-nD-AUGI 47 DEFENSE SYSTEMS MANAGEMENT COLL FORT BELVOIR VA F/6 9/2
DEFENSE SYSTEMS MANAGEMENT REVIEW.: VOLUME 1+ NUMBER 6. SUMMER 1==FT( !
19786 R G FREEMAN: P OLIVER: R DAVIS

UNCLASSIFIED




g 2

o

I &
= i)

[*9

"m = = Jj22

R 11

HLzs Jiis pee

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A




-

REVIEW

Vd yme f /Vumb e é %’"""i Fr:g Iﬂ

ADA061247

G )

BUSR

v:

LE_COP
i
2l
A
oy ‘
H

N ——

Pau /@/,m
Rut/r (J)aws)

Hsvny “T‘ZMAI‘ Kev
Sohn /Ma'rc,'n,'akm‘

DISTRIBUTION STATEMENT A
Approved for public release]
Distribution Unlimited

DO A

VOL 1, NO 6.




DEFENSE SYSTEMS MANAGEMENT REVIEW

PURPOSE

The purpose of the Defense Systems Management Review is to
disseminate information concerning new developments and
effective actions taken relative to the management of defense
systems programs and defense systems acquisition.

The Review is designed as a vehicle to transmit, between
persons in positions of leadership and responsibility in the
program management and systems acquisition communities,
information on policies, trends, events and current thinking
affecting the practice of program management and defense
systems acquisition. The publication serves as a means for
providing an historical record of significant information
associated with defense systems acquisition/management
concepts and practices.

The Review supports the assigned mission of the Defense
Systems Management College and serves as a medium for
continuing the education and professional development of
persons in the field.

Review: US ISSN 0363-7727

Ry o . ——— T TR T A IR TS AT e




DEFENSE SYSTEMS
MANAGEMENT COLLEGE

Dear Reader:

One of the greatest challenges to the acquisition manager today involves the management and acquisition of
computer software systems

A major weapons software acquisition in conjunction with the hardware requires at least 5 years from initial
description of the software system through architecture to programming, coding and debugging, and
probably more to get a relatively error-free program in existence. There is a distinct probability that the
software system so fielded will not be error-free and that supplemental programs must therefore be
developed for error determination and rectification.

Over the past decade, we have seen a burgeoning problem as computer technology has advanced the state-
of-the-art in large scale integrated circuits, mini-processors and advanced computer language. \Where 6,000
bits of information on a silicone chip Ya-inch square were considered several vears ago to be the ultimate in
this technology, we are advised that within the next several years a chip may hold 100,000 bits in this same
Ya-inch square. This technology requires the use of high order languages which has increased the
communications problem between the project/program manager, his contracting officer and the engineer-
ing staff

If you look at the requirements for the software acquisition, there are several areas which must be considered
in order to insure a successful software system acquisition. First, the detailed specifications for functional
output versus computer hardware are extremely important. The specifications must be tight and deal with
the issues of performance, reliability, availability and the cost of computer maintenance and down time as
well as detailed documentation of form, fit and function. A systems analyst is required for the systems design
of the functional specifications and, to a lesser degree, the hardware for the computer system. Lastly, the
documentation supporting the software support system must be of outstanding quality. There is a need for a
single architect responsible for organizing, controlling and managing test data as well as the architectural
design of the system. Therefore, personnel with advanced education in computer sciences within the
program manager organization are essential. We do not know yet how to design an error free system but by
rigorous configuration system management, we should be able to avoid an overly costly software system
whether it is being developed as an entity in itself or in support of a weapon systems acquisition.

The design and fielding of software systems for a weapons acquisition s a long and complex task
Considering the time scale of developing any software system, about one-third of the time is devoted to
system design and functional specification development, 16 percent devoted to coding, 25 percent to
individual program testing and 25 percent to total system testing. You can easily see how the opportunity for
change will exist during the development and testing process without design control and vigorous
configuration management. When you couple this effort with the need to recruit and train highly skilled E-5
and E-6 technicians, a lead time of 8 to 10 years becomes a reality and adds to the acquisition manager
challenge.

This issue of the Review is dedicated to addressing this complex problem and will, hopefully, stimulate
innovative thought and near term solutions

R. G. FREEMAN Il
Rear Admiral, USN
Commandant

Vol I, No. 6 "




DEFENSE SYSTEMS MANAGEMENT

2 REVIEW

VOL I, NO 6. \ SUMMER 1978
“/ CONTENTS !
EOREWEOIRDY " 2ois S0 i aiiim v sfuai v a e e s a8 & o e in o & iii
Rear Admiral R. G. Freeman Ill, US Navy, Commandant
v;FEDERAI. GOVERNMENT SOFTWARE CONVERSION /‘.\ ....... 1
Dr. Paul Oliver, Dept of Navy f
x‘VREDU(:lNG SOFTWARE MANAGEMENT RISKS SN e 16
Dr. Ruth Davis, Dept of Defense i
"SOFTWARE CONFIGURATION MANAGEMENT _ . . . ... ..... 24
TESTABILITY AND TRACEABILITY g
Mr. Harvey Tzudiker, Dept of Army
“SOFTWARE ACQUISITION WITHIN AIR FORCE SYSTEMS
COMMAND—A Management Approach)'.\ ............... 32
Lieutenant Colonel John Marciniak, USAF /f
£ COMPUTER SYSTEMS IN THE NAVY %', . . .o\ ooeenen. 40
Mr. Richard E. Fryer, Dept of Navy
"JNAVY AIRBORNE WEAPON SYSTEM SOFTWARE
RCCRBIIEIN lor v 2 sv it e ontbn s i s ¥ ss casssnsssnss 47
Mr. Dennis W. Farrell, Dept of Navy
':I'HE EGLIN REAL-TIME COMPUTER SYSTEM ... . . ... ... ... 54
Mr. George C. Suydan, Dept of Air Force
§OFTWARE RELIABILITY BY DESIGN;;A CRITICAL NEED;.\. . 59
Mr. W. |. Willoughby, Dept of Navy
~* CALL FOR MANUSCRIPTS | . . ...t 72
iv De S Manag t Review
.
/L,,
"’ ' prere — -




A ——————

L A4 o

P

FEDERAL GOVERNMENT B dosress?
SOFTWARE CONVERSION

by

Dr. Paul Oliver, Director

Federal COBOL Compiler Testing Service, USN | i

Research and development efforts are under way at several universities and research
laboratories to determine ways and means of producing portable software, that is, software
which is machine and configuration independent over a set of computer installations. * Until
such efforts bear practical fruits, data processing organizations will periodically be faced
with the prospect of a software conversion effort. Such an effort is invariably faced with
distaste and apprehension. Acceptable means of easing the difficulties of conversion are
given by the author in this down-to-earth, practical approach offered for solving an

enormous problem.
A PROBLEM—AN ANSWER

A General Accounting Office report} pub-
lished in September 1977, states that the estimated
annual Federal Governnment cost of modifying com-
puter programs is more than $450 million. The
modifications are necessary to enable the programs
to execute correctly on a computer different from
that for which the programs were devised. Compa-
rable industry-wide figures are not available but the
assumption is that the overall industry cost of soft-
ware conversion is enorrmous. This is a nonproduc-
tive cost that does not result in direct improvement
in an organization’s ability to fulfill its mission.

There are several reasons why system conver-
sion is a disruptive process. First, programmers
must be shifted from regular assignments to the
conversion task. This is true whether or not an
outside contractor assists in the conversion. Proper
conversion requires documentation, and old docu-
mentation is often found to be inadequate, even in
well-managed installations. Aggravating this condi-
tion is the fact that the programmers who originally
coded the system are frequently no longer with the
organization. Finally, conversion often takes place
in conjunction with the implementation of a new
system, adding to the concomitant disruption.

The only way to ameliorate the difficulty of
conversion is to develop a thorough and detailed

Vol I, No. 6

conversion plan. Such a plan will consist of three
basic stages: Preparation, Production, and
Implementation.

To set the scope of this article the following
definitions are provided.

Conversion: By conversion is meant
any change made to a program or system
of programs solely for the purpose of en-
abling such a program or system to exe-
cute correctly on a computer different
from the one for which it was devised.

Translation refers to a largely auto-
mated process of conversion in which the
original programs serve as specifications
for the new programs to be produced.

Recoding is similar to translation ex-
cept that the process is largely manual.

Reprogramming refers to a conver-
sion that may entail a system redesign
(e.g., batch to on-line) but without signifi-
cant functional redesign.




)
i
; |
|
s R, e

Redesign refers to a conversion effort
that involves functional redesign and is
therefore akin to new development.

Each of the conversion techniques implied by
these definitions entails different tools, methodolo-
gies, and management guidelines. While this article
is directly concerned only with translation, much of
the material applies to recoding or reprogramming.

THE FEDERAL CONVERSION
SUPPORT CENTER

System conversion is, fundamentally, a prob-
lem because there are differences among computer
hardware systems, operating systems, and pro-
gramming languages; and because computer pro-
grams and associated files reflect these differences.
System conversion is a problem requiring serious
attention and the process of conversion is an ex-
pensive one. The eventual solution to this problem
must entail more and better standards, adherence
to those standards, transparency in hardware differ-
ences, and improved programming practices. At
present, a Federal Conversion Support Center
(FCSC) is being planned by the General Services
Administration. Such a center could make the prob-
lem manageable by introducing consistent proce-
dures for sizing, organizing, and performing system
conversions. A well-planned and organized con-
version, based on previous experience and utilizing
tools and organization suitable to the task will not
be cost-free, but will cost substantially less than a
conversion lacking such planning and organization.

The services to be offered by the Federal
Conversion Support’ Center fall into the areas of
analysis and solicitation.

The analysis preceding a conversion includes
a definiiion of the current system, requirements
specifications, selection of an approach to conver-
sion, and the development of a conversion plan.
Through an assigned project officer, the Federal
Conversion Support Center would provide guide-
lines and procedures, and consulting services in the
following phases of preconversion analysis.

Inventory of system components. The
inventory of system components will pro-
vide documented descriptions of current
hardware and software used by the sys-
tems to be converted; and, data describ-
ing all systems being considered for re-
placement, this data to comprise program,
file, and record descriptions.

Requirements specification. The re-
quirements specification will provide
functional requirements identifying fea-
tures of the current system which the
converted system will not require, or fea-
tures the current system does not have
that the converted system wi// require;
and performance requirements that must
be met by the converted systems (to in-
clude memory requirements, program
processing times, operator intervention
procedures, data storage media, maintain-
ability, and ease of modification).

Selection of a conversion approach.
Given an inventory of system compo-
nents, system statistics, and requirements
specifications, uniform guidelines and
procedures are required to select a con-
version approach that will result in a con-
verted system meeting the specified re-
quirements while optimizing costs and
time. The approach selection includes a
decision as to who will perform the con-
version (contractor, government, hard-
ware vendor, combination of these) and
how the conversion will be done. The
fatter may include transformation of cur-
rent systems, new design and develop-
ment, partially automated means, mainly
manual means, etc. If the approach se-
lected involves contractor participation,
the FCSC would provide the selection and
contracting support described below. The
costs of conversion, implementation, and
operation of the current systems for each
of the contending approaches must be
estimated using consistent formulas, pa-
rameters, and procedures. The potential
impact of approach and costs on hard-
ware selection must be determined.

Development of the conversion plan.
Products of the development plan include
inventory development, to include
management reports, specifications, pro-
grams, data, documentation, and training
materials; a work plan describing the con-
version phases, tasks, and schedules; an
organization structure; and a budget for
project plans and teams.

The FCSC project officer would work with a ““tech-
nical analysis board”’ consisting of user personnel
and additional Federal Conversion Support Center
personnel as required.

Defense Systems Management Review




Solicitation and selection of contractor sup-
port may be desired/required in the performance of
all or part of a conversion. The Federal Conversion
Support Center would assign a project officer to this
task. With the assistance of a selection board com-
posed of user as well as Center personnel, the
project officer would be responsible for the follow-
ing tasks leading to the selection of a contractor
under a Delegation of Procurement Authority from
the General Services Administration for conversion
contracting:

e Preparing a schedule for the selection and
a budget for any necessary travel, com-
puter time (e.g.,, for a benchmark
development), etc.

e Preparing letter of interest giving a synop-
sis of requirements.

e Preparing the Solicitation Document.

e Preparing necessary publicity releases
(e.g., Commerce Business  Daily
announcements).

e Contractor briefings as appropriate.

e Validating and evaluating proposals ac-
cording to predetermined criteria and
procedures.

e Participating, with the Contracting Offi-
cer, in negotiations.

e Preparing a report for the agency acquir-
ing contractor support. This report would
cover the purpose, authority, scope, find-
ings and recommendations of the selec-
tion board.

CONVERSION PROJECT OVERVIEW

Some of the technical aspects of a conversion
that apply whether or not a contractor is used for
the conversion are given here.

Preparation

The first step is the requirements analysis. A
review of the planned differences among existing
systems and the converted system is particularly

Vol I, No. 6

important if the language dialect being converted to
has new language modules or major changes to
input-output modules. It will be necessary to iden-
tify the degree to which the compiler being used
differs, in its implementation of the language, from
the standard specifications for that language.

Tasks, schedules, resource requirements, and
end products must be identified. Schedules and
resource requirements are particularly difficult to
gauge. It is generally a good idea to obtain contrac-
tor support in preparing time and resources esti-
mates, since broad experience in conversion is
required in making such estimates. The review of
existing programs may reveal some programs that
will not require conversion. It is doubtful that there
will be many of these. Copies of the remaining
programs must be collected together with accom-
panying files and documentation and piaced in the
hands of the conversion group.

Finally, the specifications of system changes
must be defined. Data file changes may be re-
quired. File and record sizes, field contents, file
organization, access keys, sort keys, access meth-
ods, storage media, and labeling conventions are all
likely candidates for change. The conversion will
present an opportunity for: needed system restruc-
turing; identification of programs to be combined,
elimination of intermediate files, and sort/merges
which may be deleted if the restructuring involves a
shift from tape to direct access storage device
(DASD) residence for certain files. Processing logic
changes which are necessitated by differing lan-
guage dialects must be specified with care.

Software tools must be identified and devel-
oped. Software must be available to load data, copy
programs, convert programs, create extracted ver-
sions of test data, perform data and file conversions,
compare test results for validity, and measure tests
for reliability. Procedures must be developed and
controls and quality assurance standards must be
specified.

Programs must be collected in a uniform way
to ensure that the correct version (release) on every
program is being converted. The software indicated
above may be used to create test libraries and to
control this step. A procedure for maintenance
change inclusion must be developed. Thus, a refer-
ence base for changes is established.

Adequate test data must be prepared that will
exercise an acceptable portion of the converted

5




programs. Only a test ensures working logic. Even a
part of a program that is tested can have bugs.
Given adequate input test data, the programs must
be run with this input to create output data. Each
program should have a set of known inputs that
produce known outputs in order to validate each
program. ldeally, unit test data can be used for
system testing.

Finally, all related materials must be collected.
This material includes program and system
documentation (flowcharts, narratives, run-books,
data layouts), inventories of files and programs,
source listings, program assemblies (listings), and a
directory of every item’s physical location.

Production

As subsystems become ready for actual con-
version the translation process begins. This is true
even if eventually systems are to be modified. The
conventional wisdom is that program translation
(i.e., a one-for-one, or close to it, conversion)
should precede any modification. Translation is
done to avoid intermingling and compounding any
translation errors or effects with modification errors
or effects. The success of the conversion will be
closely related to the adequacy of the controls
which are applied during the production stage.
Controls must be established for the receipt, han-
dling, and distribution of all materials, for the copy-
ing and analysis (to ensure the correctness of the
copy process) of program tapes; and for the defini-
tion and use of job control language programs.

The translation process itself will be, in part,
automated. Many features of programming lan-
guages lend themselves to automatic translation
through use of commercially available or in-house
developed utilities. A large portion of the input-
output coding will have to be hand-translated. In
some cases the process will be closer to modifica-
tion than translation.

Thorough unit and system tests should follow
the translation phase (and will have to be repeated
after the modification phase, if any). It is generally
advisable to desk-trace the programs in a gross
way, i.e., through job control, housekeeping, and
initial input statements. A monitor that intercepts
and analyzes abnormal terminations would be a
useful tool in testing. The monitor should be capa-
ble of displaying the instruction causing the abnor-
mal termination, the data being processed at that
time, and of providing snapshots of selected

4

data/program areas. Also useful would be a file-
compare utility to determine the validity of the
outputs produced by the translated program and a
monitor that could recognize units of untested
code. Once a translated system has been success-
fully tested, any required modifications can take
place. These modifications may include system
restructuring (combination of common subroutines,
sort/merge utilities, etc.), changes in logic, and
changes in data files.

The entire process must be thoroughly and
carefully documented. The precise form of the
documentation will depend on the installation’s
standards, but should include at least the following:

Converted source programs
Flowcharts of the converted systems

Listing of all job control
language programs used

Standard file labels
File conversion parameters
Operating instructions and technical notes

Unit and system test reports

A step-by-step summary of how a production
team would perform the translation of programs
follows. The procedure is used by several
contractors.

a. Materials are received by the production
team and processed by a Control Section.
Each tape is analyzed to ensure readability
and is copied to backup tapes. Test data
are converted to target machine format.
Standard job control code is generated.
Task estimates and a schedule for the
program translation are created by a re-
source management system.

b. The source program is converted to the
target language by a multistep process
through use of appropriate software tools.
First the source code is converted to an
intermediate language to permit standard-
ized analysis and manipulation. The even-
tual restructured intermediate language
program is then converted to properly
formatted target language code. The target

Def Sy M Review




program listings and other documentation
are collected and given to the project
manager, who assigns the program to an
analyst  for  completion of the
documentation.

c. Corrections are made to the target pro-
gram. The program is compiled until all
diagnostics are resolved. Two program-
mers then desk check every line to verify
logical equivalence to the source
program.

d. Testing begins with the aid of a cross-
reference program (a tool to trap process-
ing exceptions and allow continued test-
ing) and a file compare program to verify
output data equivalence. Unexecuted
code is identified and desk checked.

e. Unreferenced code is located and identi-
fied. Old data and procedure names are
replaced by installation-specified new
names. The source code is formatted to
installation standards to ensure the uni-
form appearance of all programs.

f.  When the program is completely finished,
system enhancements are applied. Main-
tenance changes are identified and imple-
mented. Parallel testing is performed to
validate system equivalence.

g. The completed programs are returned to
the project manager for a thorough quality
control check. The material then is proc-
essed by a control section and prepared
for shipment to the implementation group.
Backup copies of programs are stored on
tape, along with microfilmed copies of
listings for future reference. The com-
pleted programs and documentation are
shipped to the organization being
serviced.

Implementation

Implementation of the converted system con-
sists of installation and training. Installation (that is,
use in a production environment) should not take
place until the systems software to be used has
reached a satisfactory level of stabilitv (this will be a
subjective decision). The conversion manager
should anticipate changes (upward) in the resources

Vol I, No. 6

required to compile and execute the converted
programs, and should allow for these changes to
avoid serious degradation in throughput.

Unit and integration testing should be re-
peated on converted programs and test data once
these are installed on the target system. After this
testing is satisfactorily completed, maintenance
changes are applied and tested, problems are cor-
rected, and retesting is performed. The process is
repeated until all tests are successful. Note that this
inclusion of maintenance changes entails the gener-
ation and conversion of production test data to be
used in the testing process. Note also that further
changes must not be applied to the production
programe at this time.

In the meantime, the production data base is
converted and tested, and the operating system
control language production stream is generated.
Finally, production testing using the final version of
programs, data, and control language programs
takes place (acceptance testing), followed by an
appropriate period of parallel testing

Training

Training is not a separate phase of conversion,
but any organization contemplating a conversion
should make use of a comprehensive training pro-
gram as a part of the preparation for conversion.
The specific content of such a training program will
vary with the organization, but the following topics
should be included:

e Basic Conversion Concepts

Basic concepts and terminology of
conversion.

Comparison of various terminologies de-
scribing similar conversion aspects.

Industry recognized generalized conver-
sion approaches, including translation of exist-
ing programs, restructuring of translated appli-
cation systems, rewriting application systems
on the target configurations, implementation
of existing software from other systems, emu-
lation, and simulation.

e Conversicn  Planning and  Decision
Making

a I—




NJ

e

Time/cost factors which effect conver-
sion including programming languages, avail-
ability of resources, program size, program
complexity, input/output and data conver-
sion, operational considerations, number of
programs to convert, and conversion
experience

Decision criteria used to choose a conver-
sion approach or combination of approaches
including cost/time/resource considerations.

Available algorithms to estimate conver-
sion time/costs.

Overall project management including
project planning, initiation, control, and
review.

Design and utilization of resource
management systems for conversion projects.

o Conversion Tasks

Detailed tasks include those in feasibility
analysis, data and program preparation,
production, implementation of the converted
software, and postimplementation.

Use of automated tools for all phases of
conversion, including test data preparation,
test data efficiency verification, translation,
text editing, generation of cross reference
maps, job control language production, data
file comparisons, source formatting, debug-
ging and testing.

Establishment of quality control proce-
dures and preparation of forms for each major
task and conversion type.

Establishment of technical standards to be
maintained throughout a conversion project
and the determination of mechanisms to be
used to enforce these standards.

Data file conversion using automated
techniques.

Factors that effect data base conversions
include the size of the data base, the complex-
ity of the data structures, the time required to

6

reference and retrieve data vs the time re-
quired to update or establish the data base, the
particular data manipulation languages used
by the source and target systems, test data
generation, and implementation and testing
considerations.

Conversion of job control procedures.

e Conversion Management

Required staffing to manage small and
large scale conversion projects.

Cost/schedule pertormance reporting and
management control mechanisms.

Documentation requirements (throughout
the conversion) and the recommended docu-
mentation forms for each major task.

Specific completion/acceptance criteria
for each major task in the conversion.

e Specific Problem Areas

A second to third generation conversion
should be demonstrated, including assembler
to high level language conversion, following
one example throughout all of the conversion
steps from preparation through
implementation.

A third to third generation conversion
should be demonstrated, including one as-
sembler to assembler conversion, one assem-
bler to COBOL 74 conversion, one COBOL
68 to COBOL 74 conversion, and one FOR-
TRAN to FORTRAN conversion. At least one
example of each type should be followed
through all of the conversion steps from prep-
aration through implementation, and at least
one example of each must be included as a
workshop exercise.

Conversion problems with vendor exten-
sions. Specific examples should be given for
IBM, Control Data Corporation, UNIVAC,
Burroughs, Honeywell, and Digital Equipment
Company.

Problems with vendor unique data
formats.

Defense Systems Management Review

R TS = R T —— B G




A T

Special conversion problems ‘avolving
transaction oriented systems, networks, com-
munications systems, real-time systems, and
hybrid configurations.

Software Tools

The description of the conversion phases in-
cluded several references to software tools. A com-
plete inventory of such tools is expensive, and
would be one of the factors that must be taken into
consideration when contemplating an in-house
conversion. The inventory would not be of great
value after the conversion.

A software support inventory can be charac-
terized several ways. The simplest way is according
to the three principal conversion stages in which
the support inventory is used:

Preparation; A file contents analyzer,
a data extractor and modifier, and a data
generator can be used for creating test
data. Utilities will be required for creating
backups of all programs, for maintaining a
current version of the software inventory
to be converted, and for producing statis-
tics (for example, average program sizes)
as required.

Production: The production stage will
require software to perform source code
to intermediate code translation, to ana-
lyze and restructure the intermediate
code, to perform intermediate code to
target code translation, and to translate
test data files. Utilities will be needed to
generate the operating system control
stream and to apply code corrections to
translated code. Additionally, software to
produce cross-reference listings, to trap
and identify exceptions, to identify unexe-
cuted code, and to perform file compari-
sons will be needed for testing. A decom-
piler or depatcher will be needed if the
conversion is from an assembler language
to a higher level language.

Implementation: Software to vali-
date the results of parallel testing, to iden-
tify and implement maintenance changes,
and to convert the production data base is
required.

Vol I, No. 6

Software aids are useful in the management of
the conversion project. As a minimum, software
tools are needed for resource management (to
identify programs and categorize programs by
source and content, to estimate resource require-
ments, and to monitor progress) and for standards
enforcement (to format programs to installation
standards, replace old names with standard names,
etc.).

A DETOUR—EMULATION

Emulation is a process to enable one computer
to execute programs written for another computer.
Portions of the “emulator’” consist of hardware
features, namely, microprogrammed circuits to per-
form the execution of the emulated computer’s
instruction set. Other portions consist of software
features for input/output. Often certain constraints
may have to be imposed on the storage and
input/output device requirements. Emulation is not
really a conversion technique but rather a conver-
sion postponement technique. As such, it is not
generally recommended by this writer. There may
be, however, instances where emulation may make
some sense for some period of time. The following
factors should be considered in deciding whether
or not emulation is desirable:

Initial considerations. Cost of the emula-
tion packages—hardware and software;
the remaining life of the programs to be
emulated; the frequency and duration of
programs to be run in an emulated mode;
costs of file conversion.

Advantages and disadvantages. A new
system can be instalied prior to repro-
gramming. Emulation is a useful transition
aid and in some cases may obviate the
need for conversion. The process allows
for greater smoothing of manpower utili-
zation in conversion but may result in
inefficient use of a new system, and it can
encourage cld (undesirable) habits (lan-
guages, operating systems).

Cost effectiveness. Need ratio of old
processing time to processing time on new
computer in emulation mode—then later
to new computer in native mode; job mix
greatly  affects cost  effectiveness
(input/output problems).

e s e v




Reprogramming. Cost: projected lifetime
of programs; operating time saved by
reprogramming.

Cost and limitations of emulators. Costs
range from $100 to $1000 per month;
translate only about 75 percent of code;
input/output is usually a problem; partial
translation is confusing; performance is
relatively poor (up to 50 percent degrada-
tion in central processing unit time, and a
40 percent degradation in  memory
utilization).

MANAGING THE
CONVERSION PROJECT

A conversion project is only slightly different
from any other software production project with
respect to management. Careful planning is re-
quired and, once initiated, the project must be
controlled. Finally, there is a completion phase. If
there is a significant difference between conversion
project management and production project
management it is one of emphasis. A conversion
project requires (and allows for) more discipline
and stricter adherence to procedures. If properly
executed, a conversion is very much an assembly-
line type of operation. The total effort is broken
down into well-defined tasks which are more de-
pendent on experience and strict adherence to
procedures than on innovation and ingenuity for
successful completion. This is true partly because of
the high degree to which the conversion process
can be automated. Also note that many of the
ground rules for software production do not apply
to conversion. Example: Manpower and time are
not generally interchangeable in a software
production project but, to a degree, are inter-
changeable in a conversion project.

The first step in the management of a conver-
sion project is to determine the constraints. Con-
straints may have to be applied to the project
organization, the technical approach, the schedule,
and the resources available. Further, these con-
straints are not independent of each other. Limita-
tions on resources for example, will impose limita-
tions on the schedule, the organization, and the
products to be produced. After the constraints have
been identified the inventory must be identified and
catalogued. Where program or file characteristics
cannot be precisely identified assumptions regard-
ing these must be made, justified, and documented.

Specific tasks must be identified, together with the
interdependencies. Task performance schedules
and resource estimates for each phase and task are
prepared following the identification of tasks. Fi-
nally, personnel assignments must be made, lines of
communication must be established, and manage-
ment concurrence for the conversion plan must be
obtained. A common mistake is to mike the con-
version staff a part-time group that participates in
conversion activities but whose members continue
to report to a parent organization. This is an inge-
nious way to make a mess of the conversion,
particularly since it will be nearly impossible to
attribute responsibility for the mess to any one
person.

Once the project plan has been approved the
project is officially entered in the <rgasization’s
project management system. The projec’ staff is
assigned and relocated as required, members of the
staff are briefed on the background and purpose of
the project, assignments and schedule, and stan-
dards. A crucial step at this time, and one which is
often overlooked, is coordination with support or-
ganizations. These organizations will include com-
puter operations, system software support, user
organizations, quality control, space and facilities,
and, if applicable, the contracting staff. The services
required by the conversion staff must be docu-
mented and must be discussed with each of these
groups. Any required training of the staff should be
initiated at this point.

The control function of project management
begins after project initiation. Project control in-
cludes product quality control, progress measure-
ment on a task-by-task basis and the maintenance
of project files. It is also important that contingency
plans be devised in case it becomes necessary to
make changes to the technical approach, the
schedule, or the resources budget. The mechanism
for communicating the project status to the project
team, the users, and management must be estab-
lished as part of the control function.

Lastly, the project management plan should
include procedures for orderly project completion.
These will include procedures for acceptance test-
ing, identification of successes and failures for fu-
ture reference, and for personnel performance re-
view. It is important that all project personnel
realize that the conversion project is not a momen-
tary diversion from a regular jo* but rather, for its
duration, /sthe job.

Defense Systems Management Review




Staffing

The specific makeup and size of the conver-
sion staff will vary with the conversion type and
magnitude. The following membership, without
specific quantities, is suggested for a large-scale
project requiring contractor support. Following
each staff category is an indication of the role of
that category: -

Project Leader (Planning—Project initiation—
Project control—Project termination)

Contracting—staff support advising on (Type
of contract—Necessary clearances—Terms
and conditions—Scheduling)

Systems Programming (Inventory—Sizing of
job—Performance specifications)

Application Systems Developers (Inventory
Sizing—Performance specifications)

Support Programming—software tools for (In-
ventory—Quality control—Production—
Testing)

Material Control (Quality assurance—Backup
inventory—Materials transmittal)

Clerical—supports entire team

Analysis and Programming (Production—
Testing—Implementation)

Operations (Present status and future needs— Figures 1 and 2 suggest the organizational relation
Performance  specifications—Scheduling— of the staff components. A list of the major tasks to

Inventory—Computer resources)

be performed is shown in the checklist.

PROJECT
MANAGER

GRAPHICS
SUPPORT
SERVICES

CONTRACTING

CLERICAL
POOL

INVENT‘()RY PROGRAMS SPECIFICATION PLANNING
COLLECTION ANALYSIS
TEAM TEAM
TEAM TEAM
« User Representative « User Representatives « Operators I
« Control Technicians « System Designers « User Representatives
« Systems Programmers « Systems Programmers ECONOMIC
ANALYSIS
1 Figure 1. Conv.er.sion Proieft Organizatif)n « Dot Tgesiniaive
(Feasibility analysis and planning) « Management

Vol 1, No. 6

| f :
i"""’ R T —— v




PREPARATION
TEAM

DATA
PROCESSING LSERS
DEPARTMENT DEPARTMENTS
L
PROJECT .
MANAGER e e oa e
SYSTEMS
PROCRAMNING
SOFTWARE
DEVELOPNENT
CLERICAL
POOL
CONVERSION PRODUCTION DATA VALIDATION
TEAM TEST CONTROL TEAM
TEAM TEAM
. Programmers . Maintenance Programmers « Control Technicians . Control Technicians

. Control Technicians

. Operators

« User Representative

. User Representatives

(Post-planning)

Conversion Project Organization

System Conversion Checklist

. User Representatives « Operator
Figure 2.
PLANNING
Collect inventory and define scope
of work

Analyze differences between source
and target systems

PRODUCTION

Develop conversion plan and schedule

Estimate resource requirements
Assign conversion responsibilities

PREPARATION

Develop or acquire software tools
required

Collect and package programs

Prepare adequate test data

Create test output using test data

Collect related materials

PROJECT CONTROL

Standardize conversion procedures
Establish reporting requirements
Monitor project status

Assure quality of converted programs

.

Convert source code

Code corrections required
Prepare test job control
Format programs to standard
Convert test files

TESTING

Conduct unit test

Conduct system test

Conduct parallel test

Ensure accuracy of converted programs
Ensure test data adequacy

INSTALLATION

Implement maintenance changes
Prepare production job control
Convert production files
Cutover to production

Defense Systems Management Review




-t

TR R

PR

WP T R T \ i

MANAGEMENT PROBLEMS
OF CONVERSION

A conversion project results in a large volume
of material and serious control problems. Consider
for example a conversion inventory of 1000 pro-
grams, 2ach using three unique data files. This totals
4000 files that must be controlled, together with
1000 sets of documentation plus 1000 full and
3000 partial listings. Twice these numbers must be
generated and stored to provide adequate safe-
guards. If 20 runs per program are assumed to
convert the program there are 20,000 jobs to
schedule, run, analyze, and control. Program
changes made during the conversion will add to this
volume.

Staffing required for the conversion project
will not be needed at the culmination of conversion
and will be diverted from on-geing development
and maintenance. Further, there will be periods of
peak requirements. These conditions create serious
management problems.

Machine time aiso will encounter periods of
peak loads. This, unfortunately, conflicts with grow-
ing production owing to the cutover of subsystems.
Machine time availability takes on an inverse rela-
tion to conversion requirements. In many cases,
conversion requirements plus production require-
ments become more than the total of machine
availability. This causes costly delays in the conver-
sion schedule.

Low resources requirements estimates are
caused by a lack of understanding of the conversion
process. An estimator may take a few programs,
convert them, and attempt to extrapolate the re-
quirements for the entire job. This projection is
inaccurate because it represents a straight line rela-
tionship (which never really exists) between con-
version volume and resource requirements. This
mistake is the one that has plagued production time
estimators for years. As in software production, size
has a special effect on conversion time and costs
that render a linear relationship invalid. For exam-
ple, a competent programmer, properly supported
by a set of software tools, can convert 500 lines of
COBOL source code per day. This suggests that a
10,000 line program could be converted in 20
days. Experience shows that some 36 days would in
fact be required, and that this number could go up
to 104 days if the conversion is from an assembler
language with complex file structures and large file

Vol I, No. 6

volumes. Another problem in estimating is the ten-
dency to exaggerate the extremes by making simple
tasks appear too simple, and difficult ones too
difficult.

References 4 and 5 give an overview of the
technical problems of conversion, together with
some suggested solutions.

CONTRACTING FOR
CONVERSION SERVICES

Success in conversion is in large measure
dependent upon experience, and few if any data
processing organizations possess this experience—
conversion is not an ongoing enterprise. The experi-
ence required is not of the ““we have three profes-
sionals who have gone through a couple of conver-
sions’’ type. Experience, to be useful, must invclve
an entire team that has performed enough conver-
sions to become proficient in the techniques and
tools to be used—a team predictable in its
productivity and performance quality. Such experi-
ence is most apt to be found in software services or
conversion services contractors. Generally, it
would be wise for organizations to avail themselves
of contractor support for conversion. Contrary to
popular opinion, the software producers are notthe
best qualified people to convert the same software.
If anything, they are the worst qualified, since they
probably cannot resist the temptation to “improve’’
the system while converting it.

Contracting methods vary greatly. The best,
most sound, contracting is probably done by the US
Government under its Federal Procurement Regula-
tions.s Also useful guidelines can be obtained from
Reference 7.

PROCUREMENT STEPS

The first step in a procurement is the same as
the first step in «..e conversion planning, a require-
ments analysis. Once this is done, the contracting
personnel can begin to plan for the type of contract
which may be required by the specifications, the
time required to prepare a request for proposals
(RFP) for potential contractors. the time required for
negotiations and evaluation of proposal, and the
time required to make an award. The availability of
funds also must now be determined.

The technical portions of a request for pro-
posal are prepared by technical personnel on the

1

T




project staff. The contracting personnel work on the
terms and conditions. This is not to suggest a strict
separation of duties. Quite the contrary, the two
groups must work cooperatively and harmoniously,
since what each does has impact on the work of the
other. Some 12 to 24 weeks should be allocated to
the accumulation of data to be used in preparation
of the Request for Proposal. Four weeks should be
allocated to the assembly of information and the
final preparation of the Request for Proposal. Four
weeks should generally be given to prospective
offerors so that they might prepare technical re-
sponses, with 2 to 4 additional weeks allowed for
preparation of final cost proposals. The evaluation
of proposals (technical and cost proposals should
be evaluated separately, and the technical team
should not see the cost proposals) should not take
more than from 2 to 4 weeks. Up to 2 weeks should
be allowed for higher management review of the
award recommendation and final contract award.
Thus, the procurement may take from 22 to 38
weeks.

The Procurement Request

The technical staff can ease the burden of the
contracting staff by preparing a complete procure-
ment request (PR). This will include a thorough
statement of the scope of work (supplies and serv-
ices, etc.), reporting requirements, property or facil-
ities to be provided to the contractor, and a list of
prospective sources of support. Upon receipt of the

-procurement request the contracting officer can

assemble a procurement staff. This staff, for large or
complex procurements, may include negotiators, a
cost/price analyst, an inspector, legal counsel, and
auditors.

The contracting officer can begin to give seri-
ous consideration to the type of contract suggested
by the work to be done. This may range from fixed
price contracts, through cost contracts, to time and
materials or labor hours contracts. Each of these
forms has several variations. At one extreme, a
fixed price contract places all the risk on the con-
tractor, but requires very well-defined specifica-
tions; at the other extreme a labor hours contract
places all the risk on the buyer, and should only be
used when well defined specifications are
impossible.

In making a determination of contract type,
the contracting officer will have to consider the
following factors: complexity of the task, urgency,
period of performance, competition, difficulty in

12

establishing performance costs, comparative cost
data, business risks, administrative costs, nature of
the work to be done, and likely technical and
financial capabilities of contractors.

Contract Modifications

Contract modifications are difficult to per-
form, usually cost the buyer additional money, and
often are illegal. Excessive use of options is gener-
ally indicative of poor thinking. The Government
imposes limitations on the use of options (on the
part of its agencies) which are designed to ensure a
certain level of discipline.

e Options cannot exceed 50 percent of ini-
tial quantities.

e Options may be specified as percentages
of contract line items, as increases in spe-
cific line items, or as additional line items.

e Options cannot be used when an indefi-
nite quantity contract will suffice or when
the option represents a known require-
ment and funding for this requirement
exists.

The government also imposes restrictions on
the types of contract modifications allowed.

e Change orders are unilateral changes ini-
tiated by the contracting officer and are
limited to method of shipment or packing,
place of delivery, amount of government
furnished property, and changes to draw-
ings and designs.

e Supplemental agreements are bilateral
changes which must be within the scope
of the original contract, that is, must not
be substitutes for new procurement.

There is a third category, “‘extras,”” but it is not
used frequently. The important point is that changes
must be within the scope of the contract. This point
is obligatory for government agencies; it is good
sense for all buyers.

Evaluation methods

The principal contractor evaluation methods
are listed below:

Def Sy M t Review




e Cost only—pick low bidder among quali-
fied ones. If the specifications are ade-
quate this is not as undesirable a method
as itis reputed to be.

e Cost plus ““desirables’”’—the basic bid
price is modified up or down according to
the quality or number of ““nonmandatory”’
items a contractor proposes. This is a
superficial way of giving “‘bonus points”’
that has little to recommend it (in this
author’s opinion).

e Cost evaluation plus technical evalua-
tion—it is common to attempt to combine
““cost points” with “‘technical points’” to
determine a winner. This type of evalua-
tion is usually motivated by a desire to
substitute subjective judgment for a sound
evaluation. One legitimate way of incor-
porating a technical evaluation is to use
the results of a technical review to deter-
mine a ‘“‘technical competitive range,”
then eliminate all bids falling outside this
range and make the award to the lowest of
the remaining bids.

ESTIMATING CONVERSION COSTS

Conversion costs for an in-house conversion
(performed by a staff of programmers from the
organization undergoing the conversion) cannot be
accurately estimated. The difficulties of estimating
production efforts are well known. Software
production s something programmers do all the
time. Programmers do not do conversion all the
time. Furthermore, the in-house staff does not have
the tools and procedures required, and if acquired,
the in-house staff has little or no previous usage
experience.

One can determine reasonable estimates of
conversion costs if a contractor is used for the
production stage, which is the most costly of the
various conversion stages. The tasks associated
with planning and implementation can be itemized,
resources required for each of these are estimated,
and the result is a cost estimate for these portions of
the conversion.

Estimates for the production stage can be
derived by reviewing past conversion efforts and
prices bid on these efforts. The Federal COBOL
Compiler Testing Service has compiled a substantial

Vol 1, No. 6

data base of dollar cost arid productivity figures. A
few figures can give general indication of potential
Costs.

e COBOL to COBOL conversion will cost
from $.40 to $4.00 a line, with $.65 a line
being a good average figure for reasonably
“clean”” COBOL programs that do not
require extensive file restructuring or doc-
umentation beyond normal program
documentation.

® FORTRAN to FORTRAN conversion costs
are similar to COBOL to COBOL costs.

e Data on PL/1T to PL/1 conversion is
scarce, but indications are that such a
conversion would be from 10 to 20 per-
cent costlier than a COBOL to COBOL
conversion. Assembler code—
COBOL/FORTRAN will cost from $2 + to
$8 per source line

e Productivity figures range from 300 to
500 lines per man-day in FORTRAN to
FORTRAN or COBOL to COBOL down to
20 to 100 lines per man-day in an
assembler-COBOL/FORTRAN
conversion.

.

e Extensive documentation (user guides,
narratives, etc.) can cost 40 percent of the
total per line cost. In-house costs for plan-
ning, preparation, and implementation
can be 50 percent of the total costs.

Several qualitative observations can be made
from an analysis of a sizeable conversion data base:

e Conversion costs can vary greatly with the
source machine, but are not very depen-
dent upon the target machine.

e Knowledge of the application is not very
important in performing the conversion;
but information regarding the application
must be available as required.

e Competition, or lack of it, can influence
offerors’ prices by as much as 100 per-
cent. This author knows of at least one
instance where limited competition led to
an inflation rate of nearly 300 percent in
one contractor’s price. A thorough cost

13




—_—

and price analysis on the part of the con- e Cost models consisting of a handful of
tracting office could have avoided this. formulas based on a handful of parame-
ters are worse than useless; they are dan-

e Known complexity will not unduly influ- gerous because the impression of author-
ence costs, but complexity that comes as ity is given.
a surprise can cause havoc.
: OBSERVATIONS
e None of the above holds for real-time
systems.
; ) ) Conversion is a disruptive, largely nonproduc-
e Conversion of data base systems is not tive process that must nevertheless be faced at
well understood. some point in the life of a data processing organiza-
tion. Some ideas have been presented that may be
e Conversion estimates should not be at- of assistance to those contemplating a conversion.
tempted by people who do not have ac- The most important facts are that conversion re-
cess to a sizeable data base of information quires careful planning, and should not be at-
and who do not do this on a regular basis. tempted without the services of professionals.

™

o

>

o

s

pe

CITED REFERENCES

D. E. Whitten and P. A. D. deMaine, “A Machine and Configuration Independent FORTRAN: Portable
FORTRAN (PFORTRAN),” Computer Science Department, Pennsylvania State University, University Park,
PA, 1974.

G. N. Baird and L. A. Johnson, “System for Efficient Program Portability,” Proceedings, National Computer
Conference, American Federation of Information Processing Societies Inc. Press, Montvale, NJ, 1974.

General Accounting Office, “General Accounting Office Report to the Congress” FGMSD-77-34,
Washington, DC, 14 Sep 77.

Joel E. Heiss, et al, “Programming for Transferability,” technical report, International Computer Systems,
Inc., Los Angeles, CA, 1972.

Paul Oliver, “Transferability of FORTRAN Benchmarks,” ADAO39741, Federal Operations Directorate,
Dept of Navy, Washington, DC, 1977.

US General Services Administration, “‘Public Contracts and Property Management,” Code of Federal
Regulation, Title 41, Subtitle A, Chapter 1, Federal Procurement Regulation, 1977.

D. H. Brandon and Sidney Segeistein, Data Processing Contracts, Van Nostrand Reinhold Co., New York,
1976.

Def Syst M t Review




Vol I, No. 6

“TPEAT

R T

Paul Oliver is Director
of the Federal Operations
Directorate for the Depart-
ment of the Navy. Included
in this Directorate are the
Federal Conversion Support
Center and the Federal CO-
BOL Compiler  Testing
Service.

From 1962 to 1965 Dr. Oliver served in the US Air
Force with the Air Force Systems Command, Research
and Technology Division at Wright-Patterson Air Force
Base, Ohio. In this period he worked in the Bionics
Branch, the Avionics Laboratory Data Reduction Divi-
sion, and the Digital Computation Division. After his
discharge from the Air Force as a First Lieutenant in 1965,
Dr. Oliver remained with the Digital Computation Divi-
sion as a civilian employee. He also taught in the Univer-
sity of Dayton Mathematics Department. Dr. Oliver
joined the UNIVAC Division of Sperry Rand Corporation,
Washington, DC, in 1970 as a Staff Scientist. In 1973 he
returned to Federal Government service as Director of
the Software Development Division, Department of the
Navy, ADPE Selection Office.

Dr. Oliver is a member of the Association for
Computing Machinery and the Institute of Electrical and
Electronic Engineers; he is listed in Who's Who in Com-
puting and American Men of Science. He is on the faculty
of the American University.

Paul Oliver received the B.S. degree (high honors) in
Mathematics from the University of Maryland in 1962;
the M.S. degree in Mathematics from the Ohio State
University in 1964; and the Ph.D. degree in Computer
and Information Science from the University of North
Carolina at Chapel Hill in 1969.




REDUCING
SOFTWARE MANAGEMENT RISKS

by

Dr. Ruth M. Davis
Deputy Under Secretary of Defense
for Research and Advanced Technology

Software correctness remains the most elusive goal of computer science. As a result,
software is the most unsafe, the least understood, and the most expensive component of
total computer system costs. In contrast, costs of computer circuitry have shown a dramatic
decrease, especially in the past 15 years, and computer hardware capability has improved.

The author presents some obiectives here for better and less risky software. Changes in
product control areas are suggested to improve software products and control software
expense.

THE RISKS OF TECHNOLOGY

One of the problems with which a civilized through accident and crime. We drive automobiles
society has the greatest trouble is that of dealing daily and require a minimum of licensing for owner-
with risk or danger. The more primitive have the ship and control. The advantages to us of this
least trouble. Direct confrontation with the enemy means of transportation obviously outweigh the
in front of your cave, physical destruction of a city disadvantages.

or an artifact—such as a statue or a machine—are
very tangible satisfying ways of handling a threat or
a fear. Some of us still handle our problems thusly:

The telephone line is a superb mechanism for
most of us do not.

wire-tapping and eavesdropping. The telephone
receiver itself is an excellent holder of passive

Science and technology provide us with one eavesdropping devices in every home—undetected
of our greatest dilemmas: as a society we admire, except by physical search. Here again, we have
respect and envy scientists and science. But the individually and collectively decided to have
misused products of science and technology con- phones and phone lines—in fact some 161 million
fuse us. If we dislike or fear these products, there telephones exist just in the United States. it is
are very few civilized means at our disposal for apparent that we want phones more than we fear
dealing with them. Also, mankind is not adept at them.
anticipating technologically-induced risks. Consider
afew.

The scenario gets a bit less determinate as we

The automobile generated a new era of crime. view other products and unwanted by-products of
The criminal from outside the neighborhood, even science and technology. Perhaps, the muddled ap-
outside the town, was born along with the quick pearance is because today in 1978, we are closer to
getaway. The automobile kills nearly 50,000 people the beginning and have not had as much familiarity
a year on highways. Yet, we have individually and with products of technology such as nuclear power,
collectively assessed the risks posed by automo- computers, and manipulation of the protein mole-
biles in terms of danger to our lives and property cule to yield seemingly resistant-perfect viruses.

16 Def Syst: Manag t Review
R —— e

e

| |




RISKS ASSOCIATED
WITH COMPUTERS

If we concentrate just on computers, we see a
collection of strong beliefs, genuine interest, free-
floating anxieties and highly-articulated concerns.

Not surprisingly, the two principal problems
facing managers relying on computers are:

e What risks do they face in using comput-
ers, and

e What risks do they face by not using
computers.

Typically today, most managers are totally unpre-
pared to answer these basic questions. Even the
concept of “risk” and its companion concept of
“safety”” as applied to computer systems is foreign
to the computer manager and scientist.

I would suggest that the fundamental ques-
tions that managers need to address to evaluate the
risks or safety of computer systems are, do | know:

e When my computer system is not per-
forming its intended function? or

e When my computer system is performing
a function which was notintended

When a computer manager cannot answer these
questions in the affirmative then that manager is
unable to determine if his organization is taking
unacceptable risks in using computers in its
operations.

In attempting to manage the risks and deter-
mine the safety of computer systems, a definition of
safety can be developed (as suggested by William
Lowrance in his book Of Acceptable Risk) namely:

® A computer system is safe if its risks are
judged to be acceptable, where risk is the
probability of loss or damage due to the
occurrence of undesirable events or ad-
verse effects.

Vol 1, No. 6

Thus, before safety can be judged, many
factors about computer systems need to be consid-
ered. These factors include the threats, dangers and
vulnerabilities, the safeguards, and the alternatives
to computers and the attendant costs.

The threats and dangers are well known, for
example:

e Natural hazards—fire, water, wind, hail,
tornados, earthquakes, radiation, and
power outage,

e Errors and omissions of programmers, op-
erators, data input clerks, users and sup-
port staff,

e Hardware failures and communications
equipment outages,

e Sabotage, strikes, terrorism, disorders,
and vandalism,

e Fraud, embezzlement, theft, and

e Interception of information being proc-
essed or stored in the system.

The loss due to exposure to possible threats
includes:

e Delayed processing of information result-
ing in increased costs and inability to con-
duct the required system operations espe-
cially those that are near real time (NRT) in
nature.

@ Loss or unauthorized use of information
resulting in harm to whatever operation is
dependent upon the computer, and

e Loss of resources or assets such as weap-
ons, personnel, vehicles, targets, signals,
information, money, etc.

Figure 1 highlights the essential elements of the
safety-risk management process that should be an
inherent part of the responsibilities of any computer
manager.

b s




Dangers

Events '| Safeguards |

RISKS et

Osts

Fears

\/

f

w Vulnerabilities

Acceptable
risks Safety

Legislation v \ Consensus or

acceptability

Standards

Price

\\

CONSENSUS
OF
BALANCE

Dangers vs Safeguards

Figure 1. The Safety-Risk Management Process

SOFTWARE THE MOST
RISKY COMPONENT
OF COMPUTER SYSTEMS

Today software is the component of a com-
puter system to which the most risk is attached.
Readers* always evince genuine surprise when told
that there is no theoretical (or mathematically rigor-
ous) way to prove programs correct (except for
trivial programs containing less than 100
statements). This serious limitation will be difficult
to overcome because of the mathematical difficulty
of constructing the necessary inductive assertions
and the cost of the computer time to generate
proofs. The impracticality of exhaustive testing of
all program input values can be shown by observing
that it would take the ““fastest’” machine available
today more than 30,000 years to try all inputs to a
simple multiplication program.

*Ruth M. Davis, “Evolution of Computers and
Computing,” Science, 195 (4283): 1096-1102 (1977).

18

The lack of theoretical proof of correctness of
computer programs has resulted in the expenditure
of considerable intellectual and physical resources
in the software field to develop engineering and
statistical substitutes. Software engineers and com-
puter scientists have concentrated on quality con-
trol techniques for software development, ““debug-
ging aids,” automatic programming techniques,
software validation, and the like, but to little avail.
Software correctness remains the most elusive goal
of computer science.

As a result, software is the most unsafe, the
least understood, and the most expensive compo-
nent of total computer system costs. Software de-
velopment costs are now almost 90 percent of total
computer system costs. This percentage will proba-
bly increase along with the absolute costs of soft-
ware, since software design, development, and
testing is the most highly labor-intensive compo-
nent of computer system products. The really useful
and exciting advances in computing probably will
proceed only at the same pace as advances in
software engineering. This is distressingly slow.

The software industry, like other spheres of
modern endeavor, has entered a period of self-
evaluation and redirection. In the past, when soft-
ware was regarded as an esoteric product, a nov-
elty, or a toy for the technically inciined, a great
many excesses were tolerated and forgiven. Soft-
ware was expensive, unreliable, difficult to under-
stand, debug, and test, and so brittle that even
relatively minor perturbations in environment could
not be handled satisfactorily. Computers have now
become an exceedingly important part of our daily
lives. Examples: computers are used by business in
accounting, credit, and inventory systems, by
health care institutions to diagnose disease and
perform blood and tissue typing, by engineers in
designing mechanical parts, by the military in de-
ployed weapons systems and by the mass transit
industry in handling air traffic control, seat reserva-
tions, and routing.

Nonetheless, software quality is uneven at
best. Programs thought to be correct (and released
for general use) will suddenly produce wrong re-
sults, no results, or behave otherwise erratically,
because some special condition in the data or in the
environment was not accounted for in the logic of
the program. Current practice is to design and
implement a software system, the paramount con-
siderations usually being production speed, running
efficiency, and/or minimal use of storage. The soft-
ware is then tested for some arbitrary subset of

Def S M Review

o



possible input values and environmental condi-
tions. The system is accepted as correct when it
executes the test cases correctly or when
time/money runs out, whichever occurs first. It is
not surprising that software products are otten unre-
liable and that confidence in new software is gener-
ally minimal

These facts have become increasingly clear:

1 Software (system software and ap-
plication software) which is reliable, robust, under-
standable, testable, and maintainable must be built.
Society cannot and will not tolerate repeated soft-
ware failures in systems affecting public health,
welfare, and safety.

2. It is worthwhile to sacrifice some-
thing in the way of production time, running effi-
ciency, and/or storage required to obtain reliable
code. Whiie the details of this tradeoff are, as yet,
unknown, it is apparent that software errors are
becoming potentially more dangerous and
expensive.

3 While software has become in-
creasingly more sophisticated and complex, tech-
niques for producing and ensuring quality in soft-
ware have not kept pace. Such techniques must
now be developed, improved, and integrated into
the software production process.

There are four major participants or potential
“losers’’ unless, and until, software reliability and
quality is improved so that computer risks can be
reduced to acceptable ranges. They are:

The Customer, who formulates automated
data processing requirements, translates these
into system specifications, and uses the speci-
fications as the basis for selection and accep-
tance strategies and as terms in legally binding
contracts. The customer’s objective is to ob-
tain the best system for the need at the lowest
cost.

The Producer, who designs and imple-
ments software systems meeting customer
specifications, and markets packages of own
design. The producer’s objective is to maxim-
ize profits.

Vol I, No. 6

The User, who operates and maintains
software packages in the field, making modifi-
cations in response to malfunctions or chang-
ing requirements. The user’s objective is to
utilize the system effectively.

The fourth plaver, the unwittingly in-
volved Public, has been generally passive in
the past. He does not know much about the
game right now, but since he keeps losing, he
can be expected to learn. The objective is self
protection and survival.*

Some of the software realities faced by soft-
ware customers, producers, users and the public in
1978:

e Software is the most expensive com-
ponent in systems procurement.

Technological developments, especially in the
past 15 years, have dramatically reduced the cost
of computer circuitry and increased hardware ca-
pability. A microprocessor costing about $20 today
has the computing power of a large computer that
cost $1 million 20 years ago.

The cost of software has shown the opposite
trend; it has risen continuously. The estimated cost
of software development, testing and maintenance
for the Federal government is $4 billion per year
(1977). The government in 1977 owned about $25
billion worth of currently used software.

The development costs for new software are
enormous. Internal Revenue Service estimated that
its proposed Tax Administration System would cost
over $500 million to develop. The Air Force esti-
mates that its software costs for command and
control systems for the next decade will be several
billion dollars. Software costs greatly exceed equip-
ment costs over the lifetime of a computer service.

Overruns of 100 percent in both cost and the
time to develop software have not been unusual
occurrences. In fact, there have been cases of total
failure to develop systems.

*Paper presented by Dr. Ruth M. Davis at the International
Conference on Reliable Software, Los Angeles, CA, 21 Apr 75.
Material prepared by Dr. R. Stillman, Albrecht Neumann and Dr.
Dennis Fife, National Bureau of Standards.

—_ R e Y v




The cost of maintaining software is estimated
to account for about 75 percent of software costs.
Much of this expense is attributable to time spent in
fixing up software that was not correctly developed
in the first place.

e Software or program operation is
the most unreliable component of an
operating system.

In 1976 people throughout the world waited
expectantly for a program error in the control
system for the Viking Lander to be corrected. The
Viking was delayed for several days in scooping up
a Mars soil sample that was to he examined for
signs of life. The computer issued a series of com-
mands to release a protective cover on a 10-foot
extendable sampler arm. The sequence was not
properly executed, and the arm became jammed.

The Supplemental Security Income Program
of the Social Security Administration had a 23.7
percent error rate in the payments made to 4.3
million people covered by the program. In its first
27 months of operation, the program overpaid
clients by $622 million. The General Accounting
Office, in reviewing this program, levied blame in
part on the complexity of the legislation and last
minute changes made by Congress. The General
Accounting Office also cited the lack of manage-
ment controls in the Social Security Administration
that resulted in software changes being made fre-
quently without the proper documentation.

Software errors in airline reservations and
manufacturing process control systems can lead to
expensive and frustrating breakdowns of the sys-
tems. In systems such as nuclear plant control,
software errors can be disastrous.

e Software cannot always be proven
correct and software quality controls
are virtually nonexistent.

Computer programs can be tested to deter-
mine that the program performs as specified for the
selected test inputs. However, that the program
performs only the intended results cannot be
determined.

Mathematical tests to prove correctness of
programs are not feasible for large programs. Ex-
haustive testing over all program input values is
often impossible.

20

Practical validation for the foreseeable future
consists of devising systematic tests over a reasona-
ble subset of possible input values. The only valida-
tion services for software presently available are
provided by the National Bureau of Standards to
test COBOL and FORTRAN compilers purchased
by the government for conformance to program-
ming language standards.

e The software market is a “buyers
beware” market.

The potential software buyer is unguided and
vulnerable in an uncertain and complex market-
place. First of all, he has trouble locating the pro-
ducers of the type of software that he needs. He has
few criteria for comparing software performance or
for demonstrating the efficiency of software. He
cannot compare the features of different products
because of the lack of documentation standards. It
is very difficult to be positive that the software he
buys will be correct and reliable. He cannot be
positive that it will perform 100 percent efficiently.
He does not know if it will be easily maintainable
and transferable. He does not know exactly how
much it will cost to maintain the software.

e Software development and mainte-
nance is labor intensive and program-
mers, being highly skilled, are
expensive.

Programming costs are almost entirely labor
costs. Programming is a craft that has emerged from
business and government, rather than from science
and engineering as is the case for hardware technol-
ogy. Also, the productivity of software develop-
ment has not significantly improved because of the
lack of automated programming techniques.

Despite this rather gloomy picture, | would
conjecture and hope that software will flourish and
not be replaced by substitution of hardware. The
reasons are that:

e Software is a primary means for creativity
in computer usage.

e Software changes provide a best means
for incremental improvement of existing
computer applications.

t Review




e Software extends human abilities to ex-
plore scientific, mathematical and logical
phenomena and behavior.

o The software marketplace, if drastically
changed from that of today, may be an
attractive one for innovative entrepre-
neurs and product advances.

e Software as conceived today may provide
more prodc ct differentiation for the bene-
fit of custor-ers than any currently avail-
able substitte.

The fact that software is a primary means for
creativity in computer usage is a familiar one. Ac-
complishments in application areas such as real-
time control, funds disbursement and transfer, in-
formation systems, inventory control and “‘robot-
ics” would not have been possible without creative
and innovative uses of software. What would be the
state of space exploration, national defense and
economic well-being without flexible software?
One other area of computer usage should not be
overlooked—that of using human creativity in con-
cert with software to produce better tools for the
development of reliable software.

Changes to software should be incremental
rather than continual. Although the invariant types
of software substitutes force this discipline upon the
user, traditional software still provides the best and
least expensive means to accomplish changes.
There is no reason why the same discipline cannot
be applied to traditional software. Users of software
must resist the temptation to make unnecessary and
error prone modifications to software. The simplic-
ity of the physical actions involved in modifying
software has led to the mistaken belief that modifi-
cation of software is easy. Requirements do change
over the life of a system. However, these changes
usually can be accommodated by well-planned
incremerital changes to software.

Software extends human abilities to explore
scientific, mathematical, and logical phenomena
and behavior. Problems can be solved through non-
analytic means. For example, the LISP language,
which is based on the mathematical principles of
recursive function theory, has become widely used
for research, most prominently in the area of artifi-
cial intelligence. The LISP language facilitates the
application of mathematical and logical principles
to subjects such as game playing, robots, theorem
proving, natural language processing and algebraic

Vol I, No. 6

manipulation. Additionally, software has made pos-
sible advances in areas such as automata theor
modeling of stochastic processes, system simula-
tions and simulations of intelligent behavior.

Software allows a broader base for competi-
tion in the marketplace—and all parties profit from
this. Manufacturers have a large group of customers
to satisfy. Software provides the only economical
way to meet the entrenched desire ““to have it vour
way’’ among computer users. Customers benefit
from selectivity and lower prices because of similar
product competition.

SOME OBJECTIVES FOR BETTER
AND LESS RISKY SOFTWARE

Regardless of the form in which software is
provided (as now seen or in substitute form), the
customer needs some dramatic changes in software
products. These changes must be reflected in a
dependable software marketplace where proven
products can be quickly identified and acquired at
lower cost. Changes in the following product con-
trol areas are necessary to meet this objective:

Identification of products

Quality controf

Cost assessment

Software develgpmenl management
Validation

Certification

Identification of Products. The disper-
sion of the software industry and its resulting mar-
keting weakness make it difficult for a customer to
locate needed products. There is further difficulty in
comparing the features of products, because the
necessary documentation is unavailable or is incon-
sistent among competitive software products.
Then, too, the customer gets confused because
specifications for software frequently have little in
common with the printed material about the
product. In fact, the only material available on
some products is the guide intended for training
purposes! Worse yet, in some cases a supplier may
consider design specifications proprietary, and

21




available for review only under a trial lease agree-
ment. The result is that users are forced to “make
do” with haphazard comparisons. Under these
circumstances, the lack of customer confidence in
selection of a product and mistrust of purchased
software is not surprising.

Quality Control of Products. The quality
of a computer program lies in:

Reliability and correctness,
Suitability of functions,
Efficiency and performance, and

Myriad design factors for maintainability,
transferability, etc.

Unlike beauty, quality is not in the eye of each
beholder—it must be uniformly understood and
subject to definition and measurement.

Specific features that affect the quality of soft-
ware products:

Correctness—the property of performing
as intended for all acceptable inputs.

Clarity—a measure of the effort required
to understand a program (and its
documentation).

Robustness—a measure of the extent to
which a program will remain well-
behaved despite violations of basic
assumptions.

Portability—a measure of the effort re-
quired to install a program in a new envi-
ronment (example, another machine, op-
erating system, etc.).

Modifiability/Maintainability—a mea-
sure of the effort required to alter a pro-
gram in response to a change in specifica-
tions or requirements.

Performance—a multidimensional de-
scription of the program’s demands for
accountable resources.

22

Life-Cycle Cost—the costs of initial de-
sign and implementation, testing, opera-
tions, maintenance, modification, and
documentation.

Human Factors Engineering—a measure
of the ease, convenience, error-
protectedness, and ‘“‘naturalness’” with
which a human being can use the pro-
gram. In other terms, palatability of the
user/program interface.

Cost Assessment of Products. Cost is
complementary to quality in the customer’s selec-
tion. He needs data for evaluation of productivity,
maintainability and recurring overhead costs. How-
ever, today, the customer must perform the original
analysis, usually without benefit of any published
cost or productivity factors accompanying the
product.

Software Development Management.
Every computer user should appreciate the basic
principles of managing software development, to
communicate effectively with programmers on de-
velopment progress, whether the programmers are
in-house or outside contractors. The customer’s
attempts to develop understanding are thwarted,
however, by the wide disparity of views among
practitioners and so-called ““management experts.”

Most reasonable practitioners believe soft-
ware development is controllable. The essential
elements of successful management are recog-
nized: use of proven software engineering tech-
niques, well chosen programming tools, workflow
organization, substantive reports and customer re-
views, and realistic cost and schedule allowances.
Good reporting of software development must be
done to give customers confidence that the job is
being done well. These actions help overcome the
“black art”” image of software production.

Validation of Products. Validation is the
process of showing that a program is consistent
with the specification—that the program performs
as intended without error. There are two basic
approaches to validation: testing under appropriate
conditions and proving correctness. The first of
these, testing, will detect program errors for correc-
tion and demonstrate that the program performs as
specified under the selected test inputs. The other
approach, proof of correctness, would establish
that a program has no errors and performs only the

Defense Systems Management Review




M,w-'{ Y T T

defined actions or results. The difficulty of valida-
tion in general is that neither exhaustive tests or
correctness proofs are feasible for most programs of
interest.

Certification of Products. Many software
customers, particularly in organized user groups,
believe that the quality of programs can be assured
through “certification.”” Software certification
means that an independent agency evaluates and
tests a program, and makes an authoritative decla-
ration on its usability. Certification is, of course, an
empty statement without a definition of the tests.
These tests must validate the program, rather than
probe its operability at random. The generation of
such tests and the testing activity, including fixing
the program, are demanding technical tasks that
require almost 50 percent of any program devel-
oped today.

Changes in software product areas can be
achieved—and, indeed, probably can be achieved
only through setting some goals or targets and
focusing the forces of research, standards, eco-
nomic assessments, and customer “‘push’”” on the
goals along with established schedules for achieve-
ment. Customer “push’’ must be based on better
customer understanding of technical issues—not on
emotional issues.

Some needed goals:

Reduce, by 90 percent, errors in software
products delivered to Government
customers.

Subject all software development for Gov-
ernment procurement to specified quality
controls.

Have validation services in place for all
major programming languages, for Data
Base Management Systems and com-
monly used application packages.

Initiate a Government-wide research pro-
gram to automate software production
and provide a standard library of program
generators.

Establish applications design and stan-
dards for conversion- that assure direct
transportability of software to any com-
puter system.

Vol I, No. 6

CONCLUDING COMMENTS

Despite my pessimistic comments, | think that
software is here to stay—for the foreseeable future,
at least. Software gives the capability of using com-
puters creatively, flexibly and economically. Com-
puter software 1s a product that can be designed to
benefit users innovatively and uniquely. However,
software’s continued viability depends upon the
user being able to make sensible choices and to
control software expenses.

Dr. Ruth M. Dauvis is
Deputy Undersecretary of
Defense for Research and
Advanced Technology, Re-
search and Engineering. Dr
Davis was Director of the
Institute for Computer Sci-
ences and Technology of the
Commerce  Department’s
National Bureau of Standards prior to assuming her
present position. Dr. Davis has received many awards
during her public service career, including the National
Civil Service League Award in 1976, the Rockefeller
Public Service Award for Professional Accomplishment
and Leadership in 1973 and the Department of Com-
merce Gold Medal in 1972. She has been elected to
membership in the National Academy of Engineering and
the National Academy of Public Administration. She
serves on the Electric Power Research Institute Advisory
Council, on the Board of Directors of the American
Association for the Advancement of Science and on other
scientific and technical advisory groups and councils.

Dr. Davis received her B.A. degree from American
University in 1950. She received her M.A. degree in
1952 and a Ph.D. degree in 1955, both from the Univer-
sity of Maryland.

23

S e | TGP




T e—_me—gp

SOFTWARE CONFIGURATION
MANAGEMENT
TESTABILITY AND TRACEABILITY

Mr. Harvey Tzudiker
US Army Computer Systems Command

Although the computer program development process has matured significantly,
the lessons learned have been slow to permeate the software industry. The large
investment required for a hardware development and production facility makes the
implementation of time-proven organizational patterns, methods, and procedures man-
datory. On the other hand, a software development activity can be established with
virtually no investment in facilities and with shoestring operating budgets which leave
no room for vital project controls, among which are technical reviews and audits,
contro! of changes, and acceptance testing. Most of these controls fall within the area of
configuration management or are primary concerns of configuration management
organizations. Some of the software lessons learned, but not generally applied, are

discussed here within that context.

The standard life cycle scheme for computer
program configuration management is described in
widely known and applied government directives
and industry implementations. That scheme estab-
lishes requirements for what is to be done but,
appropriately, not how.

The objectives of this articie are to present:

e Lessons derived from the application of
configuration management.

e Ideas ontechnical procedures.

® An approach for tracing individual re-
quirements from system specifications to
delivery of the system.

e An approach for improving the quality of
system specifications by performing
“Testability”” analyses starting at the re-
quirements review. In particular, the arti-
cle discusses ““testability’”” and “‘traceabil-
ity’” of computer programs or ‘‘software’’

24

requirements throughout the develop-
mental process.

Briefly, “‘testability’”” is a determination of
whether and how a requirement can be tested,
thereby assuring that a requirement can be tested
and wi/l be tested. The identification of testable
requirements establishes the point of departure for
their “‘traceability,” for example accounting for
testable requirements through the developmental
process to final test and acceptance.

One of the fundamental problems associated
with software development is the inadequacy of the
requirements statement. Inadequately stated re-
quirements lead to false starts, excessive rework,
extended periods of fixing and testing, overall
schedule slippage, cost overruns, project turbu-
lence and patchwork design, all of which result in
fielding a system which is difficult and costly to
maintain and modify.

If that problem exists, purification of the re-
quirements specification must be done, sooner or

Defense Systems Management Review




=

later, within the system developmental cycle. It can
be accomplished in the beginning provided the
developer has sufficient strength of purpose and
credibility to insist on an acceptable specification
before proceeding into system design, or it can be
accomplished during the later phases of the devel-
opmental cycle with the problems, cost overruns,
and delays described above. It is the classic case of
not having enough time to do the job right in the
first place, but having the time to redo it.

The software worid, particularly that portion
associated with large scale software acquisition,
recognizes the problem. Current approaches to
solutions include the development of special lan-
guages which ““automate’” the statement of require-
ments, the use of simulation, the development of
software “breadboard”” models or ““throwaway”’
models, and incremental software development.
However, getting customer personnel to specify
accurate and complete requirements that are thor-
oughly understood and accepted by developer per-
sonnel is a fundamental communications problem.
This problem is sure to persist.

A solution to the problem lies in not moving
past the system requirements review until an ac-
ceptable specification is in hand. Most require-
ments reviews address the completeness and com-
prehensibility of the system specification. The qual-
ity of this review is based on the diligence, expert-
ness, and objectivity of the reviewers. However,
there is a danger that, having worked through the
requirements portion of the specification, the re-
viewers will be content with a gross and cursory
treatment of the quality assurance requirement.*
But it is exactly at this point that the greatest
potential payback in additional effort exists. At this
point, a detailed analysis of the specification for
testability should take place to finalize the specifica-
tion and to set the stage for execution of one of the
key quality assurance and configuration manage-
ment processes of the project. For the purpose of
this discussion, this process is called Testability
Analysis.

*Military Standard, Mil Std 490, Specification Practices, calls for
a Section 4 on Quality Assurance provisions in the specification.
Tne purpose of this section is to identify how conformance to
requirements is to be established. Among the Quality Assurance
provisions, Mil Std 490 suggests a tabular presentation of re-
quirements paragraph numbers together with the examinations
and tests to be performed for each. A sample of a software
oriented table is at Exhibit 1. Note that a single level and method
of test is assigned to an entire paragraph containing multiple
requirements. Under these conditions, demonstration could oc-
cur only at a system level test.

vol I, No. 6

Testability Analysis is a process of expansion
or explosion of requirements statements down to
the lowest possible level which expresses a single
requirement, a determination of whether that re-
quirement, as stated, can be tested; the type of test,
that is, demonstration, analysis, simulation; and the
level of test, for example, program, system, etc. The
important product of this kind of analysis is the
identification of those individual requirements
which cannot be understood and agreed to by both
customer and developer, those which are not com-
plete or which, perhaps most important of all,
cannot be tested and hence cannot be true state-
ments of requirements. The opinion of this author is
that the requirements review should take the form
of a Testability Analysis. If the statement of a re-
quirement will not support an objective, quantita-
tive test, it should either be eliminated from the
specification or identified as a requirement to which
the developer need not respond.

Testability Analysis must identify and treat, in
the proper perspective, three kinds of requirements
statements: functional requirements (what actions
must be accomplished), performance requirements
(timing constraints, throughput, etc.), and design
requirements (modularity, language, etc.). Testing
of functional requirements is usually straightfor-
ward. Testing of performance requirements can be
straightforward provided requirements are carefully
and realistically stated. Too often performance re-
quirements are stated in terms that are too general
or too subjective. The customer must be very care-
ful to isolate the key indicators of system perfor-
mance, and the developer must be equally careful
to make sure he understands the contract to which
he will be held. The surest way to accomplish the
objectives of both the customer and the developer
is to agree on the specific tests to be used to
demonstrate satisfaction of performance require-
ments. Both parties must also consider the technical
feasibility of the tests to be accomplished in relation
to schedule, personnel and facility requirements;
there may not be enough time or money to perform
them.

The treatment of some performance and de-
sign requirements can be bothersome. Design re-
quirements (or constraints) are sometimes more
properly stated as performance requirements; for
example, reserving system capacity by restricting
main memory utilization, and vice versa. For this
reason, design and performance requirements
should be very carefully validated, restated where
appropriate or identified as a guidance rather than

25




e X X X .m
R 2 X X X =
ey X X X m
1'eTy X X X &
Iy X X X .Mm
RE X X X CLISNYY TEETE -
ey X X X o m
£et X X X &
TETH X X X m
LeTy X X X g
TTTY X X X
LTy X X X PLISNI¥Y 1'€ET¢
£Er X X
Ty X X X
L'ETy X X X SS9DDV IR 97 € TS
ey X X
CETH X X X )
LTy X X X wassI() ST ETE
£Cy X X
TETY X X X
I'eTy X X X WIBN 9|1y $'7¢7¢
£y X X
TETY X X X
LeTy X X X 19y eleq €TETE
ey X OX
. AN X X X
€T X X X A TTETS

(SIHAVIOVAEV
NOILVDSI¥IA
¥ NOILD3IS

\ NOILVDIHHI¥IA 40 >:Ogh<u\ NOILVDHIYIA 40 13IAN \ SAOHLIW NOILYDIHINIA “

HAVEOVEY 4
INIWININD AN
£ NOWDIS

(L JO G }33yS) Xapu] IDUIIIJIY-SS04D) UOHBIYLBA ‘L NqQIyx3

26
J—




formal requirements, leaving only truly essential
requirements for the developer to fulfill. Normally,
the developer should be allowed the widest possi-
ble design latitudes in fulfilling functional and per-
formance requirements. Once again, these determi-
nations are all too often made by default at system
acceptance time. One of the key indicators of an
effective technical manager is that he forces these
decisions back to the beginning of the developmen-
tal process.*

After Testability Analysis has been performed,
the quality assurance portion of the specification
(Section 4 or its equivalent) should be annotated to
indicate which statements of requirements do not
require test. Test execution and testability determi-
nations may have to be deferred, in which case it is
imperative that such decisions be documented and
communicated to all parties.

If accomplished as described above, Testabil-
ity Analysis would have provided its own return on
the basis of having purified or clarified the require-
ments specifications. However, there are still fur-
ther benefits to be obtained. For example, after the
requirements explosion described above has been
accomplished a unique number or identifier is as-
signed to each stand-alone requirement along with
an identification of level and method of test. This
establishes a basis for tracing cach unique require-
ment through the design baseline 'with each of its
associated design reviews) and into the product
baseline. Additionally, Testability Analysis provides
the basis for development of master and subordi-
nate test plans with additional insights into technical
approaches and constraints, the need for special
facilities and identification of critical tests. A cross-
referencing of testable requirements against the
design baseline provides the necessary assurance
that all requirements have been addressed or other-
wise accommodated and constitutes a formal point
of departure for each of the subsequent design
reviews to be accomplished during the detailed
design phase. Design reviews should reassess the
validity of the testability determinations made dur-
ing the earlier requirements review.

If the nature of the approved design precludes
test of a specific requirement with the component

*Exhibit 2 (appearing at the end of this article) is an excerpt from
the initial product of a testability analysis effort. The exhibit
includes explanations of the keys used in the analysis and
representative pages produced in the analysis of a software
requirements specification.

Vol I, No. 6

of the system in which it exists, the test require-
ments must then migrate elsewhere in the test
scheme and the cross-reference must be updated
accordingly.

fach design review must also address and
approve the test plan associated with that portion of
the design baseline. At this level, test plans should
include the criteria for accomplishing a successtul
test and the technical procedures for its execution
to include statements of expected results. Develop-
ment of test data and final detailed procedures are
accomplished at a later time but should be subject
to prior approval.

As previously discussed, Testability Analysis
should have identified the level at which each
requirement is to be tested. If the cross-reference of
requirements to design baseline and then to test
plans is maintained throughcut the developmental
process and the mapping of requirements into the
design baseline is proper, then it should be possible
to test (demonstrate, etc.) requirements at the earli-
est appropriate time. Only those requirements for
test at the subsystem and system levels, that cannot
be accommodated elsewhere, should be deferred.
This concept meshes neatly with the recently
emerged top-down development concept which,
among other things, provides for early incremental
demonstration of requirements. This avoids a typi-
cal situation in which every requirement must be
tested at the system level. Accountability for testa-
ble requirements can be accomplished on a contin-
uing basis as earlier, lower level tests are executed
and testable requirements are satisfied.

An important aspect of a properly developed
and maintained traceability scheme established by
Testability Analysis is the facilitation of regression
testing analysis. Where a requirement has been
modified, the determination of which tests must be
repeated, as well as the nature and extent of those
tests, can be more quickly and accurately estab-
lished. This approach is a more accepr. e alterna-
tive to brute force repetitions of systen - vel tosts.

Up to this point, the discussion has addressed
the treatment of a customer’s explicit requirements.
However, a project may require the development
of support software (file maintenance, data
managemerit, system recovery, developmental
tools, etc.), which is not specified in the customer’s
requirements. It is essential to recognize that testa-
bility and traceability of such software should be
established irrespective of its specified or implied

¢ 27




origin, if the software is a part of or affects the
deliverable system.

The techniques and products described in this
paper can be applied across a broad spectrum of
software development activity. It is important to
note that they complement and reinforce new soft-
ware development methods and procedures. Fi-
nally, the discussion has emphasized the impor-
tance of front loading the project with these kinds of
configuration management and quality assurance
efforts. The manager must be prepared to initiate an
education program to insure the understanding and
support of key project personnel.

In conclusion, one major caution is necessary
in applying these techniques. Project schedules and
available manpower and skill levels must be care-
fully weighed in conjunction with the technical
characteristics of the system being developed to
arrive at a cost effective level of testability and
traceability implementation. It is also possible that
testability analysis should proceed only as far as the
requirements review if system scope and complex-
ity so warrant. On the other hand, if accountability
for requireme s must be established as a prerequi-
site to system acceptance, the project manager is
strongly urged to apply these concepts with clear
assignments of responsibility and periodic review to
insure quantifiable and objective results.

EXHIBIT 2

The Verification Requirement Tables (VRT’s) contain an expanded version of original system specifica-
tions. For each individual requirement on the left side of the sheet, data is provided in four columns on the
right side of the sheet. Explanations follow.

a. Expanded Specification. Section 3, Requirements, Mil Std 490, of the original specifications has
been expanded to isolate individual requirements. Each paragraph of the expanded specification contains a
single requirement statement and is identified by a unique paragraph number which can be used to assist in
locating the requirement in the original specification. The paragraph numbers used in the expanded
specification are the original specification paragraph numbers, further indexed as required, to arrive at a
unique reference number for each requirement.

b. Responsibility (RESP). The purpose of this column is to identify oranizational responsibility for
verification of requirements.

CODE DESCRIPTION

H This requirement is strictly hardware and does not require any system operational software
for verification purposes. The requirement should be verified by the hardware developer.

S Requires operational system software (programs, data base, etc.) for verification purposes.
The requirement is a candidate for verification by the software developer. The primary
purpose of the verification is to demonstrate software and/or hardware/software integra-
tion. The inherent hardware dependencies have been separately specified elsewhere as
hardware (H) requirements and will be verified by the hardware developer.

S/H Requires operational system software for verification purposes. The requirement is a
candidate for verification by the software developer. The primary purpose of the verification
is to demonstrate software and/or hardware/software integration. The inherent hardware
dependency must be established. The system integrator must verify that the hardware
dependencies have been separately specified as a hardware (H) requirement to assure
verification by the hardware developer.

Defense Systems Management Review




S/O Requirement specifies manuals, documentation, or training for which software developer is
responsible.

N/A Verification responsibility has not been assigned in the Verification Cross Reference Index
(VCRI) by the system integrator.

Denotes title or introductory clause paragraph.

* Allocation of verification responsibility in the VCRI by the system integrator conilicts with
the software developer’s position. (System integrator’s position is given within the brackets
on the left side of the Responsibility Column.)

.

c. Verification (VERIF). The purpose of this column is to identify requirements that will be formally
verified by the software developer. Table entries used in the VERIF column are defined below. Requirements
designated “Y"" also have entries in the LEVEL and METHOD columns. The remaining requirements do not
have additional entries in the VRT.

CODE DESCRIPTION

Y The software developer will verify this requirement directly, or by developing (and verifying)
references to specific supporting requirements.

NI Requirement is a reference to documentation other than system specifications (field
manuals, regulations, etc.). Specific requirements, as applicable to the system, must be
identified and incorporated into the system specifications.

N2 Too ““general” for verification by the software developer.
N3 Specifies capabilities that have been omitted from the system.
N4 Operational/procedural oriented requirement that does not have impact on the system’s

software. Will not be verified by the software developer.

N5 Definition (of terms, test criteria, etc.) that does not have direct impact on the system’s
‘software. Test criteria, applicable definitions, etc., will be incorporated as test criteria in test
plans/procedures.

N6 Specifies manuals, training, SOP’s, etc., to be developed/performed by other than the

hardware or software developers.

d. LEVEL. Identifies requirements that will be verified during Preliminary Qualification Tests (PQT's),
and/or Formal Qualification Tests (FQT’s). Multiple entries are used, as appropriate, in this column.
P=PQTF =FQT

e. METHOD. The general method used to verify the requirement. Table entries are defined below.

CODE DESCRIPTION

E Examination. A non-functional verification such as visual inspection of documentation
physical characteristics of the system, and/or of the documentation associated with the

1 system.

t f Vol I, No. 6 29
|
3




J
A Analysis. A non-functional verification such as reduction or translation of data, analysis of
test data, review of analytical data or analysis or performance of a detailed analysis.

T/D Test Demonstration. The requirement will be verified via a functional verification such as
actual operation wherein the element of verification is instrumented, measured or displayed
directly (test) or where the element of verification is logically obvious as being a necessary
constraint to some other result, but not itself displayed (demonstration).

RESP VERIF LEVEL METHOD

*3.2.2.2.4.2 Data Retrieval shall return the following to FRENSIT:* :
*3.2.2.2.4.2.a The number of records, S Y p T/D
*3.2.2.2.4.2b The content of all records found in the file S ¥ P T/D
that satisfy the retrieval criteria, or
*3.2.2.2.4.2.c A flag indicating that the number of records S Y P JAR,
retrieved exceeded the limit.
*3.2.2.2.4.2.1 This data shall be passed to FRENSIT via main S Y P T/D
memory. or RAM.**
*3.2.2.2.5 SRI*** Processing. =z
*3.2.2.2.5.1 FRENSIT shall call upon SRI Processing to: =
*3.2.2.2.5.1.a Make additions to the SRI tables, S Y P T/D
*3.2.2.2.5.1.b Make changes to the SRI tables, S Y P T/D
*3.2.2.2.5.1.c Make deletions to the SRI tables. S Y P T/D
*3.2.2.2.5.2 SRI Processing shall return to FRENSIT, flags =
indicating that:
*3.2.2.2.5.2.a The requested action was successfully completed, S \ P T/D
*3.2.2.2.5.2.b An SRI to be added was already in the tables, S ) P T/D
*3.2.2.2.5.2.c An SRI to be changed could not be found, S ¥ P T/D
*3.2.2.2.5.2.d An SRI to be deleted could not be found. S Y P T/D
*3.2.2.2.5.2.e The originator of the change or delete message S Y P T/D
was not the same as the originator of the referenced SRI.
*Friendly Situation
**Random Access Memory

‘ ***Standing Request for Information

H 30 Defense Systems Management Review

|

!

!

!




;hH'J o

*3.2.2.2.5.2.1 These flags are passed to FRENSIT via main S Y P T/D
memory.
*3.2.2.3 Processing. There shall be one control program to S Y P E

govern the processing of FRENSIT queries and SRls.

*3.2.2.3.1 FRENSIT3.

*3.2.2.3.1.a The purpose of FRENSIT3 shall be to govern S Y P E
the processing required for all FRENSIT queries and SRlIs.

*3.2.2.3.1.b Approach.

*3.2.2.3.1.b.1 The sequence of events is depicted in Figure 4. S N2
*3.2.2.3.1.1 FRENSIT3 shall call Edit and Validation.
.

*3.2.2.3.1.2 FRENSIT3 shall provide edit and validation with S Y P T/D

the input message.

*3.2.2.3.1.3 Edit and validation shall be responsible for S Y P T/D

validating the input message.

*3.2.2.3.1.3.1 Upon completion of this function:

*3.2.2.3.1.3.1.a Control shall be returned. S T P T
*3.2.2.3.1.3.1.b All error flags, if any, passed to FRENSIT3. S Y P T/D
*3.2.2.3.1.3.2 If any error flags are returned to FRENSIT3, S Y P 1D
then the Error Process shall be called to generate an error message

to the originator.

*3.2.2.3.1.3.3 If there were no errors, FRENSIT3 shall determine S Y P E

if the input message is a query or an SRI.

S ¥ P T/D

Mr. Harvey Tzudiker is
Chief, Test and Configura-
tion Management Division,
Technical Evaluation and
Support  Directorate, US
Army Computer Systems
Command, Fort Belvoir, VA.
The Command'’s Quality As-
surance Program is one of
the major responsibilities of the Directorate. The Test and

Vol I, No. 6

configuration management function have been per-
formed largely within the quality assurance context for
tactical and business systems developed and maintained
both in-house and under contract.

Mr. Tzudiker joined the US Army Computer Sys-
tems Command in 1969. During his tenure, he was
responsible for the publication of a military specification
for software quality assurance program requirements,
(MIL-S-52779 AD). The majority of his experience in
private industry was in the application of computers for
military use within the tactical environment, and the
automation of engineering and production support func-
tions. Mr. Tzudiker received his BS and BA from Boston
University (1950).

31

R P — v

G A




—-

SOFTWARE ACQUISITION WITHIN
AiIR FORCE SYSTEMS COMMAND —
A Management Approach

by
Lt Col John J. Marciniak, USAF

For reader convenience selected definitions extracted from Department of Defense
Directive (DOD) 5000.29 entitled, “Management of Computer Resources in Major De-
fense Systems,” dated April 26, 1976, are reprinted.*

Computer Resources. The totality of computer equipment, computer program,
computer data, associated documentation, personnel, and supplies.

Computer Software. A combination of associated computer programs and com-
puter data required to enable the computer equipment to perform computational or
control functions.

Software Engineering. Science of design, development, implementation, test, evalu-

ation, and maintenance of computer software over its life cycle.

Software development is a recognized prob-
lem area in the acquisition of Department of De-
fense (DOD) weapon systems. The Air Force Sys-
tems Command (the responsible agent in the Air
Force for the development and acquisition of weap-
ons systems) has focused attention on bringing this
problem under control. A management program
has been developed and currently is being imple-
mented. The program is intended to surmount and
blend the software development activities into the
systems engineering process within the next 5
years.

The purpose of this article is to present the
management program that Air Force Systems Com-
mand has developed and is in the process of
implementing.

The Problem

Although the use of software, or computer
programs, has been employed in Air Force systems
since 1960, recent advances in computer technol-
ogy have extended its use through every aspect of

32

the Air Force. Software applications in the Air Force

vary from word processing for administrative func-
tions to management information systems; and
from command, control, communications (C’) to
spaceborne vehicles. Within these expanding appli-
cations, software often is the key element in devel-
opment schedules. It was only natural that as major
problems in development occurred, the Depart-
ment of Defense and the Air Force would expend
great resources and devote special management
attention to gaining control over this area. This is
better stated as the ability to manage the develop-
ment and acquisition of software by the responsible
system Program Manager and his organization.

The Studies

To the managers of the Command, at both the
corporate and program level, the software problem
is seen as excessive costs, schedule slippages, and

*Other definitions used in this article also appear in DOD
Directive, No. 5000.29

Defense Systems Management Review

N




g

reduced performance compared to initial require-
ments. These are the symptoms. The actual causes
have been the subject of numerous studies. While
too numerous to list, from an Air Force Systems
Command standpoint the key studies affecting our
management program are the Computer Resources
Management Study' and the DOD Weapon Sys-
tems Software Acquisition and Management Stud-
ies..» These studies formed the basis for the Air Force
Systems Command program targeted against soft-
ware acquisition management problems.

The first step in the formulation of the Air
Force Systems Command program was a relative
assessment of the critical problems discussed in the
studies mentioned. The task was to formulate a
strategy to implement specific recommendations
within available resources to assure the earliest
possible payoff. To accomplish this, each study
recommendation was assessed as to where the
potential payoff would be in the acquisition cycle
with respect to three different management levels
(Figure 1). The first level, Management, represents
corporate Air Force management extending to the
Program Manager. The second levei, Engineering
Management, is the program management orga-
nization which is responsible for managing the
contractual effort, support engineering resources,
and to an extent, program management in the
developing organization (that is, the contractor).
The third level, Engineering, represents those activi-
ties contributing directly to computer software
development. Each X in Figure 1 represents a spe-
cific study recommendation, and takes into account
that a recommendation may be applicable to differ-
ent levels of management and life cycie phases.

ACQUISITION LIFE CYCLE PHASES

CONCEPTUAL /VALIDATION %lllvmm;: PRODUCTION/ DEPLOYMENT
e ——— e
MANAGEMENT VOOOOREX — :
X000
ENGINEERING OO0 XRIOUO0RK oo
MANAGEMENT OO0 OO0
oo
XXX
ENGINEERING o SRS

FIGURE 1. APPLICABILITY OF STUDY RECOMMENDATIONS

As indicated by the relative number of X's,
corrective actions should be concentrated at the

Vol I, No. 6

Management and Engineering Management levels
in the Conceptual and Validation Phases, and at the
Engineering Management level in the Full Scale
Development Phase. This is consistent with the
premise that the greatest leverage for successful
software development is in the planning accom-
plished at the front end of the system.

Another key consideration in the formulation
of the Air Force Systems Command program came
directly from a Rand Study that concluded, “the
difficulty experienced by the Air Force in managing
computer resources stems principally from the fail-
ure to follow an adequately structured and properly
managed development process.””" While this con-
clusion is seemingly an encompassing generaliza-
tion, it has been recognized by several Air Force
Systems Command program offices as failure to
adhere to a disciplined development process.

THE AFSC APPROACH

The Air Force Systems Command approach to
solution of the software problem is a logical exten-
sion of the referenced conclusions. Five steps are
outlined:

e first, the definition and description of a
software acquisition management
discipline;

e second, the employment of an organiza-
tional mechanism to implement the
discipline;

e third, the use of education and training to
communicate the discipline to personnel
who manage computer resources;

o fourth, the development of procedures,
tools and techniques necessary to support
the discipline;

e and finally, the monitoring of organiza-
tional and discipline implementation to
measure effectiveness.

The Discipline

An espoused premise is that success would be
greater if software were treated like hardware—that
is if the same rigor were applied to the software
development process as is applied to hardware

33




development. This premise has been extended re-
cently in recognition of the fact that software is a
unique entity. Nevertheless, software is an integral
part of the system. The rigorous discipline that must
be applied in its development is from the viewpoint
of total systems engineering. In order to create a
discipline, the tools, techniques, and procedures
need to be described in a systems context, and
promulgated as a baseline. To have a discipline, one
must be able to communicate it; this connotes a
written description. The discipline itself, unfor-
tunately, is not adequately described. Software of-
ten has been regarded as more art than science, the
inference being that it is not susceptible to discipline
or uniformity of approach. Although general ap-
proaches are described and followed, the great
artists each had an individual “technique.” In the
software world the “art” of the programmer may
be in this person’s choice of individual logic. How-
ever, the techniques of analysis, design, and struc-
ture do lend to uniformity and discipline. Tech-
niques such as structured programming are now
being defined and put to use.

The structure for the definition of the software
acquisition management discipline, in the Air Force,
is shown in Figure 2 as a hierarchy of Regulations,
Standards, and Guidelines. Department of Defense
Directive (DODD) 5000.1, ““Acquisition of Major
Defense Systems,”” sets overall policy within the
DOD for the management of major defense sys-
tems. Within the Air Force it is promulgated by Air
Force Regulation (AFR) 800-2, ““Program Manage-
ment.” Department of Defense Directive 5000.29,
“Management of Computer Resources in Major
Defense Systems,”” along with the companion in-
struction DODI 5000.31, defines Department of
Defense management policy for computer resource
management in systems. Air Force Regulation
800-14, “Management of Computer Resources in
Systems,”” is the promulgation of DODD 5000.29.
The regulation describes life cycle management
policies for the acquisition and support of embed-
ded computer resources in systems. The key con-
cepts of this regulation are the Computer Resource
Integrated  Support Plan (CRISP) and the
Operational/Support Configuration Management
Plan (O/S CMP). The Computer Resource Inte-
grated Support Plan describes the support concept
and delineates required life cycle support re-
sources. The Operational/Support Configuration
Management Plan details procedures to be fol-
lowed for the control of the computer resources
configuration during the deployment phase. Air
Force Systems Command Pamphlet 800-3, “A
Guide for Program Management,” describes the

34

general considerations in managing the acquisition
of a system and the principal functional processes
used. The pamphlet is the guide for Air Force
Svstems Command Program Managers and is a
“bible” of acquisition management.

000D 5000.1 - ACQUISITION OF MAJOR DEFENSE SYSTEMS
AFR 800-2 - PROGRAM MANAGEMENT

DOOD 5000 29  MANAGEMENT OF COMPUTER RESOURCES IN MAJOR DEFENSF SYSTEMS
0001 5000 31 - INTERIM LIST CF DOD APPROVED HIGH ORDER PROGRAMMING LANGUAGES (HOL)

AFR 800-14 - MANAGEMENT OF COMPUTER RESOURCES IN SYSTEMS
AFSC SUPPLEMENT |

AFR 300-10  COMPUTER LANGUAGES

AFSC PAMPHLET 800-3 A GUIDE FOR PROGRAM MANAGEMENT

DEMONSIRATION FULL SCALE <
Pt PRODUCTION DEPLOYMENT
CONCEPTUAL “ "V ALIDATION ENGINEERING DEV i

AFR 65-3 ML ST0-483
CONFIGURATION MANAGEMENT
MILSTO 490 MILS-83490
SOFTWARE SPECIFICATION PRACTICES
ACQUISITION MILSTD 881A AR 8006
MANAGEMENT WORK BREAKDOWN S TRUCTURE
GUIDEBOOKS AFR 80-14 =
TEST AND FVALUATION
MILSTD-1521
€ REVIEWS AND AUDTTS

FIGURE 2. SOFTWARE ACQUISITION MANAGEMENT DISCIPLINE

The functional disciplines are described in
various military standards and regulations, for ex-
ample MIL-STD-483, ““Configuration Management
Practices and Procedures.”” Each of the documents
shown below the Acquisition Phases in Figure 2,
describes a specific functional discipline. However,
in these documents the treatment of computer
resources is weak. Often only a few paragraphs are
dedicated to this area. The description of the regu-
latory structure shown was derived from the top of
the hierarchy—genealogically with respect to com-
puter resources has been from the bottom up. The
functional disciplines came first, followed by AFR
800-14 in 1974 and by DODD 5000.29 in 1976.
Thus the discipline to date has been derived on a
vertically structured functional basis. The addition
of software engineering procedures appears as an
afterthought.

In the past few years the discipline of software
engineering has emerged, taking form and sub-
stance as an entity and formal discipline. Barry
Boehm’s article entitled, “‘Software Engineering,”” is
an excellent treatise of this subject.« In the Air Force
by filling the voids of the regulatory structure shown
in Figure 2, integration of software engineering with
management has begun. The key effort is the Soft-
ware Acquisition Management Guidebooks. Each

Defi Syst M Review




guidebook takes a specific functional topic, for
example, Configuration Management, Contracting
for Software Acquisition, etc. Practices and proce-
dures are described from a computer resource
viewpoint. This effort started at the Electronic Sys-
tems Division of Air Force Systems Command.
Initial guidebooks were developed by the Mitre
Corporation; then in 1975 the program received
new emphasis and was accelerated. Currently three
sets of guidebooks are underway; C, Airborne
(Avionics/Space and Missile) and Ground Based
(Crew Trainer/Simulator, and Automatic Test
Equipment). Three sets were required to insure
adequate coverage of different application perspec-
tives and to capture different viewpoints of prepara-
tion. Each set is being prepared by a different
contractor. After completion, the guidebooks will
be analyzed to see if these texts can and should be
published as one integrated series. A list of guide-
book topics with completion dates and Defense
Documentation Center (DDC) numbers is given in
Table I.

A separate chapter for Air Force Systems
Command Pamphlet 800-3 is being prepared. The

objective is to provide guidance on computer re-
sources, in particular organizational options for Pro-
gram Managers. The purpose of this chapter is to
emphasize the need for software engineering ex-
pertise in the embryonic systems engineering team
when the system Project Office is formed. The team
then can provide proper computer resources plan-
ning on the front end of the system acquisition
where it is critically important to the success of soft-
ware development.

Other regulatory measures have been taken,
or are underway. The Air Force Systems Command
has published a Command supplement to AFR
800-14. Command regulations to implement lan-
guage control are in the process of development in
response to DODI 5000.31 and AFR 300-10, both
entitled ““Computer Programming Languages.”’

Language control is a subject of particular
importance. Standardization on a single language,
or a set of languages, connotes cost savings. By
making Air Force intent clear to industry, invest-
ment decisions on compiler implementation are

TABLE 1. SOFTWARE GUIDEBOOKS

FUNCTIONAL AREAS
c? AIRBORNE /SPACE GROUND SUPPORT
TOPICS (COMPLETION DATES OR DDC ACCESSION NO)
MONITORING STATUS AD-A016488 NOV 78
REGS- SPECS: & STNDS: AD-A016401 MAR 78
CONTRACTING AD-A020444 SEP 78
DOCUMENTATION AD-A027051 SEP 78 APR 78
SOW/RFP PREPARATION AD-A035924 MAY 78
LIFE CYCLE EVENTS AD-A037115
FACILITIES AD-A038234
CONFIGURATION MANAGEMENT DEC 77 NOV 78
QUALITY ASSURANCE DEC 77 MAR 78 SEP 78
MAINTENANCE JAN 77
VERIFICATION FEB 77 SEP 78
VALIDATION & CERTIFICATION FEB 77 SEP 78
REVIEWS & AUDITS FEB 77 MAR 78
REQUIREMENTS SPECIFICATION APR 77 MAY 78 APR 78
COST ESTIMATION MAY 77 JUN 78
OVERVIEW TO GUIDEBOOKS JUN 77

AS OF: 31 DEC 77

Vol I, No. 6

35




simplified. Within the Program Manager’s environ-
ment, language control simplifies the language se-
lection process by providing (via a language control
facility) expertise for compiler development, plus a
host of tools for testing standard compilers and the
code generated from them—in short, discipline. In
the JOVIAL family of languages the Air Force has
standardized on |3 and |73, specified by MIL-STD-
1588 (USAF) and MIL-STD-1589 (USAF), respec-
tively. In the near term |3 will be phased out in favor
of J73 until a common higher order Department of
Defense language is fully developed for operational
implementation in the period from 1980 to 1990.

The remaining task is to provide an overall
perspective or architecture to the software acquisi-
tion management discipline in the Air Force Sys-
tems Command. Recognizing that the discipline has
been structured from a bottom up and vertical
orientation, the Command initiated the evaluation
process described. A team of experts was assem-
bled and has evaluated the many different ways
software is developed in the Air Force. The func-
tional discipline as set forth in MIL-STD-463, MIL-
STD-1521, and others, will be studied to assess
adequateness, consistency, and accuracy. This ef-
fort should produce the shape of the future disci-
pline. Problems contained in the current structure
will be eliminated and eventually an adequate base-
line description of the computer software develop-
ment process will be provided.

The Organizational Mechanism

As a result of one recommendation made by
authors of the Rand Study to “Establish centers of
expertise in computer technology within selected
organizations in the Air Force,”” the Command
conducted its own study. The result was an expan-
sion of the Office of Assistant for Processor and
Software Planning to a full Directorate of Computer
Resource Development Policy and Planning.: This
office is the computer resource focal point for Air
Force Systems Command policy, technology, and
management actions. Further, this office has the
responsibility for the Command thrust of solving
software acquisition management problems. Spe-
cific functions are shown in Table 2. An important
part of this organizational change was the institution
of field focal points at each product division and at
key laboratories (See Figure 3). This computer re-
source infrastructure throughout the Command is
an effective mechanism to:

e coordinate management and technology
«programs/actions,

36

e monitor policy implementation

e work critical problems such as higher or
der language standardization, and

e gain visibility into problem areas within
the programs.

Essentially, the infrastructure provides implementa
tion, across the Command, of the software acquisi-
tion management discipline.

TABLE 2.
DIRECTORATE OF COMPUTER RESOURCE DEVELOPMENT POLICY AND PLANNING

©® COMPUTER RESOURCES REQUIREMENTS REVIEW (CHAIRS THE COMMAND COMPUTER
RESOURCE COMMITTEE)

® COMPUTER RESOURCE LONG RANGE DEVELOPMENT PLANNING
® COMPUTER RESOURCE PD!ICY
AFR 300-SERIES (GENERAL PURPOSE AUTOMATIC DATA PROCESSING EQUIPMENT
AFR 800-14 (EMBEDDED COMPUTERS)
© PLANNING APPLICATIONS OF COMPUTER RESOURCE TECHNOLOGY
©® ADVOCATE PROCEDURES/STANDARDS 'DATA REQUIREMENTS
© PERSONNEL REQUIREMENTS IDENTIFICATION
SPECIAL SKILLS
EDUCATION AND TRAINING

® COMPUTER RESOURCE FOCAL POINT

DEPUTY CHIEF OF STAFF/DEVELOPMENT PLANS

|

AFSC/XRF

OIRECTORATE OF COMPUTER RESOURCE
DEVELOPMENT POLICY AND PLANNING

DIRECTORATE OF DEPUTY FOR DIRECTORATE OF DIRECTORATE OF
COMPUTER SYSTEMS ENGINEERING COMPUTER SCIENCE  ACQUISITION SUPPORT

ENGINEERING
RADC/1S AFAL/AA
INFORMATION SCIENCES SYSTEM AVIONICS DIVISION DIRECTORATE OF ENGINEERING
DIVISION

FIEURE 3. AFSC COMPUTER RESOURCE FOCAL POINT ORGANIZATION

Defense Systems Management Review




v

R T ey

Education, Training, and
Personnel Initiatives

Communication of software engineering disci-
pline is more than an Air Force Systems Command
role and the Air Force is playing its part. The Air
Force Institute of Technology has instituted a gradu-
ate software engineering curriculum, and work con-
tinues toward developing a series of short courses.
The Command is attempting to initiate short
courses for procurement personnel, and the Educa-
tion with Industry (EWI) program is being expanded
from two to ten spaces per vear. In this latter
program, Air Force officers spend 10 months work-
ing in industry learning software engineering from
the inside out. After the Education with Industry
tour, the students will go to key Air Force
assignments.

With the help of the Military Personnel Cen-
ter, the records of computer resource personnel
now incorporate Special Experience Identifiers.
This is in recognition that there are differences, as in
the hardware world, in personnel specialities in
computer resources. Example: a radar engineer as
opposed to a communications specialist. The idea is
not to stratify Air Force personnel, but to capture
peculiar expertise for future application. For exam-
ple, computer resource expertise in real-time sys-
tems, that may have been attained in a ground-
control environment for a space vehicle, can be
applied to a real-time avionics system.

Finally, a Computer Resource Newsletter has
been initiated to bring critical information to all
computer resources personnel in the Command.
Three issues have been published and have con-
tained articles about the software acquisition
management guidebooks, microprocessors, data
rights for computer programs, new policy on lan-
guage control, and many other subjects. So far the
newsletter has filled a void in communications with
success. Current distribution of this publication is
approximately 800. Requests for additional distri-
bution continue to be received from organizations
throughout the Department of Defense.

The Technology Program

A software acquisition management discipline
cannot be implemented without supporting tools
and techniques. In the past 4 years the computer
resource technology program within the Air Force
has been transformed from a focus on computer
hardware efforts to the support of management

Vol 1, No. 6

needs in software acquisition. The Office of the
Under Secretary of Defense Research and Engi-
neering has taken a leadership role here and is
developing a 5-vear technclogy plan that integrates
the efforts of all Services in a coordinated and
concerted effort. The plan is under the cognizance
of the Management Steering Committee for Embed
ded Computer Resources, chartered bv DODD
5000.29. The plan provides an overview of activity,
insures that duplication of effort is avoided, and
makes certain that the program is balanced and
given priority across described management areas.
By coordinating the technology efforts of the Serv-
ices, the minimum resources available for these
efforts can be consolidated and greater leverage
can be achieved.

While only a small amount of morey is spent
in this technology area by each Service
approximately $3 to 5 million per yvear in the Air
Force—the payoff is big. Compared to the approxi-
mately $1 billion per vear that is spent on software
in the Air Force, the leverage attained is about 200
to 1. The real plus is the critical role that the
technology program plays in support of the
management discipline

The Software Acquisition Management
Guidebooks are a prime example of a product of
this program. Another key effort is development of
the Computer Aided Design and System Analysis
Tool (CADSAT) (formerly the Computer Aided Re-
quirements Analysis (CARA)). The objective of
CADSAT is to provide a tool for computer analysis
of system requirements. This area has been deter-
mined to be a key problem in software develop-
ment and is listed as one of the primary causes for
software development failures.

A major effort in Air Force Systems Command
is the institution of language control. The Air Force
has had a JOVIAL standard for years (Air Force
Manual (AFM) 100-24, now MIL-STD-1588). Ad-
herence to the standard has been ineffective owing
to lack of control. The formation of a Language
Control Facility will require support from the tech-
nology program to attain operating capability. The
Facility will be established at the Rome Air Devel-
opment Center and then, when operational, will be
transitioned to a permanent location and organi-
zation. A JOVIAL Compiler Implementation Tool
(JOCIT) for J73 is currently under development by
Rome Air Development Center. When complete,
this tool will provide a uniform basis for developing
future compilers. Attendant support tools such as
the JOVIAL Compiler Validation System (JCVS) and

37




a JOVIAL Automated Verification System (JAVS)
also will be developed. These tools will provide, to
the System Project Office, the means to test |73
compilers developed under contract, and the ability
to test code generated by the compiler. This capa-
bility will enhance the support of future programs
that are developed by Air Force Systems Com-
mand. Other efforts in requirements analysis, cost
estimating, and testing of software are underway.

The Future

While advances have been made in the devel-
opment of software, many problems remain. Con-
certed effort will be required to eliminate these
problems so that computer software development
can become a normal part of the systems engineer-
ing process. The special emphasis it now receives
then will decline to a sustenance level necessary to
continue evolvement of the discipline. The planning
for this has already begun. Department of Defense
Directive 5000.29 will expire 6 years after issue
date.

An important part of any program is its mea-
sures of effectiveness, not only to judge success, but
also to assess program adequacy and to identify
deficiencies. It is extremely important, because of
the limited resources available, that efforts in the
software development discipline be dire _ted to the
critical payoff areas. In the Air Force Systems Com-
mand metrics based upon individual program track-
ing are being developed. The idea is to compare a
program with similar past program acquisitions. Key
factors will be tracked, such as divergence of pro-
posed software development cost and size vs the
actual cost and size, and the ratio of testing and
validation to analysis, design and coding. The first
two factors are obvious—the last stems from the
fact that the ratio of testing to the total software
development cost has traditionally been 40 per-
cent. By tracking the trend of this ratio, perhaps
development success may be assessed, and soft-
ware reliability predicted.

The time table for the program s 5 years. A
period of intensive study of the problem is com-
plete. Implementation of the program has begun
Indications of success are appearing although direct
results will not be apparent for about 2 years.

SUMMARY

The Air Force Systems Command program is a
logical approach that has been given priority to
solve the weapon systems software acquisition
problem and bring it under management control
The program has been developed in concert with
higher level policy direction and is based on many
study recommendations. The approach is:

~  Define and describe a software acquisi-
tion management discipline

~  Employ an organizational mechanism to
implement the discipline

-~ Use education and training to communi-
cate the discipline

—~  Develop supporting procedures, tools,
and techniques through use of the com-
puter resource technology program

—  Measure effectiveness

If the Air Force is to make progress in this
critical problem area, it will need the continued
support of top management to insure that resources
are available to carry forth a well-balanced pro-
gram. The program is started and benefits will
accrue. Real assessment will not be attainable for a
period of from 2 to 5 years. In that time the
continuing commitment of Air Force leadership to
the program must be maintained to maximize the
effect that the program will have. Hopefully, in 5
years this special attention area will become of a
second nature and normalized as an integral part of
the systems acquisition process.

CITED REFERENCES

1. Rand Corporation, “The Computer Resources Management Study,” R-1855/PR, Apr 76.

2. Mitre Corporation, “DOD Weapon Systems Software Acquisition and Management Study,” MTR-6908, Vol

1and Vol Il, Jun 75.

t Review

Def: Systems M

&




M

3. The Johns Hopkins University, Applied Physics Laboratory, “DOD Weapons Systems Software Management

Study,”” SR 75-3, Jun 75.

4. B.W.Boehm, “Software Engineering,”” IEEE Transactions on Computers, C-25 (12): 1226-41(1976).

Lieutenant Colonel
John J. Marciniak is the Di-
rector of Computer Re-
source Development Policy
and Planning, Deputy Chief
of Staff/Development Plans,
Air Force Systems
Command.

Lieutenant Colonel Marciniak’s previous assign-
ments include a tour with the Air Force Directorate of
Data Automation, Chief of Data Systems, Air Force Satel-
lite Control Facility, and as a Research and Development
staff officer at the Electronic Systems Division. His pri-
mary experience is in command, control and communi-
cations (C*) and space and missile systems. He partici-
pated in the Command Automation Master Plan, a pri-
mary automation study for the Military Airlift Command
(MAC), and was one of the original project officers for
Airborne Data Automation (a pilot project to automate
one of the Strategic Air Command Airborne Command
Post aircraft). As Chief of Data Systems for the Air Force
Satellite Control Facility, he was responsible for develop-
ment of the ground support hardware and software for
major defense satellite programs. He has had extensive
experience in the development of software for defense
systems.

Lieutenant Colonel Marciniak received his BEE de-
gree from the City University of New York (1957) and his
MEE from the University of Oklahoma (1969). He is a
graduate of the Air Command and Staff College, Maxwell
AFB, AL(1973).

Vol I, No. 6

T —

A4




COMPUTER SYSTEMS IN THE NAVY

by

Richard Edwin Fryer, Department of Navy

Traditional use of computers is viewed by many with growing distrust.””’ Software costs are being
measured and often found to be higher than even the brave dared predict. Quality metrics for
software are being developed* and much existing software has registered poorly against these goals.
Hundreds of articles, reports, and studies are pointing the way to improved methods for software
definition, management, testing and production.

In this article the author explores the purpose and nature of software currently in use in the Navy
and compares today’s systems with earlier tactical Naval systems. Examination is made of several
shifting technology areas that directly affect the way new Navy systems are being developed.
Examples of recent system developments at the Naval Weapons Center that incorporate these
directions or technology shifts are reviewed. Against this background, the impact of near term
technology advances are discussed.

SOFTWARE SIMPLIFIES HARDWARE

The Navy, for many years, has applied com- great logic and computational complexity for solu-
puters in traditional tactical (system control, tion. The first digital computers were complex de-
weapon delivery) and management (personnel, lo- vices. However, it is the capability of a general
gistics, supply) areas. Now with the advent of low purpose computer to be programmed and not the
cost computers and significant applications- hardware complexity that makes complex problem
oriented software packages the way that problems solution feasible. That is, the inherent complexity of
are viewed and the way solutions conceived has a problem is expressed in a sequence of instructions
altered. rather than in discrete circuitry. Programmable digi-

tal computers have resulted in reduced hardware
size when compared with analog systems. Elements
of the computer—busses, arithmetic and  logic
units, and storage—are reused many times during
the execution of the software instructions. Software
variability allows for the solution of a more complex
problem without significant increase in the com-
plexity of the hardware. Ordinarily, there are no
hardware imposed costs related to minor altera-
tions in the software or in the definition of the prob-
lem being solved.

Analog computers, electronic and mechani-
cal, have been used in Naval tactical, ground sup-
port, and system development applications. Analog
computers are based on straightforward physical
laws. The cost of an analog solution to a complex
problem is significantly greater than for a simple
problem. Analog computers fail to meet the re-
quirements of modern problems in at least two
major ways. The lack of accurate and inexpensive
storage elements for analog data prevents the time
sharing of computation modules; resulting in large

systems. A second problem is that an effective
analog has not been developed for manipulating SOFTWARE BENEFITS

symbolic information. ARE INCREASING

Digital computer systems, at first, were used For the last several years, articles assessing the
primarily in applications such as command and status of software in industry and articles on soft-
control. Problems in command and control require ware development and management have used a
40 Defense Systems Management Review
T—— -~ -




. 2P

graph similar to Figure 1 to emphasize the impor-
tance of software.” The real project funds used for
software also show an upward trend. The unfortu-
nate aspect of this figure is that it seems to carry a
negative connotation for software to the average
reader and, apparently often to the author using the
figure as well.> Not shown by this figure are several
other aspects of systems that are increasing: system
complexity, the number of software based systems
in use, and software value per unit cost. The impli-
cation of Figure 1 is cause for hope as much as it is a
case for alarm.

100
ol
< HARDWARE
©»
o
Q
S 60 —
o
~
~
o
~ 40—
3
g
&
20
[
1955 19720 1985
YEAR
Figure 1. Hardware/Software Cost Trends

THE PACKAGED PROGRAM

A ‘packaged program’ denotes a standard
application package.® Packaged programs have
been available since early in 1950. In recent years,
developments in this field have accelerated owing
both to the maturity of the market and the reduction
in hardware costs (expansion of customer base). At
this time the effect of software and hardware stan-
dards is a strongly positive force in the usability of
packaged software. At the Naval Weapons Center,
packaged software has played a significant role in
support of data base manipulations, graph genera-
tion, project management, report retrieval, mathe-
matical analysis, and computer aided drafting. A
human engineered data base system is an excellent
example of the maturity of this field and the benefits
that can accrue from the use of such systems.

The economic factor gives strong impetus for
the utilization of packaged software. When com-
puter operations are ruled by hardware costs, pro-
grammers are usually encouraged to get the last

Vol I, No. 6

drop of efficiency from each application. This re-
quires application programs customized to a degree
not required by the application itself, but rather,
demanded by the economic environment. As hard-
ware costs become less significant this barrier drops
and the actual economic value to the user of pack-
aged software can be exploited. As the extent of
customizing is reduced, the programming manager
can concentrate on acceptance testing instead of
program support and maintenance.

The major problem facing the potential cus-
tomer of a packaged software system is the deter-
mination of requirements. All too often, require-
ments are developed in retrospect after software
acquisition and/or implementation.’ The customer
must understand his requirements sufficiently well
to evaluate the utility of a packaged program for his
needs and further to select from competing ap-
proaches. The recommended solution to this prob-
lem is similar to that for the problem of producing
software or acquiring hardware: develop the re-
quirements analysis and consider design alterna-
tives first.

Packaged systems (sometimes called ‘turnkey’
systems) include both the packaged software and
the required hardware to operate the software. The
Versatile Training System (VTS) is of this type, and is
in operation and under further development at the
Naval Weapons Center.

Packaged software is available commercially
from computer vendors, software contract compa-
nies, educational and other special interest groups,
user libraries, trade associations, and US Govern-
ment agencies. A Navy network currently under
development also will support a software
repository.

THE EMBEDDED COMPUTER

A complete information processing system
will include both computing hardware and software
(perhaps packaged). Traditionally, embedded com-
puter systems have been parts of an overall weapon
system such as an aircraft or missile." The Memory
Loader/ Verifier, described in the examples, uses an
embedded computer system to significantly im-
prove on the utility, human factors, and self test
features of specific ground support equipment.

Embedded computer systems may be imple-
mented with’‘Read Only Memories.” In this form,
software is sometimes renamed ‘firmware’. The

41

T




absence of ‘software’ in small (usually microproces-
sor based) systems has been advertised by many as
a solution to the software problem. This is a false
path" to reducing software costs. The same devel-
opment procedure and software engineering talent
is required for the definition of the Read Only
Memory (ROM) contents. This approach has been
advocated as a means of managing the configura-
tion of software and appears to be based on the
assumption that if software may be altered only
with great difficulty, then project management can
regain control.

Reliability is demanded of embedded com-
puter systems as these systems normally are used
by a disinterested or an unsympathetic customer
and not a protective developer. The key to the
development of adequate reliability in embedded
computer systems appears to be proper manage-
ment of software development'’—essentially the
same recommendation that is made for acquisition
of packaged software.

PROGRAMMED LOGIC

At the other extreme from large central site
computers that have a major program package
working for the user is a class of systems that lack
altogether a general purpose programmable com-
puter. It is still possible, however, to replace dis-
crete or ‘random’ logic with software. The
approach™ allows for the use of top down design
and other engineering techniques to make efficient
use oi complex circuitry (Programmable logic ar-
rays, multiplexers, read only memories, and bit slice
processors). Since hardware costs do not dominate,
multiple machines may be used. The use of a
number of machines (also called ‘state machines’)
reduces the need for exceptional case handling (the
source of interrupts in computer architectures) and
further reduces the complexity of the state machine
software.

Hardware designs using these techniques can
exhibit improved reliability, modularity and flexibil-
ity, and are testable and maintainable. The designs
are easily documented to be traceable from re-
quirements to implementation, and for self-
descriptiveness. These aspects are indicators of
software quality.* The Software Validation and Con-
trol System (SOVAC) is a design example of these
techniques.

42

SYSTEM EXAMPLES

Configuration and Data
Management Support System

The Configuration and Data Management
Support System (CADMSS) is an automated engi-
neering support system for configuration and data
management. The system was developed at the
Pacific Missile Test Center and encompasses con-
tract monitoring, baseline accounting, and change
monitoring for Naval systems. At the Naval Weap-
ons Center, CADMSS is built on SYSTEM 2000, a
large packaged software data base system that is
executed on the Univac 1110 host computer. The
customers of the Configuration and Data Manage-
ment Support System are neither computer opera-
tors ncr programmers. For these reasons, terminal
interaction is designed to include many messages
and prompts. The system concept is one of integrat-
ing and providing access to several related data
bases—contract status, baseline accounting,
change accounting, configuration management,
and data management. A data base of 60,000
drawings and related documentation occupying
250 million bytes of storage is currently in opera-
tion. Access to this data base will be provided to
authorized users nationwide. The use of standard
ASCIl COBOL and SYSTEM 2000 languages pro-
vide a degree of host independence to reduce
future conversion costs as hardware is replaced.”
The Configuration and Data Management System
will provide a means for configuration management
of several production tactical systems.

Versatile Training System

The Versatile Training System (VTS) was first
deployed in 1972 with the A-7E Fleet Readiness
Squadron (VA 122) and two operational A-7E
squadrons. The system supported the training of
enlisted Naval aviation personnel for aircraft main-
tenance. Computer assisted training at the squad-
rons has reduced the loss of personnel assets accru-
ing from schedule peculiarities and other training
deficiencies that were created by the large number
of students processed through many varied training
programs (VA-122 schedules in excess of 1000
students each year). Computer assisted training also
has significantly reduced clerical and instructor
workload. The result is improved individual coun-
seling. The present scheduling of instructors, train-
ing media, classrooms, students and sirnulators has
greatly improved the effectiveness of the Fleet
Readiness  Aircraft Maintenance  Personnel

Defense Systems Management Review




“OPAL

e e o

(FRAMP) in VA-122. The data base access and text
processing aspects of the Versatile Training System
have incorporated form letters, reports, and many
other manual tasks.

The Versatile Training System has been dupli-
cated to support Naval Air Stations at Cecil Field
an.d Jacksonville, Florida; Oceana, Virginia; Whid-
bey Island, Washington; and, Miramar and North
Island, California. Marine Corps applications, Naval
Air Station, Naval Aviation Maintenance Training
Detachments, Operational Squadrons, the Chief of
Naval Reserves, and the TRIDENT training facility
all are users of the Versatile Training System. As
such this training system qualifies as a packaged
systen: with complete software and hardware
ready to perform upon installation. A site manager
maintains the capability to customize aspects of the
system that are site specific.

The Versatile Training System consists of a
generalized data base and associated packaged
software systems capable of operating student ter-
minals, report generation, resource configuration,
resource scheduling, optical mark grading, data
base development, data base inquiry, and simulator
operation. All software is written in BASIC (a com-
puter language) and runs under the Resource Shar-
ing Timesharing System (RSTS) on a Digital Equip-
ment Company PDP-11 family computer system.
The computer system, the peripheral equipment
required and the computer model depend on site
specific details. The combination of inexpensive
minicomputers used in Versatile Training System
management has been a critical factor in the wide
success enjoyed by the system." The Versatile
Training System is modifying many aspects of Navy
personnel training.

Memory Loader/Verifier

The Memory Loader/Verifier is an intelligent
computer loader/tester for tactical systems. This
item of ground support equipment is for operational
squadron routine use and for operational and inter-
mediate (O&I) level maintenance of avionics sys-
tems. Originally designed for the A-7E aircraft, the
system is finding application on many other Navy
aircraft including the A-6E, the A-4M, and the
EA6B. The basic functional requirement for the
loader/verifier is to save, reload, and check the
load in the memory of an avionics processor. A
thorough awareness of the various logistics, train-
ing, and maintenance problems faced by squadrons
led the developers to many enhancements in the

Vol I, No. 6

basic functional capabilities with the assistance of
an Embedded Computer System.

The Memory Loader/Verifier uses a micro-
computer (8080A) and a sealed cassette unit
adapted for military use as primary components. An
alphanumeric display has sufficient capability to
issue prompts to the operator, reducing the time
required for squadron personnel training in its use.
Supplemental instructions are included on a panel
in the cover of the unit. The basic operations (load,
store, and verify) are accessible through function
buttons on the unit. A numeric keyboard is also
included for annotation functions, for example,
selecting a specific program from the tape to be
loaded.

System operation begins with a power up
Read Only Memory bootstrap that loads the em-
bedded computer system volatile memory with
self-test software and initiates test execution. The
successful completion of this operation (including
checksum testing of the cassette tape transfer)
causes the embedded computer system to be re-
loaded with operational software. This action initi-
ates operator dialog. The operator is given the op-
portunity to test the interconnection cable by plug-
ging the cable into a compatible socket on the
Memory Loader/Verifier panel. As previous diag-
nostics have tested to the cable drivers, a failure at
this point gives the operator confidence that the
cable is defective. Diagnostics are in English and
use the alpha display. Maintainability of the Mem-
ory Loader/Verifier is improved and the incidence
of erroneous trouble reports are greatly reduced as
compared to maintainability problems and trouble
reports experienced when non-‘intelligent’ ground
support equipment is used. After connecting the
Memory Loader/Verifier to the avionics computer
connector, the operator may elect to store and save
the current version of the tactical program (or the
test program if it was installed) in the cassette. This
retains any information stored within the program
that was executing in the avionics computer. Para-
meters that are of interest are error counters, hard-
ware biases, aircraft system dependent constants
such as boresight values, platform constants, etc.
The operator then may elect to load and exercise
the avionics computer self-test. The operator may
examine error counters, reload the avionics com-
puter with a new master copy of the tactical pro-
gram (constants for that specific aircraft can be
automatically inserted by the Memory Loader/Ver-
ifier), or replace the previously saved program to
continue accumulation of failure data.

43




At each cassette transfer, a checksum is per-
formed by the microcomputer 8080. The embed-
ded computer system records failures on the tape.
When re-reads continue to fail the checksum, that
section of the tape is marked unreliable on a tape
log. Backup copies of critical tape files are used to
extend the lifetime of a cassette load. The embed-
ded computer system will report self-diagnosed
problems and error counters to a maintenance
person having a valid access key. The environmen-
tally sealed cassette unit is removable from the front
panel of the Memory Loader/Verifier for mainte-
nance or for secure stowage when required.

Many unexplored potential applications of a
basic Memory Loader/Verifier system exist. The
combination of removable mass storage, an em-
bedded computer system, and signal conditioning
electronics in a small enclosure opens avenues for
maintenance in many areas of Naval =ystems.
These factors have not gone unnoticed.

Software Validation and
Control System

The Software Validation and Control System
(SOVAC) is a device for enhancing the develop-
ment and validation of modifications to a tactical
software system. The system is a combination of
minicomputer, a microcontroller, and several state
machines. The combination balances capabilities
and system costs. The system design began with a
list of missing features or requirements not fully met
by previously developed computer monitor sys-
tems. The process led to a prototype users manual
that included technical tradeoff rationale, syntax
diagrams for complex operations, and sample prob-
lems. Careful consideration was given to the man-
machine aspects. Upon review and approval of the
draft manual, hardware and software requirements
were defined. Hardware design proceeded after
assignment of functions to the microcontroller and
to state machines. System design details were docu-
mented through use of an Applicon computer aided
drawing system (another packaged system).

The user interfaces with the system through a
high level symbolic computer language. The lan-
guage is similar to BASIC in style, but is oriented to
software test functions. Commands include TRACE,
TIME EVENTS, DISPLAY, and ON CONDITION
spec ACTION spec. The high level language is
interpreted through use of a small Digital Equipment
Company Computer, the PDP-11. The interpreter is

44

written in PASCAL. Hardware interface to the mi-
crocontroller is provided through an assembly lan-
guage interrupt and an input/output port capability
that can account for slight variations in Software
Validation and Control System hardware interfaces
with various avionics computers. A FORTRAN con-
nection to collected data gives the user access to a
graphics terminal for bar, statistical, and graphical
charts.

The Software Validation and Control System
concept and implementation, although developed
for the A-7E program, was carried out with consid-
eration given to various tactical systems. Implemen-
tation to support the A-6E, A-4M, and the F-18
aircraft are anticipated in FY-79 and FY-80."

TRENDS IN SOFTWARE
AND HARDWARE

The trend toward decreasing costs for hard-
ware will certainly continue in both military and
commercial systems. A significant improvement in
capability for low cost computing elements is be-
coming visible: the megabyte micro is available,
and 16 bit supermicros will soon compete with the
superminis of the 1970 decade." High level lan-
guages will be used routinely with this capable
hardware (COBOL, PASCAL, and FORTRAN lan-
guages are readily available now). Mass storage is
now inexpensive—a 300 Megabyte storage module
interfaced with a microcomputer costs approxi-
mately $25,000. An order of magnitude increase in
the capacity, for little change in cost, will occur in
the near term.

The hardware trends will have several effects
on systems similar to those in the examples above.
Embedded computer systems will find utility ‘in
virtually every piece of electronic equipment if only
to prompt the operator in proper usage and to
diagnose failures."” Operation of systems using both
computers (or equipment) and humans will be re-
considered for proper man-machine balance. Three
key aspects of such a revised system methodology
are:

e Give equal status to people and machines
when considering requirements;

e Design well structured interfaces to ease
the replacement of functions with tech-
nology improvements, and

Def Sy M Review

l




e Place highest regard for the integrity of the
system that multiptocesses people and
machines, especially in terms of means for
specifying and validating the system "

Packaged software may find wide success as
part of packaged systems. The added cost of a
complete hardware package to accommodate the
packaged software will often be less than the value
it adds for the customer. This factor will reduce the
major requirements for host machine indepen-
dence of the software and the market will be further
improved. (Customized hardware with packaged
software will be less expensive than use of software
that is host machine independent.) Packaged sys-
tems of great variety” are expected to become

available wherever a clerical or critical rote func-
tion is performed, and where large scale computa-
tions can lead to even minor improvements in
‘profit’. The development of software itself provides
an unusual opportunity™® for a packaged system.
Such packaged systems may be no more successful
at satisfying all of a customer’s specific require-
ments than current packaged systems. However the
continuing reduction in system costs will reduce the
desirability of customizing local systems. This ex-
pected effect is analagous to the present state of
scientific calculators: only in extreme cases will a
customized calculator be developed by an end
user.

Software custs in actual dollars will most likely
grow with the addition of many new systems in the
near future. The effectiveness of Navy systems will
surely enjoy more than comparable growth.

CITED REFERENCES

1. B.W.Boehm, “Software and its Impact: A Quantitative Approach,” Datamation, 19(5):48-59 (1973).

2. H.R.).Grosch, “The Challenge of Doing the Right Thing,” in Effective vs Efficient Computing, Prentice Hall,
Englewood Cliffs, NJ, 1973, pp 1-11.

3. B. C. DeRoze, “An Introspective Analysis of DOD Weapon System Software Management,” Defense
Management Journal, 11(4): 2-7 (1975).

4. ). A. McCall, et al., “Factors in Software Quality,” General Electric Company interim technical report, Oct
76.

5. A.). Driscoll, “Software Visibility and the Program Manager,” Defense Systems Management Review, |(2):
12-27 (1977).

6. R. McCarthy, “Applying the Technique of Copfiguration Management to Software,” Defense Management
Journal, 11(4): 23-28 (1975).

7. R. W. Wolverton, “The Cost of Developing Large Scale Software,” in Practical Strategies for Developing
Large Software Systems, Addison-Wesley, Reading, MA, 1975, pp 73-100.

8. R. V. Head, “The Packaged Program,” Effective Program Development: The Choices, Data Processing
Digest, Los Angeles, CA 1969, pp 11-25.

9. The John Hopkins University, “DOD Weapon System Software Management Study,” Silver Spring, MD May
75

10. ). H. Manley, “Embedded Computer System Software Reliability,” Defense Management Journal, 11(4):
13-18 (1975).

11. W.R. Archibald and E. S. Hinton, “Critical Needs in Avionic System Software,” Proceedings 1974 NAECON,
pp 475-481.

Vol I, No. 6 45

e e——— 4




21.

W. I. Fletcher, An Engineering Approach to Digital Design, Prentice Hall, Englewood Cliffs, NJ, 1977.
(DRAFT) ;

Dept of Navy, “CADMSS Automated Data System Plan,” Pacific Missile Test Center, Point Mugu, CA, Oct
75.

__, “The Versatile Training System Compendium Naval Weapons Center,” Memorandum Reg.
31408-119-77, May 77.

L. Lemon and R. Fryer, “Software Validation Using a Microcontroller/Microcomputer System,” paper,
Eastern Conference, IEEE, Washington, DC, Sep 76.

D. A. Hodges, “Microelectronic Memories,” Scientific American, 237(3): 130-145(1977).

Dept of Navy, Naval Air System Command, ““Avionics Systems and Technaology for the 1990 Time Period,”
AIR 533 study group report, Washington, DC, Mar 77.

H. D. Mills, “On the Development of Systems of People and Machines,” unpublished manuscript, Aug 75.

E. R. McLean, “Assessing Returns from the Data Processing Investment,” in Fffective vs Ffficient Comput-
ing, Prentice Hall, Englewood Cliffs, N}, 1973, pp 12-25.

P. Freeman, ‘‘Automating Software Design,”” Computer, 7(4): 33-38(1974).

H. Bratman and T. Court, “The Software Factory,” Computer, 8(5): 28-37(1975).

Mr. Richard E. Fryer, a
physicist, is Head, Com-
puter Engineering Branch,
Avionics  Division, Naval
Weapons Center, China
Lake, CA. The Computer En-
gineering Branch is engaged
primarily in the develop-
ment and operation of simu-
lation systems that are used for tactical avionics systems.
Mr. Fryer has developed computer monitoring tech-
niques for test and evaluation of software based tactical
machines.

In the area of man-machine problem solving Mr.
Fryer's interests are focused on aspects of computer
graphics and on embedded computer/controller sys-
tems. He has published several articles about computer
monitoring and graphics and was a member of the
Association for Computing Machinery Committee to plan
a graphics standard.

Mr. Fryer received his BS from Eastern Illlinois Uni-
versity in 1962 and his MS from Michigan State Univer-
sity in 1964.

46

Defense Systems Managegent Review

T — v - ——




NAVY AIRBORNE WEAPON SYSTEM
SOFTWARE ACQUISITION

Dennis W. Farrell, Department of the Navy

In the past 10 years, weapons systems acquired by the Department of Defense (DOD)
have become increasingly dependent upon digital computers and computer programs.
Unfortunately, experience has shown that the computer programs often were not
delivered on time. Software became the major contributor to system cost and failed to
reliably meet user requirements and expectations. This article provides an overview of
steps taken at three levels—DOD, the Naval Material Command and the Naval Air
Systems Command—to solve these problems. The requirements that have resulted
from these steps and application of the requirements to the F-18 program are

discussed.*

DOD INITIATIVES

As the dimensions of the so-called ““software
problem” became apparent, the Department of
Defense initiated several measures to define, exam-
ine and alleviate the problem. Notable was the
establishment, in 1974, of the DOD Management
Steering Committee for Embedded Computer Re-
sources with representatives from the Assistant Sec-
retary of Defense level.** The committee was
charged with identifying and carrying out a com-
prehensive solution to the problems of weapon
system computer and software acquisition,
management, and use. To assist in providing a firm
basis for software problem identification, the Ap-
plied Physics Laboratory (APL) of Johns Hopkins
University and the MITRE Corporation were asked
to conduct separate, but coordinated, studies. The
study efforts were directed to a review of the results

*See References 1 and 2 for additional information con-
cerning requirements and applications. Reference 1 is about
pertinent DOD and Air Force directives and the implementation
of same. Reference 2 addresses software acquisition activities
within the Naval Air Systems Command.

**The Management Steering Committee for Embedded
Computer Resources is now chaired by the Office of the Under
Secretary of Defense (Research and Engineering) and includes
representatives from the various Assistant Secretaries of De-
fense, as well as from the Military Departments and Defense
Agencies,

Vol I, No. 6

of previous studies, a review of software design and
management practices in selected weapon system
acquisitions, and to consultation with both service
and industry organizations. Figure 1*** shows
those problems most often identified in previous
studies. Problem relationships to one another and
to the principal phases of the system life-cycle are
illustrated.

Based on the results of the Applied Physics
Laboratory and MITRE studies and on other findings
(including those of the Joint Logistics Commanders),
Department of Defense Directive (DODD)
5000.29, ““Management of Computer Resources in
Major Defense Systems, was issued. The directive
established ““policy for the management and con-
trol of computer resources during the development,
acauisition, deployment and support of major De-
fense systems.’’ The directive addresses four major
areas in computer resources and software acquisi-
tion: management and planning, requirements anal-
ysis and validation, supportability, and language
standardization. Emphasis is placed on applying
lessons learned in hardware system acquisition to

***Taken from Reference 3.




INTERRELATIONSHIP OF SOFTWARE ACQUISITION PROBLEMS

F ¥ —

L =t —

FULLSCALE DEVELopub N
DATION 7 eaie
TN NN R O

Figure 1. Interrelationship of Software Acquisition Problems

the computer and software field. These lessons
emphasize:

e the importance of early planning for the
entire life-cycle,

e careful determination and documentation
of requirements and the design, and

e the necessity for configuration

management.

Based on software experience are requirements for
acquisition of support software such as compilers,
simulators, and test aids, and requirements for the
development and use of standard high order lan-
guages (CMS-2, JOVIAL, or a future Department of
Defense standard language).

In past acquisitions, computer software often
was treated as data, rather than as a critical subsys-
tem of the total weapon system. This approach did
not provide for visibility into the software develop-
ment process. Lack of in-process review and testing
delayed discovery of software deficiencies until
acceptance test, or in some cases until operational
use. By identifying computer software as a system

48

element of major importance throughout the sys-
tem life cycle, and by treating it as property rather
than data, DOD intends to insure that future soft-
ware acquisitions will provide capabilities and qual-
ity commensurate with cost. The intent is to attain a
product that will be supportable throughout the life
of the system. As a part of this insurance, DODD
5000.29 includes a specific requirement that the
requirements, management, initial development,

and life cycle planning for weapon system comput-
ers and software be treated at the Defense System
Acquisition Review Council (DSARC) Il review.

NAVAL MATERIAL COMMAND

The Department of the Navy developed a
management approach to software problems based
on careful documentation, configuration manage-
ment, and organized in-service support for both
ship and airborne weapon system software. The
types, contents, and formats of documentation are
established as Navy-wide requirements by Secre-
tary of the Navy Instruction (SECNAVINST) 3560.1,
“Tactical Digital Systems Documentation Require-
ments.”” This instruction defines the interrelation-
ships of the chain of user requirements, technical
requirements, design, description, and user docu-
ments that are required. Of significance is the fact

Defense Systems Management Review




that the instruction was issued by the highest levels
of the Navy organization, supporting the impor-
tance of adequate, timely computer software docu-
mentation. The Naval Material Command (NAV-
MAT) has further promulgated instructions specify-
ing policies and procedures in each of the men-
tioned areas. Further implementation was left to the
individual Systems Commands. The NAVMAT
directed« that configuration management policy
and procedures that previously applied only to
hardware be applied to software. This direction
specifically included establishment of software
change control boards at appropriate levels to in-
sure that all software interfaces are considered in
proposed change actions.

To provide for continuing support of software
after acceptance by the Navy, NAVMAT also
requireds that the activity to provide the support be
identitied at least 1 year before the planned support
date. This minimum time requirement is to allow
the support activity to build staff and facilities as
required, and provide technical assistance to the
development activity. Technical involvement of
this type allows for application of experience
gained from previous programs and helps to assure
that the final software product is supportable.

The Naval Material Command established the
Tactical Digital Systems Office (TADSO) that re-
ports directly to the Vice Chief of Naval Material.
This Systems Office is responsible for developing
computer and software policy and guidance within
the Naval Material Command and addresses both
acquisition requirements and standardization con-
siderations on a continuing basis.

NAVAL AIR SYSTEMS COMMAND

Early in 1972 the Naval Air Systems Com-
mand (NAVAIR) conducted an internal study of
software management policies and procedures. The
review resulted in assignment of the NAVAIR
Avionics Division as responsible organization for
technical adequacy, standardization, and supporta-
bility of NAVAIR weapon system computer and
software acquisitions. The Avionics Division re-
ceived responsibility for implementing the growing
Department of Defense and Naval Material Com-
mand guidance discussed above. With regard to
weapon system software, this responsibility specifi-
cally includes that of developing instructions
addressing:

e software documentation standards,

Vol 1, No. 6

e software life cycle management
planning,

e software maintenance/support activity
planning, and

e programming language selection.

The tasks assigned to the Avionics Division were
complicated by rapid changes in software technol-
ogy that affect software acquisition management
methodology. Example: Although the techniques of
structured programming were presumed to provide
high quality software, the approaches to, and defi-
nitions of, structured programming were so diverse
as to be contractually unenforceable. Further, while
software quality was an established intuitive (and in
some cases, analytic) concept, lack of suitable qual-
ity measures made it difficult to specify, in a con-
tract, software quality requirements.

The Avionics Division established an advisory
panel of experienced software developers and
managers. The panel members were selected from
Navy activities involved in development of airborne
weapon system software. The purpose of this Naval
Air Software Management Advisory Committee -
(NASMAC) was to insure that the instructions de-
veloped by the Avionics Division reflected the
Navy’s actual experience in the development and
acquisition management of airborne weapon sys-
tem software. With the assistance of the committee,
the Avionics Division developed instructions for life
cycle management plannings and software change
review boards;, and is developing a software
management manual. Software life cycle manage-
ment plans meeting the requirements of these in-
structions have been declared acceptable for the
DSARC Il review required by DODD 5000.29.
Based on Navy acquisition experience, the planning
instruction and the software management manual
emphasize in-process reviews, audits, test and eval-
uation, and early application of configuration
management. Design reviews, conducted after
documentation of performance requirements and
detail design, are treated as particularly critical
milestones.

Developers should not proceed from require-
ments formulation to design, or from design to
actual coding, until the Navy is satisfied that the
resulting system will meet user performance, qual-
ity, and supportability requirements. In-process
test, and evaluation against the documented perfor-
mance and design specification, is used to provide
continuing visibility into the progress and success of

49




the development process. Configuration manage-
ment is applied to each of a series of performance
and design documents as the documents are ap-
proved at design reviews. This procedure assures
that the documents and the developing computer
program are consistent and traceable. Configura-
tion management helps to assure that the program
sections, or programs, being tested are not modified
without Navy permission.

The Naval Air Systems Command was con-
cerned also with methods and procedures for pro-
viding in-service support for weapon system soft-
ware. The objective was to insure knowledge
gained from that support is used in subsequent
systems. To provide in-service support, Software
Support Activities were established for major weap-
ons systems, generally at Navy laboratories or
centers.

Naval Air Systems Command recognizes the
value of involving Software Support Activities early
in the system acquisition cycie. The Avionics Divi-
sion Software Management Manual, in preparation,
stresses Software Support Activity involvement be-
fore preparation of the Engineering
Development/Fuli-Scale Development contract.
This action provides at least two major advantages.
First, a team with extensive experience in the tech-
nical aspects of software development and support
is available to furnish valuable assistance in prepar-
ing the Request for Proposal. Team input to the
Statement of Work, the Contract Data Require-
ments List, and the Instructions to Offerors can
assist the Naval Air Systems Command in establish-
ing a viable contract. Second, continuing participa-
tion of the team in design reviews and audits helps
to assure that the Navy will acquire a system that
meets performance, quality, and supportability re-
quirements. In addition to motivation provided by
the technical challenge, the Software Support Ac-
tivity is motivated by the knowledge that it will be
living with and supporting the software product for
years to come!

Based on internal impetus and the require-
ments of higher authority, NAVAIR has come to its
current position on weapon system software devel-
opment and acquisition. This position rests on two
basic principles:

e disciplined management, and

e the utilization of
Activities.

System  Support

50

Disciplined management provides for acquisition of
software as a critical subsystem which is integral to
the overall system, rather than an adjunct to it. The
System Support Activity provides continuing, in-
depth technical support to the Project Manager,
following with trained staff and equipment to sup-
port the soitware throughout the remainder of the
system life cycle. This current position should not
be considered static. At least three forces will drive
toward change. The forces include:

e utilization of current and future develop-
ments in computer and software
technology,

e the increasing perception that the System
Support Activity has both expertise and
equipment to provide certain types of sup-
port to the total avionics system, and,

e ncreased emphasis on managing inter-
faces among the weapon system and its
associated trainers and test equipment.

Countering these forces are existing organizational
guidelines and missions, and increasingly stringent
budget and staffing limitations.

F-18 SOFTWARE ACQUISITION

The F-18 aircraft is a single-place, twin engine,
carrier based weapon system. Primary missions of
this aircraft are fighter escort and interdiction. (An
A-18 aircraft, an attack version of the F-18 with
many common hardware and software elements, is
being developed.) Principal weapon delivery sys-
tem elements include an airborne radar, an inertial
navigation set, head-up display, multipurpose dis-
plays, two programmable digital mission comput-
ers, and an integrated stores management system.
Primary requirements of the F-18 are to proyide
accurate air-to-air and air-to-ground weapon deliv-
ery under one man operation. To meet these task
requirements, numerous and varied computational
tasks must be performed. There will be Operational
Flight Programs in six airborne computers:

e Mission computers (two)
e Radar

e Inertial navigation

e Stores management

e Airdata.

Defense Systems Management Review

v




The mission computer Operational Flight Pro-
grams are being developed by the prime contractor,
McDonnell Aircraft Company. The other Opera-
tional Flight Programs are being developed by the
individual subsystem subcontractors.

The full-scale development contract seeks sys-
tem performance. Design definition and implemen-
tation, within these performance contraints, is left
to the contractor as the design levels become de-
tailed. This approach, although common with such
contracts, is in conflict with the increasing emphasis
on detailed Navy visibility into software product
processes and development. Thus the F-18 devel-
opment requirements represent a dynamic compro-
mise among contracting practices, funding, and the
developing software acquisition practices. Five as-
pects of F-18 software development, in terms of the
effect of these acquisition practices, are given here.

Standardization

The Assistant Secretary of the Navy for Re-
search and Development required that the Naval
Air Systems Command standard airborne com-
puter, the AN/AYK-14, and its high order language,
CMS-2M, be used as the F-18 mission computer.
This computer, itself under development, was felt
to be a risk by the contractor, as was use of an
unfamiliar high order language. The risks associated
with the AN/AYK-14 were those of schedule and
capability to meet performance requirements.
“Brass-board’” versions of the computer were de-
livered, and will be used to develop further infor-
mation on risk areas. The language issue primarily
involved the capability of high order languages to
yield computer programs efficient in memory and
execution time usage. Additional concerns cen-
tered around the amount of computer support time
required to compile the CMS-2M source language
into actual AN/AYK-14 programs, and the assign-
ment of responsibility for the CMS-2M compiler.
Because of these concerns, the contractor was
allowed to use lower (assembly) level programming
techniques for time-critical portions of the com-
puter program. Additional memory capacity was
allowed.

Subsystem computers, provided as internal
elements of the subcontracted subsystems, were
not included in the processor and language stan-
dardization requirements.

Vol 1, No. 6

The pressure for processor and language stan-
dardization has succeeded in applying a standard,
Government furnished computer and high order
programming language for two of the six major
applications in the F-18 airplane.

Data and Documentation

Documentation of programs for the six major
F-18 computer applications is to meet the require-
ments of Weapons Specification, WS-8506, a Na-
val Ordnance Systems Command specification en-
titled, “‘Requirements for Digital Computer Program
Documentation.”” The specified requirements in-
clude deliverable performance and design specifi-
cations, detailed subprogram and data base de-
scriptions, and computer program packages. Also,
test plans and procedures for the mission computer
programs are required. Data deliveries are sched-
uled sequentially through the development process,
providing the Navy visibility into that process. The
delivery of all computer programs is specified in the
Contract Data Requirements List and is consistent
with Armed Services Procurement Regulations.

Although WS-8506 has been superseded by
SECNAVINST 3560.1, “Tactical Digital Systems
Documentation Standards,” documents that ad-
dress detailed performance and design require-
ments have not been significantly changed. The F-
18 software design documentation is essentially
consistent with current documentation
requirements.

Software Configuration
Management

The Weapons Specification WS-8506 docu-
ments provide configuration identification for each
mission computer program. Changes to the config-
uration during development are handled as either
permanent or temporary changes.

Changes intended to be permanent are estab-
lished by means of a Computer Program Change
Request (CPCR), and require approval by all af-
fected areas. The contractor’s software documenta-
tion control group is responsible for logging and
tracking all Computer Program Change Requests,
assuring that accurate configuration status account-
ing is available. When a change is approved, the
baseline program tape is updated. A complete new
tape is prepared, configuration identification docu-
ments are revised, and any required modifications

51

- v




to associated simulations are made. This process
assures that the development team has a consistent
set of programs, documentation, and simulations.

For temporary or developmental changes, for
a particular test facility, a Computer Program Devi-
ation Request (CPDR) is used. The deviation is
approved for a given baseline and is for use only in
affected facilities. A CPDR can never be used to
alter a deliverable flight tape; to effect such alter-
ation requires conversion of the CPDR to a CPCR,
with the latter subject to full application of CPCR
controls.

“Lessons learned’” in configuration manage-
ment of developmental hardware, when applied to
software development, provide a level of control
over deliverable computer programs and support-
ing documentation. This contro! should help to
assure that the deliverable programs pertorm as
documented and tested, and that the programs are
supportable by the Navy.

Software Quality Assurance

The F-18 mission computer software quality
assurance has three aspects: modeling, testing, and
controlled reviews. The use of models is central to
the development process. The FORTRAN language
models run on the contractor’'s IBM-370 facility.
These software models are used to validate the
systems analysis and design approach and show
that the Program Performance Specification and the
Program Design Specification are adequate. These
same FORTRAN models are used with a cockpit
simulator to evaluate control and display interfaces
with the pilot. By use of these models, alternative
mechanizations can be explored, and a data base is
generated to support later testing of the actual
mission computer programs.

Both in-process and Navy acceptance testing
will be conducted. In-process testing will be con-
ducted in accordance with the contractor’s internal
procedures. Acceptance testing will include soft-
ware verification testing against the Computer Pro-
gram Performance Specification in accordance
with a Navy-approved Test Plan and Test Proce-
dures. The software will undergo further formal
Navy testing after integration as a part of the total
weapon system.

52

Quality assurance procedures cover the de-
velopment process from performance specification
to the final product. This approach should contrib-
ute to the quality of the software product and
provide increased Navy confidence in that quality.

Formal and informal reviews of the software
development process will include reviews of test
results, and quality assurance procedures and
results.

Support Software

In accordance with the requirements of
DODD 5000.29, the F-18 program has provided
for Navy acquisition of support software for the six
major computers in the system. All support soft-
ware is required to run on the Government-
furnished IBM-370 at the contractor’s facility. Each
subcontractor responsible for developing subsys-
tem software is responsible for ensuring that the
associated support software will run on this ma-
chine. Since it is planned that the IBM-370 will be
returned to the Government toward the end of
system development, all necessary support soft-
ware will be captured. As a hedge against changes
in this plan, it is required that the support software
be written in FORTRAN, to the extent possible,
using capabilities available within a 16-bit word
length.

According to plan, the support software and
the IBM-370 will be transitioned to the supporting
activity at the Naval Weapons Center. As an alter-
native, the support software alone can be transi-
tioned. In either event, the approach provides for
avoiding costs associated with redevelopment of
support software.

OBSERVATIONS

The F-18 program, appearing in the midst of a
significant transition in software management
styles, has implemented many new requirements.
In the absence of detailed official guidance, some of
the implementation details are experimental. As the
system is developed, a continuing record of “les-
sons learned” will provide precedents and guid-
ance for future programs.

Defense Systems Management Review




i - P

CITED REFERENCES

1. Lt. Col. Alan ). Driscoll, USAF, “Software Visibility and the Program Manager,” Defense Systems
Management Review, | (2): 12-27 (1977).

2. V. E. Skullman, “Impact of DODD 5000.29, Management of Computer Resources in Major Defense
Systems, On the Naval Air Systems Command (NAVAIR),” Defense Systems Management College
Study Project Report PMC 76-2, Dec 76.

3.  “DOD Weapons Systems Software Management Study,” Applied Physics Laboratory, Johns Hopkins
University, technical report, AD-A022,160, Jun 75.

4. Dept of Navy, Naval Material Command, NAVMATINST 4130.2A, “Configuration Management of
Computer Software Associated with Tactical Digital Systems and Other Technical Computer Systems
Developed by or for the Naval Material Command,” 19 jul 76.

5. —, Naval Material Command, NAVMATINST 5200.27A, “Transfer of Navy Tactical Digital
System Software Responsibility; Procedures for,” 18 Apr 73.

6. , Naval Air Systems Command, NAVAIRINST 5230.5, ““Responsibility and Requirements for
Preparahon of Software Life Cycle Management Plans,” 21 Jul 76.

7. = , “Establishment of Tactical Software
Change Revuew Boards,” 1 jun77.

Mr. Dennis W. Farrell
is Head, Operational Com-
puter Systems Office, Naval
Weapons Center (NWC), \
China Lake, CA. Mr. Farrell
is responsible for providing
software acquisition and
development policy and
procedural guidance for Naval Weapons Center
programs. Entering the field of weapon system computers
through the application of early solid state digital differ-
ential analyzers, he has held several performing and
supervisory positions in computer hardware and software

» development.

Mr. Farrell is a member of the Naval Air Software
Management Advisory Committee. Mr. Farrell’s primary
professional interests are software technology and
acquisition management, as practiced in a total systems
environment.

Vol 1, No. 6 53
e e iein o v - T T




THE EGLIN REAL-TIME
COMPUTER SYSTEM

by
George C. Suydan, Department of Air Force

Development of a Computer-Driven Command and Control Facility Supports the
Management of Air Force Weapons Test Programs

ARMAMENT DEVELOPMENT AND TEST CENTER TEST AREAS

e B e : EGLIN LAND - .

\  ——— GULF OF MEXICO
\ ~ \ 7/
4 \4

A PICTORIAL PRESENTATION of the location and relative size of the Eglin test areas is shown.

54 Defense Systems Management Review




As its primary mission, the Armament Devel-
opment and Test Center, a research and develop-
ment component of the Air Force Systems Com-
mand, supports the development, procurement,
and testing of Air Force tactical weapons sytems.
Center headquarters is located at Eglin Air Force
Base near Fort Walton Beach on the Florida Gulf
Coast. The Eglin test complex encompasses exten-
sive land and water areas. The Eglin land reserva-
tion spreads over 464,000 acres and extends nearly
42 miles along the Gulf Coast. The Eglin water test
area reaches nearly 300 miles offshore and includes
a great portion of the eastern half of the Gulf of
Mexico. Continued productiveness of Center
weapons testing is closely related to assurance that
testing activities do not present hazards to private
activities in the surrounding areas and on the high
seas.

THE NEED

In the past, test safety could be accommo-
dated by isolating tests to the vast expanses of land
and water in the test complex or by placing restric-
tive limits on test conditions. The more modern
weapons systems, however, are characterized by
increased energy, aerodynamic performance, and
destructive power. In the late 1960s it became
apparent that population pressures and trends in
modern weapon design socn would result in safety
restrictions so stringent that test productiveness
would be limited and thus degrade the effectiveness
of the Center’s weapons testing mission. Conclu-
sions resulting from a study of this problem indica-
ted that an instrumented test control capability
could be developed—a real-time computer system
that would assure test safety and vastly expand the
potential for cost effective use of Center test
resources.

THE APPROACH TO THE PROBLEM

The basic concept of an instrumented test
control capability requires extensive real-time mon-
itoring of all facets of a test operation. This permits
immediate detection of hazardous or unfavorable
conditions and initiation of prompt corrective ac-
tion. Feedback systems are provided so that correc-
tive action instructions can be communicated di-
rectly to test participants; or, remotely controlled
transmitters can be used to alter or terminate a flight
or a malfunctioning test item.

Estimated costs for procurement of such a

funds available, and 3 years was a typical schedule
quote. The need was for a capability within half that
time, and only limited funds could be programmed
for associated expenditures. The greatest costs
were associated with the engineering of the com-
puter complex and the generation of systems and
applications software. The Center possesses analyt-
ical and engineering capability within its own per-
sonnel resources. Hence, the decision was made to
develop the required capability in-house with fund
expenditures mainly limited to procurement of re-
placements for obsolete display and interface
equipment.

THE PROJECT PLAN
AND THE TEAM

The development activity was organized un-
der a dedicated project team concept. Project di-
rection, engineering, programming, and production
tasks were accomplished by Center engineers and
computer scientists. Operational requirements and
basic design concepts were provided by the ulti-
mate users of the system, especially range safety
and test operations agencies. System integration
activities involved instrumentation operation and
maintenance groups as well as the developers and
users of the system. Talented and productive peo-
ple were required to meet schedule and cost limita-
tions. All team members were carefully selected
with special attention given to individual skills and
proved performance records.

Adherence to straightforward guidelines was
stressed to assure effective utilization of the project
team. Three of the most important factors in the
project plan were requirements, operations con-
cept, and systems design.

Requirements—Emphasis was given to im-
mediate needs so that existing problems were
assured of a near-term solution. Specific and
realistic goals were established. In short,
requirement goals were reasonable.

Operations Concept—Test operations
were centralized at a single control site. The
resulting system minimized impact on existing
operations activities and test management. An
orderly integration of the system through si-
multaneous development of systems tests,
documentation, training plans, and proce-
dures was assured. In short, the plan was

system from commercial sources greatly exceeded workable!
Vol I, No. 6 55
R A £ —_ —




3

-
14

Design—Designs were to assure satisfaction
of the requirement above all. Future growth
and expansion were not precluded. Risky or
questionable techniques or subsystems requir-
ing research and development in themselves
were avoided. In short, the plan was kept
simple.

THE SYSTEM

An extensive instrumentation complex and a
data handling network were already in existence.
However, these systems were oriented toward sup-
porting remote special purpose control sites, neces-
sitating relocation of control functions to a newly
designed central facility. Some data handling equip-
ment and new cathode ray tube display devices
were provided. An extensive communications net-
work was utilized to tie the central facility to remote
test ranges and instrumentation sites.

Most of the weapons test scenarios have com-
mon requirements in that vast quantities of data
must be collected and presented to controllers in
forms suitable for decision making. This function
required considerable computational powers be-
yond the capability of any single Center computer.
However, three digital computers were available
that, with suitable division of function, could easily
handle the workload. In the resulting system, an
IBM 360/65 computer provides master real-time
controller functions, a Control Data Corporation
CDC 6600 computer performs mathematical solu-
tions of various test algorithms in a multi-
programming environment, and a Digital Equip-
ment Company PDP-15 computer provides proc-
essing of telemetry data. Real-time multiprocessing
with these computers required the generation of an
extensive package of systems routines compatible
with vendor supplied operating systems. The sys-
tems software so generated provides the basic data
base management, intercomputer communica-
tions, and display driver functions. The systems
software is maintained independently from specific
test requirements.

In order to support tests, applications pro-
grams peculiar to test support requirements were
developed. These applications programs function
under control of the system software. The resulting
application software library consists of various
packages covering testing functions in support of
range safety, test control, and range operations.
Individual applications programs are kept small to
permit simultaneous support of multiple tests. Dedi-
cation of one or more of the computers to a single

56

test or application is avoided with this design. As
objectives change from test to test, only the appli-
cations program need be modified. Configuration
control problems of the more complex system
software are minimized, and reliability is kept at a
high level.

THE SAFETY PROGRAM

Use of the system in support of hazardous
tests required the development of an application
program for range safety. To control and direct this
effort, an additional management entity separate
from the project team was formed. This Configura-
tion Control Board is composed of members from
the software development agency and the using
organization. The Board is charged with responsi-
bility for managing the life-cycle application soft-
ware package, to include production, debugging,
operational integration, and maintenance. In the
case of the range safety function, since the security
of lives and property may depend upon the soft-
ware used for test support, configuration control for
this application package is of great importance.

THE APPLICATION

The software resulting from this development
enables test support to be conducted with required
levels of safety and control. Pretest, real-time, and
post-test applications are supported with the fol-
lowing features available.

Prior to launch or release of a test item,
various instrumentation and system checks are con-
ducted to assure test readiness. During the test, the
computer complex processes data from range in-
strumentation and presents it, in the control center,
to range safety officers and test controllers in forms
suitable for decisionmaking and control purposes.
Various presentations are provided on cathode ray
tube display devices (at operator request) during the
course of the mission. The information displayed
may consist of maps, graphs, or parameters that
have been derived from appropriate simulation
models. The maps depict Eglin test area outlines,
coastlines, boundaries, sites, facilities, and targets
with appropriate grids, annotation, and labeling.
The maps are used to plot space positions of air-
borne items, targets, and aircraft in real time.
Weapon hazard footprints and impact areas are
overlayed on the map backgrounds for safety adju-
dications. Also presented are various test parame-
ters resulting from conversion of radar and teleme-
try data or the solution of an algorithm or simulation
model involving the input data. Presentation of

Defense Systems Management Review

~o——




.J

T »

bl 5 B

these parameters may be in alphanumeric digital
form or graphic presentations. Post-test evaluations
frequently require playbacks of recorded data to re-

create the test for purposes of quick-look report
generation, data reduction, or investigation of test
anomalies.

SAFETY AND TEST control is exercised through display and control mechanisms provided by this
console station. Displays, communications, and command control functions are available.

SUMMARY

The total system was completed on schedule
and proved successful from date of first test applica-
tion. Test operations have been supported with this
system since 1975. Safety, flexibility, and test
productivity have been improving continuously as
experience in system use grows. Also the system
has provided a baseline for a continuing phased

Vol I, No. 6

o e P T ———

development of an improved advanced centralized
control facility reflecting future test requirements.
The experiences and lessons learned in the devel-
opment of the initial system have generated a cor-
porate pool of knowledge that provides further
assurance that future developmental actions can be
addressed with confidence.




George C. Suydan is
Chief,  Analysis  Branch,
Range Support Division, Ar-
mament Development and
Test Center, Eglin AFB, Flor-
ida. In prior assignments he
served as a systems analyst
at the Pacific Missile and
Test Center, Point Mugu,
California, and systems project engineer for the Space
and Missiles Test Center, Vandenberg AFB, California.
Mr. Suydan’s experience includes design and implemen-
tation of real-time range safety systems and test control
facilities in support of various weapons and missile test
programs.

Mr. Suydan holds a BS degree in Chemical Engineer-
ing (1961) and an MS degree in Chemical Engineering
(1963) both from the Univ of Nebraska.

o

Defense Systems Management Review




SOFTWARE RELIABILITY BY DESIGN:
A CRITICAL NEED

by

W. J. Willoughby, Department ¢ the Navy

STATEMENT OF THE PROBLEM

Modern Navy weapon systems are becoming
increasingly dependent on embedded digital
computers.

The F-14 fighter aircraft contains three. With-
out these, its primary weapon system can be ex-
tremely degraded; its mutually dependent fire con-
trol, navigation, and flight control systems may be
largely ineffective and complex aerial maneuvers
and manual flight control become hazardous.

Two of the Navy’s newest ships, both
CGN36-class cruisers, lacked full combat capability
for several years following launch and commission-
ing because the multiple computers which control
their entire weapons array would not operate prop-
erly due to software problems. Stories of faulty
software in Navy weapon systems computers con-
tinue unabated and are increasing with system
complexity.

Over the last four years, the Navy has made
giant strides in revamping its whole approach to
reliable hardware. Abandoning ineffective numeri-
cal requirements and demonstration testing, the
Naval Material Command has adapted, from NASA
experience, a set of acquisition fundamentals (Fig-
ure 1) whose conscientious application to hardware
acquisition programs has resulted in reliable hard-
ware. But those weapon systems whose operation
depends upon digital computers, whether tactical
(embedded software or firmware) or dedicated
general purpose (user-programmable), continue to
be plagued with software failures. In terms of the
systems’ abilities to function, such failures are as
real as hardware failures. Why can’t a similar set of

The Naval Material Command is confident
that such fundamentals can be developed, resulting
in a transition of reliable software design, testing
and maintenance from an art, which describes the
present state of software reliability achievement to
a real science. This belief is reinforced by the
multitude of independent efforts underway in this
direction and the limited success each has attained
even though software failures are continuing.

What remains to be done is to integrate the
successful design and test approaches into a unified
body of fundamental software acquisition program
requirements, which can then be written into con-
tracts and reviewed for compliance at periodic
program milestones. This is a major objective of
current efforts by the Naval Material Command to
reduce drastically the incidence of software-related
failures in otherwise reliable weapon systems.

The purpose of this article, therefore, is to
encourage the software community:

1. to re-orient its thinking toward software
design disciplines and techniques which
are known to avoid or minimize the likeli-
hood of problems; and

2. de-emphasize the traditional approach
which utilizes standard programming
methodology followed by exhaustive test-
ing to discover errors ‘and conflicts. An
oft-illustrated example showing the futility

acquisition fundamentals be identified and applied of this traditional approach bears

to the software? repeating.

Vol I, No. 6 59
TR T —— v/ = pr—— -




OBJECTIVES

e IMPROVE FLEET READINESS
e  MINIMIZE LIFE CYCLE COST
ACQUISITION FUNDAMENTALS

® CONTRACT FOR RELIABILITY
e Requirements Not Goals
Incentives For Reliable Design
Reliability in Source Selection
Life Cycle Cost Consideration

® DESIGN TO MINIMIZE FAILURE
Mission/Environmental Profiles
Design Alternatives Studies
Numerical Allocation
Conservative Derating Criteria
Stress Analysis

Sneak Circuit Analysis

Worst Case Tolerance Analysis
Failure Modes & Effects Analysis
Parts & Materials Selection/Screening
Design Reviews

o INTEGRATE TESTING TO VERIFY DESIGN
e Missile Profile Development Test (TAAF)
e Design Limit Qualification Test

®  Mission Profile Demonstration Test

e Failure-Free Random Vibration Acceptance
(Electronics)

e Failure-Free All Equipment Screening

- PREVENT FAILURE RECURRENCE
e Failure Reporting
® Failure Analysis
e Corrective Action

® SUSTAIN RELIABILITY IN PRODUCTION
® Quality Assurance
® Process Controls
® Acceptance Testing & Inspection

° SUSTAIN RELIABILITY IN SERVICE USE
e Initial Fleet Tracking
@ Contractor Corrective Action Responsibility

IMPACT

e REDUCE MAINTENANCE/SUPPORT
BURDEN

e  INCREASE CERTAINTY OF RELIABLE
MATERIAL ACQUISITION

e STRENGTHEN NAVY/CONTRACTOR
TECHNICAL TEAM

Figure 1. Navy Acquisition Fundamentals

Consider the extremely simple computer pro-
gram represented by the flow chart in Figure 2.
(Navy operational programs may be orders of mag-
nitude more complex.) Largely due to the loops
(which are very common in current computer pro-
grams) there are some 10 different sequences
(paths) which could be followed during program
execution. If a single path could be checked every
nanosecond (10 second), and if this debugging
had started at the beginning of the Christian era (1
A.D.), the job would be about half done at the

Loop (< 12 times)

present time. Clearly, programs can never be fully
tested. Software reliability by design, not by debug-
ging, is therefore a critical need in the acquisition of
reliable software-based Navy weapon systems.

WHERE THE ACTION IS NOW

Practitioners in software design, and its inte-
gration into military hardware, have become
acutely aware of and sensitive to some of the basic

Loop (< 12 times)

Figure 2. Simple Program Flow Chart

60

Def Sy Manag t Review




sources of software failures. Out of this awareness
is gradually emerging a better understanding as well
as the rudiments of a more disciplined, scientific
approach to the problem. Software reliability ex-
perts are few and far between, and even the term
““software reliability’’ is a recent concept; neverthe-
less progress is being made towards acquisition
fundamentals for the production of reliable soft-
ware. The following paragraphs discuss some of the
currently recognized problem areas and describe
some of the actions underway to resolve them.

Modular Design Methods

It has become axiomatic to software develop-
ers that the two most common sources of software
system problems are (1) requirements analysis er-
rors, and (2) design/coding errors during develop-
ment. Recognizing that significant cost-savings re-
sult from early detection and correction of such
software problems, system developers have turned
to the so-called ““modern programming practices’’
in order to gain control over the slages of require-
ments definition, program design and coding.

MORE GENERAL

\

MORE DETAILED

Some, but by no means a complete list, of these
practices that are continually being evaluated and
refined are listed below—

Requirements Definition. Defining system op-
erational and technical performance requirements
is really a series of investigations to discover the
required output of each level cumulatively in the
system. As with later design, coding and testing
steps, it is most logical to start with the required
total system output and work down toward smaller,
more detailed components that are included
therein. When defining system requirements, a
trade-off analysis is an important step because it can
disclose significant life-cycle cost savings through
proper assignment of hardware/software roles.
Among the most essential aspects of this analysis
are hardware/software interface specifications,
that should be important topics at preliminary sys-
tem design reviews.

Top-Down Design. Using this technique, the
software is initially designed from the top down, as
illustrated conceptually in Figure 3. The designer

e WORK FROM GENERAL
ITEMS TO SPECIFICS

e COMPLETE EACH LEVEL BE-
FORE GOING ON TO LOWER
LEVEL

e ASSURE TRACEABILITY

Figure 3. Top-Down Design Approach

Vol {, No. 6

61

PR v




starts with the highest level control function and
works down to the lowest processing elements. The
design of each level is completed as extensively as
possible before the next lower, supporting level is
started. Simulated inputs or outputs are used where
related modules are not yet completed. Various
flow charting techniques may be used to map
control and data flows. Regardless of the kind of
top-down technique employed, it is essential that
complete traceability be assured from one level to
the next.

Structured Programming. This technique is
used to implement the top-down design by carrying
the modular approach to lower, more detailed
levels. The modules are separately coded and doc-
umented using a limited number of program struc-
tures in the necessary combinations. Figure 4 illus-
trates the five basic structures, each of which has
only one data entry and one exit. One intent is to
make the structure of the design match the structure
of the program so that changes to parts of the
specification result only in changes to small parts of
the program. Use of proven standardized applica-
tion modules further minimizes the opportunity for
the software failures.

Chief Programmer Teams. This programming
organization provides a subject management tool
which complements the structured programming
approach. For a small system a single team may be
involved. For large or complex systems, the pro-
grammers may be organized into a hierarchy of
teams, each responsible for a particular portion of
the program. Each person’s function is specifically
defined and the group is built around three primary
individuals:

wide
team

e Chief  Programmer—provides
design/coding experience and
management.

e Back-up Programmer—assists the Chief
Programmer and provides peer-level de-
sign review.

e Librarian—maintains the program devel-
opment library and monitors the program
status.

Additional support mermbers may be included
as necessary. The essence of the Chief Programmer

e

IN;UT INEUT
TRUE FALSE
( PROCESS A )
{ PROCESS A PROCESS B
(THEN) (ELSE)
( PROCESS B )
L J
OuTPUT OUTPUT
SEQUENCE ¥ IF-THEN-ELSE
INPUT INPUT INPUT

C PROCESS A )

( PROCESS ’

FALSE

TRUE

OUTPUT

\

ANFANTAN

DO UNTIL

OUTPUT
DO WHILE

OUTPUT
CASE

62

Figure 4. Basic Program Structures

Defense Systems Management Review

-

— |



—— —m:o‘-/—-f—'-—-—'—vﬁvq—

Team concept is to provide an efficient organiza-
tion for implementing the structured programming
approach and other programming standards.

Structured Walk-throughs. These reviews are
set up to periodically allow the programmer for a
particular module the chance to explain his design
and coding approach to the rest of the team. This
critique provides a measure of fresh thought to the
programmer and lends a degree of cohesiveness to
the overall team effort. Farly documentation at the
modular level is an important adjunct to this close
intercommunication.

Higher-Order Languages. For Navy software
systems, compatibility and standardization require
that certain approved higher-order program lan-
guages be used. These languages are:

e® For Tactical Systems*: CMS-2

e For Non-tactical Systems**: COBOL,

FORTRAN IV, Basic, APL, PL-1

Software Design Tools. The number and variety of
available automated tools (programs) for software
design is growing continually. Where these tools
are available to developers, and will realize life-
cycle cost savings, they should be used. Commer-
cially available tools include some capable of analy-
sis techniques derived from accepted hardware
design disciplines, such as: software sneak circuit
(path) analysis and worst-case analysis.

Error Tolerance and Error Recovery. There is
growing awareness that no complex software sys-
tem can ever be designed totally error-free. Hence,
designers must consider the ramifications of design-
ing the system to be so sensitive to data or logic
errors that numerous system faults and shutdowns
may occur. An analysis must be made of what types
and levels of errors are tolerable under full and
reduced capability conditions. The <oftware must
be accordingly designed and coded for this toler-
ance and/or rapid recognition and recovery from
errors.

*“Standard Shipboard Tactical Digital Processors and Program Lan-
guage,” TADSTAND 1, Naval Material Command, Code 09Y, Washing-
ton, DC, 29 May 73.

“*"Standard Higher Level Digital Computer Programming Languages;

Policy for,” DOD Directive 7905.1, Department of Defense, Washing-
ton, DC (Draft).

Vol I, No. 6

Verification and Validation

Verification and validation (V&V) includes the
systematic evaluation of a program by an agency
independent of the program developer. Program
development management employing V&V prod-
uces an orderly development process. A major
advantage is that many errors are found early in the
development cycle which otherwise would be dis-
covered only through the use of elaborate simula-
tion or field exercise. Verification and validation
aids program development in a number of ways
that are traceable to its employment as a structured
activity proceeding in parallel with program devel-
opment, and establishing formal review, communi-
cation, and program modification criteria. Estab-
lishing V&V as a formal activity with strict account-
ability and reporting procedures has the important
results of causing the computer program develop-
ment contractor or subcontractor to adhere more
rigidly to programming and documentation con-
straints and standards, and of requiring program
documentation and code deliveries on a time-
phased basis. Thus, a well-planned V&V effort not
only has the effect of improving end-item quality
and reliability, but also serves as an important
program management tool, making the program
development cvcle highly visible

The application of automated and manual
validation processes is scheduled by considering
the type of program being validated, the resources
available (test beds, automated tools, etc.), the
personnel available, and the schedules. The term
“V&V" includes all the processes which are applied
by an independent crganization leading to the certi-
fication of a program. Certification that the program
can fulfill its mission is accomplished by:

® assuring that each level of documentation
has been translated completely and cor-
rectly to the next level,

o that the final object code executes
correctly,

# that the input medium to be loaded opera-
tionally is identical to the code which
underwent test, and

® that unused or unnecessary coding which
could subvert the intent of the program is
not present.

63




More specifically, V&V refers to the processes program code. The verification and validation proc
demonstrating that a set of requirements or specifi- esses are differentiated and defined more explicitly
cations have been correctly translated into the next in Figures 5 and 6, respectively

lower set of documentation, including the actual
SYSTEM SOFTWARE SOFTWARE
REQUIREMENTS REOQL IREMENTS SPECIFICATION
PIRFORMANCE DESIGN COm
MVERIFICATION VERIFICATION MERIFICATION

—— ——— ——— ——— —————— — —— — — —— —————————————— ———— — — —

VERIFICATION ACTIVITY

SOFTWARE
ITEM AND
REVIEW

B DOCUMENTATION RESEARCH AND ANALISIS B DOCUMENTATION COMPARISONS B MANUALCODE ANADYSIS
B REQUIREMENTS EVALUATION B LOQUATION ALGORITHM REDERIVATION B CORRISPONDINCE PROOIS
B FUNCTIONALSIMULATIONS B DIMENSTONAL ANALYSIS W LOQUATIONRECONSTRLUCTION
W IIMING &SIZING B LOGIC ANALYSIY | DTN
B MODELANALYSIS B INDEPENDENT SIMULATION B CODECOMPARISON
W TAEREQUIREMENTS B STANDARDS & CONVENTIONS STANDARDS & CONVENTIONS
—— ——————— ————— — — ————— ——— —— ————————————— — — —— —
VERIFICATION OUTPUT
B OTESTPLANNING B DISIGN ANALYSISREPORT B CODEANAIYSISRIPORT
B STRUCTURAL ANALYSIS - STRUCTURE —STRUCTURE
- ALGORITHMS - ALGORITHMS EQUATIONS
= STANDARDS & CONVENTIONS - STANDARDS L CONVENTIONS

Figure 5. Verification Process

SYSTEM
REQUIREMENTS

SOFTWAnE COMPUTER
SOFTWARE SOFTWARE ;
PROGRAM
ITEM AND REQUIREMENTS SPECIFICATIONS M(()M
REVIEW GE

VALIDATION

® MODULE TESTING
VALIDATION B INTEGRATION TESTING
ACTIVITY . 1
B SYSTEM PERFORMANCE TESTING
W@ STRESS TESTING
# FAILURE MODE IDENTIFICATION
VALIDATION ® TESTREPORTS
OuTPUT ® PROBLEM REPORTS
Figure 6. Software Validation Process
64 Defense Systems Management Review




Documentation Requirements

Complete and correct software documenta-
tion is an essential element of a successful software
system development effort. The software
documentation is comprised of various categories
of descriptive documents which act as building
blocks for the design, verification, and validation of
the computer program. Therefore, it is essential that
its preparation be initiated at the earliest possible
point during the software/hardware design phase,
as a vehicle for team intercommunication and for
module interface compatibility. In addition, the
documentation is the only tangible product of soft-
ware design which may effectively serve as a vehi-
cle for project monitoring and configuration
management. Once the design has been completed
and validated, the documentation becomes a valu-
able by-product of the development effort and can
be used regularly by the Software Support Activity
maintaining the system after its deployment.

All software design documentation for tactical
Navy applications is governed by Secretary of the
Navy Instruction (SECNAVINST) 3560.1.* The in-
struction contains format and content requirements
for all the required documents and specifications. It
also contains sample data item descriptions to be
included in such software development contracts.
All Navy software under development for non-
tactical systems is documented according to De-
partment of Defense Standard 7935.15 of Septem-
ber 13, 1977.** This manual provides format and
content requirements for all software development
documents and, in addition, offers guidelines for
acquisition managers and acquisition engineers to
determine documentation requirements, based on
a system complexity analysis.

‘

In addition to this traditional kind of documen-
tation, the advancement of modern programming
techniques has engendered the increased use of
program support libraries (PSLs). The PSL is a repo-
sitory for development data which is stored in two
forms—machine readable form and hard copy
notebook form.

*"Tactical Digital Systems Documentation Standards,” SECNAVINST
3560.1, Office of the Secretary of the Navy, Washington, DC, 8 Aug 74.

**Automated Data System Documentation Standards Manual,” DOD

Manual 4120.17M, Office of the Assistant Secretary of Defense
(Comptroller), Washington, DC, Dec 72.

Vol I, No. 6

Support of the programming process involves
support of the design, coding, testing, documenta-
tion, and maintenance of computer programs and
the associated data-base definitions. A PSL provides
this support through:

e Storage and maintenance of programming
data.

e Output of programming data and related
control data.

e Support of the compilation and testing of
programs.

e Support of the generation of program
documentation.

e Collection and reporting of management
data related to program development.

e Control over the integrity and security of
the data stored in the PSL.

® Separation of the clerical activity related
to the programming process.

The PSL is of special value in large, complex sys-
tems where the work of individual programming
teams on distinct modules must be carefully
managed.

Configuration Management

Configuration management (CM) accom-
plishes the following tasks:

e Identifies and documents the physical and
functional characteristics of the software
e Controls any changes to those characteris-
tics in accordance with MIL-STD-480*
and the software portion of MIL-STD-

483**

e Verifies that approved changes have been
made

® Maintains a complete change status
record

*"Configuration Control—Engineering Changes, Deviations and Waiv
ers,”” MIL-STD-480, Department of Defense, Washington, DC, 30 Oct
68.

**""Configuration Management Practices for Systems, Equipment, Muni-

tions and Computer Programs,”” MIL-STD-483, Department of Defense,
Washington, DC, 31 Dec 70.

65




Under the ““modern programming practices’’ um-
brella, configuration management is a most vital
means of insuring adherence to hardware/software
interface specifications, documented programming
standards, and particularly software documentation
requirements. Because of the ease of making
changes in software, perhaps nowhere else is con-
figuration management so important.

Software Testing

There are three categories of software testing
that are appropriate to the software reliability effort
of a typical acquisition:

1. Subprogram/Module Tests. This testing
is done to determine compliance with
technical, operational and performance
specifications. As a minimum, each sub-
program or module should be tested to:

® Ensure that it actually reflects the
performance and design specification
requirements.

® Ensure error-free compiling and as-
sembly of the coded subprogram or
module.

° Exercise the subprogram or module
in terms of input and output performance
with results reflecting the applicable per-
formance and design specification
requirements.

2. Function Tests. Once the subprogram or
module testing has been satisfactorily
completed, the subprograms are com-
bined into subsystem programs and simi-
larly tested.

3. System Performance Tests. The subsys-
tems are then integrated and tested to:

® Verify the total man-machine
interface.
@ Validate system initiation, data en-

tries via peripheral devices, program load-
ing, restarting, and the monitoring and
controlling of system operation from dis-
play consoles and other control stations as
applicable,

66

2 Conduct an error-free retest of any
system failures, following complete analy-
sis and understanding of the causes of
those failures, and appropriate corrective
action to preclude their recurrence.

WHAT REMAINS TO BE DONE

The many current actions and approaches to
improving software reliability have been demon-
strated effective in recent programs in which they
have been implemented. But they beg the question
which remains: What specific factors or disciplines
influence software reliability, and to what extent?
The extent to which reliability is influenced is im-
portant only insofar as it would enable a ranking of
such factors on which priorities and limits could be
established; any attempt to quantify software relia-
bility would be misguided effort.

In order to convey to the reader a better
understanding of this critical need, some potential
factors which could or are known to influence
software reliability can be listed. During the devel-
opment of the software (and the hardware in the
case of special-purpose tactical computers), some
examples include:

Number of demand interrupts

Number of polling interrupts

Number of input/output message types
Number and types of data categories
Software partitioning scheme

Core utilization efficiency

Utilization of each peripheral device
Number of conditional branches per
module

Number of instructions per module
Number of arguments per conditional
branch

e Coding language selection

e Number and location of program restart
points

The reader familiar with computer operating
system design and applications programming will
recognize immediately that each of these factors
influences software reliability in some way. What
are the many other factors missing from this list?
Which are the most critical, and how could their
use be specified and controlled?

During the software verification activity, the
accuracy and throughness of each of the activities

Defense Systems Management Review




I
‘L
|
TR b b

listed in Figure 5 again influence the ultimate relia-
bility of the software. Likewise, the extent to which
the validation activities listed in Figure 6 fully repre-
sent the eventual operational environment or sce-
nario, is crucial to reliability. Which activities are
most critical, if prioritization is necessary? How can
the Navy and the contractor specify and control
them? By this is meant setting standards and re-
quirements, thresholds and limits, software design
review and audit criteria, etc.

When it comes to software maintenance for
whatever purposes (more effective output mecha-
nisms, changes in the operational scenario, threat
characteristics, or environment being controlled, et
al), the stability of the software design affects its
reliability. The fraction of modules requiring
change, the conditions under which the change
must be made, and the mechanism for controlling
changes add their effects to software reliability.
What other maintenance factors are critical, and
again, how can they be prioritized, specified, and
controlled?

Figure 7 illustrates conceptually the nature of
these as yet unknown relationships which the Navy

NUMBER OF DEMAND INTERRUPTS

TEST CASE COVERAGE

is seeking to identify and quantify to the extent
necessary to specify and control their use in soft-
ware programs. For example, the best language for
the application should be specified; limits on de-
mand versus polling interrupts should be estab-
lished, where applicable; module size and com-
plexity should be limited according to application
and operating environment; also, utilization limits
on core, input/output registers, channels, and pe-
ripheral devices should be specified on the basis of
carefully estimated worst-case operational condi-
tions. It should be possible to identify selected areas
where poor software/hardware structures may be
tolerated to accommodate a specific mission, as
well as selected areas of highest potential danger in
which to concentrate test planning.

This is the critical and as-yet-unmet need in
order to achieve software reliability by design.

RECENT NAVY INITIATIVES

The Naval Material Command is actively pur-
suing software reliability by design. This is sup-
ported by many recent studies which consistently
confirm that the overwhelming percentage (as high
as 70 percent) of software errors occur early in

MODULE COMPLEXITY

DESIGN STABILITY

Figure 7. Software Reliability Influance Factors
(Conceptual)

Vol 1, No. 6

67




system development, and that such software design
practices have a far greater impact on error reduc-
tion than post-design debugging efforts.* Armed
with the results of such studies, the Navy has taken
several steps to mandate the use of proven software
design approaches, while at the same time stimulat-
ing the development of improved methods. An
office for tactical digital systems (Naval Material
Command Code 09Y) has been established, and the
office for reliability and engineering (Naval Material
Command Code 08E) is coordinating its efforts to
upgrade software reliability in order to expedite
improvement. The first five references in the follow-
ing section are representative of recent Navy activ-
ity in software reliability improvement.

in the meantime, the Naval Material Com-
mand has as its central theme the checking and
rechecking at every level of design, coding and
testing to ensure that the most error-free product
possible is created—whether that product is a re-
quirements specification, a module design, lines of
code or a test specification. The software reliability
requirements imposed on a system developer are
intended to ensure that:

1. Procurement and planning documents as-
sociated with the acquisition of software
systems specify appropriate and enforce-
able software reliability requirements for
both executive and applications-type soft-
ware. This includes Request for Proposals,
proposals, T&E plans, specifications,
statements of work and other program
documentation.

2. Software reliability is planned for and de-
signed into digital computer systems be-
ginning in the early conceptual phase,

“For example, see J. R. Brown's “Impact of Modern Programming
Practices on System Development,” TRW Final Technical Report
29115-6001-RUOO, Jan 77, and Air Force Rome Air Development
Center RADC-TR-77-121, May 77

68

whether the systems are contractor-
furnished or government-furnished.

3. Software evaluations, reviews and audits
are conducted on a regularly scheduled
basis. Software reliability should be ad-
dressed at design and program reviews.

4. Procedures are defined that will be fol-
lowed when modifications are introduced
following test and checkout. The validity
of previous testing must be evaluated and
a retest carried out if needed.

5. A problem reporting and corrective action
system is required to provide an effective
means of identifying problems encoun-
tered and prescribing follow-up action to
assure positive resolution of problems.

6. The system is designed to accommodate a
minimum of 120 percent of expected utili-
zation in a/l its components, including
memory capacity.

7. A comprehensive test program is required
to demonstrate the quality, integrity and
correctness of all the software. It must
ensure that previously tested subprograms
and programs interact as intended and
that specified system availability require-
ments will be met.

Efforts to date are only the beginnings of a
concentrated attempt to bring software design into
the sphere of disciplined system reliability engineer-
ing. If they are to avoid the crippling effects of
software failures in critical multi-million dollar de-
fense systems, ways must be found to hasten the
progress of software design reliability from a black
art to a disciplined science.

Defense Systems Management Review




-d

i\

—

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

REFERENCES

Dept of Navy, “Tactrr | Digital Systems Documentation Standards,” SECNAVINST 3560.1, Washington, DC, Aug
74
Naval Material Command, “Reliability of Naval Material,” NAVMATINST 3000.1A, Washington, DC, Apr 77.

, “Configuration Management of Computer Software Associated with Tactical Digital Systems and Other
Technical Computer Systems,”” (Draft Revision) NAVMATINST 4130.2A, Washington, DC, 19 Jul 76.

, “Standard Tactical Digital System Software Quality Assurance Testing Criteria,” (Proposed) TADSTAND
X, Washington, DC, 17 Aug 77.

Dept of Defense, “Tactical Software Development,” (Draft) MIL-STD-1679, Washington, DC, 1 Aug 77.

Gene F. Walters and James A. McCall, “The Development of Metrics for Software R&M,” General Electric
Company, Sunnyvale, CA, presented at the 1978 Annual R&M Symposium, Los Angeles, Jan 78.

“Reliable Computer Software,” prepared for the Naval Air Systems Command Applied R&M Seminar by the
General Electric Company, Arlington, VA, 1977.

B. C. DeRose, “Software Reliability Survey and Analysis,” Technical Report TR-01917.30-01, Vitro Laboratories,
Silver Spring, MD, Oct 73.

International Business Machines, “Software Reliability,” Report 76-PS2-002, Manassas, VA, Dec 76.
—__,"Software Reliability,” a presentation to the Naval Material Command (Code 08E), IBM, Manassas, VA.

Dept of Defense, “Defense Management journal,” Volume II, Number 4, a special issue devoted to software,
Washington, DC, Oct 75.

International Business Machines, “Structured Progr ing Series, Vol V, Progr ing Support Library (PSL)
Functional Requirements,” Gaithersburg, MD, Jul 74.

Logicon, Inc., “AEGIS/CSGN Design and Imple tation Considerations for Computer Program Verification and
Validation,” AEGIS Technical Instruction, Number 1728, Merrifield, VA, Sep 75.

Dept of Defense, “Software Quality Assurance Requirements,” MIL-S-52779(AD), Washington, DC, Dec 75.
Naval Material Command, “Computer Resources Management Manual,” (Draft) Washington, DC, 6 Dec 76.

—, “Standard Shipboard Tactical Digital Processors and Program Language,” TADSTAND 1, Washington,
DC, May 73.

—, “Standard Specification for Tactical Digital Computer Program Documentation,” TADSTAND 2,
Washington, DC, Nov 74.

_, “Standard Requirements for Inter-Digital Processor Interface Documentation,” TADSTAND 3,
Washington, DC, Nov 74.

,“Standard Definition of Tactical Digital Systems,” TADSTAND 4, Washington, DC, Apr 72.

., “Standard Reserve Capacity Requirements for Digital Combat System Processors,” TADSTAND 5,
Washington, DC, May 72.

_, “Combat System Designs Employing Multiple AN/UYK-7 Processors,” TADSTAND 6, Washington, DC,
jun72.

, “Standard Shipboard Digital Display Consoles, “TADSTAND 7, Washington, DC, Jul 74.

AT




i Mr. Willis |. Willoughby,
Jr., is Assistant Deputy Chief of
Naval Material for Reliability
and Maintainability. He came to
the CNM command in August
of 1973 at the request of ADM
Isaac Kidd, to establish the poli-
cies and programs necessary to
bring about an improvement in
fleet hardware reliability and maintainability. Prior to joining the
Navy, Mr. Willoughby was the Director of Apollo Reliability,
Quality, and Safety for the National Aeronautics and Space
Administration’s Office of Manned Space Flight, Apollo Program
Office. He has 22 years of experience in basic engineering,
systems R&D, engineering research, and engineering and pro-
gram management.

As part of NASA’s program management, he was responsi-
ble for the establishment, coordination and integration of poli-
cies and plans for both the Apollo Program Office and the
NASA/OMSF field centers. His organization was responsible for
overall safety and reliability of the Apollo program. This respon-
sibility was carried out through the review and integration of
space vehicle system designs which encompassed 9 major
propulsion stages, 106 subsystems and 6 million components

Mr. Willoughby was also associated for a number of years
with a consulting engineering firm as Program Manager of
Special Projects Programs and Senior Engineer. He holds mem-
bership in ASME and AIRE and is the author of numerous
technical papers and reports. He is also the recipient of the
Apollo Group Achievement Award and the NASA Exceptional
Service Award.

He received a B.S. degree in mechanical engineering from
the University of South Carolina in 1952.

} 70 : Defense Systems Management Review




DEFENSE SYSTEMS MANAGEMENT REVIEW

The Defense Systems Management Review is publishe@d quarterly by the Defense Systems Management College, Fort

Belvaoir, VA 22060. Publication of the Review was approved by OASDIPA) May 18, 1976.

The views expressed in the Review are those of authors and not necessarily those of the Department of Defense or the
Defense Systems Management College. Expression of innovative thought is encouraged. Unless copyrighted, articles
may be reprinted. When reprinting, please credit the author and the DSM Review. Two cop es of reprinted material
should be forwarded to the Editor.

Distribution of this publication is controlled. Inquiries concerning distribution, or proposed articles, should be addressed
to the Editor.

The Review is available in microfiche or paper copy from the National Technical Information Service, 5285 Port Royal
Road, Springfield, VA 22151, and the Defense Documentation Center (DDC), Cameron Station, Alexandria, VA 22314.
When ordering from DDC specify the volume and issue number of the DSM Review desired and the date of the issue.

71

T T




CALL FOR MANUSCRIPTS

Manuscripts in the following general areas are of particular interest to the Review’s
readership and are invited at all times for editorial consideration:

Views of professionals on current and pertinent defense systems acquisition and
program management

Problems confronting Program and Systems Acquisition Managers
Analysis of approaches to problem solution
Past experience of responsible authorities

Defense systems management perspectives of the US Congress, the military serv-
ices, the media and multinational programs

Within these contexts, the next few issues will emphasize two respective themes from
which perspectives manuscripts will therefore be especially welcomed:

Technology Transfer and Government Patent Rights

Joint Program Management

To share your knowledge and expertise, contact the Managing Editor, Defense Systems
Management Review, Defense Systems Management College, Fort Belvoir, VA 22060.
Telephone: (703) 664-5082; AUTOVON 354-5082.

72

Defense Systems Management Review




DEFENSE SYSTEMS MANAGEMENT REVIEW

Vol |, No. 6

DISTINGUISHED ASSOCIATE EDITORS

The Honorable Norman R. Augustine Mr. John M. Malloy

Vice President for Technical Operations Vice President, Administration
Martin-Marietta Aerospace Teledyne Ryan Aeronautical

General Jack J. Catton, USAF (Ret) General Samuel Phillips, USAF (Ret)
Vice President, Operations Vice President and General Manager
Lockheed Aircraft Corporation TRW Energy Production Group
Professor john W. Fondahi The Honorable Leonard Sullivan, fr.
Stanford University Consultant

Mr. Eric Jenett Mr. John J. Welch, Jr.

Vice President Senior Vice President

Industrial Civil Division Vought Corporation

Brown & Root, Inc.

Mr. ). Ronald Fox
Lecturer, Harvard University
Graduate School of Business Administration

73




DEFENSE SYSTEMS MANAGEMENT COLLEGE

Rear Admiral Rowland G. Freeman Ill, USN
Commandant

Colonel John B. Hanby, Jr., USA
Deputy Commandant

Captain Ronald M. McDivitt, USN
Director, Department of Research and Publications

DSM REVIEW EDITORIAL STAFF

Managing Editor
Vacant

Mr. Robert W. Ball
Senior Editor

Mr. John A. Waring
Writer-Editor

Mrs. Susan Pollock
Ms. Jeanette Tippie
Editorial Assistants

Mr. Richard B. Brown
Graphics Chief
Nicholas W. Kunz, SP-5, USA
Eduard H. Boyd, SP-5, USA
Graphics Designers
PHOTOGRAPHIC CREDITS

Robert F. Holzhauer, PH1, USN
Official DSMC Photographer

“ U, S. GOVERNMENT PRINTING OFFICE 1978 ==724=048

i 74 Defense Systems Management Review

sty - b . R e -







