven-

ient to implement with our computer code in which the scanning is

done along streamline-like trajectories. The necessity of incorpor-

ating the relaxation effect has been substantiated by Baldwin and

Rose’0, Deiwert’1 , Shang and Hankey24. Its usefulness for flows in

I’-• 
‘ a cascade passage will be born out in our forthcoming computation.

• 1.7
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3 .1 .3  Transit ion to Turbulence

Lamin~ir t Iow at large Reynolds numbers becomes unstable , t~ien

the growth of thsturbance in the boundary layer builds up until

trans ition to turbu~ cnce occurs. The point of t ransit ion is stront~-

ly af fected by the streamwise pressure gradient and the turbulence

level of the t ree stream. To account for these factors , severa l  em-

pirical methods are available (for example , van Dr iest and l3lume r ,

Crabtree , Granv ilh , Smith and Gamberoni, van Ingen , Miche l) . It is

not poss ible to give a thorough comparison for those methods . In

our blade-to-blade computat ion for flows in impeller }~assage , both

dranville , and Michel’ s 26 formulat ions were examined. We l ound

that Michel’ s simple algorithm prov ided a clear-cut prediction of

• transition point and it was extremely easy to implement. Since

boundary layer transition is such a dubious subject in numerical

computat ion , our guideline in the selection of a cr iterion is

again “the simpler the better!” Unless future experiments contra-

dict our selection , we shall adhere to Michel’s criterion for the

present application . The criterion gives a transition Reynolds

number , (Re0 ~trans’ 
based on the local Reynolds number Rex.

(/‘e
0 ~~ ~ ‘‘ (“p ~~ 

~~~“ 
(9)

The local Re9 can be estimated from the incompressible momentum

thickness 9

(10)

18
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• It the local Re is larger than (Re m ) , transition to0 ~ trans
turbulent f low has taken place . Michel’s criterion , which resulted

from correlation of experimental data , is supposed ly valid for

the range of Re
~ 

between 0. 1 x l0~ and 60 x i0~~. Cr iterion of

this nature signifies that transition to turbulence occurs at a

point , rather than in a region , and relaminarization is not

possible. A .M.O.  Smith had compared Michel’ s algorithm against

Granville ’s, Smith found the simple criterion of Michel quite

satisfactory in the description of transition to turbulence .

3.2 Blade-to-Blade Turbulence Model

The turbulence and transition models, as described in Section

3.1 , were formulated , coded , merged into the VANS-BB code and de-

bugged. The turbulence formulation considered only the components

of velocity in a given blade-to-blade surface.

Our turbulence model is in effect the mixing-length formulation

generalized for internal flows with a splitter vane and included re-

laxation effects along streamlines. The transition criterion is the

semi-empirical one proposed by Michael. To accomplish these computa-

tions , consistent with the VANS scanning logic, four new subroutines

were developed. The subroutines were structured as components in

VANS; hence , any modification or even overall change of the basic

theory would not require an overall change of the VANS code. The

four components can best be described in tabu lated form in the

following.

19

— ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
S - - - —  

~~~ • 
—



~~~~~~~~~~~ 
- 

~~~~~~~~~~ ~~~~~~~~ ~~~~~ ~~;
-
~~
-

~~~
- _

~~~~~~~~~ ~~~~~~~~~ —
~~~‘-T~

Subrout inc Called from ~1a jol a f l ct i e n s  
- - - - -

TURD MVS* in 1 . Compute ~eern’t r i  c and shea: st :ess  qua!:—
VANS lit  ies at a ll  w~Cl Is.  For a blade—t o—blade

qeomctry w i t h  a sp l i t ter  vane , t h e r e  arc
poss ibly four sol id w a l l s .
2. Compute i n t e g ra l  th ickness at wa l l s  for

- - ill boundary Livers.

3. If transit ion has taken place , use mix—
inq length theory to compute the eddy
viscosity coefficient- .

INTER TURD i~~
j
~ d~~~~~~dj~ tance b~ t~~ e a~~~~~~~~~~~~~i n~~i in 

-

- a curvilinear coordinate system . The dis-
tance is required by the mixing leneth theory .

TRANS ~~~TURB 
- - - 

l~xam ine if transition has taken p lace alona
any streamline , accord inq to Michei alqorj thm.
Relam inarization is not possible alone a qiven
streaml ine .

MIXL 
— 

TURB 
- 

~ 
Cornpu~~ ~~~ddv Vi~~~ ii~~ ~~~~~~~~~~~~~~~~ing to the mixin g-length theory . MIXL is

j~~~ Ued only af ter  transition has taken_ place .

3.3  Cross-Sectional Turbulence Model

Comoutat ion in the cross-sectional p lane upstream o f the spl i t ter

vane included the three boundary layers which influence the edd ~‘is-

cosity at a given point in the f low f ield. The pressure sur face bound—

ary layer, the case boundary layer , and the suction surface boundary

Liver. All three layers were considered to determine the eddy vis-

c o s ity  at  a (liv en :~oint. In a cross—sect ional  plane containinq the

t race of the sp l i t te r  vane , two additional boundary l aye rs  must be

considered ; however , on lv t ho ma in blade and case boundary 1 avers

were emp loyed t o  compute the eddy vis osity . The extension of the

mix inq lonoth theory to this case is consistent with the practice

d iscussed hr Lauder and Spa]dinq for f lows in ducts 
-
. and for the

mixing of two strcams~~~.

The MVS subroutine of VANS computes the viscous stresses on each
blade-to-blade surface .
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A cr ss— sec t  Lona l t urhu t uce model was forr~ulated , incorporated

into the VAN S cross—sectional computer code , and debuqgecl . The main

features of the cross sectional model are as follows :

(1) The mixing—length theory with streamwise relaxation , as

formulated by Rose , is adapted . The model is capable of estimating

the eddy viscosity coefficient for a specific turbulen t boundary layer.

(2) Michel ’s empirical transition criterion is used for the

location of transition from laminar to turbulent flow .

(3) The preceding models , originally formulated for steady flow

with small boundary layer curvature , are used in the space-marching

computation with curvilinear coordinates. Past comparison with

experimental data seems to support this adaption .

(4) The eddy viscosity coefficient at any point in a passage is

determined by the nearest turbulent boundary layer.

Implementation of this formulation for the cross—sectional

surfaces was done through coding consisting of four subprograms:

TURB--The main program for turbulence computation in which all

necessary information for the mixing-length theory are computed , irn-

dated and stored .

INTER--An auxiliary program in which the normal distance from

any internal point in the passage to any point on a surface is computed .

TRANS--A short program in which Michel’s transition criteria is

examined for any boundary layer.

MIXL--A short program which calculated the eddy viscosity

coefficient at any internal point in the passage according to the

mixing length theory .
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SECTION IV

CASCADE GEOMETRY AND INPUT CONDITION S

The superson~c compressor cascade geometry numericall y inves-

tigated was tested by Holtman , McClure , -nd Sinnet29 . A schemdtic

of the compressor cascade is shown in Figure 4. The compressor

cascade is comprised of six blades and five splitter vanes. The

geometry of the cascade blades and splitter vanes is identical in

all planes parallel to the direction of free stream flow; hence,

the cascade is two dimensional in this respect. However , contoured

sidewalls are utilized in the cascade to obtain the required stream-

tube convergence; thus, the three dimensionality of the flow. The

effective axis of the system, designated as the X3 direction, is

indicated in Figure 4. The contoured sidewalls and symmetry plane

-re indicated in Figure 5, while a blading passage of the cascade

is shown in Figure 6. The main cascade blade has a chord of 3

inches and an axial length of 1.8396 inches.

Input flow properties for the cascade problem are as follows:

freestream Mach number = 1.46

mass flux per passage = .656772 lb/sec

medium is air with = 1.4
specific heat
ratio ~

freestream Reynolds 1.3575 x 106
number based on
chord

Measurements of static pressure, total pressure, and Mach num-

ber were made in the wake of the cascade. The measurement axial

station was located at the symmetry plane approximately .49 inches

aft of the cascade exit. This corresponds to about 16 percent of

22
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a chord a lt  of the cascade. Thus, mass averaged static pressures ,

total pressures, and Mach numbers are not indicative of the true

cascade exit conditions. However , these mass averaged quantities

are tabulated below:

mass averaged static pressure ratio = 1.883
across cascade at symmetry plane

mass averaged stagnation pressure = .86
ra tio across cascade at symmetry

• plane

mass averaged wake Mach number at = .837
-

• symmetry plane

23



— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 

~~~~~~ ~~~~~~ ~~~~~
‘- - -  

~~~~~~~~~~~~~~~ 
- .-

~~
-
~~~

- 
~~~

— —.-- -
~ ~~~

‘ ‘~ ~~~~~~~~~~~

~1

SECTION V

DEVELOPMENT OF BLADE-TO-BLADE SOLUTION: THE FIRST ITERATE

5.1 The Inviscid Solution: Zeroth Iterate

The inviscid solution to the cascade problem was generated by

Capt. W.A. Buzzel of the Air Force Aero-Propulsion Laboratory.

This solution constitutes the zeroth iterate in an iteration pro-

cedure to solve for the viscous flow field within the compressor

cascade. In this section the cascade problem is briefly described ,

- 
- the method of obtaining its inviscid solution is briefly discussed

and the inviscid streamlines are presented .

The compressor cascade is comprised of six blades and five

splitter vanes. The geometry of the cascade blades and splitter

vanes is identical in all planes parallel to the direction of free

stream flow; hence, the cascade is two-dimensional in this respect.

However , contoured sidewalls are utilized in the cascade to obtain

required stream-tube convergence; thus, the three-dimensionality of

the flow. Input flow properties for the cascade problem are pre-

sented in Section 4.

• The inviscid solution was generated by Air Force Aero-Propulsion
* 

Laboratory Program UDO300. This computer code integrates the axi-

symmetric radial equilibrium equation of turbomachinery in a men -

dional plane associated with a mean stream surface through the blad-

ing passage1. Forces acting between the cascade blades and fluid

are taken into account by body force terms in the radial equi librium

equa tion 2. The splitter vane is accounted for in the continuity equa-

tion as blockage. Isentropic flow is assumed in obtaining the in—

viscid flow field.

24
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Due to the axial symmetry built into Computer Code UDO300 ,

t he essentiall y 2-D cascade problem is solved as an axial comoxos -

sor s ingle-stage problem at large radius . The solution takes place

in the axial coordinate X3 and a radius of 10000 inches is added

to the normal coordinates of the contoured sidewalls to produce

the radial coordinate. In addition to the introduction of a large

radius , the compressor is rotated at 16.5 r.p.m. Therefore , an

equivalent axial compressor single-stage problem is solved by pro-

• gr am UDO300 to generate the inviscid field about the compressor

cascade.

The meridional projection of the streamlines on the mean

stream surface is presented in Figure 7. The ordinate of the

figure corresponds to the radius , while the abcissa corresponds

to the axial coordinate. Due to the introduction of c’vlindrical

coordinates the lower contoured wall now becomes the hub and the

upper contoured wall becomes the shroud or case. The vertical

lines of Figure 7 represent the computing stations for Program

UD0300. There are seven streamlines and twenty-six computing sta-

tions . The hub and case of the system are indicated in Figure 7.

By assuming a linear pressure distribution between the cascade

suction and pressure blade surfaces, the blade velocities , and

hence , loadings are estimated .

5.2 Mapping of Blade—to—Blade Surface from Cartesian to Curvi-
linear Space

The curvilinear coordinate system employed by the VANS computer

code is axisymmetric and orthogonal. The axisy~nietric condition im-

plies that the geometry of the hub and case lines of the machine

- 
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are bodies of revolution. To expedite solution of the effectively

two-dimensional cascade problem , the inviscid method of solving an

equivalent axial compressor flow field at large radius is followed .

The VANS numerical solution considers the same axial and radial

coordinates employed to generate the inviscid flow field. However ,

the equivalent axial compressor geometry computed by VANS will not

rotate.

- - 
- 

- This section is concerned with the specification of the geometry

for the cascade problem in cylindrical and curvilinear coordinates.

The cascade geometry is first specified in cylindrical coordinates

r, & , and X3. Meridional traces of the radial and axial coordi-

nates of the hub and case of the system have already been presented

in Figure 7. The radial hub and case coordinates are presented as

func tions of axial distance, X3. These hub and case lines extend

upstream of the leading edge of the blades and downstream of their

trailing edge so that the flow field in the inducer and discharge

regions can be calculated directly from the equations of motion.

Figure 8 presents angular coordinates of the traces of the blading

surfaces on the hub. The cascade pressure surface, suction and

splitter vane are indicated in Figure 8.

A generalized, axisymmetric, orthogonal , curvilinear coordi-

nate system is used to solve the cascade problem. Consider the

curvilinear coordinates x, y, and z. The surfaces x = consta~it

are selected as meridional planes. The surfaces y = constant and

z = constant are obtained by rotating two orthogonal curves on

the meridional plane about the axis of rotation of the machine .

Figure 9 presents two families of orthogonal curves in the

26
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men ~1ional plane . The ~;treainl m e — i ko c t i t v  (‘~;a r  0 dent ical t e the

inviscid streamlines of Fiqure 7. These curves form the surfaces

of revolution y = constant and z constant . The curvilinear coor-

dinate x is identical to the angular coordinate ~ . The curvi-

linear coord inates y and z a i e  related to distances along the

streamline—like and potentia l—line—li ke lines of l’igure 9, respec-

tively.

Streamline-like-meridional curves are labe l ed with the para-

meter z and are calculated according to the following integral:

~~~ f ~ (co~ - ~~~~ d~’ ( 11)

where r is the local radius , r is the hub radius at discharqe of
H ° 

-

the system , n is the arc length along the upstream potential-like-

line of Figure 9, ~ is the angle that the streamline-like-lines

of the system make with upstream potential-like line , and n’ is a

dummy variable. I t  is noted that the parameter z is nondimensional.

Potential-like meridional curves are labeled by the parameter y,

which is a measure of distance alL ng the hub. The following into-

gral is used to define the y curvilinear coordinate

~ f dr ?1~ (1.~)

where mh is the arc length along the hub and m~ is a dummy variable.

As in the case of Equation (11), y is nondimensional.

Based on the above definitions of x, y, and z the metrics of

the transformation and their derivatives can be evaluated at each

of the coordinate points of Figure 9. Vavra3° developed formulae

27
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for the metrics and their derivatives in terms of local curvatures

and slopes. Based on known metrics and their derivatives at the

coordinate points of Figure 9, the metrics and their derivatives

:~ ~ at a given point in the meridional plane , i.e., P(y,z), can be

determined by interpolation .

The cascade geometry ia cylindrical coordinates,defined in

Figures 7 and 8, is transformed to x , y, z space according to

Equations (11) and (12). The transformed geometry is shown in

Figures 10 and 11. Figure 10 shows the hub and case curves in

the (y,z)plane ; these curves have now become straight lines.

Figure 11 presents traces of the blading on the hub blade-to-blade

surface in the (x,y) plane. The calculation takes place in the

(x,y) planes which move from the hub to the symmetry plane .is the

z parameter increases from zero at the hub to .2868-03 at the sym-

metry plane.

5.3 Meshes, Boundary Conditions , and Initial Conditions

5.3.1 Finite Difference Mesh for Cascade Problem

The VANS computation takes place on (x,y) blade to blade sur-

t acos which move from the hub to the symmetry plane and dist ort

- 

- as the blade surfaces distort. The VANS computer code has a sub-

tout i no which automatically develops the finite d i i  b ronco mesh in

accordance with the blade geometry. The finite dii for once mesh ocr—

i- ospondinq to the hub blade—to—blade surface is shown in ~‘iqu re L’.

The mesh is formed by the intersection of 42 stream iint *_ i i ke l ines

and 80 potential—like Ii ~t~*~; , i.e. , 3360 points. The st r e a m l  i ne—I

ii nes are spaced closer in t he vicin i ty of the blades and spi i tt  01
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p l a t e  than in center of the passage between a blade and splitt er

plate surface .

The Reynolds number at the cascade exit , based on the averaqo

inviscid velocity along the hub, average hub density , average hub

viscosity , and distance along the hub , is Re = 7 . 5 3  x lo~ . The

flow will surely go turbulent along the blade ; however , tor pur-

poses of mesh sizing a laminar boundary layer was considered . Based

on flat plate theory the exit boundary layer thickness is 1.028 x lO~~
ft. Using a radius of 10000 inches this would qive an anqular in-

crement of Ax = 1.233 x l0 6 radians. The mesh was sized such

that one zone would exist in the laminar flat plate boundary layer

at the cascade exit. Five or six zones should exist in the turbu-

lent boundary layer which actually occurs in this case.

5.3.2 Boundary conditions for Blade-to-Blade Iterate

Identical boundary conditions are prescribed for all blade-

to—blade surfaces. Let us consider the hub blade-to-blade surface

of Figure 12. The boundary conditions are as follows:

1. No slip flow is imposed on the main cascade blade and

splitter vane.

2. Periodic conditions are imposed on the lateral boundaries

upstream of and downstream of the main blade.

3. The inviscid , or zeroth iterate, flow field properties are

specified at the upstream boundary .

4. The static pressure is uniformly varied along the down-

stream boundary to maintain the passage mass flux. As the blade-

to-blade surface moves from the hub to the symmetry plane , the

mass flux at the downstream boundary is integrated and the back

29 

:- ~~
-
~~~ 

— ~~~~~~~~ ~



___ - 
- . - - . - -

pressure is varied to produce a mass flux equal to half the pas-

sage mass flux of .656772 lb/sec .

5.3.3 Inviscid Blade-to-Blade Field at Cascade Rub

The inviscid field for the cascade problem was solved for

by Capt. W. A. Buzzel, using the 000 300 computer code. Buzzell solved

for the inviscid velocity field , while the energy and density fields

were determined as functions of the velocity field by invoking con-

stant rothalpy , and the isentropic flow assumptions .

As in the case of the impeller problems solved previously8,

the inviscid solution served a dual purpose.

1) It was the zeroth iterate, i.e., used to evaluate the el-

].iptic source-like-terms in the equations of motion.

2) The hub solution served as the initial conditions for the

viscous calculation.

The inviscid or zeroth iterate velocity field on the hub blade-

to-blade surface is discussed in Section 5.5.

5.4 Characteristic Time for Calculation

To run the cascade problem , the speed at which the (x,y) blade-

to-blade planes move from the hub to the shroud must be specified .

The curvilinear coordinate z is related to a time—like parameter t

as follows:

(13)

Where U~ is the speed at which the (x,y) plane moves, and is nothing

more than a coordinate transforrnation*. The curvilinear coordinate

z is measured in radians and U~ is in units of feet per second , so

*See Appendix B for a derivation of the coordinate transformation
from z to t . 
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the ~‘a :ai~e te r  t has the units seconds per foot. The e’d U
~ 

must

be small enough to permit viscous d it f u s i o n  e f f ec t s  at- the blade

s u r f a ces  to build-up boundary layers which could subsequently sep-

arate , depending on the magnitude of the adverse pressure gradient.

The definition of the characteristic time for diffusion is

based on the distance , ~ Yfl , between the suction surface leading eiI~1e

and trailing edge at the hub , and the average inviscid velocity ,

along the mid-channel plane at the hub. The characterisic

- -  
- 

time T is then defined as follows:

/(#4~ (14)
- 

- 

It was found that 6W~= .1642 ft and ~h 
= 812 fps; therefore, a

characteristic time t of .2022 ms results.

In the process of solving the cascade problem the (x,y) plane

was moved at = 355 fps. This speed permitted two characteris-

I tic times to pass as the blade-to-blade surface moved from the hub

to the symmetry plane of the system.

5.5 Numerical ~asu1ts of Blade—to-Blade Solution

The cascade problem was run through 5300 cycles; where, each

cycle of computation corresponds to updating all the variables of - -

motion on one blade-to-blade surface. In 5300 cycles the blade-to-

blade surface was moved from the system ’s hub , where the z-coordinate

is zero, to the symmetry plane, where the z coordinate is .2868 x l0~~ .

The cascade blade-to-blade iterate required 3.68 hours on the CDC 7600

computer at Lawrence Berkeley Laboratory. There exist computation-

time-reduction methods that can be incorporated into the VANS computer

codes to reduce the computational time considerably ; this subject

is discussed in Section 7.
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The results obtained are presented in the following fcr~nat.

1) Velocity vector plots of the entire cascade flow field.

2) Velocity vector plots in the neighborhood of the splitter

vane.

3) The inviscid field and flow in the symmetry plane.

5.5.1 Velocity Vector Plots of Entire Cascade Flow Field

Figure 13 presents the inviscid velocity field on the blade-

to-blade surface corresponding to the hub of the system. This field

represen ts the ini tial conditions for the computation. The vector s

are proportional to the local particle velocities, and their tails

emanate from the finite difference mesh in the blade-to-blade sur-

face. The plot is shown in the coordinates ~ and m defined as

follows:

~~ fh~dx
r (15)rn= J f l ~~~~J

where (x ,y) are the curvilinear coordinates and (hx,hy) are the me-

trics of the transformation . The coordinates ~ and m correspond

to the actual cascade coordinates. The vectors of Figure 13 are

tangent to the pressure surface , suction surface , and splitter

vane.

On the blade-to-blade surface 11.9% of the distance between

the hub and symmetry plane of the system (Figure 14) boundary —

layers are clearly indicated on both the pressure and suction blade

• surfaces. Furthermore , a bow shock has formed about the splitter

vane. This shock is caused by the assumption of no splitter vane
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loading in the initial inviscid field. It is as if the splitter

vane were instantaneously inserted in the flow field to produce a

piston-like bow shock. This phenomenon is a transient condition

which diffuses as the blade—to-blade surface moves towards the

symmetry plane .

In Figure 15 a velocity vector plot is shown on a blade-to-

blade surface 13.8% of the distance between the hub and symmetry

plane. This bow shock surrounding the splitter vane leading edge

is weaker, and a separation can be seen on the leading edge of the

suction blade surface.

Figure 16 shows a velocity vector plot of the cascade flow

field on a blade—to—blade surface 62% of the distance between the

hub and the symmetry plane. The initial bow shock has disappeared

on the splitter vane. A large vortex is clearly seen on the suction

surface of the cascade blade near its leading edge. This vortex,

which is a result of the interaction between the pressure surface

leading edge shock wave and the suction surface boundary layer , re-

duces the flow area to produce a rapid turning of the flow as it

streams about the vortex. Separated regions are also indicated at

the trailing edge of the cascade suction surface, along the pressure

side of the splitter vane, and at the trailing edge of the splitter

vane suction surface.

The cascade velocity field at the symmetry plane is shown in

Figure 17. The vortex near the leading edge of the cascade blade

suction sur face , and the separated region near the trailing edge of

the suction surface of the splitter vane are still present. However ,

a comparison of Figures 17 and 18 shows that the flow almost uni-

~~ formly accelerates as the symmetry plane is approached .
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5 . 5 . 2  Flow about the Splitter Vane

Development of the flow field about the splitter vane is pre-

sented in Figures 18 to 23. At 5.3% of the distance between the

hub and symmetry plane (Figure 18) a bow shock is indicated about

the splitter. The weakening and eventual diffusion of this bow

shock is indicated in Figures 19 and 20. Figure 20 presents the

field on the 28% blade-to—blade surface . A small separation region

is indicated on the pressure side of the splitter , while the

F low remains attached on the suction side of the splitter vane.

‘
1

The main points emerging from Figures 13 to 20 are that a

transient bow shock forms almost immediately about the splitter

vane and then diffuses away.

Figure 21 shows a velocity vector plot of the splitter vane

flow field on a blade-to-blade surface 50% of the distance between

the hub and the symmetry plane. On the pressure side of the split-

ter vane the vortex present on the 28% blade-to-blade surface has

grown , while a new separated region has developed at the trailing

edge of the suction surface of this vane.

The vortex on the pressure surface of the splitter vane has

further increased in size when the blade-to-blade surface has

moved 80% of the distance between the hub and symmetry plane

(Figure 22). Furthermore, this figure also depicts separation

alon g a large por tion of the splitter vane suction sur face , a rec ir-

culation region at the trai ling edge of the suction sur face of the

cascade blade , and a separation near the trai l ing edge of the

pressure surface of the cascade blade.
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The velocity field in the vicinity of the cascade exit is

shown in Figure 23 at the symmetry plane. Comparison of the fields

of Figures 22 and 23 indicates that an accel e r a t i on  takes

place as the blade-to-blade surface approaches the symmetry plane .

The symmetry plane flow in the vicinity of the splitter vane suction

surface , downstream of the 40% chord station , is separated with re-

attachment taking place near the trailing edge.

5.5.3 The Inviscid Field and Flow in the Symmetry Plane

The inviscid flow field for the blade-to-blade surface is

generated from the pressure distribution on the mean stream sur-

face”2. It is based on the assumption that static pressure varies

linearly from the mean stream surface to the pressure and suction

surfaces of the cascade blade . Thus, the velocity distribution

from blade-to-blade can be obtained from the isentropic relations.

The inviscid field is then used in the zeroth iterate for the blade-

to-blade computation in the VANS code. Hence , the inviscid solu-

tion , generated in the manner just described , plays an important

role in the first iterate. Its influence on the accuracy of our

solution will be diminished as the number of iterations increases ,

especially when the cross-flow computation becomes part of the it-

eration algorithm.

The inviscid flow field yields certain mass fluxes at speci-

fic stations along the cascade passage. As the surface of inte-

gration approaches the symmetry plane, the mass flux at each station

should reach the max imum possible value . In fact, the mass flux at

all stations along the cascade would reach the same value right at

35 
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the symmetry plane where all vertical velocities vanish. The pre-

sent inviscid solution , which is expected to be valid throughout a

good portion of the channel from hub to the symmetry plane , wou ld

be relatively poor in describing the flow field near or at the

symmetry plane because the continuity equation is not exactly sa-

tisfied at either the hub or symmetry plane. For example , at the

axial station along the hub of zero, (see Figure 24), the mass

flux there is as high as 130% of the incoming mass flux , which

means that a strong vertical flow velocity is needed at that sta-

tion in order to satisfy the continuity equation . The corresponding

mass f lux va r i a t i on based on the viscous solut ion , and dependent

on the inviscid mass fluxes , is also shown in Figure 24 .

Because of the preceding observation and the requi rement on

maximum mass flow at the symmetry p lane , the gas is then al lowed

to expand isentropically from a place close to the symmetry plane

(78% blade-- to-blade surface) to the symmetry plane (100% blade-

to-blade surface) . This stipulates that all viscous losses at the

78% blade-to-blade surface are constant in the remainder of the

channel .  This stipulation was verified by monitoring the losses

a t every cycle of our computation between the 78% and 80% blade—

to-blade surfaces. Based on our mon i toring we are satisf ied that

all viscous losses have become nearly stationary above the 7~~~~% stir-

fact’. The isentropic expansion yields sonic conditions for a qood

portion of the suction surface. The pressure distributi on on the

suction surface is however not uniform at the symmetry plane , because

the vi s:ous losses a t  each station are cuite different ‘ cir one ano-

ther. This simp le al gor i thm for  ob ta i n i n g  ~o lu tions it the
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symmetry plane , based on the solution on the 78% surface , is applied

to a l l  points at the symmetry plane .

•-\ccording to the isentropic relation of Reference 31 , we f ind

(r , - f L~ 1 I!~ 1S ,h,v~ r1 ~Ione) ( L ~J~-’ J (1/~~ ~~~~~~~ f/d.~~~ 
- 

(16)
Th(~78%- ~wvtice~ Ir~ —i ~ ~ (

~ ) 7a%_ 5~.IP.fKt!!

where fn (symme t ry pl ane) is the maximum poss ib le mass f l u x  up to

the sonic speed , ia (78%-surface) is the mass flux evaluated at a

corresponding station on the 78% surface , and

% 
i~ iv 4d C~~~ 

(17)

Equations (16) and (17) are employed to compute the local static to

stagnation pressure ratio. Based on the isentropic Mach nuinber-pres—

sure ratio relation

M (18)

the Mach number is computed for ~~~ > .5283. In cases where
1+

( .5283)sonic flow is assumed. The usual isentropic relations

are employed to compute the local density , local specific internal

energy , and local velocity at the symmetry plane .

In summary , the principal results of the blade-to-blade iterate

were two-fold. First , a large separated region was computed on the

suction blade surface; caused by the interaction of the shock wave
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emanat ing f rom the pressure surface leading edge and the boundary layer

flowing along the suction blade surface . Second , the cascade suction

surface separated region distorted the flow incident to the spu tter

vane producing a fairly significant separated region on its pressure

surface . The blade-to-blade solution is an intermediate iterate in

the iteration process. The cross-sectional iteration , which is dis-

cussed in Section 6, provides a good engineering answer to this prob-

lem.I

Li . 
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SECTION VI

DEVELOPMENT OF CROSS-SECTIONAL SOLUTION :
THE SECOND ITERATE

6.1 Mapping of Cross-Sectional Surface from Cartesian to Curvilinear
Space

In Sect ion 5.2  a blade-to-blade surface , specified in cylindri-

cal coordinates r, e , X3, was mapped to x, y, z space. This sec-

tion is concerned with the mapping of a cross-sectional surface from

cartesian to curvilinear coordinates.

A meridional view of traces of the blade-to-blade and cross-

sectional surfaces is presented in Figure 9. The streamline-like

lines of Figure 9 represent traces of blade-to-blade surfaces ,

while the potential like lines represent traces of cross-sectional

surfaces . The surfaces x = constant are selected as meridional planes.

The surfaces y = constant are obtained by rotating the streamline-

like-lines about the axis of the system. Surfaces z = constant are

obtained by rotating the potential-like-lines about the axis of the

system.

Streamline-like-meridional curves are labelled with the para-

meter y and are calculated according to the following integral

~ 
(( -SI~~~~ ~~~ ( 19)

where r is the local radius , r0 is the hub radius at the cascade blade

trailing edge , and m is the arc length along the upstream potential-

like—line of Figure 9, 7~ 
is the angle that the streamline—like-

• lines of the system make with the potentia1-1ike-lin~~ and m~ is

a dummy variable.
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polated cross-sectional data will, serve as the previous iterate

in obtaining the cascade cross-sectional solution . The variables

interpolated include ax ial coordinate , density , specific internal

energy , eddy viscosity , and the three velocity components.

The blade-to-blade solution was obtained on a finite difference

mesh comprised of 80 points in the axial direction and 42 points in

the azimuthal direction . For purposes of interpolation , 19 blade-

to-blade surfaces were employed , starting from the blade-to-blade sut-

face coresponding to the hub and ending at the blade-to-blade sur-

face corresponding to the symmetry plane. Each blade-to-blade

surface is comprised of 80 streamwise points ; hence , there ore

eighty cross-sectional surfaces. Furthermore , since there are 42

azimuthal points , each cross—sectional surface will be comprised

of 19 points in the radial direction and 42 azimuthal points.

Therefore , the finite difference mesh upon which the blade-i

blade solution is specified is comprised of 63840 points.

6.3 Meshes , Boundary Conditions , and Initial Conditions

6.3.1 Finite Di fference Meshes

As seen from Figure 25b , the transformed cross—sectional sur-

face is nearly rectangular , with the hub and symmet ry plane l i n e s

paral lel to each otho u • Due to the nearl y root anqul or t t-a n s foiuiu ’J

c ross—sectional geome t: t y  , spec i t  icat iou of the mesh point s in (x ,y

space become s a t r iv ial  problem. The mesh us compt i sod of the in-

tersect ion of 30 1 ines parallel t. o the’ hub and 42 li ute s con to rminq

to the shape of the main cascade It I  ado and sp l i t tt ’r vane . The 42

azimuthal lines are spaced finely in the vicinity ,,if the mau i

41
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cascade blade and sp litter vane , and coarsely in the center of the

blade passage.

-

t 

6.3.2 Boundary Conditions or Cross-Sectional Computation

The boundary condition s for the supersonic compressor cascade

in cross-sectional computation planes are as follows :

1) No slip plow is enforced along the hub (contoured wall)

pressure surface , suction surface , and splitter vane between the cas-

cade blade entrance and discharge .

-
S 

2 )  Periodic flow is enforced downstream of the discharge

of the blades except on the hub and symmetry plane surfaces. On

the hub the velocities will be set to zero , and frictionless flow

calculated on the symmetry plane .

3) Periodic flow is enforced upstream of the cascade blade

leading edge except on the hub where the velocities from the pre-

vious iterate are prescribed , and on the symmetry plane where fric-

tionless flow with zero normal velocity is prescribed.

The above boundary conditions are illustrated in Figure 26.

Figure 26ashows the cross—section in (x,y) curvilinear space up-

stream of the leading edge of the cascade blades. Periodic flow

is enforced on the lateral boundaries , velocities from the previous

iterate are enforced on the hub and frictionless flow , with zero

normal velocity , is envoked at the symmetry plane. Figure 26b shows

the (x,y) plane within the blading passage. No slip is imposed on

the hub , splitter vane and cascade blades. Frictionless flow with

a zero normal velocity is envoked at the symmetry plane. Downstream

of the cascade discharge (Figure 26c), periodic flow is imposed on

the lateral boundaries , no slip flow is enforced on the hub and

42
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th e normal ve loc i ty  is set to zero at the symmetry p lane , wi th  the

o t h e r  componen ts 
~~~~~ 

and determined f rom frictionless flow equa-

t ions.

t - . ~. ~ Initial Conditions for Cross—Sectional Computation

‘l’he blade-to-blade solution interpolated onto the farthest

upstream cross—sectional surt,ice of the system (see l-’i quire 9)

— servo s as the initial condi t ions for the cros s—sect ional ca lcula—

t ion.

6.4 Characteristic Time for Calculat ion

The speed U~ at which the (x ,y~ cross—sect ional plane moves

from the fa rthest station upstream of the cascade to the cascod~

e x i t  must b~ ~;pec if ied. Fbr the ci-~ ss— sect u oui5m 1 calculation a speed

parame ter U~ of the 772 fps was emp loyed .

As is discussed in Section 5 . 4 , the cha rac te r i s t i c  time for

d iffusion is .2022 ms based on a distance of . 164 2  I t .  between the

suction surface lead ing edqc and trailinq edqo at tile hub , Therefet e ,

at = 772 fps , 1.05 character stic times will pass after the cross—

section moves from the entrance to the exit of the cascade.

6.5 Numerical Results of Cross—Sectional Solution

The cascade problem was run through 2216 cycles; where each

cycle of computation corresponds to updating all the variables of

motion on one cross-sectional surface. In 2216 cycles the c -oss-

sectional surface was moved from the farthest upstream cross-see-

tion at X 3 -3.00 ft (see Figure 9) to the exit of the cascade.

The z-coordinate at = -3.00 ft is zero, while the z—coordinate

at the discharge is .613149—03 radians . The cascade cross-sectional

- -
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iterate required 53 minutes on the Air Force Weapons Laboratory

CDC 7600 Computer.

The results obtained are presented in the following format:

1. Data reduction analysis and procedures.

2. General flow field structure .

3. Comparison of numerical and experimental results.

4. Cascade Mach number.

5. Cascade total pressure losses.

6.5.1 Data Reduction Analysis and Procedures

This section is concerned with those cross-sectional surfaces

- - for which numerical data have been reduced and the method of data

reduction.

Cross-sectional surfaces for which numerical data have been

reduced and interpreted are presented in Figure 27. This figure

shows a meridional view of the cascade contoured wall and symmetry

plane with cross—sectional surface traces indicated. These cross-

sectional surfaces are labelled with the axial position that they

intercept the symmetry plane of the system in the following manner.

The ratio of axial distance from the cascade leading edge to the

total axial length of the cascade blade*, 1r’ is employed 
to position

a given cross—sectional surface. These ratios are indicated within

parentheses in Figure 27. The cascade blade leading edge , splitter

vane leading edge and cascade blade exit are also presented in Fig-

ure 27. It is noted that the farthest downstream cross-section is

*T}ie total axial length of the cascade blade is 1.8396 inches.
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labelled by the ratio ( . 9 4 5 )  and in tercepts  the hub of the

system at the cascade exit* .

In oraer to properly interpret these numerical data , the cross-

sect ional surfaces of computation were tipped to the mean camber

line of the cascade blade. Figure 28 presents a blade—to-blade

view of the traces of the computational cross-section and the

tipped cross—section . The computational cross—sectional trace is

normal to the ax ial direction, X3, w h i l e  the ti pped cross-section is

normal to the blades . The tipping procedure , which was invoked for

the cross-sections of Figure 27 betw~~n the leading and trailing

edges of the cascade blade , is described in the following paragraph .

Let (x,y,z) and (Uk, Us,, U~ ) def ine  the curvi l inear coordinates

and velocity components , respectively, of the computational cross-

sectional plane. The computational cross-sectional plane was mapped

to the curvilinear coordinates x ’ , y ’ , z’ which corresponded to the

tipped plane. The original velocity components 11x and were re-

defined , respectively , as and U~ , to exist within and normal to

the tipped plane. The nearly radial component of velocity 0y was

unchanged in the transformation . This method of tipping the planes

and associated revision of the velocity components is approximate ,

since no interpolation between computational cro3s-sectional planes

was attempted. However, although approximate , it is believed that

the tipped data present a more realistic physical picture of the

fluid mechanics of the compressor cascade. Therefore , all the

data presented in the forthcoming sections are on tipped cross-

sectional planes.

*Due to a lack of time and funds it was not possible to carry the
cross-sectional calculation into the wake of the system.
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6 . 5 . 2  General Flow Field Structure

— - The general flow field structure is best depicted in contour

plots of the ratio of the streaniwise component of velocity U~ to the

local sound speed a on tipped cross-sectional planes. Contour

plots of this type comprise the bulk of material presented in this

section. For completeness , a few velocity vector plots of the tipped

cross—sectional flow field , i.e., U~ , Us,, are also included.

• A contour plot of U~/a is presented in Figure 29 on a tipped

cross-sectional surface of ratio = .206 (see Figure 27). The

plot is shown in the coordinates ~ and m defined by Equations 15.

The coordinates 1 and m correspond to the actual cascade cross-

sectional coordinates. The hub , symmetry plane , pressure surface

and suction surface are indicated in the figure; the cross—section

-~ f Fiqure 28 becomes non-rectangular due to the tipping of the

- :  t~~atational cross-sectional plane and the thickness of the blades .

t.ips Lream of the blading the velocity ratio U~/a = 1.46, while in the

tipped cross-section at ~~~~,. = .206 velocity ratios less than one

appear. Therefore , the shock wave pattern at Lne cascade entrance

is sufficient to produce subsonic conditions . Boundary layers are

clearly indicated on the hub and pressure surface of the main cas-

cade blade . Furthermore , a significant separation is indicated on

the suction surface of the main cascade blade .

A contour level of U~/a = -.20 exists in the vicinity of the

cascade suction blade surface . The negative velocity indicates

the presence of a separated region . The separated reqion starts

- -~~- - - 
~~~~~~~~~~~ ~~~~~~~~~~~~~~ —~~ - - ~~~~-
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at an ordinate m of about .04 and takes up about a third of the

cross-section . The shock wave emanating from the leading edge

of the pressure surface of the main cascade blade interacts with

the turbulent boundary layer flowing along the suction blade sur-

face to produce the separation . This separated region reduces the

effective flow area of the cross-sectional surface ; thus , markedly

disturbing the flow pattern there.

A contour plot of O~/a is shown in Figure 30 on a tipped cross-

sectional surface of axial distance ratio Qb..= .385 (see Figure 27).

Boundary layers are still in evidence on the hub and pressure sur—

-~~ face of the main cascade blade. Furthermore , the suction blade

surface separated region is much smaller than that of Figure 29.

The separated region starts at an ordinate m of .06 and takes up

about a fifth of the cross-section. This region is again defined

by the contour line U~/a = -.20. Due to the smaller separated re-

gion the cross—sectional area is largerat 9~= .385 than at
.216; thus,the subsonic flow is diffused , as indicated by the velo-

city ratios of Figures 29 and 30.

The suction surface separated region shown in Figures 29 and 30

is in accord with the suction surface separated region of Figures

16 and 17 , computed during the blade-to-blade iteration. Thus ,

two successive iterations produced nearly the same separated flow .

The computation of the same physica l  phenomena in two successive

iterations is an indication of the convergence of the numerical

method . Furthermore , this points out one of the prirucipal advan—

tages of the ADE numerical technique . Through alternating the 

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 
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direction of marching, a vortex was computed in cross—sectional

planes which did not contain the vortex.

Contour plots of the streamwise velocity component are pre-

sented on cross-sections aft of the splitter vane leading edge in

Fi gures 31, 32, and 33. Figure 31 shows contours of the velocity

ratio U’/a on a cross—section of axial distance ratio 2 =  .605.
The splitter vane pressure surface and suction surface are indicated

in the figure as well as the main cascade blade specifications . The

main suction surface separated region is very small atf,. = .60 5,

i.e., it starts at m .075 and takes up tbout 10 percent of the

channel width. The suction surface flow attached in Figures 32

and 33 at axial distance ratios J~. = .672 and J..= .945, respect-

ively.

The principal fluid mechanical features depicted in Figures

31, 32, and 33 are three—fold :

1. The splitter vane initially accelerates the incoming cas-

cade flow.

2. The flow separates from the pressure side of the splitter

vane.

3. The flow in the passage between the splitter vane pressure

surface and main cascade blade suction surface is re-accelerated

through a sonic condition and then shocked down to a subsonic con-

dition. These three fluid mechanical phenomena are discussed

further in the next several paragraphs.

Acceleration of the flow in the cascade passage, due to the

splitter vane , is seen in a comparison of the streamwise velocity

48
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ratios of Figures 30 and 31. In Figure 30, upstream of the splitter

vane , streamwise velocity ratios ~J~ /a of the order of .40 to .50 are

present in the cross-section ~~~~= .385. Figure 31 ( J~= .605)
shows U~/a going to .70 in the passage between the pressure surface

of the main cascade blade and the suction surface of the splitter.

Furthermore , U~/a approaches one in the passage between the pres-

sure surface of the splitter vane and suction surface of the main

cascade blade. The splitter vane reduces the cascade flow area;

hence , an acceleration of the incoming subsonic flow is physically

reasonable.

Flow separation is indicated on the pressure side of the split-

ter vane in Figures 31 and 32 at axial distance ratios 9.~= .605
and L= .692, respectively . This separated region is more pro—

nounced in the cross—section at 2,..= .6~ Z than in the cross-section
at J,.= .605. Near the exit of the cascade, i.e., at the cross-

section associated with axial distance ratio 9.~
..= .945 (Figure

33) , the splitter vane pressure surface flow is again re-attached. —

The pressure surface splitter vane separation is caused by the

main cascade suction surface separation discussed earlier. The

shock-wave turbulent boundary layer interaction , which triggers

the main cascade blade suction surface separation , produces

a variable incidence angle distribution of the flow upstream of the

splitter vane. It is believed that this incidence angle distribu-

tion upstream of the splitter vane produces the splitter vane pres-

sure surface separation.

Figure 34 shows a Schlieren picture of a two-dimensional shock-

wave turbulen t boundary layer interaction~
2 The f reestream Mach
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number for this case is 1.45 and the ramp angle is 4.5 degrees.

The separated region alters the direction of the shear layer flow

near the wall , increases the thickness of the shear layer and changes

the angle of the reflected shock wave. Hence , the variable direc-

tion of the f low downstream of the interaction region is markedly

different than what would occur if there were no shock-wave bound-

ary layer interaction . In fact the shear layer flow is directed

toward the surface of the system.

To illustrate the variations in splitter vane incidence

angle of the f lu id , the mass flux division between the flow passage com-

prised of the main cascade pressure surface and splitter vane suctien

surface (Passage I) and the flow passage comprised of the splitter

vane pressure surface and main cascade blade suction surface (Pas-

sage I I)  was determined. It was found that 53 percent of the in-

coming airflow passed through Passage I, while 47 percent passed

through Passage II. The nearly equal division of mass flux is

somewhat surprising at first. One would expect most of the mass

to go into Passage I , due to the large separated region on the

main cascade blade suction surface. However, the separation region ,

which is caused by a shock-wave boundary layer interaction ,

sufficiently changed the flow angles to induce a greater portion of

the mass flux into Passage II.

The splitter vane pressure surface separation computed in the

cross-sectional mode of itcr~ti~n is in accord with the separated

region computed earlier in the blade-to-blade iteration . A comparison

50
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of cross-sectional iterate Figures 31 and 32 with blade-to

blade iterate Figures 21 and 22 indicates the presence of a splitter

• vane pressure surface separation at about the same region along

- ) the splitter. Thus, as in the case of the main cascade blade

suction surface separation , two successive iterations produced

nearly the same separated flow . Computation of the same physical

phenomena in two successive iterations is an indication of the

convergence of the method.

Due to the separation on the splitter vane pressure surface ,

- 

I 
the flow in Passage II undergoes an acceleration from subsonic to

supersonic conditions and then subsequently goes through a norma l

shock back to subsonic cascade exit conditions. The acceleration

to supersonic flow is indicated in Figures 31 and 32 at axial dis-

tance ratios of j
~= .605 and J.= .692, respectively. In fact

in the cross-section at = 692 the velocity ratio U~/a approaches

1.3. Figure 33 ( J~
. = .945), which corresponds to a cross-section

near the cascade exit, shows subsonic streamwise flow . In summary ,

the splitter vane pressure surface separation produces an effective

area variation in Passage II which acts as a convergent-divergent

nozzle to the flow.

For completeness cross-sectional velocity vector

plots , i.e., of components 13y ’ ~~~~~~~~ are shown in Figures 35 to 37.

Figure 35 shows the cross-sectional velocity field on an untipped

cross—sectional plane located upstream of the cascade , i.e.,

J~,. =-l.146 (see Figure 27). It is seen from Figure 35 that the

cross-sectional field is effectively undisturbed upstream of the - 

-

• 
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cascade. The cross-sectional velocity field is shown on a tipped

cross-sectional plane just upstream of the splitter vane in Figure

36. The cascade suction surface separation and the disturbances

caused by the shocks in the system produce a complicated eddy pat-

tern in the cross-section . However , it should be pointed out that

the vectors of Figure 36 are small in magnitude relative to the

streamwise component of velocity . The eddy field near the exit of

the cascade is shown in Figure 37 at an axial distance ratio

.945. A comparison of cross—sectkrnal velocity fields between Fig-

ures 36 and 37 indicates that the splitter vane tends to reduce the

secondary flows in the system.

6.4.3 Comparison of Numerical and Experimental Results

Holtman , McClure , and Sinnet29 measured static pressures along

the main cascade blade at ten stations , along the suction surface

of the splitter vane at three stations and along the pressure sur-

face of the splitter vane at two stations. The above measurements

were confined to the symmetry plane of the cascade. In addition ,

mass averaged values of pressure , total pressure , and Mach number

were measured in the wake of the cascade at the symmetry plane. It

is the purpose of this section to compare these measurements with

corresponding calculations.

Figure 38 presents a comparison of calculated and experimental

static pressures along the main cascade blade at the symmetry plane .

The abscissa of the figure is the percent chord along the main blade

and the ordinate is the ratio of the local static pressure to the

• freestreazn stagnation pressure. Comparisons of cascade blade suction

and pressure surface static pressures are good - -

52

______________________________________________________________ 
- 

-



_ _ _ _ _ _

Comparisons of numerical  and ex~ er imenta 1 static pressures for

the cascade splitter vane are shown in Figure 39. Coordinates of

the figure are the same as that of i-iqure 38.  These comparisons

are at the symmetry plane of ~he system. As can be seen from Fig-

ure 39 , the calculated pressures along the splitter suction surface

are in excellent agreement with corresponding data . Calculated pres—

- 

- 

sure ratios along the pressure surface of the splitter start at a

rat io p/pt of about .80 , decrease to a ratic of approximately

45, and then increase to a ratio above .60. The initial drop in

pressure ratio is due to separation on the splitter pressure sur—

face. The subsequent increase in pressure ratio results after re-

attachment has taken place. It appears from Figure 39 that the

calculated initial pressure drop is overestimated ; thus, the extent

of the separated region may be overestimated . It is believed that

- :~ 
the zeroth iterate, which assumed no splitter vane loading, is the

cause of the larger calculated pressure drop. After re-attachment

the numerical and experimental pressures are in accord on the split—

ter pressure surface.

Mass-averaged quantities were measured at the symmetry plane

at an axial station of about 16 percent of a chord aft of the

discharge of the cascade. Calculated mass-averaged quantities

were determined at the symmetry plane on a cross—section at axial

distance ratio j
~
= .945, i.e., just upstream of the cascade

exit. Thus, we have computed results effectively at the cascade

exit and measured results in the wake of the cascade.

The symmetry plane of the cascade is qui te un ique , since no

mass flow occurs normal to it. Thus , the mass flux within the
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symmetry plane at the cascade exit is precisely the mass flux

within the symmetry plane 16 percent of a chord af t of the cascade

ex it. Based on the area ratio between the cascade exit and station

of measurement (A~ /A~ ) ,  the calculated mass averaged Mach number

a t the casca~ e exit (M
e

) and the pressure recovery between the

cascade exit and station of measurement ( l?$I/P.~. 
), the mass aver-

aged Mach number (
~~

j ) can be calculated at the station of mea-

surement. The calculated mass averaged Mach number at the cas-

cade exit Me is .920 , the area rat io A w / A e is 1.05757 and the

calculated mass averaged exit pressure recovery is

.896. The measured pressure recovery in the wake of the cascade

is = .860; hence , the pressure recovery between the

cascade exit and measurement station P+~/f~i.e is .9598.  On the

bas is of the above, the pressure ratio and Mach number at the sta-

t ion of measurement are computed . The calculations are compared

to corresponding measured quantities in Table 11 .

Table 2

COMPARISON OF MASS AVERAGED STATIC PRESSURE AND

MACH NUMBER IN THE WAKE OF THE CASCADE AT THE SYM-

NETRY PLANE

Parameter Calculated Measured

Pressure Ratio 1.893 1.883
p
~.J /Pao

Mach N umber .832 .837
~~~

The calculated wake Mach number and pressure ratio are within half

- 

-
• 

a percent of the corresponding measured values .
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On balance, numerical—experimental comparisons of the main

cascade blade and splitter vane static pressures, and mass aver-

aged quantities in the wake of the cascade are good. These compari-

sons strongly suggest that the numerical method has produced a

good engineering prediction of the very complicated supersonic

compressor cascade flow field.

In order to demonstrate convergence of the solution , a third

blade—to-blade iterate must be developed, based on the cr.oss-

sectional field as the previous iterate. A calculation of this

type can be used to evaluate the degree of convergence of the num-

- 

- 
erical method. Unfortunately, time and funds did not permit a

third iteration.

6.5.4 Cascade Mach Number Field

In order to better understand the details of the cascade flow

field , contour plots of the local Mach number were made within the

blading passage. Figures 40-44 show Mach number contour plots on

cross-sections having axial distance ratios jrof .206, .385,

.605, .692, and .945, respectively . Meridional traces of these

cross-sections are shown in Figure 27.

At an axial distance ratio £r of .206 (Figure 4 0 ) ,  Mach num-

bers of about .80 prevail throughout most of the cross-section ,

- 
I with low subsonic Mach numbers along the main cascade blade suc-

tion surface and supersonic flow at the symmetry plane with a peak

Mach number of 1.4. The Mach .80 flow in the center of the cross-

section is consistent with the fluid mechanics at the leading edge

of the main cascade blade pressure surface. The pressure surface

leading edge wedge angle with respect to the Mach 1.46 freestream
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flow is about 14 degress. This angle is too great to permit an

attached obl i que shock at the pressure surface leading edqe. This

being the case , a bow shock must occur just upstream of the cas-

cade blade . On the basis of the blade-to-blade velocity vector

plots of Figures 16 and 17 , which show that the separated suction

surface region lies on a normal from the pressure surface leading

edge, the bow shock must be nearly norma l to the pressure surface

of the blade. The Mach number behind a normal shock is .7.~ for a

- _ 
- 

1.46 Mach number freestream flow ; hence, an .80 local Mach number

in the cross-section at an axial distance ratio Q,,. of .206 is

• consistent

The suction surface separation is also c i early ind icated in

Figure  40. Starting at an ordinate of m = .04 and going to the

symmetry plane, Mach number contours are densely packed with a

peak Mach number of .80 outside the shear layer and zero at the

wall. The separated region takes -ip about a third of the width

of the channel.

A contour plot of the local Mach number at a cross-section of

axial distance ratio .385 is shown in Figure 41. The sue-

tion surface separated region has become smaller in this figure ;

thereby) increasing the cross—sectional area. The increased cross-

sectional area has further diffused the flow in the center of the

passage from about .80 Mach at = .206 to .60 Mach at

.385. Furthermore , flow at the symmetry plane is now predominantly

subsonic.

Mach number contour plots within the splitter vane passage are

• presented in Figures 42 to 44 for cross—sections at axial distance

ratios J’r= .605 , .692, and .945. Boundary layers are clearly
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seen building up on the hub , pressure surface of the main cascade

blade and suction surface of the splitter vane in all three figureF.

In Passage 1* the flow is subsonic in the center of the passage and

along the pressure surface of the main cascade blade. However,

along the suction surface of the splitter vane the flow is accel-

- - erated to supersonic conditions. The flow in Passage II accelerates

to supersonic conditions in the center of the passage. Furthermore ,

at the symmetry plane a significant region of sonic flow prevails in

both passages.

The flow in Passage I is subsonic near the main cascade blade

pressure surface and in the center of the passage. Figure 42 shows

a Mach number contour of level .40 near the cascade pressure sur-

face, and contour levels of .60 to .80 in the center of the passage.

In the neighborhood of the splitter vane suction surface, a contour

level of 1.2 exists in Figure 42. Figures 43 and 44 indicate little

change in Mach number near the cascade pressure surface and center

of the passage from that of Figure 42. However , Figures 43 and 44

show a deceleration to sonic conditions near the splitter vane

suction surface. An oblique shock wave may be present near the

splitter vane suction surface to affect this deceleration . I t  is

believed that this oblique shock wave is located at about the 75

percent chord position of the splitter vane. In Pa~ sage II the

flow is accelerated to supersonic conditions in the center of the

passage, and then decelerated to subsonic conditions. Figures

42 and 43 , which depict the cross—sectiona l flow field upstream

of the sp l it ter  vane 50 percent chord position, indicate an

*See Section 6.5.2 (p. 50) for definitions of Passaqe I and Passage
II.

- I
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• acceleration to Mach 1.4. Reasons for this acceleration in Passage

II have been discussed earlier (see Section 6.5.2). Figure 44

shows that the flow in the center of Passage II is at approximately

Mach .60 near the cascade exit. Thus, a normal shock occurs in

Passage II near the 50 percent chord position.

- 
- In summary , the flow in Passage I accelerates to supersonic

conditions along the splitter suction surface and then goes through

an oblique shock located aft of the 50 percent splitter vane chord

— position. On the other hand , the flow in Passage II accelerates

to supersonic conditions in the leading edge region of the splitter

vane and goes through a normal shock near the 50 percent chord

position.

6.5.5. Cascade Total Pressure bosses

To evaluate cascade losses, contour plots of the total pres-

sure recovery , defined as the ratio of the local stagnation pres-

sure to the freestream stagnation pressure ( ) were

made on various tipped cross-sections within the blading passage.

Figures 45 to 49 show total pressure recovery contour plots on

cross-sections having axial distance ratios.jr of .206, .385 ,

.605, .692, and .945, respectively . Meridional traces of these

cross - sections are shown in Figure 27. These contour plots de-

pict the magnitude and location of losses in the flow field and

these data are precisely what is required to improve the cascade

performance. Detailed flow field data such as this is r’nly possible

through a numerical solution of the Navier-Stokes equations .

-

‘ 
The principa l cascade losses come from the following five

sources.
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1) A nearly normal shock emanating from the leading edge of

the pressure surface of the main cascade blade.

2) A separation on the suction surface of the main cascade

blade .

3) A separat ion on the pressure surface of the splitter vane .

4) A normal shock wave in the passage between the pressure

su r face  of the spl itter vane and the suction sur f ace  of the ma in

cascade blade .

5) An oblique shock wave along the splitter vane suction

surface.

High losses are present near the suction surface of the main

cascade blade on the cross-section at an axial distance ratio L

of .206 (Figure 45). Total pressure recoveries of the order of

= .10 are present in the suction surface separated region ,

while the total pressure recovery increases to nearly unity through

the shear layer. Figure 45 indicates a thick shear layer near the

suction surface.

Throughout the remainder of the flow field at ~~~ .= .206,

the losses are due to the nearly normal shock emanating from the

leading edge of the pressure surface of the main cascade blade.

Figure 45 shows a small contour level of .70 total pressure recov-

ery; however, most of the cross-sectional flow is at .90 total

pressure recovery. For reference purposes the total pressure

recovery through a normal shock at 1.46 freestream Mach is =

.942.

A contour plot of the total pressure recovery at a cross-

section of axial distance ratio 2, = .385 is shown in Fiaure 46.

1
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High losses are still indicated along the cascade suction surface;

however , the high loss region is confined closer to this surface

than at Jr = .206. This is because the separated region is

smaller at J~.= .385. Throughout a large portion of the remainder

of the cross-section , the flow remains at a total pressure recovery

near .90. This value is a result of the leading edge cascade main

- - blade pressure surface shock wave.

Total pressure recovery contour plots within the splitter vane

passage are presented in Figures 47 to 49 for cross-sections at

axial distance ratios .605 , .695, and .945. In general the

results of Figures 47 to 49 show higher total pressure recoveries

in Passage I than in Passage II. Furthermore , the total pressure

recovery at the symmetry plane is higher than wi thin the blading

passage. As discussed earlier, the mass averaged total pressure

recovery at the symmetry plane was .896 at an axial distance ratio

Jrof .945.

Within splitter vane Passage I, the total pressure recovery

ranges from .40 to .70 near the main cascade blade pressure sur-

face and in the center of the passage. Near the splitter vane sur-

face the pressure recovery ranges from .50 to .90 at distance ratios

I,. of .605 and .692 (Figures 47 and 48) . The pressure recovery then

drops to approximately .50 along the splitter vane suction surface

at j,. = .945 (Figure 49). This drop is caused by the oblique shock

in Passage II.

Since the flow re-attached on the suction surface of the main

blade, the high losses of the separated region , i.e., atf,. = .206 ,

ar e no longer presen t. However, the suction blade separation did
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produce losses , and more importantly, caused s ign i f i can t  losses in

other parts of the system .

The flow along the pressure surface of the splitter was induced

to separate due to the main cascade suction blade separation. The

splitter pressure surface separation caused hiqh system losses

throughout Passage II , i.e. , total pressure recoveries as low as

= .20 are present at .~~~.
= .605 , .692 and . 9 4 5  near the split-

ter pressure surface.

In addition the subsonic flow entering Passage II was accel-

- 
- erated to supersonic conditions and then shocked back to subsonic

- -  
- ; conditions. This was caused by the splitter vane pressure surface

separation at its leading edge. Figures 47 and 48 show an inviscid

core in Passage I I  of total pressure recovery in the 5 percent range * .

At = .945 (F igure 4 9 ) pressure recoveries of 50 percent are now

present in the region of Passage II where 95 percent prevailed pre-

viously. A normal shock wave in Passage II , believed located near

the splitter vane 50 percent chord position , is the principa l cause

of this loss of pressure recovery.

• *The contour interval is .10; hence , = .951 will show
up as unity on the contour plot.
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SECTION VII 
- -

CONCLUSIONS AND RECOMMENDATIONS

A numerical investigation has been conducted of the viscous ,

compressible , three-dimensional flow field in an axial supersonic

compressor cascade. The main conclusion emerging from this re-

search effort is that the ADE numerical method, embodied in the

VANS computer codes, can produce a good engineering solution to

this complex problem within two iterations. Numerical-experimental

comparisons of cascade blade static pressures and mass-averaged

• quantities in the wake of the cascade, provide part of the evi-

dence upon which the above conclusion is based.

A first-of-a-kind numerical solution has been developed of

the flow field within the compressor cascade. It is recommended

that these numerical data be further analyzed and interpreted in

accord with the following two aims: (1) revising the geometry of

the cascade to improve its performance, and (2) developing better

physical models of the cascade flow to incorporate into the UDO200

• and UDO300 codes1 ’2 in order to provide a better zeroth iterate.

In addition to the above recommendation , it is further recom-

mended that convergence of the ADE numerical method be demonstrated ,

the computational efficiency of the VANS codes be improved , and

additional stator problems be solved. A third blade-to—blade itera-

tion will permit an analysis of the convergence properties of the

method . Through the use of spatial splitting of the explicit method

presen tly employed 33 , or through the use of implicit methods 34 , it

is be l ieved that computational time can be reduced to within two
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hours to complete two iterations. This would make the VANS computer

codes practical for design of turbomachinery . Finally , the VANS

computer code can be modified to calculate the periodic flow in

the clearance region and stator blading of an axial compressor I

stage . CalculatiorEof this type will reveal the fluid mechanics

necessary to improve stator designs.

I -

• I

I 

-

.ti I

I

~
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Figure 1. Schematic of the lower half of one blading passage
of a cascade of blades; the symmetry plane divides
the actual blading passage in half.

I 

64

I I ~rL
L~~I



~
‘
~T~~~- T~~ L 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~-~r - • ~~ ’~~~~ 
- -

~
-

~~~~
-;

~ 
—. — —

Blade —\

Plow __ Mid-channel
Surface àc

\ Constant
Orthogonal
Channel
Sur face y 4Blade \ Constan

‘4I
I • ‘

• I
— I

k ( z)
_1•

_
•

Ic_
_ 

• • •
~ • 3.(x) ‘4

‘ I . —

- 
- \ i—

- ,~
%

• I
I “~~~‘ ‘ ‘ —

I Blade-to—blade
‘S. , Surface z

Constant

L1

- (x 3)

Figure 2. Schematic of cascade blading passage illustrating
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APPENDIX A

EQUATIONS OF MOTION IN ROTATING ORTHOGONAL CURVILINEAR COORDINATES

-
~ t- Cascade flows are conf ined to a channel , whose ax is follows

the channel geometry ; hence, the equations of motion are formulated

in an orthogonal , curvilinear coordinate system rotating with con-
I ‘ stan t angular velocity ~~~~~~ Let x , y,  and z denote the generalized

coordinates and let X1, X2, and X3 denote the cartesian coordinates.

• The continuity , momenta , and specific internal energy equations in

rotating , orthogonal , curvilinear coordinates are presented in this

- 
Appendix.

• 
• Continuity

• div(  ~~4)  ~ (A l)

• where the divergence of the vector is defined as

d~~~(~~~cfl 
~~~~ [~ 

(
~t4h~ h *) . #f ~ (~VAi h x) tf ( ~W/br L14~z) } (A2 )

and the velocity vector U is defined as

• 
~ MC # Vj  * W ( A 3 )

where: is the density , (U , v, w) are the velocity components in

the x, y, and z directions , respectively , (i , 
~~~~
, k) are the unit

vectors in the x , y, and z directions , respectively, and h~ , ~~ h

are the transformation metrics in the x, y, and z directions , re-

spec tively.

eFor the case of the compressor cascade t’.) — 0; however , the deriva-
tion is applicable to a rotating geometry.

11.3



~“ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--—- T ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~
- -‘-—- ----

~
-‘-‘ -- 

~
- -.-. -- -- ~~

-.-
~~~~

— .--- --- -
~ 

- -- —‘-
~~
‘-- —

x-Momenturn 

~~~~ ~~~~~~
H =

div(~~~)t  i~~~j~ ~~~-9~~ q~~ (A4 )
- 

~~~~~dX ~~~~ Sx

where the force per unit area in the x-direction is defined as

~;= o~~~~~ - ~~

- • and ( 6~ tp~, t~x ) are the stress tensor components asso-

ciated with the x-direction . The term div ( ~ C.4(A is obtained by

replacing the components ( ~~~ ~~~ ~‘W ) in Equation (A2) by

(~~L~L4, (‘VLA J ~&Vt1 ). Similarly the term div(~~~~) is obtained from

• Equatic~ (A2) by replacing the components ( ~~ ) by

, r~,(, ~~~ )•

djy ( çv~ ) ÷ ~ 
~ ~~ ~

f4
~

4

”

div ( a~~) + ~4~t * (AS)

where the force per unit area in the y—direction is defined as

I j  
~

and ( CIr~, ~~~ C10~
) are the stress tensor components associated with

the y—direction .
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z-Momentum

ds~iftw2) + ~~ ~~~

=

( A6)

where the force per unit area in the z-directiort is defined as

~~ 
.
~
- t~~ j  -j- o~~ )z

and ( 1r~ (‘rt~, ~~~~~~ . ) are the stress components associated with

the z-direction .

Internal Energy Equation h
d~~~(~~ E~i) c;*cLh~ ~~ 

#_ ~~ cc
~
.
~Jt  ~~~~~~~ ~~~~

+ 

~ 
÷
~J~ ~~~ J + tz,~(~~~~ ~~~~~~~ ) 

+(
~~ ~~~~~ ) I

~~~
, [(~~)i~

(
~~) +(

~~~~) 
‘
~~fr [ (~)~ ~~~~) 

4(4i~ 
)~~~~ 

(~~~ ) (A7)

The Stokesian stress tensor components for laminar flow

in orthogonal , curvilinear coordinates are presented below:
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~~~~~~~~~~~~~~~ ‘~~ • r ~
4
~~~~~~~~~~~ ~ r’ -

~~~~~~’~~ ’ “ ‘
~~~

‘
~~ 

•

Normal Stresses

r~ ~~~~~~~~~~~~~ (A S)

cr~ = -i’ E~ _ 1- d iv (~
) )

_ r 
~~~~~ 

( 
~~�e 

~ 
çjj v(~~ ))

• where~~ is the temperature dependent molecular viscosity and the

rate of strains 
~~ ~ ~ 

e~. are defined as follows ;

e~ 
= ~~~ 

.4.
, (Al

dk~
(Al3)

Shear Stresses

r (AIM

(A15)

~ 
(Al6)

where the rate of strains ~~~ and ~~ are defined as follows:
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(Al7 )

‘HI• ~~~~ + 
(A18)

— ~ 
~~ 

(A 19)
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APPENDIX B

DERIVATION OF THE INTEGRAL CONTINUITY EQUATION

In this section the integral continuity equation solved on

the (x ,y) blade-to-blade surface is derived. This derivation is

presented to illustrate the actual elliptic source terms and the

L parabolic terms of the equations of motion. The equations of motion

in rotating , orthogonal , curvilinear , Eulerian coordinates x , y

and z are presented in Appendix A.

The steady three-dimensional equations of Appendix A , in

Eulerian coordinates x , y, z are transformed to (x,y,t) space ac-

cording to the following relations

~~~~
= (.4t ~~ (4f~ 

., W — ~~~~~~~ (Bl)

where t is a time-like-variable , (4 is the velocity of the blade-

to-blade surface , W is the velocity component in the z-direction ,

and W ’ is the perturbation velocity in the z-direction . Equations

(8~
) represent a mathematically convenient transforma tion and lead to

a compact set of integral equations ; however, they are somewhat non-

physical in that the variable t may no longer be time-like, having

the tin its ?/(J4 •

The conservation of mass for steady motion relative to the

rotating, curvilinear coordinates (x,y,z) is (Appendix A) as follows:

(B2)
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where is the density , u the x-velocity component, v the y-

velocity component , and h
~ t h~ 1 h~ 

are the transformation metrics.

• According to Equations (Bl) the continuity equation becomes:

0
~~~(~~h~~A)) ÷0~

( çuh1b~) -#-~~ (~‘vh~ 
)
~ = -

~~~~~~ ~ (c~’~ k~) (B3)

The left-hand side of Equation (B3) closely resembles the continuity

-• equation for unsteady flow in the (x y) plane. The transformation

metrics, h
~
, h~ 1 h~ 

on the left-hand side account for the fact that

- ‘ I the flow is not planar but occurs on a curved surface. The term on

the right-hand side of Equation (B3) represents a source term which

accounts for the variation of axial velocity w from the constant

reference velocity . This term must be considered known in the it-

eration process and is evaluated from the previous iterate in each

successive iteration.

• Equation (B3) is formulated in the Eulerian coordinates (x , y , t);

however , in the planar calculational process the trace of the boundary

of the C4SC~d9 channel in the cross-sectional surface must distort

with time. Hence , we are really interested in the continuity equa-

tion in a generalized coordinate system , I , , where

t~~ r (B4)

X~ (85)

~~~ ( 8 6)
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~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1.. where 

~~Z~~
)c~D l)~~~~~~~)l .

We now differentiate (B4) with respect to t, x, and y ,  respective-

with the results

(87)d.c

• Performing the same differentiation of Equations (85) and (86) yields

(after much manipulation)

~~~~~~~ 
~~~~~~~~~~~~

— (B8)

(+~~~~,-~~~~ • f -
1 J

Q’~1

— f~~~r
dr — 

L $~~~7 - ~~~~~ f17 )

• _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  (B9)
1 o”X
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Conside r the func t ion  G(  , I , T whose derivatives are

i,,

(Bli)

(B12)

oLG = ~~~~~~~~~~~~~~~~~~~~~~ (8 13)

where use of Equations (B6) - (B9) produced Equations (Bil), (1312)

and (813).

Based on Equations (811), (Bl2) , and (813), the continuity Equa-

tion (83) transforms to the generalized coordinates ( , ‘7 ,

as follows:

~~~ (~~~J~~ )~~ ~~
‘) 4. ((eA~( S ~~~)+ (eh~ 

(vh .~ 1~~ ) J ~~~~~~~~

_
~j ~ f ( ~w ’k~hx Sx) + ~~~~~~~~~~~ 

_ct~~
(’
~
W
~ t f) ~B 14)

where C ) and C )
~, define differentiation with respect to x and

y, respectively, and the grid velocity components S,~ and S~ are de-

-
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~~~~~~~~~
‘T:: -=-2 ‘ ‘~~~~T T ~~~~~’,~~~~~~~~~’ ’~~~~

7, — -

fined as

s1c =~~~~~~~
s

~~$v 1
J (B15)

The symbol J represents the Jacobian of the transformation , i.e.,

— 
1_ 0’(ky~,r) — I

I ~~~~~t) 
— 

f~~~~1
.-~~~~~~f1 

(Bi.6)

where: dxd~~~~~ Y’~d~ d1 (B17)

Multiplying Equation (B14) by the area increment d~~d1 and inte—

grating yields:

e ~ h~dA 
~J~~~~~

- ‘?~
) •  ~ dc L.j cw~ . ~~~~~~~~~~ (B18)

where dA = dx dy, A corresponds to the area in the x y  plane contained

within the region bounded by the closed curve C, n is the unit nor-

mal to the curve C, ~ is the particle velocity vector in the (x,y)

plane as defined by Equation (C3), and a5 is the coordinate velocity
vector in the (x,y) plane as defined by Equation (C4) . In the inte-

gration process use was made of Equation (B17) to convert integrals

• in d~41 
to integrals in dxdy. Furthermore , Leibrtiz ’s rule was

7 used to permute differentiation and integration and Gauss ’s theorem

was used to convert area integrals to line integrals in the (x ,y)

plane.
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AP ;ENDIX C

MOMENTUM AND SPECIFIC INTERNAL ENERGY RELATIONS
IN GENERALIZED COORDINATES

- In this appendix the momentum and specific internal energy
• 

1 
relations are presented in generalized coordinates.

x-direction momentum

g~f & h~
t
~~

d$ ÷f ~ t4 (~
_
~ s) n’idc

H - ~ dc = j ~uw 1h41~ *~~ [r~A4 i,q
- .Lj’ V�~ j i  6dc *f 4i 4~11 df l 4J q . ~ dC (Cl)

where:

n�=
( C2 )

* Vk I 1~ )  (C3)

~~~ (C4)

[I 

(CS )

L 
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1-
~~~~~~~~~~- ------.~-—- •~~~~~~7 7 , r n~~~ —~~~~~ ’ 7  —., .-~ ~~~~~~~~~~~~ .‘,~ ,~~ -~~ - ~~ ,

C (~~6)

and A is the area in the (x,y) plane , C a closed curve in the (x,y)

plane , ~ is a un i t  normal to the curve C , ( 6~ t~~~~ r~. ) are

the stress tensor components associated with the x-direction ,

is the norma l stress in the y-direction , and is the normal

7 
stress in the z—direction.

y-direction momentum

~~ 
+ f~v t~~ ~ c) - ~ dc ÷Ah~~ ~~~~~

.i~ dc ~~~~~~~~~~~~~~~~~~~~~~~~~

i_ f v~~ ~~~~ dc ~j&h~ 4~J4 ,~ dc ( C l )

where :

Ay
(C8)

(d O )

and Z~II~ is the shear stress component associated with the (y,z)

directions .
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• z-direction momentum

• 

- 

~ j ~w4x~~c1fl tf ~w(1~.q~) 
~ ~~~~~~ h~iYJ

= _ 

f
~~~ww ’/

~s~~~~dF~~+ 

~~~~~~~~~~
÷j ~~~~~~~~~dfl *f Q f .

~~dc

where :

~~~
= 

c~~~~ (~~~~ 

S~ - * ~*~*;
+ 2C.W (L~~~~~~~~~~~~)~~ ~~

T ÷
~*) 

( C 12 )

(C13)

k I L~C Z > ~~~J 
( C l 4 )
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~‘

Internal energy equation

~/ 
eEk~ ~ cM tf et~-;1 • ~ dc w ‘~~~~~ 

. 

~dc

~~
- rY~~f v h d c ~~/14h~h,dn~

— ~ -~?dc # 
r f V ~~~~~~~~~~~~ iC+ ~~~~~~~~~~~~~~~

+ TT~ dF1 ~ [ce ~ dc ÷f rr L ~ r dC +
,
[ Z~e~~

. 
~ t$1~ 

(cl5)

~~~~~~~~~~~ ~~~~~~~~~~~~~~
- r,, (~~~ h~ +~~~J~ ~~~~~~~~~~~~~ 

(C16)

- (~~ s/.# r~1 y+ Z~.WUJ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (C17)

cc ( ~~
‘

UP
~~I 

) cl8

0z.,= (~ (C1~)

• /0  t1~~\
(~ ~ 0 ) (C20;

Wh~~~~~~ ~~ (C21)
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