
F AO—A(,bl 21.o MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE—ETC F/S 9/2 1LA UOHATO RY FOR COMPUTER SCIENCE (voRwrn..Y PROJECT MAC) PROQRESS——ETC IIJ)
AUG 78 M L DERTOUZOS N000IN—75—C—O66t

UNCLASSL1 I~~ LCSPR—13 Is~~Iflflfl Ifl tonono ;~r.~rm~I

flRflIQEi~flflflflflQ ’mODi.. S

1.0 :~
~~~~: ~~~~~~

_______ L

~ 
I QI I~~

___________________

I .25 I 4

V V



c7~L.
LABOR ATORY FOR
COM PUTER SCIENCE TECHNOLOGYi-
~
ii
~
--1

Progres s Report XIII
~ C_) JANUARY - DECEMBER j9~5

1=

wJ’

c

~~~~~~~~~ih.ig c ] x ~..r~u~.t he’s b&,n appro
I fo r public rE . c: : and sale; its

is unhrniaed.

N

545 TECHNOLOGY SQUARE, CAMBRIDGE , MASSACHU S 02 1 39

78 ii 0 042
- — - —.~~~~~~. -~~~.— — - - --- ----- - ~~~~

__
~~J_

___ ”_-_~

—‘ ‘
~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ 2~ ~~~~~~

SECURITY CLAS$,F~CATION OF THIS PAGE (Wli .n O.• Ent.v•d) 
___________________________________

READ INSTR UCT I ONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
I REPORT NUMSER 2 aovT ACCESS ION NO. S. RECIPIENT’S CATALOG NUMBER

Progress Report XIII  (13)t 
______________________

5. TYPE OF REPORT & PERIOD COVERED
Arpa-DODE’

~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Progress Report 1/75-12/7Progress Report 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _January - December

____ 
NUMB ER

7. A uTH OR(.) 6ON~~1”i~~~ ~~~ ifl~ ft ~~~~~~~~“ ( J

J,~aborat~~ry fo~~~omputer Science Par ti a ~~~ J~~.O,ø14-75-C—M661J
M. L.)Derto

— 

uz
~!/ 

Director ork rder No.~~~~95

5. PERFORMING ORGANIZATION NAM E AND ADDRESS 10. PROGRAM ELEMENT . PROJE CT . TASK

LABORATORY FOR COMPUTER SCIENCE AREA S WORK UNIT NUMBERS

(formerly Droject MAC I
Massachuse~ ss institu1e of Technology545 Technology Square, Cambridge, M~& 0213 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

II. CONTROLLING OFFICE NAME AND ADDRESS ~ I ~ ATU — 1

Advanced Res arcb Pro
~~rt1T1~nt o~ D9tense

Jects Ag~~~y(//)J~ Aug~~~~~ ~~78 /
son Biva . “_.—~~~

-.-_--—_ T NUMU~~RQP~~~ A~iO~~

Arlington , Va . ,  22209 106
4. MONITORING AGENCY N A M E  S AODRESS(ttdttf.r.nl Iron, Conerottlng OIIIc.) IS. SECURITY CLASS. (ol fAin r.po, )

Office of Naval Research unclassified
Department of the Navy
Information Systems Program IS.. OECLA SSIFICAT ION/DOWN GRAO ING

SCHEDULE
Arlington ,_ VA__22217 _______________________

I5. OtSTRIBUTION STATEMENT (of thin R.porf)

Approved for public release ; distr~~~~tion unlimited

~~~~~~~~~~~~ ~~9 7. DISTPIBUTIO N STATEMENT (at I?,. eb.lracf .rt.r.d in Block 20, i i  dl I lsr in t f ro m R.port)

15. SUPPLEMENTARY NOT ES

IS. KEY WORDS (Conti nu. on r.v•r.. .Sd. If n.c.. .n,y .,d Id.nffty by block n~~,b.r)

Real-time Computers Computer Languaqes Morse—Code
On-line Computers Computer Networks Knowledge-Based
Multi-Access Computers Information Systems Systems
Dynamic Modelling Programming Languages Complexity
Computer Systems Computation Structures

Automata Theory
20. A$$T*AC4 (Continu• on r•vn,i. .id. It n.c. ...ry ond id.n1if~’ by block niaib.r)

Annual Summary Report of progress made at the Laboratory for
Computer Science under this contract during the period
January-December 1975.

- I

DD i ~~~~~~
1473 EDITION OF I NOV 63 IS OSSOLITI unclassified 5~’ ~ ~/ “S/N 0102•O I4~ 6609

SECURITY CLASSIFICATION OF THIS PAGE (WS~.ri 0.1. tfl I.rnd)

- ~~~~~~~~~~~~~~~~~~~~~ —

=
I —

Work reported herein was carried out within the Laboratory for Computer Science
(formerly Project MAC), a Massachusetts Institute of Technology Interdepartmental
laboratory. Support was provided by the Advanced Re,øs,eh Projects Agency of the
Department of Defense, under Office of Naval Research Contract N00014-75-C-0661.

Reproduction of this report, in whole or in part, is permitted for any purpose of the

I
United States Government. Distribution of this report Is unlimited.

4

LÀ .~~~~~~ .

- ~~~~~~~~~~~ ‘~~~~
‘ ‘—-_- -.— .— ,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ 
.-..—--.,.—_ _—.—.

t

LABORATORY FOR COMPUTER SCIENCE
(formerly Projec t MAC)
PROGRESS REPORT XIII

JANUA RY - DECEMBER 1975

LABORATORY FOR COMPUTER SCIENCE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CAMBRIDGE, MASSACHUSETTS 02139

I ~~~~~ 
- -

~~~~J ~~~~~~~~ 
h

- I J
/ II.S

,

~

1 ~~~~~~~~~~~~~~~~ I
- - I r~TS I

i ~~~~~~

—

H
~~~~~JJ

_ _ _ _ _  _ _ _ _ _  
_________________________________ 

_ _ _ _ _ _ _ _ _ _ _— - ~— - L ... U -



- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—. —,,-

~

~~~~~~~~~~~~~ 

TABLE OF CONTENTS TABLE OF CONTENTS

TABLE OF CONTENTS

INTRODUCTION 1

LABORATORY FOR COMPUTER SCIENCE ADMINISTRATION 3

COMPUTER SYSTEMS RESEARC H GROUP 5

A. Introduction 7
B. The Information Sharing Kernel Design Project 7
C. Other Activities 13

DATA BASE SYSTEMS GROUP 19

A. Introduction 21
B Self-Organizing Date Bases 21
C. Error Detection 24
0. Distributed Date Bases 26

DOMAIN SPECIFIC SYSTEMS RESEARCH GROUP 29

A. Introduction 31
B. Domain Specific Systems 31

KNOWLEDGE-BASED SYSTEMS GROUP 41

A. Introduction 43
B. Roster of Projects 43
Appendix 47
A. Protosystem 1: An Automatic Programming System Prototype 47
B. A Model of the Program Writing Process 47
C. Efficiency Enhancement In System Development 49
D. The Development of Protosystem 1 53
E. The Protosystem I Data Processing System Model and the System

Specification Language 53
F. The Translator arid the Data Set Language 56
C. The Design Criterion end the Job Cost EstImator 57
H. The Question Answersr 57
I. The Optimizing Designer 59
J. Code Generation 63
K. Conclusion 63



_________

TABLE OF CONTENTS TABLE OF CONTENTS

MATHIAB GROUP 67

A. Introduction 69
B. The MACSYMA Consortium Machine 69
C. Matrix Inversion Algorithms 69
0. Polynomial Decomposition 71
E. Definite Integration of Special Functions 71

PROGRAMMING METHODOLOGY GROUP 77

A. Introduction 79
B. The CLU Language/System 79
C. Structured Handling 81• 0. Specifications for Data Abstractions 85

PROGRAMPV~NG TECHNOLOGY GROUP 95

A. Introduction 97
B. Expert Knowledge Applied to the Morse-Code Domain 97
C. Message System 105
D. OMS Activities 108
E. English Parser 110

LABORATORY FOR COMPUTER SCIENCE PUBLICATIONS 115 

- ~~~~~~~~~ 
~~~~~~~~~~~~~~ ~~~

-• - .
~~~~

-- -



rp—. ‘
~~~~~~~~~~~~~~~~~~~ T’~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I

INTRODUCTION 1 INTRODUCTION

INTRODUCTION

This annual progress report to the Advanced Research Projects Agency (ARPA) of
the Department of Defense describes research performed at the M.I.T. Laboratory for
Computer Science (formerly Project MAC), funded by that agency and monitored by the
Office of Naval Research during the perIod January 1-December 31, 1975.

The Laboratory was organized at M.I.T. in 1 963 to conduct research In Time-
Shared Computer Systems. Contributions of L.C.S. include the Compatible TIme-Sharing
System (CTSS), Multics, the mathematical-exper t program MACSYMA, and a variety of
programming languages, systems and techniques. The research descrIbed In this report
reflects the current research directIons of the Laboratory, oriented to promising areas as
well as pressing technological needs of the computer science field.

During the reporting period (January 1 975-December 1 975), L.C.S. personnel
entailed approximately 295 people, including 39 faculty, 68 research and support staff
members, 111 graduate students, 69 undergraduate students, end 8 visitIng researchers
and scientists.

‘
~The main focus of the research reported herein has been In the reduction of the

substantive and increasing costs associated with the generation, maintenance and
documentation of programs. In particular, work carried out by the Knowledge-Based
Systems group focused on the identification of a very high level language In which
inventory control programs are specified, and on the associated compiler that translates
such a program to PL/ 1 code. In the Domain Specific Systems Research group research
commenced on the programming of microcomputers from high-level languages for such
purposes as the automatic control of physical processes , maintenance and
Instrumentation. Developments in the Mathlab group have led to formation of the
MACSYMA consortium of users. ~

The Programming Technology group concentrated Its research on the development
of a Morse Code system. Through this system the group seeks to understand and
develop techniques for embedding a great deal of structural knowledge (In this case
about Morse Code) into computer programs.

The Computer Systems Research group focused Its research on the analysis and
certification of large systems using the MULTICS systems as Its principal model end
laboratory. In addition, work was Inflated on a local-ne twork that will link the
laboratory’s computational resources. The Programming Methodology group continued the
development of the structured programming language CL.U which has a modular
construction that facilitates the representation of abstractions. Finally, the newly formed
Data Base group has begun work on improving the efficiency and accuracy of very large
data bases. -

L __
_ _ _ _ _ _ _ _ _ _ _ _ _

I:
— ~ •~~~-~~~~~~~~ U~-

- —~~~~~~~~~~-—---—- •. - - - — Li~

—~~~~~~~
—-

~
— --- ‘-. — - r ~~~~~—--.----—~

. • .
~~~~~~~

-
~~~~~

---. - --
~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I 
~ NTROOUC lION 2 INTRODUCTION

Acknowledgements

Assembly and compilation of this report was done by Paulyn HeInmilIer. Illustrations
were done by Allison P1 att.

~~~~~~~~~~~~~~~~~~~~~~ 
•
~~~~~~~~~~

-
~ — - — ~~~~~~~~~~~~



_________________- 
__________ ~~~~~~~~~~~~~~~~~~~ ,--‘,.-.~~~~~ -.--.•--•.-- -

_~~~~~~~~~~~~~~~
-.~~~~~ • . ,  

~~~~~~~~~~~~~~~~~ ~~~~~~ 
- ,

~~~~~~~ ~~~

.— --.- .

~~~

. . •

INTRODUCTION 3 INTRODUCTION

ADMINIST RATION

Academic Staff

M. L Dertouzos Director
J. Moses Associate Director

Administrat ive Staff

M. E. Baker Administrative Assistant
L C. Daniels Librarian
H. S. Hughes Administrative Services
C. P. Kent Assistant Fiscal Officer
T. L Llghtburn Fiscal ConsuIt~nt
C. W. Oro Fiscal Officer
A. A. Platt Information Services

• 0. C. Scanlon Administrative Officer
C. L Wallace Purchasing Agent

Support Staff

C. W. Brown N. K. Martucci
1. S. Cavallaro E. N. Roderick
P. Heinmlller T. Sealy
J. Jones R~ Varjebedian
0. Kontrimus

~~~ 

• 1



..-
~~—- ,

~w.- —
~~~--~~~~~ ~~~—- 

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— j

-p

C. S. R. GROUP 5 C. S. R. GROUP

COMPUTER SYSTEMS RESEARCH

Academic Staff

J. H. Sal tzer, Group Leader 0. 0. Redell
0. D. Clark M. D. Schroeder
F. J. Corbato L Svobodova
C. A. Ellis

Research Staff

N. C. Federman. K. T. Pogran
R. K. Kanodia 0. M. Wells
R. F. Mabee

Graduate Students

A. J. Benjamin P. A. Janson
T. Bloom S. T. Kent
E. C. Ciccarelli A. W. Luniewski
R. J. Feiertag A. H. Mason
H. C. Forsdick W. A. Montgomery
R. N. Frankston D. P. Reed
H. J. Goldberg N. Shibuya
A. R. Huber V. L Voydock
0. H. Hunt

Undergraduate Students
‘

~ C. R. Davis 1. B. Lake
R. S. Gale R P. Planalp
0. L Gif ford G. J. Rudisin
B. M. Grant S. A. Swernofsky -•

Support Staff •

P. G. Heinmiller C. Saner
J. P. Knowlton N. F. Webber
V. M. Newcomb —---- --~~~~. — -~~ 

—

_ _  

~~ PJai
r



___________ ~-~~~~~~~~~~~
- 

~~~~~~~~~~~~~ .~~~
-. -.-. . • _____

C. S. R. GROUP 6 C.S~R. GROUP

Guests

N. A. Adleman W. Maczko
S. E. Estes

‘I
I

I

-~~ ~~ .—•-- .-- ..-.--.-.. — -—•- ——- T T ~~~T~~~ ~~:~~~~
—:

~~~~~~
- —- - ----- -

~~

C. S. R. GROUP 7 C. S. R. GROUP

COMPUTER SYSTEMS RESEARCHr
A. INTRODUCTION

The Computer Systems Research Division of the M.I.T. Laboratory for Computer
• Science completed several key parts of its information sharing kernel design project

during 1 975. Several other network-related activities were also accomplished. These
activities are described separately, in the two following sections.

8. THE INFORMATION SHARING KERNEL DESIGN PROJECT

Three years ago, we entered into a project to perform engineering studies on
• strategies for simp lif ying the design of the resource-sharing and inforrn8tion-sharing

kernel of a full-scale computer system, with the goal of making the security aspects of a
system simple enough that certification of correctness might be possible. Multics is the
laboratory in which these experiments have been performed. This year, significant
progress occurred on several key aspects of this work:

1. Development of the use of type-extension as a strategy for systematic design of
the kernel itself

2. Organization & processor rnultipiexing in two layers, with memory multiplexing
• sandwiched bet *een, to urtangle these two complex mechanisms.

• 3. Organization o’ rn,~mor~ mu~tip~eiung in identified parallel processes rather than in a
central struc t ure

4. Organization of p’ocess initiation as an unprivileged operation controlled by domain
entry mechanisms

5. Development of a “ew model of process synchronization, called the Meventcount
model, that leads to simpler coordination algorithms and minimizes unnecessary
communication, a featur e important to security.

The cumulative impac t of these projects on the structure of a system kernel,
together with a variety of other ideas currently being explored, appears to be significant
in that the kernel becomes modular, ordered, and thereby incrementally verifiable.

This year, the project’s activities are of a different nature than those reported in
previous years. Earlier reports concentrated on reducing the size of the security kernel
by removing unnecessary functions, while this year’s work has concentrated on better
understanding of how the remaining, essential functions might be more systematically
organized. Two key ideas have led us to this understanding. First, the use of abstract

________



r i~~:~~~~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- • -,. -- -

~~~
-.

C. S. R. GROUP 8 C. S. R. GROUP

types as a methodology for choosing and specifying the interfaces inside the kernel (as
pioneered in HYDRA, CLU, and SIMULA) gives a useful and clear decomposition of the
kernel. Second, the use of processes within the kernel to multiplex the resources used
in implementing objects of abstract type gives a much simpler control structure inside
the kernel.

Our basic approach to simpl if ying the structure of the kernel is to decompose its
• design and implementation into modules. By structuring the decomposition into modules

• correc tly, we hope to obtain a system in which understanding or verifying the system as
a whole requires little more effort than understanding or verifying every module
separately. The problem with obtaining such a well-structured decomposition of the
system is to find a way to decompose the system into modules that are internally simple
and have simple interactions with the other modules of the system.

Simplifying the interactions among modules is aided by two techniques. First, the
method by which interacting modules communicate can be simplified. Philippe Jansori, in
his Ph.D. thesis, has categorized modularizations into two classes~ strict modularization,
in which modules interact with another module only by invoking procedures in the other

• , module, and weak modularization, in which modules may communicate via shared data
bases, By designing a system in terms of strict modules, it is much simpler to define the
effec t of a particular intermodule interaction. The second technique for simp l i f ying
interaction is to define a partial ordering of modules based on functional dependency.
Module A depends on module B i f B must correctly meet its functional specification in
order f or A to meet its functional specif ication. If all dependencies are uni-directional,
and form a partial ordering, then it can be quite simple to verify the correct operation of
all modules. One starts with modules that are assumed to be correct (for example, the
hardware) and proceeds to verify all modules by induction on the partially-ordered
structure.

1. Abstract Types as a Structuring Tool

A structuring methodology that leads to both a strict modularization and a
modularization that is partially ordered in functional dependency is the type-extension
mechanism for creating abst ract types. An abstract type is a collection of abstract
objects and operations on the abstract objects. The specification of the properties of
and interface to the objects of the type is independent of the actual storage
representation of the objects or implementation of the operations in terms of the storage
representation. The only way to manipulate objects of the type is to call on the
operations of the type. Thus a modularization based on abstrac t types i~ strict. Types
may be implemented in terms of objects of other types. This results in a uni-directional
functional dependency.

~

—--- - —- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -. 
— —•-------- .---- ---- --- — 4 ~ lJ

-

~~~~~~~ r ~

C. S. R. GROUP 9 C. S. R. GROUP

Both Janson and David Reed have investigated the use of abstract types in the
r design of the kernel of an operating system such as Multics. In an operating system, the

Implementation of abstract types and the process of type extension cause difficulties not
present in abstract type concepts as implemen ted in programming languages such as CLU.
The major difficulty arises from scarci ty of memory and processing resources to
Implement objects and operations, requiring multiplexing of those resources. Using the
abstract type concept to structure the multiplexing functions has led to some now
Insi ghts into the structure of operating systems and the mechanism of type extension. In
contrast , the HYDRA system, which supports abstract types outside the kernel, does not
use abstract types in the multiplexing of memory and processors to provide virtual
memory or virtual processors.

Janson has defined a new model of abstract types to be used in the design of the
ksrnel of the system where multiplexing of objects is the key problem. The primary
difference between thi s model and older ones is that he explicitly recognizes the
limitations on the supply of low-level resources, such as primary memory and processor
resources. He also recognizes the multiplexing function, by explicitly including In his
model a time-varying mapping between objects of abstrac t type and the objects used in
their representation.

2. DIsentangling Processor and Memory uItlp~ex~ g

An important result of our work on structuring the kernel Is actually disentangling
the interdependency between processor and memory multiplexing algorithms. This
interdependency results from the need to provide a large amount of memory for tables
used in implementing virtual processors for user computations end the simultaneous need
to provide and control the processing power used to Interpret the virtual memory
algorithms

The technique for breaking this interdependency Is to divide processor
multiplexing into two levels The fi rst level of processor multiplexing provides a small
set of virtual processor s, called level I processors, that have sufficient functionality to
implement the virtual memory algorithms. Thesti virtual processors access primary
memory in exactly the same way that physical processors do, through address translation
hardware. Any attempt to access an object not in primary memory Is reflected as a
fault, just as in the real processor. The virtual memory software Is implemented in terms
of these level I processors. Andrew Huber has proposed a design for virtual memory
Implementation that uses multiple dedicated virtual processors to perform Its functions.
The second level of processor multiplexing takes a subset of the level I virtual
processors and multiplexes them to provide a large set of level 2 vIrtual processors,
used to run user processes. The data bases of the level 2 processor multiplexing
algorithms are implemented In terms of virtual memory objects. The processor resources
for the level 2 manager algorithms are provided by three dedicated level I processors.

- 
-
~~~ 

— S-
~~~~ — 1.4



C. S. R. GROUP 10 C. S. R. GROUP

3. Using Processes as a St ruct uring Tool

As a result of this two level design, level I ‘.irtual pr~ev’~sor s c~in be dedicated to
handle! management of many multiplexed operating system resources L evel I processor.
are relatively cheap compared to real physical processors , so ckdicating them gives some
of the ef f ect of dedicating a physical processor , without the cost.

St ructuring the kernel as a set of processes running on dedica ted level 1
processors is another powerful tool for structuring the kernel . The opposite approach,
used in operating systems like Multics , TE NEX , and OS/360 , is to Implement kernel
operations as subroutines called by users of those operations. Let us call the f irst
approach the multi-process superv isor approach, and the second the distributed
supervisor approach.

The multi-process supervisor approach simplifies the himdI,n~ of types built of
multiplexed resources by centralizing the operations that rm~nage those resources in one
or mor e dedicated processes . In such a design, a type manager process is isolated from
the processes that request operations on the resources. Consequently, interferenc e with
the implementation of the type by processes using the type is pr ecluded.

One advantage of implementing a type manager as ~i pr ocess is that it need not
share a data base with other instances of itself acting in par allel. Only the type manager
process needs access to the data structures used in managing the objects it implement..

• Ihe sequentiality imposed by interlocking in the distributed sup~’r~ i~.or i~’. achieved by
using the sequentielity inherent in the queue of the type manager process. The
sequence of actions that may be performed on objects is exphcitly represented In the
programs of the type manager process, rather than Implicitly in the Io~:king protocols.

• Another advantage of implementing a type manager as a p r i ~.’~ on a dedicated
processor is isolation of its environment and control point f r ~rn ,~~~ ,deut.~l ,o, intentron~l)
interference. As noted above, the environment of a type rmin.~ t’r e . ’ uting on its own
dedicated processor need not be managed by the same ni~innger tha t performs th.
complex operations needed to manage user process environments. This simplifies the
dependency st iucture by eliminating environment dependencies Similarly, the
multiplexing of pr ocessor resources that provides resources to type managers need not
include the complex ity of the resource controls used to limr ’ user pr ocess resource
usage On the other side, the ImplementatIon of user p ~.icess environments end
scheduling algorithms for user processes need not take into account the special
requirements of user pr ocesses when executing kernel algorithms (such as protecting th.
process from destruction while in the kernel or protecting the kernel type manager
environment fr om tampering). In any case, taking these requirements into account would
probably result in a cyclic dependency.

_____ t



!PIr
~ ~~~~~~~~~~~~~~~~~~~~~~ 

-.--

~~~

-—-.-—-

~~

. — — — - . -- - -•—

~~~~~

C. S. R. GROUP 11 C. S. R. GROUP

The allocation of kernel type managers to dedicated level I processors also aids
the principle of least privilege. Each type manager need have only the privileges
necessary to access its own data bases. This principle can be enforced by restricting
the environment (by controlling the set of descriptors in the descriptor segment) of the
type manager processes. In a dis tributed supervisor , on the other hend~ the kernel
operations have access to more objects than they need. For example, in the present
Multics, every kernel operation has access to all objects in the environment of the user
process that invokes it. An operation that maps a page into primary memory has the
capability of simultaneously copying data from one user object to another. Thus, in a
distributed supervisor , each supervisor operation must be inspected to see that it does
not do additional operations extraneous to its function. The multi-process structure
provides a natural mechanism for mutual protection.

Finally, the multi-process structure helps simplify the structure of the system by
avoiding the need to specify unnecessary ordering constraints. An example of this can
be found in the desi gn of a mul ti-process page control by Huber. The page removal
algorithm is only indirectly coupled to the algorithm that handles page faults. Each page
fault requires using up a page frame in primary memory, but waiting until a page fault
occurs to write pages out of primary memory would result In unnecessary delay. To

• avoid this delay, the pages that are to be written should be located and the write
started by a predictive algorithm, which is very hard to fit into a page manager that is

• invoked only on each fault. A much better structure would be to implement the page
removal algorithm as a process that controls the rate of removal of pages in a way that
is only loosely coupled to the fault sequence. The page removal algorithm can then
easily be designed to run at the optimal times, rather than being constrained to execute
only at page fault time. This use of processes also exemplifies the principle of least
privilege, because the faulting process need never touch a page other than the one It
requires (and presumably has access to). In a distributed su~~rvisor, where removal is
done at fault time, the fault handler doing the removal must touch pages that the user

• process should not have access to.

4. ~~pact on the Kernel Design Project

The work of Janson , Huber , and Reed has led to a fairly cohesive and
implementable kernel design. Janson and Reed have worked out a structuring of the
Multics kernel into modules that manage one abstract type each. The use of processes
to structure the kernel has been investigated by Huber and Reed.

The status of the use of these ideas in the design of a Multics kernel varies.
Huber implemented and tested his use of processes in page control in a special version
of Multics. Reed has proposed a detailed design for the two levels of processor
multiplexing. A test implementation of part of this design is in progress. Jarison has
proposed a very detailed structure for the virtual memory management portion of the
Multics kernel.

~~~~~~~~~~~~~~~~ 
. - •. - •~

.— - — ..—-—- — -.-- . —
~~~~~~~~~~~~~~~~~~~~~~ i~~:_* ~~‘~~~~: 

• 
• ~~~~~~~~~~~~~~~~~~~~~~



- - — .-- -
~~~~~~~~~~~~~~~ ---.-. —. .-- ---- ,-- -~~ •~~~~~~~~~_~~~~~~~~~~~~~~~~~ • ,~~~~~~ •

C. S. R. GROUP 12 C. S. R. GROUP

5. Related Act ivities

In addition to the closely riterrcLited ac tivities just mentioned, two other activities
in the kernel desi gn project either were complet.d or achieved significant progress
during the year.

a Rajendr a Kanodia and Reed .ompleted an internal repor t describing the use and
implementation of the “t~ e’ntcount” pr ocess coord ination model. Basically,
eventcounts are semaphor e like coordination var iables that ue constrained to take
on monotonic~.fh, int r i~.in~ ~.alues Coordination of pat al~el activities is achieved
by having a pr ocess wa it for an cventcount to attain ~ given .alue; one process

• signals another by n t re menting the ~aIuo of en eventco unt. Any coordination
problem for which a solution has been developed using ~.enrnphores can be easily
conver t ed to a solution using eventcounts In addition, many eventcount solutions
seem to have the pr operty that most eventcounts are wr it t e n into by only one
process , this reduction in wri te contention has benefi c ial e f fects on security
problems and on coor dination of pr ocesses separated t~y a transmission delay, as In
a “distributed” computer system Eventcounts provide a solution to the “confined
readers ” problem, a version of the readers-writer s coordination problem in which
readers of the information are supposed to be confined in sL~h a way that they
cannot communicate information to the wr i t e rs . Fina lly, for the class of

-

. synchroniza tion problems encountered inside an operat ing system kernel,
eventcounts appear to lead to simple, easy-to -ve rify solutions

b. Warren Montgomery’s thesis and trial implementation establishes that it is practical
to remove many of the traditional constraints on process creatio n without creating
problems for securi ty or resource administration The concer n her e is that when a

• process is created, e g., in response to a user’s dial-up and request for service,
the designation of the principal identifier for the new process must be done
correc tly, or else all access control will be worthless l or this r& ason, process—
creating programs of the “network logger ,” the “answer ing service ” end the
“absentee user manager” have been considered sensitk e, privileged programs.
Montgomery ’s approach ~s to ellow any process to request c re a t ion of other
processes without restraint on principal identifie r s proposed; control is provided
by associa ting with every principal identifier a designated starting procedure for
the new process. This starting procedure checks to see if proper identification
has been submitted by the requestor of the creation. By decentralizing this check,
making it the responsibility of the concerned party, a strategy parallel to that of
entering a protected subsystem (at a designated star ting point) has been created.
The result is to remove from the security kernel several large programs
previously thought to require certif ication.

With the completion of the activities described above , the majority of work
planned for the kernel design project is finished. We expect that the coming year will

- .• • . ~~~~~-.. -- .--

~~~~~

.,

~

- ,-

~~~

-

C. S. R. GROUP 13 C. S. R. GROUP

see the completion of the remaining research tasks for this project, and a final report;
activity will continue, however, to provide support and technology tranfer to the larger
Air Force/Honeywell project of which this work has been a part.

C. OTHER ACTIVITIES

The division carried out several other activities, which can be loosely described as
experiments in issues of intercomputer network connection~
1. National Software Works

Douglas Wells has worked to help define and criticize the protocols that underly
the National Software Works , and also to design and implement the software required to
make Multics a participant (a “tool-bearing host”) in the National Software Works. This
activity has proceeded effectively, and we expect to have Multics participate in early
demonstrations of NSW capabilities. The NSW requirements have been met with
minimum modification to Multics , although the opportunity was taken to slightly
remodularize the Multics ARPANET Network Control Program and the libraries of network
support programs to provide more effective support of NSW. One interesting result of
this work (which involves judicious replacement of library routines) Is that most Multics
programs can be expected to work as NSW “tools” with little or no modification.

2. MuILicsJARPANET Technology Transfer

This activity concerns the software developed at M.I.T. to attach Multics to the
ARPANET; the objective is to have Honeywell make this software a standard product
option of the Multics system. During the year , meetings were held with several

• interested parties concerning attachment of Honeywell’s Phoenix Multics site to the
ARPA NET, and further discussions were held regarding the amount of effort required to
make the software into a standard product. Progress has been slow but movement is
perceptible. Also , during the year, a few minor changes were made to the software to
keep it in step with changes made to the rest of Multics.

3. Local Network

A project was begun during the year by Kenneth Pogran to design a local network
to interconnect the several PDP-lO, PDP- l 1, and Multics computers used by the
laboratory, and to provide a “gateway ” to the ARPANET so that computers at the
laboratory that are not ARPANET hosts can access the ARPANET. The first draft of an
implementation proposal for the local network was completed at year’s end, and is
expected to be available early in the corning year.

Two alternative technologies were considered for the network: a ring network,
such as that developed by 0. Farber at the University of California at Irvine for the

~~~~~~~ ~~~~~~~~~ — —.- ~——_ — =—~~~— — —— ———,
~~

.- .“ 
~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~ ..r~’ ...


_ _ _ _ - ,.— —
~~~~~~~ ~~~~~~~~~~~~ --~~

-._.----- - .

~~~~~~~~~~~~~~

‘
~1

C. S. R. GROUP 14 C. S. R. GROUP

Distributed Computing System, and a packet broadcast net, such as the Ethernet
• developed by R. Metcalfe and D. Boggs at the Xerox Palo Alto Research Center. We

have concluded that nearly identical function is provided by the two technologies, and
have elected to implement a version of the packet broadcast net using host interface
hardware containing packet buffers , introducing the concept of a “buffered packet
broadcast net.” This concept was first suggested by R. Greenblatt of the M.I.T. Artificial
Intelligence Laboratory. It has been our goal to design the network hardware Interface
seen by a host to be as independent as possible of the final choice of underlying network
technology, making it possible to adopt some other technology in the future, If
appropriate.

Protocols for use with the network are being devised and reviewed at the present
time. Another goal of ours has been to design the network and its protocols so that they
can cover the needs of an organization the size of M.I.T., which could potentially involve
computers numbering in the hundreds, and terminals numbering in the thousands. Our
current thinking along these lines is to organize a campus-wide network as a group of
interconnected subnetworks. Our design will, in effec t, make the laboratory’s network
the first subnetwork of this future campus-wide network.

A third goal for the local network is to eliminate the need for the laboratory to
have six or more separate ARPANET attachments and an ARPANET TIP. Purely local,
intra-laboratory communication should not burden our ARPANET IMP end TIP, as It does
today.

- ~~~~ .-._ • -.--
~~~~~~~~~~~~~~ -.--_—~ —-~~ -..- 

.._—--_ --w .
— -

~~

.-. --.---_- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

,.

C. S. K. GROUP 15 C. S. R. GROUP

Publications

I. Pogran, Kenneth T. “Network Users’ Supplement to the Multics Programmers’
Manual.” (Initial Issue) M.I.T., Laboratory for Computer Science, Cambridge, Ma.,
January 1975.

Theses Completed

1. Bratt, Richard. Minimizing the Naming Facilities Requiring Protection in a Computer

~~~~~ M.I.T., Laboratory for Computer Science, LCS/TR- 156. Cambridge, Ma.,
1975.

2. Rudisin, Gerard. “Multics Implementation of a Server f or the ARPANET RSEXEC
Protocol.” unpublished B.S. Thesis, M.I.T., Department of Electrical Engineering and
Computer Science, 1975.

Theses in Progress

1. Benjamin, Arthur. “Improving information Storage Reliability Using a Data Network.”
S.M. and E.E. Thesis, M.I.T., Department of Electrical Engineering and Computer
Science, expected date of completion, September 1976.

• 2. Goldberg, Harold. “Protecting User Environments.” SM. Thesis, M.I.T., Department
of Electrical Engineering and Computer Science, expected date of completion,
November 1 976.

3. Hunt, Douglas. “A Case Study of Intermodule Dependencies in a Virtual Memory
Subsystem.” E.E. Thesis, M.I.T., Department of Electrical Engineering and Computer
Science, expected date of completion, September 1976.

4. Huber, Andrew. “A Multi-Process Design of a Paging System.” M.S. Thesis M.I.T.,
Department of Electrical Engineering and Computer Science, expected date of
completion, December 1 976.

5. Janson, Philippe. “Using Type Extension to Organize Virtual Memory Mechanisms.”
Ph.D. Thesis, M.I.T., Department of Electrical Engineering and Computer Science,
expected date of completion, August 1976.

6. Kent, Stephen. “Encryption-Based Protocols f or interactive User-Computer
Communication.” M.S. Thesis, M.I.T., Department of Electrical Engineering and
Computer Science, expected date of completion, May 19 76.



C. S. R. GROUP 16 C. S. R. GROUP

7. Montgomery, Warren. “A Secure arid Flexible Model of Process Initiation for a
Computer Utility.” MS. Thesis, M.I.T., Department of Electrical Engineering and
Computer Science, expected date of completion, June 1 976.

8. Reed, David. “Process Multiplexing in a Layered Operating System.” M.S. Thesis,
M.I.T., Department of Electrical Engineering and Computer Science, expec ted date
of completion, June 1 976.

9. Feiertag, Richard. “A Methodology for Designing Certifiably Secure Computer
Systems.” Ph.D. Thesis, M.I.T., Department of Electrical Engineering and Computer
Science.

Talks

1. Clark , David. “Engineering a Security Kernel for Multics. ” University of
Southwestern Louisiana, Lafayette, La., November, 1 975.

2. Clark, David. “Multics Computer Systems Research at Project MAC.” Honeywell
Information Systems Inc. Multics Symposium, Cambridge, Ma., December, 1 975.

3. Feiertag, Richard. “A Methodology for Designing Certifiably Secure Computer
Systems. ” Universit y of Illinois, Urbana-Champai gn, II., March, 1 975; Purdue
University, La faye t te , In , March, 1 975; University of California at Berkeley,
Berkeley, Ca., Marc h, 1 975; Stanford Research Institute, Menlo Park, Ca., March
1 975; IBM San Jose Research Laboratory, San Jose, Ce., March, 1975; University
of Utah, Salt Lake City, Ut., March 1 975; Cornell University, Ithica, N.Y., March,
1 975; City College of New York, New York, N.Y., April, 1 975.

4. Hunt, Douglas. “Implementing Extended Type Objects Using an Access Control List
Protection Mechanism.” Institute of Advanced Computation, Sunnyvale, Ce., June,
1 975; Stanford Research institute, Menlo Park, Ca., June, 1975.

5. Hunt, Douglas. “A Case Study of Intermodule Dependencies in a Virtual Memory
Subsystem.” Sperry Research Center, Sudbury, Ma., October, 1975.

6. Kanodia, Rajendra. “Eventcounts: A New Model of Process Synchronization.
Institute for Advanced Computation, Sunnyvale, Ca., August, 1975.

7. Pogran, Kenneth. “Introduction to the ARPA Network.” Communications Forum at
Honeywell Information Systems Inc., Phoenix, Az., July, 1975.

8. Pogran, Kenneth. “Multics and the ARPA Network.” Rome Air Development Center,
Rome, New York, May, 1975. 

_. • • - .. -_.-—. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~
..• . 

~~~~~~~~~~~~~~~~~~~~


C. S. R. GROUP 1 7 C. S. R. GROUP

9. Redell, David. “Proprietary Subsystems and Personal Computers.” IBM San Jose
Research Laboratory, San Jose, Ca , November, 1975.

10. RedeIl, David, and Clark, David. “Protection of Information in Computer Systems.”
Eleventh IEEE Computer Society Conference, Washington, D.C., September, 1975.

11. Saltzer , Jerome. “Computer Science at M.I.T.” University of Southwestern
Louisiana, Lafayette, La., November, 1975.

12. Saltzer , Jerome. Current Research on Information Protection.” Honeywell
Symposium on Privacy and Security, Phoenix, Az., April 1 975.

13. Saltzer , Jerome. Session Chairman. “The Impact of Technology on System
Organization.” AFIPS National Computer Conference, Anaheim, Ca, May, 1975.

Committee Memberships

Kanodia, Rajendra, National Software Works Protocol Committee

Pogran, Kenneth T., ARPA Message Service Committee

Pogran, Kenneth T., ARPA Committee on Computer-Aided Human Communication

Sal tzer, Jerome H., ARPA Secure Systems Working Group

Wells, Douglas, ARPA National Software Works Protocol Committee

--~~~~~~~~~~ . ~~~~~~~~~~~~~~~~~~

_____ —
~~~~~~~~~~~~~~~~~

—,---- I,— — -
~~~~ ~~~~~~~~~~~~~~ 

—.-- .
~ ~~~~~~~ -~.--._•-•..~~.- ~~~~~~~~~~~~~~~~~

DATA BASE SYSTEMS GROUP 19 DATA BASE SYSTEMS GROUP

• DATA BASE SYSTEMS

Academic Staff

M. Hammer , Group Leader

• Graduate Students

0. Carnese R. Grossman
- . . A. Chan D. McLeod

B. Daniels H. OkrentN. Essrig S.

Undergraduate Students

B. Mau W. Van Roggen

I Support Staff

M. Nieuwkerk

I
I
I

r;
____ ~~CZDING Pi~IM1.A~l(

A

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. 

~
•
~~~~~~~~

• • • • . . •
~~~

• •
~~~ 

• .

DATA BASE SYSTEMS GROUP 21 DATA BA SE SYSTEMS GROUP

DATA BASE SYSTEMS

A. INTRODUCTION

The research efforts of the Data Base Systems group are directed towards two
ends: automating human decision-making in various areas of data base organization,
maintenance and use, and thereby improving the performance and reliability of data base
systems; and developing new functional capabifities unavailable in conventional data
management systems. Though our results should be applicable to a wide variety of data
bases, our principal concern is with large and/or complex data bases, where conventional

• brute-force processing techniques are inadequate. Our current focus is in three areas:
self-organizing data bases and distributed data base systems.

B. SELF-ORGANIZING DATA BASES

In order for data bases to be effectively used, the data management systems that
support them will have to manifest two important characteristics: data independence and
non-procedural access. By data independence we mean that users and their application

• programs are shielded from knowledge of the actual physical organizations used to
represent their data, and concentrate instead on a logical view of the data. This makes
the data base easier to use and avoids the need for application programs to change when
the data base’s physical structure is reorganized. Non-procedural access also makes the
data base easy to use; this means the use of access languages which allow the
specification of desired data in terms of properties it possesses rather than in terms of
the search algorithm used to locate it in the data base.

The relational model of data has been proposed as a means of achieving these two
goals. The user of a relational data base is provided with a simple arid uniform view of
his data, a logical view which is completely independent of the actual storage structures
used to represent this data The simplicity of this logical data structure lends itself to
access by means of easy-to-use languages, which provide associative referencing
(content addressing) of the data base contents.

Because of the distance of the user’s view of a relational data base (and of his
queries against it) from the realities of the data base’s organization, more responsibility
is placed on a relational data base sys tem than on a conventional system. This
responsibility takes two forms: choosing the physical representation for a relation and
optimizing the execution of queries against a relation, making optimally efficient use of
the available access structures. Relational data base systems must possess “intelligence”
in order to make decisions in these areas, which have heretofore been the province of
human decision-makers.

We believe that the selection of good storage structures is the primary issue in
relational data base implementation, since the efficiency that can be achieved by a query

•
• . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

F .--

_______ ~~~~~~~~~ .. • .~ ..~~ -—

DATA BASE SYSTEMS GROUP 22 DATA BASE SYSTEMS GROUP

opt imizer is strictl y delimited by the available storage structures. Furthermore, the
efficient utilization of a data base is highly dependent on the optimal matching of its
physical organization to its mode of use, as well as to other of its characteristics (such as

• the distribution of values in it). (For examp le, certain data base organizations are
suitable for low update-high retrieval situations, while others yield optimal performance
in opposite circumstances.) Hence, the usage pattern of a data base should be
ascertained and utilized in choosing its physical organization. In addition, when viewed as
the repository of all information used in managing an enterprise, an integrated data base
can no longer be considered as a static entity. Instead, it is continually changing in size,
and its access requirements gradually alter as applications evolve and users develop
familiarit y with the system. Accordingly, the tuning of a data base’s physical organization
to fit its usage pattern must be an ongoing process.

In current relational data base systems, the system chooses the representation for
a relation without any direct information as to its anticipated mode of use. The data
base administrator (DBA) may make recommendations to the system about desirable
auxiliary access structures, but these judgments are based largely on intuition and on a
limited amount of communication with some individual users. For large integrated data
bases, a more systematic means of acquiring information about data base usage, and a
more algorithmic way of evaluating the cos ts of alternative configurations will be
essential . A minimal capability of a data base management system should be the
incorporation of monitoring mechanisms that collect usage statistics while performing
query processing. A more sophisticated system would sense a change in access
requirements, evaluate the cost/ benefits of various reorganization strategies, and
determine an optimal organization to be recommended to the DBA; eventually, such a
system might itself perform the necessary tuning.

We are involved in the development of a facil ity that monitors the use of a
relational data base and chooses near-optimal physical storage structures based on the
evidenced mode of use, fur thermore, shifts in usage pattern will be detec ted and will
result in timely reorganization of the data base. As a first cut at this problem, we have
concentrated on the problem of index selection. A secondary index (sometimes referred
to as an inversion) is a well-known software structure which can improve the
performance of accesses to a relation (file). For each domain (field) of the relation that
is inverted, a table is maintained, which for each value of the domain in question contains
pointers to all those tuples (records), whose contents in the designated domain is the
specified value. Clearly, the presence of a secondary index for a particular domain can
improve the execution of many queries that reference that domain; on the other hand
maintenance of such an index has costs that slow down performance of the data base
updates, insertions, and deletions. Roughly speaking, a domain that is referenced
frequently relative to its modification is a good candidate for index maintenance. The
choice of which (if any) domains to invert must be done with care, a good choice can
significantly improve the performance of the system, while a bad selection can seriously
degrade it. The goal of our system is to make a good choice of those domains for which

_ _ _ _ _ _ _ _ _ _ _ _ _ _ - —-. -~~~~~~-~~~~~--—~~~- .— —w.-~~

DATA BASE SYSTEMS GROUP 23 DATA BASE SYSTEMS GROUP

to maintain secondary indices, based on how the data base is actually used.

The operation of the initial version of our prototype system can be described as
follows . The specifications of data base interactions , by both interactive users and
application programs , are expressed in a non-procedural language; these are first
translated into an internal representation made up of calls to system level modules. The
language processor has available to it a model of the current state of the data base,

• which contains, among ot her things, a list of the currently maintained set of secondary
• indices, plus various information about these indices. Using this information, the language

processor can choose the best strategy for processing each data base operation in the
current environment. Statistics gathering mechanisms are embedded within the system

• modules that interpret the object code of the language processor; they are used to
record data concerning the execution of every data base transaction. The statistical

• •

. information gathered f or a run is deposited in a collection area and is summarized from
time to time. When the reorganization component of the system is invoked (which will
occur at fixed intervals of time) , the statistical information collected over the preceding
interval is combined with statistics from previous intervals and used to obtain a forecast
of the access requirements of the upcoming interval; in addition, a projec ted assessment
of various characteristics of the data in the data base is made. A near-optimal set of

• domains for which indices should be maintained is then heuristically determined;
optimality means with respect to total cost , taking into account the expense of index
storage and maintenance. This minimal cost is compared with the projected cost for the
exis ting set of indices. Data base reorganization is performed only if its payoff is great
enough to cover its cost as well as that of application program retranslation.

• We have implemented a first version of our index selec tion procedure and are
currently experimenting with it. We have compared its performance with that of a
system which selects optimal indices by exhaustive search; our system almost always
finds the optimal index set in a small fraction of the time expended by the exhaustive
scheme. We plan to experiment further with our heuristics , determining their efficac y for
a wide variety of usage patterns , and seeing how they can be furthe r speeded up
without sacrificing accuracy. We have plans to adapt our system to reflect the cost
parameters of an actual operational data management system, probably the Datacomputer
or RDMS. We will then be able to analyze actual usage histories of data bases
maintained by that system, and select indices for them. In addition, we will be able to
study how well our predictive schemes serve to detect developing trends of actual data
base interact ion, as well as the payoffs and hazards of self-adaptive date base systems.

We are also beginning to enrich our model of data base interaction and allow a
variety of complex data base operations in the access language. Concomitant with this,
we are expanding the range of organizational decisions which our system will
automaticall y make. We have begun consideration of the issue of clustering, which
roughly means the selec tion of the field on which to sort the file; the choice of
clustering field has an enormous impact on the efficiency of complex data base operations

• ~~~~~~~~~~~~~~~~~~~~~~~~~~ •—.—~~ ~~~~~~~~~~~~~
..- . •

~~~~~ _1,- ~~~~~~~~~~~~~~~ • -.. ~~~~~~~~ • - . -- .-. 
— - •



1

DATA BASE SYSTEMS GROUP 24 DATA BASE SYSTEMS GROUP

such as join (inter-record correlations). We have also started to look at the problem of• horizontally partitioning a file into subfiles, with some fields of a record in one subtile ,
the rest in another. Queries that do not utilize fields from both subfiles can then be
processed very rapidly.

For the future, we plan to expand the scope of our effort and automate more and
more data base organizational decisions. We are also beginning to consider the global
optimization problem of making all these decisions simultaneously.

As a spin-off of the foregoing work, we expect to develop a query cost estimator.
It is often easy for a naive data base user to ask a simple-to-phrase query that will take
a great deal of computation resource and time to answer. Frequently, the value of this
information to the user is not commensurate with the resources expended to obtain it.
Accordingly, the data base system should estimate the resources needed to evaluate a
query and provide a user with an estimate of this cos t. The information needed to
provide such an estimate is a knowledge of the data base’s physical organization and a
summary of the characteristics of the data in it; in short, it is the same information
needed for the self-organization function discussed above. Of course, such a cost
estimator must be efficient and not consume any substantial resources in its operation.

C. ERROR DETECTION

The second major focus of our effort is on data base semantics, and especially its
application to the detection of errors in data. Conventional data base systems do not
possess any knowledge of the meanings of the data structures which they maintain and
manipulate. Consequently, numerous problems which are related to the semantics of the
data are currently handled in an entirely ad hoc and unsystematic fashion. One of the
most important of these issues is the detection of errors In new data being submitted to
a data base by examining it for the violation of rules governing the application world of
the data base.

In most conventional systems, erroneous data is detected by means of ad hoc,
special purpose application programs, which “edit” transactions with the data base and
subject them to a variety of validity checks. In any but the simplest cases, this approach
breaks down; the data checking programs are expensive to construct, inefficient and
unreliable in their operation, and virtually impossible to change. We believe that the
specification of the semantics of a data base should be done as part of the definition of

• the data base itself; then the data management system can assume responsibility for the
detection of erroneous data which violates the “semantic integrity” of the data base.

One approach that we have been taking is based on the notion of “constraints,”
logical predicates on the data base which must hold after every data base transaction.
Our efforts have concentrated on refining and structuring this idea, and Investigating the
considerable problems involved in achieving an efficient implementation of a constraints



~~llP~~ ~~~~

- . — -
~

---

~~

---— .-- r - -~ • 1’l

DATA BASE SYSTEMS GROUP 25 DATA BASE SYSTEMS GROUP

driven error detection system.
1’

We have attempted to give some structure to the constraint specification process
by class ifying semantic integrity information into several components, including the nature
of each constraint , the occasions at which it is to hold, and the response to be taken
upon the detection of its violation. We have also analyzed the kinds of rules that might
be stated about a data base , to the end of providing a structured fra mework for
describing the semantic integrity requirements of a data base. Rather than allowing
arbitrary predicates of the first-order calculus, we want the OBA to fo llow a well-
directed specification methodology which reflects this view of the data base ’s meaning .

We are also involved in the design and implementation of a semant ic integrity
subsystem for a relational data base system. This system must check for the violation of
the specified rules on the occasion of each transaction with the data base. A major issue
here is efficiency, since the semantics of a real data base may be described by a great
many constraints, each of whose verification could involve accessing much of the data

• base and so be very time-consuming. The approach we are taking is twofold : for a
given data base transaction, to determine as precisely as possible the set of rules, to
determine those auxiliary access structures which would he of greatest use in checking
the rules. This latter issue depends heavily on the updating and accessing patterns of
the data base. This becomes a global optimization problem, of choosing a strategy for
integrity checking that will be efficient in the overall context of the data base.

We are also at work at a more powerful error detection system, which will be
even more “intelligent” in the detection and processing of erroneous data. Some of our
desi gn goals for this system are as follows:

1. The resource expended to detect a particular type of error situation shall be
related to (he seriousness of that error condition In the information and decision-
making system as a whole.

2. Information about the actual occurrence rates of different error types shall be
used to allocate available computational resources in the most effective fashion

• 3. A model of the data gathering and transmission process will be used to identify the
nature of a detected error and to drive the error correction process.

4. The system should be able to operate at a remote site from the data base itself ,
accessing the data base only when necessary.

A complex system of thi s kind will need a richer mechanism for describing the
world-model of the application domain than Is afforded by constraints. We are currently
surveying the various knowledge-representat ion techniques In order to determIne which
is most appropriate for our environment.

L~. . . .  
~~~~~~~~~~~~~~ 

.
~~

.—
~~~ --- ‘.—---... ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

•.•~~~ .: -



_ _  
- — 

~~~~~~ r

~1 DATA BASE SYSTEMS GROUP 26 DATA BASE SYSTEMS GROUP

The semantic model of a data base can be used for purposes other than error
detection. We are investi gating how it could be used to support an easy-to-use query
language, in which the user expresses his request in terms of the semantic constructs of
his domain, rather than the date structures of the data base.

We are building an error detection system for the A RPA/Navy Command and
Control Testbed data base, which resides on the Datacomputer. Our system will utilize a
world model of that domain to detect errors in data typical of the kind submitted to such
data bases in practice.

0. DISTRIBUTED DATA BASES

We are just beginning to examine the problems of using and maintaining a
distributed data base in a network environment. Our principal motivation Is to provide
the data management support needed by a real-time command and control Information
system. The requirements of such a system far exceed the capabilities of current data
management systems. Multiple copies of a data base may exist at different sites in the
network , and they must be consistently maintained. The location of a data base may
dynamically change, upon command of the DBA. A user should not have to know the
location of the data base he wishes to access; an access planner should locate for him
the copy which will give him the best service. Furthermore, the entire system must be
very robust: should one of the hosts be disconnected because of communication failurs,
the rest of the network must contain to function, and the isolated node mus t operate on
its own ; when connection is re-established, global consistency must again be achieved.

We believe that each of these problems is individually soluble, but that the reel
challenge will lie in providing all these features simultaneously. Our approach is based on
establishing priorities among conflicting goals, accepting some (controlled) Inaccuracy In
the lesser ones in order to concentrate on those that are more important.

— ~~~~~~~~~~~~~~~~~~~~~~~~~ • ~~~
• — - • ç

-

- .• - -—-‘.- -;~~~~• • -

DATA BASE SYSTEMS GROUP 27 DATA BASE SYSTEM S GROUP

Publications

1. Boyce, R.; Chamberlin, 0., Hammer , N.; and King, W. “Specifying Queries as
Relational Expressions, the SQUARE Data Sublanguage.” Communications of the
ACM~ Vol. 18 No. 11(1975) , 621-629.

2. Hammer , M. and McLeod, D. “Semantic Integrity in a Relational Data Base System.”
c edings of the ACM International Conference on Very Large Data Bases.

Framingham, Massachusetts , September 1 975.

3. Hammer, M. “The Design of Useable Programming Languages.” Proceedings of the
ACM National Conference. Minneapolis, Minnesota, October 1975.

4. Hammer, M. “Data Abstractions for Data Bases.” To be published in Proceedings of
the ACM Conference on Data.

• 5. Hammer , M. and Chan, A. “Index Select ion in a Self-Adaptive Data Base
Management System” To be published in Proceedings of the 1 976 SI.GM.QP
International Conf erence on Management of Data.

6. Hammer , N. “Error Detection in Data Base Systems. ” To be published in
• Proceedrngs of the 1976 National Computer Conference.

7. Hammer, M. and Chan, A. “Acquisition and Utilization of Usage Patterns in Relational
Data Base Implementation. ” To be published in Proceedings of the IEEE Joint
W~o!~shop_on Pattern Recognition and Artificial Intelligence.

8. McLeod, 0. “High Level Domain Definition in a Relational Data Base System. ” To be
published in Proceedings of the ACM Conference on Data.

Theses In Progress

1. Chan, A. “Automatic Selection of Inversions in an Integrated Date Base
Environment. ” MS. Thes is , M.I.T., Department of Electrical Engineering and
Computer Science, expected date of completion, August 1 976.

2. Grossman, R. “Date Base Applications of Constraint Expressions.” unpublished SM.
Thesis, M.I.T., Department of Electrical Engineering and Computer Science, expected
date of completIon, January 1976.

3. Mau, B. “Automatic Index Selection on the Datacomputer.” SB. Thesis, M.I.T.,
Department of Electrical Engineering and Computer Science, expected date of
completIon, January 1 977.

________________ _________________________ _______ ________________ i~~~ .:. • ‘~~~~~~~~ _:~ ~~~~~~~~~~

DATA BASE SYSTEMS GROUP 28 DATA BASE SYSTEMS GROUP

4. McLeod, 0. “High Level Expression of Semantic Integrity Specification in a
Relational Data Base System.” SM. Thesis, M.I.T., Department of Electrical
Engineering and Computer Science, expected date of completion, June 1 976.

5. Okrent , H. “Synthesis of Data Structures from their Algebraic Description.” Ph.D.
Thesis, M.I.T., Department of Electrical Engineering end Computer Science, expected
date of completion, August 1 976.

6. Sarin, S. “Desi gn of a Semantic Integrity Subsystem for Relational Data Base
Systems. ” S.M. Thesis, M.I.T., Department of Electrical Engineering and Computer
Science, expected date of completion, January 1977.

7. Sheckler , D. “SEQUEL on RDMS.” S.B. Thesis, M.I.T., Department of Electrical
Engineering and Computer Science, expected date of completion, August 1 976.

Talks and Presentations

1. Hammer, N. “The Design of Usable Programming Languages.” ACM 1975 National
Conference, Minneapolis, Mn., October 21, 1975.

2. Hammer , N. “Error Detection in Data Base Systems.” Bureau of Naval Personnel,
Arlington, Va., November 4, 1 975.

3. Hammer, N., Session Chairman, “Database Design Tools.” International Conference
on Very Large Data Bases, Framingham, Ma., September 23, 1975.

4. McLeod, 0. “Semantic Integrity in a Relational Data Base System.” International
Conference on Very Large Data Bases, Framingharn, Ma., September 22, 1975

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~ ~



.._ j________~~
, 

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 
•
~~~
—— - . — — — •. ..-,-- - .

~~~~ 
—.----. .--. .-

D.S.S.R. GROUP 29 D.S.S.R. GROUP

DOMAIN SPECIFIC SYSTEMS RESEARCH

Academic Staff

S. A. Ward , Group Leader P. G. Jessel
M. L Dertouzos J. Weizenbaum

Graduate Students

R. Bahr 0. Kinney
G. Bunza Y. Lee
C. Cesar B. Musicus
S. Y. Chiu J. Pershing
J. Gula J. Poulos
R. Haagens B. Robinson
R. Halstead T. Teixeira

• .j B. Hampson C. Terman
C. Hayseen J. Valvano
E. Israeli

Undergraduate Students

J. Avery S. McConnel
C. Baker R Ottolini
T. Bell M. Partick
T. Dutton D. Slutz
D. Emberson S. Thomas
I. Gerson C. Topolcic
J. Grossman R. Vanderkloot

M. ZIegler

Support Staff

N. An J. Pinella
R. Kao It MacKenzie

D.S.S.R. GROUP 31 D.S.S.R. GROUP

DOMAIN SPECIFIC SYSTEMS RESEARCH

k

A. INTRODUCTION

This year formed the founda tion for our future research. It centered on the
development of a conceptual framework consistent with the various activities of the
group and the establishment of an integrated laboratory facility.

The group’s principal goal remains the development of an integrated system for the
efficient design of domain specific systems. However, during the past year, we have
attempted to focus our work on more specific research topics: automatic code
generation, microprocessors as substitutes for random logic, real time block diagram
schemata, languages and architectures for real time control and multiprocessor networks.

Construction of the new laboratory facility was begun during the current year.• The host POP 11/70 was delivered in September 1975 and DELPHI operating system
was converted to run on the new machine.

In addition, the first implementation of our common system language, 0, was
developed and several system programs for microprocessors were written using 0.

• Unfortunately, the construction of new facilities for the hardware laboratory were
• delayed by space problems. A final plan has now been approved and we expect to take

occupancy by August 1976. Most equipment has been ordered and we expect the
laboratory to become operational by October 1 976.

B. DOMAIN SPECIFIC SYSTEMS

1. Continuing Work on Automatic Code Generation

Research by C. Terman on a domain-specifIc production language for the
implementation of code generators, described in the group’s repor t for last year, is
proceeding according to schedule. Similar approaches have attracted attention elsewhere
in recent months, and have demonstrated that current global optimization techniques can
be coded in a language based on an attribute grammar. Unfortunately, such effor ts rely
heavily on the Turing universality of the strictly deterministic parsing algorithm used, and
require that the program synthesize ad-hoc attributes which play the role of local
variables having no natural significance in the semantics of code generation.

Our approach differs primarily in that it assumes a global goal orientation, namely
the minimization of the “cost” of the object programs generated. The “cost” metric will
be built into our system (rather than being specified in the source language) end will
reflect some heuristic combination of space and time criteria, possibly Involving user

(

}~ICID1tG P~~~
~~ .~.,

—

- .-

-
~~~~~~

. -— .—------—- •

0.S.S.R. GROUP 32 D.S.S.R. GROUP

specified parameters which bias the code generator toward space or time optimization.
The goal orientation of our language allows it to assume a declarative rather than

• procedural form, and leads to source language semantics which more closely reflect the
structure of the problem domain. The goal of our project may thus be viewed as a
system which synthesizes the local attribute structure of an attribute-grammar—based
code generator from the combination of declarative information and a global goal.

2. Microprocessors as Substitutes for Random Logic

• A new area of research is attempting to develop techniques for translating
• traditional random logic structures into microprocessor code. A key element in this work

is the specification and translation of timing constraints and tolerances. We have
classified random logic structures into four design types:

a. generators-circuits with either no inputs or completely defined inputs

b. combinatorial inputs-memoryless circuits with variable inputs

c. asynchronous-circuits with variable inputs

d. synchronous-circuits with both variable inputs and internally generated (i.e.,
• generator) outputs

• To date we have developed algorithms which can translate circuits of type a.) and
b.). We have an algorithm that can take the timing description of a generator (including
tolerances) and calculate both the minimum microprocessor operating frequency and
operating frequency for which the microprocessor generated output can locally satisfy
the tolerances; if such a frequency cannot be found, i.e., the microprocessor is too slow,
the simulation is impossible. All multiples of this tow frequency are guaranteed to satisfy
the tolerances, thus giving us a set of solutions, which however, is not complete, but can
be made so by the algorithm. Each solution is represented in matrix form (rows
representing changes in time and columns the output data), which, with original random
log ic description, is the basis of code generation.

In its simple form the program generated will consist of blocks of code, one for
each event column in the matrix (an ‘event column’ is one which differs from Its
antecedent). Each block has three parts: data preparation, delay, and data output. The
first two can be intermixed, but the data output comes at the end of the block. Data
preparation calculates the values that are to be sent out. Delay will be inserted to
satisfy the timing expressed in the matrix: the total number of microprocessor state
cycles for data preparation, delay and data output must be equal to the number of
columns between that event column and the previous one.

Because of its relative simplicity and required flexibility (in terms of time), we •

LI • • • • • • —...• -~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ •



D.S.S.R. GROUP 33 D.S.S.R. GROUP

have studied delay code generation. Our method uses the microprocessor ’s
idiosyncrasies and knowledge about the microprocessor internal state at the point in the
program where the code is to be inserted, to produce the smallest non-iterative program
that delays the required amount of time. We have not found an effective similar method
for data preparation. We believe that space optimization for that block code will depend
on semantic information present in the random logic description.

We have been simulating combinatorial networks from the random logic I/O table
for predetermined assignments of external signal lines to input and output port pins.

• There does not seem to be a unique technique always yielding either the fastest or
smallest program.

The PLA Approach, or its near-equivalent, the table look-up, is very consistent in
what can be expected of it: fast execution, as only memory indexed accessing is needed,
but with memory usage growing with table size. Generating the table instead of storing
it, i.e., simulating the corresponding Boolean function, will , for large tables, execute
slower on less storage. There are different programming approaches to Boolean function
simulation based on some form of “test and branch” or on logical operation instructions.
Execution time is constant for the latter, but varies with the input value for the former.
Both need not exist in pure form, combining them leads often to better code.

Current research is aimed at developing algorithms (or design types c.) and d.) and
then integrating these approaches into a single model.

3. Real Time Block Diagram Schemata

A compiler for block diagram schemata which guarantees the real time performance
• 

• of an object program based on programmer-supplied bounds, analysis of the topology of
the source program, and inherent knowledge of the target machine is being developed by
T. Teixeira. A major subproblem concerns the automatic choice of object control
structures (e.g., priority interrupt vs. asynchronous object time task scheduling) to meet
real time performance criteria specified by the user. While the current work focuses on
single-processor target systems, we plan to explore the extension of the translator to
several special case configurations involving multiple processors. The goal is to achieve
a high degree of independence between source language semantics and ultimate
implementation, thereby alleviating the programmer ’s responsiblity for making
implementation decisions.

4. A Control Language

During the year, several visits to service installations (e.g., Wright Patterson AFB,
Kelley AFB, end Naval Electronic Laboratory Command) were undertaken in order to
coordinate our research with application areas of current interest to DOD. Particular
application areas included Automatic Test Equipment and Avionics and Weapons Control.

..~~~~~~~



T~~~~ i I ~~~~~~~~

D.S.S.R. GROUP 34 D.S~S.R. GROUP

From these discussions a need for techniques for computer based control emerged
that integrates modern control theory with contemporary computer science practices. In
conjunction with control theorists from the Electronic Systems Laboratory .t M.I.T., we
are currently exploring languages and implementations that lend themselves to real time
process control. In particular, we are currently investigating the feasibility of utilizing
message passing semantics to express real time scheduling constraints. Such a
mechanism would provide a uniform basis for describing both single and multiprocessor
systems.

5. The La~guag~~~
During the past year , the initial POP-il implementation of the language 0 was

completed, and 0 is currently in active use by members of the group. 0 was designed to
serve as our common general purpose, high level language for both the direct
implementation of microprocessor software and for the coding of support tools on large
scale host machines. The major design goals of 0 include machine independence of the
source language, provisions for real-time programming, end amenability to the production
of efficient objec t code.

The current implementation of 0 runs on and produces code for PDP-1 1/70 and
realizes certain of the above goals lack constructs for real-time applications. Further
development of 0 is planned in the following areas:

a. Mechanisms for limiting access to variables beyond the constraints of conventional
block structure, affording a measure of the data abstraction advantages of CLU and
SIMULA.

b. Generalization of numeric data types to promote further machine independence and
to allow sophisticated compilers to produce highly optimized code, e.g., by
“comp ilation out” of floating point opera tions from a program for a target
microprocessor.

c. The addition of control and data structures to support real-time programming,
including constructs for interrupt arid possibly for multiprocessing.

d. Extension of the facilities for compile-time processing, including the specified (but
yet unimplemented) mechanism for compile-time libraries. The intent is to provide
a syntacticall y transparent mechanism rather than an explicit preprocessor, so that
an optimizing compiler might perform at compile time, certain computations which a
simple compiler postpones to objec t time. The initialization of a table of sines
might be such a compile-time computation.

e. The production of complete and effective user documentation of the language.

_____ -. — ..— .—



_ _ _ _ _  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ r”r~

D.S.S.R. GROUP 35 D.S.S.R. GROUP

The close correspondence between the design goals of D and those of CL76 (the
currently favored name for the proposed DOD common language) has been noticed by
both us and our sponsors, suggesting the potential f or mutual influence between these
efforts. While the current 0 implementation falls short of the DOD “Tinmari” criteria (as
well as our own), anticipated 0 development will satisfy those DOD requirements which
seem attainable and justified. Our hope is that these efforts will converge.

6. Automatic Multitarget Code Generation

A continuing objective of our work is the development of a programming system to
translate high-level domain specific language constructs onto target systems that can be
uni-processor or multiprocessor in nature. A key link in this down-loading procedure is
the development of automatic multitarget code generation techniques. This approach is
an attempt to provide an easy means of adapting a high-level language to new computer
organizations by allowing all source programs in the language to be compiled for a large
set of processors. The present scheme by Bunza involves a system to generate machine
code for many different processors using a single compiler and a single code generator,
utilizing processor specific databases. Adaption of the code generator to new processor
architectures is limited to the creation of a single Processor Description Database.

Various schemes have been examined including simple macro expansion,
hierarchical macro interpretation , pseudo machines and abstract machine models,
interpretation of abstract machine code and special executive calls, and code to code
translation. These do not appear viable in the present context. A new code generation
system is proposed which solves most of the recognizable problems and provides an
effective solution for realistic implementations. BCPL OCODE is accepted as the

• intermediate input language and undergoes a series of transformations, determined by a
Hierarchical Operator Table and a Processor Description Database. The Processor
Description Database is a target machine description interactively built employing a
special variant of ISP. The key to the new code generator lies in the separation of
functional classes of activity in the system: operator functional decomposition, storage
allocation, register allocation, operand addressing, arid coding strategy decisions.

7. Shared Bus Structures

Research on bus architectures has focused on dedicated and non-dedicated bus
structures, bus arbitration, bus protocol, and deadlock prevention. The current study
deals in particular with protocol issues relating to the configuring of multiple processors
on a shared bus. Examination of current bus protocols yield major deficiencies in their
ability to support large numbers of closely -oupled processors . The concept of a
“pended transacti on ” is introduced and shown to possess many desirable
characteristics necessary ~ur multi-initiator systems. Self-clocking asynchronous logic is
used to implement the new protocol. This concept is also extendeble to multi-bus
systems.

_ _

:T:1 ff:

~~~

T

~ 

~~



- ~~~~~ ~~~~~~~ ~~~~~ ~~~~~~~~~~

D.S.S.R. GROUP 36 D.S.S.R. GROUP

Further studies have demonstrated the fundamental unsuitability of the current
generation of microprocessors for high throughput shared bus designs. Benchmarks
indicate that no more than three such processors can actively contend for the bus
without significant queuing. These results stem directly from the basic structure of the
current microprocessors , and reinforce the conclusion that fundamental architecture
changes must be made before such shared bus configurations are justifiab le. These
conclusions have provided direc t reinforcement for the pended bus design and additional
motivation for bus contention studies.

Queuing theory models for mul tiprocessor systems have been proposed as an
approach to isolating the primary factors which control overall performance. Two major
factors were selected for study: processor specialization and interprocessor
communications hardware. In particular, attention has focused on processor specialization
on throughput, interprocessor communication overhead, and reliability. M master, N slave
systems have been ex tensivel y s tudied to analyze system throughput under various
condi tions. Poisson characterizations have been incorporated in these models with
primary interes t focusing on the effects of increased number of masters, increased
number of slaves per master , and differing request and service rates for operating
system routines. Additional fea tures considered have included the effect of IPC message
processing overhead on throughput, the effect of non-Poisson distributed serving times,
and the complications introduced by a heterogeneous operating system with different
service and request rates for different processes. The method of analysis has also been
extended to less specialized systems. Elementary performance criteria have been
investi gated for master/slave systems.

8. Hierarchical Structures

Hierarchical structures offer inherent control mechanisms that are applicable to a
wide varie ty of problem areas , including linear control. Since the group’s focus has
recently centered about modern control theory and its applicability to the integrated
software/ hardware system under development, it was decided to study a simple linear
control application to gain some knowledge in the area. The demands of many control
systems exceed the capabilities of a single processor system, moreover, multiprocessor
hierarchical architectures will satisfy certain classes of linear control problems.
Consequently, such a hierarchical structure is proposed and shown sufficient to satisfy
the real-time constraints required by an example benchmark linear control system.
Models of data and control flow within the structure were developed. Al ternative
structures were investigated and shown to be insufficient for the linear control problem.

9. Ring Structures

Systems requiring uniform access to shared system resources often lend
themselves to a ring structure. Selection of such a loop topology is often motivated by
low incremental expansion cost , simple interfaces, and a straightforward routing path. 

-~ — 
.- • -- ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- r~

0.S.S.R. GROUP 37 D.S.S.R. GROUP

The group has implemented a ring structure, principally as an experimental target vehicle
for continued exploration of software /hardware strategies. Four nodes now exist
connected via unidirectional, 14 MHZ di-phase encoded serial communication links, in a
loop topology. In addition to the communication hardware, each node supports a
microprocessor controller and an extensive DMA facility.

Key to the successful performance of this multiprocessor system is the
competenc e of the controlling software responsibility. Message transmission and process
scheduling modules have been examined as well as more global functions including file
management. A ring operating system has been proposed taking into account the basic
properties of process execution rights , levels of process priority, interprocess
communica t ion, and the ability to have processes spawn other processes.

10. Integrated Facility

One of the goals of the D.S.S.R. Group is to provide an ideal laboratory
environment which facilitates the production and verification of a target microprocessor
based system. Domain Specific Systems require customizing both hardware and software.
Accordingl y, the host should provide an integrated set of aids that allows a domain
specific system to be designed and tested as a total system. Several downloading
facilities have been developed during the past year including hardware microcomputer
systems, cross-sof tware , and a portable computer system.

A truly portable general purpose computer system has been developed to provide
remote downloading and field diagnositc capabilities. The system is completely self-
con tained, incorporating the basic elements of an ASCII keyboard, printer , memory,
modem, serial and parallel I/O buses, software monitor-debugger with bootstraps, power

• supplies, and complete user documentation. The system has room for 32K bytes of
memory configurable into ROM and RAM modules. Future enhancements include mass
storage capabilities.

Work is also underway to provide a class of design aids which interact closel y with
both hardware and software. One such tool currently under development (B. Robinson)
is a sophisticated debugging interface (DIF) which couples the host computer to the
target microprocessor. The DIF is organized around a bipolar microprocessor which:

a specifies whether a lead is to be used for either input or output. The desire to
use the DIF for a wide variety of microprocessors and for a wide variety of signals
associated wi th a specific microprocessor system implies that all leads be
bidirectional, enabling each lead to monitor and control a signal. The direction of
any lead can be changed dynamically.

b. establishes the sampling rate. This will generally be a function of the cycle speed
of the target microprocessor.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ • • •



~~~~~~~~~~~~~~ —-.-

O.S.S.R. GROUP 38 D.S.S.R. GROUP

c. is capable of generating a sequence of control signals. This allows the DIF to
emula te various external signals. Examples include a temperature of 2000
degrees or a sequence of events that occur at the limit of the target system’s
intended response rate. Depending on the rate at which these signals change, they
may be generated directly by the bipolar microprocessor or be buffered.

d. process the incoming data and compensate for the differences between the
bandwidth of the host-DIF link and the DlF-target link. If TTY lines are used this
difference may be considerable and a substantial buffer must be provided.

Associated with the Debugging Interface is a considerable amount of software residing in
the host. Our goal of removing the designer from the tedium of programming would be
compromised if we were to immerse him in the details of debugging his system.
Accordingly, the software associated with the DIF entails a Domain Specific Language
which allows the user to specify various control and monitoring operations independently
of the way they are implemented.

~ 1. Educational Computer Generated Films

We have examined a number of display systems in order to determine their
suitability f or making the kind of educational computer generated movies we have long
planned. We are about to order a RAMTEK display which we consider very well suited
to our task.

Professor Weizenbaum has been teaching course 6.030, the introductory computer
science subject , and has been alert for places in the subject where movies might be
par ticularly instructive. A number of such places have been identified and appropriate
imagery has been discussed. We have, for example, plans to make films illustrating the
fundamentals of a LISP interpreter from a number of different perspectives, e.g., from
that of the naive user and from that of the control structure. Other examples are:

• recursion, the contour model for a P1/1-like language, the FUNARG problem, etc. 

_ _ _



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

D.S.S.R. GROUP 39 D.S.S.R. GROUP

Publications

1. Ward. S.; Halstead, R.; and Terman, C. 0 Reference Manual. M.I.T., Laboratory for
Computer Science, D.S.S.R. Working Paper 16, Cambridge, Ma., October 1 975.

2. Jessel , P.; and Ward , S. “Domain Specific Systems: A New Approac h to
Microprocessor Based Design.” To be presented at EUROMICRO Symposium.
Amsterdam: North-Holland, October 1976.

Theses ~~ g~~ss

1. Cesar, C. “Microprocessors as a Substitute for Random Logic.” Ph.D. thesis, M.I.T.,
Department of Electrical Engineering and Computer Science, expected date of
completion June 1 978.

2. Gula, J. “A Distributed Operating System for an Object Based Network.” SM.
Thesis, M.I.T., Department of Electrical Engineering and Computer Science, expected
date of completion January 1 977.

3. Halstead, R. “Multiprocessor Implementations of Message Passing Systems.” SM.
Thesis, M.I.T., Department of Electrical Engineering and Computer Science, expected
date of completion September 1 977.

4. Mok, A. “Task Scheduling in the Control Robotics Environment.” SM. Thesis, M.I.T.,
Department of Electrical Engineering and Computer Science, expected date of
completion June 1 976.

• 5. Pershing, J. “Design of a Domain Specific Mete-Compiler for Systems Using
Graphical Input as a Source Language.” S.M. Thesis, M.I.T., Department of Electrical
Engineering and Computer Science, expected date of completion September 1 977.

6. Robinson, B. “A Programmable Microprocessor System Debugger.” SM. Thesis,
M.I.T., Department of Electrical Engineering and Computer Science, expected date
of completion June 1 976.

7. Teixeira, T. “Block Diagram Languages for Process Monitoring and Control.” SM.
Thesis, M.I.T., Department of Electrical Engineering and Computer Science, expected
date of completion September 1 977.

hIIIljh..___..
~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ . • 

. .. -
• . .



- ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ nil

U.S.S.R. GROUP 40 U.S.S.R GROUP

8. Terman, C. “Descriptive Approach to Automatic Code G.r*ratlon” SM. Thesis,
M.I.T., Department of Electrical Engineering and Computer Science, .xpsctsd dat.
of completion September 1 977.

Talks

1. Jessel, P.; Chen, R.; and Patterson, R. “A Microprocessor Controlled Data Switch.
COMPCON ‘75, Washington, D.C., September 9-11, l975. Also presented .t the
Moore School Research Symposium, University of Pennsylvania, PhII.d.l phla, P.
October 31, 1975.

2. Je’sel, P. “Higher Level Languages for Microprocessors.” Mini-Micro Cornput.r
Applications Workshop, San Diego, Ca., November 18-20, l975.

3. Ward, S. “Microprocessor Systems.” Guest lecture at M.I.T. S.mlnar Program In
Artificial Intelligence, Machine Vision and Productivity, Cambrldg., Ma., Jun. 1 975.

—— ~~— - - .— — - ~~~ ,_ ,_ • • _ •  •~~ •. —~~~~~~ -— ——
~~~

——
~~~~~~~

— 
_ I



• - ~~~~~~~~~~~ -.. ~~~,.- .____ - • .
~~
--‘ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- • - - -

~~
-- -

~~~~~~~~~
.-- .-_- 

~~~ .- - - _~~~•1: . . . •. _ _ .

KNOWLEDGE-BASED SYSTEMS GROUP 41 KNOWLEDGE-BASED SYSTEMS GROUP

KNOWLEDGE-BASED SYSTEMS

Academic St.f I

W. A. Martin, Group Leader P. Szolovits
- • L B. Hawkinson G. R. Ruth

A. C.

Research Staff

S. Alter N. R. Greenfeld
R. V. Baron W. A. Kornfe ld
G. P. Brown G. A. Moulton
R. Fisher A. Sungurof I

Graduate Students

H. G. Baker W. S. Mark
V. Berzins M. L. Morgenstern
M. Bosyj B. Niamir
R. B. Krum land S. K. Sarin
W. J. Long W. R Swartout

Undergraduate Students

C. Kisely ak G. Thomas
B. Levin

Suppor t Staff

M. S. Belyav aki V. E. Lewis
B. J. Demps

_ _ — . —-- . -.-— - -.•- - --.
-_ ----- ~

,

.L~

KNOWLEDGE-BASED SYSTEMS GROUP 43 KNOWLEDGE-BASED SYSTEMS GROUP

KNOWLEDGE-BASED SYSTEMS

A. INTRODUCTION

Our group is investigating met hods by which software system design and
implementation can be automated or semi-automated. Our approach is to write programs
embodying the techniques used in the manual processes. The challenge is to discover

• which of these techniques or aspects of them are machinable and to develop formalisms
which will make more of them machinable. In this year’s report we will give a roster of
our current projects and then present survey pieces which explore a project in more
depth.

B. ROSTER OF PROJECTS

1. The Very High Level Language SSL

We are developing the prototype, SSL, of a language which could replace COBOL.
By omitting the details of data-structure and data-movement bookkeeping the language
achieves about a factor of ten compression over a conventional high level language. It
allows the coder or maintainer to focus on how outputs are defined in terms of inputs.
This should have a dramatic effect on the serious software maintenance problem faced
by large business data processing systems. We have a system which “compiles” SSL into

• IBM 370 PL/l.

We are now at the point where a problem comprising approximately 100 data
items and 60 computations has been run through our system in a hand holding and
restricted fashion. The system is described at length in the first survey below. People
and tasks on this projec t are:

a. G. R. Ruth and S. Alter have completed about 1/2 of a monograph describing this
work.

b. G. R. Ruth has also improved the question answerer and JCL generator modules.

c. R. V. Baron, W. S. Mark, C. Kiselyak, and G. A. Moulton have written an improved
PL/I generator.

d. G. Thomas completed a B.S. thesis defining the report generation language
component.

e. The SSL syntax was designed by the group.

I. W. A. Kornfeld implemented a parser for SSL ~~~~~~~~~~~~~~~~~~~~
— — • -.

• ICZD1~ ~~~

. -:~ •~~ ~~~~~~~~ •— -— ~~~~~~~~~~~~~~~~~~~~~~ _— •-~~~
- .=-~~~~- . - •_

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



—• - _-- -. _ . ---- --~~~~~~~~~~~~~ -— - • — --~~~~~~~~~~~~~~~
—

~~~~~~~~~~~~~
-.--.---_ —.•• -•.-

KNOWLEDGE-BASED SYSTEMS GROUP 44 KNOWLEDGE-BASED SYSTEMS GROUP

g. ‘-~. L. Morgenstern got his Ph.D. thesis optimizer to run on the example mentioned
above.

h. R. V. Baron performed overall system management and integration.

a Automation of the Business Consultant

a. M. Bosyj completed a MS. thesis program which questions a user with an on-line
• multiple choice branching questionnaire and does an initial design of a procurement

system for him.

b. W. S. Mark now has a Ph.D. thesis program which attempts to diagnose business
• problems expressed in stylized English by identifying troublesome feedback loops

in the organization. The program has run on his initial target example.

c. R. B. Krumland has a Ph.D. thesis program which builds aggregate cash flow models
• on the basis of a stylized English description of a situation and then makes runs to

• answer various what-if questions. His program has also run on his initial target
example.

d. W. J. Long is doing Ph.D. thesis work on a program-writing program which will
write programs for such simple activities as ticket selling, etc.

e. R. Fisher improved the KOMS operations management software packages.

3. The OWL System

a. W. A. Martin has refined his grammar of English.

b. L. B. Hawkinson has improved his data base system for handling conceptual
structures.

c. P. Szolovits has got a new parser running on one English sentence using Martin’s
grammar and Hawkinson’s data base.

d. A. Sunguroff with help from W. J. Long and W. R. Swartout got the OWL
interpreter to execute OWL blocks world procedures similar In function to those in
the M.I.T. Ph.D. thesis of Sussman.

e. G. Brown has debugged her OWL dialogue routines to the point where several
lines of the Susie Software dialogue given in an earlier Project MAC report are
operational.

- •..•,- .— • _ •

~~~~~~~~~~~~~~~~~~~~~~~ ~1I~

KNOWLEDGE-BASED SYSTEMS GROUP 45 KNOWLEDGE-BASED SYSTEMS GROUP

I. W. R. Swartout coded a running version of the Pauker-Silverman-Gorry digitalis
dosage program in OWL, preparatory to adding a question answering facility.

g. B. Levin did a 8.S. thesis which was a study of the non-physical uses of the
- preposition under.

I ‘ J



__________- • 

— 
-

. ~~~~~~~~~~~~

KNOWLEDGE-BASED SYSTEMS GROUP 46 KNOWLEDGE-BASED SYSTEMS GROUP

Publications

1. Hawkinson, Lowell. “The Representation of Concepts In OWL” Fourth International
Joint Conference on Artificial Intelligence. Tibilisi, U.S.S.R., Sept. 1975.

2. Ruth, Gregory. The Question Answerer. M.I.T., Laboratory for Computer Science,
Automatic Programming Group, Internal Memo 21, CambrIdge, Ma., 1975.

Theses Completed
• 

• 1. Mark, William. “The Reformulation Model of Expertise.” unpublished Ph.D Thesis,
M.I.T., Department of Electrical Engineering end Computer Science, August 1975.

Theses in Progress

1. Baron, Robert V. “Structural Analysis in A Very High Level Language.” B.S. and
M.S. thesis, M.I.T., Department of Electrical Engineering and Computer Science,
expected date of completion Sept. 1977.

~~~ 1

_ _ _ _ _ _ _ _ _ _ _ _ _

KNOWLEDGE-BASED SYSTEMS GROUP 47 KNOWLEDGE-BASED SYSTEMS GROUP

APPENDIX

A. PROTOSYSTEM I: AN AUTOMATIC PROGRAMMING SYSTEM PROTOTYPE

Programming is the activit y of going from a task specification to code capable of
performing the task on some actual computing system. This is essentially a problem-
solving process. But over the years people have come to understand certain functions of
the programming process well enough to automate them--that is to replace those
functions by programs. The most notable results were assemblers, compilers, and
operating systems. The gains realized from this automation were reduced operating
errors, increased complexity of systems which could be completed and more efficient use
of resources (time, people, machines) in the design-implement-evaluate cycle.

Our knowledge and understanding of programming is once again reaching a level
where a significant advance in automation is both necessary and possible. In fact , we
believe that the entire programming process can now be effectively automated. That is,
a system can be developed that will engage the user in English language discourse about
a desired task and will produce, as a result of the interaction with the user, a
satisfactory program. To demonstrate feasibility and gain insight into the issues and
technology involved in creating such a system, a prototype automatic programming system
(Protosystem I) for generating business date processing systems is currently being
developed at M.I.T.

B. A MODEL OF THE PROGRAM WRITING PROCESS

The data processing system writing process may be conceived as a sequence of
phases leading from the conception of a system to its implementation as executable
machine code. A useful and plausible model for this sequence of phases is:

1. Problem Definition (English -‘ OWL)

The system specification is expressed in domain dependent terms in English that Is
understandable by the program developers.

2. General System Analysis and Design (OWL -‘ SSL)

The problem is reformulated in standard data processing terms and expressed as
an instance of a known solvable problem class (in our case a subset of the class of all
batch oriented dps’s). Domain dependent policy and procedures are worked out in detail
at this stage.

H

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ 
_- — ....~~~~~~ r - -



KNOWLEDGE-BASED SYSTEMS GROUP 48 KNOWLEDGE-BASED SYSTEMS GROUP

3. ~y~stem Implementation (SSL -. COSL)

The system- -the actual procedural steps and data representations and
organizations--is constructed by intelligent selection from and adaptation of a numb,r of
standard implementations possibilities.

4. Code Generation (COSt -, P1/I & JCL)

The design specifications are implemented in a high-level language (e.g. P1/I,
COBOL) in a fairly straightforward, but not totally mechanical, way.

5. Compilation and Loading ~PL/l & JCL -, machine executable form)

A form is produced that can be “understood” and executed by the target
computer.

These phases progress from a general notion of what is to be done by the desired
system toward a detailed specification of how it can be accomplished. They also
represent the classes of design and implementation problems involved In program writing,
progressing from the most global and general considerations toward the most local and
detailed issues.

Protosystem I seeks to automate the program writing process by automating and
tying together the phases described in the model given above. That is, Protosystem I is
designed in such a way that there are explicit parts or stages corresponding to each of
the model phases. Each such stage embodies the knowledge and expertise of the human
agent(s) for the corresponding phase, so that, given the same or similar input, it can
intelligently produce comparable corresponding results. Drawing on experience gained In
recent artificial intelligence and knowledge-based systems research, we have chosen to
represent the knowledge in each stage in the form of procedures as opposed to the
approach used, for example, in table driven compilers.

• The products of each stage should not be so rigidly deterministic so that the
courses of action in further stages are narrowly prescribed. They must be sufficiently
general and malleable so that further stages can have the maximum freedom In making
their design contributions in the most effective and efficient ways. Consequently, we
have chosen in Protosystem I to make the product of each stage a descriptive
representation of the dps in terms of concepts and considerations appropriate for the
next stage of development. Such a description provides a medium in which the next
stage can manipulate relevant concepts and analyze the dps for relevant properties, so
that it can perform its design job more in the manner of a problem solver than in that of
an automaton. In this way the programming process is conceived as the development of a
succession of evermore precise system descriptions until, ultimately, a level is reached
where every detail has been decided and the result is an executable computer program.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  • - • • • - -  -~~~~~~~~~ - • . ~~~~ -_ _  - -



KNOWLEDGE-BASED SYSTEMS GROUP 49 KNOWLEDGE-BASED SYSTEMS GROUP

Put another way, we have borrowed from structured programming the notion of
program development by successive refinement , but we have approached this by
extending the levels off language--machine, assembly, and compiler- -to include the very
high level language, SSL, and an English-like language, OWL. We recognize that to
succeed with this method one must make appropriate abstractions so that the more
abstract statements of the problem lend themselves to further refinement. While the
wide use of business data processing systems in the past two decades has not led to the
definition of standard modules which would handle any situation, it has led to a better
understanding of the useful abstractions in that field. We believe that these abstractions
can be grouped naturally according to the phases of the dps development process.

C. EFFICIENCY ENHANCEMENT IN SYSTEM DEVELOPMENT

To produce a credible and practical result an automatic programming system must
perform a reasonable degree of optimization. Current formal optimization methods
pertain mainly to the compilation level, principally because this is the only phase of the
program writing process that has bee n automated. When the entire program
development process is automated, new, additional types of optimization will have to be
included. The combination (for the sake of I/O efficiency) of computations accessing the
same data set is an examp le. At compilation time the decision to include these
computations in the same job step or not to do so has already been made. If they are
not in the same job step (and hence compiled separa tely) the opportunity for
optimization has already been lost. Even if they are in the same job step, the compiler
can derive little, if any, information about their I/O characteristics. Therefore, it has no
basis on which to evaluate the relative efficiency of possible combinations and is
incapable of making an intelligent optimization decision.

This type of optimization problem is not unique. It should be easy for the reader
to think of many other examples where it is impossible to perform adequate optimization
of the type necessary if we wait until Phase 5 to do it. The information needed to make
good design decisions of a more global nature is just not available at that stage. That is,
the (so-called “high level”) compiler language is too low level to allow the system
specification to be expressed in a form where such optimization issues will be apparent.

The various possible types of optimizations fall quite naturally Into categories that
correspond to the program writing levels in our model. For instance, the combination of
computations as in the above example is something that should be considered during
Phase 3 (system implementation) where the data and computational interrelationships
among conceptual processing units are most evident. Problems involving machine
language inefficiencies should be handled in a later phase.

An attempt to apply an optimizing process at a higher stage than that to which It
per tains would require an overspecified system description at that level; that is, a
description containing details extraneous to the purpose of that stage. Trying to apply a 

•~-~ .-•-.~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~-.---.—--—- ~~—~ -.~ ~~~~~~~~~~~~~ 
--



cnaracler,stlcs necessary :~r multj -j nj tiat ‘v ” ~~ 
~~~~~~~~~ “~~“~~ ~~ “• used to implement the new protocol 

or systems. Self-clocking asynchronous logic issystems. . IS concept is also ext5ndable to multi-bus

~~~~~~~~~~~~~~~ -~~~~~~~
——.—- 

KNOWLEOGE-8ASED SYSTEMS GROUP 50 KNOWLEDGE-BASED SYSTEMS GROUP

transformation at a later stage than that to which it naturaHy corresponds would
effect ively require “unprogramming~ (trans lation from a lower level description to a
higher level ~ne). This would be a difficu’t , if not impossible, task. It would also require
the lower phase to contain knowledge which belongs at a higher level. Optimizations are
most effectively performed at their corresponding level of translation, where exactly the

• sort of information and visibility needed is present. Since all levels of program writing
are included in our automatic programming system, there is no need for overspecificetion
or unprogramming.

At each stage in an automatic programming system intelligent, efficiency enhancing
design and implementation require: knowledge of possible ways of implementing each
requirement determined and described by the previous stage, methods for evaluating
alternate designs so that the best choice can be made, and information on which such
decisions can be based. The first two of these embody the expertise of the human
agents for the corresponding phase of each stage and are built into the programs for that• stage.

The information used to make decisions is specific to the particular dps
cons truction project. It consists of three parts: (I) the design decisions that have been
made so far for the dps part under consideration and for all parts relevant to the further
development of that part , (2) the consequences that a decision will have on further
development, arid (3) the environment in which that part and related parts will operate.
The first of these is provided by the description output of the previous stage, which Is
input to the present stage. It also includes the current partially determined description
of the dps being produced by the present stage. This contains the decisions that have
been made so far in this stage.

The second type of information is of two kinds: (a) knowledge of the effects of a
decision on others to be made in the same stage and (b) knowledge of Its effects on
decisions to be made in later stages. Information of type (a) is provided by maintaining a
global awareness within each stage of its aggregate design contribution. Type (b)
informat ion is commonly provided by feedback in the non-automated program
development process. Consider the problem of avoiding machine language Inefficiencies.
A number of such inefficiencies can be eliminated simply by finding oetter sequences of
instructions to implement the constructs of the next higher level language; but others
can only be prevented by using only algorithms (which are determined at a higher level)
that require constructs that can be efficiently implemented. In the latter case one could
imagine a strong interaction between levels, for in choosing an algorithm it would be
necessary to determine whether the constructs it requires could be implemented
efficiently. We believe that in the semi-repetitive design of business data processing
systems this strong interaction is not required. We eliminate most difficulties by
removing from the design any algorithm which has not been part of an efficient
implementation.

-
~~~~~~~~~~~~~~~~~~ 

~~~~~~~~
• 

•~~~~ 
~~~~~~~~~~•


KNOWLEDGE-BASED SYSTEMS GROUP 51 KNOWLEDGE-BASED SYSTEMS GROUP

We can do this because our goal is not to be the first to create radically new
systems, but to implement standard systems quickly, cheaply, and accurately. The semi-
repetitive nature of the design of dps software also makes it possible to get ball-park
estimates of cost without detailed coding of key sections. One could cite, for example,

• estimating systems like SCERT which have been in commercial use for some time.

As stated above, we take the view (also held by some structured programming
advocates) that one design phase should be completed before the nex t is begun.
Because we are automating the design process, we can make many passes through the
whole process in the time formerly required for a single pass. Feedback from several
passes, including evaluation by the using organization, we hold to be critical. Feedback
among phases as they run greatly complicates the design process. We feel that it will
not yield a corresponding improvement in results. It opens the door to the design of
incredibly complex “heterarchical” systems where control of the program development
process would dance unpredictably among the various stages in a complicated way. To
avoid the comp lexities of a heterarchically structured system, we have outlawed
feedback. Instead, each stage has a gross model (often implicit) of the stage following it.
In this way it can see the basic ramifications of its design decisions in the next stage by
effectivel y interrogating its own model of that stage, rather than having to rely on that
stage to feed information back.

The third type of information needed in the design and implementation process has
to do with the context in which the dps will operate, namely: (a) the machine/operating-
system configuration on which the ultimate dps code will be executed and (b) the
characteristics of the data it will receive and produce. Because machine/operating—
system configurations are standard and relatively few in number, type (a) information is
encoded directly into the automatic programming system in the form of separable,
interchangeable modules; the automatic programming system is thus specialized to a
particular configuration by selecting the appropriate module (e.g. the OS/360 module).

• Further installation dependent information (e.g. the number and type of secondary storage
devices) is supplied directly by the user. Information of type (b), concerning types and
quantities of, and interrelationships among, data processed by the dps, is too broad and
varied in nature to be entirely supplied by, or derived from, an initial user statement of
any reasonable length The inclusion of all facts that might possibly become relevant to
design decisions would require much effort. Much information is difficult to obtain and
most would never be used. Therefore, it is best to require special information from the
user only when it becomes important in the course of the development process. To do
this the automatic programming system must be able to ask the user specific questions
as additional information becomes necessary.

• • • ~~~~~~~~ • - • • ~~~~~~~~~~~~~~~~~~ ~~~~~ •. ~~~
- . • • • • — . ~~. -•~ • .- — • -

.•

KNOWLEDGE-BASED SYSTEMS GROUP 52 KNOWLEDGE-BASED SYSTEMS GROUP

Translator

data base - - - Question (
~) Structural

Answerer Analyz~r

Optimizing
Designer

• Job Cost
Estimator

s

\ ~~~
PL/l

Generator

P1-Il
JCL

Generator

Data flow - - - -
Calls
Transfer of control

Figure 1. Protosystem I; Structure of the Bottom Part

• •—
~~~



-
~ KNOWLEDGE-BASED SYSTEMS GROUP 53 KNOWLEDGE-BASED SYSTEMS GROUP

0. THE DEVELOPMENT OF PROTOSYSTEM I

The research and development of Protosystem I at M.l.T.’s Laboratory for
Computer Science (formerly Project MAC) began in 1971. Early on it became apparent
that the natures of the technologies to be used in the first (or “top”) part of the system
(Phases 1 and 2) and the latter (or “bottom”) part of the system (Phases 3 and 4) were
clearly different. Consequently the work was divided in two parallel efforts: (1) a top—
part—of—the-system effort , essentially of an artificial intelligence nature, involved with
the comprehension of natural language by machines, user requirements acquisition, model
formation , problem solving and the development of a supporting high-level
language/system called OWL, and (2) a bottom-part-of-the-system-effort addressing the

• problems of implementation and optimization of a program given an abstract relational
specification (ultimately to be passed down from the top part of Protosystem I) of what
it is to do. The bottom part of Protosystem I has been completely implemented in the

• MACLISP language and is operational on the M.I.T. Laboratory for Computer Science POP—
• 10 computers. Research and development on the top part , being considerably more

ambitious and novel, is somewhat less mature. It is not expected to cross the threshold
of practical applicability for another five years, and so will not be discussed further in• this paper.

A structural diagram, indicating the major modules, flows of control and flows of
data in the bottom part of Protosystem I is shown in Fig. 1. The following sections give
an explanation of the working of this part of the automatic programming system.

• E. THE PROTOSYSTEM I DATA PROCESSING SYSTEM MODEL AND THE SYSTEM
SPECIFICATION LANGUAGE

Protosystem I handles a restricted but significant subset of all data processing
I applications: I/O intensive batch oriented systems. Such systems involve a sequence of

runs or job steps that are to be performed at specified times. They are assumed to
involve significant I/O activity due to repetitive processing of keyed records from large
files of data. Systems such as inventory control, payroU, and employee or student record

• keeping systems are of this type.

A simple example of such a dps is a software system to perform the inventory and
• warehousing activities in the following case:

The A & T Supermarket chain consists of 500 stores served
by a centrally located warehouse. There are 4000 items, supplied

• 1 by the warehouse, that these stores can carry.

Every day the warehouse receives shipments from suppliers
and updates its inventory level records accordingly.

_ _ _  _ _ _  _ _  _ 

L
_ _ _ _ _ _ _ _  - —~~ — - •  

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~


11

I

KNOWLEDGE-BASED SYSTEMS GROUP 54 KNOWLEDGE-BASED SYSTEMS GROUP

It also receives orders from the stores for various quantities
of items . If for a particular item there is sufficient stock to fill all
of the orders f or that item, the warehouse simply fills the orders as
made; but if there is insufficient stock it ships partial orders
proportional to a frac tion of the total quantity ordered that is on
hand.

Inventory records are adjusted to reflect the decrease in
levels.

Finally, a daily check is made on the inventory levels of all
items. If the level of an item is lower than 100, the warehouse
orders 1000 more units of that item from the appropriate supplier.

In order for the bottom part of Protosystem I to Implement such a data processing
system application the basic aggregate data entities and their Interrelationships must be
determined. This determination can be made from the English task description by a
consultant or by a sophisticated, natural language comprehending software system (e.g.
the top-part of Protosystem I) that has embedded in It his knowledge and experience
about business systems and data processing.

Consider the inventory updating activity of the second paragraph. There are three
aggregate data entities involved: (1) the se t of quantities received from supplier.,
(2) the cvt of closing inventory levels for the previous day, and (3) the set of the
updated inventory levels to be used for filling store orders. Such collections of similar
data that are to be processed in a similar way are termed data sets. In the domain of
Protosystem I a data set is assumed to consist of fixed format records (e.g. one for the
level of each inventory item)• Associated with each record is a data item (e.g. the level
of an inventory item) and keys. The key values of a record uniquely distinguish it (e.g.
the inventory data set can be keyed by item since there is only one level [record) per
item) and so can be used to select it. Thus, a data set is essentially the same as a Codd
relation and its keys are what Codd calls primary keys.

Let us ca ll the three data sets described in the last paragraph SHIPMENTS—
RECEIVED , FINAL—INVENTORY and BEGINNING-INVENTORY. The relationship between
the BEGINNING-INVENTORY data set and the SHIPMENTS-RECEIVED end FINAL-
INVENTORY data sets may be described as follows.

For every item:

• the beginning inventory level of that Item
0 e., the value of the data item for the record
In BEGINNING-INVENTORY for that item)

__

KNOWLEDGE-BASED SYSTEMS GROUP 55 KNOWLEDGE -BASED SYSTEMS GROUP

is the closing Inventory level of that t ern from
the previous day
(i.e., the value of the data item i-s t.~i record
of FINAL-INVENTORY for th. same tern)

plus the quantity of that Item recàvsd
0 a , the value of the dMa item in the r cord
of SHIPMENTS-RECEIVED for the Itsm in
question), If any.

This relationship is expressed more succinctly In SSL (th. System Specification
Language):

BEGINNING-INVENTORY IS FINAL-INVENTORY(I DAY AGO) + SHIPMENTS-
RECEIVED

Implicit in this statement Is that the addition operation Is performed for each item
and that ii one of the operands is missing (e g, if no chicken noodle soup was received
today) it is treated as having a zero value. The repetitive application of an operation to
the members of a data set or sets such as this is termed a computation. The order of
applications of the operation to the records of its input data sets by a computation is
assumed to be unimportant to the user; in fact , he may think of them as being performed
in parallel. However , every computation does, in fact , process its inputs serially,
according to a particular ordering (chosen by Protosystem I) on their keys. Computations
typically match records from different data sets by their keys (as above) and operate on
the matching records to produce a corresponding output record. A computation may also
group the members of a data set by common keys and operate on each group to produce
a single corresponding output. Returning to our example, note that Item orders can come
from different sources (stores) , so that both the item and the source of an order are
needed (as keys) to distinguish it. To form the total of all orders for each item, a
computation must group the orders by item and sum over the order amounts In each
group. In SSL this would be expressed as;

TOTAL-ORDERS FOR EACH ITEM IS THE SUM OF THE QUANTITY-
ORDERED-BY-STORE

Fi g. 2 shows the structure of the A & I Inventory end warehousing data processing
system In terms of computations (boxed) end data sets (unbox.d). The complete SSL
description of A & T dpe is given In FIg. 3. Note that in addition to the relational
statements a lIst of data sets must be Included to Indicate the keys by which they are
accessed.

__ ~~~~~~~~~~~
-
~~~~ 

•
~~~ 

.
~~~

• •~ ~~~~~~~~~~~~~~ 
--

~~~~~~~~ -


KNOWLEDGE-BASED SYSTEMS GROUP 56 KNOWLEDGE-BASED SYSTEMS GROUP

• F. THE TRANSLATOR AND THE DATA SET LANGUAGE

It is characteristic of the data processing systems which Protosystem I proposes to
treat that the calculations themselves are easily dealt with and that it is the structuring
and manipulation of the masses of data involved that occupies by far the greater part of
the Stage 3 implementation activity. Additionally, the moving and storage of aggregate
data entities must be determined before the operations on their members can be
considered. Consequently, the development process at Stage 3 is data set oriented.
Theref ore, to facilitate the design process the SSL dps description is first analyzed from
this point of view and re-expressed in a more appropriate medium, DSL (the Data Set
Language). This reformulation is performed by the Translator module.

The determination of dps characteristics that can aid in the development of the dps
design is made with the aid of the Structural Analyzer and included in the Translator’s
output description. This output is called the UDSL (Unconstrained Data Set Language)
description, because most design details remain unbound (undecided) in it. As such it
forms the skeleton of the dps description ultimately to be produced by Stage 3.

One useful piece of information determined by the Structural Analyzer is the set of
driving data set candidates for each computation. A driving data set is an input data set
that is guaranteed to have a data item for every tuple of key values for which the
computation can produce an output. The computation, then, instead of having to loop
over all possible combinations of values for the keys of the inputs, can be driven by the
driving data set in that it only has to consider those key value combinations for which the
driving data set contains records.

Another type of information the Structural Analyzer determines is directly related
to our desire to specif y data set organizations and orders and computation accessing
methods and orders in such a way as to minimize the cost of operating the dps. Because
a dps typ icall y involves the repetitive application of simple calculations to large
quantities of data we make the first-order approximation that the cost of operation is
due entirely to data accessing (reading and writing). Our design, therefore, focuses on
minimizing the total number of I/O events.

Accordingly, the Structural Analyzer also determines predicates that are the
conditions under which a data item will be generated and under which a data item will be
used by a computation. For example, a store will be shipped an item if (it is true that)
that store ordered that item and there was sufficient inventory to fill the order; the
order allocation step will use the inventory level for a particular item if some store
ordered it. These predicates, together with basic information concerning the sizes of
data sets in the dps, are used by the Question Answerer to determine the average end
maximum sizes of files (proposed by the Optimizing Designer) and the average number of
a file’s records a computation will access.

i~~~~ _ •~~
_
_
~~~~~~ 

--

~~~ .— — —~~~~~~~~~~~~


- -

KNOWLEDGE-BASED SYSTEMS GROUP 57 KNOWLEDGE-BASED SYSTEMS GROUP

G. THE DESIGN CRITERION AND THE JOB COST ESTIMATOR

The design criterion for Protosystem I is the minimization of the dollars and cents
cost of running the final dps program on the target machine/opera ting system
confi guration. Because the dps’s are assumed to be I/O intensive, as a first
approximation, this can be equated with access minimization. An access in this sense is
defined as the reading or writing of a single secondary storage block, which corresponds
to a single operating system I/O event. In Protosystem I, for a particular data set a
block consists of a fixed number of records.

With this approximation the relative costs of alternative dps design configurations
can often be assessed without knowledge of the particular target configuration. But
sometimes actual cost estimates, provided by the Job Cost Estimator, are necessary.
This module must thus contain knowledge of the charging scheme and operating
characteristics of the target configuration (in our case the OS/360 configuration).
Optimization with respect to a different configuration and/or charging scheme would
require the substitution of a new appropriately tailored module.

H. THE QUESTION ANSWERER

The function of the Question Answerer is to supply answers to questions from the
Optimizing Designer about the average sizes (in records) of abstract aggregate date
entities. Two examples of such data aggregates are a file and the collection of records
in a file that are accessed by a particular computation. Each “ques tion” sent to the
Question Answerer is in the form of a predicate describing the conditions under which a
record will be in the data aggregate in question. For example, if there are records in
FINAL INVENTORY, QUANTITY RECEIVED and BEGINNING INVENTORY for only those items
have non-zero quantities, the predicate

there is a record in FINAL INVENTORY (for a given item)
or

there is a record in QUANTITY RECEIVED (for a given
item)

describes an event equivalent to “there Is a record in BEGINNING INVENTORY” for a
given item. The Question Answerer makes use of the simpl i fy ing assumption that all
records in an abstract aggregate data entity are equally likely to be present. Thus, if
the maximum size of a data aggregate Is well defined (e.g. BEGINNING INVENTORY can be
no larger than the set of all items carried by the warehouse), its average size can be
calculated by multiplying the probability that the event that the typical record in it will
be present by its maximum size. If there is no meaningful maximum size (as, for example,
with a data set that is the collection of all outstanding purchase orders) the average size
of the data aggregate must be determined directly.

~~~~ ~~~~~~~~~~ — — -



KNOWLEDGE-BASED SYSTEMS GROUP 58 KNOWLEDGE-BASED SYSTEMS GROUP

yesterday’s supplier quantities of each
• final shipments item ordered by stores

inventory received I

T update sum item orders over
inventory all stores

beginning total item orders
invento~ 

~~~~~~~~~~~~~~~~~~ orders

quantity of each item
shipped to each store

sum shipped items
over all stores

total items shipped

~~~~~~~~~~~~~~~~~~~~~ t inventory

final inventory

reorder calculation
$ I

reorder amounts

Figure 2. A & T Inventory and Warehousing System



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

KNOWLEDGE-BASED SYSTEMS GROUP 59 KNOWLEDGE-BASED SYSTEMS GROUP

The Question Answerer maintains a data base of all of the event probability and
size information given by the user. When asked a question it attempts to find the
associated size or probability directly. Failing this, it will try to calculate the probability
of the event in question happening from those of its subevents and its knowledge of
event independence and correlation within the dps. If the information on hand is
insufficient to answer the question, the Question Answerer obtains enough additional
information from the user (through a flexible line of questioning) to do so. The new
information thus gained is stored in the data base for future reference.

I. THE OPTIMIZING DESIGNER

The Optimizing Designer is the heart of Stage 3; all of the other modules in this
stage exist merely to serve it. When the translation from SSL to UDSL has been
completed, control passes to the Optimizing Designer. This module is responsible for
constructing job steps to implement computations and files to implement data sets. In
particular its job is to:

a. design each keyed file--in particular its

1. contents (information contained)

2. OS/360 organization (consecutive, index sequential, or regional(2))

3. storage device

4. associated sort ordering (by key values)

5. blocking factor (number of records per block)

b. design each job step of the dps--name~y

1. which computations it includes

2. its accessing method (sequential, random, core table)

3. its driving data set(s)

4. the order (by key values) in which it processes the records of its input data
sets

c. determine whether sorts are necessary and where they should be performed

d. determine the sequence of the job steps.



• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

KNOWLEDGE-BASED SYSTEMS GROUP 60 KNOWLEDGE-BASED SYSTEMS GROUP

CALCULATIONS EVERY DAY

BEGINNING-INVENTORY IS FINAL-INVENTORY(1 DAY AGO) + SIIPMENTS-RECEIVEO

TOTAL-ITEM-ORDERS IS SUMS OF GROUPS QUANTITY-ORDERED-BY-STORE BY ITEM

• QUANTITY-SHIPPED-TO-STORE IS

QUANTITY-ORDERED-BY-STORE IF BEGINNING INVENTORY IS GREATER
THAN TOTAL-ITEM-ORDERS

QUANTITY-ORDERED-BY-STORE
* (BEGINNING-INVENTORY / TOTAL-ITEM-ORDERS)

IF BEGINMNG INVENTORY IS
NOT

GREATER THAN TOTAL-ITEM-
ORDERS

TOTAL-SHIPPED IS SUMS OF GROUPS OF QUANTiTY-SHIPPED-TO-STORE BY ITEM

FiNAL-INVENTORY IS BEGINNING-INVENTORY - TOTAL-SHIPPED

REORDER-AMOUNTS IS 1000 IF FINAL-INVENTORY IS LESS THAN 100

DATA SET TABLE

(SHiPMENTS-RECEIVED DAY ITEM)
(BEGINNING-INVENTORY DAY ITEM)
(FINAL-INVENTORY DAY ITEM)
(ORDERS-TO-SUPPLIERS DAY ITEM)
(QUANTITY ORDERED-BY-STORE DAY ITEM)
(QUANTITY-SHIPPED-TO-STORE DAY ITEM STORE)
(TOTAL-ITEM-ORDERS DAY ITEM)
(TOTAL SHIPPED DAY ITEM)
(REORDER—AMOUNTS DAY ITEM)

Figure 3. SSL Relational Description for the A & T Data ProcessIng System

-

~~~~ ~~~~~~~~~~ ~ - - - -~~~~- - - ~ - 
~~~~~~~

-
~~~~

- - -~~~ -.. ~~~~~~~~~~ -~~~~~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _ _ _ _ _  

—
~~~~~~~~~~~ - •-— — ~~~~~~~~~~~ -‘•

--
~~
•-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

KNOWLEDGE-BASED SYSTEMS GROUP 61 KNOWLEDGE-BASED SYSTEMS GROUP

The Optimizing Designer performs dynamic analysis (analysis of the operating
behavior) on the dps to propose and evaluate alternative design configurations.
Occasionally, static analysis (analysis of system structure and interrelationships) of such
tentative confi gurations is also necessary, and this is obtained through calls to the
Structural Analyzer. When additional information is needed to make evaluations and

- 
- decisions the Question Answerer and the Job Cost Estimator are called.

• All design decisions are made in an effort to minimize the total number of accesses
that must be performed in the execution of the dps. There are three major techniques
that the Optimizing Designer uses toward this end:

1. Designing Files and Job Steps in Such a Way as to Take Advantage of Blocking.

• Accesses can be reduced if files are given blocking factors greater than one and if
processing and file organizations are designed in such a way that the records of a each
block can be used consecutively.

2. Aggregating Data Sets.

If two or more data sets that are accessed by the same computation are combined
into one file (see Fig. 4) and processing is arranged so that a single record of the
aggregate can be accessed where more than one record from each of the otherwise
unaggregated files would have been accessed, accesses can be saved.

3. Aggregating Computations.

When two or more computations access the same data set and the orders in which
they process the records of that data set are the same, It may be advantageous to
combine them into a single job step. Then each record of the shared data set can be
accessed once for all, rather than once for each computation (see Fig. 5).

These access minimizations techniques require that the key order of processing
agree in a special way with the organization of the data being processed. This is where
the fundamental difficulty in optimization lies. A data set’s organization and the accessing
method of a computation using it cannot be determined independently of each other or of
other data set organizations and computation accessing methods. The organization of a
data set limits the ways in which it can be practically accessed by a computation, and,
conversely, the accessing method of a computation restricts the practicable organizations
of a data set that it accesses. Furthermore, a data set is typically accessed by more
than one computation with possibly conflicting preferences for its organization and a
computation accesses more than one data set with conflicting preferences f or accessing
methods. Final ly, data set organization constraints tend to propagate through
computations, because it is most efficient for a computation to write Its outputs in the
same key order in which it reads its inputs (since that Is the order in which the output



~~~~~~~~~~~~~~~~~~~~~~~~ ~~~T ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~“I~

KNOWLEDGE-BASED SYSTEMS GROUP 62 KNOWLEDGE-BASED SYSTEMS GROUP

(N11 3) (N21 2)
(N12 2) (N22 4)

MALE-EMPLOYEE5(DEPT) FEMALE-E~ PLOYEES(OEPT)

(N11 --- 3)
(N12 N21 2)
(--- N22 4)

MALE-& -FEMALE-EMPLOYEES(DEPT)

Figure 4. Data Set Aggregation

(The
~~ are values of data items and the numbers are values of the key DEPT)

KNOWLEDGE-BASED SYSTEMS GROUP 63 KNOWLEDGE-BASED SYSTEMS GROUP

records will be generated). So, optimization of the type we are considering is
necessarily a problem in global compromise.

The straightforward solution of evaluating the cost of every possible combination
of assignments of sort order, device, organization, and access method for data sets and
computations in every possible aggregation configuration to determine the least
expensive is ruled out by the sheer combinatorics involved. Even with mathematical and
special purpose tricks it would be impossibly slow.

To make optimization tractable a heuristic approach must be taken. First different
kinds of decisions (e.g. choice of driving data sets, which objects to aggregate) must be
decoupled wherever possible. Further decoupling p~ust be judiciously introduced where
it is not strictly possible, f or the sake of additional simplicity. Such forced decoupling
does not mean, though, that decisions that are in fact coupled are treated as if they were
independent. The decoupled decisions are still made with a certain awareness of their
effects on other decisions. Finally, as a first order approximation, the optimizer does
what is reasonable locally, and then adjusts somewhat for global realities. While we
make no claim that this approach will lead to the true optimum, it does produce good and
usually near-optimal solutions for real and honest problems.

J. CODE GENERATION

Stage 4 of Protosystem I consists of the PL/l and JCL Generator modules. The
PL/l Generator takes the fully specified output of Stage 3 (the COSL or Constrained ~ata
Set Language description) as input and produces PL/l code for each job step. This
involves the determination and arrangement of PL/I I/O specifics, the construction of the
data processing loops, and the programming of the necessary calculations. The JCL
Generator then writes IBM OS/360 JCL and ASP instructions for the 1/0, administration
and scheduling of the compilation and execution of the dps job and job steps.

K. CONCLUSION

A model of the data processing system implementation process has been presented
and a blue-print, based on that model, for automating the entire process has been
developed. Protosystem I is a project to exhibit the feasibility of these ideas. Already,
two of the four heretofore manual phases of the software writing process have been
automated and are capable of producing acceptable implementations. The automation of
the remaining two phases should easily fall within the realm of presently developing
technologies within the next decade.

Directions for further investigation include:

1. Expansion of the design repertoire--additional data structures (e.g. hierarchical
files, inverted files), the use of Early’s iteration inversion ideas, etc.

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . -
•-
~~~~~~

- :•— :~~~ —~-—L:1 -



_ _ _ _ _ _ _ _  
-~~~~~ - .--~-——-~~~~~~~

KNOWLEDGE-BASED SYSTEMS GROUP 64 KNOWLEDGE-BASED SYSTEMS GROUP

• Figure 5a. Horizontal Aggregation of Coniputatlons

Cl

-->

C12

Figure Sb. Vertical Aggregation of Coivçutatlons 

~~~~~~ .— • -— -- -~~~~~~~•—~~~~~~~ •• ~~~ •~~~~~~- - - -~ - - — — - — • — ~~~~~~~~~~~~—


-
•~~~~~~~ .~~~~~~~~~

—-
~~ ~~~

-
~
--- •

• -~~ ~~
• • - - - -—

~
- •

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

KNOWLEDGE-BASED SYSTEMS GROUP 65 KNOWLEDGE-BASED SYSTEMS GROUP

2. Enlargement of the class of dps’s handled (e.g. admitting other types of
computations on-line systems).

3. Development of peripheral automatic technologies--for example, automation of
incremental changes to dps’s with minimal perturbation/maximal efficiency.

4. Automatic development of dps back-up and restart capabilities.

•

~

• . • . • •

~

. • • ~~~~~~~~~~~~~~~~~~~ • •

~~~~~~~
•
~~~



- 

~_~~~~~
__ __•L-__’__ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

KNOWLEDGE-BASED SYSTEMS GROUP 66 KNOWLEDGE-BASED SYSTEMS GROUP

BIBLIOGRAPHY

1. Balzer , Robert. Automatic Programming. University of Southern California,Information Sciences Institute, Technical Memo. Marina del Rey, Ca, 1973. - •

2. Codd, E. F. “A Relationa l Model of Data for Large Shared Data Banks.Communications of the ACM, Vol. 13 No. 6 (June 1970), 377-387.
3. Early, J. Relational Level Data Structures For Programming Languages. Universityof California, Berkeley, Ca., Computer Science Department, 1973.

4. Hammer, Michael; Howe, W.; and W ladawsky, I. An Overview of a BusinessDefinition System.” ACM SIGPLAN Notices, Vol. 9 No. 4 (April 1974).

5. Hawkinson, Lowell. “The Representation of Concepts In OWL” Fourth InternationalJoint Conference on Artif icial Intelligence Tibilisi, U.S.S.R. Sept. 1975.

6. Nunamaker, J. F. Jr.; Nylin, W. C. Jr.; and Konsynski, B. Jr. “Processing SystemsOptimization through Automatic Design and Reorganization of Program Modules.”Information Systems, edited by Tou. New York: Plenum, 1974.
-

• 7. Ruth, Gregory. “The New Question Answerer.” M.I.T., Laboratory For ComputerScience, Automatic Programming Group, Internal Memo 21. Cambridge, Ma. 1975.
8. Sussman, Gerald. A Computational Model of Skill Acquisition. M.I.T., ArtificialIntelligence Laboratory, A.l. TR-297. Cambridge, Ma, August $9 73.

MATHLAB GROUP 67 MATHLAB GROUP

MATHLAB

Academic Staff

J. Moses, Group Leader P. S.-H. Wang
V. Pless

Research Staff

• A. P. Doohovskoy D. A. Moon
J. P. Golden J. L White
J. P. Jarvis

Graduate Students

I. D. Avgoustis B. M. Trager
M. R. Genesereth R. Ii Weiss
J. L. KuIp R. E. Zippe~
G. L Steele

V Undergraduate Students

0. R. Barton s. ii . Macrakis
0. J. Littleboy M. a Mulligan

Support Staff

V. E. Lewis

• Guests

U. Pape T. Minamikawa

~L _ _ _ _ _ _ _ _ _ _ _ _ _ _~~~~~~~~~~~ ___________________
- -~~~~~~-- - --- - —

~~~~~~~~~~~~
•. • _ -. -.,.•,--.

~~~~
- •

.~~~~~-—- - -—~~~~

- -~ ---~ . .•~~~~~~~~~~~~ • ---~~~~~ -, •~~~~~~~~~-~~~~~~~~~~~

MATHLAE3 GROUP 69 MATHIAB GROUP

MATHLAB

A. LNJROPUC.T~PN

The past year saw the long-awaited beginning of a new phase of operation for
the group -- MACSYMA Consortium. The Consortium purchased a KL-10 computer
which is approximatoly five times as fast as our older KA- 10 computer. Research on
new algorithms was undertaken in many areas such as manipulation of algebraic
functions, integration of special functions, inversion of matrices, and finding Invariants
for a set of polynomial ideals. As a result of the present arid past research of the
group, approximately 407. of the algebraic manipulation papers in the forthcoming 1 976
Symposium on Symbolic Al gebraic Computation are by present and former members of
the group, and by our present set of users.

B. HI MACSYMA CONSORTIUM MACHINE

A DEC KL- lO system was purchased for the Consortium, largely from ARPA
funds, and was delivered in July I 975. Guy 1. Steele and David A. Moon rewrote the
microcode for the machine so that it simulated the pager on the Mathleb KA- lO and our
1TS operating system was in operation in November.

Our early experiments on the KL-1O indicated that the performance of the
machine was approximately that which we anticipated. The factor of five speed
improvement (circa 1.5 mips) has been very welcome indeed. We have been able to
handle 1 5 simultaneous MACSYMA users with hardly a decrease In response. Partly
this is due to the high rate of sharing in each MACSYMA (up to 150K words) and partly
to the very nature of MACSYMA usage, since users spend a fair amount of time
planning their next step.

Usage of the 1(1- 10 has been quite encouraging. For example, the total CPU
utilization of the machine in its first month of full operation was about 2 times the
capacit y of the KA- lO. The community of users has also grown so that there are over
250 different MACSYMA users each month

C. MATRIX INVERSION ALGORITHMS

For the past two years, we have been quite Interested In finding approaches for
calculating determinants of matrices and their inverses more efficiently. The last
Progress Report gives some of our approaches to the determinant problem. This year
Prof essor Paul Wang and a Japanese visitor , Tadotoshi Minarnikawa, Investigated the
matrix Inversion algorithm. lnverses of many sparse matrices tend to be dense ones.
It would be very useful to know whether the Inverse can be sparse, especially if one
can predict the zero entries without too much computation. We shall consider an

‘element in the inverse to be predictably zero, if the matrix whose determinant defines
- . - ~~~~~~~~~ _J_

_ _ — -—- - - -
~~~

,

pxzczmNo P~~~ ~~~W

~~~~~~~~~~~~~~~~~~~~~~~~ 

-
-

~~~~~~~~~~ ~~~~~~~~~ - , ~~~~~~ ~~~~~~~~ - -
~~~ 

•
- •~~~1~ .~~~~~~~~~~~~~~~~ —

~~

-
~~~- ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~
-
~~~

-
~
-
~
—---— 

~
—‘—

~~
— •

MATHLAB GROUP 70 MATHLAB GROUP

its value is the zero matrix. We thus ignore situations in which elements In the
inverse become zero because of cancellations which may occur in the determinant
when one considers the specific value of the entries of the matrix. Minamikawa and
Wang show that unless a nonsingular matrix has a particular “block” structure, indicated
below, then no element in its inverse is predictably zero. Further any nonsingular
matrix possessing a block structure can be shown to have that structur , using row
permutations.

For example, the matrix below has a “block structure”.

A 11

A22

_ _ _

A33

A44

The matrices along the diagonal are nonsingular square matrices of possibly
different sizes. Below them all the entries are zero. The entries above them may
have any value. The inverse of such a matrix may be computed easily from the
inverse of the matrices along the diagonal.

The submatrix A 1 1 is said to be unreachable in the following sense: consider a
directed graph whose nodes are 1,2 ...,n representing the rows and columns of th.

— . .. , ,
~~~

• .,,
~~

• ,.••. ,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

~~. 
-
~~~~~~~~

- — -~~~~~~~thL-~-~.-r- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ r

ii

MATHLAB GROUP 71 MATHLAB GROUP

matrix A. If element a~ is nonzero, there is an arc from node I to node j. A 1 1 is

unreachable since there is no arc into it from nodes outside of it.

Recall that the inverse of a matrix can be obtained by computing

• det(A)

• where A~3
4 is the (n’-l)x(n-l) matrix with row i and column j deleted. If the matrix A

has a block structure, then it must have an unreachable submatrix. Assume it did not
have such a block structure. Then there is a path in each A1~

5 traversing all the rows.
Therefore the det(A

~
t) is not identically zero for all i,j.

0. POLYNOMIAL DECOMPOSITION

The group has had great success in the past few years in devising efficient
algorithms for factoring polynomials. We have not known any effective way of
obtaining a related factorization, that is, given a polynomial f(x), find g(x), h(x), if they
exist as polynomials, such that f(x)=g(h(x)). Barton and Zippel have recently found
such an al gorithm which is surprisingly simp le. The idea is to factor , in the usual
manner, the bivariate polynomial f(x)-f(y). We look for factors of the form h(x)-h(y).
These will be candidates for the h’s; the g’s can then be found with little effort.
Clearly x-y is always a factor. In fac t, h’s which are linear are not too interesting-—
they introduce an equivalent decomposition. For example, the algorithm finds that
f(x)=xx 6+x 4+x3+9x2+3x-5, which is irreducible over the integers, has a decomposition
g(h(x)), where h(x)=x 3+3x, g(x)=x 2+x-5.

Our application for polynomial decomposition is in finding roots of polynomials in
terms of radicals. For the polynomial f(x) above, which is Irreducible and of degree 6,

• there is no known general procedure for its roots in terms of radicals. But viewed as
we can solve for the roots of h, and iterate on the roots of g.

E. DEFINITE INTEGRATION OF SPECIAL FUNCTIONS

The group has had much success in the past with decision procedures for
indefinite integration of the elementary functions of the calculus. Unfortunately,
definite integration problems, (e.g. integrals from 0 to infinity) do not possess general
decision procedures. Furthermore practical interest in definite integration centers
around special functions (e.g. Bessel functions), for which no general indefinite
integration algorithms exist. The approaches taken by applied mathematicians in the

• past 1 50 years for solving definite integration problems have been codified in a series
of volumes called the Bateman Manuscript Project. loannis Avgoustis has been distilling
the information in these volumes particularly those related to Laplace Transforms of
special functions, in a relatively few rules and procedures. The general approac..~ t~sed

— —•~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~

--
•

- .
•- -— -.- ‘~~~~••7~

MATHIAB GROUP 72 MATHLAB GROUP

• by him is to translate the problem to one involving hypergeometric functions, solv, the
integration problem in terms of generalized hyp.rgeomstrlc functions, end finally solvs
the difficult problem of representing the result In terms of classic al special functions.

~ I

_ _ _ ~~~~~~~~~ ~~~ ~~~~~~~~~~~~~
. -— •~~~~~~.—

MATHLAB GROUP 73 MATHLAB GROUP

Publications

1. Lewis, V. Ellen. An Introduction to ITS for MACSYMA Users. M.I.T. Laboratory
for Computer Science, Mathlab Group Memo. Cambridge, Ma., June 1975.

2. Moses, Joel. “Current Capabilities of the MACSYMA System.” Proceedings of
the ACM Annual Conference. ACM, Minneapolis, Minn , October 1975.

3. Pless, Vera. Encryption Schemes for Computer Confidentiality. M.I.T. Project
MAC, TM-63. Cambridge, Ma., May 1975.

4. Pless, Vera. “Symmetry Codes and their Invariant Subcodes.” Journal of
Combinatorial Theory, (A). Volume 18 (1 975).

5. Pless, Vera. “CAMAC- -Combinatorial and Algebraic Machine Aided Computation.”
Proceedings of the Sixth Southeastern Conference on Combinatorics. Graph
Theory, and Computing. Florida Atlantic University, Boca Raton, Fl., February
1975.

6. Pless, Vera and Sloane, Neil J. A. “Classification and Enumeration of Self—Dual
Codes.” Journal of Combinatorial Theory, (A). Volume 18 (1975).

7. Weiss, Randall B. How to Use the CAMAC Group Manipulation System. M.I.T.
Project MAC, TM-6O. Cambridge, Ma., March 1 975.

8. Zippel, Richard E. “Solution to Problem 8.” SIGSAM Bulletin. (March 1975).

9. Zippel, Richard E. “Power Series Expansions in MACSYMA.” Proceedings of
Conference on Mathematical Software II. ACM, Purdue University, W. Lafayette,• In., May 1974.

Theses Completed

1. Dadashzadeh, Mohammed. “A Program for Drilling Students in Ordinary
Differential Equations Problems.” unpublished S.B. Thesis, M.I.T., Department of
Electrical Engineering and Computer Science, May 1975.

2. Weiss , Randall B. “Finding ~somorph Classes for Combinatorial Structures.”
unpublished S.M. Thesis, M.I.T., Department of Electrical Engineering and
Computer Science, May 1975.

_ _ _ _ _ _ _

_ _
_ _ _

I

~~

i

~~~~~~~~~~~~~~~~~~~~~~~~ 
- • . ~~~~~~~~~~~~~~~~~



MATHIAB GROUP 74 MATHLAB GROUP

Theses in Progress

1. Genesereth, Michael R. “An Advisor for MACSYMA”. Ph.D. Thesis, Harvard
University, expected date of completion, May 1978.

2. Trager , Barry M. “Integration of Al gebraic Functions”, SM. Thesis, M.I.T.,
• Department of Electrical Engineering and Computer Science, expected date of

completiOn, May 1 976.

Talks

1. Genesereth , Michael R. “An Advisor for MACSYMA. ” Computer Science
Colloquium, Harvard University, Cambridge, Ma., May 1975.

2. Moses , Joel. “Algebraic Manipulation and Ar tificial Intelligence.” Fourteen
lectures at Electrical Technical Laboratory, Computer Science Department, Tokyo
University, Tokyo, Japan; Electrical Engineering Department, Kyoto University,
Kyoto, Japan, January, 1975.

3. Moses, Joel. “Capabilities of the MACSYMA System.” Computer Science
Colloquium, U.S. Naval Research and Development Center, Bethesda, Md., January
1 975; ACM Southeastern Regional Conference, Atlanta, Ga., March 1 975.

4. Moses, Joel. “The Personal Computer.” Electrical Engineering Seminar on
Computers and Communications, M.I.T., Cambridge, Ma., November 1975.

5. Moses, Joel. “Symbolic Integration.” Two lectures. Workshop on Quadrature
Algorithms, Los Alamos, N.M., May 1975.

6. Pless, Vera. “Mathematical Foundations of Interconnected J-K Flip—Flops.”
Annual winter meeting of the American Mathematical Society, Washington, D.C.,
January 1975.

7. Pless, Vera. “CAMAC.” Sixth Southeastern Symposium on Cornbinatorics, Graph
Theory and Computing, Florida Atlantic University, Boca Raton, Fl., February
1975.

8. Pless , Vera. “New Invariant Subcodes of the Symmetry Codes.” M.I.T.
Combinatorics Seminar, Cambridge, Ma, March 1975.

9. Pless , Vera. “Error-Correcting Codes: Practical Origins and Mathematical
Implications.” Miniconference on Combinatorial Designs, University of Pittsburgh,
Pittsburgh, Pa., March 1975.

• - 
~~~~~~~~~~~~~~~~~~~~~~ ,~~~ -— -- .— — , . -


-. ~~~. •..~~~~
. •

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ .,_~_ ..• ~~~~

MATHLAB GROUP 75 MATHIAB GROUP

‘1 10. Pless, Vera. “Introduction to Error-Correcting Codes.” Wayne State University,
Detroit, Mi., May 1975.

11. Pless, Vera. “Error-Correcting Codes: Practical Origins and Mathematical
Implications.” Mathematics Colloquium, Universi ty of Illinois, Circle Campus,
Chicago, II., May 1975.



PROGRAMMING METHODOLOGY GROUP 77 PROGRAMMING METHODOLOGY GROUP

PROGRAMMING METHODOLOGY

Academic Staff

B. H. Liskov, Group Leader

Graduate Students

R. R. Atkinson J. E. Moss
V. A. Berzins R. N. Principato
T. Bloom J. C. Schaffert
D. Kapur L. A. Snyder
M. S. Laventhal M. K. Srivas

S. N. Zilles

Undergraduate Students

G. L Fulton R W. Scheifler
D. P. Gorgen K. Virgil .
£ J. McCabe

Support Staff

M. Nieuwkerk A. L Rubin



_ _ _ _ _ _ _ _  - - - ____________________________ 
• •

PROGRAMMING METHODOLOGY GROUP 79 PROGR AMMING METHODOLOGY GROUP

PROGRAMMING METHODOLOGY

A. INTRODUCTION

In the past year, work conducted in the Programming Methodology Group has
emphasized the development of new programming methodologies using data
abstractions. This work involves the study of tools and techniques to enhance the
effectiveness of programmers in producing quality software--software that is reliable,
has comprehendable structure, and is relatively easy to modify and maintain. Two
major directions are being followed. A programming language/sy stem, CLU, is under
development. CLU enhances program quality by permitting direct expression of the
kinds of program structures arising from promising design methodologies. In addition, a

• study of specification techniques well-suited to the program structures of CLU is under
• way; using these techniques, the programmer will be able to express and investigate

properties of his program design in advance of actual implementation, and to prove the
correctness of his implementation once it exists.

B. THE CLU LANGUAGE/SYSTEM

The motivation behind the development of the CLU programming language and
system is discussed in [3,4]. Briefly, CLU is intended to simplify the design and
implementation of quality software by providing linguistic constructs that allow the
kinds of modules identified during design to be written naturally as CLU programs. The
most important such construct, and the one that is original in CLU, is the cluster. The
cluster permits a program module to be written that implements a data abstraction, or
abstract data type, consisting of both a set of objects or values belonging to the type,
and a set of operations that completely determine the behavior of the type’s objects.
Data abs tractions are a particularly valuable sort of program module: they occur
widely, since the manipulation of data is a primary concern of programming, and
although much sharing of information and resources takes place within the data
abstraction (particularly important is information about how objects of the type are

• represented in storage), this sharing is limited to the implementation of the data
• abstraction, and is not visible to the abstraction’s users. The advantages of such an

organization have been discussed in [1,2,51; for example, the interface of a data
abstraction module is very simple, and the hiding of information within the module
means that the implementation of the abstraction can be changed without requiring
recoding of the programs using the abstraction. One such change that might be made is
to choose an alternative representation for the data abstraction’s objects.

CLU differs from other languages in its emphasis on constraints, enforced by the
• language and its compiler, that guide the programmer’s search for a good design by

removing his or her freedom to violate certain precepts of good programming practice.
A common constraint , found in almost all higher level languages, protects the local
variables of a procedure from manipu’ation outside of the procedure’s code. CLU
extends this idea of constraints to pirmit a group of procedures to share a local
environment; this is done through the ~Iuster, which limits information about a type’s

• ~~Z~A1J~ ~~~



1T•~~T~~~~~~~~ T~~~~~~

PROGRAMMING METHODOLOGY GROUP 80 PROGRAMMING METHODOLOGY GROUP

implementation to the operations belonging to the type. Conventional languages (e.g.
FORTRAN , PL/I) provide no mechanism like the cluster . Even advanced extensible
languages (e.g. EL1[6]), which provide data type extensions and even permit some
operations to be defined along with the type, still do not constrain access to the type
to just the operations, so the advantages mentioned above can be obtained by the

• programmer only by extra-language means. The issue here is not whether well—
structured programs can be written, since they can be written even in assembly
language. However, in languages other than CLU, such programs can be written only in
spite of the language. Our goal is to simplify the writing of programs by having the
language provide guidance about what constitutes good programming practice.

CLU is a language/system. A CLU program consists of a number of modules;
each module implements an abstraction identified as useful during program design. The
CLU system includes a description unit for each module, containing all in-computer
information about the module. The description unit is created as soon as the module
interface is known (before the module is implemented); formal specifications would
also be entered at this stage. Modules are compiled separately; the CLU compiler
makes use of the interface information to check that modules refer to other modules
correctl y. The CLU system is also used to control the loading and execution of
programs.

Our major activity during the past year has been the implementation of a first
version of CLU. The implementation is divided into three pieces: the CLU compiler,
inter-module type-checking, and the CLU system. The CLU compiler was Implemented
first and has been running for several months; it translates CLU modules into a LISP—
like language called MDL [7]. The type-checker has been implemented and debugged,
and is awaiting integration with the CLU system (which contains the information about
the type requirements of modules, and also establishes the meaning of types). The
CLU system is currently being designed and implemented. A very interesting problem
arising in the design of such a system concerns how to cope with multiple
imp lementations of a data type. We are working on providing multiple implementations

• of a type in a very flexible way: different users can select different implementations,
and even within the same program, different implementations can be used for different
data objects of the same type.

The implementation of CLU was undertaken for two reasons: to establish the
soundness of our design, and to permit us to gain experience in using CLU. No
problems with the design of CLU were uncovered during the implementation some
minor modificat;ons have been made to the language to make CLU programs easier to
write. We have used CLU both for the CLU implementation, and to write many smaller
programs. The results have been encouraging; programmer productivity is high, and
the resulting programs have a good structure and are easy for others to understand.
We have discovered that data abstractions are indeed very valuable for structuring
programs, and that we design programs by identifying data abstractions, and then
specifying the properties of their operations, in advance of any implementation. The
transition from design to implementation is particularly simple, since each design unit



~~~~~~
-
~~~~~~~

- •
~~~

-——
~~ fl’~~

PROGRAMMING METHODOLOGY GROUP 81 PROGRAMMING METHODOLOGY GROUP

• becomes a CLU program module.

The language being implemented is only an initial version of CLU, and we have
continued to work on the design of CLU itself. One accomplishment of the past year
has been the design of the structured exception handling mechanism described below.

C. STRUCTURED ERROR HANDLING

In designing the exception handling mechanism of CLU, our primary concern was
the support of “robust” or “fault tolerant” programs, i.e., programs that are prepared to

F I cope with the presence of errors by attempting various error recovery techniques.
I ¶ Note that it is the programs themselves that must recover from errors. We do not

assume that a person helps in the error recovery (although this will sometimes
happen), and therefore the mechanism need not facilitate person-computer interaction.
In particular, the mechanism is not intended to support interactive debugging.

Successful handling of errors involves two separate activities. First the errors
must be detected. After an error has been detected, it may then be possible to

4
recover from the error. If it were always possible to recover from an error in the
same local context in which the error was detected, no special error handling
mechanism would be needed. However, often rerovery must occur at a very different
point in the program from where the error was detected. Thus the purpose of the
mechanism is to permit information about errors to be communicated from one part of
the program to another. Note that we are not concerned here with how error

• • detection and recovery are accomplished (through redundancy) except to recognize
that paths permitting communication of information about errors are required.

The use of the word “error ” in the above discussion is somewhat misleading
because what may appear as an error to one part of a program may be considered as
reasonable behavior in another part. For example, an attempt to read from an empty
file raises an “end-of-file” error; to the user of the read command, this merely means
that all data has been read. Therefore, in the remainder of this section, we will use
the more neutral term “exception” to refer to the occurrences of interest.

Our study of exception handling has led to the following analysis of how such a
mechanism should behave:

1. Information about exceptions always results from a procedure invocation and
flows from the called procedure to its caller. Whenever a procedure is invoked,
it is invoked to perform a certain action or cause a certain effect. If the

• procedure is unable to do this, then it must notify its caller that something
• exceptional has occurred.

It is important to recognize that information about an exception results from an
invocation even if the invocation does not actually occur. For example, the
integer divide-check exception may result from the invocation of the integer

• -.
~
— ——• -•

1,

PROGRAMMING METHODOLOGY GROUP 82 PROGRAMMING METHODOLOGY GROUP

division operation. In CLU, as in most languages, division may be writ ten as part
of an expression:

y/x

and the code to do the division occurs in-line in the procedure containing this
expression. Nevertheless, conceptually the exception is detected in a lower

• level procedure invocation, and the procedure containing the expression is
notified of the exception.

2. The precepts of structured programming require that only the procedure
• performing an invocation can handle exceptions arising from that invocation, as

the following discussion shows. CLU programs have a hierarchical structure.
• Consider, for example, the following graph;

Q/NSL /\
Each node in this graph represents a CLU module, which Implements an
abstraction: P is programmed in terms of abstractions Q, R, end 5; Q makes use
of abstractions Q1~

•..Q
~~

; and so on. The graph is a static view of the program
structure; each module makes use of the modules connec ted to it by the
outward pointing arcs. Dynamically, a module makes use of another module by
invoking one of its procedures; invocations can only occur in the direction

1’ specified by the arc between two modules. Information about exceptions flows
in the opposite direction; a procedure notifies procedures higher in the call
chain of the existence of an exception.

Some rules about structured exception handling can be derived from considering
the relationships between modules in the graph. An important precept of
structured programming is that a module knows only about the abstractions it
uses; it knows nothing about the abstractions used in implementing those
abstractions. Thus P knows nothing about Q

~
, ...Q,~

. But if a module knows
nothing about the implementation of a module it uses, it cannot possibly respond
intelligently to exceptions detected by procedures called In the course of that
implementation. The ~~~ module that can respond to the exceptions detected
by a procedure is that procedure’s caller e.g., only Q can respond to the errors
detected by Q 1, ~“Qn~

P cannot.

3. A principle of modularity is that a module should be programmed to know nothing
about the module using it , so that it can be used in many different places. Thus,
a procedure knows nothing about its caller, and should not report an exception

PROGRAMMING METHODOLOGY GROUP 83 PROGRAMMING METHODOLOGY GROUP

• by a mechanism that assumes something about the caller ’s environment. In
particular , a jump to a non-local label (as in PL/ l) is not a sat isfactory
mechanism, nor should information about the exception be communicated using

4
non-local variables. Instead the mechanism should permit a procedure to
communicate information about an exception to its caller without making any
assumptions about who its caller is. Note that this is very similar to the way
that procedures return control to their callers under normal conditions.

The use of a non-local goto as an exception mechanism is unsatisfactory f or

• another reason. Even if a program is unable to recover from an error, it should
restore its non-transient data to a consistent state; this is necessary to prevent
an error from causing many other , unrelated errors later on. The exception
mechanism must ensure that active programs, whose data may be inconsistent,
will have the opportunity to respond to exceptions before becoming inactive.
Thus, a mechanism that automatically terminates procedure activations is

• unsatisfactory.

• 4. Finally we come to the question of what actions the caller of a procedure can
perform when notified about the occurrence of an exception. The simplest view ,

• which is the one we take, is that one of two actions can occur: if the procedure
is unable to recover from the exception , it may notify its caller that an
exception (different from the one detected) has occurred; or, if the procedure
is able to recover , it may continue its normal flow.

What is explicitly forbidden here is the ability for the calling procedure to
resume processing in the procedure that detected the exception. Although we
recogniz e that the ability to resume is sometimes convenient , we believe
resuming is not necessary (provided the mechanism is sufficientl y general, as
ours is) and that resuming necessitates a much more complicated model of
computation, in which the exception-reporting procedures act like coroutines.

The result of our F nalysis of exception handling is the following simple model of
how the exception handling mechanism should behave; each procedure can terminate
execution in one of several states; one of these states is the “normal” state, while the
others represent exceptional conditions. Each state is given a symbolic name (the
normal state is implicitly named “normal ”). Finally, in each state , values may be
returned to the calling procedure; these values can differ in type and number from
one state to another. Allowing parameters to be returned eliminates the need for
global variables to hold error information.

We believe the above model strengthens the abstraction power of the language.
Each procedure is expected to be defined over all possible values of its input
parameters and all possible actions of the procedures it calls. However , it is not
expected to behave in the same way in all cases. Instead, it may respond
appropriately in each case.

=-~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ — __________ • •
•~~

— A

PROGRAMMING METHODOLOGY GROUP 84 PROGRAMMING METHODOLOGY GROUP

We consider that an abstraction is not meaningful unless all the exceptions that
can arise from its use are identified. Thus, the specification of integers must indicate
that divide-check can occur, and (in most languages) that integer-overflow can also
occur; without this information, the user of integers will not fully understand their
behavior. Similarly, stacks have associated overflow and underflow exceptions.

The requirement that an abstraction identify all exceptions applies whether the
abstraction is language or user defined. For all the primitive types in CLU, exceptions

• have been identified and made part of the abstraction. The inventor of new
• abstractions (e.g. stacks) should do the same. As an added benefit, the process of

identifying exceptions can be quite valuable during program design: an abstraction
with many exceptions and special cases can probably be improved by redesign. CLU
arrays reflect this concern with limiting exceptions; CLU arrays have an “index out of

• bounds” exception , but not the “undefined element” exception that arises in array
abstractions in which space for array elements can exist in advance of values to store
in the elements.

We have a partial desi gn of how the exception handling mechanism is to be
incorporated in the CLU language. The mechanism is completely defined as far as

• reporting exceptions is concerned.

1. The mechanism for reporting exceptions is the sign~!, which is a special type of
return. Since the signal is a return, the activation of the signalling module will
disappear; therefore the procedure must ensure that all its non-transient data
objects are in consistent states before signalling. The best method of ensuring
this is to detect exceptions before any objects are modified, but this is not
always possible.

A si gnal always specifies a particular exception name; thus a procedure may
have several exceptions associated with it. In addition, some values may also be
returned by a signal. For example,

signal foo(x)

terminates execution of the procedure containing the signal statement with an
indication that the “foo” exception has occurred; the current value of x is
returned as a result.

2. All the exceptions to be reported by a procedure must be specified as part of
the header of that procedure. For example,

pop = 9Q~ (s:stack)returns(int)
signals(underf low)

This information is also included in the CLU system library as par t of the
description unit of the abstract ion that the procedure implements. If the

• •— . ~~~~~~~~ .~~~~ • C

• —..-- .~--• .- -
~~~~~•~~.•-~- —~~~~

-——,. • —-. -.—•.-.- —.•—- ~—• • —~~~—.—--—~• •— • ~~~~-~~—~~~~~-
• — • 

.,., .••.,.•—.—“ —— ••— .. • —•..
~
.•
~‘•

— ••.,.—•.• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

PROGRAMMING METHODOLOGY GROUP 85 PROGRAMMING METHODOLOGY GROUP

exception returns values, the types of these values must always be specified,
and these types must agree with the types of values actually being returned.
For example, the operation to read the nth character of a string has interf ace
description

cn = ~p~~(s:string, n;nt)returns(~~~)
signals(bounds(~~))

The bounds exception returns the value of the out-of-bounds integer.

As was mentioned earlier, the calling procedure is required to respond to, or
“catch,” all exceptions arising from procedures it invokes. The hardest part of• designing an exception handling mechanism, once the basic principles are worked out, is
to provide good human engineering for catching exceptions. Flexibility in placement of
the exception handlers is essential; otherwise the readability of programs will be
compromised. Exceptions can arise from the evaluation of every expression, but
requiring handlers inside of expressions would make programs unreadable. At present,
we are investigating the semantic and syntactic issues that arise from the requirement
of flexib le placement of exception handlers within the calling procedure.

0. SPECIFICATION TECHNIQUES FOR DATA ABSTRACTIO NS

One of the properties of data abstractions mentioned earlier is that their
interface is particularly simple, since so much information is hidden within the module.
Therefore, we can hope that data abstractions will have simple specifications, since it
is precisely the interface that a specification must describe. A study of specification
techniques for data abstractions was undertaken this year by B. Liskov and S. Zilles
and is reported in [8]. Included here is a brief summary of this work.

A formal specification for a functional abstraction describes the effect of a single
operation; a convenient way to do this is by an input/output specification. A
specification for a data abstraction, which contains many operations, must describe the
effects of all the operations, and also the behavior of the objects belonging to the
type New techni ques are being defined for specifying the behavior of data
abstractions Using these techniques, the entire data abstraction is specified as a unit,
~ ,Ih the adva ntage that a more minimal specification results, describing just the
•.t.cnally observable behavior .

~
•
~• ~~~~~~~~~~~~~~~~~~ contained in a specification of a data abstraction can be divided
~~~‘- ~‘~~~r par t ~~d ~ syntactic part. Information about the actual meaning or

~~. ia( i abstraction is described in the semantic part; the description is
• ~ of terms or symbois defined by the syntactic part.

• 
~~~~

a ‘~~f be defined by the syntactic part of a specification
• • ~ ~~i’*~1 and t ’~ domain or class of defined objects, and, in

.~~• ‘ Ps#
~~~~~~~ ~~~~ to d.not. both the abstraction and

~~~— 
~~• 1!. -

~ __• -= .._ _• p• • -• •— -

- • •-,-~~~~~~~~~~~~~
-

PROGRAMMING METHODOLOGY GROUP 86 PROGRAMMING METHODOLOGY GROUP

its class of objects. Thus, the objects belonging to the data abstraction, stack, are
referred to as stacks.

The remaining symbols introduced by the syntactic part name the operations of
the abstraction, and define their functionality--the domains of their input and output
values. An example describing the functionality of the operations of the data
abstraction, stack , is shown below.

• CREATE: -> STACK
PUSH: STACK X INTEGER -> STACK
POP: STACK -> STACK
TOP; STACK -> INTEGER

(TOP returns the value in the top of the stack without removing it, while POP removes
the value without returning it.)

Note that more than one domain appears in the specification; this is true for
almost all interesting data abstractions. Normally, only one of these (the domain of
stacks in the example) is being defined; the remaining domains and their properties
are assumed to be known. Given this distinction, the group of operations can be
partitioned into three blocks. The first block, the primitive constructors, consists of
those operations that have no operands in the domain being defined, but which yield
results in the defined domain. This block includes the constants , represented as
argumentless operations (for example, the CREATE operation for stacks). The second
block , the combinatorial constructor ,~ consists of those operations (PUSH and POP in

• the example) that have some of their operands in and yield their results in the defined
domain. The third block consists of those operations (TOP for stacks) whose results
are not in the defined domain.

The semantic part of the specification uses the symbols introduced in the
syntactic part to express the meaning of the data abstraction. Two differen t
approaches are used in capturing this meaning: either an abstract model is provided
for the class of objects and the operations defined in terms of the model, or the class
of objects is defined implicitly via assertions of properties of the operations.

In following the abstract model approach, the behavior is actually defined by
giving an abstract implementation in terms of another data abstraction, one whose
properties are well understood. The data abstraction being used as the model also has
a number of operations, and these are used to define the operations of the new data
type.

The approach of defining the objects implicitly via descriptions of the operations
is much clcser to the way mathematical theories are usually defined. Axioms are given
that describe the behavior of the operations. The domain or class of objects is
determined inductively. Usually it is the smallest set closed under the operations.
Only those operations identified above as constructors are used in defini ng this closure.

- •~~~~~~~~
. —~~~-•= — • - - — -. - •-- - —..— •.•

.-.-• -•-••-

PROGRAMMING METHODOLOGY GROUP 87 PROGRAMMING METHODOLOGY GROUP

The closure is the smallest set containing the results of the primitive constructors and
the results of the combinational constructors when the appropriate operands are drawn
from the set. For examp le, with stacks , the only primitive constructor is the constant
operation CREATE, which yields the empty stack , and the class of stacks consists of the
empty stack and all stacks that result from applying sequences of PUSH’s and POP’s to
it. One difficulty with the implicit definition approach is that if the specifications are

• not sufficiently complete, in the sense that all the relationships among the operations
are indicated, several distinct sets may be closed under the operations. The distinct
sets result from different resolutions of the unspecified relationships.

• In [8~ a number of specification techniques for data abstractions were surveyed
• and compared. Two abstract model approaches were considered: use of a single fixed

modelling domain (e.g., graphs or sets) and use of an arbitrary fixed modelling domain.
When using a single fixed domain, the specifications are usually easily understood and
easily constructed by someone familiar with the modelling domain, if they describe
concepts within the range of applicability of the chosen domain. However , a fixed

• modelling domain usually has a somewhat limited range of applicability; only certain
abstractions are expressed easily within the domain. Using such a technique is similar

• to writing programs in a programming language that provides a single data structuring
method; although a single method can be powerful enough to implement all user-
defined data structures , it does not follow that all data structures are implemented
with equal facility. This limitation is somewhat mitigated by allowing the specifier to
make use of an arbitrary fixed modelling domain. However, the number of domains
available for use is not large, and, in addition, if a completely free choice of domains
could be made, it is doubtful that the resulting specification would be comprehensible.
Thus, in reality, the specifier must choose among a small number of domains. This
situation is analogous to writing programs in a language providing several data
structuring facilities; programming experience indicates that there will always be
(problem oriented) abstractions that cannot be ideally represented by any of the data
structuring methods. Thus, it appears unlikely that all data abstractions can be given
minimal specifications by choosing among a small number of modelling domains.

Included among the implicit definition approaches are the state machine model
approach of Parnas [9], and the algebraic approach of Zilles [10] and Guttag [11). The
state machine model approach as originally described by Parnas is not a formal

• technique: English is used to describe behavior when all else fails. Two techniques
are being investigated to correct this: the hidden function approach at S.RJ. [12], and
a new approach by Parnas [13]. The hidden function approach appears to introduce an
abstract model to describe behavior , while the approach of Parnas uses axioms to
express the behavior of the abstraction as a whole, and appears fairly close to the
algebraic approach. Both approaches require more development before their
properties will be known.

The algebraic approach of Zilles appears to be quite promising. From the
syntactic part of the specification (the functionality of the operations) the set of legal,
finitely constructible expressions in the operations can be defined these expressions

L •
.

• • •
• • - • . • •

~~—- - • — — :~~~~ • - •

PROGRAMMING METHODOLOGY GROUP 88 PROGRAMMING METHODOLOGY GROUP

are the words of a word algebra. Then axioms are given that specify when two words
are equivalent; an example of such an axiom, for the stack example given earlier, is:

pop(push(s,i))=s

where s is a stack, and i is an integer. All words whose equivalence does not follow
from the axioms are taken to be distinct.

• The algebraic approach can be used to construct minimal specifications,
containing no extraneous information, and there is no limit on the range of applicability.

• The main problem is that it may prove difficult to construct and comprehend these
specifications , because they are so abstract. It is difficult to be certain that a set of
axioms is complete and consistent. However , our experience in using the technique
indicates that it is reasonably easy to use. In addition, tools can be devised to help
the specifier determine the consistency, completeness , and meaning of these
specifications [11].

As was explained in the introduction, the study of specification techniques was
motivated by the desire to enhance the quality of software. Specifications are not
only useful in proving the correctness of programs; they are a valuable aid during the
process of system design. When a program is developed by stepwise refinement [14,
1 5~, the problem of concern at a program level is solved by introducing abstractions
that provide useful primitives for that problem domain. The original problem is solved

• in terms of the abstractions; each abstraction then becomes a new problem to be
solved. Specifications provide a way to make this process precise; if each abstraction
is defined completely by means of a specifica tion, then we can be sure the
implementor of a program using an abstraction and the implementor of the abstraction
agree about the meaning of the abstraction. This is particularly important for large
programs in which the abstractions may be implemented by different people.

In addition, we have found the actual writ ing of the specifications to be a
valuable addition to the design process: if an abstrac tion has a complicated
specification, often a better form of the abstraction with a simpler specification can be
found. The provision of tools f or examining properties of specifications in advance of
implementation, which will be possible when specifications are added to the CLU
system, also appears promising.

• • • • ~~~~~~~~~~~~~~~~~~~~~~ =~ • •==-~ • ~—~~~~~~~~~~~~~~ —
-
—-~ - - •

~~~
—

~ : • ~~~~ 
• •



_ _ _  • •---—.-
~~~~~~ —--------- .- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • -~~-~~••-~~~~~~~ • • • • • • . • .

• PROGRAMMING METHODOLOGY GROUP 89 PROGRAMMING METHODOLOGY GROUP

REFER ENCES

1. Liskov , Barbara H. “A Design Methodology for Reliable Software Systems.”
AFIPS Conferenc e Proceedings. Vol. 41, 1972, 191-199.

2. Parnas, David L. “On the Criteria to be Used in Decomposing Systems Into
Modules.” Communications of the AC_M, Vol. 15, No. 12 (December 1972) ,

• 1053-1058.

3. Liskov , Barbara H., and Zilles, Stephen N. “Programming With Abstract Data
Types.” Proceedings of the ACM Conference of Very High Level Languages.
SIGPLAN Notices~ Vol. 9, April 1 974, 50-59.

4. Liskov , Barbara H. A Note on CLU. M.I.T., Laboratory for Computer Science,
Computation Structures Group Memo 112-1. Cambridge, Ma., November 1974.

5. Parnas, David 1. “Information Distribution Aspects of Design Methodology.”
Proceedings IFIP Congress. August 1971, 340-344.

• 6. Wegbre it, Ben. “The Treatment of Data Types in ELi,” Communications of the
ACM, Vol. 17, No. 5 (May 1974), 25 1-264.

7. Galley, Stuart W., and Pfister, Greg. The MDL Language. M.I.T., Laboratory for
Computer Science, Programming Technology Division Document SYS. 11.0,
Cambridge, Ma., in progress.

• 8. Liskov , Barbara H., and Zilles, Stephen N. “Specification Techniques for Data
• Abstractions.” iEEE Transactions on Software Engineeri ng, Vol. SE- I , No. I

• (March 1975), 7- 19.

9. Parnas, David L. “A Technique f or the Specification of Software Modules with
Examples.” Communications of the ACM, Vol. 15, No. 5 (May 1972), 330-336.

• 10. ZilIes, Stephen N. Algebraic Specification of Data Types. M.I.T., Laboratory for
Computer Science, Computation Structures Group Memo 11 9, Cambridge, Ma,
March 1975.

11. Guttag, John V. The Specification and Application to Programming of Abstract
Data Types. University of Toronto, Computer Systems Research Group, CSRG-
59, Toronto, Canada, 1 975.

12. Robinson, Lawrence; Levitt, Karl; Neumann, Peter; and Saxena, Ashok. “On
Attaining Reliable Software for a Secure Operating System.~ Proceedings of the
International Conference on Reliable Software. SIGPLAN Notices, Vol. 10, No. 6
(June 1 975), 26 7-284.

-

~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
- •

~~~~~~~ •~~~~~~~~~ 
. •~~

I

PROGRAMMING METHODOLOGY GROUP 90 PROGRAMMING METHODOLOGY GROUP

13. Parnas, David 1., and Handzel, G. More on Specification Techniques for Software
Modules. Fachbereich Informatik, Techni sche Hochschule Darmstedt, Federal
Republic of Germany, 1975.

14. Oijkstra, Edsger W. “Notes on Structured Programming.” Structured Programming.
• APIC Studies in Data Processing No. 8 New York: Academic Press, 1972, 1-

81.

15. Wirth , Niklaus. “Program Development by Stepwise Reflnement.
• Communications of the ACM, Vol. 14, No. 4 (April 1971), 221-227.

y

• • • ••• • • • • • - • -~~~~~~ • • •~~- - .. •~ -..-~-._ • • — — •:.. i •~

PROGRAMMING METHODOLOGY GROUP 91 PROGRAMMING METHODOLOGY GROUP

j Publications

1. Laventhal , Mark S. “Verifying Programs Which Operate on Data Structures.”
Proceedings of the International Conference on Reliable Software. SIGPLAN
Notices, Vol. 10, No. 6 (June 1975).

2. Liskov, Barbara H. “Data Types and Program Correctness.” Proceedings of the
AFIPS 1 975 National Computer Conference. May 1975.

3. Liskov , Barbara H. and Zilles, Stephen N. “Specification Techniques for Data
Abs tractions.” IEEE Transactions on Software Engineering, Vol. SE— i, No. 1

•
• (March 1975), 7- 19; Also , Proceedings of the International Conference on

Reliable Software. SIGPLAN Notices, Vol. 10, No. 6 (June 1975).

4. Schaffert , J. Craig; Synder, L Alan; and Atkinson, Russell R. The CLU Reference
• Manual. M.I.T., Laboratory for Computer Science, CLU Design Note 39-1,

Cambridge, Ma., June 1 975.

5. Snyder, L. Alan. A Portable Compiler for the Language C. M.I.T., Laboratory for
Computer Science, MIT/LCS/TR- 149, Cambridge, Ma., 1975.

6. ZiHes, Stephen N. Algebraic Specification of Data Types. M.I.T., Laboratory for
Computer Science, Computation Structures Group Memo 119, Cambridge, Ma.,
March 1 975.

Theses Completed

1. Fylstra, Daniel H. “Optimization of Arithmetic Expressiion.” unpublished S. B.
Thesis, M.I.T., Department of Electrical Engineering and Computer Science, June
1975.

2. Henderson, D. Austin Jr. “The Binding Model: A Semantic Base for Modular
• Programming Systems.” unpublished Ph.D. Thesis, M.I.T., Department of Electrical

Engineering, February 1975.

3. Mui, Tony. “Features of Structured Programming Demonstrated by the Index
Production Program.” unpublished S. B. Thesis, M.I.T., Department of Electrical

• Engineering and Computer Science, June 1975.

4. Sopelak, Alan B. “Compile Time Checking for Variable Initialization in CLU
Programs.” unpublished S. B. Thesis, M.I.T., Department of Electrical Engineering
and Computer Science, June 1 975.

•
~~~~~ .~~•~~~~

•:— •
~~

-—-  .•

~~~~~~~~

-•

~~~~~ 

—

PROGRAMMING METHODOLOGY GROUP 92 PROGRAMMING METHODOLOGY GROUP

Theses in Progress

1. Atkinson, Russell R. “Optimization Techniques for a Structured Programming
• Language.” S. M. Thesis , M.I.T., Department of Electrical Engineering and

• Computer Science, expected date of completion, 1976.

• 2. Fulton , Gordon L. “A Microprogrammed Instruction Set for a 32—bit
Minicomputer. ” S. B. Thesis, M.I.T., Department of Electrical Engineering and

• Computer Science, expected date of completion, 1976.
• 3. Gorgen, David P. “An Algorithm to Determine Mutability of Data Types in CLU.”

S. B. Thesis, M.I.T., Department of Electrical Engineering and Computer Science,
expected date of completion, 1976.

4. Isaman, David L. “Systems of Data-Structuring Operations for Parallel
Processors. ” Ph.D Thesis , M.I.T., Department of Electrical Engineering and
Computer Science, expected date of completion, 1976.

5. McCabe, Edward J. “A Compactifying Garbage Collection Algorithm for a Typed
Programming Language.” S. B. Thesis, M.I.T., Department of Electrical Engineering
and Computer Science, expected date of completion, 1976.

6. Schaffert , J. Craig. “Specifying Meaning in Object Oriented Languages.0 S. M.
Thesis , M.I.T., Department of Electrical Engineering and Computer Science,
expected date of completion, 1976.

7. Scheifler, Robert W. “An Analysis of Inline Substitution for the CLU Programming
Language.” S. B. Thesis , M.I.T., Department of Electrical Engineering and
Computer Science, expected date of completion, 1976.

8. Virgile, Kenneth. “MEIL: A Macro Expandable Intermediate Language.” S. B.
Thesis , M.I.T., Department of Electrical Engineering and Computer Science,
expected date of completion, 1976.

9. Zilles, Stephen N. “Data Algebra: A Specification Technique for Data Structures.~Ph.D Thesis, M.I.T., Department of Electrical Engineering and Computer Science,
expected date of completion, 1977.

Talks

1. Laventhal , Mark s. “Verifying Programs Which Operate on Data Structures.”
International Conference on Reliable Sof tware, Los Angeles, Ca., April 1975.

2. Liskov , Barbara H. “Programming wit h Abstract Data Types.” IBM Research
Center, Yorktown Heights, N.Y., January 1975.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  •



PROGRAMMING METHODOLOGY GROUP 93 PROGRAMMING METHODOLOGY GROUP

3. Liskov , Barbara H. “Programming with Abstrac t Data Types.” Intermetrics,
Cambridge, Ma., March 1975.

4. Liskov, Barbara H. “Specification Techniques for Data Abstractions.” International
Conference on Reliable Software, Los Angeles, Ca., April 1975.

5. Liskov, Barbara H. “Practical Benefits of Program Verification.” First National
• Conference on Reliable Software, Washington, D.C., September 1975.



v’~~~~ : ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~

PROGRAMMING TECHNOLOGY GROUP 95 PROGRAMMING TECHNOLOGY GROUP

PROGRAMMING TECHNOLOGY

Academic Staff

A. Vezza, Group Leader J. C. R. Licklider

Research Staff

• E. R. Banks S. W. Galley
E. H. Black . J. F. Haverty
M. F. Brescia P. 0. Lebling• M. S. Broos J. C. Michener
H. I. Badian C. L Reeve

Graduate Students

• 1. A. Anderson B. K. Daniels
S. E. Cutler G. D. McGath

Undergraduate Students

• 
I 

J. M. Berez J. R. Pollack
• B. T. Berkowitz S. H. Soto

* 
M. Blank J. 0. Sybalsky
K. W. Church G. A. Thompson
J. Connelly 1. To
0. L Dill K. E. Van Sant
J. J. Heeger J. Westcott
A. G. Jaffer C. K. Yap
J. H. Morrison

• $~pport Staff

S. B. Pitkin

_ _ _  —

H ~~~~~~~~~~ . I4 PA~I 
-

~~~ 41


PROGRAMMING TECHNOLOGY GROUP 97 PROGRAMMING TECHNOLOGY GROUP

PROGRAMMING TECHNOLOGY

A. INTRODUCTION

Morse code is the major research and development effort of the Programming
Technology Group. The work of the group is directed toward the development of a
prototype computer system, the behavior of which is as similar as possible to that of a

• human Morse-code operator in a radio environment containing noise and interfering
• signals. Our approach requires the system to be rich in Morse-code-specific knowledge.

•

• Our results are embodied in a feasibi lity demonstration system called COMCO—l
• (COmputerized Morse Code Operator). Our effort is focused on design requirements,

system design, techniques and algorithms to effectively supplement such a Morse-code
operator.

Another component of the group is the development of a prototype computer
message system that is based on a data-base management system.

The group’s work is carried out on the Dynamic Modeling System, a programming
• environment based on a LISP-like language and an expanding library of programs.

• B. EXPERT KNOWLEDGE APPLIED TO THE MORSE-CODE DOMAIN

1. Transcription

Work on COMOEC, a transcriber of hand-sent Morse code, advanced considerably
during the past year (Lebling, Haverty). The first part of the year was spent in design
and implementation of a successor to a preliminary run-length-sequence transcriber [1].

Errors in hand-sent Morse code are of three basic types, if the problems
associated with the radio domain are omitted. These three types are spacing errors,
mark errors (a mark is a dot or a dash), and spelling errors (which may be treated as a
special category of mark error).

•

•

A spacing error occurs when a sender does not keep to the proper ratios between
inter—mark (within a letter), inter-letter (within a word), and inter-word spaces. The
result is analogous to spoken language that is slurred or broken by arbitrary pauses. In
ideal (machine-sent) code the ratio of space types is 1:3:7. That is, if an inter—mark
space is 100 milliseconds long, an inter-letter space should be 300 milliseconds, and so
on. If the ratios are not too far off the ideal, and do not vary too rapidly, the code can
still be transcribed by a relatively simple moving-average procedure [2, 3). The first
module of COMDEC is such a procedure. However, COMDEC treats the transcription so
produced as only a “suggestion,” and can proceed from there to correct errors too
severe to be handled by a moving-average transcriber.

PRKCI.D1NQ P~~ llk.A14

—
— ~~~~~~~~~~~~~~~~~~~~~~~ ~

-=-
~~~~~~~~~~~~~~~~~ ~~ — —  _ :  i ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~. ~~~~~~~~~~~~



r 
— — - • -

• PROGRAMMING TECHNOLOGY GROUP 98 PROGRAMMING TECHNOLOGY GROUP

A mark error occurs when a sender omits, adds or changes the sense of one or
• more of the marks (dots and dashes) making up a word. In practice, most mark errors are

one of a small number of “simple” mark errors, which do not change the word as a whole
sufficiently to make it unrecognizable to the average Morse-code operator.

The COMOEC control structure was designed to consist of any number of modules,
each of which would be an “expert” on one aspect of transcription. Each module could
add suggested transcriptions to a lattice of possible transcriptions. Successive modules

• 

• would decide whether further error correction was necessary by examining the quality of
-

, existing suggested transcriptions. After a module has examined a section of code, and
• inserted its suggested transcriptions in the lattice, it passes that section of code to the

next module in the chain, and so on, until each transcriber module has examined the
entire message. A major part of the design was an N-dimensional metric for measuring
trial transcriptions and a highly heuristic algorithm for comparing the measures.

• 

• 
Decoder modules are ordered approximately by the severity of the sending errors

they are able to correct. Thus, spacing errors (“THE” sent as “T HE”, or “IT IS” sent as
• “ITJS”) are corrected first. Later , mark errors (“THE” sent as “THT”) are corrected.

The first module to process a code sample is a moving-average transcriber, a
hybrid of Sel fridge’s MAUDE [2] and Poehler’s FRAUD [3). It classifies marks and spaces

• into the appropriate types by comparison with continuously updated averages for each
type and thresholds between types. More importantly, it associates with each mark and
space a number which represents its confidence that the classification was correc t.F These assignments and confidences are used by later modules to select areas of the
sample where errors appear to have occurred.

The spacing-error correction modules are able to correct errors in which:

a. letters are run together (for example, “THE” sent as “6E”),

b. letters are split apart (“THE” sent as “TIlE”),

c. words are run together (“IT IS” sent as “h IS”), or

d. words are split apart (“ORGANIZING” sent as “OR G AN I ZING”).

Cases in which the preceding errors occur together or several times in one section of
code are also handled.

The mark-error correction modules (Lebling, Haverty, Banks) are able to correct
eight different classes of mark error , in words which contain at most one mark error.
Statistically, the vast majority of mark errors are of the types COMDEC can correct, and
occur only one to a word. The types of mark errors corrected by COMOEC are

**.—- .. —*—. 
•*-*—*~~-~~~~ .~~

,. .- - - — — —.-
~~-~~~.~~~~ —---*-



PROGRAMMING TECHNOLOGY GROUP 99 PROGRAMMING TECHNOLOGY GROUP

a. sending an extra dot,

b. sending an extra dash,

c. sending two extra dots,

d. running two dots together as a dash,

e. splitting a dash into two dots,

f. dropping a dot,

g. dropping a dash, and

h. dropping two dots.

During the year , the size of COMDEC’s dict ionary of English words has been
increased by more than a factor of three, from 1,300 to 4,200. Additionally, a morphology
program embedded in the transcriber has been improved to handle more classes of word
endings. Thus, a word usually appears in the dictionary only in its root form, and endings
such as “—ing,” “-ed,” or “-s” are added as needed. In its current version COMDEC’s
morphology program understands the endings “-s,” “-ed,” “—ing,” “—er,” “—est ,” “—ly,” “ —

tion,” “—ment ,” and combinations of the preceding, such as “-ers.” COMDEC has the
knowledge of which words take each ending, and thus the effective size of the dictionary
is several times the number of roots in it and begins to approach the size of the
conversational vocabulary of the average English speaker (its size is approximately
18,000 words when all inflections are considered).

• Due to improvements in dictionary lookup, mark-error correction, and primary—
storage residency, the operational speed of the transcriber has improved to the point

• where it can usually transcribe a code sample in less than one-tenth the time it took the
sender to transmit it. If the code is well sent, transcription is correspondingly faster.

An example of COMDEC’s transcription abilities follows. The first section shows
the result produced by the MAUDE-like moving average transcriber used by COMDEC as
a first pass. The text consists of the first paragraph of the Declaration of Independence,
with punctuatioh removed.

WE HOLD TH ESE TRUTHS TO BE SELF EVIDI N T THAT ALL MEN ARE CREATED E 0 U AL
THAT THEY ARE ENDOWED BY THEIR CAEATOR W I I H CERTAIN UNALIENABLE RIGHTS
THAT AMONG TH ESE A R E LI FE LIBERTY AND THE PURSUIT OF HAPPINESS THAT TO
SECU RE TH ESE RIG H T S GOV ERNMENTS ARE INSTITUTED AMONG MEN DER IVING
THEIR VU ST POWERS FROM THE CONSENT OF THE G OVERNED THAT EM HEN E VER
ANYFORM OF GOVERNMENT BEC OMES DE S TR U C TIVE OF THESE ENDS IT IS THE

•~~ *~~~~~~ ______________-



- ~~~~~~~ • • - -  - •~~~~ • •  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • - •

PROGRAMMING TECHNOLOGY GROUP 100 PROGRAMMING TECHNOLOGY GROUP

RIGHT OF THE PEOPLE TO ALTER OR TOAB OLI SH IT AR 0 TO INS T I TUTE N E W
GOVERNMTNT LAYING ITS FOUNDATI ON ON SUCH PRINCIPLE S AND ORO E AN I ZING U 0
POWERS INSUCH FORM AS TO THEM SHALL SEEM MOSTL IC ELY TOTFFETGT THEIR
SAFETY AND HAPPINESS double-hyphen attention

This code sample was taken on our own equipment. The sender confessed that he
was rusty, and the code shows it. The sample was supposed to end with the punctuation

• mark “end-of-message ”, but he had forgotten what it was and so sent two completely
different punctuation marks. The sample was sent in just under six minutes.

• ~
. The COMDEC transcription follows. Words whose transcription was found by

• correcting a mark error are enclosed in brackets <thus>.

WE HOLD THESE TRUTHS TO BE SELF <EVIDENT> THAT ALL MEN ARE CREATED EQUAL
THAT THEY ARE ENDOWED BY THEIR <CREATOR> WITH CERTAIN UNALIENABLE RIGHTS
THAT AMONG THESE ARE LIFE LIBERTY AND THE PURSUIT OF HAPPINESS THAT TO
SECURE THESE RIGHTS GOVERNMENTS ARE INSTITUTED AMONG MEN DERIVING THEIR
<VAST> POWERS FROM THE CONSENT OF THE GOVERNED THAT WHEN EVER ANY FORM
OF GOVERNMENT BECOMES DESTRUCTIVE OF THESE ENDS IT I S THE RIGHT OF THE
PEOPLE TO ALTER OR TO ABOLISH IT <AND> TO INSTITUTE NEW <GOVERNMENT> LAYING
ITS FOUNDATION ON SUCH PRINCIPLES AND <ORGANIZING> <SAD> POWERS IN SUCH
FORM AS TO THEM SHALL SEEM MOST <LIKELY> TO {TFFETGT} THEIR SAFETY AND
HAPPINESS double-hyphen atte- tion

COMDEC produced this transcription in approximately 40 seconds of processing
time. There are three places in this sample where COMDEC did not produce the correct
transcription. In all three the error was a type of mark error COMOEC ~s not designed to
correct at present. Two of the three were words containing two or more mark errors.
“JUST”, which in Morse is C--- ..- . . .  -), was sent as “VUST”, which in Morse is (...—

-); that is, two successive dashes were sent as dots. COMDEC corrected it, by assuming
an extra dot had been sent , to “VAST ”. “EFFECT ” was sent as “TFFETGT”, because two

• separate dots were sent as dashes. COMO EC left that section of the message
untranscribed, as indicated by the braces {} surrounding it. The third error is one which
future improvements to COMDEC should eliminate. It occurred because the mark error (a
dot sent as a dash), occurred in the ending (“-s”) that was added to a root (“it”), to make
the word. Thus “ITS” was converted to “SAD”.

Future development of COMDEC will concentrate on adding knowledge about two
separate domains: the radio domain and the English-language domain.



A0 A061 246 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE——ETC F/G 9/2
LABORATORY FOR COMPUTER SCIENCE (FORMERLY PROJECT MAC) PRO$RESS—— ETC (U)
AUG 18 M L DERTOUZOS N000I4—75—C—066t

I UNCLASSIFIeD LCS—PR—13 NI.

2c ’2

END
f l i l E b

1-79

I DOt

I

i 
-



• i -
~ ~~~~~~~ I:~’

~ 
L .

I., ~

25 I .1



PROGRAMMING TECHNOLOGY GROUP 101 PROGRAMMING TECHNOLOGY GROUP

2. Code Sampling

The MREAD program was written (Lebling) to take hand-sent Morse-code samples
from a code key connected to a mini-computer (Imlac PDS- 10) and transmit that sample
to a file on the OMS disk (Haverty, Soto). The program enabled us to take samples from
local Morse-code senders. These samples could be used by the various transcription
programs. MREAD allows the samples to be played back at any time and also
incorporates a simple MAUDE-like transcriber which permits the person taking the sample
to make a quick estimate of the quality of the sample. MREAD stores with the code
sample such information as the date and time the sample was taken, which text sample
was sent, and what sender was keying. This information is available to the transcriber
programs. MREAD maintains both visual and aural displays of the progress of a sample,
both when it is taken and when it is played back.

3. Cipher Group Transcriber

A transcriber was designed and implemented (Anderson) for n-letter cipher groups
(such as “EQYPN QXTTL ...“). Since it is impossible to base such a transcriber on a
dictionary, an approach quite different from that taken by COMOEC was needed.
However, there is some context associated with cipher-group Morse, namely that the
Morse is typically blocked into groups of four, five or six characters. AN groups in a
message are supposed to be of the same length, and, typically, alphabetic and numeric
characters are not mixed in the same group. While this is not much context information,
it is very important because operators do not usually differentiate distinctly the group
boundaries, but, out of necessity, differentiate the letters. The transcriber of necessity
assumes that its first pass (a MAUDE-like transcriber) has produced a relatively good
transcription, which needs to be fixed in places. It therefore tries to find those places
which look bad; when it reaches one, it tries a nearly exhaustive search to find a code
group to fit the region of code. Ideally, most of the message will contain a few trivial
errors, which can be corrected directly. This approach is usually successful; further
work is needed to improve performance on code which is sent poorly.

In conjunction with this effort, a version of MAUDE (as opposed to the “MAUDE-
like” transcribers generally used at LCS) was implemented and tested; it demonstrates
principally that no one of the context-insensitive transcribers is better in all cases than
any other one when used as a first pass for our context-sensitive transcribers. Some
messages which fail miserably In MAUDE will do quite wel l in the “MAUDE-like”
transcribers, and vice versa.

The n-letter transcriber was intended for use in research on sender
characteristics: such text is entirely lacking in linguistic context, and therefore seemed
like a good baseline from which to measure linguistic context-dependent variations In
Morse-code messages. 

-~~ --— — ~~~~~~~~~ 
.
~~~~~~-


• _

PROGRAMMING TECHNOLOGY GROUP 102 PROGRAMMING TECHNOLOGY GROUP

4. Morse- Code Network Convention.

The design and implementation of programs was begun which p.rform More.
operator functions in an environment modeled closely after the conventions and
procedures used in amateur radio “traff ic ” networks w hich handle “ rad logr ams ”
throughout the United States (Haver ty, Lebling, Church, Heeger, V.ua) [4]

The traff ic networking activity I. divided into two parts. On. pert concerns the
activity conducted on the network’s primary frequency, where many stations Interact
under the direction of a manager sta tion called the Net Control Station, or NCS. The
purpose of this activity is to permit the various participants to inform the NCS of the
quantity, type, and destinations of messages which they wish to transmit, as well as the
locations for which they can accept messages. The NCS Is responsible for matching
senders and receivers of messages appropriately, and dispatching th•m to side
frequencies for actual transmission of the messages.

The second par t of the activity concerns the interaction between two stat ions that
have been directed to transfer messages. This involves the operations of establishing
communication on the side frequency, negotiating some parameters of the Interaction such
as speed, transferring the message, obtaining repeats of sections garbled by no).., end
confirming the receipt of the message. At that point the stat ions move back to the
primary not frequency end report the results of their activity to the NCS.

Lach of these parts involves interaction between stations which is carried out in
Morse-code Q-sign and pro-sign language, usually referred to as Morse network chat ter.
The protocol that operators are supposed to use is well-defined although often
ambiguous in meaning if taken out of context. Th. task is made even more difficult
because the protocol is often violated. Thus, a system which must understand network
chatter must be quite tolerant of inconsistencies and must continue to perform In a
reasonable manner, even though it is not able to interpret the communications properly.

Three projects concerned with developing programs to understand aspects of the
Morse network dialog wet a initiated. The programs per se developed for these Initial
projects ate not expected to be pursued to their final form, but are instead intended to
uncover some of the difficulties that will be encountered in the development of programs
to under ctand Morse network chatter and model the network situation. The first project
concerned (he development of a prograrr to monitor the communication occurring on the
primary net frequency, and to create and update a data base which models the state of
the net at all times (Church, Haverty, Vezza). Changes to this data bas. as acti v ity
occtir~ are printed to determine the accuracy of the program In interpreting the activity.
The program is modelled as one of the participants In the net listening to the activity end
reporting the progress of the net with time. As such, the program cannot assum. that It
can hear all other stations in the net, but it Is capable of making hypotheses about th.
state of the net. The major purpose of this program Is to maintain a dynamic model In

— ..~~~L_

- ~.. • -- • . - •~~~• •

-

~~~~~~ - - - • . - -

~ I

PROGRAMMING TECHNOLOGY GROUP 103 PROGRAMMING TECHNOLOGY GROUP

the computer of the net as it progresses. This data base would be used by other
programs which interact with the net.

The second project concerned the development of a program to perform the
functions of the NCS (Heeger) [5]. This involves understanding transmissions by the
various net participants , maintaining a model of the state of the net, and generating
appropriate responses f or the NCS in each case.

The third project concerned the development of a program to operate in the
• situation where two stations are actually transferring a message (Dill) [6]. This involves

interpretation of the conventions and formats used in the header of a message and where
the body of a message begins and ends. (Headers are that portion of a message
containing information such as address, originator, priority, etc.) The program is capable
of handling messages perfec tly when they adhere to the protocol, and it can perform
very credibly at interpreting headers which depart from the strict protocol to a minor

• extent , by using contextual information and some heuristics based on the expected
contents of the headers.

5. Morse-Code Laboratory

An experimental system was designed and constructed (Haverty, Cutler) during
autumn and winter to be used in various phases of the Morse-understanding project.

• This system provides a real radio environment on a coaxial cable network, for use in
• experiments. Currently nine stations and an elaborate “processing station” with a

computer interface are connec ted to the cable. The cable network can be used to
• create experimental conditions using human operators at the various stations, simulating a

radio “universe” in which the nine stations interact, interfere, and otherwise behave as
actual transmit ters in a radio environment.

The experimental system permits parameters such as the quality of the transmitter
end signal strength of various stations to be varied in a controlled manner. Each station
transmitter is connected to the network through an accurate stepped attenuator to
permit comparative measurements of performance. Individual transmitter. may be simply
modified as desired to introduce key clicks and chirp.

The processing station consists of equipment to acquire and process the Morse
date on the cable network. It also provides a means to faIthfully reproduce signals on
the cable to provide for controlled experiments to test programs during development.

• The processing station consists of the following equipment:

a. Collins 651S-1 receiver

b. DEC POP- Il/ i 0 computer with extended arithmetic unit, real-time programmable
clock, end Computer Labs disk system



- - -
~
.--------.•

~
--••---•—J

~

PROGRAMMING TECHNOLOGY GROUP 104 PROGRAMMING TECHNOLOGY GROUP

c. Crown SX-824 audio tape recording system

d. Heath SB- 104 transce iver

e. ADAC analog-to-digital converter

f. Active analog filter

In operation, the cable input is supplied to the Collins receiver. This receiver Is
computer contro llable and interfaced to the PDP-l 1. Programs are now under
development to simulate the actions of a human operator in acquiring, tracking, and tuning
the receiver to acquire ~ desired signal (Haverty).

The analog-to-digital converter on the POP-I I provide, raw digitized data from
the audio output of the receiver. The receiver section of the Heath unit is used as a
wide-band (3 kilohertz) monitor of the area around the signal being tracked This date
provides the program, through another channel of the analog-to-digital converter, with

• global information as to the immediate environment of the signal of Interest, so that
heuristics to adjust the Collins receiver for better reception can be used.

The transmitter sect ion of the Heath unit is used to recreate particular
experiments on the network cable to enable testing of the various signal-processing
programs as they are developed. The Collins tape recorder is used to record the wide-
band monitor output during a given experiment, thereby obtaining a permanent record.

• This audio record can be used at any time thereafter as “voice” input to the single-
sideband transmitter , Because of the nature of single-sideband and Morse transmissions,
this effecti vel y recreates in the radio domain on the cable the conditions which existed
when the tape was made.

Since much of the work being done involves creating programs which simulate an
operator ’s actions under real-world conditions based on a model of actual situations
encountered in the amateur radio domain, en antenna system was selected and installed
to provide the capability tot licensed amateur operators working on the various projects
to observe (and participate in) actual radio situations, and to use that knowledge to
develop the computer models. This system consists of a HY-gain TH6OXX beam antenna
and I 4AV Q vertical antenna to cover the frequencies of interest.

The POP-il has been interfaced to the DMS PDP-lO and the Collins receiver
(Black s . Subroutines have been written to transfer information to both devices and to
obtain data from the ADAC analog-to-digital converter. The Collins unit can be both
controlled and interrogated by the POP-I 1.



PROGRAMMING TECHNOLOGY GROUP 105 PROGRAMMING TECHNOLOGY GROUP

• Some facilities were implemented (Black, Haverty) for digital signal processing,
including simulation of digital filters, a Chirp Z-transform and a sliding-window fast
Fourier transform.

6. Signal Processing

In detection of Morse signals, the primary areas of interest in the incoming data
are the transition points. These are the sections of the tim, signal where one of the
transmitting stations is beginning or ending a mark. The time between each such
transition for a station determines the length of each mark and space which defines the
Morse element being transmitted. This information is the primary input to COMDEC for
transcribing into characters.

The goal of a signal-processing module is to identify the transition points for the
signal being copied, and to pass that data to the COMDEC phase of the transcriber. A
procedure was designed (Haverty) this year, and is now being implemented (Ja i l er) for
testing, to attack the problem of extracting the mark-space information for a desired

• signal from a real radio environment.

The procedure involves acquisition of a “signature” for the upward end downward
transitions of each signal of interest. In any short sequence under acceptable conditions,
there is invariably a point where a desired signal makes a transition which does not
overlap with any other signal’s transition. The algorithm finds such a transition in the
signal to be transcribed, and forms a model, or signature, of the transition involved.

Given a signature for the signal of Interest, the processing procedure involves
locating the various transitions as time progresses, and comparing the metric for each
with the stored set of signatures, to develop a hypothesis concerning which signal owns
the transitions involved.

C. MESSAGE SYSTEM

1. MSGDMS

Design and implementation of a message system on TENEX which incorporated the
features of our ITS message system began (Broos, Vezza). Specifically, each user has a
private relational data base [8] containing her or his messages, which can be searched to
find messages of interest . These message-retrieval facilities are interfaced to the
message-composition facilities to enable the user to load messages from his or her data
base into composi tion buffers, and to dump the contents of the buffers Into the data
base. A working system was quickly made operational by using existing code, despite
inefficiencies. The goals of this initial implementation were: 

_ _  _ _  _ _  LA



PROGRAMMiNG TECHNOLOGY GROUP 106 PROGRAMMING TECHNOLOGY GROUP

a. to demonstrate meaningful and speedy transfer of technology from ITS to the
TENEX operating system (both utility subroutines and various programming tools
(such as our public program library) were transferred)

b. to demonstrate at a TENEX site the functional power of a message system which
was built on top of a data management system. (The ITS message system is built

• along these lines, but it is available only to registered MIT-DMS users.)

The new message system (called MSGIRS) was designed and en initial version was
made available to a select group of test users in October. Various improvements were
suggested by the test users, and a second version of the message system (now called
MSGOMS) was produced and made available to a larger group of users in November. At
that time , a first version of the MSGDMS user’s manual and lesson plans were made
available to the enlarged test group.

In January we started to rebuild MSGDMS from the ground up. The existing
• 

. system, while very powerful , was too slow and inefficient to be useful to a general user
community. Also , many users had found that the style of interaction with the system
seemed unnatural to them. The redesign effor t was therefore carried out along two
fronts. The user interaction , conceptual framework , and commend struc ture were
reworked into an integrated user interface which retained all of the valuable functional
capabilities of the old system. At the same time, a new internal architec ture was
conceived which eliminated the bottlenecks that had degraded the old system’s
performance.

The major architectural change to MSGDMS was the elimination of the old user—
level data-base functions while retaining the lower-level facilities. By eliminating the
middleman, a great many inefficiencies disappeared. The remaining data-base facilities
were completely rewritten and some new packages created:

a. The programmer-level disk-access package was rewritten completely. Several
new features were added to complement the operating system, such as the ability
to update an existing file using page-mapping.

• b. The disk-resident inversion manipulation package was rewritten to use the above
disk-access package. A more compact data format was used, and several new
capabilities (such as the use of “nand” and “nor”) were introduced.

c. A new package was created to provide the capability to build, maintain, search,
store and retrieve lexicons or user-interface token-completion tables. The format
of the tables was designed so they could be written to and reed from disk files
directly, without relocating pointers or using temporary storage.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 
- L.A

~~.- -—- - —-. —-~~.—-- -- . - -. ..- . ~~~~ -—~

~~~~~~~~~~~~~~~~~~~~~~

- - - - - -- -

PROGRAMMING TECHNOLOGY GROUP 107 PROGRAMMiNG TECHNOLOGY GROUP

d. Another new package was created to provide the capability to create and modify
messages using a “direct-copy” format, in the above sense. It was very important
to be able to read in, display, modify, and write out individual messages quickly
and directly. This package is fairly message-specific and rudimentary in terms of
allowed data types and operations. A more general package, based on similar
principles, is now being designed.

It should be pointed out that the new packages created or rewritten in the course
of MSGOMS development are designed for general data-base management use, not just
for MSGDMS or other message systems. A new relational data-base management system
could eventually be constructed from these improved, low-level primitives.

A user interface for the MSGDMS search handler has been written (Black). The
front end consists of a state-machine interpreter for the CALICO user interface which
guides the user through a search request , attempting to obviate syntactic inconsistency
by limiting the symbols available to those which are allowed. When a search command is
obtained, requests are formulated for the data-base management system (Broos). These
requests are optimized in the sense that linear search~s are deferred as long as
possible, and the order of processing is controlled by the size of the sets being
processed An example of a possible search command is “all messages dated after June
7 from VEZZA to BROOS or HAVERTY. ” In this case , every element typed (except for
June 7) would have the token-completion facilities of CALICO available. The arguments
to fields which are inverted (“from ” and “to” are typical) are restricted to those values
which are actually in the data base. If dates are not inverted in the data base (currently
true), the date search would be performed last.

2. Message Protocol

Progress continued on efforts to develop a successor to the current ARPANET
protocols for transmitting messages. The primary goal of this effort is to obtain a more
machine-oriented protocol which will permit introduction of more powerful facilities into
message-handling systems.

Several members of the division participated in meetings of the ARPANET Message
Services Committee. A proposal [8] by Haverty and others for a new message-handling
structure and protocols f or use by cooperating message server programs was presented
to the Commit tee in July 1 975 for comments. This proposal was based largely on
experience gained from the construction and development of the message facilities at
MIT-OMS and the MSGDMS system implemented on TENEX.

Based on this proposal and comments received, a revised proposal was developed
(Broos, Haverty, Vezza), and presented in December [9]. At the request of the
Committee, the various general-purpose sections of the protocol are being extracted and
presented to the ARPANET community for use.

~~1. 
_ _  _ _ _ _— -— 

s..—_,-- .



.‘— - ——“- ,~~~~~
--•- 

_ _ _ _ _ _ _

PROGRAMMING TECHNOLOGY GROUP 108 PROGRAMMING TECHNOLOGY GROUP

3. Message Composer

During the year, the MIT-OMS message system was improved (Haverty, Lebling,
Blank, Berez) to increase its efficienc y and provide additional facilities, such as the ability
to include notes to an individual addressee of a message. Other facilities, such as
expiration dates, were implemented for intra-site messages, but cannot be directly used
for inter-site messages until a more powerful protocol is adopted.

A message composer was implemented in MDL to provide the message composing
power of the more sophisticated Reader/Composer but with a simpler user interface and
a smaller load on system resources (Lebling, Blank). It was also intended to resemble the

— old ITS DOT :MAIL command. The new composer has a control structure that will enable
it to be integrated with a message-display program.

4. CJNCPAC Test

Desi gn of a message system for the CINCPAC military message experiment began
in January (Vezza , Broos, Haverty, Black). The design of military security controls has
proceeded through a number of internal papers and meetings with other developers and
all of the principals involved in the project. Work continues on the security end terminal
designs.

0. OMS ACTIVITIES

The “Dynamic Modeling System” (whenc e our ARPANET identification MIT-DMS)
comprises : ( 1) a large consistent set of tools that serve as a base for sof tware
development; (2) the high-level programming language MDL; (3) its coherent user
interface CALICO; (4) the support for libraries of program modules, program abstracts,

V messages, etc.; and (5) a growing collection of programs in the program libraries.

The Programming Technology Group presented a full-day symposium in March on
“Advanced Programming Techniques” under the auspices of the M. I. T. Industrial Liaison
Program for more than 200 industry representatives. The program included talks
(Professors Hammer and Liskov; Vezza, Licklider, Galley, Lebling) on programming
languages, the Dynamic Modeling System, debugging, and program abstracts, and a
question period (Galley, Haverty, Lebling, Reeve, Vezza).

1. CALICO

The transfer of the user interface CALICO from ITS to TENEX continued (Black).
The version on TENEX now has the same capabilities as that on ITS, including system—
dependent commands (display of file directories, creation of inferior processes, etc.). The
help facilities were expanded (Black) and considerably improved (Broos) to allow
descriptions of commands to be obtained using CALICO commands.

U . • .~~ ~—-.-.



-. - - — - - ~~~~~~~~~~ __________

PROGRAMMING TECHNOLOGY GROUP 109 PROGRAMMING TECHNOLOGY GROUP

The most active users of CALICO are those of message systems, so improvements
come mainly as the result of feedback from this area. Enhancements that were added
(Black) were means for:

a. reducing prompts on a permanent or per-command basis, allowing experienced
users to proceed as rapidly as they desire

b. tailoring the text-input package so that it appears to the user to be an integral
part of CALICO

c. informing application programs when the user tailors CALICO so that they can
remember the user’s “state” for future sessions.

The MDL interpreter and compiler (Reeve, Berkowitz, Daniels) both had features
added this year.

The interpreter (Berkowitz , Reeve) has a new full-copy garbage collector; built-in
functions to purify MDL objec ts and to dump them to secondary storage , to be
reproduced exactly in MDL address space later; more flexibility in user-defined date
types; improved pure-program storage; a faster function-call instruction; and new
sot tware interrupts. The MDL manual has been kept up-to-date with these changes
(Galley).

The compiler’s analysis phase was redesigned and implemented to extract data-
type information from program context. It does a very thorough job of extracting ~uch
information. The analysis phase also includes an analysis of the life and death of
variables. Using life-and-death analysis and other flow information, the compiler keeps
values in fast registers in more cases where it is advantageous to do so and does not
put them back into primary memory unless absolutely necessary. Special-case code can
be produced for certain common code sequences; for example, <REST .Iist <- <LENGTH
list> 1>’ (remove all but the las t element of a list) is compiled to go down the list only
once, and ~~==? 3 <LENGTH list>> (does a list have exactly 3 elements’) goes only far
enough down the fist to test the predicate. Certain mathematical transformations dre
made on arithmetic statements to produce more efficient output code. A CASE statement
is in the process of being introduced. A “peep-hole” optimizer examines generated code
locally to remove redundant transfers of control or data.

The MDL subsystems facility was transferred to TENEX (Black). The facility allows
application programs wri t ten in MDL to appear at top level, and it handles console
interaction so that the programs can provide their own heralding and initialization.



-. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - 

~~~~~~~~~~~~~~~

PROGRAMMING TECHNOLOGY GROUP 110 PROGRAMMING TECHNOLOGY GROUP

3. ~ppl ication Prog!ams

A doctoral thesis (CutIe~) deals with the solution of two major problems associated
with distributed control systems. The problems are these:

a. How should centralized control functions be handled in a distributed system?
Which node should act as the “centralized controller?”

b. How can arbitrary nodes of a distributed networ k communicate with each other
even though individual nodes of a network possess no knowledge of the network’s
configuration”

The thesis discusses how a graph-structured distributed network can logically transform
itself into one or more tree-structured networks. Once the network has been so
transformed, the node at the root of the tree can act as the “centralized controller.”
Communications can be relayed through this master node, allowing arbitrary
communications without routing tables.

Vehicular traf tic control is used as an example of a distributed control system. It
is shown how a totally extensible distributed traffic-control system can perform the same
functions as a widely-used centralized system, while retaining all of the advantages of
being a distributed system.

E. ENGLISH_PARSER

EPARSE is an English parser, an English sentence analyzer. It will be used in both
the Concept Extractor project and the Morse-code project. EPARSE goes beyond single-
word disambiguation but does not attempt to go as far toward deep “understanding” of
sentences as some of the parsers currently being developed in the field of artificial
intelligence. The reason f or limiting the effort to understand sentences deeply is that
EPARSE must operate on unconstrained or very lightly constrained English, whereas, In
research aimed at deep understanding, it is possible to constrain the universe of
discourse as much as necessary--to the “blocks world”, f or example, or to children’s
stories.

EPARSE is actually to serve two purposes (for now). First, EPARSE is soon to be
incorporated into the EXCON (EXtraction of key CONcepts) system for automatically
indexing abstracts of computer programs. In this capacity EPARSE will facilitate the
extraction of more appropriate index concepts rather than just keywords. The result
should be both a higher fraction of retrieved abstracts relevant to the request
(“precision”) and a higher fraction of relevant abstracts actually retrieved (“recall”). For
example, if the program abstract contained the sentence:

‘This program relocates data items in memory.”

PROGRAMMING TECHNOLOGy GROUP 111 PROGRAMMING TECHNOLOGY GROUP

and the search request was

“Find all programs for moving strings.”

then both “relocates data item” and “move string” would have been modified to a common
internal concept best represented, perhaps, as “move data.” Thus a match of these items
increases recall. Precision would be increased by being able to disambiguate among
multiple meanings of a word such as “list.” Thus if the sentence is about file-directory
output, then “list” in the sense of “show” could be chosen as the key concept rather
than, say, “list” in the sense of “sequence.”

The second purpose of the parser is to assist the Morse-code project by
determining which of several possible transcriptions is most English-like. An analysis of
29 samples of f aulty transcriptions of hand-sent Morse code indicates that EPARSE
should detect most of the faulty transcriptions and provide useful information back to the
transcriber as to the locations of the faults. (The term “faulty transcription” refers to an
output of the transcriber which may be incorrect due to faulty sending or incorrect
transcription.) Freq’~entIy it w ill give a choice of fault locations. Some examp les of
easily detected, fault y transcriptions of portions of the Declaration of Independence
follow (square brackets [1 indicate where transcriber suspects problems, and angle
brackets <> indicate words the transcriber selected from its dictionary in its effo rt to

- correct a mark error):

1. ... instituted among men <DERIVE> [<NO>] their just powers

2. ... to abolish it and to institute <DOG over [‘IN>] <MEN> laying its

3. ... that toe secure these rights governments are

4. ... that to <SENSED’ the rights

5. ... to institute new [<MEMBER’] <BENT> laying its

EPARSE can detect a fault in the first example by noting that the noun group is
overspecif ied: “no their just powers.” The second example has “DOG” as a complete
noun group with no adjective , article , specifier or other feature which would allow it.
(Our dictionary contains noun-type information; in contrast to “dog”, mass-nouns like
“water ” and abstract-nouns like “love” do not require such speci! .~etion in the sentence.)

F The third example not only violates number agreement (“toe secure” instead of “toe
secures”) but also violates the semantic type of agent required for “secure”. (Semantic
type information is currently being added to the dictionary [Pollack].)

At present the parser is able to “get through” most sentences given it, despite our
propensity to give it “weird” test sentences. When given faulty, difficul t or ambiguous

IIr_ ~~~~~~~~~~~~~ ._ ~~~~~~~~~~~~~~~ . ~~~~~~~~~~~~~~ .- .-
~ —,~~~~,--. — - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~ -~

-- .—- - -—~~~--.-
— - -

—

PROGRAMMING TECHNOLOGY GROUP 112 PROGRAMMING TECHNOLOGY GROUP

sentences;, it always is able to achieve at least partial results. For our purposes,
co’~cept extraction and Morse transcription, partial results, rather than understanding, are
usuall y suf f ic ient . Currentl y the weakest part of EPARSE is the processing of
conjunctions.

The output from that part of EPARSE called the parser consists mostly of a
collection of “groups”- - the noun-groups, verb-groups, etc., within the sentence. Thes•
groups are presently interconnected only to the extent determinable by syntactic and

• pns .tional information. Work has just begun on a case-frame module to further
interconnect the groups using semantic information from the dictionary.

An unusual feature of EPARSE is its tolerance. It is tolerant of input which
contains sentence fragments , cryptic abbreviations, unknown words, misspelled words,
run-ons , jargon , ambi guous classifier constructions , metaphors and anE~log~’J~, out— of—
context references , comma splices, arbitrary usage of punctuation or capitalization, and
so on. EPARSE was designed to keep running despite such input. This is c~nsistent with
the requirements of both concept extraction and the Morse-code project. In the former
programmer-written abstracts sometimes take liberties with the English language. In the
latter , brevity and sentence fragments are the rule.

The MNEME relational data management system used for the dictionary saw three
improvements this year. An ability to remove items from a data base was added
(Westcott , Banks); a file salvager for cleaning up a data file was written and password
control of access to data files was added.

_~~~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 1.4


~~~~~~~~~~~~~~~~~~~ 

- - -

PROGRAMMING TECHNOLOGY GROUP 113 PROGRAMMING TECHNOLOGY GROUP

REFERENCES

Note; The form XXX.nn.nn denotes a PTD document.

1. Guditz, Ralph. “Computer Recognition of Hand-Sent Morse Code Using Properties
of Natural Language.” unpublished S. M. thesis, M.I.T., Department of Electrical
Engineering and Computer Science, May 1975.

2. Self ridge, 0. G.; Eisenstadt , B. M.; Gold, B.; Nelson, D. M.; and Pitcher, T. S.
MAUDE. M.I.T., Lincoln Laboratory, Group Report No. 34-57, Lexington, Mass.,
1959.

3. Poehler, Paul. “Computer Recognition of Hand-sent Morse Code.” unpublished
S. M. thesis, M.I.T., Department of Electrical Engineering and Computer Science,
1968.

4. American Radio Relay League. The Radio Amateur’s Operating Manual. ARRL
Publication *24, Newington, Conn., 1972.

5. Heeger , James J. “Morse Code Network Control Station Model.” M.I.T., UROP
Project Report, December 1 975.

6. Dill, David 1. “Analyzing Morse Code Headers.” M.I.T., UROP Project Report,
December 1975

7. Broos, Michael. IRS -- MOL’s Information Retrieval System. SYS.1 1.17, April 1975.

8. Haverty, Jack; Henderson, Austin; and Oestreicher, Don. “Proposed Specification
of Inter-Site Message Protocol.” unpublished proposal presented to ARPA
Message Services Committee, July 8, 1975.

9. Broos, M.; Haverty, J.; and Vezza, A. “Message Services Protocol Proposal.”
unpublished proposal presented to ARPA Message Services Committee, December
4, 1975.

10. Salton, Gerald. Dynamic Information and Library Processing. Englewood Cliffs, N. J.:
Prentice-Hall, 1 975. =

11. Fillmore, Charles J. “The Case for Case,” Universals in Lingustic Theory. Bach and
Harms, eds., New York: Holt, Rinehart and Winston, 1968.

12. Bruce , Bertram. “Case Systems for Natural Language.” Artificial Intelligence,
Vol. 6. No. 4(1975), 327-360.



-~ 
~~~~~~~~ 

— ~ — - ~~~~~ r~ ~~~— - - ~r~~ p
~~~~~~~~~~ —k-

PROGRAMMING TECHNOLOGY GROUP 114 PROGRAMMING TECHNOLOGY GROUP

13. M.I.T., Laboratory for Computer Science. Progress Report XII. LCS/PR-XII,
Cambridge, Massachusetts, 1975.

H



p.-.. —

~ 

—..—

~

-. - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~ 

,. - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

PUBLICATIONS I 15 PUBLICATIONS

IABORATORY FOR çQMPUTER_SCJ~~~~

‘r ~~ —
. --.—- --.—.-..

-~~~~~~~~~~~~~~~~~ -----~~~~- -....... ~~~

PUBLICATIONS 117 PUBUCATIONS

TECHNICAL MEMORANDA

TM-1O Jackso n, James N.
Interactive Design Coordination

for the Building Industry
June 1970

AD 708-400

*TM-1 I Ward, Philip W.
Description and Flow Chart of the

-
- . PDP-7/9 Communications Package

July 1970
AD 71 1-379

sTM- 12 Graham, Robert M.
File Management and Related Topics

(Formerly Programming Linguistics
Group Memo No. 6, June 12, 1970)

September 1970
AD 712-068

*TM-13 Graham, Robert M.
Use of High Level Languages

for Systems Programming
(Formerly Programming Linguistics
Group Memo No. 2, November 20, 1969)

September 1970
AD 711-965

*TM-14 Vogt, Carla M.
Suspension of Processes in a Multi-

processing Computer System
(Based on SM. Thesis, EE Dept.,
February 1970)

September 1970
AD 713-989

TMs 1-9 were never issued

~~~~~ 

-



.!_.•

~~~~~

“

-

-

PUBLICATIONS 118 PUBLICATIONS

aTM-iS ZilIes, Stephen N.
An Expansion of the Data Struct~.ring

Capabilities of PAL
(Based on SM. Thesis, EE Dept.,
June 1970)

October 1970
AD 720-761

aTM- 16 Bruere -Dawson, Gerard
I

- Pseudo-Random Sequences
(Based on SM. Thesis, EE Dept.,

-

,
June 1970)

October 1970
AD 713-852

aTM- 17 Goodman, Leonard I.
Complexity Measures for Programming

Languages (Based on S.M. Thesis, EE Dept.,
September 1 ~71)

September 1971
AD 729-011

*TM-18 Reprinted as TR-85

aTM- 19 Fenichel, Robert R.
A New List-Tracing Algorithm
October 1970

AD 714-522
-1~ sTM-20 Jones, Thomas L.

A Computer Model of Simple Forms
of Learning (Based on Ph.D. Thesis,
EE Dept., September 1970)

January 1971
AD 720-337

*TM- 21 Goldstein, Robert, C.
The Substantive Use of Computers

for Intellectual Activities
April 1971

AD 721-618

-. — -—-- , .— .,—--. --.-—. -~~~~~~~~~~~~ .
—

~~~~~~~~~ -.~~~~~~
---—. :-- -

~~
— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

PUBLICATIONS 119 PUBLICATIONS

sTM-22 Wells , Douglas M.
• Transmission of Information Between

a Man-Machine Decision System
and Its Environment

April 1971
AD 722-837

TM-23 Strnad , Aloi s J.
The Relational Approach to the

Management of Data Bases
April 1971

AD 721-619

*TM-24 Goldstein, Robert C., and Alois J. Strnad
The MacAIMS Data Management System
April 1971

AD 721-620

TM-25 Goldstein, Robert C.
Helping People Think
April 1971

AD 721-998

TM-26 Iazeolla, Giuseppe G.
Modeling and Decomposition of

Information Systems for Performance
Evaluation

June 1971
AD 733-965

*TM-27 Bagchi, Amitava
Economy of Descriptions and

Minimal Indices
January 1972

AD 736-960

TM-28 Wong, Richard
Construction Heuristics for Geometry

and a Vector Algebra Representation
of Geometry

June 1972
AD 743-487

_ - . - ________

$
1

PUBLICATIONS 120 PUBLICATIONS

TM-29 Hoss ley, Robert and Charles Rackof I
The Emptiness Problem for Aaitomate

on Infinite Trees
Spring 1972

AD 747-250

*TM-30 McCray, William A.
SIM36O; A Sf360 Simulator
(Based on S.B. Thesis, ME Dept., May 1972)
October 1 972

AD 749-365

TM-31 Bonnea u, Richard J.
A Class of Finite Computation Structures

Supporting the Fast Fourier Transform
March 1973

AD 757-787

TM-32 Moll, Robert
An Operator Embedding Theorem for Complexity

Classes of Recursive Functions
May 1973

AD 759-999

TM-33 Ferrante, Jeanne and Charles Rackoff
A Decision Procedure for the First Order

Theory of Real Addition with Order
May 1973

AD 760-000

aTM-34 Bonneau, Richard J.
Polynomial Exponentiation: The Fast

Fourier Transform Revisited
June 1973

PB 221-742

TM-35 Bonneau, Richard J.
An Interactive Implementation of the Todd-

Coxeter Algorithm
December 1973

AD 770-565

--~~~~ ~~~~~~~~~~~~~~~~ . -

-
~~~~~~ 

___________ 
~~~ - 

-..
~
--•—-..,.. --...

PUBLICATIONS 121 PUBLICATIONS

TM-36 Geiger, Steven P.
A User ’s Guide to the Macro Control Language
December 1973

AD 771-435

sTM-37 Schoenhage, A.
Real-Time Simulation of Multidimensional

Turing Machines by Storage Modification
Machines

December 1973
PB 226-103/AS

aTM-38 Meyer , Alber t R.
Weak Monadic Second Order Theory of

Succesor is not Elementary-Recursive
December 1973

PB 226-514/AS

TM-39 Meyer , Albert R.
Discrete Computation: Theory and Open

Problems
January 1974

PB 226-836/AS

TM—40 Paterson, Michael S., Michael J. Fischer
and Albert R. Meyer

An Improved Overlap Argument for On-Line
Multiplication

January 1974
AD 773-137

TM—41 Fischer, Michael J., and Michael S. Paterson
String-Matching and Other Products

• January 1974
AD 773- 138

TM-42 Rackoff, Charles
On the Complexity of the Theories of Weak

Direct Products
January 1974

PB 228-459/AS

j
- -~~~~~~~ ~~--_ _ _ _ _

-. -~~~ -~~— -.-~-,•---..-—--. - - —-..

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-, .----- — - . -.-•--

PUBLICATIONS 122 PUBLICATIONS

TM-43 Fischer, Michael J., and Michael 0. Rabin
Super-Exponential Complexity of Pr.sburg.r

Arithmetic
February 1974

AD 775-004

TM-44 Pless , Vera
Symmetry Codes and their Invariant Subcod.s
May 1974

AD 780-243

sTM-45 Fischer, Michael J., and Larry J. Stockmeyer
• Fast On-Line Integer Multiplication

— May 19 74
AD 779-889

sTM-46 Kedem, Zvi N.
Combining Dimensionality and Rate of Growth

Arguments for Establishing Lower Bounds
on the Number of Multiplications

June 1974
PB 232-969/AS

TM-47 Pless , Vera
Mathematical Foundations of Flip-Flops
June 1974

AD 780-901

TM-48 Kedem, Zvi M.
The Reduction Method for Establishing

Lower Bounds on the Number of Additions
June 1974

PB 233-538/AS

TM—49 Pless, Vera
Complete Classification of (24,12) and (22,11)

Self-Dual Codes
June 1974

AD 781-335

--* ~~~~-~~~~~~~~~ •--~~ --~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - •~~~~~~~~ ----~~~~~~~
_-~~~~~~~



~ -

PUBLICATIONS 123 PUBLICATIONS

TM-SO Benedict, G. Gordon
An Enciphering Module for Multics
S.B. Thesis, EE Dept
July 1974

AD 782-658

TM-Si Aiello, Jack N.
An Investigation of Current Language Support for

the Data Requirements of Structured Programming
SM. & E.E. Theses, EE Dept.
September 1974

PB 236-815/AS

TM-52 Lind, John C.
Computing in Logarithmic Space
September 1974

PB 236-167/AS

¶ TM-53 Bengelloun, Saf wan A.
MDC-Programmer: A Muddle-to Datalanguage
Translator for Information Retrieval

S.B. Thesis, EE Dept.
October 1974

AD 786-754

sTM- 54 Meyer, Albert. R.
The Inherent Computation Complexity of Theories

of Ordered Sets: A Brief Survey
October 1974

PB 237-200/AS

TM-55 Hsieh, Wen N., Larry H. Harper and John E. Savage
A Class of Boolean Functions with Linear

Combinatorial Complexity
October 1974

PB 237-206/AS

TM-56 Gorry, G. Anthony
Research on Expert Systems
December 1974

_ _  
_ _  ~~~~~~



_ _ _ _ _ _ _  -. -
~~~~~~~

-
~~~~~~~~~~~~~~~~~~

_
~~~~~~ ~~~~~~~~

PUBLICATIONS 124 PUBLICATIONS

TM-5 7 Levin, Michael
On Bateson ’s Logical Levels of Learning
February 1975

TM-58 Quelitz , Josep h E.
Decidability of Equivalence for a Class

of Data Flow Schemes
March 1975

-.
- PB 237-033/AS

sTM-59 Hack, Michel
Decision Problems for Petri Nets and Vector

- I Addition Systems
March 1975

PB 231-916/AS

TM-60 Weiss , Randell B.
CAMAC: Group Manipulation System
March 1975

PB 240- 495/AS

TM-61 Dennis , Jack B.
First Version of a Data Flow Procedure Language
May 3 9 75

TM-62 Patil , Suhas S.
An Asynchronous Logic Array
May 1975

TM-63 Pless , Vera
Encryption Schemes for Computer Confidentiality
May 1975

AD AO1O-217

sTM-64 Weiss , Randell B.
Finding lsomorph Classes for Combinatorial Structures
S.M. Thesis , EE Dept.
June 1975

TM-65 Fischer, Michael J.
The Complexity Negation-Limited Networks -

A Brief Survey
June 1975

______ — —~~ - -~~~~~~~~ — —
- — ~~~~~~~~~~ —

- - • u ~~~~~~~~~~~~~

PUBLICATIONS 125 PUBLICATIONS

sTM-66 Leung, Clement
Formal Properties of Well-Formed Data

Flow Schemes
SB., SM. & E.E. Theses, EE Dept.
June 1975

sTM-67 Cardoza, Edward E.
Computational Complexity of the Word Problem

-
-

for Commutative Semigroups
SM. Thesis, EE & CS Dept.
October 1975

TM-68 Weng , Kung-Song
Stream-Oriented Computation in Recursive Data flow Schemes
SM. Thesis , EE & CS Dept.
October 1975

sTM-69 Bayer , Paul J.
• Improved Bounds on the Costs of Optimal and

Balanced Binary Search Trees
SM. Thesis, EE & CS Dept.
November 1975

‘
~

‘:~
:~~~~~~~~~

-
~~w-’---~

’---- —, — - - —-~~~~.-.,-. ~~~ ~~~~ ,.• —
—-~~~~~~~~~-- -~~-~~--- -~~~~~~ .~ -.-~~.-- - - -~ -~~~ -.~~~~~~~~~ ~~~~~~~~

PUBLICATIONS 126 PUBLICATIONS

TECHNICAL REPORTS

sIR-i Bobrow , Daniel G.
Natural Language Input for a Computer

- ; Problem Solving System,
Ph.D. Thesis, Math. Dept.
September 1964

AD 604-730

sTR-2 Raphael, Bertram
SIR: A Computer Program for Semantic

Information Retrieval,
Ph.D. Thesis, Math. Dept.
June 1964

AD 608-499

sTR-3 Corbato , Fernando J.
System Requirements for Multiple-Access,

Time-Shared Computers
May 1964

AD 608-501

*TR-4 Ross, Douglas T., and Clarence G. Feldman
Verbal and Graphical Language for the

AED System: A Progress Report
May 1 964

AD 604-678

*TR- 6 Biggs, John N., and Robert D. Logcher
STRESS: A Problem-Oriented Language

for Structural Engineering
May 1964

AD 604-679

TRs 5, 9, 10, 15 were never issued

-~--~•_~~~~~ ~•• ----‘--.----- - ~~~~~~~~~~~
— -•~~~~~~ -~~~~•

_____ ____

PUBLICATIONS 127 PUBLICATIONS

*TR-7 Weizenbaurn, Joseph
OPL- 1: An Open Ended Programming

System within CTSS
April 1964

AD 604-680

TR-8 Greenberger, Martin
The OPS- 1 Manual
May 1964

-
~~~ AD 604-681

sIR—i l Dennis , Jack B.
Program Structure in a Multi-Access

Computer
May 1964

AD 608-500

TR- 12 Fano, Robert M.
The MAC System: A Progress Report
October 1964

AD 609-296

sTR- 13 Greenberger, Martin
A New Methodology for Computer Simulation
October 1964

AD 609-288

TR- 14 Roos, Daniel
Use of CTSS in a Teaching Environment
November 1964

AD 661-807

TR-16 Seltzer, Jerome H.
CTSS Technical Notes
March 1965

AD 612-702

sIR- 17 Samuel, Arthur L
Time-Sharing on a Mutticonsole Computer
March 1965

AD 462-158

— —-~~~~~~~~~~~~ - - -~~~ - 
- - - ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~

• - -— •— 
~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ --  -


-
— ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

PUBLICATIONS 128 PUBLICATIONS

sTR-i8 Scherr, Allan Lee
An Analysis of Time-Shared Computer Systems,
Ph.D. Thesis, EE Dept.
June 1965

AD 470-715

TR- i 9 Russo, Francis John
A Heuristic Approach to Alternate Routing in a Job Shop,
S.B. & S.M. Theses, Sloan School
June 1965

AD 474-018

TR-20 Wantman, Mayer Elihu
CALCULAID: An On-Line System for

Algebraic Computation and Analysis,
S.M. Thesis, Sloan School
September 1965

AD 474-019

sTR-21 Denning, Peter James
Queueing Models for File Memory Operation,

-
I S.M. Thesis, EE Dept.

October 1 965
AD 624-943

sTR-22 Greenberger , Martin
The Priority Problem
November 1965

AD 625-728

sTR-23 Dennis , Jack B., and Earl C. Van Horn
Programming Semantics for Multi-

programmed Computations
December 1 965

AD 627-537

sTR—2 4 Kap low , Roy , Step hen Stro ng and John Brackett
MAP: A System for On-Line Mathematical

Analysis
January 1966

AD 476-443

—.- — -__ —-—- -


~~~~ur -.- 
~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~~ ‘~T~~~ -~~~~~ 

- 
~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~-•—.

PUBLICATIONS 129 PUBLICATIONS

TR-25 Stratton, William David
Investigation of an Analog Technique

- — to Decrease Pen-Tracking Time in
Computer Displays,

-
-

SM. Thesis, EE Dept.
March 1966

AD 631-396

TR-26 Cheek, Thomas Burrell
Design of a Low-Cost Character
Generator for Remote Computer Displays,

SM. Thesis, EE Dept.
March 1966

AD 631-269

TR-27 Edwards, Daniel James
OCAS - On-Line Cryptanalytic Aid

11
SM. Thesis , EE Dept.
May 1966

AD 633-678

TR-28 Smith, Art hur Anshel
Input/Output in Time-Shared, Segmented,

Multiprocessor Systems,
SM. Thesis , EE Dept.

• June 1966
AD 637-215

TR-29 Iv ie, Evan Leon
Search Procedures Based on Measures

of Relatedness between Documents,
Ph.D. Thesis, EE Dept.
June 1966

AD 636-275

TR-30 Seltzer , Jerome Howard
Traffic Control in a Multiplexed

Computer System,
Sc.D. Thesis, EE Dept.
July 1966

AD 635-966

_ _ _ _ __- •

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~- .
— 

~~~~~~~ ~~
, .

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~

PUBLICATIONS 130 PUBLICATIONS

TR-31 Smith, Donald 1.
Models and Data Structures for Digital

- - Logic Simulation,
SM. Thesis , EE Dept.
August 1 966

AD 637-192

• sTR-32 Teite lman, Warren
PILOT: A Step Toward Man-Computer

- 
I Symbiosis,

Ph.D. Thesis, Math. Dept.
- - 

- September 1 966
AD 638-446

- 
- sTR-33 Norton, Lewis M.

ADEPT - A Heuristic Program for
Proving Theorems of Group Theory,

Ph.D. Thesis, Math. Dept.
October 1966

AD 645-660

sTR-34 Van Horn, Earl C., Jr.
Computer Design for Asynchronously

Reproducible Multiprocessing,
Ph.D. Thesis, EE Dept.
November I 966

AD 650-407

sTR-35 Fenichel, Robert R.
An On-Line System for Algebraic Manipulation,
Ph.D. Thesis, AppI. Math. (Harvard)
December 1 966

AD 657-282

sTR-36 Martin , William A.
Symbolic Mathematical Laboratory,
Ph.D. Thesis, EE Dept.
January 1967

AD 657-283

L_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


- .
~--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

PUBLICATIONS 131 PUBLICATIONS

sTR-37 Guzman-Arenas, Adolfo
Some Aspec ts of Pattern Recognit ion
by Computer,

SM. Thesis , EE Dept.
February 196 7

AD 656-041

TR-38 Rosenberg, Ronald C., Daniel W. Kennedy
and Roger A. Humphrey

A Low-Cost Output Terminal For Time-
Shared Computers

March 1967
AD 662-027

*TR-39 Forte , Allen
Syntax-Based Analytic Reading of

Musical Scores
AprIl 1967

AD 661-806

TR-40 Miller , James R.
On-Line Analysis for Social Scientists
May 196 7

AD 668-009

*TR-41 Coons , Steven A.
Surfaces f or Computer-Aided Design

of Space Forms
June 1967

AD 663-504

TR-42 Llu, Chung 1., Gabriel D. Chang
and Richard E. Marks

Design and Implementation of a Table-
Driven Compiler System

July 1967
AD 668-960

TR-43 Wilde, Daniel U.
Program Anal ysis by Digital Computer,
Ph D. Thesis, EE Dept
August 1967

AD 662-224

H



-
~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~~~ 

-
~~~-“~~

‘-
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- —- - - -  
:~~~~~~~~~~~

—
~~~~

-— “
~~

-—

PUBLICATIONS 132 PUBLICATIONS

TR-44 Gorry, G. Anthony
A System f or Computer-Aided Diagnosis,
Ph.D. Thesis, Sloan SChOOl
September 1967

AD 662-665

TR-45 Leal-Cantu, NestorL On the Simulation of Dynamic Systems
with Lumped Parameters and Time Delays,

S.M. Thesis, ME Dept.
October 1 967

AD 663-502

-
-

TR-46 Alsop, Joseph W.
A Canonic Translator,
S.B. Thesis, EE Dept.
November 1967

AD 663-503

sTR-47 Moses , Joel
Symbolic Integration,
Ph.D. Thesis, Math. Dept.

- 1 December 1967
- AD 662-666

TR-48 Jones , Malcolm N.
Incremental Simulation on a Time-
Shared Computer,

Ph.D. Thesis, Sloan SChOOl
January 1 968

AD 662-225

sTR-49 Luconi, Fred 1.
Asynchronous Computational Structures,
Ph.D Thesis, FE Dept
February 1968

AD 667-602

sTR-50 Denning, Peter J.
Resource Allocation in Multiprocess

Computer Systems,
Ph.D. Thesis, EE Dept.
May 1 968

AD 675-554


~~~~~~~~~

--.-.- -—-,.

~~~~~~~

-
~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ r’~

PUBLICATIONS 133 PUBLICATIONS

sTR-51 Charniak, Eugene
CARPS, A Program which Solves

Calculus Word Problems,
SM. Thesis, EE Dept.
July 1968

AD 673-670

TR-52 Deltel, Harvey M.
Absentee Computations in a Multiple-Access
Computer System,

SM. Thesis , EE Dept.
August 1 968

AD 684-738

sTR-53 Slutz, Donald R.
The Flow Graph Schemata Model of

Parallel Computation,
Ph.D. Thesis, EE Dept
September 1968

AD 683-393

TR-54 Grochow, Jerrold N.
The Graphic Display as an Aid in the

Monitoring of a Time-Shared Computer
System,

SM. Thesis , EE Dept.
October 1968

AD 689-468

sTR-55 Rappaport, Robert L.
Implementing Multi-Process Primitives

in a Multiplexed Computer System,
SM. Thesis , EE Dept.
November 1968

AD 689-469

sTR-56 Thornhill, Daniel E., Robert H. Stotz, Douglas T. Ross
end John E. Ward (ESL-R-356)
An Integrated Hardware-Software System

for Computer Graphics in Time-Sharing
December 1968

AD 685-202

LA _ _ _ _ _ _ _



.—- --

~~~~

-..-

~

;

~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~-- —- - 

~~
-

~~~!_
- _

PUBLICATIONS 134 PUBUCATIONS

sTR-57 Morris , James H.
F Lambda-Calculus Models of Programming

Languages,
Ph.D. Thesis, Sloan SChOOl
December 1968

AD 683-394

TR-58 Greenbaum, Howard J.
A Simulator of Multiple Interactive

Users to Drive a Time-Shared
Computer System,

S.M. Thesis , EE Dept
January 1969

AD 686-988

sTR-59 Guzman, Adolf o
Computer Recognition of Three-

Dimensional Objects in a Visual
Scene,

Ph.D. Thesis, EE Dept.
December 1968

AD 692-200

sTR-60 Ledgard, Henry F.
- - A Formal System for Defining the

Syntax and Semantics of Computer
Languages,

Ph.D. Thesis, EE Dept
April 1969

AD 689-305

TR-61 Baecker , Ronald M.
-

‘ Interactive Computer-Mediated Animation,
Ph.D. Thesis, EE Dept.
June 1969

-

~ AD 690-887

_ _
_ _ _ _ _ _ -- - - - _ _ _— — ___ — — — r- _ ___ —‘~-‘- — — — —----

~

PUBLICATIONS 135 PUBLICATIONS

TR-62 Tillman, Coyt C., Jr. (ESL-R-395)
EPS: An Interactive System for

Solving Elliptic Boundary-Value
Problems with Facilities for Data

• Manipulation and General-Purpose
Computation

June 1969
AD 692-462

TR-63 Brackett, John W., Michael Hammer and Daniel
E. Thornhill

- I - Case Study in Interactive Graphics
- - Programming: A Circuit Drawing

and Editing Program for Use with
a Storage-Tube Display Terminal

October 1969
AD 699-930

*TR-64 Rodriguez, Jorge E. (ESL-R-398)
A Graph Model for Parallel Computations,
Sc.D. Thesis, EE Dept
September 1969

AD 697-759

*TR-65 DeRemer , Franklin L
Practical Translators for LR(k)

Languages,
Ph.D. Thesis, EE Dept.
October 1969

• AD 699-501

sTR-66 Beyer , Wendell T.
Recognition of Topological Invariants

by Iterative Arrays ,
Ph.D. Thesis, Math. Dept
October 1969

AD 699-502

*TR-67 Vanderbilt , Dean H.
Controlled Information Sharing in - -

a Computer Utility,
Ph.D. Thesis, EE Dept.
October 1969

AD 6 99-503

II

______________________ __ _______ ____________

p
__ - - - - --— . _ fl1 .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~ .-
- - - - — -

~~~

——•.

~

- -•

~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 
‘_ L~~:~~~~~~ . • -~

-
~~~~~~~ 

- -—
~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~

I

PUBLICATIONS 136 PUBUCAT1ONS

sTR-68 Selwyn, Lee L.
Economies of Scale in Computer Use:

Initial Tests and Implications for
The Computer Utility,

Ph.D. Thesis, Sloan SChOOl
June 1970

AD 710-011

*TR-69 Gertz , Jeffrey L.
Hierarchical Associative Memories

for Parallel Computation,
PhD. Thesis, EE Dept
June 1 970

AD 711-091

*TR- 70 Fillat, Andrew I., and Leslie A. Kraning
Generalized Organization of Large

Data-Bases: A Set-Theoretic
Approach to Relations,

S.B. & S.M. Theses, EE Dept.
June 1970

AD 711-060

sTR-71 Fiasconaro , James G.
A Computer-Controlled Graphical

Pisplay Processor,
SM. Thesis, EE Dept.
June 1970

‘I 
AD 710-479

- 

I TR-72 Petit , Suhas S.
Coordination of Asynchronous Events,
Sc.D. Thesis, EE Dept.
June 1970

AD 711-763

*TR-73 Griffith, Arnold K.
Computer Recognition of Prismatic

Solids,
Ph.D. Thesis, Math. Dept.
August 1970

AD 712-069

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  __ 
_ _ _ _ _ _ _  

________LL

~~



- - -—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 
- 

1~”~ -r’ ~~~
- -~~~~~~~~~~

- 
~~~~~ ~~~~~~~~~ .. ~~~~~~~~~~~~~

PUBLICATIONS 137 PUBLICATIONS

• 1 TR-74 Edelberg, Murray
Integral Convex Polyhedra and an

Approach to Integrelization,
-
I PhD. Thesis, EE Dept.

August 1970
AD 712-070

TR-75 Hebalkar, Prakash a
Deadlock-Free Sharing of Resources

in Asynchronous Systems,
Sc.D. Thesis, EE Dept
September 1 970

AD 713-139

-
. *TR- 76 Winsto n, Patrick H.

Learning Structural Descriptions
from Examples,

Ph.D. Thesis, EE Dept.
September 1 970

AD 713-988

TR-77 Haggerty, Joseph P.
Complexity Measures for Language

Recognition by Canonic Systems,
S.M. Thesis, EE Dept
October 1970

AD 715- 134

sIR- 78 Madnick, Stuart E.
Design Strategies for File Systems,
S.M. Thesis , EE Dept & Sloan SChOOl
October 1970

AD 714-269

TR-79 Horn, Berthold K.
Shape from Shading: A Method for

Obtaining the Shape of a Smooth
Opaque Object from One View,

Ph.D. Thesis , EE Dept.
November 1970

AD 717-336

PUBLICATIONS 138 PUBLICATIONS

TR-80 Clerk , David 0., Robert M. Graham,
Jerome H. Seltzer and Michael D. Schroeder

The Classroom Information and Computing
Service

January 1971
AD 717-857

TR-81 Banks , Edwin R.
• Information Processing and Transmission

in Cellular Automate,
Ph.D. Thesis, ME Dept.
January 1971

AD 71 7-951

*TR-82 Krakauer , Lawrence J.
Computer Analysis of Visual Properties

of Curved Objects,
Ph.D. Thesis, EE Dept.
May 1971

AD 723-647

TR-83 Lewin , Donald E.
tn-Process Manufacturing Quality

Control,
Ph.D. Thesis, Sloan School
Jehuary 1971

AD 720-098

*TR-84 Winograd , Terry
Procedures as a Representation for
Data in a Computer Program for

• Understanding Natural Language,
Ph.D. Thesis, Math. Dept.
February 1971

AD 721-399

TR-85 Miller, Perry 1.
Automatic Creation of a Code Generator

from a Machine Description,
E.E. Thesis, EE Dept
May1971

AD 724-730

Li ~~~
_

-
_____________ L’~

—
~~

-
~~~

— 
~

-:
~
:-

~
i•: 

~~~~~~~~~~~ 
.- •

- -
~~~~~~~~~~~~~~~~~~

PUBLICATIONS 139 PUBLICATIONS

*TR-86 ScheII, Roger R.
• I Dynamic Reconfiguration in a Modular

Computer System,
Ph.D. Thesis , EE Dept.
June 1971

AD 725-859

TR-87 Thomas, Robert H.
A Model for Process Representation

and Synthesis ,
Ph.D. Thesis, EE Dept.

H June 1971
AD 726-049

TR-88 Welch, Terry A .
Bounds on Information Retrieval

Efficiency in Static File Structures,
Ph.D. Thesis, EE Dept.
June 1971

AD 725-429

TR-89 Owens , Richard C., Jr.
• 

- Primary Access Control in Large-
Scale Time-Shared Decision Systems,

SM. Thesis, Sloan School
July 1971

AD 728-036

TR-90 Lester , Bruce P.
Cost Analysis of Debugging Systems,
S.B. & SM. Theses, EE Dept
September 1971

AD 730-521

*TR-91 Smoliar , Stephen W.
A Parallel Processing Model of

Musical Structures,
Ph.D. Thesis , Math. Dept
September 1971

AD 731-690

j



— - -
~~~---

~~~~~~ —
- • • • - • -~~- - ._ .~~~~~~ !~~~~~~ -~7~TT .~ - •

PUBLICATIONS 140 PUBLICATIONS

TR- 92 Wang, Paul S.
Evaluation of Definite Integrals

by Symbolic Manipulation
Ph.D. Thesis, Math. Dept.
October 1971

AD 732-005

TR-93 Greif, Irene Gloria
Induction in Proofs about Programs,
SM. Thesis, EE Dept
February 1972

AD 737-701

TR-94 Hack, Michel Henri Theodore
Analysis of Production Schemata

by Petri Nets,
SM. Thesis , EE Dept.
February 1972

AD 740-320

TR-95 Fateman, Richard J.
Essays in Algebraic Simplification
(A revision of a Harvard Ph.D. Thesis)
April 1 972

AD 740-132

TR-96 Manning, Frank
Autonomous, Synchronous Counters Constructed Only of

J-K Flip-Flops,
SM. Thesis , EE Dept
May 1972

AD 744-030

TR-97 Vi lfan, Bostjan
The Complexity of Finite Functions
PhD. Thesis, EE Dept.
March 1972

AD 739-678

TR-98 Stockmeyer, Larry Joseph
Bounds on Polynomial Evaluation Algorithms
SM. Thes is, EE Dept.
April 1972

AD 740-328 

•- • ~~
-
~~~~—~~~~~~~~~~~ — -  -- •~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ rT. ~~~~~~~~~~~~~~~~~~~~~~~~~~ ,•

- - L ~ -.-~ - -•~~~~~~~~~~~ -.~

-
~~~~~ 

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

•_ - -r i

PUBLICATIONS 141 PUBLICATIONS

TR-99 Lynch, Nancy Ann
Relativization of the Theory of Computational Complexity
Ph.D. Thesis , Math. Dept
June 1972

AD 744-032

TR- 100 Mandl, Robert
Further Results on Hierarchies of Canonic Systems
SM. Thesis, EE Dept.
June 1972

AD 744-206

TR-1O1 Dennis, Jack B.
On the Design and Specification of a Common Base Language
June 1972

AD 744-207

TR-102 Hossley, Robert F.
Finite Tree Automata and w-Automata
S.M. Thesis , EE Dept.
September 1972

AD 749-36 7

sTR- 103 Sekino , Akira
-

. Performance Evaluation of Multiprogrammed Time-Shared
Computer Systems

Ph.D Thesis, EE Dept.
September 1972

- AD 749-949

TR- 104 Schroeder , Michael D.
Cooperation of Mutually Suspicious Subsystems

in a Computer Utility
Ph.D. Thesis, EE Dept.
September 1972

AD 750- 173

TR-105 Smith , Burton J.
An Analysis of Sorting Networks

• Sc.D. Thesis, EE Dept
October 1972

AD 751-614

~~~~~~~~~ _ _ _ _



PUBLICATIONS 142 PUBLICATIONS

IR— 106 Rackoff , Charles W.
• The Emptiness and Complementatlon Problems

for Automata on Infinite Trees
• SM. Thesis, EE Dept.

January 1 973
AD 756-245

TR-107 Madnick, Stuart E.
Storage Hierarchy Systems
Ph.D. Thesis, EE Dept.

• 

I 

April 1973
AD 760-001

TR-1O8 Wand, Mitchell
— Mathematical Foundations of Formal Languag. Theory

Ph.D. Thesis, Math. Dept
December 1973

TR-1O9 Johnson , David S.
• Near-Optimal Bin Packing Algorithms

Ph.D. Thesis, Math. Dept.
June 1973

PB 222-090

TR- 11 0 Molt, Robert
Complexity Classes of Recursive Functions
Ph.D. Thesis, Math. Dept.
June 1973

AD 767-130

TR- 111  Linderman, John P.
Productivity in Parallel Computation Schemata
Ph.D. Thesis, EE Dept.
December 1973

PB 226-159/AS

TR- 11 2 Hawryszk iewycz , Igor T.
Semantics of Data Base Systems

- 

I 
Ph.D. Thesis, EE Dept.
December 1973

PB 226-061/AS

I

i ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _



PUBLICATIONS 143 PUBLICATIONS

TR- 113 Her rmann, Paul P.
On Reducibility Among Combinatorial Problems

• S.M. Thesis , Math. Dept.
December 1973

PB 226-157/AS

TR-1 14 Metcalfe , Robert M.
Packet Communication
Ph.D. Thesis, Applied Math., Harvard University

• December 1973
AD 771-430

TR- 115 Rotenberg, Leo
- ‘ - Making Computers Keep Secrets

Ph.D Thesis, EE Dept.
February 1974

PB 229-352/AS

TR-1 16 Stern, Jerry A.
Backup and Recovery of On-Line Information

in a Computer Utility
SM. & E.E. Theses , EE Dept
January 1974

AD 774-141

TR- 11 7 Clark, David D.
An Input/Output Architecture for

Virtual Memory Computer Systems
• Ph.D. Thesis, EE Dept.

January 1974
AD 774-738

TR— 1 18 Briabrin , Vic tor
An Abstract Model of a Research Institute:

Simple Automatic Programming Approach
March 1 974

PB 231-505/AS

TR- 119 Hammer, Michael M.
A New Grammatical Transformation into

Deterministic Top-Down Form
Ph.D. Thesis, EE Dept.
February 1974

AD 775-545

I,’

4



-~~~~~~~~~~~ ~~~ : _______ • - 

~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~

PUBLICATIONS 144 PUBLICATiONS

TR- 120 Ramchandani, Chander
Analysis of Asynchronous Concurrent Systems

by Timed Petri Nets
Ph.D. Thesi s, EE Dept.
February 1974

• AD 775-618

TR- 121 Yao, Foong F.
On Lower Bounds for Selection Problems

• I Ph.D. Thesis, Math. Dept
March 1974

PB 230-950/AS

TR- 122 Scherf, John A.
Computer and Data Security: A Comprehensive
Annotated Bibliography

S.M. Thesis , Sloan School
January 1974

AD 775-546

TR- 123 Introduction to Multics
February 1974

AD 918-562

TR- 1 24 Laventhal , Mark S.
Verification of Programs Operating on Structured Data
SB. & S.M. Theses, EE Dept
March 1974

PB 231-365/AS

TR- 125 Mark , Willia m S.
A Model-Debugging System
S.B. & S.M. Theses , EE Dept.
April 1974

AD 778-688

TR- l 26 Altman , Vernon E.
A Language Implementation System
S B. & SM. Theses, Sloan School
May 1974

AD 780-672

lAd

-~~ -~~~~~~~~~~~-

~~~~~~~~~~~~~~~~~ 
-
~~~- -~-i- -j~~r~~~~;. :~~~

-
~~~ ~~~~~~~~~~ ~~~~~

PUBLICATIONS 145 PUBLICATIONS

TR- 127 Greenberg, Bernard S.
An Experimental Analysis of Program Reference

Patterns in the Multics Virtual Memory
• S.M. Thesi s, EE Dept.

May 1974
AD 780-407

I - TR- 128 Frank s ton, Robert N.
The Computer Utility as a Marketplace for Computer

Services
S.M. & E.E. Theses, EE Dept.

• 
/ May 1974

• AD 780-436

TR- 129 Weissberg, Richard W.
- I Using Interactive Graphics in Simulating the Hospital

Emergency Room
S.M. Thesis, EE Dept

- 

- May 1974
AD 780-437

TR- 130 Ruth, Gregory R.
Analysis of Algorithm Implementations
Ph.D. Thesis, EE Dept.
May 1974

AD 780-408

TR-131 Levin, Michael
- 

• Mathematical Logic for Computer Scientists
June 1 974

TR- 132 Janson, Philippe A.
Removing the Dynamic Linker from the Security

Kernel of a Computing Utility
SM. Thesis, EE Dept.
June 1974

AD 781-305

TR- 133 Stockmeyer , Larry J.
- •- The Complexity of Decision Problems In

Automata Theory and Logic
Ph.D. Thesis, EE Dept
July 1974

PB 235-283/AS



~-—— T~~~~~~— - . - -
~~~~~~~

--
~~~~~~~~

----
~ ~~~~~~~~~~

-;------- 

~~
—

~
----- -

~~
—

~~~~

- —

PUBLIC ATIONS 146 PUBUCAT1ONS

•
-

TR-134 Ellis , David J.
Semantics of Data Structures and References
SM. & E.E. Theses, EE Dept.
August 1974

PB 236-594/AS

TR-135 Pfister, Gregory F.
The Computer Control of Changing Pictures
Ph.D. Thesis, EE Dept
September 1974

AD 787-795

• • TR- 136 Ward, Stephen A.
•

-
Functional Domains of Applicative Languages *

Ph.D. Thesis, EE Dept
September 1974

AD 787-796

TR-137 Seiferas , Joel I.
Nondeterministic Time and Space Complexity

Classes
Ph.D Thesis, Math. Dept.
September 1974

PB 236-777/AS

TR- 138 Vun, David V. V.
The Hensel Lemma in Algebraic Manipulation
Ph.D. Thesis, Math. Dept.
November 1974

AD A002-737

• I TR- 139 Ferrante , Jeanne
Some Upper end Lower Bounds on Decision

Procedures in Logic
Ph.D. Thesis, Math. Dept.
November 1974

PB 238-121/AS

TR- 140 Redell, David 0.
Naming and Protection in Extendible

Operating Systems
Ph.D. Thesis, EE Dept.
November 1974

AD AOO1-721

• ~~
-

~~~~~~~~ ~~~~~~~~~~~ 
•—

~~~ -- —


- -
~~ •~~•~~~ ,--- ~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

PUBLICATIONS 147 PUBLICATIONS

TR-141 Richards , Martin , A. Evans and R Mabee
The BCPL Reference Manual
December 1974

AD A003-599

TR- 142 Brown, Gretchen P.
Some Problems in German to English

Machine Translation
:

1 SM. & E.E. Theses , EE Dept.
December 1974

- 
- AD A003-002

TR- 143 Silverman, Howard
A Digitalis Therapy Advisor

• SM. Thesis , EE Dept
January 1975

TR- 144 Rackoff , Charles
The Computational Complexity of Some

Logical Theories
Ph.D. Thesis, EE Dept.
February 1975

*TR- 145 Henderso n, 0. Austin
The Binding Model: A Semantic Base

for Modular Programming Systems
-
• , 

Ph.D. Thesis, EE Dept
February 1975

AD AOO6-961

TR-146 Maihotra , Ashok
Design Criteria for a Knowledge-Based

English Language System for Management:
An Experimental Analysis

Ph.D. Thesis, EE Dept.
February 1975

TR- 147 Van De Vanter, Michael L.
A Formalization end Correctness Proof

of the CGOL Language System
SM. Thesis, EE Dept.
March 1975



_________  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~

PUBLICATIONS 148 PUBLICATIONS

TR- 148 Johnson, Jerry
• Program Restructuring for Virtual Memory Systems

Ph.D. Thesis, EE Dept
March 1 975

AD AOO9-218

TR- 149 Snyder , Alan
A Portable Compiler for the Langueg. C
5.8. & S.M. Theses, EE Dept.
May 1 975

AD AO1O-218

TR- 150 Rumbaugh , James E.
A Parallel Asynchronous Computer Arch itectur.

for Data Flow Programs
Ph.D. Thesis, EE Dept
May 1975

AD A010-918

TR- 151 Manning, Frank B.
Automat ic Test, Configuration, and Repair

of Cellular Arrays
Ph.D. Thesi s, EE Dept.
June 1975

AD AOl 2-822

TR- 152 Qualitz, Joseph E.
Equivalence Problems for Monadic Schemes
Ph.D. Thesis, EE Dept
June 1975

AD AOl 2-823

- ‘ TR- 153 Miller , Peter 8.
Strate gy Selection in Medical Diagnosis
S.M. Thesi s, EE & CS Dept.
September 1975

TR- 154 Greif, Irene
Semantics of Communicating Parallel Process..
Ph.D. Thesis, EE & CS Dept

~~ 1 September 1975
AD AO16-302



~~~~ ~~~~~~ 
_
~

T-T_;i.
~~~~~~~~~~~~~~

-
~~~

--
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

---

PUBLICATIONS 149 PUBLICATIONS

TR- 155 Kahn, Kenneth M.
Mechanization of Temporal Knowledge

• S.M. Thesis , EE & CS Dept
• September 1975

TR- 156 Brett, Richard G.
- Minimizing the Naming Facilities Requiring
- Protection in a Computer Utility

S.M. Thesis, EE & CS Dept.
September 1975

.1 TR-157 Meldrnan, Jeffrey A.
- 

• 

• A Preliminary Study in Computer-Aided Legal Analysis
I 

- 
Ph.D. Thesis, EE & CS Dept.
November 1975

AD AOI8-997

iuIIIIIIIIuIIIuIIIIIuIuuIIIIuIuII Ir_~
_
~ ,.. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~

- -~~
----------— 

~~~~~~~~~~~~~~~~~~~~~~~ ~I&iE*~~ ~~~~~~~~~~~~~~~~~ -~~~~~i~~~~~~~~ -= __= .~~~~~ -


____ -

~~~~~~~~~ _________ 
— ‘ -  T~T~~~ .~ - -• -

_ _ _ _ _ _ _ _ _ _ _  -~~~-- —~~~-- • -~~~~•~~ -~~~~~~ -—
~~~~-

PUBLICATIONS 150 PUBLICATIONS

PROGRESS REPORTS

sProject MAC Progress Report I
to July 1964

A0 465-088

sProject MAC Progress Report H
July 1 964-July 1965

AD 629-494

sProject MAC Prog ress Report III
July 1 965-July 1966

AD 648-346

Project MAC Prog ress Report IV
July 1966-Ju ly 1967

AD 681-342

Project MAC Progress Report V
July 196 7-July 1968

AD 687-770

Project MAC Progress Repor t VI
July 1 968-July 1969

AD 705-434

Project MAC Progress Report VII
July 1969-July 1970

AD 732-767

Project MAC Prog ress Report VIII
July 1970-July 1971

AD 735-148

sProject MAC Progress Report IX
• July 1971-July 1972

AD 756-689

‘ Project MAC Prog ress Report X
July 1972-July 1973

AD 771-428

— ~~~~~~~~~~~~~~~~~~~~~~ : -
•-~~~~~-

PUBLICATiONS 151 PUBlICATIONS

Project MAC Progress Report XI
July 1 973-July 1974

AD A004-966

Laboratory for Computer Science Progress Report XII
July 1974-July 1975

AD AO24-527

p

Copies of all reports with AD and PB numbers listed in Publications may be secured
from the National Technical Information Service, Operations Division, Springfield,
VIrginia, 22151. Prices vary. The AD or PB number must be supplied with the request.

* Out of Print reports may be obtained from NTIS If the AD number is su~ pIied (see
above). Out of Print reports without an AD or PB number are unobtainable.

- --~~ -—‘ -

OFFICIAL DISTR 1~UT I ON LI ST

Defense Documentation Center Dr. A. I.. Slnfko sky
Cameron Stat ion Scientific Advisor
Alexandria , VA 22314 Conunandant of the M arine Corps

12 copies (Codi RD-i)
Washington , D. C. 20380

- - Office of Naval Research 1 copy
-

- Informat ion Systems Program
Code 437 Office of Naval Research
Arlington , VA 22217 Code 458

2 copies Arlington , VA 22217
1 copy

Office of Naval Research
- - Branch Office/Boston Nava l Electronics Lab Center

495 Summer Street Advanced Software Technology
Boston, MA 02210 Division — Code 5200

I copy San Diego , CA 92152
I copy

Office of Naval Research
Branch Office /Chicago Mr. E. H. Cleissner
536 South Clark Street Nava l Ship Research & Development Center
Chicago, IL 60605 Computation & Math Department

1 copy Bethesda , MD 20084
1 copy

Office of Naval Research
Branch Office/Pasadena Captain Grace M. Hopper
1030 East Green Street NA ICOM/M IS Planning Branch

• Pasadena , CA 91106 (OP—916D)
1 copy Office of Chief of Naval Operations

Washington , D. C. 20350
New York Area Office 1 copy
715 Broadway — 5th floor
New York, N. Y . 10003 Mr. Kin B. Thompson

1 copy Techni ca l Direc tor
Information Systems Division

Naval Research Labora tory (OP—91T)
Technical Informa tion Division Office of Chief of Naval Operations
Code 2627 Washington , D. C. 20350
Washington, D. C. 20375 1 copy

6 copies
Cap tain Richard L. Martin , USN

Assistant Chief for Technology Commanding Officer
Office of Naval Research USS Francis Marion (LPA-249)
Code 200 FPO New York, N. Y. 09501
Arlington, VA 22217 1 cop y

1 copy

Off ice of Naval Research
• Code 455

Arling ton, VA 22217
1 copy

--•--- __- _ _ _ _ _- - - -~~~~~~~-~~~~~~~~~~ -~~~~~~~~~~

